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Abstract
The exchange interaction among electrons is one of the most fundamental quantum
mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic
ordering to magnetic storage. The current technology is built upon a thermal or magnetic field,
but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However,
little is known about the fate of the exchange interaction. Here we report unambiguously that
photoexcitation is capable of quenching the exchange interaction in all three 3d ferromagnetic
metals. The entire process starts with a small number of photoexcited electrons which build up
a new and self-destructive potential that collapses the system into a new state with a reduced
exchange splitting. The spin moment reduction follows a Bloch-like law as

Mz(�E) = Mz(0)(1 − �E/�E0)
1
β , where �E is the absorbed photon energy and β is a

scaling exponent. A good agreement is found between the experimental and our theoretical
results. Our findings may have a broader implication for dynamic electron correlation effects
in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and
rare-earth transition metal alloys.

Keywords: magnetism, first-principles , density functional theory

S Online supplementary data available from stacks.iop.org/JPCM/27/206003/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultrafast laser technology fuels unprecedented investigations
in physics, chemistry, material science and technology. Using
a femtosecond laser pulse to steer chemical reactions is the
foundation of femtochemistry (Nobel prize in chemistry in
1999) [1]. This inspires the development of femtosecond
Raman [2] and 2D IR spectroscopy [3]. A strong and
ultrafast laser pulse can rip off and drive back electrons from

gaseous atoms to generate high order harmonic generations,
with emitted energy exceeding 200 eV and with time duration
on the order of several hundred attoseconds (1 as = 10−18 s),
representing an era of attophysics [4]. Ultrafast dynamics
and fragmentation of C60 were investigated under intense
laser pulses [5]. Ultrafast laser pulses can coherently
control the four-wave mixing signals in GaAs [6]. Efforts
in superconductors started one decade ago, with enormous
success; for some latest discoveries, see [7–10]. A strong laser
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field can even induce a transient superconductivity above Tc in
YBa2Cu3O7−δ [11] and reveals the competition between the
pseudogap and superconducting states [12]. An ultrafast laser
allows one to investigate charge, spin and lattice dynamics
in complex materials. Just within a week, a flurry of three
research papers [13–15] reported photoinduced dynamics in
three entirely different systems: lattice dynamics in high-
temperature iron pnictide superconductors [13], exchange
parameter modification in iron oxides [15] and orbital
magnetism in multisublattice metallic magnets [14].

Laser-induced ultrafast demagnetization represents a
major breakthrough in magnetism. Beaurepaire and his
colleagues [16] demonstrated that a femtosecond laser pulse
can induce an ultrashort demagnetization in fcc Ni within
1 ps. This field, which is termed femtomagnetism, is rapidly
growing [17, 18], with nonthermal switching observed [19, 20]
and motivated new developments in table-top high harmonic
probe in complex magnetic materials at M-edge, which is
normally only accessible using synchrotron radiation [21].
Coherent ultrafast magnetism is also discovered by Barthelemy
and colleagues [22, 23]. A new comprehensive review is
presented at the first conference on ultrafast magnetism [24].

Despite the enormous progress experimentally, theoretical
understanding falls behind. In superconductors, besides
an early attempt [25], only one study [15] presented a
theoretical analysis, but it does not catch the initial excitation
of electrons and subsequent change in the spin exchange
interaction [26]. In magnetic materials, Sandratskii and
Mavropoulos [27] found that the Elliott–Yafet mechanism [28]
plays an important role in femtomagnetic properties of FeRh,
which complements the superdiffusive mechanism [29] and the
laser-spin–orbit coupling mechanism [30, 31]. One important
feature of these prior theoretical studies is that they do not allow
band structures to change. This rigid band approximation
has already been proven inadequate for simple 3d transition
metals [32–36].

