
University of Missouri, St. Louis
IRL @ UMSL

Philosophy Faculty Works Philosophy

10-1-2007

Computing Mechanisms
Gualtiero Piccinini
University of Missouri-St. Louis, piccininig@umsl.edu

Follow this and additional works at: http://irl.umsl.edu/philosophy-faculty

Part of the Philosophy Commons

This Article is brought to you for free and open access by the Philosophy at IRL @ UMSL. It has been accepted for inclusion in Philosophy Faculty
Works by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Gualtiero Piccinini, "Computing Mechanisms," Philosophy of Science 74, no. 4 (October 2007): 501-526. https://doi.org/10.1086/
522851
http://irl.umsl.edu/philosophy-faculty/3

http://irl.umsl.edu?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://irl.umsl.edu/philosophy-faculty?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://irl.umsl.edu/philosophy?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://irl.umsl.edu/philosophy-faculty?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/525?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://irl.umsl.edu/philosophy-faculty/3?utm_source=irl.umsl.edu%2Fphilosophy-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu

Philosophy of Science, 74 (October 2007): 501–526. 0031-8248/2007/7404-0004$10.00
Copyright 2007 by the Philosophy of Science Association. All rights reserved.

501

Computing Mechanisms*

Gualtiero Piccinini†‡

This paper offers an account of what it is for a physical system to be a computing
mechanism—a system that performs computations. A computing mechanism is a mech-
anism whose function is to generate output strings from input strings and (possibly)
internal states, in accordance with a general rule that applies to all relevant strings
and depends on the input strings and (possibly) internal states for its application. This
account is motivated by reasons endogenous to the philosophy of computing, namely,
doing justice to the practices of computer scientists and computability theorists. It is
also an application of recent literature on mechanisms, because it assimilates com-
putational explanation to mechanistic explanation. The account can be used to indi-
viduate computing mechanisms and the functions they compute and to taxonomize
computing mechanisms based on their computing power.

1. Introduction. This paper contains an account of what it is for a physical
system to be a computing mechanism—a system that performs compu-
tations. My motivation, namely, doing justice to the practices of computer
scientists and computability theorists, is endogenous to the philosophy of
computing. My account is also an application of recent literature on
mechanisms (e.g., Machamer, Darden, and Craver 2000; Glennan 2002;
Tabery 2004; Craver, forthcoming), because it assimilates computational
explanation to mechanistic explanation. The mechanistic account I offer
can be used to individuate computing mechanisms and the functions they

*Received August 2004; revised May 2007.

†To contact the author, please write to: University of Missouri—St. Louis, 599 Lucas
Hall (MC 73), 1 University Blvd, St. Louis, MO 63121; e-mail: piccininig@umsl.edu.

‡Thanks to the many people who discussed computing mechanisms with me. For
comments on previous drafts, I’m especially indebted to Carl Craver,, John Gabriel,
Peter Machamer, Corey Maley, the editor, and members of the St. Louis Philosophy
of Science Reading Group. Between 2002 and 2005, ancestors of this paper were
presented to the Canadian Society for the History and Philosophy of Science, Com-
puting and Philosophy (CAP@CMU), the Second Reichenbach Conference, the SSPP,
the University of Pittsburgh, the University of Georgia, and Georgia State University.
Thanks to the audiences for their feedback. The writing of this paper was supported
in part by a grant from the University of Missouri—St. Louis.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

502 GUALTIERO PICCININI

compute and to taxonomize computing mechanisms based on their com-
puting power.

At the origin of the mechanistic account are two central theses. First,
computation does not presuppose representation. Unlike most accounts
in the philosophical literature, the mechanistic account does not appeal
to semantic properties to individuate computing mechanisms and the func-
tions they compute. In other words, the mechanistic account keeps the
question whether something is a computing mechanism and what it com-
putes separate from the question whether something has semantic content
and what it represents. I defend this thesis in Piccinini (2004a, 2007a).

Second, computing systems are mechanisms. I explicate computational
explanation in terms of mechanistic explanation. I construe mechanistic
explanation as in engineering and biology. Roughly, a mechanistic expla-
nation involves a partition of a mechanism into parts, an assignment of
functions and organization to those parts, and a statement that a mech-
anism’s capacities are due to the way the parts and their functions are
organized. Given this construal, computational explanation—the expla-
nation of a mechanism’s outer capacities in terms of the inner compu-
tations it performs—is a species of mechanistic explanation. I defend this
thesis in Piccinini (2004b, 2007b).

The mechanistic account flows naturally from these theses. Computing
mechanisms, such as calculators and computers, are analyzed in terms of
their component parts (processors, memory units, input devices, and out-
put devices), their functions, and their organization. Those components
are also analyzed in terms of their component parts (e.g., registers and
circuits), their functions, and their organization. Those, in turn, are an-
alyzed in terms of primitive computing components (logic gates), their
functions, and their organization. Primitive computing components can
be further analyzed mechanistically, but not by computational explana-
tion; hence their analysis does not illuminate the notion of a computing
mechanism.

I believe I have motivated the above theses sufficiently well in the cited
works. In this occasion, I will articulate and defend the mechanistic ac-
count on largely independent grounds. I will argue that the mechanistic
account has six desirable features. In contrast to extant philosophical
accounts of computing mechanisms, these features allow the present ac-
count to explicate adequately both our ordinary language about com-
puting mechanisms and the language and practices of computer scientists
and computability theorists.

2. Features. An account of computing mechanisms that does justice to
the sciences of computation should have at least the following features:

1. Objectivity. An account with objectivity is such that whether a system

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 503

performs a particular computation is a matter of fact. Contrary to ob-
jectivity, some authors have suggested that computational descriptions are
vacuous—a matter of free interpretation rather than fact. The alleged
reason is that any system may be described as performing any compu-
tation, and there is no further fact of the matter as to whether one com-
putational description is more accurate than another (Putnam 1988; Searle
1992). This conclusion may be informally derived as follows.

Assume that a computing mechanism is a system with a mapping be-
tween a sequence of states individuated by a computational description
and a sequence of states individuated by a physical description of the
system (Putnam 1960, 1967, 1988). Assume, along with Putnam and
Searle, that there are no constraints on which mappings are acceptable,
so that any sequence of computational states may map onto any sequence
of physical states of the same cardinality. If the sequence of physical states
has larger cardinality, the computational states may map onto either
equivalence classes or a subset of the physical states. Since physical var-
iables can generally take real numbers as values and there are uncountably
many of those, physical descriptions generally give rise to uncountably
many states and state transitions. But ordinary computational descrip-
tions contain only countably many states and state transitions. Hence,
there is a mapping from any (countable) sequence of computational state
transitions onto either equivalence classes or a subset of physical states
belonging to any (uncountable) sequence of physical state transitions.
Hence, generally, any physical system performs any computation.

If this result is sound, then empirical facts about concrete systems make
no difference to what computations they perform. Both Putnam (1988)
and Searle (1992) take results of this sort to trivialize the empirical import
of computational descriptions. Both conclude that computationalism—
the view that the brain is a computing mechanism—is vacuous. But as
usual, one person’s modus ponens is another person’s modus tollens. I take
Putnam and Searle’s result to refute their assumptions about what counts
as a computing mechanism.1

Computer scientists and engineers appeal to empirical facts about the
systems they study to determine which computations are performed by
which mechanisms. They apply computational descriptions to concrete
mechanisms in a way entirely analogous to other bona fide scientific de-
scriptions. Furthermore, many psychologists and neuroscientists are in
the business of discovering which computations are performed by minds
and brains. When they disagree, they address their opponents by mus-
tering empirical evidence about the systems they study. Unless the prima

1. For related criticisms of Putnam and Searle, see Chrisley (1995), Chalmers (1996),
Copeland (1996), and Scheutz (1999).

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

504 GUALTIERO PICCININI

facie legitimacy of those scientific practices can be explained away, a good
account of computing mechanisms should entail that there is a fact of
the matter as to which computations are performed by which mechanisms.

