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ARTICLE

Generating high-order optical and spin harmonics
from ferromagnetic monolayers
G.P. Zhang 1, M.S. Si2, M. Murakami1, Y.H. Bai3 & Thomas F. George4

High-order harmonic generation (HHG) in solids has entered a new phase of intensive

research, with envisioned band-structure mapping on an ultrashort time scale. This partly

benefits from a flurry of new HHG materials discovered, but so far has missed an important

group. HHG in magnetic materials should have profound impact on future magnetic storage

technology advances. Here we introduce and demonstrate HHG in ferromagnetic mono-

layers. We find that HHG carries spin information and sensitively depends on the relativistic

spin–orbit coupling; and if they are dispersed into the crystal momentum k space, harmonics

originating from real transitions can be k-resolved and carry the band structure information.

Geometrically, the HHG signal is sensitive to spatial orientations of monolayers.

Different from the optical counterpart, the spin HHG, though probably weak, only appears

at even orders, a consequence of SU(2) symmetry. Our findings open an unexplored

frontier—magneto-high-order harmonic generation.
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H igh-order harmonic generation (HHG) in atoms and
small molecules has garnered attentions over several
decades. It allows one to generate a table-top light source

with energy up to x-ray regimes and time scales down to several
hundred attoseconds1–3. This leads to the advent of attosecond
physics4, where electron dynamics is probed on its intrinsic time
scale5. Farkas and coworkers6 were the first to generate 5th-order
harmonics from a gold surface by a picosecond laser pulse. von
der Linde et al.7 reported up to 15th order in an Al film and 14th
order in glass. Theoretically Plaja and Roso-Franco8 examined the
mechanism of harmonic generation in silicon, while Faisal et al.9

developed a nonperturbative Floquet–Bloch theory to control
HHG through interband resonances. In 2005, we predicted HHG
in C60 theoretically10,11 (see other references cited there), and
Ganeev et al.12,13 experimentally demonstrated HHG in full-
erenes. However, nanostructures14 are traditionally unfamiliar to
researchers in atomic HHG15. In 2011, HHG in ZnO reported by
Ghimire et al.16 renewed the interest in solid state HHG, which
has quickly expanded into monolayer17 and multilayer gra-
phene18, MgO19,20, Si21, MoS222, Bi2Se323, SiO2

24,25, Ar/Kr
solids26, GaSe27–29, and metal-sapphire nanostructures30. How-
ever, to this end, little attention has been paid to magnetic
systems31,32.

Here we show that a single laser pulse is capable of generating
HHG in iron monolayers. Different from nonmagnetic materials,
the harmonic signal carries the spin information. The majority
and minority spins generate different harmonics. In contrast to
HHG in atoms and small molecules, circularly polarized light can
generate even higher-order harmonics, which are helicity-
dependent. We compare two different Fe(110) and Fe(001) sur-
faces and find that the harmonics from Fe(110) are stronger. We
find that the different density of states around the Fermi level is
responsible for this difference. We disperse harmonics in the
crystal momentum space, and we find that, in general, harmonics,
which result from virtual transitions, appear symmetric with
respect to the harmonic order and carry no information on the
band structure. However, if harmonics originate from real tran-
sitions, they can be attributed to a few specific transitions between
band states and are useful for band structure reconstruction.
Higher harmonics show a stronger band dispersion. Different
from the charge counterpart, due to the SU(2) symmetry, the
harmonics from spin appear at even orders. Our study opens a
new direction by extending high-harmonic generation to mag-
netic materials.

