
University of Missouri, St. Louis
IRL @ UMSL

Dissertations UMSL Graduate Works

6-4-2015

Fast and Sensitive Genome-Hashing Software and
its Application in Using NGS as a Detection Agent
for Bacterial Presence in Oral Metagenomic
Samples
Paul Michael Gontarz
University of Missouri-St. Louis, paul_gontarz@yahoo.com

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in
Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Gontarz, Paul Michael, "Fast and Sensitive Genome-Hashing Software and its Application in Using NGS as a Detection Agent for
Bacterial Presence in Oral Metagenomic Samples" (2015). Dissertations. 5.
https://irl.umsl.edu/dissertation/5

https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/5?utm_source=irl.umsl.edu%2Fdissertation%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu

i

Fast and Sensitive Genome-Hashing Software and its Application in Using NGS as a

Detection Agent for Bacterial Presence in Oral Metagenomic Samples

A Dissertation

By

Paul Gontarz

M.S. Chemistry, University of Missouri - Saint Louis, 2012

B.S. Chemistry with Emphasis in Biochemistry, Lindenwood University, 2010

B.S. Mathematics, Lindenwood University, 2010

A Thesis Submitted to the Graduate School at the University of Missouri-St. Louis

in partial fulfillment of the requirements for the degree

Doctor of Philosophy in Chemistry

June 2015

Advisory Committee

Chung Wong, Ph.D.

Chairperson

James Bashkin, Ph.D.

Cynthia Dupureur, Ph.D.

Michael Nichols, Ph.D.

ii

Abstract

Fast and Sensitive Genome-Hashing Software and its Application in Using NGS as a

Detection Agent for Bacterial Presence in Oral Metagenomic Samples

Paul Gontarz, M.S., University of Missouri, St. Louis, MO, USA

Chair of Committee: Dr. Chung Wong

 Next generation sequencing has increased the throughput of sequenced DNA into

the range of billions of nucleotides sequenced per day. With the increased speed of DNA

sequencing and the short length of reads produced by next generation sequencers, a

significant challenge has been created in quickly and accurately assembling the hundreds

of millions of short reads created by modern sequencing instruments into their full

genomic sequences. With the increase in throughput in next generation sequencing and

the decrease in time and cost to perform DNA sequencing, novel applications for DNA

sequencing are being considered. Among them is a methodology by which DNA

sequencing can be used as a diagnostic or detection tool for bacterial infection or

presence.

 Here, the implementation, characteristics, and deployment of a novel, genome-

hashing alignment algorithm for quickly performing reference-based alignment is

described. This algorithm, SRmapper, is shown to be between two-fold to eight-fold

faster than a current and popular alignment algorithm, BWA, while retaining a similar

fraction of reads aligned to human reference genome. SRmapper demonstrates a

capability to align approximately 150 billion nucleotides per processor day on an Intel

iii

Xeon 2.8GHz processor to the human genome while using approximately 2.5GB of

RAM. SRmapper is demonstrated to be able to perform both single-end and pair-end

alignment and tolerates a higher number of discrepancies between reads and the reference

sequence than BWA.

 Using SRmapper as an alignment tool, a method to detect Mycobacterium

tuberculosis (TB) in metagenomic samples containing many different bacteria is

described. This method utilizes the construction of a novel uniqueness genome for TB

containing only the regions of the TB genome not similar to any other bacterial species in

the oral metagenome. Alignment of simulated and real metagenomic samples

demonstrate the effectiveness of the uniqueness genome in the detection of TB and

discover TB contamination in samples from the 1000 genomes project. Finally, the

uniqueness genomes methodology is expanded to all genomes within the oral

metagenome, and preliminary evidence is provided demonstrating that next generation

sequencing can detect the presence of multiple simultaneously via alignment using

SRmapper.

iv

Dedication

To my wife, Elena; my daughter Anya; my brother, Peter, and my parents, Ken and

Vivian: All my love and thanks.

v

Acknowledgements

 I would first like to acknowledge the guidance, direction, work, and patience of

my advisor, Dr. Chung Wong in guiding me through my time in the graduate program at

the University of Missouri-St. Louis. I would like to thank Dr. Wong for both giving me

the projects I worked on and for his ideas and direction as well as the numerous

suggestions he gave to ensure that these projects moved in the correct direction.

Furthermore, I would like to thank Dr. Wong for his willingness to give me the freedom

to pursue my ideas, even when they proved to be incorrect, and his aid in developing the

ones that had potential. Being allowed to struggle at times while having someone to fall

back on when I could not solve problems on my own has been very beneficial in my

development. Next, I would like to thank those serving on my dissertation committee: Dr.

James Bashkin, Dr. Cynthia Dupureur, and Dr. Michael Nichols. To Drs. Dupureur and

Nichols - thank you for suggestions, advice, and constructive critique during the defense

of my dissertation proposal. To Dr. Bashkin, thank you for your suggestions and

encouraging words during the oral presentation at my dissertation proposal. I would also

like to acknowledge and thank my lab mates Elizabeth Hood and Andrew Lutes for their

input and questions on my projects. I would also like to thank the numerous

undergraduate and high school students I have had the pleasure and privilege of working

with, advising, and supervising. I especially would like to thank Jennifer Berger for her

valuable input and suggestions in the implementation and optimization of SRmapper. I

would also like to thank Aaron Wilkerson for all the parallel work he did on strain

specific features in TB. Specifically, I would also like to thank Barry Hykes, Kelsey

Delph, and Peter Gontarz.

vi

 I would like to thank UMSL and the UM department of Chemistry and

Biochemistry, the Graduate Dissertation Fellowship, the UM research board, and the UM

research award for providing the funding necessary to support me during my graduate

work. Without this support, none of this work could have happened. I would also like to

express my deepest gratitude to the University of Missouri Bioinformatics Consortium

for providing the computational resources necessary to make the project feasible.

 Outside of UMSL, I would first and especially like to acknowledge my wife,

Elena Vasilieva, and all the time she has spent, the encouragement she has given, and the

love she has shown to me. I would also like to thank my daughter, Anya; and I hope that

when you are old enough to be able to read this, you see this and know that just seeing

you means the world to me. Dad loves you and always will. Peter, watching you may be

my greatest motivation. Your work ethic is an inspiration to me, and I am sure that you

will achieve great things. It is not possible for me write here all the ways you inspire me.

Finally, to my parents Ken and Vivian: thank you so much for always pushing me and

encouraging me and reminding me to “never waste the gifts God has given you.” I do my

best.

vii

TABLE OF CONTENTS

Page

ABSTRACT ii-iii

DEDICATION iv

ACKNOWLEDGMENTS v-vi

TABLE OF CONTENTS vii-ix

LIST OF FIGURES x-xii

LIST OF TABLES xiii-xiv

LIST OF PSEUDOCODES xv

CHAPTER 1 AN INTRODUCTION TO DNA, DNA SEQUENCING, AND

 THE POTENTIAL APPLICATIONS OF DNA SEQUENCING 1

 1.1 Dexoyribonucleic Acid, Its Properties, and Early Sequencing Means 2

 1.2 Next Generation Sequencing 6

 1.2.1 Next Generation Sequencing Platforms and Methodology 6

 1.2.2 Comparison of Next Generation Sequencing Instrument Output 10

 1.3 Analysis of NGS Data 13

 1.4 Future Applications of DNA Sequencing Detection and Diagonstics

 of TB and Other Bacteria 19

 1.5 Thesis Scope and Overview 22

CHAPTER II SRMAPPER: A FAST AND SENSITIVE GENOME-HASHING

ALIGNMENT ALGORITHM FOR NGS ANALYSIS 24

 2.1 Background 25

 2.2 Construction of Reference Sequence Indexes by SRmapper

 Buildindex Algorithm 26

 2.2.1 SRmapper Buildindex Input Format and Files 26

 2.2.2 Hashing Terminology 28

 2.2.3 Prehashing Routine to Determine Key Length 28

 2.2.4 SRmapper Hashing Function 30

 2.2.5 SRmapper Indexing Function and Formation of the

 Hash Table 33

 2.2.5.1 Initial Hash Table Formation Algorithm 34

 2.2.5.2 Modified Hash Table Formation Algorithm 35

viii

 2.2.6 Output and Storage of the SRmapper Indexing Algorithm 39

 2.3 Alignment of Short Reads from NGS to Reference Sequences Using

 the SRmapper Align Algorithm And Probabilistic Model 39

 2.3.1 SRmapper Align Input Format and Files 41

 2.3.2 SRmapper Align Prealignment Routines 44

 2.3.2.1 Determination of Alignment Probabilities 44

 2.3.2.2 Creation of the Probability Table for Alignment 49

 2.3.2.3 Loading of the Index into Memory 51

 2.3.3 Sequence Alignment by the SRmapper Align Algorithm 51

 2.3.4 Alignment Output and Storage 55

 2.3.5 Miscellaneous Implementations to Increase Alignment Speed 62

 2.4 Results 63

 2.4.1 Indexing Reference Sequences 63

 2.4.2 Comparison Between SRmapper and BWA Using Real

 and Simulated Sequencing Datasets 64

 2.4.2.1 Real Datasets and Software 64

 2.4.2.2 Alignment Conditions and Measures of Aligner

 Speed and Reads Aligned 65

 2.4.2.3 Results of Comparing SRmapper to BWA on

 Real Datasets 67

 2.4.2.4 Creation of Simulated Reads and Determination

 Of Aligner Accuracy 76

 2.4.2.5 Results of Comparing SRmapper to BWA to

 Determine Alignment Accuracy by Using Simulated Reads 77

CHAPTER III DEVELOPMENT OF DETECTION METHODOLOGY FOR

 MYCOBACTERIUM TUBERCULOSIS USING SRMAPPER AND

 UNIQUENESS GENOMES 88

 3.1 Background 89

 3.2 Materials and Methods 90

 3.2.1 Computational Resources 90

 3.2.2 Genomic Sequences and NGS Sequences 90

 3.2.3 Simulated Reads 90

 3.2.4 Alignment Settings and Conditions 91

 3.2.5 Creation of Uniqueness Genomes 92

 3.2.6 Download and Processing of 1000 Genomes Data 94

3.2.7 Measuring Loads and Coverage 95

 3.3 Results 96

 3.3.1 Creation of the Oral Uniqueness Genome for Tuberculosis 96

 3.3.2 Human Variation Does not Prevent the Use of NGS for

 Detecting TB 104

 3.3.3 Advantages of the Uniqueness Genome Shown Through

 Simulated Data 111

 3.3.4 Confirmation of the Detection of TB in Finnish HapMap

 Samples Via the Complete and Partial Uniqueness Genomes 122

ix

 3.3.5 The TB Uniqueness Genome Eliminates or Greatly

 Reduces the Number of False Positive Alignments in Real Oral

 Metagenomic Samples 131

 3.3.6 Subspecies Level Detection of TB 133

CHAPTER IV EXTENSION OF THE UNIQUENESS GENOME

 METHODOLOGY TO SIMULTANEOUSLY DETECT ANY SPECIES

 WITHIN THE ORAL METAGENOME USING SRMAPPER 139

 4.1 Background 140

 4.2 Methods 141

 4.2.1 Preparation of Species from the Oral Meatagenome 141

 4.2.2 Formation of the Uniqueness Genome for All Species in

 The Oral Metagenome and of the Oral Uniqueness Metagenome 141

 4.2.3 Detection of Bacteria from the Oral Metagenome Using the

 Uniqueness Oral Metagenome 143

 4.2.4 Verification of Oral Metagenomic Bacterial Detection by

 Using BLASTn 143

 4.2.4.1 Formation of Contigs from Alignment and Using

 Shannon Entropy to Select Contigs 146

 4.2.4.2 BLASTn Analysis on Selected Contigs 151

 4.3 Results 152

 4.3.1 Uniqueness Reference Genomes Can Be Created for All

 Species in the Oral Metagenome 152

 4.3.2 Detection Validation through BLASTn and Detection Limits

 Species-Level and Genus-Level Detection 157

CHAPTER V CONCLUSIONS AND FUTURE DIRECTIONS 165

 5.1 Overview 166

 5.2 SRmapper 166

 5.2.1 Implementation and Results 166

 5.2.2 Future Directions for SRmapper 168

 5.3 Detection of TB in Oral Metagenomic Samples 171

 5.3.1 Summary of Results 171

 5.3.2 Future Directions in Detecting TB Using NGS

 and SRmapper 172

 5.4 NGS as a Metagenomic Detection Tool for the Oral Metagenome 174

 5.4.1 Summary of Results 174

 5.4.2 Future Directions in Detection of All Species from the

 Oral Metagenome 174

REFERENCES 178-182

x

LIST OF FIGURES

Figure 1.1: Sanger Sequencing By Chain Terminating Inhibitors Using Gel

 Electrophoresis to Separate Fragments. 5

Figure 1.2: SOLiD Sequencing Technology. 8-9

Figure 1.3: SRA Database Size. 14

Figure 2.1: Example References in fasta and multifasta file formats. 27

Figure 2.2: Hashing Terminology. 29

Figure 2.3: The hashing function of SRmapper. 31-32

Figure 2.4: Formation of the SRmapper Index Using Buildindex. 36-37

Figure 2.5: Overflow in Indexing. 38

Figure 2.6: Storage of the SRmapper Index. 40

Figure 2.7: The .fastq File Format. 45

Figure 2.8: Approximation of Eq 4 by Eq 5. 50

Figure 2.9: Alignment of a Short Read to a Reference Sequence by the

 Align Algorithm of SRmapper. 52-53

Figure 2.10: The SAM Output Format. 59-60

Figure 2.11: Fold Alignment Time Increase by Increasing Mismatches

 Allowed from BWA Default Parameters to SRmapper Default Parameters 71

Figure 2.12: Comparison of BWA and SRmapper Alignment Performance with

 Each Algorithm Using Its Default Parameters. 72

Figure 2.13: ROC Curves for BWA and SRmapper Alignments Using Wgsim

 to Simulate Reads and Build ROC Curves. 81

Figure 3.1: Formation of the Uniqueness Genome for TB. 96

xi

Figure 3.2: Workflow of the Analysis of the 1000 Genomes Data. 107

Figure 3.3: The Effect of Read Length on the Coverage Rate of Sequences from

 the 1000 Genomes Project Aligning to the TB Genome. 110

Figure 3.4: Comparison of Percent Reads Aligned at 0.1% TB Load and 0%

 TB load Using the Full TB Genome and the Uniqueness TB Genome. 114

Figure 3.5: Comparison of

 at 0.1% and 0% TB Load Using the Full TB

 Genome and the Uniqueness TB Genome. 118

Figure 3.6: Coverage of the Complete and Partial Uniqueness Genomes for TB

 Versus Coverage of the Full TB Genome. 129

Figure 3.7: Percentage of Reads Aligned to the Complete Uniqueness Genome

 Versus Percentage of Reads Aligned to the Full TB Genome. 132

Figure 3.8: Strain level Detection of TB Strain BTB05-552. 137

Figure 4.1: Validation of Bacterial Detection by BLASTn Analysis. 145

Figure 4.2: Consensus Sequence Formation and Calculation of Shannon Entropy. 147

Figure 4.3: Initial Construction of the Uniqueness Oral Metagenome. 153

Figure 4.4: Distribution of Coverages for Genera with a High Number of Species

 in the Oral Metagenome. 155

Figure 4.5: Rebuild of the Uniqueness Oral Metagenome. 156

Figure 4.6: BLASTnspecies Scores Versus SRmapper Alignment Cover for

 Uniqueness Genomes in the Oral Metagenome. 158-159

Figure 4.7: BLASTngenus Scores Versus SRmapper Alignment Cover for

 Uniqueness Genomes in the Oral Metagenome. 160-161

xii

Figure 5.1: Theoretical Diagnostic Scheme for Using NGS to Diagnose

 Bacterial Infection. 177

xiii

LIST OF TABLES

Table 1.1: The Triplet Code for RNA Translation to Protein Sequence. 3

Table 1.2: Comparison of the Poperties of Large-Scale Sequencing Instruments 11

Table 1.3: Comparison Of the Ion Torrent PGM and Pacific Bio RS to Various

 Illumina Instruments. 12

Table 2.1: Comparison of Alignment Time and Percent Reads Aligned for BWA

 and SRmapper using the default mismatch Parameters of BWA and Single-End

 Alignment. 68

Table 2.2: Comparison of Alignment Time and Percent Reads Aligned for BWA

 and SRmapper using the default mismatch Parameters of SRmapper and

 Single-End Alignment. 69

Table 2.3: Comparison of Alignment Time and Percent Reads Aligned for BWA

 and SRmapper using the default mismatch Parameters of BWA and Pair-End

 Alignment. 74

Table 2.4: Comparison of Alignment Time and Percent Reads Aligned for BWA

 and SRmapper using the default mismatch Parameters of SRmapper and

 Pair-End Alignment. 75

Table 2.5: Alignment Accuracy of BWA and SRmapper as Determined By the

 Alignment of Simulated Reads Using the Default Mismatch Settings of BWA. 79

Table 2.6: Alignment Accuracy of BWA and SRmapper as Determined By the

 Alignment of Simulated Reads Using the Default Mismatch Settings of

 SRmapper. 80

Table 3.1: The Genomes Chosen to Form the Oral Metagenome 97-101

xiv

Table 3.2: Coverage of the TB Genome H37Rv by the Human Reference Genome. 103

Table 3.3: Datasets from the 1000 Genome Project with the Highest Coverage of

 the TB Genome 105-106

Table 3.4: Comparison of Percentage Reads aligned to the Full TB Genome

 and Uniqueness TB genome Using Simulated Metagenomic Samples 112

Table 3.5: Comparison of

 Between the Full TB Genome and Uniqueness

 TB genome Using Simulated Metagenomic Samples. 116

Table 3.6: Worst Case Scenario Simulation for Detecting TB in a Metagenomic

 Sample Using a Sequencing Depth of 10M Nucleotides Sequenced. 120

Table 3.7: Worst Case Scenario Simulation for Detecting TB in a Metagenomic

 Sample Using a Sequencing Depth of 100M Nucleotides Sequenced. 121

Table 3.8: 1000 Genomes Project Files with the Highest %C/B. 124

Table 3.9: Coverage of the Full TB Genome, Complete Uniqueness Genome,

 and Partial Uniqueness Genome by Samples from the Finnish HapMap

 Project. 126-127

Table 3.10: TB Percent Load as Measured by Using the Full TB Genome and

 Uniqueness TB Genome as References. 134

Table 4.1: Comparison between SRmapper Coverage Ranges and Bacterial

 Detection Rates 163

xv

LIST OF PSEUDOCODES

Pseudocode 2.1: SRmapper Buildindex. 84-85

Pseudocode 2.2: SRmapper Align. 86-87

Pseudocode 3.1: 1000 Genomes Analysis. 138

1

Chapter I

An Introduction to DNA, DNA Sequencing, and the

Potential Applications of DNA Sequencing

2

1.1 Deoxyribonucleic Acid, Its Properties, and Early Sequencing Means

 The field of studies on DNA is possibly the fastest moving field in all of

biochemistry. That deoxyribonucleic acid (DNA) functions as the sole genetic material or

information molecule for all living cells was initially established over 70 years ago by

Hershey and Chase by radiolabeling amino acids and nucleic acids in viruses and

observing which was injected into cells in order to replicate the virus (Hershey & Chase,

1952). That DNA is the genetic material for all cells, whether prokaryotic or eukaryotic,

has been confirmed since, and is accepted as common knowledge by both those inside

and outside the scientific community. In the less than 75 years that the scientific

community has understood the function of DNA at its most basic level, its critical

importance has been demonstrated by the amount of work performed to understand the

chemistry and biochemistry of its structure, means of replication, and use in providing the

blueprint for the primary structure or sequence of every protein in every cell. A year after

DNA was demonstrated to be the genetic material, Watson and Crick - building on

information provided by Rosalind Franklin - determined DNA to be comprised of a

double helix with the two helical strands running in opposite directions and being linked

by hydrogen bonding of purines to pyrimidines (adenosine to thymine and guanine to

cytosine) thereby establishing both an explanation for Chargaff’s Rules and a potential

means of DNA replication (Watson & Crick, 1953; Wilkens et al., 1953; Chargaff et al.,

1952). By 1965, the concept of the triplet code for ribonucleic acid (RNA) - that in

protein synthesis, three bases of DNA are transcribed into RNA and translated into a

distinct amino acid dependent on the identities of the three bases - had been established

with Nirenberg and his colleagues providing the RNA triplet code for the majority of

3

Table 1.1: The Triplet Code for RNA Translation to Protein Sequence. Of the 64

possible RNA triples, Nirenberg correctly identified the amino acid formed by 57 triples

and deduced that UGA, UAA, and UAG could be termination codons (marked nonsense

in the table). (Table adapted from Nirenberg et al., 1965).

4

 RNA triplets (Table 1.1) (Nirenberg et al., 1965). This information lead to the

establishment of the central dogma of molecular biology: DNA is transcribed into RNA

which is translated into proteins, and proteins cannot be converted to DNA (Crick, 1970).

 With the acceptance of the central dogma came the somewhat naïve belief that

since DNA coded for every protein in an organism and protein function defined

organisms, simply knowing the DNA sequence, or genome, of an organism could be used

to understand every aspect of the organism. Although it has been determined that the

composition of an organism is far more complicated than a simple conversion of the

genes in an organism to the proteins encoded by them with factors such as DNA

methylation and RNA interference (RNAi), for example, each inhibiting part of the

process by which DNA is used to eventually synthesize proteins (Robertson & Jones,

2000; Fire et al., 1998). However, knowledge of the DNA sequence of an organism can

provide a tremendous amount of information about that organism and does define much

of the form and function of that organism. The first method to reliably sequence DNA

was discovered in the early 1970s and used DNA repair to add radiolabeled nucleotides

to the 3’ end of DNA single strands in bacteriophage λ (Wu, 1970). This methodology

was modified and improved by Fredrick Sanger in 1977 to quickly and accurately

sequence DNA by the use of radiolabeled primers and dideoxynucleotides to inhibit chain

elongation in a DNA strand complementary to the template strand (Sanger et al., 1977).

In the same year, Maxam and Gilbert also devised a method to sequence DNA by base-

specific cleavage with dimethyl sulfate being used to methylate guanine and adenine and

hydrazine being used to cleave cytosine and thymine (Maxam & Gilbert, 1977). Both

Sanger sequencing and Maxam-Gilbert sequencing determined DNA sequence by

5

Figure 1.1: Sanger Sequencing By Chain Terminating Inhibitors Using Gel

Electrophoresis to Separate Fragments. In Sanger sequencing, a radiolabeled primer

was elongated using the DNA polymerase reaction and the four standard nucleotides in

four different lanes. In each lane, an additional chain terminating version of one of the

nucleotides containing a dideoxyribose was added in a low concentration allowing for

random termination of the sequence at various positions where the naturally occurring

version of the dideoxyribonucleic acid would normally be incorporated. The fragments of

different length were resolved by gel electrophoresis. The DNA sequence could then be

read bottom to top. (Figure adapted from Sanger et al., 1977).

6

separating DNA fragments using gel electrophoresis (Figure 1.1). Variants of both

methods are still commonly used today; however, due to the more tedious analysis

required for Maxam-Gilbert sequencing, Sanger sequencing and its subsequent

improvements, such as fluorescently labeled nucleotides and the various forms of

sequencing by synthesis, have become the dominant method for sequencing DNA.

1.2 Next Generation Sequencing

1.2.1 Next Generation Sequencing Platforms and Methodology

 In the less than forty years that fast and reliable methods for DNA sequencing

have existed, there has been a continuous growth in the rate of DNA sequencing and a

continual decrease in the cost of DNA sequencing. Early advances to the field of DNA

sequencing included a shift from radiolabeled DNA fragments being sequenced on gel

slabs via electrophoresis to fluorescently labeled nucleotides being used to perform

sequencing in capillary tubes (Woolley and Mathies, 1995). Next generation sequencing

(NGS) has moved away from sequencing by chain termination and into methods such as

sequencing by synthesis for companies such as Pacific Biosciences, 454 Life Sciences,

Roche, Illumina, Solexa, and Life Technologies and sequencing by ligation for Applied

Biosystems (Pareek et al., 2011; Liu et al., 2012; Quail et al., 2012). Specifically, in the

case Life Technologies and their Ion Torrent instruments, sequencing is performed in

microwells, and addition of a nucleotide to a growing strand of DNA is detected by a

change in pH due to the release of hydrogen ions in the DNA polymerization reaction

(Rothenberg et al., 2011). A drawback to this method is that for a homopolymer sequence

- a sequence with the same nucleotide repeating multiple times - correctly converting the

change in pH or electrical charge to the correct number of nucleotides added in the

7

homopolymer sequence can be difficult (Rothenberg et al., 2011). In the case of Life

Sciences and 454 pyrosequencing, sequencing by synthesis is utilized with DNA

polymerization detected by the release of pyrophosphate (Margulies et al., 2005). This

pyrophosphate is converted into ATP by ATP sulfurylase, with the synthesis of ATP

being detected by firefly luciferase (Ronaghi et al., 1996). Solexa, which was purchased

by Illumina still utilizes fluorescent dyes in its sequencing. All variants of this dye-based

method utilize four different fluorescent dyes to identify the identity of an incorporated

nucleotide and reversibly chain terminating nucleotides where the chain terminating

functional group can be cleaved after the identity of the incorporated nucleotide is

determined (Guo et al., 2008). Pacific Biosciences instrumentation applies a similar

approach but, instead of creating clusters of identical sequences like Illumina, identifies

the addition of a single nucleotide to a single strand of DNA using a single DNA

polymerase enzyme (Eid et al., 2009). Pacific Biosciences achieves this feat by fixing the

DNA polymerase to the bottom of a sequencing well with a volume in the range of 10
-21

liters and utilizing a detector that only measures fluorescence at the bottom of the well

(Levene et al., 2003). In contrast to the sequencing by synthesis methods employed by

the above listed platforms, Applied Biosystems utilizes a method termed SOLiD

(Sequencing by Oligonucleotide Ligation and Detection). In the SOLiD method, after a

primer is hybridized to the template sequence, an eight nucleotide fragment in which the

first two bases are complementary to the template strand, the next three bases are able to

bind any sequence, and the final three bases are fluorescently labeled hybridizes to the

template sequence and is ligated to the primer (McKernan et al., 2009). Upon cleavage of

the last three bases, the resulting 5 nucleotide fragment is available for ligation to another

8

A

B

Figure 1.2: SOLiD Sequencing Technology. (A) In sequencing by ligation, a primer

hybridizes to the adapter sequence on the template sequence. Next, eight nucleotide

oligomers with various natural nucleotides at positions 1 and 2 compete to hybridize the

template sequence with the oligomer with a complementary sequence to the template at

its 1 and 2 positions successfully hybridizing. The 8-mer is ligated to the primer followed

by cleavage of the last 3 nucleotides and the fluorescent dye leaving a 5-mer that is

available for ligation. (B) The process from A is repeated a total of 7 times for each

9

primer. The black dots represent positions where the sequence is determined for each

primer. After the final round of ligation, the hybrid sequence is washed off, and a new

primer is hybridized to the adapter sequence of the template. This primer is offset from

the first so that different bases in the sequence can be determined. A total of five primers

each with 7 rounds of ligation are analyzed. This process results in each base being

sequenced twice thereby reducing the number of errors in base calling. For example, read

position 17 is determined by both the ligation involving primer 1 and primer 5. (Figure

adapted from www.appliedbiosystems.com/.)

http://www.appliedbiosystems.com/

10

8 nucleotide fragment. This process of hybridization and ligation is repeated for 7 to 10

cycles. Five rounds of priming are performed in total with the primer being offset by one

nucleotide in each round of priming. This results in the identity of each base being

determined twice and reduces the number of incorrectly sequenced nucleotides.

1.2.2 Comparison of Next Generation Sequencing Instrument Output

 Although most NGS techniques produce sequences, also called reads, shorter than

those produced by Sanger or Maxam-Gilbert sequencing, they also produce a much

higher quantity of sequenced DNA at a much lower cost due to massive parallelization

and small reaction vessels. Whereas Sanger and Maxam-Gilbert sequencing only

determines the identity of the last nucleotide in each oligonucleotide formed, techniques

such as sequencing by synthesis and sequencing by ligation further reduce the cost of

sequencing by determining the identity of many bases in each fragment. Each sequencing

method has advantages and disadvantages depending on which of five variables in

sequencing is considered. These five variables are read length, nucleotides sequenced,

time, cost, and sequencing accuracy (Pareek et al., 2011; Liu et al., 2012; Quail et al.,

2012). From Table 1.2 and Table 1.3 it can be determined that all of these factors vary

depending on the goal of the sequencing operation. Instruments are typically split into

two categories, one for large scale sequencing projects and one for smaller scale

sequencing projects. Illumina instruments tend to have the lowest sequencing costs and

highest outputs in their sequencing classes while retaining a moderate read length and

accuracy. However, they also tend to have the longest times for sequencing in their class.

Ion Torrent instruments tend to have fast sequencing times and moderate read lengths and

costs but a somewhat limited output and higher error rate. 454 pyrosequencing produces

11

Table 1.2: Comparison of the Poperties of Large-Scale Sequencing Instruments. The

read length, accuracy, output, sequencing time, and cost are compared for 454 GS FLX,

Illumina HiSeq2000, and Applied Biosystems SOLiDv4. (Table adapted from Liu et al.,

2012).

12

Table 1.3: Comparison Of the Ion Torrent PGM and Pacific Bio RS to Various

Illumina Instruments. The five sequencing characteristics as compared in Table 1.2 are

compared for Ion Torrent, Pacific Biosciences, and Illumia. (Table adapted from Quail et

al., 2012).

13

longer reads with a high accuracy in a reasonably short amount of time but also has a

limited output and a very high sequencing cost for NGS. ABI SOLiD sequencing

produces extremely accurately sequenced reads at a low cost and high output. However,

it also produces the shortest reads among the NGS instruments and has some of the

longest sequencing times. Finally, Pacific Biosciences instruments produce reads over

10,000 base pairs long at a moderate cost but have error rates approximately 10x higher

than Illumina or Ion Torrent incorrectly determining the identity of over 10% of

nucleotides sequenced (Data not shown).