2. Explanation. Inner computations may explain outer behaviors. Or-
dinary digital computers are said to execute programs, and their outer
behavior is normally explained by appealing to the programs they execute.
The literature on computational theories of mind contains explanations
that appeal to the computations performed by the mind or brain. The
same literature also contains claims that psychological capacities ought
to be explained computationally, and more specifically, by program ex-
ecution (e.g., Fodor 1968; Cummins 1977). A good account of computing
mechanisms should say how appeals to program execution, and more
generally to computation, explain the behavior of computing mechanisms.
It should also say how program execution relates to the general notion
of computation: whether they are the same and if not, how they are related.

3. The right things compute. A good account of computing mechanisms
should entail that paradigmatic examples of computing mechanisms, such
as digital computers, calculators, both universal and nonuniversal Turing
machines, and finite state automata, compute.

4. The wrong things do not compute. A good account of computing
mechanisms should entail that all paradigmatic examples of noncomput-
ing mechanisms and systems, such as planetary systems, hurricanes, and
digestive systems, do not perform computations.

Contrary to feature 4, many authors maintain that everything performs
computations (e.g., Chalmers 1996, 331; Scheutz 1999, 191; Shagrir 2006).
But contrary to their view as well as feature 3, there are accounts of
computation so restrictive that under them, even many paradigmatic ex-
amples of computing mechanisms turn out not to compute. For instance,
according to Jerry Fodor and Zenon Pylyshyn, a necessary condition for
something to perform computations is that the steps it follows be caused
by internal representations of rules for those steps (Fodor 1968, 1975,
1998, 10–11; Pylyshyn 1984). But nonuniversal Turing machines and finite
state automata do not represent rules for the steps they follow. Hence,
according to Fodor and Pylyshyn’s account, they do not compute.

The accounts just mentioned lack feature 3 or 4. Why? What is wrong
with that? There are borderline cases, such as lookup tables and so called
analog computers. Whether those things really compute may be open to
debate, and in some cases it may be open to stipulation. But there are
plenty of clear cases. Digital computers, calculators, Turing machines,
and finite state automata are paradigmatic computing mechanisms. They
constitute the subject matter of computer science and computability the-
ory. Planetary systems, the weather, and digestive systems are paradig-

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 505

matic noncomputing systems;2 at the very least, it is not obvious how to
explain their behavior computationally. If we can find an account that
works for the clear cases, the unclear ones may be left to fall wherever
the account says they do—“spoils to the victor” (Lewis 1986, 203; cf.
Collins, Hall, and Paul 2004, 32).

Insofar as the assumptions of computer scientists and computability
theorists ground the success of their science as well as the appeal of their
notion of computation to practitioners of other disciplines, they ought to
be respected. By having features 3 and 4, a good account of computing
mechanisms draws a principled distinction between systems that compute
and systems that do not, and it draws it in a place that fits the presup-
positions of good science.

5. Miscomputation. Computations can go wrong. A mechanism m mis-
computes just in case m is computing function f on input i, , mf(i) p o1

outputs o2, and .3 Although miscomputation has been ignored byo (o2 1

philosophers to date, a good account of computing mechanisms should
explain how it is possible for a physical system to miscompute. This is
desirable because miscomputation, or more informally, making compu-
tational ‘mistakes’, plays an important role in computer science and its
applications. Those who design and use computing mechanisms devote a
large portion of their efforts to avoiding miscomputations and devising
techniques for preventing them. To the extent that an account of com-
puting mechanisms makes no sense of that effort, it is unsatisfactory.

6. Taxonomy. Different classes of computing mechanisms have different
capacities. Logic gates can perform only trivial operations on pairs of
bits. Nonprogrammable calculators can compute a finite but considerable
number of functions for inputs of bounded size. Ordinary digital com-
puters can compute any computable function on any input until they run
out of memory or time. Different capacities relevant to computing play
an important role in computer science and computing applications. Any
account of computing mechanisms whose conceptual resources explain
or shed light on those differences is preferable to an account that is blind
to those differences.

To illustrate, consider Robert Cummins’s account. According to Cum-

2. For evidence, see Fodor (1968, 632; 1975, 74), Dreyfus (1979, 68, 101–102), and
Searle (1980, 37–38; 1992, 208).

3. Here o1 and o2 represent any possible outcome of a computation, including the
possibility that the function is undefined for a given input, which corresponds to a
nonhalting computation. Miscomputation is analogous to misrepresentation (Dretske
1986), but it is not the same. Something (e.g., a sorter) may compute correctly or
incorrectly regardless of whether it represents or misrepresents anything. Something
(e.g., a painting) may represent correctly or incorrectly regardless of whether it com-
putes or miscomputes anything.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

506 GUALTIERO PICCININI

mins (1983), for something to compute, it must execute a program. He
also maintains that executing a program amounts to following the steps
described by the program. This leads to paradoxical consequences. Con-
sider that many paradigmatic computing mechanisms (such as nonuniver-
sal Turing machines and finite state automata) are not characterized by
computer scientists as executing programs, and they are considerably less
powerful than the mechanisms that are so characterized (i.e., universal
Turing machines and idealized digital computers). Accordingly, we might
conclude that nonuniversal Turing machines, finite state automata, etc.,
do not really compute. But this conclusion violates feature 3 (the right
things compute). Alternatively, we might observe along with Cummins
that all these systems do follow the steps described by a program. Hence,
by Cummins’s light, they execute a program, and hence they compute.
But now we find it difficult to explain why they are so much less powerful
than ordinary digital computers. For under Cummins’s account, we can-
not say that unlike digital computers, those other mechanisms lack the
flexibility that comes with the capacity to execute programs. The difference
between computing mechanisms that execute programs and those that do
not is important to computer science and computing applications, and it
should make a difference to theories of mind. We should prefer an account
of computing mechanisms that honors that kind of difference to one that
is blind to it.

With these features as landmarks, I proceed to formulate the mecha-
nistic account of computing mechanisms and argue that it possesses them.

3. The Mechanistic Account.

3.1. Mechanistic Explanation. The central idea is to explicate com-
puting mechanisms as systems subject to mechanistic explanation. By
mechanistic explanation of a system X, I mean a description of X in terms
of spatiotemporal components of X, their functions, and their organi-
zation, to the effect that X possesses its capacities because of how X’s
components and their functions are organized.4 To distinguish systems
whose capacities are subject to mechanistic explanation in the present
sense from other systems, I call them mechanisms. To identify the com-
ponents, functions, and organization of a system, I defer to the relevant
community of scientists.

Biologists ascribe functions to types of organs (e.g., the pumping func-

4. For a similar notion of mechanistic explanation, see Bechtel and Richardson (1993),
Machamer, Darden, and Craver (2000), and Glennan (2002). For a detailed and sys-
tematic account of the same notion, with emphasis on neural mechanisms, see Craver
(2001, forthcoming).

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 507

tion of hearts) and engineers ascribe them to types of artifacts (e.g., the
cooling function of refrigerators). Scientists differentiate between func-
tions and other causal properties (e.g., making noise or breaking under
pressure). Organs and artifacts that do not perform their functions are
said to malfunction or be defective. The philosophical analysis of function
ascription in biology and engineering is a controversial matter on which,
for present purposes, I remain neutral.5 Suffice it to say that biologists
and engineers determine the functions of the systems and components
they analyze by empirical considerations, and they use the functions and
malfunctions of components to explain the activities of the containing
systems.

This notion of mechanistic explanation applies to ordinary computers
and other computing systems in a way that matches the language and
practices of computer scientists and engineers.6 Computing mechanisms,
including computers, are mechanisms whose function is computing. Like
other mechanisms, computing mechanisms and their components perform
their activities ceteris paribus, as a matter of their function. In the rest of
our discussion, we will mostly focus on their normal operation, but it is
important to keep in mind that they can malfunction, break, or be mal-
formed or defective. This will help demonstrate that the mechanistic ac-
count has feature 5 (miscomputation).