For instance, our first-principles calculation shows that
under the rigid band approximation the induced spin change
is less than 1% [37–39]. There are several reasons why
the spin change is small. Si et al [40] showed that due
to the laser photon energy h̄ω, only those transitions whose
transition energy �E matches h̄ω can be strongly excited,
while others are optically silent. This limits on the number
of electrons that can be excited. Once the number of excited
electrons is small, then the spin change is likely to be small.
Essert and Schneider [32] further showed that even including
the electron–phonon interaction and the electron–electron
interaction [33], the spin moment change is very small. In
2013, Mueller and coworkers [35] employed a simple model
system but included a feedback from the charge change; they
found a substantial spin reduction. Krieger et al [36] carried
out the time-dependent density functional investigation and
found that the spin reduction is comparable to the experimental
one, although their laser fluences were about 2–3 orders of
magnitude higher than experimental fluences.

Besides those initial theoretical efforts, no study on the
exchange interaction change during photoexcitation has been
carried out. Nevertheless, these studies point out a possible

solution. It is possible that the band structure relaxation and
self-consistency are essential to our current understanding of
the demagnetization process in ferromagnets. The importance
of research along this direction should not be under-estimated
since it may have a broader implication in magnetic excitations
in high-temperature superconductors. Ultrafast laser and
x-ray technology has a unique capability to separate the spin
excitation and phonon excitation on different time scales and
provides new insights into the nature of these elementary
excitations. For instance, Chuang et al [41] employed
the time-resolved resonant x-ray diffraction to follow the
strongly coupled spin and charge order parameters in stripe-
ordered nickelate crystals. Smallwood et al [42] showed that
one can even track the Cooper pairs dynamics by ultrafast
angle-resolved photoemission. These experimental findings
are exciting. A theoretical investigation on the exchange
interaction change during the photoexcitation is much needed.

Here we report the first density functional study of the
exchange interaction quenching during laser excitation. We
first construct an excited potential energy surface by promoting
a small number of electrons from the valence band to the
conduction band. Even though the number of electrons
actually excited is small, the excited-state potential is quite
different from the ground-state potential when the excited state
is a few eV above the Fermi level. Then we self-consistently
solve the Kohn–Sham equation under this excited potential.
This self-consistency triggers an avalanche on the entire system
and importantly affects those unexcited electrons that are
initially unexcited, so that the exchange splitting is sharply
reduced. For all the three 3d ferromagnets, we observe a big
reduction of spin moment. If we assume 12.5% absorption
efficiency of photon energy into fcc Ni, we can reproduce
the same amount of change observed experimentally [16].
Our theory can reproduce the entire range of experimental
fluence-dependence of the spin moment change in bcc Fe [43]
quantitatively for the same absorption efficiency. This is very
encouraging. The key to our success is that we allow the full
relaxation of the electronic band structure under the excited
potential. We expect that our formalism will move us one step
closer to reveal the true mechanism of femtomagnetism and
this may also present a reliable method to investigate the spin
excitation in high temperature iron-based superconductors and
metallic magnets for the spin switching.

This paper is arranged as follows. In section 2, we present
our ideas and theoretical scheme. Section 3 is devoted to the
results and discussion on the demagnetization, band relaxation
and exchange splitting reduction. We conclude our paper in
section 4.

2. Theoretical formalism

Calculating excited states is traditionally a hard problem. The
progress in this field is slow and very limited, in comparison
with the ground state calculation. There is no easy and simple
solution in sight. The enormous development in ultrafast laser
technology presents new opportunities to investigate the charge
and spin dynamics on the femtosecond time scale in multiple
fronts from traditional high temperature superconductors,
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graphene, magnetic materials and layer structures, topological
insulators and nanostructures, to name a few. Our effort
represents a theoretical effort in this direction.

