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Chimera states occur when identically coupled groups of nonlinear oscillators exhibit radically

different dynamics, with one group exhibiting synchronized oscillations and the other

desynchronized behavior. This dynamical phenomenon has recently been studied in computational

models and demonstrated experimentally in mechanical, optical, and chemical systems. The

theoretical basis of these states is currently under active investigation. Chimera behavior is of

particular relevance in the context of neural synchronization, given the phenomenon of

unihemispheric sleep and the recent observation of asymmetric sleep in human patients with

sleep apnea. The similarity of neural chimera states to neural “bump” states, which have been

suggested as a model for working memory and visual orientation tuning in the cortex, adds to

their interest as objects of study. Chimera states have been demonstrated in the FitzHugh-

Nagumo model of excitable cells and in the Hindmarsh-Rose neural model. Here, we demonstrate

chimera states and chimera-like behaviors in a Hodgkin-Huxley-type model of thermally sensi-

tive neurons both in a system with Abrams-Strogatz (mean field) coupling and in a system with

Kuramoto (distance-dependent) coupling. We map the regions of parameter space for which chi-

mera behavior occurs in each of the two coupling schemes. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961122]

The chimera state is a dynamical phenomenon that has

been the subject of significant recent interest. This state

occurs when two groups of identical oscillators are cou-

pled to one another but exhibit drastically different

behaviors, in which one group of oscillators is synchro-

nized and the other is not. Chimera states have been

observed experimentally in various types of systems,

such as mechanical (Martens et al., 2013), optical

(Hagerstrom et al., 2012), and chemical (Tinsley et al.,
2012). Given the importance of synchronization in the

brain for both health and disease, investigation of chi-

mera states in neural models is of particular interest. It

has been speculated that chimera states might serve as a

model for the differences in activity between brain

hemispheres during unihemispheric sleep. This phenom-

enon, in which hemispheres alternately exhibit sleep-

like behavior while the other hemisphere stays “awake,”

has been observed in aquatic mammals (Mukhametov,

1984), ducks (Rattenborg et al., 1999), and lizards

(Mathews et al., 2006). Recent observations of asymmet-

ric brain activity in human sleep apnea patients (Rial

et al., 2013) suggest that the study of neural chimera

states may have clinical relevance as well. Chimera

states in neural systems are also of particular relevance

for their similarity to “bump” states (Laing, 2001),

which have been suggested as a possible model for vari-

ous forms of cortical information processing such as

visual orientation tuning and working memory. Here,

we demonstrate chimera states in a Hodgkin-Huxley-

type model of temperature sensitive neurons for two dif-

ferent coupling schemes.

I. INTRODUCTION

The recent discovery of chimera states in networks of

coupled oscillators, in which groups of identically coupled

oscillators exhibit qualitatively different dynamical behav-

iors, has generated great interest not only theoretically but

also for its potential applications. Chimera behavior was first

observed in a ring of simple oscillators (Kuramoto and

Battogtokh, 2002). This behavior was also studied in the

same system by Abrams and Strogatz (2004), with the substi-

tution of a different kernel in the integral expression govern-

ing the rate of change of each oscillator’s phase, in order to

allow for an analytical solution of the model. Chimera

behavior was also identified in a new model with a different

coupling scheme (Abrams-Strogatz coupling), developed

specifically for the investigation of chimera behavior, by

Abrams et al. (2008).

In Kuramoto coupling, a ring of identically, non-locally

coupled oscillators can—for certain parameter ranges—

spontaneously separate into groups, one of which exhibits

synchronous oscillations and the other of which exhibits

unsynchronized behavior. In contrast, Abrams-Strogatz cou-

pling uses two globally coupled groups of oscillators. Each

group is also weakly coupled to the mean field of the other

group. For certain parameter ranges and coupling constants,

one of the two groups exhibits synchronous behavior, and

the other remains unsynchronized. In other cases, phase-
cluster states have been observed, where the two groups of

a)Author to whom correspondence should be addressed. Electronic mail:

bahars@umsl.edu.
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oscillators exhibit different types of oscillatory behaviors

(Tinsley et al., 2012).

Since the first observation of chimera behavior, the phe-

nomenon has been investigated both theoretically and exper-

imentally. The underlying dynamics of the phenomenon are

not yet fully understood, and it has been suggested that chi-

mera states may be chaotic transients (Wolfrum and

Omel’chenko, 2011). Chimera behavior has been investi-

gated experimentally in mechanical (Martens et al., 2013)

and optical (Hagerstrom et al., 2012) systems as well as in

systems of chemical oscillators (Tinsley et al., 2012;

Wickramasinghe and Kiss, 2013; and Nkomo et al., 2013).

It should come as no surprise that a particular area of

interest lies in the application of chimera behavior to neural

systems. Coupling in neural systems has long been a subject

of intense investigation due to the role it may play in patho-

logical states such as seizures (Isomura et al., 2008 and

Bartolomei et al., 2013), Parkinson’s disease (Popovych

et al., 2005; Tass et al., 2012; and Adamchic et al., 2014), as

well as its possible role in mediating states of attention (Fries

et al., 2001) and possibly consciousness itself (Tononi and

Koch, 2008).