A similar notion of mechanistic explanation applies to abstract com-
puting systems, such as (unimplemented) Turing machines. Turing ma-
chines consist of a tape divided into squares and a processing device. The
tape and processing device are explicitly defined as spatiotemporal com-
ponents. They have functions (storing letters; moving along the tape;
reading, erasing, and writing letters on the tape) and an organization (the
processing device moves along the tape one square at a time, etc.). Finally,
the organized activities of their components explain the computations they
perform. Abstract computing mechanisms stand to concrete ones in
roughly the same relation that the triangles of geometry stand relative to
concrete triangular objects. Abstract computing mechanisms may be ide-

5. William Lycan (personal communication) has called this notion of function teleo-
logical, and warned against confusing the teleological notion of function with any
particular account of teleology, such as the etiological account. I am committed to the
former (in a weak sense of ‘teleology’) but not the latter. Accounts of function that
suit my purposes are Boorse’s (2002) and Wimsatt’s (2002). But I prefer to stay neutral
as to the correct account of function. Representatives and discussions of the main
competing accounts can be found in Allen, Bekoff, and Lauder (1998), Preston (1998),
Schlosser (1998), Buller (1999), Ariew, Cummins, and Perlman (2002), and Christensen
and Bickhard (2002).

6. For a standard introduction to computer organization and design, see Patterson
and Hennessy (1998).

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

508 GUALTIERO PICCININI

alized in various ways: they may be defined so as to (i) never break down
and (ii) have properties that may be impossible to implement (such as
having tapes of unbounded length).

Mechanistic explanation, unlike causal explanation simpliciter, distin-
guishes between a system’s successes and its failures. It also distinguishes
between the conditions relevant to explaining successes and failures and
those that are irrelevant. This gives us the resources to distinguish the
properties of a mechanism that are relevant to its computational capacities
from those that are irrelevant. But mechanistic structure per se is not
enough to distinguish between mechanisms that compute and mechanisms
that do not. For instance, both digestive systems and computers are sub-
ject to mechanistic explanation, but it appears that only the latter com-
pute. The main challenge for the mechanistic account is to specify mech-
anistic explanations that are relevant to computation.

I will now propose a way to single out computations from other ca-
pacities of mechanisms, thereby differentiating between computing mech-
anisms and other mechanisms. To do so, I will assume that the relevant
community of scientists can identify a mechanism’s functionally relevant
components and properties. I will suggest criteria that should be met by
the functionally relevant components and properties of a mechanism for
it to count as performing computations in a nontrivial sense, and hence
as being a computing mechanism. The resulting account is not intended
as a list of necessary and sufficient conditions, but as an explication of
the properties that are most central to computing mechanisms.

3.2. Abstract Computation. Mathematically, a computation, in the
sense most directly relevant to computability theory and computer science,
is defined in terms of two things: strings of letters from a finite alphabet
and a list of instructions for generating new strings from old strings. The
list of instructions is called a ‘program’. The instructions are typically
deterministic, specifying how to modify a string to obtain its successor.
(In special cases, instructions may be nondeterministic, specifying which
of several modifications may be made.) Given an alphabet and a list of
pertinent instructions, a computation is a sequence of strings—sometimes
called ‘snapshots’—such that each member of the sequence is derived from
its predecessor by some instruction in the list.7

Letters and strings thereof are often called ‘symbols’, because they are
typically assigned semantic interpretations. But interpreting strings is not
necessary for individuating them. A letter is simply a type of entity that

7. For an introduction to computability theory, including a more precise definition of
computation, see Davis, Sigal, and Weyuker (1994). For the mathematical theory of
strings, see Corcoran, Frank, and Maloney (1974).

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 509

(i) is distinct from other letters and (ii) may be concatenated to other
letters to form lists, called ‘strings’. A string is an ordered sequence of
letters—it is individuated by the types of letter that compose it, their
number, and their order within the string.8

Many interesting computations depend not only on an input string of
data, but also on the internal state of the (abstract) mechanism that is
said to be responsible for the computation. At least in paradigmatic cases,
internal states may also be defined as strings of letters from a finite al-
phabet. Thus, the strings over which computations are defined—the snap-
shots—may specify not only the computational data, but also the relevant
internal states. If internal states are relevant, at each step in the com-
putation at least one letter in a snapshot—together, perhaps, with its
position in the snapshot—specifies the internal state of the mechanism.
Typically, an abstract computation begins with one initial string (input
plus initial internal state), includes some intermediate strings (intermediate
data plus intermediate internal states), and terminates with a final string
(output plus final internal state).

For all strings from an alphabet and any relevant list of instructions,
there is a general rule that specifies which function is computed by acting
in accordance with a program. In other words, the rule specifies which
relationship obtains between the outputs produced by modifying snap-
shots in accordance with the program and their respective inputs. For
example, a rule may say that the outputs are a series of input words
arranged in alphabetical order. Such a rule has two important features.
First, it is general, in that it applies to all inputs and outputs from a given
alphabet without exception. Second, it is input-specific, in that it depends
on the composition of the input (the letters that compose it and their
order) for its application. The rule need not return an output value for
all inputs; when it does not, the (partial) function being computed is
undefined for that input. Absent a way to formulate the rule independently
of the program, the program itself may count as the rule.9

It is important to notice that mathematically, a computation is a specific
type of sequence defined over a specific type of entity. Many sets do not
count as alphabets (e.g., the set of natural numbers is not an alphabet

8. The standard one-dimensional notion of string can be generalized to a two-dimen-
sional notion using graph theory (Sieg and Byrnes 1996).

9. In Turing’s original formulation, all computations begin with the same input (the
empty string), but there are still rules that specify which strings are produced by each
computation (Turing 1936–37). More generally, it is possible to define “computations”
analogous to ordinary computations but without inputs, without outputs, or without
both. Since these “computations” are of little interest for present purposes, I will ignore
them.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

510 GUALTIERO PICCININI

because it is infinite) and many operations do not count as computations
in the relevant sense (e.g., integrating a function over a domain with
uncountably many values, or generating a random string of letters [Church
1940]). The mathematical notion of computation is clear enough, but it
applies directly only to abstract mechanisms. The remaining question is
how to apply it to concrete mechanisms.

3.3. Digits and Primitive Computing Components. To show how a con-
crete mechanism can perform computations, the first step is finding a
concrete counterpart to the formal notion of letter from a finite alphabet.
I will call such an entity a ‘digit’. A digit may be a component or state
of a component of the mechanism that processes it. It may enter the
mechanism, be processed or transformed by the mechanism, and exit the
mechanism (to be transmitted, perhaps, to another mechanism). While
inside a mechanism, a digit may be implemented as either a state or a
particular that belongs to one among a finite number of mechanistically
relevant types. If it is a state, at any given time it is a state of a specific
component of a mechanism, such as a memory cell.

A system of digits is individuated by the digits’ functional roles within
a mechanism. Under normal conditions of operation, the mechanism must
process tokens of the same digit type in the same way and tokens of
different digit types in different ways. This condition may be characterized
as follows.

It is convenient to consider strings of one digit first, leaving strings of
multiple digits for later. A logic gate is a device that takes one or two
input digits and returns one or two output digits as a function of its input.
Logic gate computations are so trivial that they cannot be analyzed into
simpler computations. For this reason, I call logic gates ‘primitive com-
puting components’. Logic gates are the computational building blocks
of modern computing technology.10

Digits are permutable in the sense that normally, any token of any digit
type may be replaced by a token of any other digit type. Functionally
speaking, the components that bear digits of one type are also capable
of bearing digits of any other type. For example, ordinary computer

10. Some computing mechanisms, such as old mechanical calculators, are not made
out of logic gates. Their simplest computing components may manipulate strings of
multiple digits, as opposed to a few separate digits, as inputs and outputs. Their
treatment requires the notion of a concrete string, which is introduced below. Without
loss of generality, we may consider primitive components with two inputs and one
output, since primitive components with a larger number of inputs and outputs are
reducible to components with only two inputs and one output. (This condition may
not hold in the case of hypercomputation, which will be briefly mentioned in the next
section. Here, we are focusing on ordinary, recursive, computation.)