Results
Symmetry properties of magneto-high-order harmonic gen-
eration (MHHG). HHG in nonmagnetic materials is only subject
to the spatial symmetry. MHHG in magnetic materials is very
different, where spin polarization and spin–orbit coupling break
the spatial symmetry and introduce new phenomena that are
otherwise undetectable. This already occurs in magneto-optics,
such as the Faraday or Kerr effect. For instance, a cubic structure,
if its magnetization is placed along the z axis, becomes a tetra-
gonal structure, and the number of symmetry operations is
reduced from 48 to 16. Different from polar vectors, magnetic
moment vectors M are axial vectors and transform as

TaxialðOÞM ¼ det½O�OM; ð1Þ

where det is the determinant of the symmetry operation O and T
is the transformation. There is no difference between the polar
and axial vectors for proper rotations, but for improper
rotations, they differ by a sign change determined by the above
determinant.

For an orthorhombic system with the magnetization along the
z axis (Fig. 1a), there are eight symmetry operations (see
Methods), but only four of them keep the magnetization invariant
and are retained in the symmetry group. These symmetry
operations are essential to our understanding of MHHG.
Consider a proper rotation O2 (a twofold rotation around the z
axis, C2z) and an improper rotation O6 (a reflection with respect
to the yz plane, σx):

O2 ¼
�1 0 0

0 �1 0

0 0 1

0
B@

1
CA; O6 ¼

�1 0 0

0 1 0

0 0 1

0
B@

1
CA: ð2Þ

For a nonmagnetic system, both symmetry operations appear
in the point group. If the laser field is polarized along the x axis,
these two symmetry operations cancel any harmonic signal along
the y axis. Now consider the same laser field incident on a
magnetic sample (see Fig. 1). If the system is spin-polarized along
the z axis, the point group only retains O2, not O6 since O6

changes the direction of the spin moment. In other words, this
symmetry reduction voids the original cancellation, so a new
signal appears along the y axis. On the other hand, it is easy to
verify that if the laser polarization is along the z axis, there is no
signal along other directions. The entire symmetry properties can
be worked out once the symmetry group is known. This is the
theoretical foundation of MHHG.

First-principles formalism. We choose iron monolayers as our
model system. Figure 1b shows two spatial orientations in the
iron monolayers—Fe(110) and Fe(001) surfaces. They are simu-
lated by a slab geometry, where a vacuum spacing separates slabs
so there is little interaction between them (for details, see
the Supplementary Methods). We solve the Kohn–Sham equation
(in atomic units)33 to find both the eigenstates and optical
transition matrices,

�∇2 þ Vne þ Vee þ Vxc

� �
ψikðrÞ ¼ EikψikðrÞ; ð3Þ
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Fig. 1 High-order harmonic generation in ferromagnetic materials. a An
intense laser pulse excites a ferromagnetic iron monolayer and generates
high-order harmonics. The harmonic has spin signature on the spectrum
and can be dispersed in the crystal momentum space, so the harmonic peak
can be assigned to a unique transition between occupied and unoccupied
states. Higher-order harmonics are more sensitive to the band structure
change than lower-order ones, thus making HHG an ideal tool for spin-
resolved detection. b Brillouin zone of a simple orthorhombic structure.
c Two film orientations—Fe(110) and Fe(001)—are placed in the ab (or xy)
plane
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where the terms on the left-hand side represent the kinetic
energy, nuclear–electron attraction, electron–electron Coulomb
repulsion and exchange correlation34, respectively. ψik(r) is the
Bloch wavefunction of band i at crystal momentum k, and Eik is
the band energy. We include the spin–orbit coupling using a
second-variational method in the same self-consistent iteration35

and construct the spin matrices. Once our calculation reaches
self-consistency, we investigate harmonic generations by
employing the time-dependent Liouville equation,

i�h ikh j ∂ρ
∂t

jkj i ¼ ikh j H0 þ HI; ρ½ � jkj i; ð4Þ

where ρ is the density matrix, H0 is the system Hamiltonian,
and HI is the interaction between the system and laser field: HI=
e
me

bP � AðtÞ, where −e is the electron charge, me is its mass, bP is the
momentum operator and A(t) is the laser-field vector potential
(see Supplementary Information). We choose a Gaussian pulse
with duration τ and photon energy ħω. We note that the time-
dependent Liouville density functional theory36 is advantageous
since it rigorously respects the Pauli exclusion principle that two
electrons cannot occupy the same spin state at the same time.