1.3 Analysis of NGS Data

Before the advent of NGS, the challenges of analyzing sequencing data and the

usefulness of computers were already being discussed (Staden, 1979). With the advent of

NGS, the challenges associated with analyzing and interpreting sequencing data took as

big a step forward as sequencing had (Ng & Kirkness, 2010). The amount of publically

available DNA sequencing data has grown exponentially over the last six years. As of

May, 2015, there were over two petabases (Pb) of publically available sequencing data

from next generation sequencing instruments available on the joint sequencing database

of the National Center for Biotechnology Information (NCBI), the European

Bioinformatics Institute, and the DNA databse of Japan (Agarwala et al., 2015). These

two quadrillion bases of publically available, raw sequencing data are housed in the

sequence read archive (SRA) (Fig. 1.3) (http://www.ncbi.nlm.nih.gov/sra) and contain

the results of whole genome shotgun sequencing, transcriptome sequencing, 16s RNA

gene sequencing, and other types of experiments. Additionally, DNA sequencing

instruments continue to increase in speed, accuracy, and read length while decreasing in

14

Year

Figure 1.3: SRA Database Size. The SRA database has grown exponentially since its

creation. Open access bases are publically available for download. There are an

additional 1.7 quadrillion bases of sequenced DNA requiring special permissions to

access due to its sensitive nature. Image adapted from

http://www.ncbi.nlm.nih.gov/Traces/sra/

http://www.ncbi.nlm.nih.gov/Traces/sra/

15

sequencing cost. DNA sequencing instruments such as Illumina’s HiSeq2000 and

Genome Analyzer II, ABI’s SOLiD 4, and Roche’s GS FLX titanium can generate

gigabases (Gb) per day. In the case of the HiSeq2000, a single experiment can produce

up to 600 Gb of sequencing data in approximately eleven days. The cost and time of

sequencing a human genome has dropped from the often quoted three billion dollar or

dollar per base, figure of the human genome project, which took ten years, to well below

$10,000 with a $1000 sequenced human genome expected before the end of the decade

(Lander et al., 2001) (www.genome.gov/sequencingcosts/).

 The ability to analyze the sequencing data created by next-generation sequencing

instruments is complicated by many factors including the random locations of sequences

gathered, the massive amounts of data generated, the relatively short sequence lengths of

the reads that are produced by next-generation sequencing instruments, and occasional

errors made by sequencing instruments (Ng & Kirkness, 2010). In contrast to the BAC to

BAC method employed in the human genome project, whole genome shotgun sequencing

samples from across an entire chromosome or chromosomes simultaneously (Lander et

al., 2001). Using the Illumina HiSeq2000 as an example, reads produced by NGS

instruments range from as short as 35 base pairs (bp) long up to 150 bp long (Liu et al.,

2012). Additionally, errors in base calling, the determination of the identity of a base, in a

sequence can be as high as 1.5% for Illumina instruments although the percent error rate

in base calling has decreased with advances in technology. Performing a sequencing

experiment designed for a 30x coverage of the human genome would result in 90 Gb of

DNA being sequenced. Assuming a read length of 100 bp, slightly under one billion

reads would be formed in the sequencing of a human genome with no information in the

http://www.genome.gov/sequencingcosts/

16

raw sequencing data about what portion of the genome any of those reads originated

from. The task of assembling these reads into the complete genomic sequence of an

individual can be likened to the assembly of a one billion piece puzzle where the edges

on some of the pieces have to be smoothed down (the equivalent of sequencing errors) so

the pieces will fit together correctly.

 With the obvious challenge posed by assembling the raw data generated by NGS

experiments into a complete genome, dozens of algorithms have been created with the

goals of quickly, efficiently, and accurately assembling raw NGS data (Ng & Kirkness,

2010; Miller et al., 2010; Ruffalo et al., 2011). A few of these algorithms attempt

assembly of these sequences de novo – a process that describes assembly of a genome

from reads using no outside information. De novo assembly is complicated by repetitive

elements in genomes such as that of humans (Miller et al., 2010). Assembly of repetitive

elements is difficult if the length of the repetitive element is longer than that of the

sequences generated by sequencing instruments since the precise location of the sequence

within the repeat region is unknown as is the total length of the repeat. The use of pair-

end sequencing, where both ends of a longer DNA fragment with known linker length are

sequenced has made the spanning of certain shorter repeat elements possible; however,

de novo assembly remains extremely challenging, memory-intensive, and vastly slower

when compared to the alternative that will be discussed subsequently. Due to these

drawbacks, de novo sequencing is not often used for the sequencing of genomes larger

than those of bacteria. Several popular algorithms for de novo assembly include Velvet

(Zerbino and Birney, 2008), ABySS (Simpson et al., 2009), ALLPATHS-LG (Gnerre et

17

al., 2011), Edena (Hernandez et al., 2014), Fermi (Li, 2012), and SPAdes (Bankevich et

al., 2012).

 In contrast to de novo assembly, reference based assembly - also called alignment

or mapping - is a relatively fast, simple, and less memory intensive processes. Reference

based assembly constructs genomic sequences by mapping - also called aligning - reads

to a pre-existing reference sequence. For alignment to be successful in constructing the

genomic sequence of a virus, bacteria, gene, or genome, the reference being used must be

similar to the one being sequenced. Thus, reference based assembly is most feasible for

sequencing the genome of a species whose genome has previously been sequenced or for

sequencing different strains of a bacterial genome. As the number of organisms whose

genomes have been sequenced has increased, reference based assembly has become

increasingly useful. Because of this, dozens of alignment algorithms employing various

strategies have been devised and implemented. These tools fall into three main

categories: read-hashing algorithms, reference-hashing algorithms, and Burrows-Wheeler

transform (BWT) algorithms (Burrows & Wheeler, 1994; Ferragina & Manzini, 2000).

Read-hashing algorithms are less popular than the other algorithm types and include

MAQ (Li et al., 2008), mrFast (Alkan et al., 2009), mrsFast (Hach et al., 2010), SHRiMP

(Rumble et al., 2009), and ZOOM (Lin et al., 2008). Between BWT algorithms and

genome-hashing algorithms, BWT algorithms have been more favored recently. Among

BWT methods are bowtie (Langmead et al., 2009), bowtie2 (Langmead and Salzberg,

2012), BWA (Li & Durbin, 2009; Li & Durbin, 2010), segemehl (Hoffman et al., 2009),

and SOAP2 (Li et al., 2009). Genome-hashing algorithms include BFAST (Homer et al,

2009), MOM (Eaves & Gao, 2009), MOSAIK (Lee et al., 2014), PASS (Campagna et al.,

18

2009), ProbeMatch (Kim et al., 2009), SHRiMP-2 (David et al., 2011), SOAP (Li et al.,

2008), STAMPY (Lunter & Goodson, 2011), WHAM (Li et al., 2011), and our

algorithm, SRmapper (Gontarz et al., 2013).

 BWT algorithms have been more favored recently due to their general superior

performance to genome-hashing algorithms. This is due to the fact that in general, BWT

methods require less memory usage and perform the task of alignment more quickly than

genome-hashing methods while retaining similar sensitivities. For example, among the

above listed algorithms, the only ones that can align to the human genome using a

computer with 4GB of RAM are BFAST and our algorithm, SRmapper. Among the

BWT-based methods, bowtie and BWA both can be run on a computer with 4GB of

RAM and are both approximately an order of magnitude faster than BFAST. This makes

the above listed tools valuable to those requiring an algorithm that can be used on small

memory computers. Even for those with access to large memory machines, the efficient

use of memory is desirable if performance is not affected. In this regard, BWT methods

again traditionally held the advantage. Before the introduction of SRmapper, BFAST was

among the fastest hashing algorithms and was still an order of magnitude slower than

BWA and bowtie. Although the sensitivity of BFAST is somewhat higher than that of

BWA, the large discrepancy in speed between the two algorithms has made BWA a more

popular choice. Between BWA and bowtie, BWA is much more flexible in both the

number and types of discrepancies between reads and the reference allowed. Bowtie does

not support insertion or deletion detection while BWA does, and bowtie only searches for

up to 3 mismatches between reads and the reference genome.

19

1.4 Future Applications of DNA Sequencing Detection and Diagnostics of TB

and Other Bacteria

 With the decrease in cost of DNA sequencing and the increase in sequencing

speed and output, the possibility of NGS eventually being used a diagnostic tool for

bacterial infection is very likely. The hypothetical possibility of using NGS has already

been suggested and some of the ethical issues discussed (Voelkerding et al., 2009; Dunne

et al., 2012; Desai & Jere, 2012; Biesecker et al., 2012). Currently, however, NGS is not

routinely used as a diagnostic tool for bacterial infection but rather is more commonly

used to provide diagnostic information in outbreaks of diseases (Sherry et al., 2013;

Whitney et al., 2014; Octavia et al., 2015). Alternatively, NGS and analysis of NGS data

has been used to develop primers for polymerase chain reaction (PCR) based or real time

PCR (RT-PCR) based diagnostics (Fournier et al., 2014). Depending on the

circumstances, RT-PCR based diagnostics can rapidly detect bacteria with specificity

ranging from genus level diagnostics to strain level diagnostics (Marshall, 2004; Hung et

al., 2012). Although RT-PCR has proved effective in diagnostics, questions remain about

the feasibility of using NGS especially in an environment without specialists to perform

sequencing and analysis as well as the time required to perform analysis. For a recent

outbreak of E. coli, Sherry et al. noted that even with the rapid sequencing time via Ion

Torrent, there was still a five day turnaround time after a positive culture was established

(Sherry et al., 2013). For most bacterial infections, a diagnostic tool with a five day

turnaround time and the requirement of specialists to perform analysis is not practical for

a hospital or clinical setting. For NGS to be used as a diagnostic tool, the analysis

required would have to be performed in a much faster mannerism and either be

20

automated or simple enough that a nonspecialist could perform the analysis. Additionally,

the requirement of a positive culture, isolation, or enrichment for a bacterium before

sequencing, as suggested necessary by Köser et al., lessens the impact of NGS as a

diagnostic tool, although the additional insights that possibly could be provided by NGS,

such as drug resistance patterns, could offset the positive culture drawback (Köser et al.,

2012).

 One bacterial species that could potentially lend itself well to diagnosis by NGS is

Mycobacterium tuberculosis (TB). TB is a slow-growing, Gram-positive bacteria that

causes over 1 million deaths annually (Gey et al., 2001) (www.who.int/tb/en/ and

www.cdc.gov/tb/). The World Health Organization (WHO) estimates that 1.5 million

people died of TB in 2013 including over 500,000 with HIV and 80,000 children.

Compounding the difficulty in treating TB is the fact that due to the long treatment times

required to eliminate TB, treatment compliance is poor, and this has led to very high rates

of drug resistance in TB. In 2013 alone, there were nearly half a million cases of multi

drug resistant TB (MDR-TB) with over 200,000 people dying from MDR-TB. Multidrug

resistant TB is defined as TB strains that cannot be treated by the two most common TB

drugs, Rifampin and Isoniazid. The nearly 50% mortality rate in MDR-TB cases is

significantly higher than the overall mortality rate for TB. In addition to MDR-TB, there

is a growing number of extensively drug resistant TB strains (Ford et al., 2012).

 Although the dangerous nature of TB makes it an important disease to be able to

reliably diagnose, it is the slow-growing and highly drug resistant properties of TB that

make it attractive as a target for detection or diagnosis via NGS. Although RT-PCR

methods exist for providing a preliminary diagnosis of TB and can even detect some drug

http://www.who.int/tb/en/
http://www.cdc.gov/tb/

21

resistance patterns, the WHO notes that culture-based methods are still the most reliable

method to positively diagnose TB infection (Drobniewski et al., 2012). Although known

mutations in the TB genome resultant in drug resistance are recorded at the TB database

(www.tbdb.org), drug resistance diagnostics via RT-PCR are somewhat limited due to an

incomplete knowledge of the genetic origins of all drug-resistance patterns (Galagan et

al., 2010). Confirmation of TB infection by culture-based methods requires between 2

and 12 weeks to establish a positive diagnosis and drug resistance patterns. Thus, NGS

could theoretically provide additional information that cannot be obtained by RT-PCR by

comparing TB in a new infection to strains with known drug resistance patterns even if

the genomic origin of resistance is unknown in a much shorter time than is required for a

diagnosis via culturing. Due to the slow-developing nature of TB, isolation or

enrichment, although not ideal, may be permissible in using NGS as a detection agent or

diagnostic tool.

 Perhaps the Holy Grail of bacterial diagnostics, a single test with the ability to

quickly, accurately, and inexpensively test for the presence of any and every infectious

bacterial species would revolutionize the field of bacterial diagnostics. In theory, DNA

sequencing provides the possibility of such a test. Since every bacterial species and

subspecies has a distinct genome, sequencing the genome of an infectious agent has the

ability to resolve its species and strain from all other bacterial species in the metagenome

of that species - the total genomic environment of a microbiome including the DNA of

the species of interest, the DNA of all other species in the same microbiome, and the

DNA of the host organism if applicable. However, NGS does not directly sequence an

entire genome but rather sequences small fragments of a genome which then require

http://www.tbdb.org/

22

assembly. With the short length of DNA sequences generated by NGS, it is sometimes

impossible to determine the genomic origin of certain reads due to similarities between

bacterial species. This is further compounded by the necessity to allow for the possibility

of any combination of species within a metagenome. For a fast and inexpensive single

test meant to identify every bacterial species, enrichment of a sample for a particular

species would be prohibited due to failure to meet the goals for the test. Thus, for there to

be any possibility of using NGS as a detection agent for any bacterial species or strain, a

method to reliably determine the genomic origins of short sequences from a list of

hundreds or thousands of bacteria would be required. Simply finding alignments to a

species within the metagenome by mapping would not be sufficient to detect the presence

of that bacteria due to the aforementioned reasons, and de novo construction of genomes

would be severely limited due to the possibly large number of originating species

creating reads and assumedly low coverages of each species in a sample containing many

species.

1.5 Thesis Scope and Overview

 In this thesis, the implementation and deployment of a new genome-hashing

alignment algorithm, SRmapper, is described. This algorithm utilizes a probabilistic

model to determine the number of discrepancies permissible between reads from NGS

instruments and a reference genome. The alignment speed, sensitivity, and accuracy of

this algorithm is measured and compared to one of the most popular alignment

algorithms, BWA, using a combination of real and simulated NGS sequencing data. This

algorithm is then applied in the formation of a technique by which TB can be detected in

oral metagenomic samples using NGS by the construction of a uniqueness genome - a

23

genome consisting of only the portions of the TB genome that are not found to be similar

to portions of any other species within the oral metagenome. The usefulness of the

uniqueness genome in increasing the sensitivity and selectivity of NGS as a detection

agent for TB is demonstrated by the analysis of both simulated oral metagenomic

samples and real metagenomic samples. Finally, preliminary studies demonstrating the

expansion of the uniqueness genome methodology to all genomes within the oral

metagenome are reported. These studies suggest that uniqueness genomes can be built for

all species in the oral metagenome and that these uniqueness genomes can be used to

detect bacterial species in the oral metagenome even when only a small portion of the

bacterial genome is sequenced.

24

Chapter II

SRmapper: A Fast and Sensitive Genome-Hashing

Alignment Algorithm for NGS Analysis

25

2.1 Background

 SRmapper is a genome-hashing alignment algorithm designed with the goals of

demonstrating that genome-hashing methods can outperform BWT algorithms in terms of

speed and memory usage while retaining sensitivity comparable to other popular

alignment algorithms. Additionally, another goal of developing an in house algorithm

was to have software that was easily manipulatable for extensions out of theoretical work

and into application-based work. SRmapper operates by performing an indexing of the

reference genome one time and writing the index to file. In subsequent alignment to the

reference genome, reads are anchored to the reference using the index created earlier.

Extension of the alignment then occurs in a base by base manner checking for

mismatches. A limit for discrepancies between the reference genome and each aligned

read is calculated using a probabilistic model based on the reference genome length, the

read length, and the desired quality of alignment to the reference genome. The

conceptualization of SRmapper began in March of 2011. The first working skeleton

versions of the code were implemented in June of 2011 as a hash table only alignment

tool. phred scoring and SNP detection were incorporated by July, 2011. As of August,

2011, indexing had been made able to store the entire human genome in systems with

4GB of memory. By the end of September, 2011 SRmapper could align against the full

human genome using 2.5GB of RAM. The first publically available version of SRmapper

was released in August, 2012 along with a suite of software for testing its performance in

comparison to BWA. The main components of SRmapper’s source code are the indexing

algorithm named “buildindex.cpp” and the alignment algorithm named “align.cpp”.

These files and others used for testing SRmapper are available at

26

http://umsl.edu/~wongch/software.html along with updated versions of the SRmapper

software suite.

2.2 Construction of Reference Sequence Indexes by SRmappers Buildindex

Algorithm

 SRmapper requires input files for generation of indexes be given in a file or

multiple files of fasta (.fa) or multifasta (.mfa) format. SRmapper’s buildindex program

builds an index from the reference genome or sequences being used as a reference to

which reads are aligned. This index is in the form of a hash table whose characteristics

and creation will be subsequently discussed in detail. SRmapper’s buildindex algorithm

additionally builds a compressed 2-bit per base reference sequence. The full pseudocode

for buildindex is provided at the end of this chapter as SRmapper Buildindex

Pseudocode.

2.2.1 SRmapper Buildindex Input Format and Files

 SRmapper’s buildindex algorithm indexes one or more fasta or multifasta files as

a reference sequence (Fig 2.1). Buildindex is invoked by running the command:

buildindex { <Ref1.fa> <Ref2.fa> … <RefN.fa> } <index.sqn> [options]

where Ref1.fa through RefN.fa are the reference fasta or multifasta files and index.sqn is

the name given to the index being built. The option -N can be appended to the end of the

command to treat nonstandard nucleotides as random bases which will be discussed later.

By default, this option is turned off. SRmapper requires files be of fasta format and

attempts to validate correct formats before attempting to create an index. Fasta files have

the format of having one or more header lines, which usually give information on source

of the sequence, starting with either a ‘>’ or a ‘;’ character followed by one or more lines

http://umsl.edu/~wongch/software.html

27

Figure 2.1: Example References in fasta and multifasta file formats. (A) Single fasta

(.fa) format. Single fasta files have one or more header lines which always start with a ‘>’

and provide information about the reference sequence followed by one or more lines of

sequence. (B) Multifasta (.mfa) format. Multiple fasta files are comprised of two or more

fasta sequences concatenated to each other. Each sequence always contains one or more

header lines which start with a ‘>’ followed by one or more lines of sequence. There are

no rules imposed on which fasta sequences can be merged to form a .mfa file. Thus,

sequences may come from different chromosomes, different contigs from the same

genome, or different genomes or references.

28

of sequence containing only single letter nucleotide codes. Multifasta files have the same

format as fasta files except that after the last line of sequence from the first reference,

multiple additional references can be included using the same format for fasta files.

2.2.2 Hashing Terminology

 A hash function is a function that maps pieces of data of variable size to data of

fixed size. The input data are called hash keys, and the output data are called hashes or

hash values. Usually, in addition to creating data of fixed size, the hashing function has

the goal of storing data in a format that allows for quick lookup of the data by storing the

data in a hash table. Fig. 2.2 demonstrates an example of hashing and the creation of a

hash table. The data being looked up is stored in buckets that are located by their hash

values. For a hash table to be most efficient in terms of looking up values in buckets, the

hash table must be balanced. This means that there are no empty buckets or overflow.

Overflow occurs when there are more entries than can be stored in one bucket. Multiple

entries in one bucket require more checking to determine which anchoring position is

correct. An effective hash table must also be comprehensive. This means that every

possible key must have a corresponding hash value and that every location in the genome

must be stored in the hash table. Finally, a hash table ideally would be minimal meaning

that it uses as little memory as possible while still meeting the previous criteria of balance

and comprehensiveness.

2.2.3 Prehashing Routine to Determine Key Length

 SRmapper’s indexing algorithm first determines the length of the reference

genome or reference sequences by scanning through and counting the number of

nucleotides in the reference. Next, the indexing algorithm determines the number of

29

Figure 2.2: Hashing Terminology. Hashing is a process by which data is converted

from variable size to a fixed size via a hash function. In this example, several popular

songs by “The Beatles” are hashed. The original song titles serve as keys. The hash

function converts these keys into hashes or hash values. One common application of

hashing is the hash table - a data structure that can serve as a means to quickly look up

information. In a hash table, the hashes point to buckets which store some piece or pieces

of information related to the key as entries in a bucket. In this example, the release year

of each song is stored as an entry in the bucket for each hash. To determine the year of

release for a given song, a computer would hash the song title using the hash function. It

would then lookup the release year by looking in the bucket that is pointed to by the hash

value. In the case of a list containing many songs, finding the year by using a hash table

is faster than scanning through the songs until the correct one is found.

30

bases, D, that will be used in the index to form each word or key. For a reference

sequence R nucleotides long, D is determined by:

 () () Eq 1

where floor denotes the rounding down of base-4 logarithmic value of the reference

length, R. The value of D is chosen with the goal of creating an index that has few

buckets that have multiple entries while still being as memory efficient as possible. Since

there are four different nucleotides, there are 4
D
 possible different keys of length D. By

choosing D using equation 1, , and if each position in a reference of R is used as

the start of a word, there are approximately R entries in the buckets since R is much

greater than D. Since there are both R entries in buckets and R discrete keys, each bucket

has on average one entry thereby forming a hash table that achieves maximum balance

while being minimal. In the case of the human genome with reference length

nucleotides, For a viral genome of length 10kb, .

2.2.4 SRmapper Hashing Function

 In the case of SRmapper, the hash function takes as input some sequence of D

bases and converts them into a base-4 number by assigning the nucleotides A, C, G, and

T values of 0, 1, 2, and 3 respectively (Fig. 2.3 A). Non-Standard nucleotides or

undetermined nucleotides, N, in a fasta sequence can either be treated as a random

nucleotide value or can cause the hashing function to exclude a key if it contains one or

more N nucleotides. The hash function next converts the generated base-4 number into its

equivalent base-10 value with a fixed size of 4 bytes. Originally this was performed by

calculating the value of each base-4 number. For example, a sequence of TCC was

assigned a base-4 value of 311 and the base-10 value was determined by calculating

31

Figure 2.3: The hashing function of SRmapper. (A) The hashing function employed by

SRmapper first takes D bases and converts them into a base-4 number of length D by

converting A to 0, C to1, G to 2, and T to 3. The thin and thick underscores highlight how

the ‘C’ in position 5 and the ‘T’ in position 2 are converted into their base-4 equivalents

while retaining their position. (B) The base-4 value generated in panel ‘A’ is converted

into a base-10 value by utilizing a preformed table to reduce the number of calculations

32

necessary to perform the conversion. The left column denotes the position number while

the top row denotes the base and its base-4 identity. The values in the grid are the base-10

values for every possible base-4 digit for D=7. The bold entries in the table trace the

conversion process of each base-4 digit into its equivalent base-10 value. The thin and

thick underscored numbers highlight the conversion of the ‘1’ in the 5-position and the

‘3’ in the 2-position. The base-10 conversion is the sum of the bolded numbers.

33

 . Performing this operation hundreds of millions of times for a

14 digit number in the case of the human genome proved to be sufficiently inefficient to

warrant a faster method. The original method of fully calculating the base-4 to base-10

conversion was replaced by first calculating every possible conversion for for

 (Fig 2.3 B). This proved to increase the speed of the indexing

algorithm by an order of magnitude and was also employed in the alignment algorithm

which will be discussed later. The location of where in the reference sequence or genome

the sequence of D bases started at is stored in buckets in the hash table.

2.2.5 SRmapper Indexing Function and Formation of the Hash Table

 For each key, SRmapper’s indexing algorithm creates a bucket that stores the

genomic locations of each key from the reference. For the human genome where D=15, it

was impossible to store all the keys for buckets in memory on a system with 4GB of

RAM since each key required 4 bytes of memory to point to a bucket and

 (in a system with 4GB of RAM, 1GB is usually devoted to the

operating system). An additional 4GB of RAM would be required for each actual bucket

to store a genomic location of the keys.

This issue was circumvented in two ways. First, a bucket was only declared,

loaded into memory, if its key was found in the reference genome (Fig 2.4 A). Second,

only keys were considered at one time. This was accomplished by making four

passes through the reference genome in building the index. On the first pass, a key was

only considered if it started with ‘A’; on the second pass, a key was only considered if it

started with ‘C’, and so on.

34

Additionally, it was determined that creating a bucket that held five reference

locations minimized memory (Fig 2.4 B). Although the index was designed such that

each key would be found one time on average for any genome, in the case of the human

genome, keys that occurred tended to occur multiple times due to the repetitive nature of

the human genome. To guard against overflow, every bucket must also point to the

location of another bucket to catch reference locations of overflow keys (Fig 2.5). A

traditional bucket contains memory for one entry and a pointer to an extra bucket to catch

overflow. This requires 8 bytes of memory per entry: 4 bytes for the entry itself, and 4

bytes to point to an overflow bucket. These overflow buckets can be chained together

indefinitely to catch the rare large overflow. However, every time another overflow

occurs, the chain of buckets must be traced to its end to declare an empty bucket which is

also time-consuming. Thus, by creating buckets that could store up to five entries, the

length of the chain to be traversed in large overflows was greatly shortened. By always

having an average key occurrence of one, many keys happened to not occur in the human

genome since a few keys occurred many times. This greatly increased the memory

effectiveness of not declaring a bucket until its key was found in the genome.

For bacterial genomes, the amount of memory required does not need to be as

carefully managed since the genomes are smaller. Thus, although declaring a bucket that

can hold five genomic locations is not ideal for memory efficiency in a genome without

many repetitive regions, the small size of bacterial genomes results in the additional

memory usage being inconsequential.

2.2.5.1 Initial Hash Table Formation Algorithm

35

 The initial indexing algorithm that constructed the hash table read the first D

bases (1 through D) of the reference to form a key. This key was passed through the hash

function and the reference location stored in its corresponding bucket. The algorithm then

read the next base of the reference in and formed a key from bases 2 through D+1 and

again hashed the key and stored the location in the corresponding bucket. This created

approximately R entries into the hash table. For the human genome of R≈3,000,000,000,

this would require the formation of 3 billion entries, and with each entry requiring at least

4 bytes of RAM, at least 12GB of RAM would be required to store all the entries or

~3GB of RAM for a quarter of the entries that started with each base. Adding in the 1GB

of RAM required for the keys resulted in at least 4GB of RAM being required even

without allocating for overflow. Thus, storage of every location entry for every key was

abandoned as it would require the usage of more memory than the 3GB of RAM

available on a system with 4GB of RAM.

2.2.5.2 Modified Hash Table Formation Algorithm

 To reduce the amount of memory used in forming the hash table, a method that

formed a comprehensive index yet did not create as many entries was required. The

method chosen used bases 1 though D, then D+1 through 2D and so on to form keys

instead of 1 though D, 2 though D+1, etcetera (Fig 2.4 A). This resulted in an index that

only created one entry for every D bases. For the case of the human genome with D=15,

this reduced the number of entries by a factor of 15 from roughly 3,000,000,000 to

roughly 200,000,000. By utilizing this strategy, SRmapper’s buildindex algorithm was

able to index the entire human genome while using approximately 2.3GB of RAM, well

under the maximum available memory on a system with 4GB of total RAM.

36

A

B

Figure 2.4: Formation of the SRmapper Index Using Buildindex. (A) To create the

index for the reference sequence ACATTAGCATGAGACT, SRmapper first determines

key length, D, which in this example is floor(log4(16))=2. The indexing algorithm,

buildindex, then scans through the reference sequence two bases at a time. As buildindex

scans through the reference sequence, it encounters the sequences AC, AT, TA, GC, etc

and creates buckets for each of them. In general, buildindex creates a bucket when it

37

encounters a sequence for the first time. As buildindex scans through the reference, it

records the location in the reference in each corresponding bucket. In practice, the

reference is scanned through four times with only sequences starting with ‘A’ being

evaluated in the first pass, sequences starting with ‘C’ being evaluated in the second pass,

etc. Although not shown in the figure, this four scan process is discussed in section 2.3.5.

The underline bases highlight the indexing of GC which starts at base number seven in

the reference sequence. The solid arrow points to the bucket that is formed for GC, and

the 7 inside the bucket denotes the location in the reference sequence where GC was

located. (B) The complete index for the reference sequence ACATTAGCATGAGACT.

Only the buckets that have entries are ever created to reduce memory usage. The buckets

corresponding to keys AT and GA have two entries each. Each bucket can store up to

five entries as discussed in section 2.2.5. (Adapted from Gontarz et al., 2013).

38

Figure 2.5: Overflow in Indexing. For the example reference sequence

ACAAAAAAAAAAAAAA simulating a poly-A tail, a key length of 2 is used. The 14 A

nucleotides in a row result in 7 entries for the bucket corresponding to AA. Since each

bucket can contain a maximum of five entries, after the fifth entry is read into the first

bucket for AA, there is no more room in that bucket for entries. When the sixth AA is

encountered (reference sequence position 13), a new bucket is created to handle the

overflow and a pointer from the first bucket for AA records the location in memory of the

second AA bucket. The bucket for AC demonstrates that even when only one entry is

required for a bucket, enough memory is allocated for five entries. Additionally, all

buckets contain a pointer. As long as additional buckets are not needed for overflow, the

location in these pointers is set to NULL and no overflow buckets are created. (Adapted

from Gontarz et al., 2013).

39

2.2.6 Output and Storage of the SRmapper Indexing Algorithm

 The indexing algorithm creates as output three separate files for storage of the

index and its properties. It also creates a fourth binary file comprised of a compressed

reference sequence. These files are stored with the goal of being minimal in size and

quickly loadable into memory. The first file that is created is a binary file that stores as a

list how many times each key is found and where to look up the key locations in a second

binary file that lists all the key locations (Fig 2.6). Both these files store their values as 4-

byte binary values. The first file is given the extension .sqn and the second file is given

the extension .sqn.val. The third file contains index properties such as the reference size,

the value of D, the references used along with their individual lengths, and the number of

entries in each quarter of the index. This third file dictates how the index is loaded into

memory in alignment since it is only created one time. It is given the extension .sqn.hdr.

Finally, a binary version of the reference is created by taking the two bit representation of

each base: 00 for A, 01 for C, 10 for G, and 11 for T. Thus, 4 bases are compressed into

their 1 byte binary value. For example, the sequence CAGT is represented as 01001011.

This file is given the extension .sqn.bfa.