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 511

memory cells must be able to stabilize on states corresponding to either
of the two digit types—usually labeled ‘0’ and ‘1’—that are manipulated
by a computer. If memory cells lost the capacity to stabilize on one of
the digit types, they would cease to function as memory cells and the
computer would cease to work.

In a computing mechanism, under normal conditions, digits of the same
type affect primitive components of a mechanism in sufficiently similar
ways that their dissimilarities make no difference to the resulting output.
For instance, if two inputs to a NOT gate are sufficiently close to a certain
voltage (labeled type ‘0’), the outputs from the gate in response to the
two inputs must be of voltages different from the input voltages but
sufficiently close to a certain other value (labeled type ‘1’) that their dif-
ference does not affect further processing by other logic gates.

Furthermore, normally, digits of different types affect primitive com-
ponents of a computing mechanism in sufficiently different ways that their
similarities make no difference to the resulting outputs. That is not to
say that for any two input types, a primitive component always generates
outputs of different types. On the contrary, it is common for two com-
putationally different inputs to give rise to the same computational output.
For instance, in an AND gate, all of input types ‘0,0’, ‘0,1’, and ‘1,0’ give
rise to outputs of type ‘0’. But it is still crucial that the AND gate can
give different responses to tokens of different types, so as to respond
differently to ‘1,1’ than to other input types. Thus, in all cases when two
inputs of different types are supposed to generate different output types
(such as the case of input type ‘1,1’ in the case of an AND gate), the
differences between digit types must suffice for the component to differ-
entiate between them, so as to yield the correct outputs.

Which differences and similarities are relevant to a given mechanism
depends on the technology used to build the mechanism. At different
times, variants of mechanical, electro-mechanical, and electronic tech-
nologies have been used in computing applications. Newer technologies,
such as optical, DNA, and quantum computing, are under development.
It would be illuminating to study the details of different technologies, the
specific similarities and differences between digits that are relevant to each,
and the considerable engineering challenges that must be overcome to
build mechanisms that reliably differentiate between different digit types.
Since each technology poses specific challenges, however, no general treat-
ment can be given.

For now, I hope the example of electronic logic gates is enough to grasp
the basic idea. I will add some more pertinent observations below. Pro-
vided that the relations just discussed hold, a mechanism may be described
as performing elementary (atomic) computations, because its inputs and
outputs are digits, and the relation between inputs and outputs may be

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

512 GUALTIERO PICCININI

characterized by a simple logical relation. But elementary computations
are trivial. When we talk about computing, we are generally interested in
computations over strings (of nontrivial length). For that, we need to
introduce a concrete notion of string, which requires a concrete ordering
of the digits.

3.4. Strings of Digits and Complex Computing Components. Any re-
lation between digits that possesses the abstractly defined properties of
concatenation may constitute a concrete counterpart to abstract concat-
enation. The simplest examples of ordering relations are spatial contiguity
between digits, temporal succession between digits, or a combination of
both.

For instance, suppose you have a literal physical implementation of a
simple Turing machine. The tape has a privileged square, s. Before the
machine begins, the input string is written on the tape. The digit written
on s is the first digit in the string, the one on its right is the next, and so
forth. When the machine halts, the output string is written on the tape,
ordered in the same direction as the input. This is a spatial ordering of
digits into a string.

An example of temporal concatenation is given by finite state automata.
Since they have no tape, they simply take inputs one letter at a time. Any
literal physical implementation of a finite state automaton will receive
one letter at a time. The first digit to go in counts as the first in the string,
the second as the second in the string, and so forth.

Real computers and other computing mechanisms may exploit a com-
bination of these two strategies. Primitive components, such as logic gates,
may be wired together to form complex components, which may in turn
be wired together to form more complex components. This process must
be iterated several times before one obtains an entire digital computer.

In designing computing mechanisms, not any wiring between compo-
nents will do. The components must be arranged so that it is clear where
the input digits come in and where the output digits come out. In addition,
for the inputs and outputs to constitute strings, the components must be
arranged so as to respect the desired relations between the digits com-
posing the strings. What those relations are depends on which compu-
tation is performed by the mechanism.

For example, consider a circuit that adds two four digit strings.11 A
simple way to perform binary addition is the following: add each pair of
bits; if there is a carry from the first two bits, add it to the second two

11. Addition is normally understood as an arithmetical operation, defined over num-
bers. In this case, it should be understood as a string-theoretic operation, defined over
strings of numerals written in binary notation.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 513

bits; after that, if there is a carry from the second two bits, add it to the
third two bits; and so forth until the last two bits. A circuit that performs
four bit addition in this way must be functionally organized so that the
four digits in the input strings are manipulated in the way just specified,
in the correct order. The first two bits may simply be added. If they
generate a carry, that must be added to the second two bits, and so forth.
The resulting wiring diagram will be asymmetric: different input digits
will be fed to different components, whose exact wiring to other com-
ponents depends on how their respective digits must be processed, and
in what order. Implicit in the spatial, temporal, and functional relations
between the components of the whole circuit as well as the way the circuit
is connected to other circuits is the order defined on input and output
digits.

An important aspect of digit ordering is synchrony between compo-
nents. When a computing mechanism is sufficiently large and complex,
there needs to be a way to ensure that all digits belonging to a string are
processed during the same functionally relevant time interval. What con-
stitutes a functionally relevant time interval depends on the technology
used, but the general point is independent of technology. The components
of a mechanism interact over time, and given their physical characteristics,
there is only a limited amount of time during which their interaction can
yield the desired result, consistent with the ordering of digits within strings.

Consider again our four bit adder. If the digits that are intended to be
summed together enter the mechanism at times that are sufficiently far
apart, they will not be added correctly, even if they are correctly received
by the components that are supposed to process them. If a carry from
the first two bits is added to the second two bits too late, it will fail to
affect the result. And so on. Concrete computation has temporal aspects,
which must be taken into account in designing and building computing
mechanisms. When this is done correctly, it contributes to implementing
the relation of concatenation between digits. When it is done incorrectly,
it prevents the mechanism from working properly.

Unlike a simple four bit adder, which yields its entire output at once,
there are computing components that generate different portions of their
output at different times. When this is the case, the temporal succession
between groups of output digits may constitute (an aspect of) the ordering
of digits into strings.

Yet other functional relations may be used to implement concatenation.
Within modern, stored program computers, computation results are stored
in large memory components. Within such memories, the concatenation
of digits into strings is realized neither purely spatially nor purely tem-
porally. Rather, there is a system of memory registers, each of which has
a label, called an ‘address’. If a string is sufficiently long, a memory register

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

514 GUALTIERO PICCININI

may contain only a portion of it. To keep track of a whole string, the
computer stores the addresses where the string’s parts are stored. The
order of register names within the list corresponds to the relation of
concatenation between the parts of the string that is stored in the named
registers. By exploiting this mechanism, a computer can store very large
strings and keep track of the digits’ order without needing to possess
memory components of corresponding length.

In short, just as an abstract algorithm is sensitive to the position of a
letter within a string of letters, a concrete computing mechanism—via the
functional relations between its components—is sensitive to the position
of a digit within a string of digits. Thus, when an input string is processed
by a mechanism, normally the digit types, their number, and their order
within the string make a difference to what output string is generated.

3.5. Components, Functions, and Organization. As we have seen, digits
and strings thereof are equivalence classes of physical entities or states.
For instance, all voltages sufficiently close to two set values count as
token digits of two different types; all voltages sufficiently far from those
values do not count as digits at all. But voltage values could be grouped
in many ways. Why is one grouping privileged within a computing mech-
anism? The answer has to do with the components of the mechanism,
their functional properties, and their organization.