Figure 1 schematically summarizes our main idea. When a
laser pulse impinges a magnet, it first promotes a few electrons
from the valence band |kv〉 to the conduction band |kc〉 (see the
bottom figure). Due to energy conservation, the energy change
�E = Ekc − Ekv must be equal to the photon energy h̄ω of
the laser within an energy window δ (inversely proportional
to the laser pulse duration). This initial excitation can already
induce some spin change [30, 31, 38]; and more importantly,
it directly affects the exchange interaction through

J (ab‖ab) =
∫ ∫

dr1dr2φ
∗
a (r1)φ

∗
b (r2)φ

∗
a (r2)

×φ∗
b (r1)|r1 − r2|−1, (1)

where φa(b)(r) is the wavefunction and the integration is over
the electron coordinate r. For a free electron gas, with an
increase in the kinetic energy, the exchange energy decreases
as [44]

Eex(k) = −2e2

π
kf

[
1

2
+

1 − x2

4x
ln

(
1 + x

1 − x

)]
, (2)

where x = k/kf and kf is the Fermi wavevector and k is the
electron wavevector.

In the density functional theory, the exchange energy
Eex[ρ] is a functional of the electron density ρ(r). The effect
of the laser field enters through the excited density ρex(r) =∑occ

kn nkn = ∑occ
kn |ψkn(r)|2, which self-consistently generates

a new potential. ψkn is the Kohn–Sham wavefunction
computed from5

[
− h̄2

2m
∇2 + vext(r) + e2

∫
ρ(r′)

|r − r′|dr′ + vxc[ρ(r)]
]

ψkn(r)

= Eknψkn(r), (3)

where the terms on the left-hand side are the kinetic
energy, external potential, Coulomb and exchange-correlation
potential energies, respectively. The spin–orbit coupling is
included through the second variational principle [45]. Ekn and
ψkn(r) are the eigenvalue and eigenwavefunction of state kn.

The top portion of figure 1 shows the flow of our theoretical
formalism. For a pair excitation from |kv〉 to |kc〉, we construct
the excited charge density via [40]

nex
kc(r) = αnkv(r) + (1 − α)nkc(r)

nex
kv(r) = αnkc(r) + (1 − α)nkv(r)

}

if |Ekc − Ekv − h̄ω| � δ, (4)

where nkv(r) and nkc(r) are the charge densities for the valence
band kv and conduction band kc, respectively. The weighted
occupation of the excitation, α, represents the strength of the
excitation and changes from 0 to 1. If α = 0, this is just
a ground-state calculation; if the laser excitation is strong, α

should be increased. If the excitation energy falls outside δ, no
change is made to their occupation. For this reason, δ should be
kept reasonably low, less than 1 eV; if it is too wide, characters

5 See the supplementary materials (stacks.iop.org/JPCM/27/206003/mmedia)
for the implementation details and the underlying rationale for our scheme.

Figure 1. Strong demagnetization induced on an excited potential
surface. (Top) Computational scheme. The laser creates an excited
charge density and excited potential energy surface for the entire
system. By solving the Kohn–Sham (KS) equation, we attain the KS
wavefunction for the next iteration until convergence. (Bottom) The
laser excites only a very small number of electrons out of the Fermi
sea, but the generated potential affects all the electrons. This drives
the band structure relaxation, reduces the exchange splitting and
demagnetizes the sample. The laser excitation is determined by the
photoenergy h̄ω, the width of the excitation δ (changing from 0.0 to
0.8 eV) and the strength of the excitation α (from 0.0 to 0.8, no unit).

of valence and conduction bands may be quite different and
vary a lot. This is particularly important for binary or ternary
compounds.