In the context of chimera behavior, a particular point of

interest is the phenomenon of unihemispheric sleep, in which

animals are able to “decouple” their brain hemispheres in

order to sleep while in the ocean (Lyamin et al., 2008), at

rest (Rattenborg et al., 1999), or on the wing (Rattenborg,

2006). This enables the animals to continue swimming or fly-

ing, while observing their environment and navigating, and

alternately resting part of their neural systems. There is even

evidence that seals use bihemispheric sleep when on land

and revert to unihemispheric sleep when at sea

(Mukhametov, 1984). Ducks use unihemispheric sleep while

resting in groups, specifically at the outer edges of the group,

where the danger of predation is greatest (Rattenborg et al.,
1999). It is speculated that some species of lizard may utilize

unihemispheric sleep while under duress from a predator

(Mathews et al., 2006).

Unihemispheric sleep has recently become a subject of

significant interest in the context of human health, as a result

of the recent observation of asymmetric sleep in human sub-

jects with sleep apnea by Rial et al. (2013). A scale has even

been developed which represents the relationship between

hemisphere asymmetry and severity of sleep apnea, called

the “interhemispheric synchrony index” (Abeyratne et al.,
2010). Tamaki et al. (2016) observed interhemispheric asyn-

chrony in humans during their first night sleeping in a novel

environment.

Given the relevance of chimera states for neural behav-

ior, several studies of this phenomenon in dynamical models

of excitable cells have been undertaken in recent years.

Omelchenko et al. (2013) observed chimera states in a net-

work of coupled FitzHugh-Nagumo oscillators, a nonlinear

ordinary differential equation model that has been used

extensively to model various types of excitable cells, such as

cardiac myocytes. Hizanidis et al. (2014) observed chimera

states in a simulated network of neurons using the

Hindmarsh-Rose model, a three-variable neural model that,

while not incorporating the more realistic dynamics of a

Hodgkin-Huxley-type model, does allow for realistic behav-

ior such as burst-firing. (Burst-firing refers to temporally

clustered action potentials, with a minimal recovery period

between the action potentials within a burst, and longer inter-

vals between successive bursts.)

In the present paper, we demonstrate chimera states

using a network of neurons described by the Huber-Braun

model (Braun et al., 1998; Huber et al., 2000; and Braun

et al., 2000). This Hodgkin-Huxley-based model was devel-

oped explicitly to emulate the oscillatory dynamics of mam-

malian facial cold receptors. Its unique bifurcation behavior

includes both period-doubling and period-adding bifurca-

tions as a temperature parameter is varied; the two bifurca-

tion cascades collide in a homoclinic crisis (Feudel et al.,
2000). This is a dynamically rich, biologically realistic sys-

tem in which to investigate chimera states. It is more realistic

than the FitzHugh Nagumo, integrate-and fire, and

Hindmarsh-Rose models, in that it exhibits a realistic set of

bursting behaviors. It is a Hodgkin-Huxley-based model that

incorporates sodium and potassium channels as well as

slower calcium and calcium-dependent potassium channels

and a chloride leak current, and has parameter values tuned

to biologically realistic values which reproduce observed

experimental behavior of mammalian cold receptors. In what

follows, we illustrate chimera behavior in this system using

both Kuramoto coupling and Abrams-Strogatz coupling.

II. THE MODEL

The mathematical details of the Huber-Braun model

have been presented elsewhere (see Braun et al., 1998), but

we review them here for completeness. As is typical in this

type of neural model, the rate of change of the membrane

potential of neuron i is expressed as the sum of voltage-

dependent current terms

CM
dVi

dt
¼ �Il � Id � Ir � Isd � Isr þ eþ ci: (1)

The factor CM gives the membrane capacitance in lF/cm2

and is set to unity. The first term, Il, is a passive leak cur-

rent presumed to be carried primarily by Cl� ions and is

given as

Il ¼ glðVi � VlÞ; (2)

where gl is the maximum conductance for the channels

mediating this current, and Vl is the current’s reversal poten-

tial. Id is a simplified Hodgkin-Huxley depolarizing (Naþ)

current, and Ir is a repolarizing (Kþ) current. The last two

currents, Isd and Isr, describe slow depolarizing (Caþþ) and

slow repolarizing (Caþþ-dependent Kþ) currents, respec-

tively. The currents Id, Ir , and Isd have the form

Ik ¼ qgkakðVi � VkÞ; (3)

with k ¼ d, r, or sd, and where q is a temperature-dependent

scaling factor defined as

q ¼ 1:3ðT�T0Þ=10; (4)
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with T0 ¼ 25� C and T ¼ 30� C, parameter values for which

uncoupled neurons exhibit periodic firing of single action

potentials. The model exhibits complex bifurcation behavior

as the parameter T is varied, as discussed, for example, by

Braun et al. (1998) and Feudel et al. (2000). This parameter

is held constant in the present study.

Vk represents the reversal potential of current k, and gk

is the corresponding maximum conductance. The factor ak

represents an activation variable; by taking on values

between 0 and 1, it characterizes the probability of channels

opening to allow the flow of current Ik. It is given by

dak=dt ¼ /ðak;1 � akÞ=sk: (5)

Here, sk is a time constant, / is another temperature-

dependent scaling factor, given by

/ ¼ 3:0ðT�T0Þ=10; (6)

and ak;1 is a voltage-dependent steady-state activation term

ak;1 ¼ f1þ exp ½�skðVi � V0kÞ�g�1; (7)

where sk is a steepness parameter given in mV�1, and V0k is

a half-activation constant. Finally, the fourth current, Isr, is

given as

Isr ¼ qgsrasrðVi � VsrÞ: (8)

While this equation has the same structure as the other cur-

rents, the activation variable asr includes an explicit depen-

dence on Isd because the slow Kþ current Isr is dependent on

the Caþþ current Isd. The activation variable is given as

dasr=dt ¼ /ð�gIsd � kasrÞ=ssr: (9)

The term e in Eq. (1) is a Gaussian white noise term imple-

mented using a Box-Mueller algorithm (Fox et al., 1988).