Some components of computing mechanisms do not manipulate digits.
Their functions include storing energy (battery), keeping the temperature
below a certain value (fan), or protecting the mechanism (case). They can
be ignored here, because we are focusing on components that participate
in computations. Components that manipulate digits are such that they
stabilize only on states that count as digits. Finding components with
such characteristics and refining them until they operate reliably is an
important aspect of computer design. In ordinary computing technology,
the components that manipulate digits can be classified as follows.

Input devices have the function of turning external stimuli into strings
of digits. Memory components have the function of storing digits and
signaling their state upon request. Their state constitutes either data strings
or the physical implementation of abstract internal states. Processing com-
ponents have the function of taking strings of digits as inputs and re-
turning others as outputs according to a fixed rule defined over the strings.
Output devices have the function of taking the final digits produced by
the processing components and yielding an output to the environment.
Finally, some components simply transmit digits between the other
components.

Given their special functional characteristics, digits can be labeled by
letters and strings of digits by strings of letters. As a consequence, the

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 515

same formal operations and rules that define abstract computations over
strings of letters can be used to characterize concrete computations over
strings of digits. Within a concrete computing mechanism, the components
are connected so that the inputs from the environment, together with the
digits currently stored in memory, are processed by the processing com-
ponents in accordance with a set of instructions. During each time interval,
the processing components transform the previous memory state (and
possibly, external input) in a way that corresponds to the transformation
of each snapshot into its successor. The received input and the initial
memory state implement the initial string of an abstract computation.
The intermediate memory states implement the intermediate strings. The
output returned by the mechanism, together with the final memory state,
implement the final string.

To show in detail how computing mechanisms can implement complex
computations goes beyond the scope of this essay. I have room for only
a few brief remarks. Abstract computations can be reduced to elementary
operations over individual pairs of letters. Letters may be implemented
as digits by the state of memory cells. Elementary operations on letters
may be implemented as operations on digits performed by logic gates.
Logic gates and memory cells can be wired together so as to correspond
to the composition of elementary computational operations into more
complex operations. Provided that (i) the components are wired so that
there is a well-defined ordering of the digits being manipulated and (ii)
the components are synchronized and functionally organized so that their
processing respects the ordering of the digits, the behavior of the resulting
mechanism can be accurately described as a sequence of snapshots. Hence,
under normal conditions, such a mechanism processes its inputs and in-
ternal states in accordance with a program; the relation between the mech-
anism’s inputs and its outputs is captured by a computational rule.

The synchronization provision is crucial and often underappreciated.
Components must be synchronized so that they update their state or
perform their operations within appropriate time intervals. Such syn-
chronization is necessary to individuate digits appropriately, because syn-
chronization screens off irrelevant values of the variables some values of
which constitute digits. For example, when a memory component changes
its state, it evolves through all values in between those that constitute
well-defined digits. Before it stabilizes on a new value, it takes on values
that constitute no digits at all. This has no effect on either the proper
taxonomy of digits or the mechanism’s computation. The reason is that
memory state transitions occur during well-defined time intervals, during
which memory components’ states do not affect the rest of the mechanism.
This contributes to making the equivalence classes that constitute digits
functionally well defined. Thus, synchronization is a necessary aspect of

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

516 GUALTIERO PICCININI

the computational organization of ordinary computing technology. With-
out synchronization, there would be no complex computations, because
there would be no well-defined digits.

In short, any system whose correct mechanistic explanation ascribes to
it the function of generating output strings from input strings (and possibly
internal states), in accordance with a general rule that applies to all strings
and depends on the input strings (and possibly internal states) for its
application, is a computing mechanism. The mechanism’s ability to per-
form computations is explained mechanistically in terms of its compo-
nents, their functions, and their organization. By providing a mechanistic
explanation of computing mechanisms, it is thus possible to individuate
computing mechanisms, the functions they compute, and their computing
power, and to explain how they perform their computations.

4. The Mechanistic Account and the Six Features. I will now argue that
the mechanistic account possesses all the features listed in Section 1.

1. Objectivity. Given the mechanistic account, computational descrip-
tions are neither vacuous nor trivial. The account relies on the analysis
of mechanisms into their components, functions, and organization by the
relevant community of scientists. As a result, whether a concrete system
is a (nontrivial) computing mechanism and what it computes are matters
of empirical fact.

Mechanistic descriptions are sometimes said to be perspectival, in the
sense that the same component or activity may be seen as part of different
mechanisms depending on which phenomenon is being explained (e.g.,
Craver 2001). For instance, the heart may be said to be for pumping
blood as part of an explanation of blood circulation, or it may be said
to be for generating rhythmic noises as part of an explanation of phy-
sicians who diagnose patients by listening to their hearts. This kind of
perspectivalism does not trivialize mechanistic descriptions. Once we fix
the phenomenon to be explained, the question of what explains the phe-
nomenon has an objective answer. This applies to computations as well
as other capacities of mechanisms. A heart makes the same noises re-
gardless of whether a physician is interested in hearing it or anyone is
interested in explaining medical diagnosis.

What we want to avoid is observers who share the same mechanistic
perspective and yet ascribe different computations to the same system.
Under the mechanistic account, this is not an option any more than it is
an option for different observers to attribute different noises to the same
heart. For example, either something is a memory register or not, an
arithmetic-logic unit or not, etc., depending on what it contributes to its
containing mechanism. It is certainly possible to label the digits processed
by a computing mechanism using different letters. But these do not con-

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 517

stitute alternative computational descriptions of the mechanism; they are
merely notational variants, all of which attribute the same computation
to the mechanism. In short, the mechanistic description of a computing
mechanism is no less objective than any other mechanistic description in
biology or engineering. What is computed by which mechanism is a matter
of fact.

2. Explanation. According to the mechanistic account, computational
explanation is a form of mechanistic explanation. As a long philosophical
tradition has recognized, mechanistic explanation is explanation in terms
of a system’s components, functions, and organization. Computational
explanation is the form taken by mechanistic explanation when the activity
of a mechanism can be accurately described as the processing of strings
of digits in accordance with appropriate rules.

Traditionally, many philosophers assimilate computational explanation
to explanation by program execution (Fodor 1968; Cummins 1977, 1983).
The mechanistic account resists this assimilation. According to the mech-
anistic account, explanation by program execution is the special kind of
mechanistic explanation that applies to all soft-programmable mecha-
nisms—namely, mechanisms controlled by concrete instructions—regard-
less of whether such mechanisms perform computations. Program exe-
cution is a process by which a certain component or state of a mechanism,
the concrete program, affects another component of the mechanism, a
processing component, so as to perform different sequences of operations.
But program execution need not be computation.

For instance, some automatic looms operate by executing programs,
and yet they do not perform computations (in the sense relevant here).
The difference between program-executing computers and other types of
program-executing mechanisms is in the inputs they process and the way
their processes are responsive to their inputs. Only the inputs (and memory
states) of computers are genuine strings of digits, because only the pro-
cesses executed by computers are defined over, and responsive to, both
their finitely many input types and their order. Put another way, program-
executing looms perform the same operations regardless of the properties
of the inputs they process (unless, say, the inputs are such as to break the
loom), and even regardless of whether they have any inputs to process.

Program execution is an interesting capacity of certain mechanisms,
including computing mechanisms, and it is explained mechanistically.
When combined with the capacity to perform computations, which is also
explained mechanistically, program execution results in a powerful kind
of computing mechanism, soft-programmable computers, whose com-
putations are explained in part by program execution.

3. The right things compute. All paradigmatic examples of computing
mechanisms, such as digital computers, calculators, Turing machines, and

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

518 GUALTIERO PICCININI

finite state automata, have the function of generating certain output
strings from certain input strings and internal states according to a general
rule that applies to all strings and depends on the inputs and internal
states for its application. According to the mechanistic account, then, they
all perform computations. Thus, the mechanistic account properly counts
all paradigmatic examples of computing mechanisms as such.