Equation (4) is missing in all the previous rigid-band
calculations. If the photoexcited valence and conduction
bands had the same orbital character, whether equation (4)
is included would not make a big difference. But for the
laser excitation with a few eV above the Fermi level, the
orbital characters of the valence and conduction bands are
quite different. For this reason, we expect a huge effect on the
entire system. Our method is similar to the excitation energy
calculation in transition metal atoms by Vukajlovic [46] and
rare-earth metals done by Herbst et al [47] and more recently
a photocarrier doping treatment [48] (and also quantum
chemistry calculations). We implement our method using
the Wien2k code, which uses the full-potential augmented
planewave method. This code is among the most accurate
density functional codes and is cheaper than other commercial
codes, with open source codes and well designed structures
and directories (the reader is encouraged to contact us for the
further implementation details). One of the biggest advantages
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Figure 2. Spin moment decreases as the energy absorbed increases
for (a) fcc Ni, (b) hcp Co and (c) bcc Fe. Here the photon energy is
h̄ω = 2.0 eV and the excitation window is fixed at δ = 0.5 eV. For
the same amount of energy absorbed by the system, fcc Ni is the
easiest to be demagnetized, followed by hcp Co and bcc Fe, as
expected from the strength of the magnetic ordering. In (a), a
scaling function is shown. The experimental spin reduction is
highlighted by a red line. In (c), the empty boxes represent the
experimental results from Weber et al [43], where the absorption
efficiency factor η is 0.125.

over the pseudopotential codes is that it can be extended to
the core level excitation which has been a hot topic for the
experimental community. In our supplementary materials
(stacks.iop.org/JPCM/27/206003/mmedia), we provide all the
details about our implementation. Here, in brief, we
summarize our major changes to the code. The first major
change is made to the lapw2, where the new charge density
and potential are constructed through the above equation (4).
The second change is to add one input file which includes the
laser photon energy and energy window. We revise the major
scripts to run the code and also add four new files which store
the number of electron excited and the pair indices of each
excitation and their original weights.

3. Results and discussion

3.1. Demagnetization versus absorbed photon energy in Ni,
Co and Fe

Since the beginning of femtomagnetism, a central question is
how the spin moment reduction is correlated with the energy
absorbed into a system. Figure 2(a) shows the spin moment in
fcc Ni as a function of the absorbed energy �E by changing
α, with the excitation window fixed at δ = 0.5 eV. Here �E is
defined as the total energy difference between the before-and-
after electron excitation, which is also called the promotion

energy [46]. As the promotion energy increases, we find the
spin moment drops sharply. This dependence can be fitted to
a scaling that resembles the magnetization curve,

Mz(�E) = Mz(0)

(
1 − �E

�E0

) 1
β

, (5)

where for fcc Ni, we find Mz(0) = 0.63 µB, �E0 = 1.48 eV
and β = 2.6. With this curve, in principle, we can compute
the average spin moment up to the penetration depth d as

M̄z =
L∑

l=0

Mz(�El)/L, (6)

where L is the number of atomic layers up to the penetration
depth and l is the layer index. Unfortunately, the energy
absorbed at each layer is unknown and depends on the thickness
of the sample, as shown by Schellekens et al [49], but no
expression is given. We assume that the absorbed energy is
proportional to the light energy times an absorption efficiency
factor η, or �El = 1

2ηElight exp(−la/2d), where Elight is
the light energy at the top of the sample [40] and a is the
lattice constant. For any energy higher than �E0, the spin
moment is zero. At the penetration depth, �El = 1

2ηElight/e.
The red line in figure 2(a) denotes the experimental reduction
(50%) [16]. We find that to have the same experimental spin
moment reduction at the penetration depth, η = 12.5% is
enough. Obviously this η is the most conservative estimate
and represents an uplimit since layers above the penetration
depth must have stronger demagnetization and by average the
spin reduction is larger than the experimental value. This η

presents an opportunity for the experimentalist to verify our
theoretical prediction.

We apply our theory to hcp Co (figure 2(b)) and bcc Fe
(figure 2(c)). We see a similar spin reduction for hcp Co.
Once the absorbed energy is above 1.7 eV, the spin moment
is quenched completely. This critical energy is higher than
in fcc Ni, since hcp Co has a higher Curie temperature and
is harder to be demagnetized. The most difficult case is bcc
Fe. To reduce its spin moment by 50%, one needs one photon
per atom, which is consistent with the experimental results.
Mathias et al [50] found that in the same experiment the Ni
spin moment is quenched by 45%, while the Fe spin moment
is quenched by only 19%.