2.3 Alignment of Short Reads from NGS to Reference Sequences Using the

SRmapper Align Algorithm and Probabilistic Model

 SRmapper’s alignment algorithm requires files being used for alignment be in the

.fastq format. Short reads from NGS experiments are aligned one at a time by first

anchoring them to the reference using the index created by SRmapper’s buildindex

algorithm. Alignment is then extended by directly comparing the remaining nucleotides

40

Figure 2.6: Storage of the SRmapper Index. The completed index from Fig 2.4 forms

two files that can be quickly loaded into memory due to their structure. The index stored

for permanent record by the creation of two files. A counter is used to track how many

genomic or reference locations have been written to file. Writing to file starts by

checking how many entries are in the first key, AA. Any entries are written to the

genomic locations file which has the extension .sqn. The total number of written entries

are stored in the locations counter file that was given the extension .sqn.val. Since there

are no entries for AA, nothing is written to the locations file, and 0 is written to the

counter file. This process is then repeated for the next key, AC. Since there is an entry for

AC, it is written to the locations file, the counter for how many entries have been written

to file is increased by one, and the number of the current number of entries written to file

is written to the counter file. This process is carried until all possible keys have been

processed. (Adapted from Gontarz et al., 2013).

41

from the read to the reference genome and allows SRmapper to align reads with

discrepancies between the reference sequence and the reads. SRmapper’s alignment

algorithm uses a probability-based determination to set a default upper limit of variants

between the reference and the read by determining the likelihood an alignment occurs by

chance based on the length of the read, the length of the reference, and the number of

discrepancies in the alignment. This allows SRmapper to determine the quality of an

alignment. The probability threshold can be modified at run time or a set number of

mismatches can be chosen. SRmapper does not limit how long reads can be but does set a

default maximum expected length of 1000 bp. This value can also be modified by users at

run time. SRmapper does not require reads to be of the same length unlike certain other

alignment algorithms. This allows users to trim low quality ends off reads without

causing SRmapper to fail. However, SRmapper does require reads to be at least D bases

long for anchoring to occur. SRmapper’s alignment algorithm has the ability to perform

both single-end alignment and pair-end alignment. The Align pseudocode is available at

the end of the chapter as SRmapper Align Pseudocode.

2.3.1 SRmapper Align Input Format and Files

 SRmapper’s alignment algorithm requires the index files created by the

buildindex algorithm and input sequence files to be of the fastq format. The alignment

algorithm is invoked by the following command:

align <index.sqn> { <Reads1.fastq> <Reads2.fastq> … <ReadsN.fastq> }

<alignment.sam> [options]

where index.sqn is the index formed by buildindex and Reads1.fastq through

ReadsN.fastq are the input files from sequencing experiments in fastq format.

42

Alignment.sam is the output file that stores the alignments in the SAM format which will

be discussed later. The options that are available for users to customize alignment are as

follows:

 -p [int]: -p allows the user to choose some integer number ‘p’ alignments to

display in the output file. Only alignments that have the highest quality score are

written to file. By default one alignment is printed per aligned read. In the case of

a higher number of alignments of equal quality than p, p alignments from the set

of alignments with the highest quality are chosen at random to be printed and their

quality, or confidence of being the correct alignment, is set to 0. In the case where

greater than one alignment but fewer than p alignments of equal quality are found

for a read, all alignments are printed with their quality set to 0.

 -m [int]: -m allows the user to bypass SRmapper’s probabilistic model of

determining how many mismatches should be allowed between the reference and

an alignment and set some maximum integer number ‘m’ mismatches to be

allowed in alignment.

 -a [int]: -a allows users to stop searching for alignments with a certain number of

mismatches if ‘a’ alignments have already been found containing that number of

mismatches. This prevents the exhaustive search in repeat regions but affects only

a small portion of alignments. By default, ‘a’ is set at 5.

 -r [int]: -r modifies the maximum read length SRmapper expects. By default, this

value is set at 1000.

 -q [int]: -q allows users to set the minimum quality that is allowed for alignment.

q is scaled logarithmically with ().

43

 -g [ull]: -g allows users to set a length for the reference genome other than the one

that saved in the .sqn.hdr file. This can be useful if only aligning to a portion of a

multi-chromosome genome but wanting quality scores that reflect alignment

against the whole genome.

 -s [int]: -s allows users to determine how many entries from a single key to be

checked as anchors for alignment. By default, ‘s’ is set at 100. Setting s to -1

searches all entries for a key. This policy of limiting the number of entries

searched per key affects less than 0.5% of reads but increases alignment speed by

an order of magnitude.

 -P: -P sets alignment to pair-end mode. In pair-end alignment, input files are

entered as { <file.1.1.fastq> <file1.2.fastq> … <fileN.1.fastq> <fileN.2.fastq> }

where files ending in .1.fastq contain one end of the pair and files ending in

.2.fastq contain the other end of the pair.

 -i [int]: -i sets the maximum insert size allowed between the two ends in a pair-

end alignment. By default, this value is set at 1000 bp. Thus, alignments where

the two pairs are located more than 1000 bases apart are not considered valid.

 -f [str]: Specifying -f followed by a file name allows users to define a file where

reads that SRmapper could not find alignments for can be dumped out in fastq

format so that other alignment algorithms can attempt to align these unaligned

reads.

 -d: Specifying the -d option stores additional information about the alignment

results to an separate file for downstream processing. This file is automatically

given the same prefix as <alignment.sam> but is given the suffix ‘.sam.data’.

44

.fastq, also sometimes abbreviated .fq, files contain one or more, but usually many, reads

produced by sequencing instruments along with information giving each read a name and

information on the quality of each base call - a measure of how confident the sequencer

was in identifying a base in the sequence (Fig 2.7). Specifically, the format for each read

in a .fastq file are four lines in the following format: the first line is always started by the

‘@’ character followed by a sequence identifier. The second line contains the sequence of

the read. The third line is always started by the ‘+’ character and can either be blank

afterwards or contain the same identifying string of characters from the first line. Finally,

the fourth line contains the base quality for each sequenced nucleotide from the second

line. In the case of pair-end sequencing, two files are created. The first file contains all

the reads containing one end of the sequence, and the second file contains the other end

of the sequence. The .fq format requires that the reads are kept in the same order in both

files and that both pairs are present for a read to be included.

2.3.2 SRmapper Align Prealignment Routines

 When invoked, SRmapper’s alignment algorithm performs several checks and

processes before performing any alignment to prevent crashes or errors. The alignment

algorithm first determines whether valid usage options have been given and what options

are being used. It then attempts to open the index files and checks that they are in the

correct format. Finally, it attempts to create output files to ensure write capabilities. If all

the checks pass, align proceeds to calculate probability scores for alignments of various

read lengths and mismatches, builds a alignment probability table, loads the index into

memory, and aligns the reads from the .fq file or files.

2.3.2.1 Determination of Alignment Probabilities

45

Figure 2.7: The .fastq File Format. Reads in the .fastq format have the same general

four line structure. The first line provides the name of the read and always starts with the

‘@’ symbol. The second line contains the sequence of the read. Ambiguous bases are

represented by an ‘N’ and are sometimes trimmed off a read before alignment. The third

line always starts with a ‘+’ symbol and optionally repeats the read name from the first

line. The fourth line provides the quality or confidence in each base call made by the

sequencing instrument. Reads in the .fastq format do not all need to be of the same length

although some alignment algorithms do require all reads to be the same length.

SRmapper is tolerant of a wide variety of read lengths.

46

 To determine the number of mismatches permissible between a short read and the

reference, the alignment algorithm in SRmapper uses probability function determines the

likelihood an alignment can be generated by chance with some number of mismatches,

M, between a read of some length, L, and a reference of length R. If a high enough

number of mismatches are allowed in an alignment considered valid, any read could align

to a reference based on random chance. To calculate this probability of a read aligning by

chance, two assumptions are made about the reference. First, it is assumed for all integers

j and k with j≠k, the identity of nucleotide j (Nj) and nucleotide k (Nk) in the reference

sequence are independent of each other. Next, it also assumed that for any j, there is an

equal probability that Nj is A, C, G, or T. The probability function for generating

alignments by random chance can be determined as follows. The probability that a

particular base from the read will match a random base in the reference is 1/4. For a read

L nucleotides long, there are 4
L
 distinct combinations for the sequence of that read. Thus,

there is a ⁄ chance that a perfect alignment with no mismatches occurs at a particular

location in the reference sequence since the likelihood of any base occurring at a given

location is assumed to be equal. Were there allowed to be one mismatch between itself

and the reference, there would be L possible locations where that mismatch could occur

since it could occur at any base. Since there is one match and three possible mismatches

at each location on the read, there are 3L combinations that can result in an alignment

with one mismatch. The probability of an alignment with one mismatch is then ⁄

⁄ where

 represents the number of combinations possible to choose a elements

from a set of b elements provided the order of choice is not considered.

 ()
. It

47

can be seen that for b=L and a=1,

 ()
 since () . For an alignment

with two mismatches, there are L locations where the first mismatch can occur and L-1

locations where the second mismatch can occur. Thus, there are L(L-1)/2 combinations to

have two mismatches in read of length L. The division of L(L-1) by two occurs since for

any j and k, a read with mismatches in its alignment at Nj and Nk is not considered

distinct from a read with mismatches at Nk and Nj. Since there are three possible

mismatches at each location j and k, for any j and k, there are 3
2
 distinct sequences with

mismatches at j and k. Thus the probability of an alignment occurring with two

mismatches is

 ()

⁄ or

⁄ We can again see that

 ()

 since

 ()

 ()()

 ()

 ()

. In general, this principle holds, and the probability of a read

aligning with M mismatches is then

⁄ . The probability of an alignment with M or

fewer mismatches is then

 () ∑ (

⁄)

 Eq 2

The probability that an alignment does not occur randomly at a specific location is then

1-P(L,M). For a reference of length R, the probability of an alignment not occurring at

any location is the cumulative probability of an alignment not occurring at each of the

possible locations within the reference. This is given by:

 () (())

 (∑ (

⁄)

)

 Eq 3

48

The probability that a read then does align by chance somewhere over the genome is

 (). The value for this probability is reported as a phred score. Phred score

has evolved from its initial use as a measure of experimental error to become the standard

method for reporting alignment quality in alignment algorithms. In the case of SRmapper,

phred score is used to estimate the probability of a read aligning by chance to the

reference genome with up to a certain number of mismatches. Phred scores are related to

the probability in that they are the negative logarithmic value of the probability scaled up

by a factor of 10. Thus, alignment quality reported by SRmapper is the phred scaled

value of equation 3:

 () ((∑ (

⁄)

)

) Eq 4

Although it is not plausible to raise some number to the 3 billionth power as would be

necessary in calculating phred scores for alignments to the human genome, an excellent

approximation can be made as follows: if a=1 and b= ∑ (

⁄)

 , we can rewrite

equation 3 as () which can be expanded to ().

However, since b is extremely small in all cases except where the alignment qualities are

very low, terms beyond are so small that they can be ignored. Thus, equation 3

becomes () ∑ (

⁄)

 and equation for can be transformed into

 () ((∑ (

⁄)

))

49

 (∑ (

⁄)

) Eq 5

Equation 5 can be readily calculated and is used in SRmapper’s quality scoring function.

Figure 2.8 provides an example demonstrating that the approximation of equation 4 by

equation 5 closely models the phred scores from equation 4. When SRmapper is run

without the -m option being specified, the maximum number of mismatches, Mm, is

chosen such that a phred score of 30 is obtained. This phred score correlates to a

minimum of a 99.9% chance of an alignment of a read to the reference is not generated

spuriously. The cutoff value for phred score can be adjusted by setting the -q option and

choosing a different minimum phred.

2.3.2.2 Creation of the Probability Table for alignment

Instead of calculating probabilities of alignment for each read to determine the

maximum number of mismatches between the read and reference, SRmapper creates a

table of probabilities and phred scores for every possible read length up to the maximum

read length and for every number of mismatches producing a phred score equal to or

greater than the default minimum phred score or the phred score specified by the user.

This results in the calculation of a few thousand probabilities (1000 bp default max read

length multiplied by the number of mismatches allowed) over the course of aligning all

the reads from a file. In contrast, calculating phred scores on the fly for each read would

result in the calculation of hundreds of millions or billions of phred scores depending on

how many reads were present in the alignment file. Thus, calculating and storing the

phred scores in advance significantly reduces the amount of calculations made in

alignment.

50

Figure 2.8: Approximation of Eq 4 by Eq 5. The phred score for a 100 bp read being

aligned to a reference of length 3 billion to simulate the human genome are determined as

the number of mismatches between the reference and read increases. For all number of

mismatches for which phred/10=1, equation 4 is closely modeled by equation 5. Since the

default minimum phred allowed in an alignment is 30, and this value is often even set

higher, equation 5 always models equation 4 accurately under user conditions. Note that

calculating values for equation 4 not plausible above certain phred scores. (Adapted from

Gontarz et al., 2013).

 Eq 4 Eq 5

p
h

re
d

/1
0

51

2.3.2.3 Loading of the Index into Memory

 Due to the way the index is written to file in binary format during the indexing

step, the alignment algorithm can load the index in a ready-to-use format simply by

reading in blocks of the index files, and no formatting of the index is necessary to make

the index quickly accessible and usable. Loading of the index starts by reading from the

.sqn.hdr file to determine the index parameters such as reference length or lengths, key

length, and number of locations stored in each quarter of the index. Next, the requisite

amount of memory to store the binary reference genome is determined from the reference

length and allocated and the binary reference is loaded into memory. The number of keys

is determined from key size, memory is allocated for one quarter of the keys, and those

keys are loaded into memory. Finally, the memory to store number of entries in the first

quarter of the index is loaded based off the values from in .sqn.hdr file and the entries are

loaded.

2.3.3 Sequence Alignment by the SRmapper Align Algorithm

 SRmapper requires reads to be in .fastq format and in base space (SOLiD reads in

color space first must be converted into base space before alignment). The SRmapper

alignment strategy uses the seed-and-extend strategy somewhat similarly to the strategy

employed by SSAHA (Ning et al., 2001) and Stampy (Lunter et al., 2011) although the

methods for seeding and extension are both different from the previously mentioned

algorithms. In the first step of alignment, SRmapper takes the first D bases from the read

and passes them through the same hashing function as is used by the indexing algorithm.

SRmapper uses the entries from the key established by processing the D bases to

establish possible alignments (Fig 2.9). In the second step of alignment, the bases not

52

Figure 2.9: Alignment of a Short Read to a Reference Sequence by the Align

Algorithm of SRmapper. The short read TACT is aligned to the reference sequence

ACATTAGCATGAGACT by the align algorithm of SRmapper using the index created

by the buildindex algorithm of SRmapper in Fig. 2.4 and Fig. 2.6. The underlined bases

in the read denote which bases are used in the first step of alignment - the anchoring step.

For the reference above, D=2. Lookup proceeds by taking two bases from the read and

determining where they are found in the reference sequence using the locations counter

and reference locations. For the first lookup, the first two bases in the read, TA, are used.

Lookup proceeds by starting after the counter value from the previous key and ends at the

counter value for the current key. Thus, for the key TA, the previous key, GT, is used to

determine to start looking in the reference locations list after the 7
th

 number in the list.

The counter value for TA is used to determine to stop looking in the reference locations

53

list after the 8
th

 number in the list. Hence, the first and last number looked up is the 8
th

number in the reference locations list as denoted by the arrow pointing from the locations

counter for TA to the 8
th

 number in the reference locations list. The value of five in the

locations list dictates to anchor the read bases TA starting at the fifth base in the reference

sequence. The remaining bases are directly compared to the reference sequence using the

binary form of the reference (not shown in figure). In the case of lookup 1, subsequent

direct comparison determined that two bases in the read formed mismatches with the

reference sequence. If the original value for Mm had been higher than 2, the new value for

Mm would be set at 2 and the alignment would be considered a valid possible alignment.

For the second lookup, bases two and three, AC, are used. The second potential

alignment is rejected since the read extends off the end of the reference sequence. The

third lookup uses the bases CT. Direct comparisons determines that the candidate

alignment has one mismatch. Since this is the lowest mismatch alignment, it would be

reported to be the correct one. (Adapted from Gontarz et al., 2013).

54

aligned by the seeding step are compared to their corresponding bases from the binary

form of the reference sequence. Comparison continues until all bases have been aligned,

in which case a successful alignment is achieved, or until more discrepancies are found

between the read and reference than the maximum number of mismatches, Mm, allowed.

If an alignment is found, Mm is decreased to the number of mismatches found in

that alignment to prevent searching for suboptimal, lower quality, alignments. The

location of the alignment is stored along with the number of mismatches in the alignment.

After all the entries from the key from bases 1 through D have been checked,

steps 1 and 2 of alignment are repeated using bases 2 through D+1. This process is

repeated until all L bases of the read have been used in the first step of alignment or until

 () bases have been used in the first step of alignment. The () case

applies to when an alignment with few mismatches is found for a read and can be

justified as follows: if an alignment with no mismatches exists, then using the first 2D

bases to create keys from bases 1 through D, 2 through D+1, …, D+1 through 2D as

seeds on the index containing only non-overlapping segments of the reference will

guarantee that the seed will be found in the index. If there is an alignment with one

mismatch, the slowest alignment scenario would be for the mismatch to occur at the D
th

base so that a key containing no mismatches could not occur until bases D+1 through 2D

are used to form the key. This requires that all keys until the one generated by 2D+1

through 3D be used since the index is non-overlapping. This concept extends as the

number of mismatches allowed in alignment increases.

The benefit to limiting the number of keys searched is as follows: since the

majority of alignments have few to no mismatches, the proper alignment or alignments

55

will be found using the first few keys. For read of length 150 bp aligning to the human

genome (D=15) with no mismatches, only the keys from 1 to D through D+1 to 2D need

to be used and keys from 2D+1 to 3D through 9D+1 to 10D do not need to be

considered. This means that only D keys need to be considered instead of 9D keys in this

case saving a significant amount of time in alignment.

After finding alignments on the forward strand of the reference sequence, the

reverse read is generated to search for alignments on the reverse strand. When the reverse

complementary sequence is generated, Mm is not reset to its original value. Instead the

current value of Mm is retained based on any changes to it that have been made to Mm due

to alignments to the forward strand. This prevents suboptimal alignments being searched

for on the reverse strand. Alignment steps 1 and 2 are repeated through keys generated by

bases D(Mm+2) as per the alignment to the forward strand. Alignments with Mm or fewer

alignments are retained as with the forward strand and written to file.

After all reads have been aligned to the first quarter of the index, the first quarter

of the index is removed from memory, and the second quarter of the index is loaded. All

the reads are again aligned using the 2
nd

 quarter of the index to create anchors for the

alignments. Mm is retained for each read to prevent generating suboptimal alignments for

each read through the different quarters of the index. After alignments from the 2
nd

quarter are written to file, the same process is repeated for the 3
rd

 and 4
th

 quarter of the

index.

2.3.4 Alignment Output and Storage

 Since SRmapper only aligns to a quarter of the reference at a time, it cannot store

all the possible alignments generated from each quarter of the index in memory until after

56

all alignment is finished because it is not feasible to store all possible alignments in

memory if there are tens or hundreds of millions of reads. Instead, SRmapper’s alignment

algorithm stores candidate alignments in four temporary files, one for each quarter of the

index, until all four quarters of the index have been used for seeding alignments. These

temporary files are kept as small as possible and only store essential information about

the alignments such as location, quality, and strand. If the maximum permitted number of

equal quality alignments per quarter is reached, Mm is decreased by one mismatch. After

these temporary files are generated and all four quarters of the index have been used, the

candidate alignments from the temporary files are compared to each other and the

alignment or alignments with the highest quality are chosen. The final output for the

alignment is presented in the Sequence Alignment/Map (SAM) format (Fig 2.10). For

single-end alignment, SRmapper can display one or more alignments of equal quality.

For pair-end alignment, only the highest quality alignment is printed. SRmapper does not

report reads that failed to align in the SAM output file unlike most alignment algorithms.

Instead SRmapper allows users the option to output the reads that could not be aligned in

a .fastq file so that they can attempt to align the other reads with slower alignment

algorithms. In terms of the SAM output file for the reads that can be aligned, a very

specific format for output is followed so that downstream applications can be used to

analyze alignment output. Specifically, the format that is required are header lines

specifying the names of the reference sequences and their lengths followed by a ‘tab’

delimitated line for each aligned or unaligned reads with the following fields:

1. Query name: The name of the sequence that was aligned.

57

2. FLAG sum: the name of bitwise flags containing information on the alignment

such as strand, single-end alignment versus pair-end alignment, and number of

segments. A more detailed description will be provided later.

3. Reference sequence name: The name of the reference sequence to which the

read aligned. This name will be the same name as one of the header lines.

4. Alignment position: The position of where the first base aligns to the forward

strand. In the case of a read that aligns to the reverse strand, the location of the

where the last base aligns is reported as this translates to the location of the first

base on the leading strand.

5. Alignment quality: the phred score calculated by SRmapper’s alignment

algorithm. In the case of multiple reads aligning with the same phred score, a

phred score of 0 is reported signifying no confidence on which alignment is

correct.

6. CIGAR string: Base by base information on the alignment. M, I, and D

represent matches and mismatches, insertions, and deletions respectively. For

SRmapper, the 6
th

 field will always list the read length followed by ‘M’.

7. Pair reference: The name of the reference sequence to which the read’s pair

aligned in pair-end sequencing. In the case of single-end alignment, this field is

filled with an asterisk. In the case of pair-end alignment, this field is filled with

an ‘=’.

8. Pair alignment position: The location on the reference to which the read’s pair

aligned in pair-end sequencing. In the case of single-end sequencing, this field

is filled with an asterisk.

58

9. Observed template length: Mandatory field that denotes the total length over

which the read spans for reads partially aligned to multiple reference sequences.

This field is always reported as ‘0’ by SRmapper.

10. Segment sequence: The sequence of the aligned read. This string is the same as

the second line of each read in the .fastq file.

11. Base quality: The quality of the bases in the alignment. This string is the same

as the fourth line of each read in the .fastq file except that they are each

increased by 33 to convert them into ASCII text.

The FLAG score from the second field of the SAM output is the sum of the

following flags that apply to SRmapper:

1 - The read has multiple segments. This field as applicable in pair-end alignment

2 - Both segments are properly aligned. Since SRmapper does not consider a pair-end

alignment valid unless both pairs align, this flag will always be set in SRmapper pair-end

alignment.

4 - Sequence not aligned. Since SRmapper does not print unaligned sequences, this flag is

never set.

8 - Pair not aligned. Since SRmapper does print pair-end alignments where one or more

pairs is not aligned, this flag is never set.

16 - Sequence aligns to the reverse strand. This flag applies to both single-end and pair-

end alignments.

59

A

B

Figure 2.10: The SAM Output Format. (A) Example alignment of three reads to a

reference sequence by an alignment algorithm. Read1 is a single end alignment while

Read2.1 and -Read2.2 are two mates in a pair-end alignment with the sequence of -

Read2.2 being reverse complemented for clarity. (B) The SAM output file for the

alignments in A as would be created by SRmapper. The first line is a header line as

denoted by the ‘@SQ’ tag. ‘SN’ signifies a field for the name of the reference being used,

and ‘LN’ signifies a field for the length of the reference. Each alignment is represented

by a single line of text composed of 11 fields in the SAM output format. The first field is

the sequence name. The second is the bitwise FLAG. The third field is the reference

sequence to which the read aligned. The fourth field is the location of the leftmost base in

the alignment. The fifth field is the phred quality score (Note that in this example, no

quality measurements were made but rather an arbitrary phred score was created for

clarity). The sixth field is the CIGAR string, which is always represented by SRmapper

as the length of the read followed by an ‘M’. The seventh field is always reported as an

asterisk by SRmapper. The eighth and ninth fields are the reference and reference

location of the alignment of the mate in a pair-end alignment. For single-end alignment,

60

these fields are both recorded as 0. In pair-end alignment, the eighth field is represented

by an ‘=’ denoting both mates aligned to the same reference as reported in field three.

The tenth field is the sequence of the read aligned. The eleventh field is the same quality

string as in the fourth line of the .fastq description of the read with each value

incremented by 33 to convert into ASCII text. In this example, no quality information

was provided about the bases in the reads, so the field is marked with an asterisk.

61

32 - Pair aligns to the reverse strand. This flag applies only to pair-end alignment.

64 - First read in a pair.

128 - Second read in a pair.

 In the case of pair end alignment, there is an extra step in producing the

alignments. Alignment proceeds in the same manner as in single-end alignment until after

the temporary files have been created. Each mate in a pair-end read is first aligned as a

single-end read, and all the possible single-end alignments are stored in the temporary

files previously described except that four temporary files are created for the forward

pairs, and four temporary files are created for the reverse pairs. Then, possible pair-end

alignments are generated by attempting to find two candidate single-end alignments that

form a proper pair. Two single-end alignments form a proper pair-end alignment if they

align reasonably close to each other on the reference sequence. The distance between two

pairs is considered acceptable if it is smaller than the maximum insert size allowed by

SRmapper. This value is by default set to 1000 bp but can be modified by the user by

using the -i option to more accurately reflect the maximum insert size between the two

ends of a pair-end read if the maximum insert size of the sequencing technology is

known. In contrast to single-end alignment in which only reads of maximal phred score

are selected, pair-end alignment retains possible alignments that have a lower phred

score. This allows more possibilities to find an acceptable pair which is considered

desirable since two possible single-end alignments with higher phred scores do not

constitute a proper pair-end alignment unless the single-end alignments are sufficiently

close to each other. Thus, although the individual phred scores for the single-end

alignments may not be as high as other candidate alignments, forming a proper pair

62

governs whether a candidate single-end alignment is valid or not. In the case where

multiple, proper pair-end alignments are found, the pair-end alignment with the fewest

combined mismatches is chosen as the correct alignment. The phred score that is reported

in pair-end alignment is the score for a read which has a length equal to the sum of the

lengths of the two mates in the pair and a number of mismatches equal to the sum of the

number of mismatches in the two mates. If two or more pair-end alignments of equal

quality are found, one is randomly chosen and the reported phred score is set to zero as in

single-end alignment.

2.3.5 Miscellaneous Implementations to Increase Alignment Speed

In addition to the D(Mm+2) key search discussed above, SRmapper imposes two

additional intuitive steps which result in a combined increase in alignment speed by over

an order of magnitude. The first intuitive step is to decrease the number of mismatches

allowed, k, by one if some set number of alignments containing k mismatches are found.

By default, this value is set to five alignments per quarter of the index but can be

modified by the user at runtime using the -a option. This modification does not affect the

number of confident alignments found, those that have a phred score greater than 0, since

confident alignments only occur when a single alignment with the highest phred score is

found and this modification only affects reads that have multiple alignments of equal

phred score.

 The second intuitive step is to limit the number of entries looked for in each

bucket. This step increases speed while slightly reducing the number of confident

alignments found since not considering all entries in a bucket takes less time but may

cause some alignments to be missed. This policy was created due to the large number of

63

entries found in a select few buckets when the human genome is used as a reference.

Low-complexity regions in the human genome such as polyA-tracts, short interspersed

elements (SINES), long interspersed elements (LINES), and dGdC islands result in a

small number of keys with a very high number of entries. By default, SRmapper only

considers up to the first 100 entries in any particular bucket, although this policy can be

relaxed using the -s option. The default setting results in less than 1 in 25,000 buckets

being affected and retains more than 99.5% of reads that would be aligned without this

limit still being aligned. However, imposing this restriction increases the speed of aligned

by more than a factor of 9x and is therefore considered a very reasonable exchange.

2.4 Results

 SRmapper was extensively and directly compared to BWA since it has been one

of the most popular alignment algorithms since its inception in 2009 and is most similar

to SRmapper in the amount of memory used and contains similar functionality. Hence,

most of the testing of performance of SRmapper is performed against BWA. However,

by using comparisons between BWA and other algorithms, SRmapper has also been

implicitly compared to several other popular alignment algorithms.

2.4.1 Indexing Reference Sequences

 Both SRmapper and BWA require that the reference sequence or sequences only

be indexed one time since they are written to file after being created. SRmapper is

somewhat more flexible than BWA in that it can index multiple reference files

simultaneously whereas BWA requires multiple reference files to be first concatenated

into a single multireference (.mfa) file. In terms of indexing the human genome,

SRmapper can take separate .fa input files for each chromosome or a single .mfa file

64

containing all the chromosomes whereas BWA can only use the single .mfa file. To index

the human genome, SRmapper required 2350 s (seconds) using an Intel Xeon 2.8GHz

processor. Using the same processor, BWA required 8100s to index the human genome

meaning that SRmapper is approximately 3.5x faster in terms of indexing. SRmapper’s

index for the human genome requires slightly more disk space than BWA’s index. The

two algorithms require 5.4GB and 4.3GB, respectively, to index the human genome.

However, since disk space is relatively inexpensive compared to memory and processor

time, the size of the index is not a major concern. Admittedly, since the index only needs

to be built once, the time taken for indexing is also not a serious issue within reason. For

smaller references, such as bacterial genomes, indexing requires only a few seconds and

is even less of a concern.

2.4.2 Comparison Between SRmapper and BWA Using Real and Simulated

Sequencing Datasets

2.4.2.1 Real Datasets and Software

 To compare the performance of SRmapper in comparison to BWA, several sets of

sequencing data were download from the SRA (http://www.ncbi.nlm.nih.gov/sra).

Datasets were chosen to reflect a variety of sequencing conditions but all came from

human sequencing studies since aligning to human genomes tends to be among the most

difficult tasks for an alignment algorithm due to the size of the human genome.

Specifically, the datasets chosen were SRR002787, which contained 5.88M single-end

reads with each read being 32 bp long; SRR006150, which contained 13.18M pair-end

reads with each mate being 51 bp long; SRR020477, which contained 2.04M pair-end

reads with each mate being 76 bp long; and SRR539393, which contained 2.25M pair-

65

end reads from the Illumina HiSeq2000 with each mate being 101 bp long. SRR006150,

SRR020477, and SRR539393 were also evaluated as single-end reads to increase the

number of datasets evaluated for single-end alignment and yielded 13.18M, 51 bp single-

end reads from the forward strand for SRR006150; 4.08M, 76 bp single-end reads from

both strands for SRR020477; and 4.50M, 101 bp single-end reads from both strands for

SRR539393. All files were downloaded in the .sra (Short Reads Archive) format and

were subsequently converted to the .fastq format for alignment using the SRA Toolkit’s

fastq-dump command. The SRA toolkit is a free resource from the National Center for

Biotechnology Information available for download at

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software. All comparisons to

BWA were performed using BWA version 0.5.8c (http://sourceforge.net/projects/bio-

bwa/) and SRmapper 0.1.2 (http://www.umsl.edu/~wongch/software.html) although since

the time SRmapper was compared to BWA, small improvements have been made to both

algorithms.