The noise is delta-correlated, with zero mean and variance

2D, where D is the noise intensity. This means that the noise

term satisfies heðtÞeðt0Þi ¼ 2Ddðt� t0Þ and heðtÞi ¼ 0. The

last term in (1), ci, is a coupling term. This can be defined in

various ways depending on the coupling scheme of interest

and will be discussed in more detail below. Simulations are

performed in custom-written MATLAB code, using Euler

integration with a step size of 0.01 ms. In all simulations

below, parameters are set to the physiologically relevant val-

ues used by Braun et al. (1998), given in Table I. An exam-

ple of a single, uncoupled firing neuron for these parameter

values is shown in Figure 1.

Global Coupling (Abrams-Strogatz Configuration).
Chimera simulations with global coupling are set up as fol-

lows. Two groups of 18 identical Huber-Braun neurons are

allowed to begin firing. Each neuron is initialized at a ran-

dom phase within its action potential firing cycle by setting

the neuron’s initial voltage to a value uniformly and ran-

domly distributed between �75 mV and 0 mV. The coupling

term ci in Eq. (1) is given by

ci;A ¼ gAðVi;AðtÞ � �VAðt� sÞÞ þ gABðVi;AðtÞ � �VBðt� sÞÞ
(10)

for neurons in group A, and

ci;B ¼ gBðVi;BðtÞ � �VBðt� sÞÞ þ gABðVi;BðtÞ � �VAððt� sÞÞ
(11)

for neurons in group B. Here, the subscript i refers to the par-

ticular neuron of interest. Vi;A and Vi;B denote the instanta-

neous voltage for neurons in groups A and B, respectively, at

time t, and s is a constant time delay. The terms �VA and �VB

denote the mean voltage of groups A and B, respectively, at

some time t� s. The parameters gA and gB represent the cou-

pling strength within each group, and gAB represents the cou-

pling strength between the two groups. Thus, each neuron in a

group is coupled to the mean field of its fellow group mem-

bers, and also, with a different coupling strength, to the mean

TABLE I. Parameters used in Huber-Braun model.

gd (mS/cm2) 1.5

gr (mS/cm2) 2.0

gsd (mS/cm2) 0.25

gsr (mS/cm2) 0.4

gl (mS/cm2) 0.1

Vd (mV) 50

Vr (mV) �90

Vsd (mV) 50

Vsr (mV) �90

Vl (mV) �60

sd (ms) 0.1

sr (ms) 2.0

ssd (ms) 10

ssr (ms) 20

sd (mV�1) 0.25

sr (mV�1) 0.25

ssd (mV�1) 0.09

V0d (mV) �25

V0r (mV) �25

V0sd (mV) �40

g 0.012

k 0.17

D (A2/s) 100

FIG. 1. Example firing pattern of sin-
gle uncoupled Huber-Braun neuron.
Example of single Huber-Braun neu-

ron’s natural firing pattern when

uncoupled with system parameters set

as described in Section II.
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field of the other group. At the start of each simulation, cou-

pling is “turned on” within group A (thus gA 6¼ 0Þ, while

gB ¼ gAB ¼ 0. After a time interval Tdel, coupling within

group B is activated (with gB ¼ gA). Simultaneously, coupling

is activated between the two groups (with gAB < gA; gB).

Distance-dependent Coupling (Kuramoto Configuration).
In addition to the globally coupled model, we investigated chi-

mera states in a group of Huber-Braun neurons in which the

coupling term decayed exponentially with distance. In this

case, a ring of N neurons was defined with identical parame-

ters (though starting at different phases of their action poten-

tial cycles, as in the global coupling case). For any neuron i,
the coupling term in Eq. (1) was given by

ci ¼
X

j 6¼i

K0fViðtÞ � Vjðt� sÞge�jxij ; (12)

where the summation is over all the other neurons except the

ith. The variable xij denotes the distance between the ith and

the jth neuron, in units of “neurons.” Thus, adjacent neurons

have x ¼ 1, neurons separated by one neighbor have x ¼ 2,

and so on. The parameter K0 defines the amplitude of the cou-

pling term, and the parameter j defines how quickly the cou-

pling falls off with distance. Simulations were performed for a

range of values of K0, j, s, and N. As with the previous case,

chimera states were observed for some values of the system

parameters. In this case, however, groups of neurons split off

into synchronized or unsynchronized groups spontaneously,

rather than being defined a priori as groups A and B.