Up to now, all the comparisons between the experiments
and our theoretical results focus on a single laser fluence.
Weber et al [43] systematically investigated the dependence of
spin moment reduction in Fe on the pump pulse fluence. This
presents an excellent test case for our theory over a range of five
pump fluences; and we only have one tuning parameter η. It is
important to point out that tuning η changes either the slope of
the spin moment versus the absorbed energy (Mz − �E curve
in figure (2)) or the absolute energy, but not both. We use the
same method as above and find that only η = 12.5% allows
us to match both the absolute energy absorbed and the slope
of Mz − �E curve. Figure 2(c) shows that their experimental
results (empty filled boxes) agree our theoretical data (empty
circles) within a few percentage. Such a quantitative agreement

4

http://stacks.iop.org/JPCM/27/206003/mmedia


J. Phys.: Condens. Matter 27 (2015) 206003 G P Zhang et al

is encouraging as it gives us more confidence in our first-
principles methods. From the comparison between bcc Fe and
fcc Ni, we see that η shows a weak dependence on the material
in question, but this may be due to the similarity between bcc
Fe and fcc Ni. Additional testing and investigation is necessary
using other materials [51, 52]. To compare the theoretical
and experimental results, we need the energy absorbed for
each layer, ideally starting from one monolayer, grown on a
transparent substrate so little photon energy is absorbed into
the substrate. To minimize the heating effect, we suggest to
use a shorter laser pulse and lower repetition rate. This also
suppresses the phonon contribution and targets on the magnetic
excitation alone.

3.2. Band relaxation and exchange splitting reduction

The exchange splitting reduction and transient band structures
are clearly observed experimentally in gadolinium and
terbium [53]. Teichmann and colleagues [54] found that in
Gd, the spin-down band moves down by 0.07 eV and the spin-
up band moves up by 0.2 eV; in Tb, the shifts are 0.16 eV for
both spin channels. These experimental results are consistent
with an earlier study in fcc Ni [55].

To reveal some crucial insights into the demagnetization,
we employ fcc Ni as an example and start with our ground-
state calculation, whose density of d-states (DOS) is shown in
figure 3(a), where the Fermi energy is at zero. The exchange
splitting between the majority and minority spin DOS maxima
is 0.82 eV. Figure 3(b) shows the DOS for the excited-state
configuration, where α = 0.7 and δ = 0.5 eV. While the
excited DOS shape does not change much, the majority and
minority bands are clearly shifted, with the larger shift in the
majority band by as much as 0.5 eV toward the Fermi level. The
splitting is reduced to 0.24 eV, consistent with the experimental
findings [55]. The exchange splitting reduction is a precursor
to the spin moment decrease.

3.3. Spin moment reduction as the excited potential surface
relaxes

We can reveal further details how the spin moment is reduced
during the self-consistent iterations. As an example, we use the
sameα and δ as figure 2. The laser photon energy is also fixed at
h̄ω = 2.0 eV. Figure 3(c) shows that for the first two iterations
the spin moment change is very small, by about 0.02 µB, or
about 3%. However, this is already far larger than the spin
moment change found in our rigid-band simulation [37, 56].
This further confirms our earlier observation [40] that even
though the electrons are promoted to the excited states, the spin
moment change is very small in all the rigid band calculations.
The main reason is because the number of electrons excited
is only limited to those k points where the transition energies
match the photon energy. Electrons at other k points have
no contribution to the spin moment change. After the third
iteration, the excited potential generated by those excited
electrons has a dramatic impact on the entire system; as a result,
the spin moment drops precipitously. Figure 2(d) shows that
the spin gradually converges to 0.23 µB, with a net reduction
of 0.4 µB, or 63%. This high percentage spin loss is consistent
with the experimental findings.
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Figure 3. (a) Density of d-states in pristine fcc Ni. The Fermi level
is at 0 eV. (b) Density of d-states in the excited state, with the
exchange splitting clearly reduced. Here the strength of excitation is
α = 0.7, the laser photon energy is h̄ω = 2.0 eV and the width of
the excitation is δ = 0.5 eV. (c) Small spin moment change for the
first two iterations. (d) Spin moment is sharply reduced as the
self-consistent calculation iterates. Iteration 0 refers to the
converged case without excitation. (e) Spin moment dependence
(empty circles) on the excitation weight α for a fixed energy window
(δ = 0.5 eV). The filled boxes represent the number of electrons
excited (Right axis). (f ) Spin moment reduction as a function of the
excitation window δ for a fixed excitation weight at α = 0.5.