2.4.2.2 Alignment Conditions and Measures of Aligner Speed and Reads Aligned

 Every attempt was made to produce fair comparisons between SRmapper and

BWA. Comparisons were made attempting to use as the same alignment conditions for

each algorithm and also to use each algorithm as similarly to what was intended in its

implementation. This meant for BWA, the -o 0 option was invoked on all tests to disable

gapped alignment and the -A options was invoked to prevent Smith-Waterman alignment.

Apart from this, two separate comparisons were made between SRmapper and BWA -

one in which BWA’s default parameters were chosen for alignment and another in which

SRmapper’s default parameters were chosen for alignment. This was implemented by

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
http://sourceforge.net/projects/bio-bwa/
http://sourceforge.net/projects/bio-bwa/
http://www.umsl.edu/~wongch/software.html

66

allowing one algorithm to use its default mismatch settings and specifying the number of

mismatches the other algorithm used to match the number of mismatches allowed by the

algorithm whose default parameters were being used. Both BWA and SRmapper utilize

seeding restrictions by default although the restriction methods are somewhat different.

SRmapper limits entries searched per bucket as described above, and BWA restricts the

number of mismatches permitted early in the alignment. Since these were intended

measures to increase aligner performance, they were not modified as a comparison in

which the algorithms were handicapped simply for meeting the purpose of an identical

comparison is less meaningful than a comparison where the algorithms were used as

intended.

 Since both algorithms are run from a linux terminal, the ‘time’ command was

prepended to the command to invoke either SRmapper or BWA in order to determine

alignment time. SRmapper achieves alignment over one step whereas BWA achieves

alignment in two distinct steps using two distinct commands. In the first step, BWA

aligns reads to its suffix array in stores the suffix array alignments in binary form, and in

the second step, it converts these alignments into the same text-based, SAM-formatted

alignments that SRmapper uses. Thus, the overall time for BWA to perform alignment is

the sum of its alignment and reformatting command. SRmapper performs both its

alignment and formatting in one command. To measure the percentage of confidently

aligned reads by each alignment algorithm, another algorithm was created that scanned

through the SAM files generated by each alignment algorithm to count the number of

confidently aligned reads. Determining confidently aligned reads is preferable to

determining aligned reads since a read that is not confidently aligned is usually not used

67

in downstream analysis. For the purposes of determining whether a read was confidently

aligned, two fields in the SAM file were checked for each alignment. First, the FLAG

field was checked to ensure the ‘4’ flag, specifying that a read was not mapped, was not

set. Unlike SRmapper which does not report unmapped reads in its SAM file, BWA

writes unmapped reads to the SAM file and sets the ‘4’ flag. Second, the fifth field, phred

score, was checked to filter out alignments that had a phred score of zero signifying an

alignment with no confidence.

2.4.2.3 Results of Comparing SRmapper to BWA on Real Datasets

 For all four datasets tested using single-end alignment, SRmapper ranged from

being 2.1x to 39.0x faster than BWA (Table 2.1), (Table 2.2). Excluding SRR002787

which had extremely short read lengths, SRmapper varied from 2.1x to 8.7x faster than

BWA depending on the dataset being studied and the alignment conditions set at runtime.

At the same time, SRmapper retained similar alignment sensitivity to BWA with each

algorithm aligning a similar percentage of reads except for in the case of the very short

reads. For these, BWA had a higher sensitivity. These results are not surprising since

SRmapper needs to find D bases that have no mismatches in them to anchor the

alignment. This is a more significant issue with shorter reads since there are fewer keys to

use. Thus if a short read has a few mismatches, SRmapper may be unable to find the

alignment for it. Specifically for SRmapper, there are L-D+1 usable keys for a read of

length L. Unlike SRmapper, BWA can tolerate a small number of mismatches in its seed

sequence although the number of mismatches allowed in the seed sequence greatly

increases alignment time. However, in every dataset tested, there was a high overlap of

alignments found by both alignment algorithms. By creating software that determined

68

 Alignment Time(s) SRmapper Speedup % Reads Aligned

SRR002787

 BWA 4,404 56.84%

 SRmapper 715 6.16x 50.74%

SRR006150

 BWA 10,673 73.49%

 SRmapper 2,711 3.85x 72.68%

SRR020477

 BWA 1,482 66.35%

 SRmapper 616 2.41x 67.62%

SRR539393

 BWA 2,715 90.0%

 SRmapper 1,298 2.09x 90.2%

Table 2.1: Comparison of Alignment Time and Percent Reads Aligned for BWA and

SRmapper using the default mismatch Parameters of BWA and Single-End

Alignment. The alignment time and percent reads aligned for four datasets were

measured using BWA and SRmapper. The datasets were SRR002787, SRR006150,

SRR020477, and SRR539393 and contained 5.88M 32 bp reads, 26.28M 51 bp reads,

4.08M 76 bp reads, and 4.49M 100 bp reads respectively. The datasets were all

downloaded from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). The

number of mismatches allowed for the above datasets were 2, 3, 4, and 5 mismatches

respectively. BWA was run with the option -o 0 to disable gapped alignment. Alignment

time for BWA is the sum of the times for BWA aln and BWA samse to run while

alignment time for SRmapper is the time for SRmapper align to run.

http://www.ncbi.nlm.nih.gov/sra

69

 Alignment Time(s) SRmapper Speedup % Reads Aligned

SRR002787

 BWA 29,023 66.08%

 SRmapper 744 39.01x 56.62%

SRR006150

 BWA 13,574 82.18%

 SRmapper 3,611 3.76x 84.08%

SRR020477

 BWA 8,112 78.35%

 SRmapper 930 8.72x 84.02%

SRR539393

 BWA 11,155 95.6%

 SRmapper 1,548 7.21x 91.0%

Table 2.2: Comparison of Alignment Time and Percent Reads Aligned for BWA and

SRmapper using the default mismatch Parameters of SRmapper and Single-End

Alignment. The alignment time and percent reads aligned for four datasets were

measured using BWA and SRmapper. The datasets were SRR002787, SRR006150,

SRR020477, and SRR539393 and contained 5.88M 32 bp reads, 26.28M 51 bp reads,

4.08M 76 bp reads, and 4.49M 100 bp reads respectively. The datasets were all

downloaded from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). The

number of mismatches allowed for the above datasets were 3, 12, 28, and 40 mismatches

respectively. BWA was run with the option -o 0 to disable gapped alignment. Alignment

time for BWA is the sum of the times for BWA aln and BWA samse to run while

alignment time for SRmapper is the time for SRmapper align to run.

http://www.ncbi.nlm.nih.gov/sra

70

which reads were being aligned, it was determined that in every case, the more sensitive

algorithm aligned greater than 99% of the reads aligned by the less sensitive algorithm

while aligning a small fraction of additional reads not found by the less sensitive

algorithm. Since BWA has been demonstrated to be highly accurate in its alignment and

SRmapper always produced similar results to BWA in terms of output, it was

qualitatively determined that SRmapper also accurately aligned reads to the reference. A

further comparison of the relative accuracies of SRmapper and BWA will be provided

subsequently. It is also worth noting that the alignment time for SRmapper was less

sensitive to an increase in the number of mismatches than was the alignment time for

BWA (Fig 2.11). This is due to SRmapper using direct comparison to establish

alignments. Regardless of whether an alignment has few or many mismatches, SRmapper

will perform a similar number of comparisons. BWA, however, is structured in a way

that it requires many more comparisons to find an alignment with a higher number of

mismatches due to way searches are performed using BWT methodology. Due to the

advantage SRmapper has in aligning reads with a higher number of mismatches, it would

be much more suitable than BWA for performing alignment where the reference

sequence is not extremely similar to the gene or genome being sequenced. Another way

to interpret this data would be to say that if a user wanted to spend some fixed time

performing alignment, he or she could obtain more alignments by using SRmapper than

BWA as is apparent by comparing the alignment times and percent of reads aligned by

comparing the default parameters of BWA against the default parameters of SRmapper

(Fig 2.12). It is also worth that the additional alignments gathered by SRmapper contain a

higher number of mismatches than are allowed by the default parameters of BWA and

71

Figure 2.11: Fold Alignment Time Increase by Increasing Mismatches Allowed from

BWA Default Parameters to SRmapper Default Parameters. The relative increases in

alignment time are shown for BWA and SRmapper as the number of allowed mismatches

increased from the default parameters used by BWA to the default Parameters used by

SRmapper. Fold alignment time increase is calculated as (algorithm alignment time using

SRmapper default mismatch number / algorithm alignment time using BWA default

mismatch number).

72

Figure 2.12: Comparison of BWA and SRmapper Alignment Performance with

Each Algorithm Using Its Default Parameters. When both algorithms are used with

default parameters, SRmapper retains a speed advantage over BWA while aligning a

higher fraction of reads. Additional reads aligned by SRmapper are mostly those with a

higher number of mismatches between the read and reference. In theory, these alignments

with higher numbers of mismatches would produce more useful data in studying variation

between two DNA sequences.

73

that alignments with discrepancies are more useful for studying genetic variation than

alignments with no discrepancies. Thus, by using SRmapper, a user could either find

more variant positions while still spending a somewhat shorter time aligning sequences

than would be required by using BWA, or a user could find a similar number of variant

positions in a much shorter time by using SRmapper instead of BWA.

 In pair-end alignment, SRmapper retained the same speed advantage of 2x to 8x

compared to BWA depending on the dataset being evaluated and the parameters used

(Table 2.3, Table 2.4). In the case of pair-end alignment, BWA has an improved

sensitivity compared to single-end alignment. Enabling Smith-Waterman alignment can

further improve BWA’s sensitivity at the cost of alignment speed, but was not used so as

to produce a comparison with as similar settings as possible (Smith and Waterman,

1981). However, even with the improvement in sensitivity that BWA experienced, both

algorithms had similar sensitivities on two of the three datasets evaluated. In terms of

sensitivity, BWA fared better than SRmapper on the dataset with the shortest reads, but

SRmapper had a higher speedup increase when comparing single-end alignment to pair-

end alignment (3.85x vs 4.30x and 3.76x vs 4.17x).

It is also worth noting that in order for BWA to perform pair-end alignment, a

higher amount of memory is required than in single-end alignment. In fact, this increase

in memory usage requires pair-end alignment by BWA be performed on a system with

more than 4GB of total memory making SRmapper an attractive choice for those who do

not have access to higher memory machines but still wish to perform pair-end alignment.

It is also worth noting that as sequencer technology has improved, the length of reads has

generally increased. The relative number of experiments generating reads with lengths

74

 Alignment Time(s) SRmapper Speedup % Reads Aligned

SRR006150

 BWA 11,644 64.60%

 SRmapper 2,706 4.30x 59.44%

SRR020477

 BWA 1,547 55.76%

 SRmapper 676 2.29x 54.90%

SRR539393

 BWA 2,795 84.18%

 SRmapper 1,317 2.12x 82.72%

Table 2.3: Comparison of Alignment Time and Percent Reads Aligned for BWA and

SRmapper using the default mismatch Parameters of BWA and Pair-End

Alignment. The alignment time and percent reads aligned for three datasets were

measured using BWA and SRmapper. The datasets were SRR006150, SRR020477, and

SRR539393 and contained 13.14M pair-end reads of 51 bp on each end, 2.04M pair-end

reads of 76 bp on each end, and 2.25M pair-end reads of 100 bp on each end respectively.

The number of mismatches allowed for the above datasets were 3, 4, and 5 mismatches

respectively. BWA was run with the option -o 0 to disable gapped alignment. Alignment

time for BWA is the sum of the times for BWA aln and BWA sampe to run while

alignment time for SRmapper is the time for SRmapper align to run.

75

 Alignment Time(s) SRmapper Speedup % Reads Aligned

SRR006150

 BWA 14,794 73.34%

 SRmapper 3,552 4.17x 67.25%

SRR020477

 BWA 8,192 68.43%

 SRmapper 973 8.42x 71.53%

SRR539393

 BWA 11,248 88.56%

 SRmapper 1,542 7.29x 89.29%

Table 2.4: Comparison of Alignment Time and Percent Reads Aligned for BWA and

SRmapper using the default mismatch Parameters of SRmapper and Pair-End

Alignment. The alignment time and percent reads aligned for three datasets were

measured using BWA and SRmapper. The datasets were SRR006150, SRR020477, and

SRR539393 and contained 13.14M pair-end reads of 51 bp on each end, 2.04M pair-end

reads of 76 bp on each end, and 2.25M pair-end reads of 100 bp on each end respectively.

The number of mismatches allowed for the above datasets were 12, 28, and 40

mismatches respectively. BWA was run with the option -o 0 to disable gapped alignment.

Alignment time for BWA is the sum of the times for BWA aln and BWA sampe to run

while alignment time for SRmapper is the time for SRmapper align to run.

76

between 30-50 bp has drastically decreased. In contrast, most sequencing experiments

performed using Illumina instruments now produce reads of lengths either 100 bp or 150

bp. Thus, the conditions under which SRmapper performed less favorably than BWA in

terms of sensitivity are becoming less prevalent while the conditions under which

SRmapper had equal or greater sensitivity are becoming more prevalent.

2.4.2.4 Creation of Simulated Reads and Determination of Aligner Accuracy

 To evaluate the accuracy of SRmapper in comparison to BWA, software was

developed that simulated the sequencing of reference sequences or genomes. This

software allowed for the simulations of reads with known numbers of mismatches,

sequencing errors, and insertions or deletions as well as the exact position on the

reference sequence from which these reads originated from. This software allowed for a

tunable number of simulated reads with a length specified by the user to be created and

also allowed the user to specify the rate of mismatches, insertions and deletions, their

sizes, and sequencing errors. Reads were simulated from random positions in the genome

such that every time a simulated sequencing was performed, a different set of reads

would be created. These reads were stored in .fastq format, and the name given to each

read in the first line of its .fastq expression was the reference sequence and reference

sequence location from which it came.

A second piece of software was created to analyze the results of the alignment of

these simulated reads. This software scanned through the SAM files created by either

SRmapper or BWA to determine if reads had been aligned to the correct position within

the reference sequence. Since the exact position of where the reads originated from was

77

known, it was possible for this software to determine whether the alignment generated

was to the correct position within the reference. Specifically, since the first line in the

SAM output format is the sequence name from the first line of the .fastq expression for a

read, the alignment can be checked for accuracy by comparing the first field of the SAM

formatted alignment for a read with the third and fourth field to determine whether the

read aligned to the correct reference sequence and location within that sequence. Finally,

this software was designed to only measure the accuracy of confidently aligned reads

since these reads are the ones used in downstream analysis. For BWA, this meant

checking whether a read was aligned and confidently aligned, and for SRmapper, this

meant checking whether a read was confidently aligned.

Additionally, an additional software package made available by the creators of

BWA was utilized to generate receiving operating characteristics (ROC) curves. ROC

curves can be used to graph the relationship between sensitivity and selectivity where

selectivity is the ability to correctly map alignments and provide insight into how changes

in the sensitivity of an alignment algorithm affects its selectivity. This tool, wgsim, was

downloaded from https://github.com/lh3/wgsim.

2.4.2.5 Results of Comparing SRmapper to BWA to Determine Alignment Accuracy

by Using Simulated Reads

 Simulations were performed by creating 100,000 reads of length 50 bp or 100 bp

using an sequencing error rate of 1.5%, a SNP rate of 0.09%, and a indel rate of 0.01%.

Again, the full human genome was chosen as the reference sequence. These parameters

were chosen since they were used in the original evaluation of the accuracy of BWA and

were chosen in an attempt to create as realistic of a simulation as is possible. As with

https://github.com/lh3/wgsim

78

evaluations to compare speed and sensitivity, accuracy evaluations were carried out using

default mismatch settings for both BWA and SRmapper, and as above, gapped alignment

was disabled for BWA. For all of the evaluations performed, both alignment tools aligned

the vast majority of the reads correctly, but BWA did show a higher accuracy across all

tests (Table 2.5, Table 2.6). However, as read length increased, the incorrect placement

of confidently aligned reads decreased for both algorithms. Even though SRmapper had a

somewhat lower accuracy than BWA, its error rate was only 1 in 250 for 100 bp reads

that were confidently aligned for reads of 100 bp in length using the default mismatch

parameters of BWA. Evaluations using wgsim to create ROC curves on pair-end

alignments that used the human genome as the reference sequence similarly revealed that

BWA had a somewhat higher selectivity than SRmapper (Fig 2.13). It also showed that a

large portion of the incorrect alignments generated by SRmapper occurred when there

were no mismatches or very few mismatches. However, as the number of mismatches

that were allowed increased, the selectivity difference between SRmapper and BWA

drastically decreased.

A manual inspection of incorrectly aligned reads revealed two major sources of

error for reads being incorrectly placed. The first occurred when sequencer errors or

SNPs resulted in reads being created that aligned to the incorrect location with fewer

mismatches than the location from which the read originated. This resulted in alignments

with a higher phred score being generated for the incorrect alignment position. This

source of error affected both SRmapper and BWA. The issue of reads being more similar

to an alternative location within the reference than the portion of the reference it

originated from is more of a weakness of the entire reference-based assembly method

79

Simulated Reads % Reads Aligned %Correct Alignments

50 bp reads

 BWA 83.55% 99.62%

 SRmapper 81.83% 98.79%

100 bp reads

 BWA 87.30% 99.90%

 SRmapper 88.07% 99.58%

Table 2.5: Alignment Accuracy of BWA and SRmapper as Determined By the

Alignment of Simulated Reads Using the Default Mismatch Settings of BWA. To

measure the accuracy of BWA and SRmapper, 100,000 simulated reads were created

using in-house developed software. Reads were simulated from the human genome with a

1.5% sequencer error rate, a 0.09% SNP rate, and a 0.01% indel rate with indels ranging

in length from 1 to 5 bases. For the 50 bp reads, 3 mismatches were allowed; for the 100

bp reads, 5 mismatches were allowed. The %Reads Aligned was calculated as

(reads confidently aligned / total reads). The %Correct Alignments was calculated as

(confident reads correctly aligned / reads confidently aligned).

80

Simulated Reads % Reads Aligned %Correct Alignments

50 bp reads

 BWA 83.96% 99.58%

 SRmapper 82.30% 98.32%

100 bp reads

 BWA 87.88% 99.82%

 SRmapper 89.06% 99.19%

Table 2.6: Alignment Accuracy of BWA and SRmapper as Determined By the

Alignment of Simulated Reads Using the Default Mismatch Settings of SRmapper.

To measure the accuracy of BWA and SRmapper, 100,000 simulated reads were created

using in-house developed software. Reads were simulated from the human genome with a

1.5% sequencer error rate, a 0.09% SNP rate, and a 0.01% indel rate with indels ranging

in length from 1 to 5 bases. For the 50 bp reads, 28 mismatches were allowed; for the 100

bp reads, 40 mismatches were allowed. The %Reads Aligned was calculated as

(reads confidently aligned / total reads). The %Correct Alignments was calculated as

(confident reads correctly aligned / reads confidently aligned).

81

Figure 2.13: ROC Curves for BWA and SRmapper Alignments Using Wgsim to

Simulate Reads and Build ROC Curves. Wgsim was used to simulate pair-end reads

from the human genome using the suggested settings for simulating reads and accuracy

(http://lh3lh3.users.sourceforge.net/alnROC.shtml). The abscissa denotes accuracy while

the ordinate denotes fraction reads aligned. As the trace proceeds to the right, the number

of mismatches in alignment increases. BWA was run with the option -o 0 in alignment

and -A in SAM file creation. The simulation demonstrates that BWA has a higher

accuracy than SRmapper but that as mismatches allowed increases, the difference in

accuracies drastically decreases. Overall, BWA had an alignment rate of 90% with an

error rate around 0.1% while SRmapper had an alignment rate of 85% with an error rate

around 0.2%. (Adapted from Gontarz et al., 2013).

http://lh3lh3.users.sourceforge.net/alnROC.shtml

82

than a weakness in SRmapper or BWA. It also reflects a weakness in current sequencing

technology since short reads occasionally do not contain enough information to properly

determine their correct alignment position. Looking at the conditions chosen to simulate

reads from the human genome and determining where mismatches between reads and the

reference originate from, it is apparent that sequencing errors are the largest source of

discrepancies between reads and the reference. As sequencing technology continues to

improve, read lengths will continue to increase and error rates will continue to decrease.

Thus, in the future, this first source of error will become even less of a factor than it

currently is.

The second cause for reads being incorrectly aligned affected SRmapper more

seriously than it affected BWA and was seen in reads that were incorrectly aligned by

SRmapper even though they had zero mismatches or very few mismatches compared to

the reference sequence. It was determined that SRmapper made incorrect confident

alignments on a small fraction of reads had no or few mismatches in alignment due to the

repetitive nature of the human genome. In a few cases, SRmapper found a potential

alignment to a repetitive region in the first 100 entries searched in a bucket whose key

was from the repetitive region but due to the limit of only searching the first 100 entries

did not find other alignments, including the correct one. SRmapper, therefore, incorrectly

reported a confident alignment. In contrast, BWA uses a different kind of index and

alignment strategy that does not have this limitation. However, as the number of

mismatches increases, the selectivity of SRmapper does not deviate nearly as much as the

selectivity of BWA does. This likely reflects that SRmapper handles higher number of

mismatches in alignment better than BWA does. The most plausible explanation is that

83

the seeding procedure used by BWA strictly limits the number of mismatches that can

occur early in the alignment. Thus, when there are a higher number of discrepancies

between the read and the reference, BWA is more likely to miss the correct alignment

and report an incorrect, confident alignment. In contrast, SRmapper only requires that a

stretch of D bases be found with no mismatches and therefore is not affected by reads

with mismatches early in the sequence. Thus, the number of incorrectly aligned reads

does not drastically increase with SRmapper as it does with BWA when a higher number

of mismatches are permitted.

Finally, it can be noted that the ROC curves demonstrate that the maximum

number of permitted mismatches determined by the probability function that SRmapper

employs does not result in a large number of incorrect alignments. Were the permissible

number of mismatches set too high, the ROC curve would reflect a decrease in selectivity

since many spurious alignments being generated would result in a high number of

incorrect alignments. That this is not seen in the ROC curve for SRmapper validates that

the probabilistic model being used works as intended since as the number of mismatches

allowed increases, there is a steady increase in the number of alignments being found

without a large increase in reads being incorrectly aligned.

84

Pseudocode 2.1: SRmapper Buildindex.

Open and check input files;

Open and check output files;

Set total Reference length=0;

For each reference sequence

. Determine reference length;

. Store reference name and length in .sqn.hdr file;

. Add reference length to total reference length;

Calculate index key length using eq. 1;

Store key length (D), number of keys, and total reference length in .sqn.hdr file;

For keys starting with A,C,G,T

. Set reference location to 0;

. For each reference sequence

. . While not at the end of the reference sequence

. . . Read D bases to form a key;

. . . If key starts with correct base

. . . . Hash the key;

. . . . If key has not been hashed before

. Create bucket;

. Store reference location in bucket;

. . . . Else

. While bucket for the key is full

. If pointer to next overflow bucket is not NULL

. Use pointer in bucket to move to next overflow bucket;

. Else

. Create new bucket;

. Set pointer in current bucket to new bucket;

. Use pointer in bucket to move to next overflow bucket;

. Store reference location in bucket;

. Increase reference location by D;

. Set processed keys to 0;

. Set locations written to 0;

. While processed keys is less than 4
D-1

. . If there is a bucket for processed keys

. . . While the bucket pointer is not NULL

. . . . While there are reference locations in bucket

. Print location to .sqn file;

. Increase locations printed by 1;

. . . . Move to the next bucket;

. . . While there are reference locations in the last bucket;

. . . . Print location to .sqn file;

. . . . Increase locations printed by 1;

. . Write locations printed to .sqn.val file;

. Write locations printed to .sqn.hdr file;

. Remove buckets from memory;

85

SRmapper Buildindex (cont.)

For each reference sequence

. While not at the end of the reference sequence

. . Read four bases;

. . Convert bases into 2-bit per base format;

. . Store binary value for four bases in .sqn.bfa file;

Close all files;

<end>

86

Pseudocode 2.2: SRmapper Align.

Read and parse usage options;

Open and check input files;

Load reference names and lengths from .sqn.hdr file;

Load key length, number of keys, number of entries from .sqn.hdr file;

For reads lengths from ‘D’ to max read lengths

. Calculate phred score for 0 mismatches;

. While phred score is equal to or greater than min phred score

. . Increase mismatches by 1;

. . Calculate phred score for current number of mismatches;

For ‘Key Base’=A,C,G,T

. Create temp file;

. Load entries into memory;

. Load locations counter into memory;

. For each read in each .fastq file

. . Get a read;

. . Set Mm by checking phred table with read length;

. . Set ‘key start’ to 0;

. . While not at the end of read and not past D(Mm+2)

. . . Form key from D bases starting with ‘key start’;

. . . If first base in key is the same as ‘Key Base’

. . . . Hash key;

. . . . Find possible alignments from index;

. . . . For each possible alignment

. Align remaining bases by direct comparison;

. If alignment mismatches is less than or equal to Mm

. Set Mm to alignment mismatches;

. If fewer alignments found with Mm mismatches than allowed

. If alignment location not already found

. Store alignment in temp file;

. Else

. Decrease Mm by 1;

. . . Increase ‘key start’ by 1;

. . Reverse complement the read;

. . Set ‘key start’ to 0;

. . While not at the end of read and not past D(Mm+2)

. . . Form key from D bases starting with ‘key start’;

. . . If first base in key is the same as ‘Key Base’

. . . . Hash key;

. . . . Find possible alignments from index;

. . . . For each possible alignment

. Align remaining bases by direct comparison;

. If alignment mismatches is less than or equal to Mm

. Set Mm to alignment mismatches;

. If fewer alignments found with Mm mismatches than allowed

87

SRmapper Align (cont.)

. If alignment location not already found

. Store alignment in temp file;

. Else

. Decrease Mm by 1;

. . . Increase ‘key start’ by 1;

. Remove index from memory;

. Close temp file;

If performing single-end alignment

. Open all temp files;

. For each aligned read

. . Select alignment(s) with fewest mismatches from temp files;

. . Print alignment in SAM format;

If performing pair-end alignment

. Open all temp files;

. For each aligned pair

. . For each possible alignment for the first mate in pair

. . . For each possible alignment for the second mate in pair

. . . . Determine if the two alignments for a proper pair;

. If a proper pair is formed

. If no proper pair stored in memory

. Store proper pair in memory

. Else

. If proper pair is a better alignment than stored pair

. Store as best pair;

. . Print best pair in SAM format;

Close all temp files;

Delete all temp files;

Close SAM file;

<end>

88

Chapter III

Development of Detection Methodology for Mycobacterium

Tuberculosis Using SRmapper and Uniqueness Genomes

89

3.1 Background

 The initial goal of this project was to develop and test a method to detect TB in

metagenomic NGS samples isolated from saliva using SRmapper. The initial concept for

detection of TB was to filter out the portions of the TB genome which were similar to

sequences from other genomes that could be generated in an NGS experiment. The

devised concept to filter out the portions of the TB genome which were similar to other

genomes was to simulate every possible read that could be created in an NGS experiment

involving the oral metagenome and align these reads to the TB genome. This would, in

theory, determine every region of the TB genome similar to other genomes, and these

regions would be removed from the TB genome thereby leaving the unique portions of

the TB genome also referenced as the uniqueness TB genome. To simulate every possible

read, all the bacterial genomes from the oral metagenome were downloaded and 100 bp

reads were created at every position in the genome. Reads from the human reference

genome were simulated in the same manner. Additionally, 46 trillion nucleotides of DNA

from the 1000 Genomes Project were aligned to the TB genome to ensure that human

variation did not preclude the use of this method. In the process of performing these

alignments, it was determined that several samples From the Finnish HapMap portion of

the 1000 genomes project were contaminated with TB DNA. Final creation of the

uniqueness TB genome resulted in 36% of the TB genome being filtered out. Real and

simulated metagenomic datasets were used to demonstrate the usefulness of the

uniqueness TB genome in terms of increasing the sensitivity of NGS as means to detect

TB and increasing the selectivity of NGS by greatly reducing the rate of false positive

alignments.

90

3.2 Materials and Methods

3.2.1 Computational Resources

 Jobs requiring large amounts of computational resources were run on the Lewis

cluster at the University of Missouri Bioinformatics Consortium

(http://umbc.rnet.missouri.edu/) (UMBC). Jobs demanding internet access, such as

downloading of sequences, were run from the head node. All other jobs were run using

the Load Sharing Facility (LSF) employed by Lewis by submitting batch jobs using the

bsub command or through gocomp for interactive jobs. For using bsub on Lewis, the

required usage format is “bsub -J job_name -e output.err -o output.out command

[options].” The status of submitted jobs can be monitored using the bjobs command. At

the time of use, the LSF allows a user to have up to 48 active processes and up to 44

more processes queued. Less demanding jobs were run locally on an Intel Xeon 2.8GB

processor with 4GB of memory.

3.2.2 Genomic Sequences and NGS Sequences

Raw sequence files from the 1000 Genomes Project were downloaded from

www.1000genomes.org/data using the aspera client (http://asperasoft.com/software/) for

fast download (Altshuler et al., 2012). Oral microbiome data was downloaded from the

Human Oral Microbiome Database (www.homd.org) (Dewhirst et al., 2010). Full

bacterial genomes were downloaded from the National Center for Biotechnology

Information (www.ncbi.nih.nlm.gov). Sequencer data was downloaded from the

Sequence Read Archive (www.ncbi.nih.nlm.gov/sra). Human reference genome hg19

was used for generating simulated reads from the human genome.