The mechanistic account also counts most connectionist systems as
performing computations. Connectionist systems can be decomposed into
units with functions and an organization, and hence they are mechanisms
in the present sense. They take input strings of digits and return output
strings of digits in accordance with an appropriate rule, and hence they
are computing mechanisms. Unlike ordinary computing mechanisms, the
units of connectionist systems need not be logic gates. Their capacities
still have a mechanistic explanation, but such an explanation does not
involve the decomposition of their computations into simpler computa-
tions performed by their components. Like logic gates, paradigmatic con-
nectionist systems are computationally primitive.

The units of some connectionist systems have activation values that
vary along a continuum, so such activation values may appear to be
something different from digits. But in fact, in most of connectionist
formalisms, these activation values are “read” as inputs to and outputs
from the whole system only when they approximate certain standard val-
ues at functionally significant times. In this respect, they are not different
from the activation values of the components of digital computers, which
also vary along a continuum but are functionally significant only when
they approximate certain standard values at functionally significant times.
As a result, the functionally significant activation values of input and
output units of connectionist systems constitute digits, and the activation
values of whole input and output layers of units constitute strings of
digits. An appropriate rule can then be used to characterize the relation-
ship between the input and output strings. In fact, this is precisely how
connectionist systems are described when theorists study the functions
they compute (cf. Hopfield 1982; Rumelhart and MacClelland 1986; Min-
sky and Papert 1988; Siegelmann 1999; Piccinini 2007c).

In formulating the mechanistic account, I purposefully did not say
whether the rule specifying the computation performed by a mechanism
is recursive (or equivalently, computable by a Turing machine). This is
because computability theorists define recursive as well as nonrecursive
(abstract) computations. Both recursive and nonrecursive computations
may be defined in terms of instructions for manipulating strings of letters
or rules connecting input strings to output strings. Thus, both fall under
the present account.

The only functions that are known to be physically computable are the

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 519

recursive ones. There is an ongoing controversy over the physical possi-
bility of hypercomputers—mechanisms that compute nonrecursive func-
tions (Copeland 2002; Cotogno 2003). I do not have room to address the
hypercomputation controversy here. But that controversy should not be
resolved by stipulating that hypercomputers do not perform computa-
tions. A good account of computing mechanisms should be able to ac-
commodate hypercomputers. This highlights another advantage of the
mechanistic account.

Traditional accounts are formulated in terms of either a canonical for-
malism, such as Turing machines (Putnam 1967), or the standard notion
of computer program (Fodor 1975; Cummins 1983). Since standard com-
puter programs and formalisms can compute only recursive functions,
accounts based on them cannot accommodate hypercomputers. The mech-
anistic account, by contrast, is formulated in terms of rules that relate
input strings of digits to output strings of digits. If those rules are recursive,
we obtain the usual class of computing mechanisms. If those rules are
not recursive, we obtain various classes of hypercomputers.

The mechanistic account, however, distinguishes between genuine and
spurious hypercomputers. Genuine hypercomputers are mechanisms that
have the function of generating output strings of digits from input strings
of digits in accordance with a nonrecursive rule. Alan Turing’s o-machines
are an example (Turing 1939; cf. Copeland [2000] and Piccinini [2003] for
discussion). Spurious hypercomputers are physical processes that are non-
recursive in some way, but do not have the function of generating strings
of digits in accordance with a nonrecursive rule. Genuinely random pro-
cesses are an example.

The distinction between genuine and spurious hypercomputers clarifies
the debate over hypercomputation, where considerations pertaining to
spurious hypercomputers are often mixed up with considerations per-
taining to genuine hypercomputers. If one does not draw this distinction,
it is relatively easy to show that ‘hypercomputation’ is possible. Any
genuinely random process will do. But this is not an interesting result,
for a random process cannot be used to generate the values of a desired
function. The interest in hypercomputation is due to the hope for machines
that yield strings of output digits that are related to their inputs in a
nonrecursive way. For something to be a genuine hypercomputer, it must
be possible to specify the rule relating the inputs to the outputs without
waiting for the physical process to take place.

Given the generality of the mechanistic account, it may be surprising
that it excludes so called analog computers (in the sense of Pour-el [1974]).
Analog computers do not manipulate strings of digits. Rather, they ma-
nipulate real (i.e., continuous) variables. Hence, they are left out of the
present account. But analog computers can be given their own mechanistic

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

520 GUALTIERO PICCININI

account in terms of their components, functions, and organization (Pic-
cinini nd). The fact that both classes of mechanisms are called computers
should not blind us to their deep differences. After all, their bearing the
same name is to some extent an historical accident. Before the invention
of digital computers, analog computers used to be called ‘differential
analyzers’. They were later renamed ‘analog computers’ probably because
for some time they shared important applications with digital computers
and competed within the same market. Once again, thinking about com-
putation in mechanistic terms allows us to appreciate and sharpen im-
portant distinctions. Digital computers and analog ‘computers’ operate
on different vehicles by means of different processes. Determining their
analogies and disanalogies is a nontrivial problem, which deserves more
philosophical attention than it has received.

4. The wrong things do not compute. Let me grant from the outset that
all systems may be given computational descriptions, which describe the
behavior of the system to some degree of approximation. But giving a
computational description of a system is not the same as asserting that
the system itself performs computations.12 The mechanistic account ex-
plains why paradigmatic examples of noncomputing systems do not com-
pute by invoking their mechanistic explanation (or lack thereof), which
is different from that of computing mechanisms. Different considerations
apply to different classes of systems.

To begin with, most systems—including planetary systems and the
weather—are not mechanisms in the present sense, because they are not
collections of functional components organized to exhibit specific capac-
ities.13 Also, most systems—including, again, planetary systems and the
weather—do not receive inputs from an external environment, process
them, and return outputs distinct from themselves. It is not difficult to
cook up notions of input that apply to all systems. For instance, sometimes
initial conditions or time instants are described as inputs. But these are
not entities or states that can enter the system, persist within the system,
and finally exit the system. Hence, they do not count as computational
inputs in the present sense.

In addition, most mechanisms—including mechanisms that manipulate
inputs and return outputs distinct from themselves and their states—do

12. Noncomputing systems may be said to be “computational” in some looser senses
than genuine computing mechanisms. I offered a taxonomy of those looser senses in
Piccinini (2007b).

13. To be sure, there are accounts of function according to which planetary systems
and the weather have functions. But no one disputes that they lack teleological func-
tions. As I pointed out above, I am working with a teleological notion of function,
while remaining neutral on the correct account of teleology.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 521

not manipulate strings of digits. Digestive systems are a good example.
As a preliminary observation, there is no prominent scientific theory ac-
cording to which digestion is a computational process. In other words,
the current science of digestion does not identify finitely many types of
input digits and an ordering between them, let alone processes that ma-
nipulate those inputs in accordance with a rule defined over the input
types and their place within strings. Instead, the science of digestion iden-
tifies food types first and foremost by the family of macromolecules to
which its constituents belong (carbohydrates, fats, or proteins). Different
families are processed differently. But what matters to digestion are not
the details of how molecules of different chemical types, or belonging to
different families, form pieces of food. On the contrary, digestion mixes
and breaks down pieces of food by mechanical and chemical means,
obliterating temporal, spatial, and chemical connections between mole-
cules until the resulting products can be either absorbed by the body or
discarded.

Now, suppose that someone wished to develop a computational expla-
nation of digestion. She would have to find a plausible candidate for input
and output strings. The most obvious place to start for the role of input
seems to be bites of food, and the most obvious candidate for the role
of output seems to be the nutrients absorbed by the body plus the feces.
Finally, the most obvious candidate for a concatenation relation seems
to be the temporal order of bites and digestive products. A first difficulty
in formulating the theory is that the outputs of digestion are of a kind
so different from the inputs that, unlike ordinary computational outputs,
they cannot be fed back into the system for further computational pro-
cessing. This is not a devastating objection, as computations may be
defined so that outputs belong to a different alphabet than the inputs.
Perhaps feces belong to a different alphabet than food.

