January 2011

EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign; Astrophysical Journal Letters

K. Meech
M. A'Hearn
J. Adams
P. Bacci
J. Bai

See next page for additional authors

Follow this and additional works at: https://irl.umsl.edu/physics-faculty

Part of the Astrophysics and Astronomy Commons, Biology Commons, Geography Commons, and the Physics Commons

Recommended Citation
DOI: https://doi.org/10.1088/2041-8205/734/1/L1
Available at: https://irl.umsl.edu/physics-faculty/2

This Article is brought to you for free and open access by the Department of Physics at IRL @ UMSL. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report such observations in support of the spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period.
was \( \sim 16.4 \) hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO\(_2\)-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

**Key words:** comets: individual (103P/Hartley 2)

1. INTRODUCTION

Comet 103P/Hartley 2, the **EPOXI** mission target, was discovered in 1986, and at the time of mission selection, had been observed at four apparitions. The comet is on a 6.47 yr period orbit, with a perihelion distance of \( q = 1.05 \) AU and aphelion distance of \( Q = 5.88 \) AU. It made a close approach to Jupiter in 1971 to 0.1 AU, an event that changed the perihelion distance from 1.48 to 0.9 AU. Prior to 1971, back to 1900 at least, the perihelion distance was about 1.4 AU. An Earth- and space-based campaign was initiated in 2008 to complement the in situ mission. The purpose of the campaign was to collect data over timescales, at wavelengths, and with instruments not carried on the **EPOXI** mission, to help characterize the comet pre-encounter and to provide scientific context for the interpretation of the in situ data. Observers were coordinated via an email list-server and a central Web site that enabled the group to rapidly share information about the comet brightness and activity necessary for observation planning during the several months around encounter. During the full campaign, which involved the collaboration of nearly 200 registered astronomers (Figure 1), more than 500 whole/partial nights worldwide were awarded on 51 telescopes involving 11 countries, 8 space facilities (**Hubble Space Telescope** (HST), **Spitzer** Wide-field Infrared Survey Explorer (WISE), **Swift**, **ODIN**, **Chandra**, **Solar and Heliospheric Observatory** (SOHO), **Herschel**) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory.

2. NUCLEUS PROPERTIES AND ROTATION

The comet was first seen after its aphelion passage (2007 July) using the European Southern Observatory (ESO) Very Large Telescope (VLT) in Chile while it was at 5.65 AU during 2008 May \( (Q + 272 \) days). It showed activity after passing aphelion that faded over the course of the following three months (Snodgrass et al. 2010). Observations with the **Spitzer Space Telescope** during 2008 August indicated a small average effective radius of 0.57 ± 0.08 km with a reported geometric albedo (at \( 0^\circ \) phase) of 0.028 ± 0.009 and an extended dust trail which modeling found to be composed of large (millimeter-sized) particles produced during the previous perihelion passage (Lisse et al. 2009).

Data were obtained during 2009 April–May using the HST and Gemini 8 m telescopes. The nucleus rotation periodicity was measured to be 16.4 ± 0.2 hr, with no apparent activity. This same periodicity was also reported in 2010 August from enhanced CN filter images (0.38 \( \mu \)m) of the comet (see Table 1). The CN morphology evolved throughout the apparition (Figure 2(a)), and this was used to estimate the rotation rate, yielding a longer periodicity, which was consistent with what was seen by the **EPOXI** spacecraft (A’Heaen et al. 2011). The new robotic TRAPPIST 60 cm telescope on La Silla was used to monitor the comet from 2010 October 30 through 2011 January 28 with narrowband cometary and broadband filters (Jehin et al. 2010). The data show periodic flux variations in gas production (also seen by others), with the largest variations observed in the CN filter. A period of 18.4 ± 0.3 hr was seen during the first half of 2010 November, in agreement with an 18.1 ± 0.3 hr synodic periodicity determined from Arecibo Observatory Doppler radar imaging observations obtained during 2010 October 24–27 (Harmon et al. 2010). It then slowed to nearly 19 hr during the second half of 2010 November (Jehin et al. 2010), presumably as a result of the strong jet activity seen by observers (Figure 2(a)) on such a small nucleus (A’Heaen et al. 2011). This relatively quick change in rotation period has rarely been seen in comets, but apparently is also happening with 9P/Temple 1 but at a factor of \( \sim 10 \) slower (Belton et al. 2011).