3.2.3 Simulated Reads

http://umbc.rnet.missouri.edu/
http://www.1000genomes.org/data
http://asperasoft.com/software/
http://www.homd.org/
http://www.ncbi.nih.nlm.gov/
http://www.ncbi.nih.nlm.gov/sra

91

For all experiments where reads were simulated from a genome, 100 base pair

reads were created unless otherwise noted. In creating simulated reads to build

uniqueness genomes, sequencing features, such as sequencer errors and genomic variance

features such as SNPs and indels were not simulated into these reads. For simulated reads

used for demonstrating the effectiveness of uniqueness genomes, 100 bp reads were

simulated from random locations in the genome of interest using a 1.5% sequencer error

rate, a 0.09% SNP rate and a 0.01% indel rate with indel lengths ranging from 1 to 5

nucleotides using in-house software. The number of reads simulated varied depending on

simulated sequencing load, depth, and coverage and is described in the results section.

3.2.4 Alignment Settings and Conditions

SRmapper was used for all alignment tests. SRmapper has probability functions

built into it that allow for a dynamic number of mismatches between reads and the

reference genome to be allowed such that a minimum chance of alignment by random

chance is always achieved. Alignment with SRmapper was performed with the –q 6

option to enforce all alignments to have a less than 1 in 10
6
 chance of aligning by random

chance (align <ref.sqn> { <in.fastq> } <out.sam> -q 6) for the creation of the uniqueness

genomes and initial alignment of 1000 genomes data to the tuberculosis full genome and

uniqueness genome. In tests where the results of alignment with SRmapper were verified

by using another alignment program, BWA was used with its default parameters (bwa

aln –f out.sai <in.fa> <in.fastq>, bwa samse –f out.sam <in.fa> <in.sai> <in.fastq>). For

testing the effectiveness of the uniqueness genomes, SRmapper was used with either the

–q 10 option to require a less than 1 in 10
10

 chance of alignment by random chance or

with the –m option to set a specific maximum number of mismatches allowed between

92

the reference genome and short read sequence with either 0, 5, or 10 mismatches

depending on the experiment.

3.2.5 Creation of Uniqueness Genomes

To create the uniqueness genome for tuberculosis, all available sequences from

the oral metagenome were selected to be compared to the tuberculosis genome. Each

genome within the metagenome of interest was fragmented into simulated reads as

described above, and each read was aligned to the reference tuberculosis genome H37Rv

as described above. Certain incompletely assembled genomes contained some contigs

shorter than the 100 bp read length used for creating the uniqueness genome. These

contigs were excluded from alignment to the tuberculosis genome. Simulated reads were

created using software developed in house that created every possible read from a

genome by scanning through the genome and creating a read starting at every position in

the genome. After every simulated read from the oral metagenome had been aligned to

the tuberculosis genome, all of the nucleotides in the TB genome to which no nucleotide

from the metagenomic reads had aligned were retained. This was performed by

developing software which first read through the SAM file and marked every nucleotide

as either covered by reads from the oral metagenome or not covered by reads from the

oral metagenome. This program then wrote which contiguous regions were covered or

not covered. Nucleotides that had any read aligned to them were removed from the

genome. The contiguous stretches of nucleotides without reads aligned them listed in the

aforementioned file were used to form the uniqueness genome by another developed

program that took the list of unique contiguous segments and the original TB genome and

created a genome containing only the unique regions (Fig 3.1). Each of these regions was

93

Figure 3.1: Formation of the Uniqueness Genome for TB. To form the uniqueness

genome for tuberculosis, every bacterial sequence included in the oral metagenome as

well as the human reference genome was fragmented to simulate every possible read that

could be generated in an NGS experiment. Simulated reads were chosen to have a read

length of 100 bp. The simulated reads from each bacterial genome were aligned to the TB

genome (red), and the regions to which no reads aligned were retained while those to

which any reads aligned (white) were discarded. After the unique portions of the TB

genome were determined, they were each linked together by a sequence of 50 ‘N’

nucleotides to form the final uniqueness genome for TB.

94

separated by a buffer of 50 ambiguous ‘N’ nucleotides to prevent alignments being

generated spuriously across two different unique regions. The program also generated a

partial uniqueness genome forming a genome from the 100 largest unique regions and

padding each region with the buffer as described above.

3.2.6 Download and Processing of 1000 Genomes Data

To measure the effect of human variation on the coverage of the TB genome by

human short read sequences, the base space reads from the 1000 Genomes Project were

aligned to the tuberculosis genome using the standard –q 6 alignment criteria. At the

time of download, this represented approximately 46 Tb of human genomic data. This

analysis was performed using the Lewis cluster for three reasons due to the scale of the

project. First, downloading approximately 46 Tb of human DNA involved downloading

over 50 terabytes of compressed sequencing files in approximately 80,000 files.

Download speeds on the Lewis servers routinely reached 50MB/s although there were

times where download was much slower. In contrast, local download speeds at the

University of Missouri, Saint Louis (UMSL) were approximately 5MB/s. Thus,

downloading approximately 50TB of information required about 15 days of continuous

download time on the UMBC servers versus 150 days of continuous download time at

UMSL. Secondly, the amount of sequence data to be aligned to the tuberculosis genome

precluded the use of local resources. SRmapper had an alignment rate of approximately

150Gb/day per processor used with additional time needed to interpret SAM files to

determine what portions of the TB genome were covered by any of the data from the

1000 genomes project. The alignment of the 1000 Genomes Project data then required

95

more than 300 processor days with a nearly equal time to initially decompress the

sequencing data flies and several weeks more of processor time to analyze the alignment

data. Utilizing the Lewis cluster allowed for a peak usage of 48 processors

simultaneously depending on availability and download rates. Finally, due to the size of

the files being downloaded and processed, nearly a TB of disk space was required at any

one time to store a portion of the sequencing data and alignment results even with the

deletion of downloaded files and alignment files post-processing. BASH scripting was

used to automatically download the 80,000 files, to direct submission to the LSF for

decompression, alignment, and post-processing, to monitor LSF usage, and to remove

downloaded files and alignment files after post-processing. Pseudocode for the script is

provided at the end of the chapter as 1000 Genomes Project Analysis Pseudocode.

3.2.7 Measuring Loads and Coverage

 For alignment to a full genome, LoadF is measured as reads aligned / total reads.

Removing portions of a genome to create a uniqueness genome results in the loss of the

alignment of reads to the removed portions of that genome. Since reads are theoretically

generated at random from locations in a genome, the proportion of aligned reads lost will

be, on average, equivalent to the proportion of the genome being removed. Therefore,

the load on a uniqueness genome was scaled by whatever proportion of the full genome

was removed in creation of the uniqueness genome. This gave a scaled load as follows:

 Eq. 6

This should not be confused with sample load which measures the fraction or percent of

reads that come from the species of interest. Sample load was defined as:

 Eq. 7

96

In all experiments, coverage of a reference genome was defined as follows:

 Eq. 8

Finally, since different sequencing experiments often contain different sequencing

depths, coverage was normalized by dividing the coverage of the full TB genome or the

uniqueness TB genome by the number of nucleotides sequenced in an experiment and

then scaling the result to produce a value that usually falls between 1 and 1000 as

follows:

 Eq. 9

where

 is the unit the rate at which a genome is covered by nucleotides from a NGS

experiment or simulated NGS experiment.

3.3 Results

3.3.1 Creation of the Oral Uniqueness Genomes for Tuberculosis

A diagnostic tool involving NGS for detecting the presence of TB in a sample or a

TB infection would be fastest if it did not require time to separate other bacterial cells and

human cells from tuberculosis and time to culture TB cells or amplify TB DNA before

sequencing. Therefore, the effect of allowing every possible read from all known

bacterial species in a NGS experiment from the oral metagenome as well as the human

genome to be included in an oral sample was determined by simulation. This was

performed by generating every possible read from the oral metagenome as well as every

possible read from the human reference genome, build hg19. Table 3.1 lists the bacteria

chosen as the oral metagenome. This produced approximately 6 billion reads that were

then aligned to the TB genome H37Rv. This alignment was performed allowing

97

Abiotrophia defectiva ATCC

Achromobacter xylosoxidans A8

Acinetobacter baumannii AB0057

Actinomyces cardiffensis F0333

Actinomyces georgiae F0490

Actinomyces graevenitzii C83

Actinomyces johnsonii F0330

Actinomyces massiliensis 4401292

Actinomyces massiliensis F0489

Actinomyces naeslundii MG1

Actinomyces odontolyticus ATCC

Actinomyces oris K20

Actinomyces sp-170

Actinomyces sp-171

Actinomyces sp-175

Actinomyces sp-178

Actinomyces sp-180

Actinomyces sp-181

Actinomyces sp-448

Actinomyces sp-848

Afipia broomeae ATCC

Aggregatibacter actinomycetemcomitans D17P-

2

Aggregatibacter actinomycetemcomitans

HK1651

Aggregatibacter aphrophilus NJ8700

Aggregatibacter segnis ATCC33393

Agrobacterium tumefaciens C58

Alloiococcus otitis ATCC

Alloscardovia omnicolens DSM

Anaerococcus lactolyticus ATCC

Anaerococcus prevotii DSM

Anaerococcus tetradius ATCC

Anaeroglobus geminatus F0357

Arcanobacterium haemolyticum DSM

Atopobium minutum 10063974

Atopobium parvulum DSM

Atopobium rimae ATCC

Atopobium sp-199

Atopobium vaginae DSM

Bacillus anthracis A0248

Bacillus clausii KSM-K16

Bacillus subtilis BSn5

Bacteroidetes bacterium sp-274

Bacteroidetes G-1 sp-272

Bifidobacterium animalis lactis

Bifidobacterium animalis lactis HN019

Bifidobacterium breve CECT

Bifidobacterium breve UCC2003

Bifidobacterium dentium ATCC

Bifidobacterium longum infantis

Bifidobacterium longum longum

Bordetella pertussis Tohama

Bradyrhizobium elkanii 587

Bradyrhizobium elkanii USDA

Brevundimonas diminuta 470-4

Brevundimonas diminuta ATCC

Bulleidia extructa ATCC

Bulleidia extructa W1219

Burkholderia cepacia GG4

Campylobacter concisus 13826

Campylobacter curvus 525.92

Campylobacter gracilis ATCC

Campylobacter gracilis RM3268

Campylobacter rectus ATCC

Campylobacter rectus RM3267

Campylobacter showae ATCC

Campylobacter showae CSUNSWCD

Campylobacter showae RM3277

Candidate TM7 TM7a

Candidate TM7 TM7b

Candidate TM7 TM7c

Capnocytophaga gingivalis ATCC

Capnocytophaga ochracea DSM

Capnocytophaga sp-324

Capnocytophaga sp-326

Capnocytophaga sp-329

Capnocytophaga sp-332

Capnocytophaga sp-335

Capnocytophaga sp-336

Capnocytophaga sp-338

Capnocytophaga sp-380

Capnocytophaga sp-412

Capnocytophaga sputigena ATCC

Cardiobacterium hominis ATCC

Cardiobacterium valvarum F0432

Catonella morbi ATCC

Centipeda periodontii DSM

Chlamydophila pneumoniae TW-183

Comamonas testosteroni KF-1

Corynebacterium diphtheriae NCTC

Corynebacterium durum F0235

Corynebacterium matruchotii ATCC

Corynebacterium urealyticum DSM

Cronobacter sakazakii ATCC

Cryptobacterium curtum DSM

Delftia acidovorans SPH-1

Desulfobulbus sp-041 DSB2

Desulfobulbus sp-041 DSB3

Dialister invisus DSM

Dialister micraerophilus DSM

Dolosigranulum pigrum ATCC

Eggerthella lenta DSM

Eikenella corrodens ATCC

Enterobacter cancerogenus ATCC

Enterobacter hormaechei ATCC

Enterococcus casseliflavus 14-MB-W-14

Enterococcus casseliflavus EC30

Enterococcus durans ATCC

Enterococcus durans FB129-CNAB-4

Enterococcus faecalis DSM

Enterococcus faecalis V583

98

Enterococcus italicus DSM

Enterococcus saccharolyticus 30 1

Erysipelothrix tonsillarum DSM

Escherichia coli BW2952

Escherichia coli O157

Eubacterium infirmum ATCC

Eubacterium infirmum F0142

Eubacterium limosum KIST612

Eubacterium saburreum DSM

Eubacterium saphenum ATCC

Eubacterium yurii margaretiae

Filifactor alocis ATCC

Finegoldia magna ATCC

Fusobacterium gonidiaformans ATCC

Fusobacterium necrophorum funduliforme

Fusobacterium nucleatum animalis F0419

Fusobacterium nucleatum animalis

Fusobacterium nucleatum nucleatum

ATCC25586

Fusobacterium nucleatum polymorphum ATCC

Fusobacterium nucleatum vincentii ATCC

Fusobacterium periodonticum ATCC

Fusobacterium sp-370 F0437

Gardnerella vaginalis ATCC

Gemella haemolysans ATCC

Gemella haemolysans M341.

Gemella morbillorum M424.

Gemella sanguinis M325

Granulicatella adiacens ATCC

Granulicatella elegans ATCC

Haemophilus aegyptius ATCC

Haemophilus ducreyi 35000HP

Haemophilus haemolyticus M21639

Haemophilus influenzae PittGG

Haemophilus parainfluenzae ATCC

Haemophilus parainfluenzae T3T1

Haemophilus sp-851 F0397

Helicobacter pylori B38

Helicobacter pylori India7

Johnsonella ignava ATCC

Jonquetella anthropi DSM

Jonquetella anthropi E3

Kingella denitrificans ATCC

Kingella kingae ATCC

Kingella oralis ATCC

Klebsiella pneumoniae Kp342

Klebsiella pneumoniae NTUH-K2044

Kytococcus sedentarius DSM

Lachnospiraceae bacterium ACC2

Lachnospiraceae sp-082 F0431

Lachnospiraceae sp-107 F0167

Lactobacillus acidophilus NCFM

Lactobacillus brevis ATCC

Lactobacillus buchneri ATCC

Lactobacillus buchneri NRRL

Lactobacillus casei BL23

Lactobacillus catenaforme OT

Lactobacillus coleohominis 101-4

Lactobacillus crispatus ST1

Lactobacillus fermentum IFO

Lactobacillus gasseri ATCC

Lactobacillus iners DSM

Lactobacillus jensenii 1153

Lactobacillus johnsonii NCC

Lactobacillus kisonensis F0435

Lactobacillus oris PB013

Lactobacillus paracasei paracasei

Lactobacillus parafarraginis F0439

Lactobacillus pentosus KCA1

Lactobacillus plantarum plantarum-ATCC

Lactobacillus plantarum plantarum-ST3

Lactobacillus reuteri JCM

Lactobacillus rhamnosus GG

Lactobacillus salivarius UCC118

Lactobacillus vaginalis ATCC

Lactococcus lactis IL1403

Lactococcus lactis KF147

Lautropia mirabilis ATCC

Leptotrichia buccalis ATCC

Leptotrichia buccalis C-1013-b

Leptotrichia goodfellowii F0264

Leptotrichia hofstadii F0254

Leptotrichia shahii DSM

Leptotrichia wadei DSM

Listeria monocytogenes 08-5578

Listeria monocytogenes 4b

Lysinibacillus fusiformis ZC1

Megasphaera micronuciformis F0359

Mesorhizobium loti MAFF303099

Microbacterium sp-186 F0373

Mitsuokella multacida DSM

Mobiluncus mulieris ATCC

Moraxella catarrhalis RH4

Mycobacterium leprae Br4923

Mycobacterium tuberculosis CDC1551

Mycoplasma fermentans JER

Mycoplasma fermentans M64

Mycoplasma genitalium G-37

Mycoplasma hominis ATCC

Mycoplasma orale ATCC

Mycoplasma pneumoniae M129

Neisseria bacilliformis ATCC

Neisseria elongata ATCC

Neisseria flavescens NRL30031

Neisseria gonorrhoeae DGI2

Neisseria gonorrhoeae NCCP11945

Neisseria lactamica 020-06

Neisseria lactamica ATCC

Neisseria meningitidis ATCC

Neisseria meningitidis MC58

Neisseria mucosa ATCC

Neisseria polysaccharea ATCC

99

Neisseria sicca ATCC

Neisseria sp-014 F0314

Neisseria sp-020 F0370

Neisseria subflava NJ9703

Neisseria weaveri ATCC

Ochrobactrum anthropi ATCC

Ochrobactrum anthropi

Olsenella sp-809 F0356

Olsenella uli DSM

Oribacterium sinus F0268

Oribacterium sp-078 F0262

Oribacterium sp-108 F0425

Paenibacillus sp-786 D14

Parascardovia denticolens DSM

Parascardovia denticolens F0305

Parvimonas micra ATCC

Parvimonas sp-110 F0139

Parvimonas sp-393 F0440

Peptoniphilus indolicus ATCC

Peptoniphilus lacrimalis 315-B

Peptoniphilus lacrimalis DSM

Peptoniphilus sp-375 F0436

Peptoniphilus sp-386 F0131

Peptoniphilus sp-836 F0141

Peptostreptococcus anaerobius 653-L

Peptostreptococcus anaerobius DSM

Peptostreptococcus stomatis DSM

Porphyromonas asaccharolytica DSM

Porphyromonas asaccharolytica PR426713P-I

Porphyromonas catoniae F0037

Porphyromonas endodontalis ATCC

Porphyromonas gingivalis ATCC

Porphyromonas gingivalis W83

Porphyromonas sp-279 F0450

Porphyromonas uenonis 60-3

Prevotella bivia DSM

Prevotella bivia JCVIHMP010

Prevotella buccae D17

Prevotella buccalis ATCC

Prevotella dentalis DSM

Prevotella denticola F0289

Prevotella histicola F0411

Prevotella intermedia 17

Prevotella loescheii DSM

Prevotella maculosa DSM

Prevotella maculosa OT

Prevotella marshii DSM

Prevotella melaninogenica ATCC

Prevotella melaninogenica D18

Prevotella micans DSM

Prevotella micans F0438

Prevotella multiformis DSM

Prevotella multisaccharivorax DSM

Prevotella nigrescens ATCC

Prevotella oralis ATCC

Prevotella oris DSM

Prevotella oris F0302

Prevotella oulorum F0390

Prevotella pallens ATCC

Prevotella saccharolytica OT

Prevotella salivae DSM

Prevotella sp-299 F0039

Prevotella sp-302 F0020

Prevotella sp-302 F0323

Prevotella sp-306 F0472

Prevotella sp-317 F0108

Prevotella sp-472 F0295

Prevotella sp-473 F0040

Prevotella tannerae ATCC

Prevotella veroralis DSM

Prevotella veroralis F0319

Propionibacterium acnes SK137

Propionibacterium avidum 44067

Propionibacterium avidum ATCC

Propionibacterium propionicum F0230a

Propionibacterium sp-192 F0372

Proteus mirabilis ATCC

Proteus mirabilis HI4320

Pseudomonas aeruginosa LESB58

Pseudomonas fluorescens Pf0-1

Pseudomonas fluorescens Pf-5

Pseudomonas pseudoalcaligenes KF707

Pseudomonas stutzeri A1501

Pseudoramibacter alactolyticus ATCC

Pyramidobacter piscolens W5455

Pyramidobacter piscolens W5455-(JCVI)

Pyramidobacter piscolens W5455-(TFI)

Pyramidobacter piscolens W5455-(TFI-JCVI)

Ralstonia pickettii 12D

Rhodobacter capsulatus SB1003

Rothia aeria F0474

Rothia dentocariosa ATCC

Rothia mucilaginosa ATCC

Rothia mucilaginosa DY-18

Sanguibacter keddieii DSM

Scardovia inopinata F0304

Scardovia wiggsiae F0424

Selenomonas artemidis F0399

Selenomonas flueggei ATCC

Selenomonas infelix ATCC

Selenomonas noxia ATCC

Selenomonas sp-133 F0473

Selenomonas sp-137 F0430

Selenomonas sp-138

Selenomonas sp-149

Selenomonas sputigena ATCC

Shuttleworthia satelles DSM

Simonsiella muelleri ATCC

Slackia exigua ATCC

Solobacterium moorei F0204

Solobacterium moorei W5408

Staphylococcus aureus JH1

100

Staphylococcus aureus WW2703 97

Staphylococcus caprae C87

Staphylococcus epidermidis RP62A

Staphylococcus epidermidis W23144

Staphylococcus warneri L37603

Stenotrophomonas maltophilia K279a

Stenotrophomonas maltophilia R551-3

Streptococcus agalactiae NEM316

Streptococcus anginosus CCUG

Streptococcus anginosus SK52

Streptococcus australis ATCC

Streptococcus constellatus pharyngis

Streptococcus cristatus ATCC

Streptococcus downei F0415

Streptococcus gordonii Challis

Streptococcus infantarius infantarius-ATCC

Streptococcus infantis X

Streptococcus intermedius F0413

Streptococcus intermedius JTH08

Streptococcus mitis ATCC

Streptococcus mitis B6

Streptococcus mitis biovar-2 SK95

Streptococcus mitis NCTC

Streptococcus mutans UA-159

Streptococcus oligofermentans AS

Streptococcus oralis ATCC

Streptococcus oralis Uo5

Streptococcus parasanguinis ATCC

Streptococcus parasanguinis II-F0405

Streptococcus peroris ATCC

Streptococcus pneumoniae AP200

Streptococcus pyogenes MGAS10270

Streptococcus pyogenes NZ131

Streptococcus salivarius JIM8780

Streptococcus salivarius SK126

Streptococcus sanguinis SK36

Streptococcus sobrinus TCI-107

Streptococcus sp-056 F0418

Streptococcus sp-058 F0407

Streptococcus sp-066 F0442

Streptococcus sp-070 F0441

Streptococcus sp-071 F0408

Streptococcus vestibularis F0396

Synergistetes sp. SGP1

Tannerella forsythia ATCC

Treponema denticola ATCC

Treponema lecithinolyticum OMZ

Treponema maltophilum ATCC

Treponema medium ATCC

Treponema pallidum Nichols

Treponema socranskii ATCC

Treponema vincentii ATCC

Turicella otitidis ATCC

Variovorax paradoxus S110

Veillonella atypica ACS

Veillonella dispar ATCC

Veillonella parvula ATCC

Veillonella parvula DSM

Veillonella sp-158 F0412

Veillonella sp-780 F0422

Yersinia pestis Antiqua

Yersinia pestis KIM-D27

101

Table 3.1: The Genomes Chosen to Form the Oral Metagenome. To form the oral

metagenome used to create the uniqueness genome for TB, 395 bacterial genomes were

downloaded from HOMD. The genus, species, and subspecies names (if applicable) are

listed.

102

discrepancies between the reads and the reference tuberculosis genome as described in

the methods by using the -q 6 option in SRmapper.

Allowing discrepancies had a twofold purpose. First, it attempted to compensate

for variations which exist within members of a species or between different strains of

bacteria. For example, a human whose DNA is slightly different than the human

reference genome at some loci may have produce alignments that would not have been

found when alignment of simulated reads from the human reference genome was

performed allowing no discrepancies. Secondly, allowing discrepancies attempted to

compensate for artificial variation that is introduced by the sequencing process.

Although sequencing instruments have become more accurate, current NGS instruments

still have a non-negligible error rate. This especially applies to Illumina and IonTorrent

instruments – the two NGS platforms most envisioned for using this method with

SRmapper performing as the alignment algorithm. After the alignment of all possible

reads from the human genome to the tuberculosis genome H37Rv, it was determined that

the simulated reads from the human genome covered 1.83% of the reference tuberculosis

genome (Table 3.2). After aligning all the reads from the oral microbiome,

approximately 35.5% of the tuberculosis genome was covered by bacterial DNA. The

remaining nucleotides formed nearly 5,900 fragments, the largest of those being

approximately 11,500 bp in length and covering the proteins PPE5 and PPE6. The 100

largest fragments were used to form a partial uniqueness genome and contain a total of

554,025 nucleotides. When the same process was repeated for the lung microbiome,

39.7% of the tuberculosis genome was covered with the majority of the coverage coming

from three species: Nocardia farcinica, Segniliparus rotundus, and Segniliparus rugosus.

103

Table 3.2: Coverage of the TB Genome H37Rv by the Human Reference Genome.

To measure the similarity of the TB to the human genome in terms of an NGS

experiment, every possible 100 bp read from the human reference genome hg19 was

simulated and aligned to the TB genome. The coverage of each individual chromosome

was determined as well as the cumulative coverage by all of the chromosomes combined.

104

Since nearly all of available metagenomic sequencing data was for saliva samples at the

time these studies were being performed, these studies focused primarily exclusively on

the oral metagenome.

3.3.2 Human Variation Does not Prevent the Use of NGS for Detecting TB

Initial alignment of the 80,000 files containing base space reads resulted in over

92.1% of the tuberculosis genome covered by reads from the 1000 genomes project.

However, the vast majority of the coverage of the tuberculosis genome came from 25

samples from the same project (Finnish HapMap project) (Table 3.3). In fact, there were

only 19 runs that showed more coverage of the TB genome than aligning all reads from

the human reference genome (greater than 1.83%). The rest of the data appeared to be

consistent with the data gathered from aligning simulated reads from the human reference

genome to the TB genome. Although some coverage was expected from the 1000

genomes project data, the amount of coverage was expected to be near to the coverage

from aligning the human reference or lower since many of the sequencing studies in the

1000 genomes project are low coverage sequencings. Taken together, this data suggests

that a small number of runs were either performed by sampling subjects who were

infected with tuberculosis or that there was some other contamination of samples with

tuberculosis.

To test this hypothesis, all of the reads from the 1000 genomes project that

initially aligned to the TB genome were converted back into .fastq format and aligned to

the human reference genome. These reads were split into two categories - those which

did align to the human reference genome and those which did not align to the human

reference genome. Figure 3.2 shows the overall workflow from the 1000 Genomes

105

Percent TB
Genome
Covered

Sequencing
Run Project

Percent TB
Genome
Covered

Sequencing
Run Project

28.58% ERR016001_1 FIN 0.85% ERR015870_2 FIN

25.31% ERR016001_2 FIN 0.79% ERR015870_1 FIN

22.80% ERR015874_2 FIN 0.77% ERR013123_1 FIN

22.50% ERR018501_1 FIN 0.77% ERR015876_2 FIN

22.30% ERR015874_1 FIN 0.71% ERR013121_2 FIN

19.18% ERR015732_1 FIN 0.70% ERR015876_1 FIN

19.12% ERR018501_2 FIN 0.66% ERR013123_2 FIN

15.73% ERR013120_1 FIN 0.63% SRR006204 PP3

14.05% ERR018499_1 FIN 0.48% SRR006203 PP3

13.11% ERR015872_2 FIN 0.24% ERR013122_1 FIN

12.44% ERR015732_2 FIN 0.21% SRR017041_2 YRI

12.36% ERR015872_1 FIN 0.21% ERR013122_2 FIN

12.04% ERR013120_2 FIN 0.20% SRR017041_1 YRI

11.68% ERR018499_2 FIN 0.19% SRR017034_1 YRI

8.11% ERR013119_1 FIN 0.19% SRR023308_1 JPT

5.76% ERR013119_2 FIN 0.19% ERR018560_1 GBR

4.25% ERR016346_1 FIN 0.18% SRR017034_2 YRI

3.89% ERR016346_2 FIN 0.18% ERR006241_1 CEU

2.10% ERR015479_1 FIN 0.18% ERR018560_2 GBR

1.57% ERR015875_2 FIN 0.17% ERR022461_1 CLM

1.56% ERR018504_1 FIN 0.17% SRR017040_2 YRI

1.47% ERR015875_1 FIN 0.17% SRR017040_1 YRI

1.45% ERR015479_2 FIN 0.17% ERR019495_1 FIN

1.02% ERR018504_2 FIN 0.16% ERR006241_2 CEU

1.01% ERR013121_1 FIN 0.16% ERR022461_2 CEU

Table 3.3: Datasets from the 1000 Genome Project with the Highest Coverage of the

TB Genome. Of the roughly 80,000 reads files downloaded from the 1000 genomes

project, the 50 with the highest coverage of the tuberculosis genome are recorded. Of

these, only 25 result in coverage higher than 1%, and only 19 result in a higher coverage

of the TB genome than when all possible reads from the human reference genome were

aligned to the TB genome. Boldfaced datasets were used later to confirm the presence of

TB. All datasets originated from the same project, the Finnish HapMap project. Project

106

abbreviations are as follows: Fin: Finish HapMap population; PP3: Pilot Project 3; YRI:

Yoruba HapMap population; JPT: Japanese HapMap population; GBR: England and

Scotland HapMap population; CEU: Utah residents with ancestry from Northern and

Western Europe; CLM: Columbian HapMap population.

107

Figure 3.2: Workflow of the Analysis of the 1000 Genomes Data. From the 1000

genomes project, approximately 46Tb of human DNA comprising approximately 570

billion short sequences was analyzed by first aligning them to the full tuberculosis

genome (1). Upon determining that the approximately 312,000 reads that aligned to the

TB genome covered over 92% of the genome, an attempt was made to align these reads

to the human reference genome to confirm their human origin (2). These reads were split

into two categories based on whether they aligned to the human reference genome or not.

Roughly three-quarters of the reads that were supposedly of human origin could not be

aligned to the human genome. Reads from each category were again aligned to the TB

genome (3). Those reads which did align to the human reference genome only covered

3.0% percent of the TB genome while the reads which could be aligned to the human

reference genome covered 91.7% of the TB genome.

108

Project data. Approximately three quarters of the reads initially aligned to the TB

genome could not be aligned to the human genome by SRmapper. Since only a quarter

of supposedly human reads that aligned to the TB genome aligned to the human reference

genome, verification that the alignment software (SRmapper) was correctly functioning

was performed by using a second alignment tool (BWA). Since the reads were of

different length because they came from different files and sequencers, BWA was not

told what number of mismatches to allow. Instead, it was run using its default parameters

to allow the number of discrepancies the algorithm deemed appropriate. Alignment to

the human reference genome of the 1000 genomes project reads that aligned to the TB

genome by BWA yielded similar results to those gathered using SRmapper. BWA

aligned slightly fewer reads to both the human reference genome and the TB genome

with some of the reads aligned by SRmapper being unaligned. These results were as

expected since by default BWA does not tolerate as many differences between the

reference and read as SRmapper does.