III. RESULTS

Global Coupling (Abrams-Strogatz Configuration).
Simulations showed that for certain ranges of the parameters

gA, gB, gAB, and s, groups A and B exhibited significantly

different behaviors. In some cases, as in the example shown in

Figure 2, group A (neurons 1–18) exhibited synchronized

behavior, while group B (neurons 19–36) remained unsyn-

chronized, indicating a chimera state. Figure 2(a) shows a ras-

ter plot of the neural firing for a portion of the simulation;

symbols indicate neural firing times, with the firing times of

each neuron indicated in a different row. In this figure and in

all subsequent results shown, the firing time is defined by the

positive crossing of a Vm ¼ �20 mV threshold. Here, s ¼ 58

ms, and gA ¼ 0:013. For t < Tdel ¼ 12 500 ms, gB ¼ 0 and

gAB ¼ 0: For t � Tdel (indicated by the red arrow), gB ¼ gA

and gAB ¼ �0:001. Figure 2(b) shows the mean field of group

A (black trace) and the mean field of group B (red trace) over

the time interval shown in Figure 2(a), where the mean field is

the average Vm of all the neurons in a given group at time t.
Note the pairs of spikes visible in the raster plot for both

groups A and B, and also clearly visible in the mean field

oscillations, indicating a burst-firing pattern of double spikes

(“doublets”). The parameter which controls the bifurcation

behavior of the Huber-Braun model is the temperature, set at

T ¼ 30� C, which results in the firing of single isolated spikes

in uncoupled neurons. The values of s used here are in a phys-

iologically relevant range; the coupling constant values are

less physiological and were chosen primarily for their ability

to generate chimera states.

Figure 3 illustrates a type of behavior known as a phase-
cluster state. The simulations shown here are conducted for

parameters identical to those shown in Figure 2, except that

gAB ¼ �0:011. The raster plot in Figure 3(a) shows that

group A neurons fire double spikes, while most neurons in

group B fire single spikes. This can be seen more clearly in

the mean field plots for a short time interval during the simu-

lation, showing group B (red trace, Fig. 3(b)) and group A

(black trace, Fig. 3(c)). As can be seen from the raster plots

FIG. 2. Example of a chimera state in
the Abrams-Strogatz configuration. (a)

Raster plot illustrating neural spike

times during the induction of a chimera

state. Neuron number (1–36) is shown

on the vertical axis, time is shown on

the horizontal axis, and diamonds indi-

cate the firing time of each neuron.

The arrow indicates the time at which

mean field coupling was initiated

among the neurons in group B

(19–36), with coupling constant

gB ¼ gA ¼ 0:013, and between groups

A and B, with gAB ¼ �0:001. The

time delay was set at s ¼ 58 ms. (b)

Mean field voltage in group A (black

trace) and in group B (red trace) for a

subset of the time interval shown in

panel (a).
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in Figure 4, the chimera state persists over a longer time

interval for gAB ¼ �0:002 (Fig. 4(a)) than for the other val-

ues of gAB shown. This suggests that the temporal persistence

of chimera states may vary with the between-group coupling

constant gAB.

In order to quantitatively characterize the chimera states

as a function of the control parameters s and gAB, we deter-

mined the stochastic phase synchronization index (Pikovsky

et al., 2001) in group A and group B, for t � Tdel for all sim-

ulated values of s and gAB. If neuron i spikes at time ti and

FIG. 3. Example of a phase-cluster
state in the Abrams-Strogatz configura-
tion. (a) Raster plot; all parameters and

conditions are the same as in Figure 2,

except that gAB ¼ �0:011. (b) Mean

field voltage in group B (neurons

19–36) for a subset of the time interval

shown in panel (a). (c) Mean field in

group A (neurons 1–18) over the same

time interval shown for group B.

FIG. 4. Raster plots illustrating temporal variability in the observed chimera states. Parameters are identical to those for the data shown in Figures 2 and 3,

except that in panel (a), gAB ¼ �0:002, in panel (b), gAB ¼ �0:003, and in panel (c), gAB ¼ �0:004:

083119-5 Glaze, Lewis, and Bahar Chaos 26, 083119 (2016)



neuron k at times tk, then, for tk < ti < tkþ1, the phase differ-

ence between them is defined as

uikðtiÞ ¼ 2pðti � tkÞ=ðtkþ1 � tkÞ: (13)

Neurons (or indeed, any pair of oscillators) exhibit stochastic
phase synchronization when their phase difference remains

relatively constant over a period of time. The degree of syn-

chronization ranges from 0 (completely desynchronized) to 1

(perfectly synchronized) and is quantified by the synchroni-

zation index cik between neurons i and k; given by

c2
ik ¼ hcos ðuikðtiÞÞi2 þ hsin ðuikðtiÞÞi2; (14)

where the brackets denote a time average over the interval of

interest. The synchronization index, in essence, quantifies the

sharpness of the peak of the distribution of phase differences.

For t � Tdel, we determine average synchronization

indices for groups A and B. The average synchronization

index within a group G, containing N neurons, is the average

of the synchronization indices between all non-identical

pairs of neurons. Thus,

�cG ¼

X

i;k

cik

N N � 1ð Þ=2
: (15)

When a chimera state is present, it is expected that the aver-

age synchronization index for group A (�cA) will be high,

while group B will have a much lower index (�cB). Figure 5

shows a parameter space plot of the ratio of these indices

q ¼ �cA=�cB: (16)

The red end of the color scale corresponds to a high value of

this ratio, indicating the presence of a chimera state. (The

observation of a phase-cluster state in Figure 3 occurred for

parameter values below the bottom edge of the region shown

in Figure 5.)