3. GAS SPECIES

Narrowband optical imaging, X-ray, UV, optical, near- and mid-IR spectra, submillimeter and radio observations were used to monitor the comet for gas production rates beginning in 2010 July. Late 2010 October through mid-November, **Chandra** observations of the comet show that X-rays were emitted due to solar wind charge exchange between highly charged C, N, O, and Ne, highly charged minor ions in the solar wind and neutral gas in the comet’s coma. The outgassing rate of the comet was low enough that the overall rate of X-ray emission was the second lowest ever recorded and occurred in regions within \( \sim 10^4 \) km of the nucleus. Except during the latter part of November the X-ray emission spectrum seen was typical of the cold, dense, slow equatorial solar wind interacting with a cometary coma.

The **Swift** satellite observed the comet several times on 2010 September 15 and November 21, and acquired medium-resolution grism spectra and broadband UV–optical imaging. On September 15 during the CN anomaly observed by **EPOXI**
(A’Hearn et al. 2011) the OH production rates were between $1.1 \times 10^{27}$ s$^{-1}$ and $2.1 \times 10^{27}$ s$^{-1}$, with a value of $A(\theta) / \rho_0 = 45$ cm (a proxy for dust production; A’Hearn et al. 1984) and a tentative ratio $C_2/CN = 0.4$. This is much lower than the ratio $C_2/CN = 1.2$–1.3 seen in most comets (A’Hearn et al. 1995). The CN anomaly is therefore not coupled to either OH or $C_2$. Simultaneously with the UV observations, Swift used its X-ray telescope but did not detect the comet. Having a much smaller collecting area than Chandra, the non-detection is not surprising given that this was one of the faintest comets ever observed by Chandra. Visible and near-UV photometry obtained four nights prior to encounter yielded a total water production rate of $1.1 \times 10^{26}$ s$^{-1}$ and a value of $A(\theta) / \rho_0 = 63$ cm. These and values obtained earlier in the apparition appear to be consistently lower (by up to $\sim 3\times$) than measurements made during the 1991 and 1997 apparitions. However, current photometry confirms the very low dust-to-gas ratio measured during the 1991 and 1997 apparitions. Current photometry confirms the very low dust-to-gas ratio measured during the 1991 and 1997 apparitions.}

**Table 1**

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Period (hr)</th>
<th>Measurement Technique</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 Apr–May</td>
<td>16.4 ± 0.1</td>
<td>Nucleus light curve, $R$ band</td>
<td>1</td>
</tr>
<tr>
<td>2010 Aug. 13–17</td>
<td>16.6 ± 0.5</td>
<td>CN jet imaging</td>
<td>2</td>
</tr>
<tr>
<td>2010 Sept 1–3</td>
<td>17.1</td>
<td>CN jet imaging</td>
<td>3</td>
</tr>
<tr>
<td>2010 Sept 15, 2010</td>
<td>17.6</td>
<td>Spacecraft data</td>
<td>4</td>
</tr>
<tr>
<td>2010 Sept 30–Oct 4</td>
<td>17.6</td>
<td>CN jet imaging; radio observations</td>
<td>3</td>
</tr>
<tr>
<td>2010 Oct 27</td>
<td>18.1 ± 0.3</td>
<td>Doppler radar imaging</td>
<td>5</td>
</tr>
<tr>
<td>2010 Oct 29–Dec 2</td>
<td>18.4 ± 0.3 to 19</td>
<td>Narrowband photometry (CN)</td>
<td>6</td>
</tr>
</tbody>
</table>