The approximately 70,000 reads that did align to the human genome were again

aligned to the TB genome to measure their coverage, and it was determined that they

covered only 3.0% of the TB genome. The higher coverage from the reads in the 1000

genome project compared to the coverage by the reference human genome (3.0% versus

1.83%) was attributed to two factors: the variation in human genetic makeup from

samples in the 1000 genomes project and the variation of read length in studies from the

1000 genomes project. For the latter factor, it is easily conceivable that reads are more

likely to have similarity to multiple genomes over a shorter stretch of sequence than a

longer one. Thus, the shorter reads from the human genome project (some as short as 30

109

bp) have a higher likelihood to be similar to a location within the TB reference genome

than long reads would. To verify this, the reads were separated by length, and the general

pattern that was observed was that as read length increased, alignment rate decreased.

Using the

 notation to normalize the amount of data in each set of reads, it was

determined that reads <50 bp in length had an average coverage rate of 2.4x10
-2

(percent genome coverage per billion nucleotides sequenced); reads 50 bp-74 bp in length

had an average coverage rate of 1.8x10
-3

; reads 75 bp-99 bp in length had a raw

average coverage rate of 6.1x10
-3

; and reads ≥150 bp in length had an average

coverage rate of 3.2x10
-4

 (Fig 3.3). Reads from the 100 bp-149 bp length range

contained the Data from the Finnish HapMap project which skewed the average coverage

rate to 1.1x10
-2

. Removal of the 44 samples with the highest coverage (all from the

Finnish HapMap project) reduced the average rate to 2.1x10
-3

, which, as expected,

falls between the rates for reads of 75 bp-99 bp and reads ≥150 bp.

The approximately 280,000 reads which did not align to the human were again

aligned to the reference TB genome using SRmapper and covered 91.7% of the TB

genome. This analysis was repeated using BWA and yielded similar results (data not

shown). This data suggests the possibility that certain samples were contaminated with

tuberculosis DNA (Table 3.3) and that some were possibly contaminated with other

bacteria. Although it was not feasible to experimentally verify that these samples were

contaminated with TB, further computational evidence is provided later to strengthen this

claim.

110

Figure 3.3: The Effect of Read Length on the Coverage Rate of Sequences from the

1000 Genomes Project Aligning to the TB Genome. The coverage rates,

, for reads

of different lengths was determined. The reads in the 100 bp-149 bp grouping contained

the data from the Finnish HapMap project. The light blue column represents the coverage

rate from all data from the 100 bp-149 bp group, and the dark blue column represents the

coverage rate if the samples with unusually high coverage from the Finnish HapMap

project are filtered out.

111

If the assumption were accepted that the reads from the 1000 genome project that

aligned to TB but not the human reference genome did in fact come from a source other

than human DNA, either due to TB infection or contamination, then this result strongly

suggests that human variance does not render tuberculosis detection by NGS to be

impossible or even difficult on the basis of similarities between the human genome and

TB genome from a NGS experiment perspective. This conclusion is drawn due to the fact

that even after analyzing over 46T nucleotides of human DNA, only 3.0% of the TB

genome shared similarity with the human genome.

3.3.3 Advantages of the Uniqueness Genome Shown Through Simulated Data

To determine whether the uniqueness genomes created for TB aid in the detection

of tuberculosis, several sets of simulated data were created to measure the coverage on

both the full and unique tuberculosis genome by oral metagenomic samples in samples

contaminated with other bacteria. To perform this analysis, the 250 species which

demonstrated the highest coverage of the full tuberculosis genome were determined. In

each sample, ten of these bacteria were randomly chosen as being present in the

simulated sample. Additionally, the samples also included DNA from the human

reference genome such that 75% of non-tuberculosis DNA came equally from the 10

species of bacteria, and the other 25% came from the human reference genome. The read

locations from these genomes were chosen at random utilizing the same software used to

simulate reads from the human genome in Chapter 2 and allowed sequencing errors and

SNPs. Simulated reads from TB were also included from random locations in the TB

genome to create overall TB sequencing loads ranging from 0% to 5% TB DNA.

Sequence depth was also varied from 10M nucleotides up to 1B nucleotides (Table 3.4).

112

Table 3.4: Comparison of Percentage Reads aligned to the Full TB Genome and

Uniqueness TB genome Using Simulated Metagenomic Samples. Between 10M and

1B nucleotides of short reads were simulated by creating simulated reads from 10 random

bacteria from the oral metagenome as well as by creating reads from the human reference

genome such that 75% of the non-TB reads came from equally from the 10 bacteria and

25% came from the human reference genome. Between 0%-5% of reads were simulated

to originate from TB, and the percent of reads that aligned to the TB genome were

measured. In each simulation, the same set of simulated reads was aligned to both the

uniqueness TB genome and full TB genome to guard against biasing that may have

resulted from using two different sets of simulated reads.

113

In all scenarios where tuberculosis was excluded, the uniqueness genome reduced the

percent reads aligned which in these cases can be equated to the false positive alignment

rate. This rate was reduced by over an order of magnitude in the 10M nucleotide

simulated sample and by over two orders of magnitude in the 100M and 1B nucleotide

simulated samples suggesting the usefulness of the unique genome in reducing false

positive hits. It should be noted that since roughly 64% of the TB genome was retained

in creating the uniqueness genome, approximately 64% of TB reads would be expected to

align to the uniqueness genome, and this was seen in all tests. In all samples that

contained TB, the alignment rate was well above the levels seen with 0% TB. However,

the uniqueness genome did show a higher distinction between the 0% simulation and the

0.1% simulation than the full genome did especially in lower sequencing depths. The

percent reads aligned at 0.1% TB ranged from 29.5x-645x the 0% TB coverage values

when using the unique genome compared to 1.5x-2.9x for the same experiments using the

full genome (Fig 3.4). This data could also be interpreted as a comparison between

signal and background noise and demonstrated how the uniqueness genome was

beneficial in filtering out the background noise that can originate from a sample

containing many different bacteria. With TB loads of 1% and 5%, there was a larger

difference in percent reads aligned from the 0% TB load simulation such that either the

full TB genome or uniqueness TB genome could likely be used to discriminate between

the two.

The small coverage of the unique tuberculosis genome in simulated samples not

containing tuberculosis was attributed to two factors. The first was that the simulation of

sequencer errors and polymorphisms resulted in a small number of alignments that were

114

Figure 3.4: Comparison of Percent Reads Aligned at 0.1% TB Load and 0% TB

load Using the Full TB Genome and the Uniqueness TB Genome. The percent reads

aligned from the simulations in Table 3.4 were used to generate a comparison between

percent reads aligned by dividing the percentage of reads aligned for the simulations with

a 0.1% TB load by the percentage of reads aligned for the simulations with a 0% TB

load. For the full TB genome, there was between a 1.5x to 2.9x increase in reads aligned

whereas with the uniqueness TB genome, there was a 29.5x to 645x increase in reads

aligned.

115

not detected in the original formation of the uniqueness genome. In a sense, this was

viewed as a positive result since the analysis performed above was performed partially

with the intention of observing what the role these sequence errors and polymorphisms

play in alignment to the unique genome. The second potential cause of alignment to the

uniqueness genome for TB was that elimination of portions of the full tuberculosis

genome that were similar to other bacterial sequences could have resulted in a suboptimal

alignment site in the full tuberculosis genome becoming the primary alignment site in the

unique genome. This could possibly be remedied by performing the alignment of all

sequences from the oral metagenome to the uniqueness TB genome multiple times with

removal of regions found not to be unique after every round of alignment until no

suboptimal alignments were found, but it was believed that the extent of suboptimal

alignments did not warrant this time consuming process.

The simulated data was also analyzed in terms of

 to determine how using the

uniqueness genome affected the coverage of the TB genome in the above simulations

(Table 3.5). Whereas the percent reads aligned remained similar to the TB load at TB

loads at or above 1%, the

 decreased for both the full and uniqueness genomes as

sequencing depth increased under almost all simulations. The decrease in

 as

sequencing depth increased was expected especially at higher loads of TB. Essentially,

this effect was caused by a saturation of the TB genome by sequencing data. In other

words, nearly the entire TB genome was covered in simulated samples that contained TB,

and all the non-unique regions were covered by reads from other bacteria in the simulated

samples that did not contain TB. Once saturated, no amount of increased sequencing

depth will lead to a higher coverage since, even though a higher number of reads are

116

Table 3.5: Comparison of

 Between the Full TB Genome and Uniqueness TB

genome Using Simulated Metagenomic Samples. The simulated samples from Table

3.4 were used to compare the differences in

 between the full TB genome and the

uniqueness TB genome.

 generally decreases with increased depth and load due to

saturation.

117

aligning, there are no locations in the genome where reads have not been aligned before.

However, the increase in depth will be reflected in

 since a higher number of

nucleotides were sequenced. For higher loads of TB and higher sequencing depths,

was similar for both the uniqueness genome for TB and the full genome for TB because

the entire genome was covered. The slightly higher

 in the full TB genome is due to

the fragments in the uniqueness genome shorter than 100 bp to which reads cannot be

aligned. Even with the decrease in

 as sequencing depth and load increases, there is a

clear distinction between the abilities of the full TB genome and uniqueness TB genome

to detect the presence of TB in a sample. This difference in the ratio of

 for samples

containing TB and not containing TB was best seen at the lowest TB loads (Fig 3.5). As

with measurements of load, the uniqueness genome showed a much higher ability to

differentiate between samples containing TB and those not containing TB. Aligning to

the full TB genome resulted in an increase in increase in

 ranging from 2.9x-to 14.8x

when comparing simulations with 0.1% TB load to those with no TB. For the same

simulations, using the uniqueness genome for TB increase

 by a factor of 27.2x-2863x

again demonstrating the usefulness of the uniqueness TB genome in reducing background

noise. Overall, the results from this first set of simulated data suggested that the

uniqueness TB genome proved better able to distinguish tuberculosis from other bacterial

species than the full TB genome. It was noted that under most of the above simulated

circumstances, use of the full genome may have the ability to detect tuberculosis as well,

albeit with more false positive alignments.

Next, it was determined how well the uniqueness genome and full genome for TB

118

Figure 3.5: Comparison of

 at 0.1% and 0% TB Load Using the Full TB Genome

and the Uniqueness TB Genome. The percent reads aligned from the simulations in

table 3.5 were used to generate a comparison between

 by dividing

 for the

simulations with a 0.1% TB load by

 for the simulations with a 0% TB load. For the

full TB genome, there was between a 2.9x to 14.8x increase in

 whereas with the

uniqueness TB genome, there was a 27.2x to 2863x increase in

.

119

could be used to distinguish between TB-positive samples and TB-negative samples at a

low sequencing depth and low TB load from a worst case scenario for a false positive

detection in which the species from oral metagenome genome most similar to TB were

present. To perform this test, the 10 bacteria that showed the highest coverage of the full

tuberculosis genome were used to simulated sequencings again such that 75% and 25%

of non-TB DNA came from bacteria and the human reference genome respectively. In

these samples, there was no TB included in the sample. These were compared to the TB-

positive samples that would generate the lowest

 by simulating a load of 0.1% TB and

no other alignments being generated by bacteria in the oral metagenome. This simulation

for the samples not containing TB was performed a total of five times at depths of 10M

and 100M nucleotides sequenced, and the simulation of the 0.1% TB load samples was

performed three times so variance due to the random location of simulated sequenced

reads from a NGS type experiments could be measured; the 1B nucleotide test was

excluded due to a lack of variance due to saturation (Table 3.6, Table 3.7). The average

and standard deviation for

 for the samples containing no TB were calculated and

compared to the

 in the samples that contained 0.1% TB. Based on the average and

standard deviation for the samples with no TB, a z-score was calculated for each of the

samples with a 0.1% TB load. In this analysis, it became very clear that at a low TB load

(0.1%), a TB-positive sample cannot be distinguished from a worst case scenario for a

false positive using the full TB genome. By comparing Table 3.6 and Table 3.7 with

Table 3.5, it was determined that even at a load as high as 1% TB, there is hardly a

distinction between a true positive and a false positive result at the low sequencing depth

of 10M nucleotides.

120

Table 3.6: Worst Case Scenario Simulation for Detecting TB in a Metagenomic

Sample Using a Sequencing Depth of 10 M Nucleotides Sequenced. To simulate the

most difficult scenario possible for differentiating between a false positive and a true

positive, a simulated sequencing of 10M nucleotides was performed using the 10

bacterial species shown to have the highest coverage of the full TB genome. This

simulated sequencing was performed 5 times to account for variance that occurs due to

the randomness of read generation in NGS. The

 for the alignment of each of the 5

samples was determined for both the full TB genome and the uniqueness TB genome,

and their average and standard deviation was calculated. Next, 3 simulated sequencings

were performed to simulate a 0.1% TB load with no other sequences aligning to the TB

genome. The

 for the alignment of each of the 3 samples was determined, and based

on the average and standard deviations calculated earlier, z-scores were determined for

each sample.

121

Table 3.7: Worst Case Scenario Simulation for Detecting TB in a Metagenomic

Sample Using a Sequencing Depth of 100 M Nucleotides Sequenced. To simulate the

most difficult scenario possible for differentiating between a false positive and a true

positive, a simulated sequencing of 100M nucleotides was performed using the 10

bacterial species shown to have the highest coverage of the full TB genome. This

simulated sequencing was performed 5 times to account for variance that occurs due to

the randomness of read generation in NGS. The

 for the alignment of each of the 5

samples was determined for both the full TB genome and the uniqueness TB genome,

and their average and standard deviation was calculated. Next, 3 simulated sequencings

were performed to simulate a 0.1% TB load with no other sequences aligning to the TB

genome. The

 for the alignment of each of the 3 samples was determined, and based

on the average and standard deviations calculated earlier, z-scores were determined for

each sample.

122

In contrast, using the uniqueness genome resulted in a statistically significant

difference between a false positive detection of TB and true positive detection of TB even

for TB loads as low as 0.1% with a low sequencing depth of 10M nucleotides sequenced.

The lowest z-score, 4.5, corresponds to p<1x10
-5

. Extrapolating from the results in Table

3.6 and Table 3.7, for a sequencing depth of 10M nucleotides, p=0.05 would occur at a

0.073% load and p=0.01 would occur at a 0.079% load. By contrast, for the full genome,

p=0.05 would occur at a load of 0.884% for a sequencing depth of 10M nucleotides. For

a depth of 100M nucleotides, p=0.05 and p=0.01 occur at 0.048% and 0.050% for the

uniqueness TB genome, and p=0.05 occurs around a 0.456% load for the full TB genome.

It was therefore concluded that the use of the uniqueness genome enhances the sensitivity

of this technique by approximately an order of magnitude in regards to the TB load

required to confidently detect the presence of TB in a sample.

3.3.4 Confirmation of the Detection of TB in Finnish HapMap Samples Via the

Complete and Partial Uniqueness TB Genomes

As noted when studying the effect of human variation on the coverage of the TB

genome, several samples, all from the Finnish HapMap study, showed unusually high

coverage of the TB genome when compared to other samples from the 1000 Genomes

Project leading to the hypothesis that these samples were contaminated with TB DNA.

Since there was a general trend that longer read length produced a lower percent coverage

per nucleotide sequenced,

, every sample from the 1000 genomes project that

contained reads of length 100 bp to 150 bp had determined their

 on the TB genome

using –q 6 in alignment, and calculated the average, standard deviation, and z-score on

123

 for all the samples. This subset of the 1000 genomes project contained over 21,274

samples and 26.4Tb of sequence. Of these samples, the 38 samples with the highest z-

score all originated from the Finnish HapMap project and had z-scores ranging from 1.3

to 35.4 (Table 3.8). This corresponds to

 ranging from .46 to 9.58. It is also of note

that the non-Finnish HapMap samples with the highest z-scores had sequencing depths

between two and three orders of magnitude lower than the highest coverage Finnish

HapMap samples. A small enough sample would lead to even one alignment producing

an unusually high

, and this exact scenario appears to have occurred. For example, the

non-Finnish HapMap sample with the highest z-score had a percent coverage of 0.0028%

on the TB genome but also only had about 9 million sequenced nucleotides resulting in a

value of 0.33

. This corresponds to a total of 125 bp aligned to the TB genome which

corresponds to one read aligning to the TB genome. In a dataset containing over 80,000

samples, it was not surprising that a few samples produced a high coverage rate. The

highest

 value from a non-Finnish HapMap sample of at least 100M nucleotides was

0.034

, an order of magnitude lower than the above noted sample with a 0.33

.

To further support the hypothesis that certain Finnish HapMap samples contained

TB, the seven pairs of samples with the highest z-scores (ERR013120, ERR015732,

ERR015872, ERR015874, ERR016001, ERR018499, and ERR018501) were again

aligned to both the full TB genome and the complete uniqueness TB genome under

different conditions that allowed fewer mismatches than the initial alignment (Table 3.9).

In addition, the reads from these samples were also aligned to partial uniqueness genome

containing the 100 largest contiguous regions of sequence unique to TB. An earlier

124

Table 3.8: 1000 Genomes Project Files with the Highest %C/B. Of the approximately

80,000 samples analyzed from the 1000 genomes project, the 21,274 samples containing

reads of length 100 bp-149 bp were analyzed to determine their

. Samples of this

length were chosen since the samples from the Finnish HapMap project that

demonstrated unusually high coverage of the TB genome were included in this subset of

samples. The 38 samples with the highest

 are shown and have z-scores for coverage

rates ranging from 1.3 to 35.4. The above samples were all part of the Finnish HapMap

project.

125

alignment of all the possible simulated reads - with no sequencing errors, SNPs, or indels

- from the human reference genome to the full TB genome allowing no mismatches in

alignment did not produce any alignments from the entire human genome. Thus, it was

hypothesized that if the source of coverage of the TB genome from the Finnish HapMap

samples were not from TB contamination, reducing the mismatches allowed between the

reads and the reference would almost eliminate all coverage of the TB genome.

Additionally, it was expected that if the source of contamination was from other bacteria,

the uniqueness TB genome would show a significantly lower percent coverage than the

full TB genome since the regions where TB was similar to other bacteria were excluded

in the uniqueness TB genome.

 When the alignments were performed, it was determined that even with no

mismatches allowed between the TB genome and the reads from the samples from the

Finnish HapMap project, anywhere from 4% to 17.6% of the complete uniqueness TB

genome was covered by reads from Finnish HapMap project samples depending on the

sample (Table 3.9). For the full TB genome, anywhere from 4.5% to 20.4% of the

genome was covered by reads with no mismatches allowed, and using the partial TB

uniqueness genome containing only the largest 100 fragments of the uniqueness genome,

anywhere from 5.8% to 22.0% of the genome was covered. With up to 10 mismatches

allowed, anywhere from 25.7% to 48.5% of the full TB genome was covered by reads,

and from 22.5% to 43.1% of the uniqueness TB genome was covered, depending on the

sample. The results that the full uniqueness genome tended to have a slightly lower

coverage than the full TB genome is not inconsistent with the hypothesis that the

alignments were generated due to TB contamination due to the fact that some of the

126

Table 3.9: Coverage of the Full TB Genome, Complete Uniqueness Genome, and

Partial Uniqueness Genome by Samples from the Finnish HapMap Project. The

seven samples from the Finnish HapMap project that demonstrated the highest coverage

of the full TB genome under initial alignment conditions (-q 6) were aligned to the

various forms of the TB genome using conditions that allowed fewer mismatches than the

-q 6 setting allowed with m 0, m 5, and m 10 representing 0, 5, and 10 mismatches

allowed respectively. Each of the runs was comprised of two samples containing both

ends of the pair-end reads sequenced in the Finnish HapMap project. The complete

uniqueness genome for TB was the form of the uniqueness genome for TB that had been

used for all other experiments. The partial TB uniqueness genome was formed by taking

the 100 largest contiguous segments of the complete TB uniqueness genome and

127

concatenating them into a separate uniqueness genome. Due to the complete TB

uniqueness genome containing some sequences shorter than the read lengths of the reads

in the samples used, certain portions of the complete TB uniqueness genome could not be

aligned to but still comprised part of the total length of the complete TB uniqueness

genome resulting in a lower coverage of the complete TB uniqueness genome than the

full TB genome. The partial TB uniqueness genome did not contain any segments shorter

than the read lengths, so all possible positions in the reference were available to be

aligned to. This resulted in the partial TB uniqueness genome having similar coverage

levels to the full TB genome.

128

smaller fragments of the complete uniqueness TB genome were too small for reads to

align to. However they were included in the calculation for genome length which affects

the percent coverage. Using only the largest fragments of the uniqueness genome

demonstrated that without these smaller fragments, coverages were at least as high as

those for the full TB genome. For zero mismatches, from 5.8% to 22.0% of the partial

uniqueness genome was covered, and for 10 mismatches, anywhere from 23.7% to 50.3%

of the partial uniqueness genome was covered. These coverages were slightly higher than

the coverages for the full TB genome. That the percent coverage for all the forms of the

TB genome with no mismatches allowed was much lower than the percent coverage with

ten mismatches allowed was not surprising or inconsistent either. With a sequencing error

rate of 1.5%, which is reasonable rate for Illumina sequencing, only 22% of reads were

expected to have zero sequencing errors for a 100 bp read (.985
100

 likelihood that all

bases were correct if each had a 98.5% likelihood of being correctly called by the

sequencing instrument) and therefore to be aligned to any of the TB genomes with zero

mismatches.

Beyond the levels of coverage, which were far higher than in any simulation

including even the worst case scenario tests, the hypothesis that these samples were

contaminated with TB was further supported by plotting the percent coverage of the two

forms of the uniqueness TB genomes as a function of percent coverage of the full TB

genome (Fig 3.6). Both plots showed a strong linear correlation with R
2
 values over .995

and slopes near to one which would be expected if the aligned reads came from TB since

the coverages of the full TB genome and the uniqueness TB genomes would be expected

to be approximately equal. That all alignment conditions resulted in almost perfectly

129

Figure 3.6: Coverage of the Complete and Partial Uniqueness Genomes for TB

Versus Coverage of the Full TB Genome. The data from Table 3.9 for all seven

samples was plotted on one graph to demonstrate the correlation between coverage of the

full TB genome and coverage of the two forms of the uniqueness TB genome. The linear

best fit lines, their equations, and R
2
 values are also displayed. All samples demonstrated

a nearly perfect linear correlation which, when coupled with the high coverage from each

sample strongly suggested that the samples contained TB DNA.

130

linear correlation provided strong evidence that all seven of the samples analyzed

contained TB. The full uniqueness genome has a somewhat lower slope due to the

aforementioned fact that there are many small fragments of the genome shorter than the

length of the reads to which it is impossible for reads longer than these fragments to be

aligned to. When the partial unique genome consisting of the 100 largest contiguous

stretches of TB DNA was used, the slope was almost exactly 1. The unity between

percent coverage in the full TB genome and partial unique TB genome under all

alignment conditions served as strong evidence that the source of aligned reads was not

contamination by some other bacterial species, and the preservation of alignments with

no mismatches strongly argued that the source of coverage was not due to similar regions

from the human genome.

Next, the TB load in the above samples was measured. It was expected that if the

source of alignments to the TB were primarily from sources other than TB, then the TB

load for the unique genome (Loadu) would be much lower than the TB load for the full

genome (LoadF) since the uniqueness genome for TB would greatly reduce the number of

alignments coming from human DNA and bacterial DNA from the oral metagenome. In

contrast, if the source of alignments to the TB genome were primarily due to TB

contamination, it was expected that Loadu would be very similar to the load on the full

TB genome. This hypothesis was formed as follows: since a NGS experiment creates

sequences randomly across a genome, the expected value for the number of times each

base in the genome generates a read is uniform. Thus, eliminating some percent of the

genome will eliminate on average that same percent of the reads aligned to the genome.

131

When the loads were compared using the -m 10 setting for each of the samples,

every sample fell very close to 1:1 ratio between Loadu and LoadF (Fig 3.7). A plot of

this data showed a very strong linear correlation with R
2
 well above .99 further

supporting the hypothesis of TB presence in the samples.

Finally, as an aside, it was also be noted that the

 in the above samples were

well above the

 of the simulated worst case scenario for 1B nucleotides even though

the Finnish HapMap project samples were even larger in size (1.5B to 3.2B nucleotides).

Due to every piece of available evidence and every result supporting the hypothesis that

TB DNA was present in these samples, it was concluded these samples indeed contained

TB either due to TB infection or sample contamination and that the uniqueness genomes

for TB were a valuable tool for verifying the presence of TB in real samples.

3.3.5 The TB Uniqueness Genome Eliminates or Greatly Reduces the Number of

False Positive Alignments in Real Oral Metagenomic Samples

 To further measure the usefulness of the uniqueness TB genome in the detection

of TB in an oral metagenomic sample, several real oral metagenomic samples were

downloaded from the SRA to attempt to either confirm the samples as positive or

negative for TB. The samples downloaded were SRR488339, SRR488610, SRR488611,

SRR488612, SRR488613, SRR488614, SRR488615, SRR488616, SRR488617,

SRR488618, SRR488619, SRR488620, SRR488621, SRR488622, SRR488623,

SRR488624, SRR488625, SRR488626, SRR488627, SRR488628, SRR488629,

SRR488630, SRR488631, and SRR488632. Analysis of these samples by Leung, et al. by

de novo assembly followed by a phylogenomic approach where the most taxonomically

informative genes were searched for and a direct search using various databases

132

Figure 3.7: Percentage of Reads Aligned to the Complete Uniqueness Genome

Versus Percentage of Reads Aligned to the Full TB Genome. The samples from table

3.9 were analyzed to determine the percentage of reads that aligned to either the full TB

genome or the complete uniqueness TB genome. The linear best fit was determined, and

its equation and R
2
 value were displayed. The percentage of reads aligned to the complete

uniqueness TB genome was always near 64% of the reads aligned to the full TB genome.

Dividing the loads on the uniqueness genome by the ratio of the full genome length to

uniqueness genome length (1:0.64) results loadF:loadu ratio of almost exactly 1:1 as

would be expected for samples containing TB.

133

demonstrated that all samples were negative for TB (Leung et al., 2012). The reads from

these samples were aligned against the full TB and the complete uniqueness TB genome

to study whether they would detect TB in the TB-free samples. When the full TB genome

was used as the reference for alignment, reads that produced alignments to the TB

genome were found in all but two samples (Table 3.10). In samples where reads aligned

to the TB genome, loads ranged from 0.4% to 0.004% reads aligned. The sequencing

depths on these samples were in the range of 50M-100M nucleotides sequenced per

sample. Comparing this data to the simulated worst case scenario for a depth of 100M

nucleotides, the supposed loads on these samples placed them in the grey area where it

would be difficult to determine whether the alignments being generated were truly from

TB or from other bacteria since for the worst case scenario simulated tests, p<0.05 does

not occur until a load of 0.456% and p<0.01 requires an even higher TB load. However,

when the uniqueness TB genome was used as the reference, no alignments were

generated from any of the samples clearly demonstrating that these samples were indeed

TB-negative in agreement with the previous work by Leung, et al. (Table 3.10).

Although the uniqueness genome has been shown to reduce false-positive alignments by

a factor of at least 10, complete removal of false-positive alignments was somewhat

surprising. The two most likely causes for this phenomenon were that the loads were

already very low in most cases and that although there were 24 samples generated, they

all came from the same host organism. Due to this second reason especially, it was not

nearly as surprising for all samples to behave similarly.

3.3.6 Subspecies Level Detection of TB

 To demonstrate the ability of NGS to be used to quickly detect the strain of TB in

134

Table 3.10: TB Percent Load as Measured by Using the Full TB Genome and

Uniqueness TB Genome as References. Samples sequenced by Leung et al were used as

real metagenomic samples to demonstrate the effectiveness of the uniqueness TB genome

in reducing false positive alignments. Alignment was performed using the -q 10 setting.

Percentage of reads aligned is measured as

 .

135

a sample, 23 additional strains of TB were downloaded and compared to the reference TB

genome H37Rv to establish 36,220 locations within the TB genome where at least one

strain of TB differed from the reference TB genome. The strains of TB used for this

experiment were BTB05-552, BTB05-559, CCDC5079,CCDC5180, CDC1551, CTRI-2,

F11, H37Ra, H37RvCO, HN878, KZN1435, KZN4207, KZN4207-v2, KZN605,

KZNR506, KZNV2475, R1207, RGTB327, RFTB423, S96-129, UT205, and X122. Each

of these strains was aligned to H37Rv using the -m 5 setting, and after all the variant sites

were determined, for each strain, a table was generated to record the identity of each

nucleotide at the variant site. It should be reinforced that each strain did not differ from

the reference in 36,220 locations, but rather that among all 24 strains of TB, 36,220

variant sites were determined. For certain strains that were very similar to each other,

there were as few as a couple dozen differences between strains while for other strains

that were more distinct from each other, there were several thousand variant locations.

To determine the ability of NGS to detect a specific strain of TB, reads were

simulated from a selected TB strain and aligned to the full reference TB genome H37Rv.

These alignments were scanned through to search for alignments covered the locations

where variants were found. For each variant location, the identity of the aligned base in

the reads was determined and compared to the expected base at that location for each

strain of TB. This process was repeated for all 23 strains of TB as well as for the

reference strain H37Rv. In every sample tested, the strain from which the reads were

generated demonstrated the highest level of similarity to the expected sequence. Figure

3.8 demonstrates the results of determining the percentage of bases in the alignment that

matched the expected sequence for each strain for BTB05-552. Although BTB05-552

136

showed the highest level of similarity, there were only 13 more differences detected in

the expected sequence for a different strain S96-129 demonstrating how similar different

strains of TB can be to each other. In other cases, the similarities are not nearly as close.

For example, the strain most similar to CCDC5180 had over 600 differences from its

expected sequence when compared to CCDC5180. For R1207, the amount of difference

between strains was even more pronounced with the most similar strain having over 1000

differences from R1207.

Overall, this data provides preliminary evidence that it is possible to quickly

identify strains of TB or what strain of TB a new strain is most similar to using NGS and

SRmapper. Due to the sensitive nature of strain level detection and the small differences

between certain strains, crude samples contaminated with other bacteria may not be

usable to detect a specific strain of TB since a very small subset of the TB genome is

used to differentiate between strains. Although knowing the identity of a specific strain

of TB or which strain of TB a new strain is closest to does not directly determine the drug

resistance patterns in that strain, it provides a quick method to give a preliminary

suggestion of the drug resistance pattern provided the drug resistance pattern in the

strains to which it is similar are known.

137

Figure 3.8: Strain level Detection of TB Strain BTB05-552. Simulated reads were

generated from BTB05-552 and aligned to reference TB genome H37Rv. The identity of

bases aligning to each variant site in the TB genome was determined, and the fraction of

those bases that matched the expected sequence of each strain was determined and

plotted. Although BRB05-552 had the highest fraction of matching bases at variant sites,

S96-129 had only 13 fewer matching bases demonstrating the high levels of similarity

between certain strains of TB.