Distance-dependent Coupling (Kuramoto Configuration).
Examples of chimera states for exponentially decaying cou-

pling are illustrated in the raster plots shown in Figure 6.

Figure 6(a), for K0 ¼ 0:010, j ¼ 1:10, N ¼ 54, and s ¼ 48

ms, shows initial synchrony in the entire ring, after which

unsynchronized clusters emerge. These grow in size, eventu-

ally taking over a large proportion of the entire population. A

small group of synchronized neurons remain, though the syn-

chronized behavior drifts through the population. In Figure

6(b), for K0 ¼ 0:011, j ¼ 1:10, N ¼ 54, and s ¼ 48 ms, we

see the emergence of a single large unsynchronized cluster

within the initially synchronized population. The synchro-

nized behavior is squeezed into a smaller population, but new

synchronized subpopulations emerge for t > 14 000 ms.

One parameter held constant in all the results shown

above is the amplitude of the noise term. Preliminary simula-

tions varying the noise amplitude while holding all other

parameters constant suggest that, for values of K0, j, and s
which yield chimera states, the chimera behavior is relatively

robust with respect to the noise amplitude. Larger noise

amplitudes appear to disrupt the chimera state and yield

asynchronous activity within the entire population (data not

shown). Decreasing the noise amplitude appears to have

some effect on the lifetime of the chimera state, though this

remains to be explored in more detail in further studies. Note

FIG. 5. Ratio of synchronization indices in group A vs. group B. Indices are

plotted as a function of parameters gAB and s. Simulations were performed

for values of s ranging from 52 to 68 ms in steps of 1 ms, and with values of

gAB ranging from �0.008 to 0.007 in steps of 0.001.

FIG. 6. Chimera states in the
Kuramoto configuration. (a) Raster

plot of neural firing times for a circular

configuration of 54 coupled Huber-

Braun neurons, with K0 ¼ 0:010,

j ¼ 1:10, and s ¼ 48 ms. Note the

emergence of desynchronized clusters.

(b) Simulation under identical condi-

tions to panel (a), but with K0 ¼ 0:011:
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that due to the presence of noise in the system, the behavior

of the different populations must be assessed using a stochas-

tic phase synchronization measure; as a result, complete
synchronization such as that found in “classical” chimeras

described by Kuramoto and Battogtokh (2002) or by Abrams

et al. (2008) will not be observed here.

As expected, the existence of chimera states is highly

dependent on the system parameters. Figure 7 shows three

simulations, each with K0 ¼ 0:011, j ¼ 1:10, and N ¼ 18.

With a time delay of s ¼ 38 ms (Fig. 7(a)), the neurons

exhibit anti-phase firing. For s ¼ 48 ms (Fig. 7(b)), chimera

behavior is observed, and drifting groups of synchronized

and unsynchronized neurons persist for the duration of the

simulation. For s ¼ 58 ms (Fig. 7(c)), the entire system

exhibits in-phase synchronous activity.

The behavior of the system is characterized in parameter

space, for s ¼ 58 ms, in Figure 8. In both panels, K0 was var-

ied from 0.001 to 0.033 in increments of 0.001, and j was var-

ied from 1.0 to 2.0 in increments of 0.01. The color scale

represents the fraction of neuron pairs (out of a total of 153

unique pairs) that had a synchronization index of 0.6 or

greater. Red areas (1.0) signify that 153 of 153 pairs of neurons

were synchronized, which represents a fully synchronized

state. Purple areas (0.0), conversely, signify a complete

desynchronization of all neuron pairs. Figure 8(a) shows syn-

chronization during the first half of the simulation, and Figure

8(b) shows results from the second half. The total simulation

was carried out over 500 000 time steps in increments of

0.01 ms. An initial 50 time steps were discarded as transients,

and the remaining time interval was split into two segments of

equal duration. Note that the boundaries between regions of

synchronization and desynchronization become more sharply

delineated in the second half of the simulation (Fig. 8(b)).

Figure 8 shows distinct bands (labeled I to IV) of syn-

chronization, separated by bands of desynchronization.

Furthermore, the neural firing pattern changes from region to

region, as illustrated in Figure 9. The panels in Figure 9 show

raster plots of neural firing in regions I through IV in Figure 8,

for parameter values marked by the four-pointed stars in

Figure 8(a). For j ¼ 1:04 and K0 ¼ 0:001; all neurons in the

system fire single spikes (Fig. 9(a)); for K0 ¼ 0:010; the sys-

tem fires synchronized doublets (Fig. 9(b)); for K0 ¼ 0:022;
synchronized triplets (Fig. 9(c)); and for K0 ¼ 0:030; synchro-

nized quadruplets (Fig. 9(d)).

Chimera states would be expected to occur at the

boundary between synchronized and desynchronized

regions since, in a chimera state, a portion of the neural

population would exhibit synchrony, while the remainder

of the neurons would be desynchronized, leading to an

intermediate overall value of the synchronization index.

This is indeed observed, as shown in Figure 10. Here,

panels correspond to the parameter values marked with

FIG. 7. Chimera and fully synchro-
nized states in the Kuramoto configu-
ration. Raster plots of firing times of a

circular configuration of 16 coupled

Huber-Braun neurons, with K0 ¼ 0:011

and j ¼ 1:10. (a) s ¼ 38 ms; (b) s ¼
48 ms; and (c) s ¼ 58 ms.