**Notes.**

4 The spacecraft data started to show evidence of complex rotation with a precession of 17 hr and a second frequency near 29 hr.


production rates of parent volatiles (H$_2$O, CH$_3$OH, C$_2$H$_6$, NH$_3$, HCN, H$_2$CO, and HC$_3$N) and their coma spatial distributions from 2010 July–December ($r = 1.62$–1.26 AU; Dello Russo et al. 2010; Mumma et al. 2010). Changes in production rates up to a factor of two were seen in these species on timescales of days, as well as changes up to 20% on short timescales (hr), which were related to both rotation of the nucleus and changes in the intrinsic outgassing rate (Mumma et al. 2011). On the night of encounter, overall gas and dust production increased by $\sim 60\%$ between 10:49 and 15:54 UT (Dello Russo et al. 2011). The SPEx instrument on the NASA Infrared Telescope Facility (IRTF) also observed the comet between 2010 September 30 and November 17 to monitor the H$_2$O, CH$_3$OH, and C$_2$H$_6$ gas production between 2 and 4 μm.

The ESA Herschel Space Observatory (Pilbratt et al. 2010) used its full complement of instruments to observe the far-IR and submillimeter spectrum and to image the thermal dust radiation (at 70–672 μm) from 2010 October 24 to November 17 as part of a Herschel Guaranteed Time Key program (Hartogh et al. 2009). Approximately 2.5 hr before the EPOXI encounter, images of the dust coma at 70, 100, and 160 μm were acquired with the PACS instrument (Poglitsch et al. 2010). The same instrument was used at encounter to map the brightness distribution of three H$_2$O lines (at 89.9, 179.5, 180.5 μm), from which a water production rate of $\sim 1.2 \times 10^{25}$ s$^{-1}$ is derived. Water maps show excess emission in the tail direction, which might be related to a production from large icy grains accelerated in the anti-solar direction by non-gravitational forces (Figure 2(b)). The asymmetric nature of the water emission from the comet is confirmed by measurements obtained later using the SPIRE and HI FI instruments (Griffin et al. 2010; de Graauw et al. 2010).

The comet’s outgassing and molecular composition were monitored in the submillimeter and millimeter range from 2010 October 15 through November 9 with the IRAM, JCMT, ARO, and CSO facilities. The HCN, CH$_3$OH, H$_2$CO, H$_2$S, CH$_3$CN, HNC, CS, and HNCO molecules were detected, and upper limits on the abundance of SO$_2$, c-C$_3$H$_2$ and deuterated isotopologues of HCN, H$_2$CO, and H$_2$O were obtained. Upper limits on the D/H ratio derived from DCN gave D/H < 0.01 (Milam et al. 2011). This is consistent with other cometary values (e.g., D/H = 0.002 in Hale–Bopp (Meier et al. 1998). The Herschel space observatory has detected HDO in comet 103P/Hartley 2, and the data analysis is in progress. At the time of encounter, the HCN production rate was increasing from 1.3 to $1.8 \times 10^{25}$ s$^{-1}$ and the mean gas expansion velocity was 0.7 km s$^{-1}$.
Meech et al.

Figure 2. Appearance of the comet at different wavelengths. (a—top) Two enhanced CN images of the comet obtained from the Hall 1.1 m telescope at Lowell observatory on 2010 September 10 and November 2 showing the jet morphology change. Each image is ∼50,000 km across and oriented so north is up and east is to the left. (b—middle left) Map of the 221–212 water line (1661 GHz) obtained with the PACS on Herschel on November 4.55 UT. The 10′′ scale bar corresponds to 1100 km at the comet’s distance. (b—middle right) Image of the dust coma at 70 μm, 100 × 100 arcsec in size, obtained with PACS on November 4.47 UT. (c—bottom left) intensity map of the coma in i band on November 4 obtained with the 50 cm NOAJ telescope polarimetric imager. (c: bottom center) Linear polarization map, (c—bottom right) Position angle of the polarization plane relative to the plane orthogonal to the scattering plane. Scale is 186 km pixel⁻¹. Arrows show the direction to the Sun.