138

Pseudocode 3.1: 1000 Genomes Analysis

Build the SRmapper index for TB;

For each file in 1000 Genomes Project

. Download files;

. Check Number of batch jobs via bjobs;

. While submitted batch jobs > 90

. . Wait 10 seconds;

. Batch submit Processing Script

. . Decompress downloaded .sra file to .fastq file;

. . Delete compressed .sra file;

. . Align .fastq file to TB genome;

. . Delete .fastq file;

For each alignment file

. Determine which nucleotides are covered and not covered;

. Store SAM file and coverage data in permanent location;

<end>

139

Chapter IV

Extension of the Uniqueness Genome Methodology to Simultaneously

Detect Any Species Within the Oral Metagenome Using SRmapper

140

4.1 Background

 Formation of the uniqueness genome for TB demonstrated the effectiveness of the

uniqueness genomes method for one species in the oral metagenome. With the results

from the formation of the uniqueness TB genome being encouraging, an attempt was

made to expand the uniqueness genomes method to all species within the oral

metagenome. The goal of this project was to demonstrate the possibility of creating a

single uniqueness oral metagenome comprised of the uniqueness genomes of every

species in the oral metagenome and to provide preliminary evidence that multiple

bacteria can be simultaneously detected using the built-in functionality of SRmapper to

align to many reference sequences simultaneously in a nearly time-independent

mannerism. Due to the indexing process SRmapper employs, the size of a genome, or

metagenome, did not significantly affect alignment time since the dynamic determination

of key length ensures that each key occurs an average of once regardless of reference

size. Due to similarities between species in genera that contained many species in the oral

metagenome, it was unclear before performing any analysis whether the uniqueness

genome methodology could be extended to all species in the oral metagenome.

Additionally, new analysis tools were required to interpret the results of alignment to the

oral metagenome since manual analysis of the results of alignment would be prohibitively

slow. Thus, a method involving building contigs from the alignments and aligning them

to the RefSeq database using the BLASTn algorithm was devised. Although the early

results could not establish a quantitative measure of detection confidence, a qualitative

detection was established with only a small coverage of the uniqueness genome of a

species necessary to produce BLASTn results suggesting presence in samples tested.

141

4.2 Methods

4.2.1 Preparation of Species from the Oral Metagenome

 Of the species listed in Chapter 3 (Table 3.1), 262 distinct species were chosen to

build uniqueness genomes from. The reduction from 395 genomes to 262 genomes

represented the choosing of one strain or subspecies from species with multiple

sequenced strains available. For species with multiple genomes available, the most

complete genome was selected on the basis of the number of contigs formed by the

sequencing of that genome. The assembly for a genome was viewed as more complete if

there were fewer contigs from that genome. Unlike the TB genome which has been

extensively studied and fully assembled, the majority of genomes in the oral metagenome

were in an incomplete form consisting of anywhere from a few contigs that do not

overlap to several hundred fragments ranging from millions of base pairs to a few

hundred base pairs long. For each of these genomes, all contigs were merged into a single

sequence in .fasta format by padding between each contig with a short stretch of

ambiguous, N, nucleotides to prevent alignments being generated across multiple contigs.

Merging contigs into a single fasta files was chosen over concatenating contigs into a

multifasta file for ease of determining which species a contig originated from. With

several hundred contigs per genome and 262 genomes, building indexes for and aligning

to tens of thousands of reference sequences would have put an unnecessary time strain on

the project.

4.2.2 Formation of the Uniqueness Genomes for All Species in the Oral

Metagenome and of the Oral Uniqueness Metagenome

142

 To form the uniqueness genomes, indexes of each full reference genome from

each bacterial species was formed using SRmapper Buildindex. Next, for every species of

the 262 used in the oral metagenome, reads were simulated from every possible position

to form a fastq file as in Section 3.1.5. The reads from each species were aligned to all

other species one at a time excluding the species from which the reads originated from

using SRmapper Align with either the -q 6 or -m 5 setting for alignment. After alignment,

the portions of each bacterial genome that were aligned to were noted. The fastq and

SAM files were then deleted, and the next genome was used to simulate reads. This

process was repeated until every bacterial genome from the 262 selected genomes had

been used to form reads. Finally, the human reference genome was also used to simulate

reads for alignment to the bacterial references. After the covered regions had been

determined, they were removed from the bacterial reference genomes. Remaining unique

regions were separated by a string of 50 ambiguous nucleotides as described earlier to

prevent reads aligning across unique regions. Since alignment using SRmapper Align is

roughly time independent of genome size due to the formation of the index, forming one

uniqueness metagenome from all the uniqueness genomes in the oral metagenome would

result in alignment that is over 200x faster than aligning to each uniqueness genome

sequentially since alignment needs to take place once. Thus, all the uniqueness genomes

were ordered and listed alphabetically by genus then species and then concatenated into a

single uniqueness oral metagenome with each genome numerically named based on its

position in the list of genomes from the oral metagenome to facilitate easier downstream

analysis to form a single multifasta file containing all the unique portions of every

143

genome from the oral metagenome. This uniqueness oral metagenome was successfully

indexed using SRmapper Buildindex so it could be used in alignment.

4.2.3 Detection of Bacteria from the Oral Metagenome Using the Uniqueness Oral

Metagenome

 Reads were aligned to the uniqueness oral metagenome using SRmapper Align

with the -m 5 option specified to limit the number of mismatches allowed per read to 5.

The -d option was also specified to save additional data (number of reads and

nucleotides) to aid in calculating load in downstream analysis. Software modified from

the original program used in the determination of the fraction of the TB genome covered

by reads in alignment was used to simultaneously determine the coverage and load of

every genome in the uniqueness oral metagenome. Load was determined by counting the

number of reads aligned to a genome within the uniqueness oral metagenome and

dividing the number of alignments by the number of reads in the sample, which was

stored in the extra data file generated by specifying the -d option in SRmapper Align.

4.2.4 Verification of Oral Metagenomic Bacterial Detection by Using BLASTn

 To determine the ability of the uniqueness oral metagenome to detect the presence

of bacteria in metagenomic samples, the results of alignment of reads to the uniqueness

oral metagenome were analyzed by aligning aligned sequences to a more comprehensive

database, namely BLASTn to determine whether the aligned reads originated from any

other bacteria including those possibly not listed in the oral metagenome. However, since

BLASTn was poorly suited to perform alignment of the short reads from a sequencing

experiment or even the subset of reads aligned to a specific uniqueness genome within

the uniqueness oral metagenome, aligned reads were first assembled into contigs by

144

determining the consensus sequence for alignments. The consensus sequence is formed

by choosing the nucleotide that aligned most often to each position in the reference

genome. Since even the number of contigs formed precluded usage of BLASTn to search

for alignments to these contigs, a selection method was employed to choose a subset of

contigs for alignment by BLASTn. Figure 4.1 demonstrates the overall methodology

used to verify the presence of bacterial species in a sample.

Simply choosing the longest contigs was tested but rejected due to not

demonstrating any correlation between contig lengths and correctly identifying the

bacteria aligned to by BLASTn (criteria for determining the correct origin for contigs is

described subsequently). It was speculated that long contigs could possibly be biased

towards being at least partially formed by false-positive alignments. Due to the random

nature of NGS read creation, contigs would be expected to follow a normal distribution.

If both true-positive and false-positive alignments were generated in a specific region,

contigs from these regions would be expected to be longer than the average lengths of

contigs being formed since additional false-positive alignments produced could skew

contig length. The method eventually chosen was to use Shannon Entropy to measure the

amount of disorder in contigs. Shannon Entropy is defined as

 () ∑ Eq 6

where H denotes Shannon Entropy, and Pi denotes the probability of finding a specific

nucleotide at the position. The more disagreement there is for the identity of a base at a

specific location, the higher the Shannon Entropy will be at that location. As the amount

of disagreement decreases, Shannon Entropy approaches 0 since for the only occurring

145

Figure 4.1: Validation of Bacterial Detection by BLASTn Analysis. To validate the

results of alignment to the uniqueness oral metagenome using SRmapper, alignments to

each species within the oral metagenome were analyzed using a more comprehensive

database, BLASTn, to verify that the aligned reads originated from the species to which

they were aligned. Since BLASTn cannot handle the large number of alignments formed

in NGS analysis, overlapping alignments were first used to form contigs. Since even the

number of contigs proved to be too high for analysis using BLASTn, these contigs were

sorted by Shannon Entropy and the best 50 or 100 contigs for each species were

formatted for upload to BLASTn. After the BLASTn analysis, a final manual analysis

was performed to determine whether the BLASTn results indicated a species was present.

146

nucleotide, Pi=1 and () and () by L’Hospital’s Rule.

Thus, for cases where there is no disagreement for the identity of the base, H=0.

 Figure 4.2 demonstrates the formation of a consensus sequence and calculation of

Shannon Entropy for bases in a contig. Shannon Entropy was used to determine contigs

under the hypothesis that if multiple bacterial species were aligning to the same region of

DNA, there would be more disorder in the consensus sequence since multiple bacteria are

more likely to have somewhat different sequences that align to a region compared to a

single bacteria whose reads should all form the same sequence. The contigs with the

lowest Shannon Entropy that aligned to each reference within the uniqueness oral

metagenome were converted into a format usable in a BLASTn search. Using Shannon

Entropy to choose contigs showed a modest correlation between lower Shannon Entropy

and correctly identifying the species being searched for. The database used for alignment

in BLASTn was changed from the default “Nucleotide Collection (nr/nt)” to “RefSeq”

and the maximum matches in the query range was set to 1. Results from the BLASTn

search were automatically analyzed by software developed to measure the fraction of the

contigs that aligned to various sequences in the BLASTn database. A bacterial species

was considered present if a higher fraction of bases from the contigs originating from

SRmapper alignments was found to align to the species from which it supposedly

originated than any other species in the BLASTn results. A genus was considered present

if a higher fraction of bases from the contigs aligned to the originating genus than any

other genus in the BLASTn results.

4.2.4.1 Formation of Contigs from Alignment and Using Shannon Entropy to Select

Contigs

147

Figure 4.2: Consensus Sequence Formation and Calculation of Shannon Entropy:

Two sample alignment scenarios are provided. The scenario on the left demonstrates the

expected results of three reads originating from a different strain reference 1 of a bacteria

being aligned to reference 1. The consensus sequence is shown below the alignments.

The position in highlighted in the blue box demonstrates how the consensus sequence can

differ from the reference sequence but still maintain a Shannon Entropy, H(x), of 0 at that

position since the is no disorder in the consensus sequence. Cases where one alignment

produced a match at a given nucleotide while another alignment produced a gap or

deletion at that position would not be considered a zero entropy consensus since different

results were obtained for that position. The scenario on the right demonstrates the

expected results of three reads each originating from different species being aligned to

reference 1. The consensus sequence is again displayed below the alignments. The

position highlighted in the blue box demonstrates that for positions where there is

disagreement between the alignments, the base occurring most often at that position is

chosen to form the consensus sequence. This disagreement leads to a nonzero value for

H(x) at the position in the blue box.

148

 Formation of contigs was accomplished by development of in-house software that

scans through alignment files to record the number occurrences of each base aligning to a

specific location in the reference sequence. To form contigs and determine their Shannon

Entropy, the maximum length for each bacterial genome in the oral metagenome was set

to 10Mb. Two dimensional arrays were used for each reference to record the number of

times each base aligned to every position in a reference genome from the uniqueness oral

metagenome. For each reference genome being searched for simultaneously, 50 million

integer spaces were stored in memory (10 million bases per reference multiplied by the

four different bases and the total number of nucleotides aligned to a base). This required

200MB of memory per reference being scanned. Since scanning through a file was the

slowest step in calculating Shannon Entropy, 10 genomes were used in each reference

resulting in the use of approximately 2GB of memory for the program to run. Giving each

reference sequence in the uniqueness oral metagenome a numerical name (Section 4.1.2)

facilitated easy tracking the reference genomes in which alignments were being searched

for. After the alignment file had been scanned through and all alignments found and the

number of times each base occurred at each location was determined, the Shannon

Entropy was calculated for each position to which bases aligned. Two files were created

to store the output of calculating the Shannon Entropies for all alignments to the

uniqueness oral metagenome. In the first file, the number of times each base aligned to a

location was stored along with the Shannon Entropy for that position. In the second file,

contiguous stretches of sequence with aligned bases were used to form contigs by

choosing the base that most often aligned to each position in the reference. The average

Shannon Entropy for each contig was calculated by taking the average of all the Shannon

149

Entropies from the bases that formed the contig. The reference and location within the

reference of the first base in the contig was also stored along with the length of the

contig.

 A second piece of in-house software was developed to sort through the contigs

and select a subset of them to be used in BLASTn analysis. Three options for sorting

through the contigs were permitted. The first was to sort by the longest contig length; the

second was to sort by lowest Shannon Entropy then contig length if two contigs had the

same Shannon Entropy; the third was to sort by a combination of contig length and

Shannon Entropy where contigs were sorted by higher values of

.

Additionally sorting could be performed to either sort by strictly listing the best contigs

first or by grouping the best contigs for each species so that each species could be

searched for in BLASTn. If the option to group contigs by species was chosen, another

option allowed for a set number of the best contigs for each species to be chosen since

BLASTn could not handle thousands of contigs per species. Even with only selecting the

50 or 100 best contigs per species, there were often too many contigs for BLASTn to

perform alignment in the maximum amount of time allowed for a job. Thus, another

option was created that allowed for users to split the file to upload to BLASTn into

several files each containing a user defined number of the references to which contigs

were aligned. This value was usually set to either 10 references or 25 references.

 The sorting algorithm originally used was bubble sort due to its simplicity to

implement and the belief that a more complex, more efficient sorting algorithm was

unnecessary. Bubble sorting, or bubbling, sorts a list by comparing two adjacent values,

Vi and Vi+1, in the list and swapping them if the larger value is further down in the list.

150

Next Vi+1 and Vi+2 are compared with the same swap being performed and this processes

is continued until the end of the list is reached. The list is then scanned through multiple

times until no swaps are performed in a scan. At the end of each scan, the largest

unsorted value reaches its position in the sorted list by “bubbling” through the list.

Bubble sort has an average time required to perform the sort of O(N
2
) for a list of N items

meaning that as N increases, the time require increases by N
2
. For many cases using

bubble sort proved satisfactory, but in the cases where several hundred thousand contigs

required sorting, the sorting and selection process required over half an hour of time

which was deemed too slow.

 Bubble sorting was replaced by comb sorting to facilitate faster sorting. Although

not as time efficient as mergesort, heapsort, or quicksort, comb sorting was much easier

to implement and reduced the time required to perform sorting of lists containing several

hundred thousand contigs from over half an hour to less than five seconds. Comb sorting

works on the same swap principle as bubble sorting but utilizes a gap between compared

items in the list that shrinks every time the list is scanned. Since performing swaps is

usually the most time-intensive portion of a sorting algorithm, comb sorting greatly

reduces time by quickly moving values that originally are near the end of a list but need

to be located near the front of the list and visa-versa. In practice, a shrink factor of 1.3

was used meaning that every time the list was scanned, the size of the gap was divided by

1.3 until a gap size of 1 was achieved.

 Output was generated such that output files could be fed directly into BLASTn by

using the format of a header line starting with a ‘>’ symbol followed by reference name

followed by contigs each being placed on a new line. Starting a line after a contig

151

sequence with a ‘>’ denoted to BLASTn that a new reference was being used. Thus,

multiple references could be loaded into one file for direct submission to BLASTn.

4.2.4.2 BLASTn Analysis on Selected Contigs

 For each search using BLASTn, two files forming the results of the BLASTn

search were downloaded for analysis. The “Text” file was downloaded for genus and

species names for each alignment generated. The “Hit Table(text)” was downloaded for

what fraction of the contig bases aligned to the reference sequence. Software was

developed to analyze the Text and Hit Table(text) files to determine the percentage of

bases from contigs that aligned to each reference sequence in the BLASTn search. The

software tracked the BLASTn coverage on the reference sequence for the species from

which the reads were aligned, the highest BLASTn coverage from other members of the

same genus from which the reads were aligned, and the highest BLASTn coverage from

other species outside the genus from which the reads were aligned. These results were

reported for each species in the uniqueness oral metagenome. A BLASTnspecies score and

BLASTngenus score were also reported. These scores were defined as follows:

 Eq 7

 Eq 8

where species coverage was the fraction of the bases from the contigs that BLASTn

aligned to the same species that the reads were aligned to by SRmapper, genus coverage

was the highest fraction of the bases from the contigs that BLASTn aligned to the species

in the same genus as the species that the reads were aligned to by SRmapper, and

nonspecies coverage or nongenus coverage were the highest fraction of the bases from

the contigs that BLASTn aligned respectively to a species or genus outside that from

152

which the alignments in SRmapper were generated. This data was plotted against

SRmapper alignment coverage of each uniqueness genome to determine whether there

was a correlation between BLASTn scores or a cutoff for positive BLASTn scores.

4.3 Results

4.3.1 Uniqueness Reference Genomes Can Be Created for All Species in the Oral

Metagenome

 The first formation of the uniqueness oral metagenome used the -q 6 alignment

setting as had been performed for creation of the uniqueness TB genome. Assuming an

average genome length of 5Mb, this project required the alignment of 34Tb of bacterial

DNA (5Mb per bacteria multiplied 100 bp per read multiplied by 262 different bacteria

each aligning to the other 261 bacteria in the oral metagenome) and 78Tb of human DNA

(3Gb genome multiplied by 100 bp per read multiplied by 262 genomes to align against).

The first formation of the uniqueness oral metagenome resulted in the formations of

uniqueness metagenomes for many species which left a very small fraction of the bases

available for use (fig 4.3). Roughly a third of the species present had more than 30% of

the bases from their genomes covered by other species; nearly 10% had over 80% of their

bases covered by other species, and over 5% had less than 10% of their genome available

for use. In these cases, this meant a relatively small portion of the genome was available

for usage as the uniqueness genome for that species. This was attributed to setting too

lose a constraint on what was defined to be similar between two different genomes. In the

case TB, much of the genome was not covered by reads from other genomes due to the

fact that TB only had one other bacterial species, Mycobacterium leprae, in its genus

included in the oral metagenome. Bacteria from outside the genus were

153

Figure 4.3: Initial Construction of the Uniqueness Oral Metagenome. Uniqueness

genomes for each of the species in the oral metagenome were generated using SRmapper

with the -q 6 option. The distribution of the fraction of each genome covered is displayed.

Fraction covered denotes what portion of each genome is not unique to that particular

species and is removed in the formation of the uniqueness genome for that species.

154

expected to demonstrate lower coverage of the TB genome due to their genomes being

less similar to the TB genome than another species within the mycobacterium genus.

Checking the coverages from each species on the TB genome, this proved to be the case.

Looking more closely at the distribution of coverages of species in the oral metagenome,

it was seen that genera containing many species from the oral metagenome were

especially affected by the fairly relaxed policy on creating the uniqueness oral

metagenome (fig 4.4). The genus most affected was Streptococcus which contained 36

species in the oral metagenome. Of these 36 species, 11 had coverages higher than 80%

of their genome. The other genera with high number of species were not as heavily

affected but did reveal some species with high coverages.

 To reduce the number of species with a high percentage of their genomes covered

by reads from other species within the oral metagenome and therefore with only a small

portion of their genome available to align to using the uniqueness genome strategy, the

alignment conditions in creating the uniqueness genome was tightened using the -m 5

option, and the uniqueness genomes were rebuilt. Upon completion of this second build

of the uniqueness oral metagenome, it was determined that a much larger fraction of the

genomes of the various bacteria were available for use in their respective uniqueness

genomes (fig 4.5). No species displayed coverage over 90% of its genome and less than

5% of species displayed a coverage of 80% or more of their genome. Using the -m 5

conditions, over two-thirds of bacterial species had less than 10% of their genomes

covered by reads from other species leaving the majority of their genomes available for

use. Since this second creation of the uniqueness oral metagenome genome displayed a

much higher proportion of available sequence for use in alignment to the uniqueness oral

155

Figure 4.4: Distribution of Coverages for Genera with a High Number of Species in

the Oral Metagenome. The distribution of the coverages for the four genera with the

highest number of different species in the Oral Metagenome is displayed. The number of

species in Streptococcus, Actinomyces, Lactobacillus, and Prevotella were 36, 17, 24,

and 36 respectively.

156

 Figure 4.5: Rebuild of the Uniqueness Oral Metagenome. Uniqueness genomes for

each of the species in the oral metagenome were generated using SRmapper with the -m

5 option to allow a maximum of 5 mismatches per alignment. The distribution of the

fraction of each genome covered is displayed. Fraction covered denotes what portion of

each genome is not unique to that particular species and is removed in the formation of

the uniqueness genome for that species.

157

metagenome, it was used in all tests validating the possibility of using whole-genome

NGS as a detection agent for any species within the oral metagenome by using SRmapper

and the uniqueness oral metagenome.

4.3.2 Detection Validation through BLASTn and Detection Limits for Species-

Level and Genus-Level Detection

 To determine the effectiveness and accuracy of the uniqueness oral metagenome

in detecting any bacterial species in the oral metagenome, several real datasets were

aligned to the uniqueness oral metagenome. Since the uniqueness oral metagenome was

formed using the -m 5 option by SRmapper in alignment of simulated reads from the

various species in the oral metagenome, the -m 5 option was also used in the alignment of

real metagenomic samples. The samples used were SRR331033, SRR331034,

SRR331035, SRR769511, SRR769512, SRR769517, SRR769521, SRR769522,

SRR769535, SRR769536, SRR769539. After alignment of the reads to the uniqueness

oral metagenome, the 50 best contigs from alignments to each species as determined by

lowest Shannon Entropy were selected and formatted to be used in a BLASTn search. For

every species in the oral metagenome, the coverage of the contigs by that species was

determined as well as the highest coverage from other species in the same genus and the

highest coverage from species outside the genus. From this information, the

BLASTnspecies and BLASTngenus scores were calculated for each species in the oral

metagenome (fig 4.6 and fig 4.7). The results shown are for SRR331035 and are fairly

representative of all tests performed. For all tests analyzed, an alignment coverage of

0.5% or higher on the uniqueness genome for any species in the oral metagenome always

resulted in the presence of that species being verified by the BLASTn analysis regardless

158

A

B

C

159

Figure 4.6: BLASTnspecies Scores Versus SRmapper Alignment Cover for

Uniqueness Genomes in the Oral Metagenome. The reads from SRR331035 were

aligned to the uniqueness oral metagenome using SRmapper with the -m 5 options and

coverages on each of the uniqueness genomes were measured. Contigs from alignments

were analyzed using BLASTn as described earlier. BLASTnspecies score for each species

was determined by dividing the BLASTn query coverage for the species from which the

contigs aligned by the highest BLASTn query coverage for any other species including

those outside the oral metagenome. Panel A, B, and C focus on coverages ranging from

0% to 100%, 0% to 10%, and 0% to 1% respectively. The maximum BLASTnspecies score

obtainable was ln(100/1) = 4.6. For SRR331035, no SRmapper alignment coverages

higher than 0.3% resulted in negative BLASTnspecies scores although in certain other

samples SRmapper alignment coverages as high as 0.5% resulted in negative

BLASTnspecies score.

160

A

B

C

161

Figure 4.7: BLASTngenus Scores Versus SRmapper Alignment Cover for Uniqueness

Genomes in the Oral Metagenome. The reads from SRR331035 were aligned to the

uniqueness oral metagenome using SRmapper with the -m 5 options and coverages on

each of the uniqueness genomes were measured. BLASTngenus score for each species was

determined by dividing the highest BLASTn query coverage for the genus from which

the contigs aligned by the highest BLASTn query coverage for any other species outside

that genus including those outside the oral metagenome. Panel A, B, and C focus on

coverages ranging from 0% to 100%, 0% to 10%, and 0% to 1% respectively. For

SRR331035, no SRmapper alignment coverages higher than 0.2% resulted in negative

BLASTngenus scores, and this pattern held true for all samples analyzed.

162

of the sample being analyzed even though species from outside the oral metagenome

were included in the BLASTn search. An alignment coverage of 0.2% or higher on the

uniqueness genome for any species in the oral metagenome always resulted in the

presence of the genus of that species being verified by the BLASTn analysis regardless of

the sample being analyzed. Unfortunately, a correlation between the coverage of the

uniqueness genomes and the corresponding numerical value of the BLASTn scores could

not be identified. This is likely due to the variable amount of alignment overlap from

other species mostly outside the oral metagenome. Thus, although the BLASTn query

coverage was always high for species with coverages over a few tenths of a percent, the

BLASTn scores varied due to varied scores in the denominator component of the score.

Although a precise relationship between coverage and BLASTn score could not be

obtained, using the BLASTn alignments was able to validate that the uniqueness genome

demonstrated specificity for the correct species in identifying bacterial presence by

alignment of reads in a sample using SRmapper. Since the coverages represented to

correctly identify the species in question were also very low, the uniqueness genome

method also demonstrated a high sensitivity.

 The likelihood verifying the presence of a bacterial species or genus for

SRmapper alignment coverages below 0.5% was also measured (Table 4.1). For species

level detection, about 85% of coverages between 0.01% and 0.5% resulted in the

verification of the species being present by using BLASTn and about an 80% verification

rate for species level detection at coverages below 0.01%. Genus level detection fared

slightly more favorably with over a 99% successful identification rate for SRmapper

163

Table 4.1: Comparison between SRmapper Coverage Ranges and Bacterial

Detection Rates. Datasets SRR331033, SRR331034, and SRR331035 were used to

determine the correlation between SRmapper alignment coverages and how often the

presence of the detected bacteria was verified by using BLASTn searches. Detection rate

was determined by counting the number of bacterial species with SRmapper coverages in

the selected ranges. Those with positive BLASTnspecies or BLASTngenus scores were

considered to have been confirmed as present in the sample. All genus scores were higher

than species scores since correctly identifying a species guaranteed the genus was

correctly identified as well. However, correctly identifying the genus did not guarantee

the species was correctly identified.

164

alignment coverages over 0.1% and higher than an 85% successful identification rate for

SRmapper alignment coverages even lower than 0.01%.

 Although these results are preliminary, they demonstrated two important points.

First, they demonstrated that there were no species within the oral metagenome that were

not viable for detection using the uniqueness genomes method developed. Although a

small percentage of genomes had more than 80% of their bases similar to other genomes

in terms of portions of the genome to which alignments could be generated to in an NGS

experiment, none showed a prohibitive level of coverage where no portion or only an

extremely small portion of the genome was available for use. A large majority of

genomes demonstrated relatively minor coverage from all other species combined

making them excellent candidates for detection using the uniqueness genomes method.

Secondly although limited in number, the preliminary results from alignment of real

datasets to the uniqueness oral metagenome demonstrated that hundreds of bacteria can

be simultaneously detected using NGS technology, SRmapper, and the uniqueness

genome methodology and that preliminary data suggested that thresholds can be set for

coverage levels to warrant a confident detection or, for lower coverage levels, suggest the

presence of bacterial species or genera. The work performed here was primarily limited

by the lack of available whole-genome sequencing data for the oral metagenome. As the

amount of available data continues to increase, better measurements of the ability of NGS

to be used as a detection tool to test for the presence of bacterial species will become

possible.

165

Chapter V

Conclusions and Future Directions

166

5.1 Overview

 The research presented in this thesis has demonstrated several important advances

in the processing of NGS data and the application of NGS as an agent for detecting the

presence of bacteria in crude metagenomic samples. First, for the first time in several

years, it was demonstrated that genome-hashing algorithms have the ability to outperform

BWT-based algorithms in terms of alignment speed while retaining sensitivities similar

to BWT methods. The source code for SRmapper was distributed freely as open source

software to the academic community for use, analysis, or modification. Secondly, a

method was developed which can be used to quickly identify the presence of TB in

metagenome samples, and it was shown that use of this uniqueness genomes method both

increases the sensitivity for confidently detecting TB at low sample loads while at the

same time greatly reducing the rate of false positive alignments to the TB reference

genome. Finally, it was demonstrated that this uniqueness genomes methodology has the

ability to be applied to all genomes within the oral metagenome, and initial analysis

demonstrated that combining the ability of SRmapper to simultaneously search through

hundreds of references with the uniqueness genome methodology to reduce false positive

alignments suggested that it was possible to simultaneously detect multiple bacteria

within the oral metagenome. In this final chapter, a brief summary of the key findings

from each portion of this thesis will be reviewed, and future directions for each area

within this thesis will be discussed.

5.2 SRmapper

5.2.1 Implementation and Results

167

 SRmapper was demonstrated to be between 2X-8X faster than the leading BWT-

based alignment software, BWA, depending on alignment conditions selected. This

significant speed increase was obtained while retaining similar sensitivity to BWA.

SRmapper was shown to allow increased mismatches in a less time dependent manner

than BWA thereby allowing for detection of reads with higher mismatch rates.

Additionally, it was shown that SRmapper overcame the traditionally higher memory

usage requirements of genome-hashing algorithms. At the time of its implementation,

SRmapper was the only fast algorithm capable of performing pair-end alignment on a

system with 4GB of total memory whereas BWA requires a higher amount of memory.

 SRmapper has several features not available in any other alignment algorithms.

Most importantly, it utilizes a probabilistic methodology to dynamically and

automatically determine the number of mismatches allowed between the read and

reference depending on read length, reference length, and desired alignment quality.

Other alignment algorithms set a cap for mismatches depending solely on read length in

the case of BWA or an attempt to retain a fast alignment speed in the case of bowtie. The

probabilistic methodology in SRmapper removes any guesswork from the user on the

number of mismatches that can be permitted to confidently generate alignments.

Additionally, SRmapper allows for the outputting of unaligned reads to a fastq file to be

analyzed by other programs. Although SRmapper is exceptionally fast and moderately

sensitive, there is no single, perfect alignment algorithm. Unlike other algorithms,

SRmapper readily accepts this fact and includes a built in method to use SRmapper in

conjunction with other algorithms in the hopes that a slower but more sensitive algorithm

168

may be able to extract a small amount of additional information while not requiring all

the extra time to align reads that can quickly be aligned by SRmapper.