A more serious difficulty is that the most important taxonomy of inputs
for the science of digestion has little to do with food bites. Bites of food
come in indefinitely many sizes, shapes, and compositions, but the pro-
cesses that take place during digestion are not defined in terms of the
size, shape, or composition of food bites. Furthermore, even if bites of
food could somehow be classified into finitely many functionally relevant
types, their temporal order would not constitute a string of digits. For
digestion, unlike computation, is largely indifferent to the order in which
organisms ingest their food bites.14 On one hand, the products of digestion
always come out in roughly the same order, regardless of how the inputs

14. There may be partial exceptions: for instance, ingesting a certain substance before
or after another may facilitate or hinder digestion. These exceptions seem unlikely to
warrant a computational explanation of digestion.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

522 GUALTIERO PICCININI

came in. On the other hand, the first operations typically performed by
organisms on the food they ingest eliminate most differences between bites
of food. Upon being ingested, food is chewed, mixed with saliva, swal-
lowed, and mixed with digestive fluid. The result, far from being responsive
to any obvious differences between bites of food or their order, is a rel-
atively uniform bolus.

The purpose of these quick observations is not to prove that digestion
is not computational. Ultimately, according to the present account,
whether digestion is computational is an empirical question, to be an-
swered by the science of digestion. What I have shown is that under the
present account, treating the digestive system as a computing mechanism
faces considerable challenges. The common intuition that digestion is not
computational might be wrong, but it is prima facie plausible.

Finally, not all mechanisms that manipulate strings of symbols do so
in accordance with a general rule that applies to all strings and depends
on the input strings for its application. We have already mentioned genuine
random processes. A genuine random ‘number’ (or more precisely, nu-
meral) generator produces a string of digits, but it does not do so by
computing, because there is no rule for specifying which digit it will pro-
duce at which time. Thus, a genuinely random ‘number’ generator does
not count as a computing mechanism. (Of course, random strings of digits,
whether or not they are genuinely random, may play important roles in
a computational process.)

This does not decide all the cases. There is still a grey area at the
boundary between mechanisms that compute and mechanisms that do
not. Anything that takes two kinds of input and generates one output
that stands in a definite logical relation to its inputs can be described as
a logic gate. Since the computations performed by logic gates are trivial,
the fact that many things are describable as logic gates does not trivialize
the mechanistic account of computing mechanisms. But if this point could
be generalized, and too many mechanisms could be described as per-
forming nontrivial computations, and perhaps even as computing by ex-
ecuting programs, then the mechanistic account would risk being trivi-
alized. This is a fair concern, and it can be addressed head on.

Primitive computing components, such as logic gates, can be wired
together to form computing mechanisms, whose computations can be
logically analyzed into the operations performed by their components.
But not every collection of entities, even if they may be described as logic
gates when they are taken in isolation, can be connected together to form
a computing mechanism. For that to happen, each putative logic gate
must take inputs and generate outputs of the same type, so that outputs
from one gate can be transmitted as inputs to other gates. In addition,
even having components of the right kind is not enough to build a complex

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 523

computing component. For the components must be appropriately or-
ganized. The different gates must be connected together appropriately,
provided with a source of energy, and synchronized. To turn a collection
of logic gates into a functioning computer takes an enormous amount of
regimentation. The logic gates must be appropriately organized to con-
stitute complex computing components, which in turn must be appro-
priately organized to constitute full blown computing mechanisms. Build-
ing genuine computers requires overcoming many technical challenges.

In conclusion, how many things taken in isolation constitute a logic
gate, or other primitive computing components, is a matter that can be
left vague. For primitive computing components in isolation perform
computations that cannot be decomposed into simpler computations per-
formed by their components. The mechanistic account has the most in-
teresting things to say about mechanisms that are computationally de-
composable. And unlike computers and other nontrivial computing
mechanisms, most systems, including most mechanisms, are not com-
putationally decomposable. Since the paradigmatic examples of noncom-
puting systems do not appear to be subject to the relevant kind of mech-
anistic explanation, the mechanistic account properly counts them as
systems that do not compute in the relevant sense.

5. Miscomputation. The mechanistic account of computing mechanisms
explains what it means for a computing mechanism to make a mistake.
Miscomputations are a kind of malfunction, i.e., an event in which a
functional system fails to fulfill its function. In the case of computing
mechanisms, whose function is to compute, functional failure results in
a computational mistake.

There are many kinds of miscomputation. The most obvious is hard-
ware failure, i.e., failure of a hardware component to perform its function
(as specified by the mechanistic explanation of the mechanism). Hardware
failure may be due to the failure of a computing component, such as a
logic gate, or of a noncomputing component, such as a battery. Another
kind of miscomputation, which applies to artifacts, may be due to a
mistake in computer design, so that the designed mechanism does not in
fact compute the function it was intended to compute. Again, the design
mistake may be due to a computing component that does not compute
what it was intended to compute or to a noncomputing component that
does not fulfill its function (e.g., a clock with too short a cycle time).
Other kinds of miscomputation pertain to the intentions of the
programmers and users of a machine, rather than its designers. Some may
be due to a programming error, whereby instructions are either ungram-
matical (and hence cannot be executed) or do not play their intended role
within the program. Yet another kind may be due to the accumulation
of round off errors in the finite precision arithmetic that computer pro-

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

524 GUALTIERO PICCININI

cessors employ. Finally, miscomputations may be due to faulty interaction
between hardware and software. A familiar example of this last type
occurs when the execution of a program requires more memory than the
computer has available. When no more memory is available, the computer
“freezes” without being able to complete the computation.15

6. Taxonomy. The mechanistic account of computing mechanisms ex-
plains why only some computing mechanisms qualify as computers prop-
erly so called: only genuine computers are programmable, stored program,
and computationally universal. These properties of computers are func-
tional properties, which can be explained mechanistically in terms of the
relevant components, their functions, and their organization (Piccinini
nd). Computing mechanisms that have only a subset of these capacities
may also be called computers, but they can be distinguished from ordinary
computers, and from one another, based on their specific functional prop-
erties. Computing mechanisms that lack all of these capacities deserve
other names, such as “calculators,” “arithmetic-logic units,” etc.; they can
still be differentiated from one another based on their computing power,
which is determined by their functional organization.

5. Conclusion. The mechanistic account of computing mechanisms is a
viable account of what it means for a physical system to compute. It has
many appealing features. It allows us to formulate the question whether
a mechanism computes as an empirical question, to be answered by a
correct mechanistic explanation. It allows us to formulate a clear and
useful taxonomy of computing mechanisms and compare their computing
power. I submit that the mechanistic account of computing mechanisms
constitutes an improvement over existing accounts of computation.

REFERENCES

Allen, C., M. Bekoff, and G. Lauder (eds.) (1998), Nature’s Purposes: Analysis of Function
and Design in Biology. Cambridge, MA: MIT Press.

Ariew, A., R. Cummins, and M. Perlman (eds.) (2002), Functions: New Essays in the Phi-
losophy of Psychology and Biology. Oxford: Oxford University Press.

Bechtel, W., and R. C. Richardson (1993), Discovering Complexity: Decomposition and Lo-
calization as Scientific Research Strategies. Princeton, NJ: Princeton University Press.

Boorse, C. (2002), “A Rebuttal on Functions”, in A. Ariew, R. Cummins, and M. Perlman
(eds.), Functions: New Essays in the Philosophy of Psychology and Biology. Oxford:
Oxford University Press, 63–112.

Buller, D. J. (ed.) (1999), Function, Selection, and Design. Albany: State University of New
York Press.

15. For an early discussion of several kinds of computing mistakes by computing
mechanisms, see Goldstine and von Neumann (1946). For a modern treatment, see
Patterson and Hennessy (1998).

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

COMPUTING MECHANISMS 525

Chalmers, D. J. (1996), “Does a Rock Implement Every Finite-State Automaton?”, Synthese
108: 310–333.

Chrisley, R. L. (1995), “Why Everything Doesn’t Realize Every Computation”, Minds and
Machines 4: 403–430.