The Odin submillimeter space observatory (Nordh et al. 2003) monitored the water production rate from 2010 October 29.4–31.7 and November 20.6–21.1. The average production rate inferred from the observation of the 557 GHz water line is 10²⁸ s⁻¹ with a ∼0.8 day 25% amplitude variation. The comet was observed with the Nançay radio telescope from the beginning of 2010 August until the end of 2011 January in order to assess water production by monitoring the OH 18 cm lines. The comet was detected from the end of 2010 September until mid-December, and exhibited day-to-day variability in the water production. Observations of the hydrogen coma were recorded by the SWAN UV camera on the SOHO spacecraft for three months around the EPOXI flyby from 2010 September 14 through December 12. During early November CN and OH showed a flux increase with respect to the other species (A’Hearn et al. 2011; Combi et al. 2011). An analysis of these data sets indicates there was significant water production from icy grains. The peak activity in H₂O measured by SOHO in 2010 was three times less than that measured with the HST during the 1991 apparition (Q(H₂O) of 6 × 10²⁸ s⁻¹ in 1991...
September; Weaver et al. 1994) and $2 \times 10^{28}$ s$^{-1}$ in 1998 January (H. Weaver, private communication), thus there seems to be a clear monotonic downward trend in water production in the past decade. Table 2 presents a summary of the various mixing ratios reported here and in the subsequent papers. It should be noted that for interpretation of the differences in mixing ratios, the source papers need to be consulted. The mixing ratios may have systematic uncertainties introduced by using different excitation models, through the treatment of optical depth effects, coma model uncertainties, and temporal variations.

4. DUST PROPERTIES

Observations from a suite of telescopes characterized both the small and large dust grain components in the comet. The WISE (Wright et al. 2010) imaged 103P/Hartley 2 during 2010 May 10–11, when it was at $r = 2.3$ AU, and imaged a dust trail extending more than 20 arcmin ($1.8 \times 10^{5}$ km). Subsequent modeling suggested that the dust grains had radii from 0.5 to 6 mm with a relatively steep mass size distribution (Bauer et al. 2010).

The dust coma observed on 2010 November 4 with Herschel shows a similar asymmetry as the gas (Figure 2(b)). The dust production rate inferred from the PACS images is preliminary, as it depends on the dust size distribution, which is not yet constrained. Using the dust model described in Bockelée-Morvan et al. (2010), dust production rates in the range 250–750 kg s$^{-1}$ were determined for size indices at the nucleus of 3.5–3.7, and a dust-to-gas production ratio of 1.5–2 was determined. The comet was observed by SPIRE as well in photometric bands at 150, 250, and 500 μm, and the presence of strong submillimeter emission confirms that large grains were present, in agreement with the in situ measurements (A’Heaurn et al. 2011).

Mid-IR observations from the Subaru 8 m telescope (with COMICS) on 2010 October 23 and continuing from the Gemini-South Telescope from November 5 through December 13, showed an extended coma 10$^\circ$ in the antisunward direction. A silicate feature was continuously present throughout this time period ~20% above the continuum (Figure 3(a)). The dust production rate varied as the nucleus rotated but the dust composition did not appear to be significantly varying, suggesting either that the activity was dominated by a single active area, or that all active areas have similar dust properties. Although the thermal emission from the nucleus has yet to be considered, the silicate feature is similar in strength to other Jupiter-family comets and to previous observations of comet 103P/Hartley 2 (Kelley & Wooden 2009).

Near the time of closest approach to Earth (2010 October 22) data were obtained using several instruments at the NASA IRTF facility (BASS, SpeX, and the guide camera) to obtain the dust spectral energy distribution (SED) from 0.4 to 13 μm (Sitko et al. 2011). The SED was modeled with a combination of scattered light and a thermal grain component with amorphous silicates (pyroxene and olivine compositions), amorphous carbon and crystalline olivine (Figure 3(b)). From this the bolometric albedo was found to be 0.056, which is considerably lower than the bulk of active comets measured so far.