After we numerically solve the density matrix ρ from Eq. (4),
we can compute the expectation value of the momentum

operator10,11 by P(t)=
P

k Tr ρkðtÞbPk

h i
, where the trace is over

band indices and includes interband contributions. We only
include intraband transitions indirectly through the interband
transition. For our current laser field amplitude, the crystal
momentum shift is very small. The harmonic spectrum is
computed by Fourier transforming P(t) into the frequency

domain through10,37,

PðΩÞ ¼
Z 1

�1
PðtÞeiΩtWðtÞdt; ð5Þ

where W(t) is the window function (see Supplementary Note 1).
All the harmonic spectra below use log10 PðΩÞj j. Caution must be
taken that the time propagation during simulation must be long
enough to resolve fine structures in HHG spectra. In our
calculation, the starting time is −600 fs, and the ending time is
typically around 600 fs and in some cases up to 1.5 ps. The time
step, which determines the highest harmonic order, is 1/32 the
laser period, and when the field is stronger, it is 1/64 the laser
period. Both the extremely long time propagation and small time
step ensure that our spectrum is very sharp and has a well-defined
shape.

Spin-polarized HHG. We employ a 60-fs linearly polarized laser
pulse along the y axis. Our photon energy is ħω= 2 eV and field
amplitude is 0.09 V/Å (far below Bragg reflection27). These
parameters are commonly used in experiments and are employed
for the following calculations. We start with a nonmagnetic Fe
(110) monolayer where we run a nonspin-polarized calculation.
Figure 2a shows that the harmonic signals are only along the y
axis, consistent with the above symmetry analysis, and the highest
harmonic order is 13. The top curve is the one obtained with
W(t)= 1 and the bottom one with a hyper Gaussian function.
Next, we consider a spin-polarized case without spin–orbit cou-
pling. Ferromagnetic materials have two distinctive spin channels:
majority (spin-up) and minority (spin-down). We carry out two
separate calculations with the same laser parameters. Figure 2b
shows the results for the majority spin, where for the same
symmetry reason, no signal is found along either the x or z axis.
The HHG signal for the spin-up channel also reaches up to 13th
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Fig. 2 Harmonic signals under different magnetic ordering and laser amplitudes. a HHG signal from a nonmagnetic Fe monolayer. The laser E-field is along
the y axis, with ħω= 2.0 eV, τ= 60 fs and field amplitude E0= 0.09V/Å, for the results in this figure. The top curve is obtained without using the window
function, while the bottom is processed with the window function. b HHG from the spin-up channel in a magnetic Fe monolayer. The spin–orbit coupling is
not included. c Similar to b, but from the spin-down channel. d HHG signal with spin-polarized electrons and spin–orbit coupling. The solid and dashed lines
denote the signals along the x and y axes, respectively. The spin is orientated perpendicular to the Fe(110) surface. Inset: Phase diagram of Px(t) versus
Py(t). e Same as d but with E0= 0.15V/Å, where high harmonics up to 19th order are observed
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order. However, the spin-down channel is quite different. Fig-
ure 2c shows that although its highest order is the same, the
magnitude is smaller. We will come back to this below. What is
even more interesting is when the spin–orbit coupling (SOC) is
present. In this case, two spin channels are coupled, and the spin
has a preferred spatial orientation, which breaks the symmetry.
Figure 2d shows that this symmetry breaking introduces a new
signal along the x axis (see the solid line), along with the ordinary
harmonics along the y axis. This is qualitatively different from the
nonmagnetic case where no signal is found along the x axis (see
Fig. 2a). The inset shows the real time evolution of Px(t) and Py(t).
It is very interesting that similar to the time-resolved magneto-
optical Kerr effect (TRMOKE)38, these two components have a
clear phase relation, and the major axis of the ellipse formed by
Px(t) and Py(t) tilts slightly away from the y axis. In TRMOKE,
the angle that the major axis makes with the x axis sensitively
reflects the strength of the spin–orbit coupling. A similar feature
observed here will be investigated in the future. To be sure that
the HHG signal is indeed from the laser field, we increase the field
amplitude to 0.15 V/Å, and find that the harmonic order
increases all the way up to 19th order (see Fig. 2e). This
demonstrates that our results are robust. If we compare those
high harmonics with the low harmonics, we find that their signals
do not drop significantly, so they should be measurable. Experi-
mentally, the second-order harmonic was already observed39.
This constitutes our first major finding that HHG in magnetic
materials is spin-channel dependent and is affected by spin–orbit
coupling, a unique feature that is not shared with other materials.