Christensen, W. D., and M. H. Bickhard (2002), “The Process Dynamics of Normative
Function”, Monist 85: 3–28.

Church, A. (1940), “On the Concept of a Random Sequence”, Bulletin of the American
Mathematical Society 46: 130–135.

Collins, J., N. Hall, and L. A. Paul (eds.) (2004), Causation and Counterfactuals. Cambridge,
MA: MIT Press.

Copeland, B. J. (1996), “What Is Computation?”, Synthese 108: 224–359.
——— (2000), “Narrow versus Wide Mechanism: Including a Re-examination of Turing’s

Views on the Mind-Machine Issue”, Journal of Philosophy 96: 5–32.
——— (2002), “Hypercomputation”, Minds and Machines 12: 461–502.
Corcoran, J., W. Frank, and M. Maloney (1974), “String Theory”, Journal of Symbolic

Logic 39: 625–637.
Cotogno, P. (2003), “Hypercomputation and the Physical Church-Turing Thesis”, British

Journal for the Philosophy of Science 54: 181–223.
Craver, C. (2001), “Role Functions, Mechanisms, and Hierarchy”, Philosophy of Science

68: 53–74.
——— (forthcoming), Explaining the Brain. Oxford: Oxford University Press.
Cummins, R. (1977), “Programs in the Explanation of Behavior”, Philosophy of Science 44:

269–287.
——— (1983), The Nature of Psychological Explanation. Cambridge, MA: MIT Press.
Davis, M., R. Sigal, and E. J. Weyuker (1994), Computability, Complexity, and Languages.

Boston: Academic Press.
Dretske, F. (1986), “Misrepresentation”, in R. Bogdan (ed.), Belief: Form, Content and

Function. New York: Oxford University Press, 17–36.
Dreyfus, H. L. (1979), What Computers Can’t Do. New York: Harper & Row.
Fodor, J. A. (1968), “The Appeal to Tacit Knowledge in Psychological Explanation”, Journal

of Philosophy 65: 627–640.
——— (1975), The Language of Thought. Cambridge, MA: Harvard University Press
——— (1998), Concepts. Oxford: Clarendon Press.
Glennan, S. (2002), “Rethinking Mechanistic Explanation”, Philosophy of Science 64: S342–

S353.
Goldstine, H., and J. von Neumann (1946), “On the Principles of Large Scale Computing

Machines”, Princeton, NJ: Institute for Advanced Studies.
Hopfield, J. (1982), “Neural Networks and Physical Systems with Emergent Collective Com-

putational Abilities”, Proceedings of the National Academy of Sciences 79: 2554–2558.
Lewis, D. (1986), “Postscript to ‘Causation’”, in Philosophical Papers, vol. 2. New York:

Oxford University Press, 172–213.
Machamer, P. K., L. Darden, and C. Craver (2000), “Thinking about Mechanisms”, Phi-

losophy of Science 67: 1–25.
Minsky, M. L., and S. A. Papert (1988), Perceptrons: An Introduction to Computational

Geometry. Cambridge, MA: MIT Press.
Patterson, D. A., and J. L. Hennessy (1998), Computer Organization and Design: The Hard-

ware/Software Interface. San Francisco: Morgan Kauffman.
Piccinini, G. (2003), “Alan Turing and the Mathematical Objection”, Minds and Machines

13: 23–48.
——— (2004a), “Functionalism, Computationalism, and Mental Contents”, Canadian Jour-

nal of Philosophy 34: 375–410.
——— (2004b), “Functionalism, Computationalism, and Mental States”, Studies in the

History and Philosophy of Science 35: 811–833.
——— (2007a), “Computation without Representation”, forthcoming in Philosophical

Studies.
——— (2007b), “Computational Modeling vs. Computational Explanation: Is Everything

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1090%2FS0002-9904-1940-07154-X
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F341857
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1090%2FS0002-9904-1940-07154-X
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.shpsa.2004.02.003
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F288742
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.shpsa.2004.02.003
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1073%2Fpnas.79.8.2554
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2678472
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1021105915386
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392759
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392759
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF00413692
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2272846
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2272846
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2024316
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbjps%2F54.2.181
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF00974167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2024316
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1093%2Fbjps%2F54.2.181
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2FBF00974167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1021348629167
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392866
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5840%2Fmonist20028516

526 GUALTIERO PICCININI

a Turing Machine, and Does It Matter to the Philosophy of Mind?”, Australasian
Journal of Philosophy 85: 93–115.

——— (2007c), “Connectionist Computation”, forthcoming in Proceedings of the 2007 In-
ternational Joint Conference on Neural Networks.

——— (nd), “Computers”. St. Louis: University of Missouri.
Pour-El, M. B. (1974), “Abstract Computability and Its Relation to the General Purpose

Analog Computer (Some Connections between Logic, Differential Equations and An-
alog Computers)”, Transactions of the American Mathematical Society 199: 1–28.

Preston, B. (1998), “Why Is a Wing like a Spoon? A Pluralist Theory of Function”, Journal
of Philosophy 95: 215–254.

Putnam, H. (1960), “Minds and Machines”, in S. Hook (ed.), Dimensions of Mind: A
Symposium. New York: Collier, 138–164.

——— (1967), “Psychological Predicates”, in Art, Philosophy, and Religion. Pittsburgh:
University of Pittsburgh Press.

——— (1988), Representation and Reality. Cambridge, MA: MIT Press.
Pylyshyn, Z. W. (1984), Computation and Cognition. Cambridge, MA: MIT Press.
Rumelhart, D. E., and J. M. McClelland (1986), Parallel Distributed Processing. Cambridge,

MA: MIT Press.
Scheutz, M. (1999), “When Physical Systems Realize Functions . . .”, Minds and Machines

9: 161–196.
Schlosser, G. (1998), “Self-Re-production and Functionality: A Systems-Theoretical Ap-

proach to Teleological Explanation”, Synthese 116: 303–354.
Searle, J. R. (1980), “Minds, Brains, and Programs”, Behavioral and Brain Sciences 3: 417–

457.
——— (1992), The Rediscovery of the Mind. Cambridge, MA: MIT Press.
Shagrir, O. (2006), “Why We View the Brain as a Computer”, Synthese 153: 393–416.
Sieg, W., and J. Byrnes (1996), “K-Graph Machines: Generalizing Turing’s Machines and

Arguments”, in P. Hájek (ed.), Gödel ’96. Berlin: Springer-Verlag, 98–119.
Siegelmann, H. T. (1999), Neural Networks and Analog Computation: Beyond the Turing

Limit. Boston: Birkhäuser.
Tabery, J. (2004), “Synthesizing Activities and Interactions in the Concept of a Mechanism”,

Philosophy of Science 71: 1–15.
Turing, A. M. (1936–37 [1965]), “On Computable Numbers, with an Application to the

Entscheidungsproblem”, in M. Davis (ed.), The Undecidable. Ewlett, NY: Raven Press,
116–154.

——— (1939), “Systems of Logic Based on Ordinals”, Proceedings of the London Mathe-
matical Society, series 2, 45: 161–228.

Wimsatt, W. C. (2002), “Functional Organization, Analogy, and Inference”, in A. Ariew,
R. Cummins, and M. Perlman (eds.), Functions: New Essays in the Philosophy of Psy-
chology and Biology. Oxford: Oxford University Press, 173–221.

This content downloaded from 134.124.093.059 on February 15, 2017 14:02:24 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FS0140525X00005756
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs11229-006-9099-8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-1-4612-0707-8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1080%2F00048400601176494
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2F978-1-4612-0707-8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1080%2F00048400601176494
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F381409
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1008364332419
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1112%2Fplms%2Fs2-45.1.161
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1005073307193
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1090%2FS0002-9947-1974-0347575-8
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1112%2Fplms%2Fs2-45.1.161
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2564689
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2564689

	University of Missouri, St. Louis
	IRL @ UMSL
	10-1-2007

	Computing Mechanisms
	Gualtiero Piccinini
	Recommended Citation

	Computing Mechanisms