The comet was observed by the SOFIA (Becklin & Gehrz 2009) on 2010 December 3 and 7, using the FORCAST camera (Adams et al. 2010), at aircraft altitudes of 42,000–43,000 ft, in broad filters centered at 11.1, 24.2, 31.4, and 37.1 μm. The comet was clearly detected at greater than 10σ in all filters, with spatial extent up to 30$'$ in the best (24.2 μm) image. The presence of significant long-wavelength emission indicates a substantial population of particles larger than 10 μm as shown in Figure 3(b).

Polarization of comet 103P/Hartley 2 dust showed a significant dependence on aperture, increasing as the field of view got smaller. At a phase angle of ~59$^\circ$ the polarization was 13.2% (~9600 km aperture) in the red continuum (6840/90A) and 10% in the blue continuum (4845/65A), falling between values typical for dust- and gas-rich comets. However, at smaller apertures (~3000 km diameter) polarization reached 6% at phase angles of 30$^\circ$ that is much higher than for dust-rich comets and was typical for the high-polarization comet Hale–Bopp. This would imply a polarization of ~20% at 59$^\circ$. The increase of polarization with decreasing nucleocentric distance is also evident from the polarization map in the $I$ filter from the NAOJ on November 4 (Figure 2(c)) which gives an average linear polarization of about

<table>
<thead>
<tr>
<th>Tel.</th>
<th>λ</th>
<th>CO$_2$</th>
<th>CO</th>
<th>HCN</th>
<th>C$_2$H$_6$</th>
<th>C$_2$H$_2$</th>
<th>CH$_3$OH</th>
<th>NH$_3$</th>
<th>H$_2$CO</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPOXI</td>
<td>IR</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HST</td>
<td>UV</td>
<td>&lt;20</td>
<td>0.15–0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IRAM JCMT CSO</td>
<td>mm</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Keck</td>
<td>IR</td>
<td>0.23 ± 0.01</td>
<td>0.73 ± 0.02</td>
<td>0.09 ± 0.01</td>
<td>2.68 ± 0.17</td>
<td>0.54 ± 0.07</td>
<td>0.24 ± 0.04</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keck</td>
<td>IR</td>
<td>0.26 ± 0.02</td>
<td>0.77 ± 0.04</td>
<td>0.14 ± 0.01</td>
<td>1.23 ± 0.06</td>
<td>0.59 ± 0.06</td>
<td>0.11 ± 0.01</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Mixing Ratios (%) Relative to Water$^a$

Notes.

$^a$ At the time at which activity peaked at $q + 10$ days, the production was $\sim 1 \times 10^{28}$ s$^{-1}$, but this varied with rotation. There was an outburst on 2010 September 16 during which time the H$_2$O production was a little higher.

References. (1) A’Heaurn et al. 2011; (2) Weaver et al. 2011; (3) Drachus et al. 2011; (4) Mumma et al. 2011; average from 2010 July to December. Water, ethane, HCN, and methanol vary with rotation, the mixing is independent of rotation; (5) Dello Russo et al. 2011. Average from 2010 November 4. All but H$_2$CO are typical of other comets; H$_2$CO is depleted. The difference in methanol production ratio is due to using different $\nu_3$ Q-branch g-factors.
15%–16% within 5″ (∼550 km) of the image center. When there is a high gas contamination that increases with increasing distance from the nucleus due to the increase of the amount of gas relative to the amount of dust, this can decrease the values of polarization due to depolarization by gas emissions, especially in the blue filter. Such a behavior is typical for low dust-to-gas ratio comets. Near-IR (K’ band) polarimetric measurements were made using the IRTF on 2010 October 17.55 and 2010 November 15.21 UT giving a linear polarization of 14.00% ± 0.86% and 14.45% ± 1.44%, respectively, while the flux density in a 2′′ circular aperture varied by a factor of two between those dates. The average IR polarimetric values, extrapolated to the optical 58:8 phases, yield a neutral polarimetric color, although the polarimetric color is red in the visible. Such behavior is typical for cometary dust and indicates that the dust particles act as porous on the scale of 0.4–0.7 μm and compact on the scales of 1–3 μm (Kolokolova & Kimura 2010).