Helicity and surface orientation dependence. Different from
HHG in atoms1, we find that circularly polarized light20 can
effectively generate HHG in magnetic systems as well. We choose

right (σ+) and left (σ−) circularly polarized light in the ab plane
(see Fig. 1). In traditional magneto-optics, because of the
spin–orbit coupling and exchange interaction38, σ+ and σ− do
not generate identical signals because they choose different sets of
transitions among band states. Figure 3a, b shows that HHG
retains this difference, consistent with the prior magnetic second-
order harmonic generation40. Energetically, our highest harmonic
energy is significantly higher than that in native graphene17,18.

There are additional knobs that one can turn in monolayers.
They can be cut along different axes, so that the crystal
orientation plays a role28. Fe monolayers have two possible
orientations, Fe(110) and Fe(001) surfaces. Figure 3c shows that
HHG in the Fe(110) monolayer is stronger than that in the Fe
(001) monolayer; and this remains true even with a denser kmesh
(see Supplementary Information). Such orientational dependence
has been reported before in GaSe28 and a-cut (11–20) ZnO41, but
never in a magnet. You et al.20 explained the orientation
dependence in insulating MgO through the interatomic bonding.
We do it differently, as electrons in our system are very
delocalized.

One obvious explanation is that the number of atoms in the
primitive cell is different for Fe(110) and Fe(001), but this is not
the entire story. We notice that the harmonic amplitude ratio
between Fe(110) and Fe(001) is not proportional to the atom
number ratio. For instance, the ratio in the z component is 2.33
for the first, 2.93 for the third, 3.34 for the 5th, 12.14 for the 7th,
38.01 for the 9th, and 28.05 for the 11th order. There is no signal
at the 15th harmonic for Fe(001). We decide to examine the
density of states (DOS) for the majority and minority bands.
Figure 3d shows the total DOS in Fe(110) for the majority and
minority states around the Fermi level EF (vertical thin line). The
majority channel has more electrons than those in the minority
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Fig. 3 Effects of laser-helicity and film orientation on harmonic signals. a, b Logarithmic harmonic signal from the Fe(110) monolayer with right (σ+) and left
(σ−) circularly polarized light, respectively, where the laser polarization is in the xy plane (see Fig. 1). Due to the window function, the difference between
the x and y components is not obvious, but the real time Py(t) is larger than Px(t) for most of the time (see Supplementary Fig. 3). c Comparison between
HHG signals in the Fe(110) and Fe(001) monolayers, where the laser polarization is along the z axis. d Density of states for the Fe(110) monolayer. The
solid and dashed lines denote the spin-up and spin-down density of states, respectively. The Fermi level is at EF= 0 eV (see the thin vertical line). e Density
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channel, so it contributes more to harmonic generation. This
explains the difference seen in Fig. 2b, c. We see that due to the
low symmetry in Fe(110), the majority valence electrons have
three broad peaks, and the minority ones also have a large DOS
below EF. By contrast, the Fe(001) monolayer is quite different.
Figure 3e shows that its majority band is much narrower than
that in the Fe(110) monolayer, centered around 2.8 eV below the
Fermi level. The band is less dispersive than for the Fe(110)
monolayer, so many channels are not available to the Fe(001)
monolayer to generate harmonics, which weakens HHG in the Fe
(001) monolayer (see Supplementary Information for more).