3.4. Effects of the excitation strength and excitation window

To have a clear view as to how the level of excitation affects the
spin moment change, we keep the excitation energy window
fixed and gradually increase α. The empty circles in figure 3(e)
show that as α increases from 0 to 0.8, the spin moment is
reduced precipitously and completely quenched at α = 0.8.
We also calculate the number of electrons actually excited.
The filled boxes in figure 3(e) show how the number of excited
electrons changes with α. In all the cases, the number of
electrons excited is below 1. Quantitatively, we find that at
α = 0.1, the number of electrons excited is 0.13 and the spin
reduction is 0.03 µB, or 0.23 µB per electron. At α = 0.7, ‘0.7
electron’ is excited out of 10 valence electrons and the spin is
reduced by 0.4 µB, so that for each electron excited, the spin
is reduced by 0.57 µB. This unambiguously demonstrates the
importance of the self-consistency and the band relaxation.

The excitation weight is not the only parameter that
affects the spin—so does the excitation energy window δ.
Energetically, a larger window corresponds to a shorter laser
pulse. With a larger δ, more states enter the excitation
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window. Figure 3(f ) shows that as the window becomes
wider, a sharper reduction is observed, but the change is not
completely monotonic, since the states moving in and out of the
excitation window are not continuous (see the density of states
in figure 3(a)). We should emphasize again that the value of δ

should be relatively small, less than 1 eV. In some cases, this
also affects the convergence (see the supplementary materials
(stacks.iop.org/JPCM/27/206003/mmedia) for details)6.

4. Conclusions

Through the first-principles density functional theory, we have
demonstrated unambiguously that even a small number of
electrons excited can lead to a strong quenching in the exchange
interaction. This process occurs through a band relaxation
across the entire Brillouin zone. The electrons in the excited
states build a self-destructive potential that greatly weakens the
electron correlation effect and reduces the exchange splitting.
As a direct consequence, the strong demagnetization is induced
and the exchange splitting is reduced, consistent with the
experimental results [55]. This resolves one of the most
difficult puzzles in femtomagnetism. Our finding has a broader
implication on the ultrafast dynamics in iron pnictides since
the laser can even change the lattice structures [13] and the
exchange interaction must be changed as well. In iron oxides,
the effect is even more important [15]. For the first time,
our study establishes a different paradigm: During the laser
excitation it is the excitation of electrons that impacts on the
exchange interaction and spin moment, while the effect of the
spin fluctuation on the exchange interaction is secondary and
is on a much longer time scale.
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[24] Bigot J Y, Hübner W, Rasing T and Chantrell R 2015

Ultrafastmagnetism I (Springer Proceedings in Physics vol
159) (Berlin: Springer)

[25] Sentef M et al 2013 Phys. Rev. X 3 041033
[26] Zhang G P, Gu M Q and Wu X S 2014 J. Phys.: Condens.

Matter 26 376001
[27] Sandratskii L M and Mavropoulos P 2011 Phys. Rev. B

83 174408
[28] Koopmans B et al 2010 Nat. Mater. 9 259
[29] Battiato M, Carva K and Oppeneer P M 2010 Phys. Rev. Lett.

105 027203
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