5. HELIOCENTRIC ACTIVITY

Photometric optical R-band data, which measure scattered light from the dust coma, are a sensitive means of monitoring the activity from the comet. In addition to the TRAPPIST robotic telescope data, several groups started to monitor the light curve of the comet for a period of six months, beginning from 2010 July. These included monitoring by a CSIC–IEEC group by using the IAC-80 telescope in the Canary Islands and other medium-sized instruments (Trigo-Rodriguez et al. 2010), the 4 m SOAR telescope in Chile, the Pan STARRS 1 telescope in Hawai‘i, and the CARA project in Italy, a consortium of professional and amateur observers collecting long-term dust production measurements of active comets. The light curve formed from this campaign was combined with the data from 2008 and 2009 and is plotted in Figure 4, which shows both the photometry and the water production rate, both of which peaked ~10 days post-perihelion. A four-component thermal sublimation model has been generated to estimate the grain flux from the surface driven by a gas flow. The light scattered from the dust is added to that from the nucleus and compared to the data (Meech et al. 1986). The best-fit model has three nucleus volatile components with peak production rates: H2O (2% fractional sublimation model has been generated to estimate the grain flux from the surface driven by a gas flow. The light scattered from the dust is added to that from the nucleus and compared to the data (Meech et al. 1986). The best-fit model has three nucleus volatile components with peak production rates: H2O (2% fractional sublimation controlled activity from r = 4.3–1.4 AU, at which point CO2 outgassing from jets began to dominate (~q~ 60 days) through perihelion, remaining active out beyond the date of aphelion. Bottom: enlargement of the light curve for 250 days around perihelion comparing the optical data and model fit (brown curve) with the water production rates (purple triangles), showing a peak in both dust and water production ~10 days after perihelion.

Figure 4. Top: composite photometric light curve of the comet brightness (within 5″ radius aperture) from the TRAPPIST telescope (green), the CARA consortium (black), the IAC-80 telescope (red), and data from Mauna Kea (orange) and Palomar (purple). For comparison, the best-fit H2O (blue), CO2 (orange), CO (green), and total (brown) model light curves are superimposed. The heavy horizontal blue line is the nucleus brightness. This shows water sublimation controlled activity from r = 4.3–1.4 AU, at which point CO2 outgassing from jets began to dominate (~q~ 60 days) through perihelion, remaining active out beyond the date of aphelion. Bottom: enlargement of the light curve for 250 days around perihelion comparing the optical data and model fit (brown curve) with the water production rates (purple triangles), showing a peak in both dust and water production ~10 days after perihelion.
and inferred presence of large grains is consistent both with the EPOXI spacecraft observations (A'Hearn et al. 2011) and the large grains detected from both Herschel and Arecibo to within the model uncertainties. Adding in the water contribution from sublimating grains, the mixing ratio for CO becomes 0.2%, in agreement with the HST observations (Weaver et al. 2011) and the value for CO$_2$ is $\sim7\%$ in agreement with HST data from 1991 and 1998 (Weaver et al. 1994; Colangeli et al. 1999). The model also requires that CO and CO$_2$ activity turns on during 2010 August ($r \sim 1.4$ AU; $\sim q - 75$ days), and off about 200 days post-aphelion ($r \sim 5.6$ AU). The onset of strong CO$_2$ production is consistent with the time of jet appearance seen in the ground-based imaging data. The ejection of large ice grains has been seen in ice sublimation lab experiments with mixtures of water ice and more volatile materials (Kochan et al. 1998; Bar-Nun & Laufer 2003). Apart from a coma extension into the dust tail direction, images of the comet showed no strong jet-like features from 2010 March through July, these developed only in 2010 August (Figure 2(a)), coincident with the time that observations started to show a change in the rotation period.