5.2.2 Future Directions for SRmapper

 Although SRmapper was carefully designed in terms of its implementation to

make its methods as fast as possible, there are always multiple ways to implement the

same algorithm, and it is not outside the realm of possibility that one or more of the

routines in SRmapper was not implemented in the most efficient manner. Indeed,

SRmapper has been through dozens of revisions designed solely with the intentions of

increasing speed. These revisions have had varying degrees of success with many of them

occurring before the release of SRmapper to the academic community. However, even

after its initial release, revisions and optimizations to SRmapper have resulted in an in-

house version of the algorithm that is approximately 20% faster than the publically

available versions although constantly releasing update versions of SRmapper to the

public was not deemed necessary. Although the more successful and important

optimizations were described in detail, it was not feasible to describe in detail every

attempt made to increase the performance of SRmapper.

Currently, the slowest portion of the algorithm is the extension of alignments by

performing a base-by-base comparison. This comparison is made slower by the fact that

the compressed reference has to be decompressed to compare the bases in the read to

those in the reference. Several attempted optimizations have been performed on this

portion of the algorithm with varying degrees of success. Currently the method used

involves calculating the uncompressed sequence for the two bit bases to compare them to

the bases in the read since a bitwise comparison method proved to be less efficient than

169

decompression. A plausible optimization likely to increase alignment speed would be to

instead store all the possible decompressions for the 2-bit bases in a table similarly to the

method employed to store probabilities for mismatches and hashes. This would exchange

calculations for lookups, and since it is almost always faster to perform a lookup than a

calculation, it would be expected that implementing this optimization would result in

increased alignment speed. Alternatively, since memory usage is becoming less of an

issue as computers continue to improve, SRmapper, or a large memory version of

SRmapper, could be designed to not use a compressed reference genome. This would

allow for a much faster extension portion of alignment at the expense of using more

memory.

Additionally, SRmapper lacks a few of the features of the more popular alignment

algorithms. The most important among these are gapped alignment with

insertion/deletion detection and Smith-Waterman pair-end alignment. Since SRmapper

does not require alignment of the entire read at the same time, implementing gapped

alignment would theoretically not be very difficult with two obvious methods available.

The first would be to use the index twice to search for seeds for alignment. In this

method, if seeds could be found on each side of a gap, extension on each of these seeds

could be performed. This method has the advantage of allowing for a gap of any size

since the index can seed to any portion of the genome. One potential drawback of this

method is that it requires two seeds, so alignments that have a high number of

mismatches as well as a gap would likely be missed. The second method for gapped

alignment is more traditional and likely would be easier to implement. Alignment would

proceed as currently described for SRmapper until a read failed to be aligned with no

170

gaps. For those reads, the bases used in extension of the alignment would be shifted left

or right on the reference to attempt to find a gapped alignment. Methods similar to this

are in use and limit gap sizes to a few nucleotides. Larger gaps are not allowed using this

method since shifting the bases in the read more times and comparing each of these shifts

to the reference requires more time for alignment.

Smith-Waterman alignment is a method used to produce pair-end end alignments

when only one of the pairs in an alignment can be aligned by the primary alignment

algorithm. Smith-Waterman alignment uses local alignment to attempt to align the mate

from a pair-end read that could not be aligned. This method is usually time-consuming

but allows for the alignment of a small additional portion of the reads, thereby increasing

the sensitivity of the alignment algorithm. Since SRmapper already stores the entire

reference sequence in a compressed format, it is theoretically possible to perform a local

alignment on mates in a pair-end read that cannot be aligned without Smith-Waterman

alignment. Practically, this would involve either performing local alignment without the

index to seed alignments or would allow alignments with a higher number of mismatches

than normally allowed by the probability function of SRmapper. Allowing a higher

number of mismatches has been deemed acceptable since it produces valid pair-end

alignments. As read lengths in read qualities increase, the number of unaligned reads has

decreased reducing the need for Smith-Waterman alignment. However, since a large

portion of sequencing currently performed is pair-end sequencing, an additional method

to increase the sensitivity of pair-end alignment is a useful feature to have.

Finally, several other algorithms take advantages of modern computing

technologies. Many algorithms now allow parallel processing, and a few take advantage

171

of graphical processing units (GPUs) to increase alignment speed. As SRmapper stores a

quarter of its index in memory at any one time and writes alignments from each quarter

of the reference to a temporary file, it would be easily imaginable for a version of

SRmapper to be created where each processor handles alignments to one quarter of the

index. These alignments could be written to file and final alignments could be chosen

from them in the same manner that is currently employed. This would result in nearly a

four-fold increase in SRmapper alignment speed depending on how efficiently the

parallelization process could be implemented.

5.3 Detection of TB in Oral Metagenomic Samples

5.3.1 Summary of Results

 By comparing every possible 100 bp read that could be generated from bacterial

species in the oral metagenome to the TB reference genome H37Rv, it was possible to

create a version of the TB genome, the uniqueness TB genome, which contained only

portions of the TB genome that were not similar to any other species in the oral

metagenome. In the process of ensuring that variety in the human genome from

individual to individual did not result in significant overlap between the human genomes

and TB genome by analyzing 46Tb of DNA from the 1000 genomes project, it was

discovered that several samples from the Finnish HapMap project were possibly

contaminated with TB DNA. By developing software to simulate the results of a

metagenomic sequencing project, it was determined that using the uniqueness oral

metagenome reduced the rate of false positive alignments to the TB genome by an order

of magnitude and using the uniqueness genome for alignment of metagenomic samples

increased the ability of SRmapper to confidently detect TB at low loads for low

172

sequencing depths. Revisiting the samples from Finnish HapMap project from the 1000

genomes project, extensive evidence was provided that these samples were indeed

contaminated with TB. High coverages of the uniqueness genome even under alignment

conditions allowing no discrepancies between the reads and reference, proper correlation

between the fraction of reads aligned to the full TB reference genome and uniqueness TB

reference genome, and exceptionally high coverage rate of the uniqueness TB reference

genome all strongly suggested that these samples were indeed contaminated with TB

DNA. In terms of TB-negative samples, the usage of the uniqueness genome completely

eliminated false-positive alignments in several samples known to not contain TB DNA.

Although the complete elimination of false-positive alignments was not expected for all

samples, the results again demonstrated the ability of the uniqueness TB genome to

greatly reduce background noise due to similarities between the TB genome and other

genomes within the oral metagenome. Finally, a few experiments were performed to

provide preliminary evidence that NGS and SRmapper have the ability to detect TB at a

subspecies level.

5.3.2 Future Directions in Detecting TB Using NGS and SRmapper

 Although all the presented results are very encouraging and demonstrate the

effectiveness of NGS, SRmapper, and uniqueness oral metagenome in detecting the

presence or absence of TB in a crude sample containing DNA from many species within

the oral metagenome, additional work would be necessary to transform this detection

method into an effective and publically available detection tool or diagnostic method for

TB infection. The largest current limitation to this method is a lack of available oral

metagenomic sequences with known bacterial content to use. Although simulations

173

demonstrate that the detection limit for this method is quite low, this does not provide

conclusive evidence that this method would work in the real world. To firmly establish

the practicality of this method, collaboration with experimental groups would need to be

established with the purpose of obtaining real samples with known patterns of bacterial

presence and absence especially for samples positive for TB. Among these, it would be

especially beneficial to be able to validate that the individuals from whom samples were

generated for the Finnish HapMap project were indeed TB positive.

 Although it was demonstrated that it was possible to detect TB in crude samples

containing multiple bacteria from the oral metagenome, the abilities of NGS as a

detection tool are expected to far exceed the ability to detect the presence or absence of a

species. Since NGS results in a detection test at the nucleotide level, the possibility for

using NGS to perform subspecies detection exists. This allows for the possibility of using

NGS to not only provide a conclusive diagnostic for TB but to also identify either the

strain of TB infection or the drug-resistance pattern in a TB infection. Again, the largest

obstacle in the way of performing this type of analysis is the lack of available information

on mutations resulting in drug resistance. Even for strains of TB with known resistance

patterns, the genomic basis for these resistance patterns has not always been established.

Additionally, the complete set of mutations resulting in drug resistance is unknown in

part due to the fact not all mutations resulting in drug resistance are likely to have ever

existed in nature and been observed through sequencing. Continued monitoring of the

literature for drug resistance patterns in TB as well as establishing collaborations to

sequence drug resistant strains of TB to identify additional mutations that result in drug

174

resistance will bolster the ability of NGS to be used for bacterial detection and could

eventually shift NGS into a diagnostic tool for use in hospitals or clinics.

5.4 NGS as a Metagenomic Detection Tool for the Oral Metagenome

5.4.1 Summary of Results

 Although certain genera in the oral metagenome contain many species, the

method utilized to construct the uniqueness genome for TB was also successfully

deployed to create uniqueness genomes for every species in the oral metagenome.

Although the initial alignment settings, -q 6, proved to be too loose in terms of required

similarity to leave significant portions of all genomes for alignment, reducing the number

of mismatches allowed for a 100 bp read to be considered similar to a reference genome

using the -m 5 option with SRmapper resulted in the successful formation of uniqueness

genomes for all species within the oral metagenome. Using the -m 5 alignment

conditions, nearly 70% of all genomes demonstrated greater than 90% uniqueness, and

less than 5% demonstrated between 10%-20% uniqueness suggesting that all genomes

within the oral metagenome can be detected using the uniqueness genomes methodology.

Alignment to several real metagenomic samples suggested that regardless of sample or

species within the oral metagenome, coverage of 0.5% or higher always resulted in the

presence of the species being verified by BLASTn and a coverage of 0.2% or higher

always resulted in the presence of the genus the species belongs to being verified. Lower

coverages demonstrated that the uniqueness genomes methodology could still sometimes

be used to verify the presence of a bacterial species or genus.

5.4.2 Future Direction in Detection of All Species from the Oral Metagenome

175

 Preliminary results have demonstrated that the uniqueness genomes for the oral

metagenome allow for the possibility that all species within the oral metagenome can be

detected using uniqueness genomes methodology. Preliminary analysis of available data

has provided theoretical evidence that this methodology does in fact correctly identify

any species present in an oral metagenomic sample. However, and as with identifying TB

via NGS, there is a lack of available oral metagenomic data available - especially data

that has had its bacterial content evaluated by other means. These two factors have thus

far precluded the establishment of a quantitative measure of confidence in detection of

bacterial species within a metagenomic sample and have limited or detection

methodology to a qualitative call. Thus, as in the case of using NGS to identify TB,

furthering this technique would require experimental collaboration to acquire samples of

known bacterial content. Assuming collaboration could be established, the first goal

would be to attempt to establish a quantitative method by which the confidence in

detection could be determined. This would be determined by collecting coverages on

multiple samples positive and negative for each species within the oral metagenome.

Ideally, samples containing different loads of various bacteria would be analyzed to

monitor the effect of loads on coverage.

 The long term goal of this project is to eventually establish methodology by

which NGS can be used as a diagnostic tool for bacterial infection. Although the

methodology developed and discussed in this thesis deals exclusively with the oral

metagenome, there is potentially applicability for any human metagenome including the

lung, skin, and gut metagenomes. For NGS to successfully be applied as a diagnostic

tool, a fast, reliable, and relatively inexpensive method would need to be established.

176

Although not explicitly focused on in the proof of concept testing in this thesis, the NGS

analysis methodology developed here lends itself well to be fast enough for use in a

clinical or hospital setting, and the amount of DNA required to be sequenced for this

method suggests that testing would be inexpensive. Given an alignment rate of 150Gb per

day for SRmapper, alignment of a sample containing 100M nucleotides would take

approximately one minute. Downstream of the SAM alignment file to determine loads

and coverages on each species requires less than half a minute of computer time. Thus,

the analysis performed would require approximately 90s for a 100Mb sequencing and

approximately 15 minutes for a 1Gb sequencing. Using a cost of $0.10 per million

nucleotides sequenced, performing the sequencing would cost $100 for 1Gb sequencing

depth making it extremely feasible from a cost perspective. Thus, from a theoretical

standpoint, using SRmapper and the uniqueness genome methodology makes NGS as a

diagnostic tool feasible in terms of cost and the time necessary to perform analysis of a

sequencing sample. Preliminary results suggest that this method also has the sensitivity

required for diagnostics. Thus, future work should focus on more strongly establishing

quantitative correlations between measurable parameters from alignment - load,

coverage, and Shannon Entropy of alignments - and presence or absence of a bacterial

sample. As mentioned earlier, this will require collaboration for the acquisition of large

amounts of sequencing data from samples positive and negative for the range of species

in the oral metagenome. Figure 5.1 provides a hypothetical scheme of how NGS and

SRmapper could one day be used as a diagnostic tool for bacterial infection.

177

Figure 5.1: Theoretical Diagnostic Scheme for Using NGS to Diagnose Bacterial

Infection. Current sequencing technologies can generate sequencing data in as little as

two hours with another two to six hours of time needed for sample preparation. Both the

time required for sequencing as well as the amount of sample preparation are expected to

be reduced in the future. A hypothetical diagnostic scheme would start with a sample -

saliva, sputum, blood, skin - being taken from a patient. Minimal preparation would be

utilized with the purposes of generating sequencing data as quickly as possible. Analysis

of sequencing data using SRmapper and downstream analysis software developed in-

house have demonstrated that the analysis of this NGS data would require approximately

15 minutes of time at a sequencing depth of 1Gb and only 90s at a sequencing depth of

100Mb. Future analysis of metagenomic samples would eventually lead to being able to

assigning confidence levels to any diagnosis. Further analysis of alignment data to certain

species could be used to quickly determine known drug resistance patterns.

178

References

Agarwala, R., T. Barrett, J. Beck, D. A. Benson, C. Bollin, E. Bolton, D. Bourexis, et al.

2015. "Database Resources of the National Center for Biotechnology

Information." Nucleic Acids Research 43 (D1): D6-D17.

Alkan, C., J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F. Hormozdiari, J. O.

Kitzman, et al. 2009. "Personalized Copy Number and Segmental Duplication

Maps using Next-Generation Sequencing." Nature Genetics 41 (10): 1061-1067.

Altshuler, D. M., R. M. Durbin, G. R. Abecasis, D. R. Bentley, A. Chakravarti, A. G.

Clark, P. Donnelly, et al. 2012. "An Integrated Map of Genetic Variation from

1,092 Human Genomes." Nature 491 (7422): 56-65.

Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.

Lesin, et al. 2012. "SPAdes: A New Genome Assembly Algorithm and its

Applications to Single-Cell Sequencing." Journal of Computational Biology19

(5): 455-477.

Biesecker, L. G., W. Burke, I. Kohane, S. E. Plon, and R. Zimmern. 2012. "Next-

Generation Sequencing in the Clinic: Are we Ready?" Nature Reviews

Genetics 13 (11): 818-824.

Burrows, M., and D.J. Wheeler. 1994. “A Block-sorting Lossless Data Compression

Algorithm.” SRC Research Report 124. Pala Alto, CA, Digital Corporation.

Campagna, D., A. Albiero, A. Bilardi, E. Caniato, C. Forcato, S. Manavski, N. Vitulo,

and G. Valle. 2009. "PASS: A Program to Align Short

Sequences." Bioinformatics 25 (7): 967-968.

Chargaff, E., R. Lipshitz, and C. Green. 1952. "Composition of the Desoxypentose

Nucleic Acids of Four Genera of Sea-Urchin." The Journal of Biological

Chemistry 195 (1): 155-160.

Crick, F. 1970. "Central Dogma of Molecular Biology." Nature 227 (5258): 561-563.

David, M., M. Dzamba, D. Lister, L. Ilie, and M. Brudno. 2011. "SHRiMP2: Sensitive

Yet Practical Short Read Mapping." Bioinformatics 27 (7): 1011-1012.

Desai, A. N. and A. Jere. 2012. "Next-Generation Sequencing: Ready for the

Clinics?" Clinical Genetics 81 (6): 503-510.

Dewhirst, F. E., T. Chen, J. Izard, B. J. Paster, A. C. R. Tanner, W. -H Yu, A.

Lakshmanan, and W. G. Wade. 2010. "The Human Oral Microbiome." Journal of

Bacteriology 192 (19): 5002-5017.

Drobniewski, F. A., V. Nikolayevskyy, Y. Balabanova, D. Bang, and D. Papaventsis.

2012. "Diagnosis of Tuberculosis and Drug Resistance: What can New Tools

Bring Us?" International Journal of Tuberculosis and Lung Disease 16 (7): 860-

870.

Dunne, W. M., L. F. Westblade, and B. Ford. 2012. "Next-Generation and Whole-

Genome Sequencing in the Diagnostic Clinical Microbiology

Laboratory." European Journal of Clinical Microbiology and Infectious

Diseases 31 (8): 1719-1726.

Eaves, H. L. and Y. Gao. 2009. "MOM: Maximum Oligonucleotide

Mapping." Bioinformatics 25 (7): 969-970.

179

Eid, J., A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, et al. 2009. "Real-Time

DNA Sequencing from Single Polymerase Molecules." Science 323 (5910): 133-

138.

Ferragina, P., & Manzini, G. 2000. Opportunistic data structures with applications. Paper

presented at the Annual Symposium on Foundations of Computer Science -

Proceedings, 390-398.

Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998.

"Potent and Specific Genetic Interference by Double-Stranded RNA in

Caenorhabditis Elegans." Nature 391 (6669): 806-811.

Ford, C., K. Yusim, T. Ioerger, S. Feng, M. Chase, M. Greene, B. Korber, and S. Fortune.

2012. "Mycobacterium Tuberculosis - Heterogeneity Revealed through Whole

Genome Sequencing." Tuberculosis 92 (3): 194-201.

Fournier, P. -E, G. Dubourg, and D. Raoult. 2014. "Clinical Detection and

Characterization of Bacterial Pathogens in the Genomics Era." Genome

Medicine 6: 1-15.

Galagan, J. E., P. Sisk, C. Stolte, B. Weiner, M. Koehrsen, F. Wymore, T. B. K. Reddy,

et al. 2010. "TB Database 2010: Overview and Update." Tuberculosis 90 (4): 225-

235.

Gey Van Pittius, N. C., J. Gamieldien, W. Hide, G. D. Brown, R. J. Siezen, and A. D.

Beyers. 2001. "The ESAT-6 Gene Cluster of Mycobacterium Tuberculosis and

Other High G+C Gram-Positive Bacteria." Genome Biology 2 (10)

Gnerre, S., I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker, T.

Sharpe, et al. 2011. "High-Quality Draft Assemblies of Mammalian Genomes

from Massively Parallel Sequence Data." Proceedings of the National Academy of

Sciences of the United States of America 108 (4): 1513-1518.

Gontarz, P. M., J. Berger, and C. F. Wong. 2013. "SRmapper: A Fast and Sensitive

Genome-Hashing Alignment Tool." Bioinformatics 29 (3): 316-321.

Guo, J., N. Xu, Z. Li, S. Zhang, J. Wu, H. K. Dae, S. M. Mong, et al. 2008. "Four-Color

DNA Sequencing with 3′-O-Modified Nucleotide Reversible Terminators and

Chemically Cleavable Fluorescent Dideoxynucleotides." Proceedings of the

National Academy of Sciences of the United States of America 105 (27): 9145-

9150.

Hach, F., F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler, and S. C.

Sahinalp. 2010. "MrsFAST: A Cache-Oblivious Algorithm for Short-Read

Mapping." Nature Methods 7 (8): 576-577.

Hernandez, D., Tewhey, R., Veyrieras, J. -., Farinelli, L., Østerås, M., François, P., &

Schrenzel, J. (2014). De novo finished 2.8 mbp staphylococcus aureus genome

assembly from 100 bp short and long range paired-end

reads.Bioinformatics, 30(1), 40-49

Hershey, A. D. and M. Chase. 1952. "Independent Functions of Viral Protein and Nucleic

Acid in Growth of Bacteriophage." The Journal of General Physiology 36 (1): 39-

56.

Hoffmann, S., C. Otto, S. Kurtz, C. M. Sharma, P. Khaitovich, J. Vogel, P. F. Stadler,

and J. Hackermüller. 2009. "Fast Mapping of Short Sequences with Mismatches,

Insertions and Deletions using Index Structures." PLoS Computational Biology 5

(9).

180

Homer, N., B. Merriman, and S. F. Nelson. 2009. "BFAST: An Alignment Tool for Large

Scale Genome Resequencing." PLoS ONE 4 (11).

Hung, G. -C, K. Nagamine, B. Li, and S. -C Lo. 2012. "Identification of DNA Signatures

Suitable for use in Development of Real-Time PCR Assays by Whole-Genome

Sequence Approaches: Use of Streptococcus Pyogenes in a Pilot Study." Journal

of Clinical Microbiology 50 (8): 2770-2773.

Kim, Y. J., N. Teletia, V. Ruotti, C. A. Maher, A. M. Chinnaiyan, R. Stewart, J. A.

Thomson, and J. M. Patel. 2009. "ProbeMatch: Rapid Alignment of

Oligonucleotides to Genome Allowing both Gaps and

Mismatches." Bioinformatics25 (11): 1424-1425.

Köser, C. U., M. J. Ellington, E. J. P. Cartwright, S. H. Gillespie, N. M. Brown, M.

Farrington, M. T. G. Holden, et al. 2012. "Routine use of Microbial Whole

Genome Sequencing in Diagnostic and Public Health Microbiology." PLoS

Pathogens 8 (8).

Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon,

et al. 2001. "Initial Sequencing and Analysis of the Human Genome." Nature 409

(6822): 860-921.

Langmead, B. and S. L. Salzberg. 2012. "Fast Gapped-Read Alignment with Bowtie

2." Nature Methods 9 (4): 357-359.

Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. "Ultrafast and Memory-

Efficient Alignment of Short DNA Sequences to the Human Genome." Genome

Biology 10 (3).

Lee, W. -P, M. P. Stromberg, A. Ward, C. Stewart, E. P. Garrison, and G. T. Marth.

2014. "MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation

Sequencing Short-Read Mapping." PLoS ONE 9 (3).

Leung, K., H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Pagé, C. -C Lo, P. S.

Chain, S. J. Hallam, and C. L. Hansen. 2012. "A Programmable Droplet-Based

Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and

Microbial Communities." Proceedings of the National Academy of Sciences of the

United States of America 109 (20): 7665-7670.

Levene, H. J., J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb.

2003. "Zero-Mode Waveguides for Single-Molecule Analysis at High

Concentrations." Science 299 (5607): 682-686.

Li, H. and R. Durbin. 2009. "Fast and Accurate Short Read Alignment with Burrows-

Wheeler Transform." Bioinformatics 25 (14): 1754-1760.

Li, H. and R. Durbin. 2010. "Fast and Accurate Long-Read Alignment with Burrows-

Wheeler Transform." Bioinformatics 26 (5): 589-595.

Li, H., J. Ruan, and R. Durbin. 2008. "Mapping Short DNA Sequencing Reads and

Calling Variants using Mapping Quality Scores." Genome Research 18 (11):

1851-1858.

Li, H. 2012. "Exploring Single-Sample Snp and Indel Calling with Whole-Genome De

Novo Assembly." Bioinformatics 28 (14): 1838-1844.

Li, R., Y. Li, K. Kristiansen, and J. Wang. 2008. "SOAP: Short Oligonucleotide

Alignment Program." Bioinformatics 24 (5): 713-714.

181

Li, R., C. Yu, Y. Li, T. -W Lam, S. -M Yiu, K. Kristiansen, and J. Wang. 2009. "SOAP2:

An Improved Ultrafast Tool for Short Read Alignment." Bioinformatics 25 (15):

1966-1967.

Li, Y., A. Terrell, and J. M. Patel. 2011. "WHAM: A High-Throughput Sequence

Alignment Method.".

Lin, H., Z. Zhang, M. Q. Zhang, B. Ma, and M. Li. 2008. "ZOOM! Zillions of Oligos

Mapped." Bioinformatics 24 (21): 2431-2437.

Liu, L., Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. 2012.

"Comparison of Next-Generation Sequencing Systems." Journal of Biomedicine

and Biotechnology 2012.

Lunter, G. and M. Goodson. 2011. "Stampy: A Statistical Algorithm for Sensitive and

Fast Mapping of Illumina Sequence Reads." Genome Research 21 (6): 936-939.

Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka,

et al. 2005. "Genome Sequencing in Microfabricated High-Density Picolitre

Reactors." Nature 437 (7057): 376-380.

Marshall, O. J. 2004. "PerlPrimer: Cross-Platform, Graphical Primer Design for

Standard, Bisulphite and Real-Time PCR." Bioinformatics 20 (15): 2471-2472.

Maxam, A. M. and W. Gilbert. 1977. "A New Method for Sequencing

DNA." Proceedings of the National Academy of Sciences of the United States of

America 74 (2): 560-564.

McKernan, K. J., H. E. Peckham, G. L. Costa, S. F. McLaughlin, Y. Fu, E. F. Tsung, C.

R. Clouser, et al. 2009. "Sequence and Structural Variation in a Human Genome

Uncovered by Short-Read, Massively Parallel Ligation Sequencing using Two-

Base Encoding." Genome Research 19 (9): 1527-1541.

Miller, J. R., S. Koren, and G. Sutton. 2010. "Assembly Algorithms for Next-Generation

Sequencing Data." Genomics 95 (6): 315-327.

Ng, P. C. and E. F. Kirkness. 2010. Whole Genome Sequencing. Methods in Molecular

Biology. Vol. 628.

Ning, Z., A. J. Cox, and J. C. Mullikin. 2001. "SSAHA: A Fast Search Method for Large

DNA Databases." Genome Research 11 (10): 1725-1729.

Nirenberg, M., P. Leder, M. Bernfield, R. Brimacombe, J. Trupin, F. Rottman, and C.

O'Neal. 1965. "RNA Codewords and Protein Synthesis, VII. on the General

Nature of the RNA Code." Proceedings of the National Academy of Sciences of

the United States of America 53 (5): 1161-1168.

Octavia, S., Q. Wang, M. M. Tanaka, S. Kaur, V. Sintchenko, and R. Lan. 2015.

"Delineating Community Outbreaks of Salmonella Enterica Serovar

Typhimurium by use of Whole-Genome Sequencing: Insights into Genomic

Variability within an Outbreak." Journal of Clinical Microbiology 53 (4): 1063-

1071.

Pareek, C. S., R. Smoczynski, and A. Tretyn. 2011. "Sequencing Technologies and

Genome Sequencing." Journal of Applied Genetics 52 (4): 413-435.

Quail, M. A., M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni,

H. P. Swerdlow, and Y. Gu. 2012. "A Tale of Three Next Generation Sequencing

Platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq

Sequencers." BMC Genomics 13 (1).

182

Robertson, K. D. and P. A. Jones. 2000. "DNA Methylation: Past, Present and Future

Directions." Carcinogenesis 21 (3): 461-467.

Ronaghi, M., S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén. 1996. "Real-

Time DNA Sequencing using Detection of Pyrophosphate Release." Analytical

Biochemistry 242 (1): 84-89.

Rothberg, J. M., W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey, J. H.

Leamon, et al. 2011. "An Integrated Semiconductor Device Enabling Non-Optical

Genome Sequencing." Nature 475 (7356): 348-352.

Ruffalo, M., T. Laframboise, and M. Koyutürk. 2011. "Comparative Analysis of

Algorithms for Next-Generation Sequencing Read Alignment." Bioinformatics 27

(20): 2790-2796.

Rumble, S. M., P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and M. Brudno. 2009.

"SHRiMP: Accurate Mapping of Short Color-Space Reads." PLoS Computational

Biology 5 (5).

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. "DNA Sequencing with Chain-

Terminating Inhibitors." Proceedings of the National Academy of Sciences of the

United States of America 74 (12): 5463-5467.

Sherry, N. L., J. L. Porter, T. Seemann, A. Watkins, T. P. Stinear, and B. P. Howden.

2013. "Outbreak Investigation using High-Throughput Genome Sequencing

within a Diagnostic Microbiology Laboratory." Journal of Clinical

Microbiology 51 (5): 1396-1401.

Simpson, J. T., K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol. 2009.

"ABySS: A Parallel Assembler for Short Read Sequence Data." Genome

Research 19 (6): 1117-1123.

Smith, T. F. and M. S. Waterman. 1981. "Identification of Common Molecular

Subsequences." Journal of Molecular Biology 147 (1): 195-197.

Staden, R. 1979. "A Strategy of DNA Sequencing Employing Computer

Programs." Nucleic Acids Research 6 (7): 2601-2610.

Voelkerding, K. V., S. A. Dames, and J. D. Durtschi. 2009. "Next-Generation

Sequencing:From Basic Research to Diagnostics." Clinical Chemistry 55 (4):

641-658.

Watson, J. D. and F. H. C. Crick. 1953. "Molecular Structure of Nucleic Acids: A

Structure for Deoxyribose Nucleic Acid." Nature 171 (4356): 737-738.

Witney, A. A., K. A. Gould, C. F. Pope, F. Bolt, N. G. Stoker, M. D. Cubbon, C. R.

Bradley, et al. 2014. "Genome Sequencing and Characterization of an Extensively

Drug-Resistant Sequence type 111 serotype O12 Hospital Outbreak Strain of

Pseudomonas Aeruginosa." Clinical Microbiology and Infection 20 (10): O609-

O618.

Wilkins, M. H. F., A. R. Stokes, and H. R. Wilson. 1953. "Molecular Structure of Nucleic

Acids: Molecular Structure of Deoxypentose Nucleic Acids." Nature 171 (4356):

738-740.

Woolley, A. T. and R. A. Mathies. 1995. "Ultra-High-Speed DNA Sequencing using

Capillary Electrophoresis Chips." Analytical Chemistry 67 (20): 3676-3680.

Wu, R. 1970. "Nucleotide Sequence Analysis of DNA. I. Partial Sequence of the

Cohesive Ends of Bacteriophage λ and 186 DNA." Journal of Molecular

Biology 51 (3): 501-521.

183

Zerbino, D. R. and E. Birney. 2008. "Velvet: Algorithms for De Novo Short Read

Assembly using De Bruijn Graphs." Genome Research 18 (5): 821-829.

	University of Missouri, St. Louis
	IRL @ UMSL
	6-4-2015

	Fast and Sensitive Genome-Hashing Software and its Application in Using NGS as a Detection Agent for Bacterial Presence in Oral Metagenomic Samples
	Paul Michael Gontarz
	Recommended Citation

	tmp.1500672347.pdf.D3LI8