FIG. 8. Contour plot of synchronization ratios for Kuramoto configuration. The ratios of unique synchronized pairs of neurons to the total number of unique

neural pairs are shown for the first half (a) and for the second half (b) of the simulation time course, over a range of parameter values. Color scale indicates the

ratio of unique synchronized neural pairs with synchronization index of 0.6 or greater to the total number of unique neural pairs. Values of j run from 1.0 to

2.0 in increments of 0.01, and values of K0 run from 0.001 to 0.033 in increments of 0.001. s was set at 58 ms.
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five-pointed stars in Figure 8(a), illustrating transient chi-

mera states for j ¼ 1:85, with K0 ¼ 0:013 (Fig. 10(a)), K0 ¼
0:017 (Fig. 10(b)), and K0 ¼ 0:018 (Fig. 10(c)).

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated chimera states and phase-cluster

states in the Huber-Braun neural model, a realistic Hodgkin-

Huxley-type model designed to simulate the activity of

mammalian facial cold receptors. These behaviors occur

both in the case of global mean-field coupling between two

identical groups of neurons (Abrams-Strogatz coupling) and

in the case of distance-dependent coupling (Kuramoto cou-

pling). In each case, the system’s behavior has been charac-

terized over a range of parameter values, using the stochastic

phase synchronization index. In some cases of Kuramoto

FIG. 9. Synchronized bursting behav-
ior in the Kuramoto configuration.
Panels show raster plots of spike times

for parameter values corresponding to

the four-pointed stars in Figure 8(a).

For all panels, j ¼ 1:04. Values of K0

are (a) 0.001, (b) 0.010, (c) 0.022, and

(d) 0.030.

FIG. 10. Transient chimera states in
the Kuramoto configuration. Panels

show raster plots of spike times for

parameter values corresponding to the

five-pointed stars in Figure 8(a). For

all panels, j ¼ 1:85. Values of K0 are

(a) 0.013, (b) 0.017, and (c) 0.018.
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coupling, such as that shown in Figure 7, we observe chi-

mera states in which a synchronized cluster of oscillators

wanders irregularly around the ring, reminiscent of the

results observed by Sethia et al. (2013) in their study of chi-

mera state solutions of the complex Ginzburg-Landau equa-

tion. Our results also resemble the Brownian motion-like

drifting of coherent and incoherent regions discussed by

Omel’chenko et al. (2010) using a ring of phase oscillators.

In other cases, such as those shown in Figures 4(b) and 4(c)

with Abrams-Strogatz coupling, we observe a collapse of the

chimera state, as discussed by Wolfrum and Omel’chenko

(2011).

The parameters used here result only in single-spiking

behavior in uncoupled neurons. However, we observe the

onset of bursting behavior when the neurons are coupled.

Phase-cluster states, for example, can consist of a group of

synchronized neurons firing single spikes and a group of syn-

chronized neurons exhibiting burst-firing, as shown in Figure 3

for Abrams-Strogatz coupling. Coupling-induced bursting is

also observed in the Kuramoto configuration, in the bands

of synchronized behavior shown in Figures 8 and 9. Here,

for a constant value of j, the system passes through alternat-

ing regimes of synchronization and desynchronization as the

coupling amplitude K0 is varied. In each successive band of

synchronized behavior, the system exhibits an additional

spike per burst, moving from single spikes (region I, Fig.

9(a)) to doublets (region II, Fig. 9(b)), to triplets (region III,

Fig. 9(c)), and finally to quadruplets (region IV, Fig. 9(d)).

The observations of coupling-induced bursting are consistent

with the previous observations of increased bursting behav-

ior in coupled Huber-Braun neurons; an increased number of

spikes per burst occurs in this system as the coupling con-

stant is increased (Bahar, 2004 and Weihberger and Bahar,

2007). As the control parameter T is decreased in uncoupled

Huber-Braun neurons, the system exhibits a period-adding

bifurcation cascade; holding T constant while sweeping the

coupling constant amplitude has the effect, in essence, of

recapitulating this bifurcation pattern.

In addition to the bursting patterns contained within the

different bands shown in Figure 8, several other aspects of

this parameter space representation deserve comment. First

to note is the sharpening of the synchronized regions during

the second half of the simulations (Fig. 8(b)). This suggests

the decay of transient behavior over time, producing more

clearly defined boundaries between synchronized and

desynchronized states. This also narrows the regions of

parameter space where chimera states live, consistent with

the idea that chimeras may be chaotic transients (Wolfrum

and Omel’chenko, 2011).

The lower boundary of each synchronized region shows a

sawtooth pattern; this is simply a result of the step size by

which K0 was varied between simulations. More interesting is

the observation that the synchronization-desynchronization

boundary is more diffuse on the left-hand side of each syn-

chronization region. This may result from the fact that, along

the left boundary, not only is K0 smaller, resulting in a weaker

overall coupling, but also j is larger, yielding a faster exponen-

tial decay of the coupling term with distance. The complex

structure of these synchronization-desynchronization boundaries

is retained even in the second half of the simulations, as shown

in Figure 8(b). It is possible that a fractal basin boundary exists

between these regions; this could be investigated by using a

finer grid of parameter values.