Discussion
Such a sensitive dependence of harmonic signals on DOS found
here is important, as it suggests a potentially useful application to
map band states through HHG in magnetic materials. This
reminds us of our earlier work on C60

10, where nearly every
harmonic can be uniquely assigned to a particular transition. In
ZnO, Vampa et al.42 proposed to reconstruct the band structure
from the HHG spectrum. Experimentally, Luu et al.24 showed
that the EUV radiation allowed them to probe the conduction
band dispersion in SiO2. A similar result was found in rare-gas
solids26. But none of these studies tested magnetic materials. In
the following, we demonstrate a highly accurate yet challenging
detection scheme that the band transition states can be probed
through HHG in the crystal momentum space. We take Fe(110)
as an example. We disperse the harmonic signal in the crystal
momentum space. There are many possible pockets in the Bril-
louin zone that we can investigate. Here we choose the Λ line that
links the Γ and Z points (see Fig. 1c). The harmonic signal is
dispersed along the Γ–Z direction, Λ line from top to bottom in

Fig. 4a. Note that in our calculation all Γ and Z points are
approximate since we have to shift the k mesh slightly in order to
get better convergence. For clarity, in Fig. 4a we vertically shift all
the curves except the bottom one. These spectra carry rich
information about the band states. We see that harmonics at
different orders change with k differently and this change is not
limited to the lower-order harmonics. Higher-order harmonics
show an even stronger dispersion. We take the fifth harmonic as
an example. We see there are many smaller peaks. These peaks do
not distribute symmetrically around the nominal 5th order. This
is an important indication that the harmonic engages real tran-
sitions among band states10, where the harmonic carries the band
structure information and thus allows one to crystal-momentum
resolve the bands.

Through a tedious but straightforward procedure (see details
in the Supplementary Note 2), we pinpoint the origin of the 5th
harmonic. It comes from radiation (see the arrow in Fig. 4b)
from five conduction-band states between 8.0 and 9.36 eV
above EF to a valence state around −1.87 eV below the Fermi
level EF (dashed line). Therefore, interband transitions dom-
inate the spectrum. We verify that if we remove these transition
states, the 5th harmonic reduces sharply. The largest transition
matrix element for the 5th harmonic is (−0.4−i0.068)10−2ħ/
bohr. To develop a generic picture of the limits of the crystal-
momentum-resolved HHG, we generate a different set of k
points and compute their HHG spectra. We show one example
in the top inset in Fig. 4a, where we see a nice symmetric
Gaussian-like distribution around the 5th order. We find that
these symmetric peaks normally result from virtual excitations,
carry no information about the band states, and cannot be
resolved in the crystal momentum space. Even if we
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systematically exclude relevant transitions, we cannot cleanly
remove the peak until we delete all the transitions or tune down
the laser field. This suggests that HHG is potentially a powerful
tool to detect band transitions in the crystal momentum space.
Such a detection scheme is achieved by three crucial elements in
HHG: (i) the incident photon energy pre-selects dipole-allowed
band states, (ii) when the HHG is dispersed into the k space, it
further limits them to fewer band states, and (iii) HHG must
result from real transitions among band states. Experimentally
one must first examine the peak structure. This ensures high
accuracy of our proposed scheme.