6. SUMMARY

1. The nucleus is small, with a low albedo and when inactive the rotation period was observed to be 16.4 hr. However, as activity became strong, the rotation rate slowed significantly, possibly driven by either outgassing from the irregular surface or from torques from CO$_2$ jets.

2. The comet had been previously reported as a highly active nucleus with up to 100% of the surface area active (Lisse et al. 2009; Groussin et al. 2004), but the observing campaign data show that the fractional active nucleus area is normal ($\sim2\%$), but that there is a large halo of icy grains that contribute more ($\sim90\%$) to the total water production rate than does the nucleus (few percentage) at perihelion. Because of the large sublimating ice grain halo, the interpretation of observations as nucleus mixing ratios needs to be approached with caution.

3. A thermal sublimation model shows that the outgassing from the comet began to be detectable at $r \sim 4.4$ AU, comparable to other comets (Meech et al. 2011) and that just before perihelion CO$_2$ becomes the likely dominant driver of activity. This lasts out to aphelion and the comet remains active after aphelion, on the inbound orbital leg and is likely due to significant contribution of outgassing of CO$_2$ from the interior. This is the first time CO$_2$ has been seen as an important driver for a comet’s activity. The outgassing level has been decreasing since the 1991 and 1997 apparitions.

4. The comet appears to be a normal comet in terms of the observed C-chain species, the volatiles that have been detected, the isotopic ratios and the nucleus mixing ratios (Bockele-Morvan et al. 2004), with the exception of CO$_2$.

5. Water production was correlated with rotation (at near-IR and radio wavelengths). Additionally, there was variability at the 20% level on short time periods. Neither the ground-based observations nor data from SWAN showed an increase in water production that correlated with the 2010 September CN anomaly seen by the spacecraft.

6. From a thermophysical standpoint, this comet may be a relatively newly introduced object in the inner solar system, given its farther orbit in the past, its physical properties and the abundance and prominence of CO$_2$ ice in contributing to the observed activity. However, more analysis and modeling would be required to assert this inference.

7. Both large and small dust grains are seen, and the grain albedos are low (0.056). From the dust spectroscopy and polarimetry, the physical properties and composition of the comet dust do not appear unusual for a Jupiter-family comet.

Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board, the Canadian Space Agency, the National Technology Agency of Finland, and the Centre National d’Etudes Spatiales (CNES, France). The Swedish Space Corporation is the prime contractor; also responsible for Odin operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. We thank A. Tokunaga, Director of the NASA IRTF, for allocating time for an observing campaign at this telescope. The Faulkes Telescope North contributed to the CARA observing campaign. TRAPPIST is a project driven by the University of Liège, in close collaboration with the Observatory of Geneva, supported by the Belgian Fund for Scientific Research (FNRS) and the Swiss National Science Foundation. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013 under grant agreement no. 229517. Faulkes Telescope North contributed to CARA around the flyby period. The CSIC–IEEC and CSIC–IAA teams acknowledge support from grants AYA2008-01839/ESP and AYA2009-08011 from the Spanish Ministerio de Ciencia e Innovación and PE2007-TIC 02744 from Junta de Andalucía. This work was supported in part by the NASA Planetary Astronomy Program and was performed in part at the Jet Propulsion Laboratory under contract with NASA. This work is also supported in part at The Aerospace Corporation by the Independent Research and Development Program. This work was supported by NASA’s Discovery Program through contract NNM07AA99C to the University of Maryland, and in part through the NASA Astrobiology Institute under cooperative agreement no. NNA04CC08A.

REFERENCES

Bauer, J., et al. 2010, IAU Circ., 9179, 1
Dello Russo, N., Vervack, R. J., Jr., Kawakita, H., & Kobayashi, H. 2010, IAU Circ., 9171, 1
Harmon, J. K., Nolan, M. C., Howell, E. S., & Giorgini, J. D. 2010, CBET, 2515, 1

Meech et al.