The results shown in Figure 8 exhibit common features

with the results of Omel’chenko, Maistrenko, and Tass

(2008), who identified chimera states in a network of glob-

ally coupled oscillators with spatially modulated delayed

feedback. Their results demonstrated that chimera states

could emerge in systems for a wide range of initial condi-

tions, rather than having to be approached via a specific set

of initial conditions, as necessary in the case where a chi-

mera state is simultaneously stable with a stable coherent

state. They characterized chimera states as forming a

“natural link between coherence and incoherence,” showing

chimera states existing at the boundaries between regions of

coherence and incoherence in parameter space. This is pre-

cisely what is observed in our system, with chimera states

existing at the boundaries of Arnol’d-tongue-like regions;

note the similarity in structure between our Figure 8 and

Figure 3 in Omel’chenko, Maistrenko, and Tass (2008).

We observe the transient formation and dissipation of

synchronized clusters in the case of Kuramoto coupling, and

occasionally with Abrams-Strogatz coupling as well. The

persistence of transient synchronized clusters appears to be

influenced by system parameters such as coupling constants

(Fig. 4) and time delay (Fig. 7). We have not observed relax-

ation of the system to a statistically stationary state; it is pos-

sible, however, that simulations performed for significantly

longer time intervals may reveal such behavior.

Given their obvious interest for the modeling of neural

processes involving synchronization, chimera states have

been investigated previously in simpler neural models than

that used here. Olmi et al. (2010) observed chimera states in

a one-variable leaky integrate-and-fire model. In contrast to

the exponentially decaying coupling used in the present

work for the Kuramoto coupling case, Omelchenko et al.
(2013) used a constant nonzero coupling strength r within a

coupling radius r, and set the coupling constant to zero

beyond this radius. That study, like the present paper, incor-

porates the biological observation that, at least in neocortical

tissue, the majority of neural connections are local. Our

study, however, allows for weak long-range connections

extending through the entire network. Omelchenko et al.
(2013) also showed the emergence of multichimera states in

their system for stronger coupling constants. In a multichi-

mera state, several regions of incoherent activity exist within

the system, separated by regions of coherence. We observe

such multichimera states in our system as well, as illustrated

in Figure 6(a). Future work will investigate the dependence

of such states on system parameters such as the coupling

strength.

In 2014, Hizanidis and colleagues investigated chimera

states in the Hindmarsh-Rose model, which in its three-

dimensional formulation includes a slow variable that allows

for bursting behavior. Using a coupling scheme similar to

that of Omelchenko et al. (2013), Hizanidis et al. (2014)

demonstrated chimera behavior including multichimera

states. They also observed mixed oscillatory states, in which
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desynchronized oscillators were interspersed among syn-

chronized ones. We observe something reminiscent of this in

the “phase cluster” state shown in Figure 3(a). Here, one

group of neurons exhibits doublet firing; the other group fires

single spikes, except for a few oscillators within this group

that fire doublets.

A chimera model in a small group of neurons is only a

simple proxy for the complexity of an actual brain, with its

many types of neurons and glia, its mixture of local and

long-range connectivity, and its synaptic plasticity.

Nonetheless, neural chimera models may provide a starting

point for modeling phenomena such as unihemispheric sleep

in various species. Without scaling up to much larger simula-

tions, chimera models can merely provide a schematic guide

to the underlying processes that drive whole-brain phenom-

ena such as unihemispheric sleep. A computational model

for unihemispheric sleep was recently proposed by Kedziora

et al. (2012), who found unihemispheric sleep to be favored

by inhibitory coupling between the brain hemispheres. This

is reminiscent of our finding that chimera states are more

prevalent for negative coupling constants in the Abrams-

Strogatz case (our Figure 5; see also Figure 2(a) in Tinsley

et al., 2012).

Neural chimera models may also provide insight into

other problems in neurodynamics in which different subsys-

tems exhibit transient, dynamical decoupling without the

actual severance of synaptic connections. Given the range of

in vitro neural synchronization studies performed in recent

years (Feldt et al., 2010; Chen and Dzakpasu, 2010; and

Niedringhaus et al., 2015), it is likely that proof-of-concept

neural chimeras studies can be performed in cultured neural

systems, providing insights into conditions under which neu-

ral chimera states are most likely to occur.

Future studies of transient neural chimera states may

provide insights into role played by the dynamical reorgani-

zation of brain networks in cognition (Bola and Sabel, 2015

and Voytek and Knight, 2015). Battaglia et al. (2012) pro-

posed “on-demand reconfiguration” of neural circuits was

proposed as a mechanism of information processing. Recent

fMRI studies have suggested that dynamic reconfiguration of

networks in the frontal cortex may play a role in executive

cognition in human subjects (Braun et al., 2015). The forma-

tion and dissolution of chimera states might well provide a

substrate for such transient dynamics. Chimera states may

also be relevant to models of working memory and visual

orientation tuning due to their similarity to “bump states”

(Laing and Chow, 2001; Laing, 2015; and Panaggio and

Abrams, 2015), which have been suggested as models of

these forms of cortical information processing. Bump states

occur when a group of asynchronously firing neurons persists

within a network that otherwise exists in an “off” state

(Laing, 2001), or when a partially synchronous neural cluster

occurs embedded within a larger group of asynchronously

firing neurons (Laing, 2011). Like synchronized or

desynchronized clusters in a chimera state, bumps have been

shown to wander through a network of spiking neurons

(Chow and Coombes, 2006).