After we solve the Liouville Eq. (4), the optical HHG is not the
only one that we can investigate. We can also compute the spin

change through S(t)=
P

k Tr ρkðtÞbSkh i
, where bSk is the spin

operator, and then we Fourier-transform it into the frequency
domain. Figure 4c shows our results. Its zeroth order is the
baseline of spin moment, and reflects how much the laser pulse
demagnetizes our spin system. Demagnetization is only part of
the entire process, and spin also oscillates with time. Our
spectrum surely catches this, but the harmonic peak only
appears at even orders. This is because the spin has SU(2)
symmetry, and the laser field must interact with the system at
least twice to affect the spin. Sz is dominated by the zeroth order.
We do not find a higher-order harmonic beyond the 10th order
with our current laser parameters. We caution that emission
from spin in general is much weaker. However, with new
experimental developments27,29, these signals should be detect-
able. One advantage in systems with inversion symmetry is that
the dipole radiation has no even harmonic, so the emission from
spin is essentially background free. Nonlinear magneto-optical
investigations in ferromagnetic monolayers and thin films have a
long history. Second-harmonic generation has been extensively
used to probe surface magnetism40,43. High-harmonic genera-
tion has already been used to probe ultrafast and element-
specific magnetization44,45, and THz emission from magnetic
thin films was reported39,46. Thus, our findings are likely to
motivate further investigations in the future (see Supplementary
Information).

Methods
Time-dependent Liouville density functional theory. Our theoretical calculation
consists of two steps. First, we solve the Kohn–Sham equation35 to obtain the
eigenvalues and eigenstates. We employ the generalized gradient approximation at
the PBE level34 as implemented in the Wien2k code. The code employs the full-
potential linearlized augmented plane-wave method, where dual basis functions are
used in the atomic sphere and interstitial regions, and no approximation to the
sphere is made. This makes calculations very accurate. The product of the Muffin-
tin radius and plane-wave cutoff is RMTKmax= 7. In the spin–orbit coupling cal-
culation, we use a large orbital angular momentum quantum number of L= 6 to
ensure the high accuracy of the spin matrices; and all the eigenstates up to 3.5 Ryd
are computed. This is the same maximum energy used in the optical calculation
where transition matrix elements are computed. We have changed the original
optic code so we can store all those matrices in an unformatted form, which
improves the accuracy of the HHG calculation greatly.

Next we solve the Liouville equation for density matrices in the time domain for
all the k points. This step is most time-consuming since we have to solve thousands
of equations simultaneously. Our code is fully parallelized using the MPI
architecture. Once we find the density matrices at each time step, we compute the
expectation value of the momentum operator or other interesting quantities by
tracing all the product of density matrices and an operator O, i.e.

P
k TrðρkðtÞOÞ.

Here ρ depends on the space group symmetry through HI, for which we show one
example below.

Symmetry analysis in an orthorhombic lattice. The symmetry group, for a
nonmagnetic orthorhombic lattice as well as for a magnetic orthorhombic lattice
without spin–orbit coupling, includes all eight symmetry operations, {Oi} where i

runs from 1 to 8:

O1 ¼
�1 0 0

0 �1 0

0 0 �1

0
B@

1
CA;O2 ¼

�1 0 0

0 �1 0

0 0 1

0
B@

1
CA;O3 ¼

1 0 0

0 1 0

0 0 �1

0
B@

1
CA;O4 ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA
ð6Þ

O5 ¼
�1 0 0

0 1 0

0 0 �1

0
B@

1
CA;O6 ¼

�1 0 0

0 1 0

0 0 1

0
B@

1
CA;O7 ¼

1 0 0

0 �1 0

0 0 �1

0
B@

1
CA;O8 ¼

1 0 0

0 �1 0

0 0 1

0
B@

1
CA:

ð7Þ

In general, there are eight different density matrices, ρk[(e/m)Oi
bP ·A(t)]≡

ρk(Oi). The symmetry operation also applies to the operator O as OiO, so the
symmetrized trace is

P
i¼1;8

P
k Tr ρkðOiÞðOiOÞ� �

. However, for a spin-polarized
and spin–orbit coupled system, only the first four operations (O1,…, O4) remain in
the group (Eq. (6)), while Eq. (7) is left out because they change the spin direction
(Eq. (1)). This is the origin of the magneto-high-harmonic generation. For other
systems, one can use the same method to work out the details.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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