In order to adapt neural chimera models to aid in model-

ing processes that can be characterized by bump states, such

as working memory, it will likely be necessary to employ

models with a heterogeneous neural population. Laing

(2009a and 2009b) showed that chimera states can exist in

networks of neurons with a heterogeneous distribution of fre-

quencies, though their stability depends on the width of the

frequency distribution and, in the case of Abrams-Strogatz

coupling, on whether one or both of the groups have a het-

erogeneous frequency distribution. The Huber-Braun model

lends itself easily to such investigations, though in the con-

text of modeling cognitive processes, a neural model such as

that designed by Wilson (1999), which specifically models

mammalian neocortical neurons and allows for a variety of

realistic firing patterns, might be more appropriate.
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Barcel�o, P., and Nicolau, C., “Asymmetric sleep in apneic human

patients,” Am. J. Physiol.: Regul., Integr. Comp. Physiol. 304, R232–R237

(2013).

Sethia, G. C., Sen, A., and Johnston, G. L., “Amplitude-mediated chimera

states,” Phys. Rev. E 88, 042917 (2013).

Tamaki, M., Bang, J. W., Watanabe, T., and Sasaki, Y., “Night watch in one

brain hemisphere during sleep associated with first-night effect in

humans,” Curr. Biol. 26, 1190–1194 (2016).

Tass, P. A., Qin, L., Hauptmann, C., Dovero, S., Bezard, E., Boraud,

T., and Meissner, W. G., “Coordinated reset has sustained afteref-

fects in Parkinsonian monkeys,” Ann. Neurol. 72(5), 816–820

(2012).

Tinsley, M. R., Nkomo, S., and Showalter, K., “Chimera and phase-cluster

states in populations of coupled chemical oscillators,” Nat. Phys. 8,

662–665 (2012).

Tononi, G. and Koch, C., “The neural correlates of consciousness: An

update,” Ann. N. Y. Acad. Sci. 1124, 239–261 (2008).

Voytek, B. and Knight, R. T., “Dynamic network communication as a unify-

ing neural basis for cognition, development, aging, and disease,” Biol.

Psychiatry 77(12), 1089–1097 (2015).

Weihberger, O. and Bahar, S., “Frustration, drift, and antiphase coupling in

a neural array,” Phys. Rev. E 76, 011910 (2007).

Wickramasinghe, M. and Kiss, I. Z., “Spatially organized dynamical states

in chemical oscillator networks: Synchronization, dynamical differentia-

tion, and chimera patterns,” PLoS One 8(11), e80586 (2013).

Wilson, H. R., “Simplified dynamics of human and mammalian neocortical

neurons,” J. Theor. Biol. 200(4), 375–388 (1999).

Wolfrum, M. and Omel’chenko, O. E., “Chimera states are chaotic transi-

ents,” Phys. Rev. E 84, 015201(R) (2011).

083119-11 Glaze, Lewis, and Bahar Chaos 26, 083119 (2016)

http://dx.doi.org/10.1103/PhysRevA.38.5938
http://dx.doi.org/10.1103/PhysRevA.38.5938
http://dx.doi.org/10.1126/science.1055465
http://dx.doi.org/10.1038/nphys2372
http://dx.doi.org/10.1142/S0218127414500308
http://dx.doi.org/10.1142/S0218127414500308
http://dx.doi.org/10.1016/S0960-0779(99)00126-5
http://dx.doi.org/10.1016/j.neures.2008.04.002
http://dx.doi.org/10.1016/j.jtbi.2012.08.031
http://www.j-npcs.org/online/vol2002/v5no4/v5no4p380.pdf
http://www.j-npcs.org/online/vol2002/v5no4/v5no4p380.pdf
http://dx.doi.org/10.1063/1.3068353
http://dx.doi.org/10.1016/j.physd.2009.04.012
http://dx.doi.org/10.1016/j.physd.2011.09.009
http://dx.doi.org/10.1137/15M1011287
http://dx.doi.org/10.1137/15M1011287
http://dx.doi.org/10.1162/089976601750264974
http://dx.doi.org/10.1016/j.neubiorev.2008.05.023
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1111/j.1439-0310.2006.01138.x
http://dx.doi.org/10.1371/journal.pone.0129324
http://dx.doi.org/10.1103/PhysRevLett.110.244102
http://dx.doi.org/10.1209/0295-5075/92/60007
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1103/PhysRevE.81.065201
http://dx.doi.org/10.1088/0951-7715/28/3/R67
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1007/s00114-006-0120-3
http://dx.doi.org/10.1038/17037
http://dx.doi.org/10.1152/ajpregu.00302.2011
http://dx.doi.org/10.1103/PhysRevE.88.042917
http://dx.doi.org/10.1016/j.cub.2016.02.063
http://dx.doi.org/10.1002/ana.23663
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1196/annals.1440.004
http://dx.doi.org/10.1016/j.biopsych.2015.04.016
http://dx.doi.org/10.1016/j.biopsych.2015.04.016
http://dx.doi.org/10.1103/PhysRevE.76.011910
http://dx.doi.org/10.1371/journal.pone.0080586
http://dx.doi.org/10.1006/jtbi.1999.1002
http://dx.doi.org/10.1103/PhysRevE.84.015201

	Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons
	Recommended Citation

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	t1
	f1
	d12
	s3
	f2
	f3
	f4
	d13
	d14
	d15
	d16
	f5
	f6
	f7
	f8
	s4
	f9
	f10
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54

