Building Blocks for Oligosaccharide Synthesis

Mariya Novakova
University of Missouri-St. Louis, Mmwp2@mail.umsl.edu

Mithila Bandara
University of Missouri-St. Louis, wdbhhf@mail.umsl.edu

Catherine Alex
University of Missouri-St. Louis, caq77@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/urs

Part of the [Chemistry Commons](https://irl.umsl.edu/urs)

Recommended Citation

Novakova, Mariya; Bandara, Mithila; and Alex, Catherine, "Building Blocks for Oligosaccharide Synthesis" (2019). Undergraduate Research Symposium. 12.
https://irl.umsl.edu/urs/12
• Carbohydrates, which include cellulose, starches, sugars, and many other compounds, are the most abundant single class of organic substances found in nature.

• Chemists in the 19th century found that carbohydrates contain the elements of carbon, hydrogen, and oxygen. Hence, they referred to them as carbon-hydrates.

• They are formed in green plants and certain bacteria by a process known as photosynthesis, in which energy derived from sunlight is used for the assimilation of carbon dioxide from the air.

\[
6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2
\]

• The life on Earth ultimately depends on this process in which carbohydrates are the first intermediates.

• Photosynthesis, through the operation of the food chain, is the ultimate source of energy for nearly all organisms.

Introduction

Building Blocks for Oligosaccharide Synthesis

Mariya Novakova, Mithila Bandara, Catherine Alex and Alexei V. Demchenko*
Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA

Carbohydrates – Molecules of Life and Death

• Oligosaccharides present in human milk (HMOs) can provide prebiotic effects, function as antimicrobial agents, and provide necessary nutrients for the development of the brain and cognition of infants.

• Thanks to the explosive growth of glycomics, we already know that HMOs are a unique and diverse family of glycans, but our understanding of the HMO function is far from complete.

• Adding HMOs to infant formulas could be beneficial for the infant’s health, but HMOs are challenging to produce and purify.

• Presented herein is the synthesis of two different families of building blocks. The first one will be used for the synthesis of HMOs.

• The synthesized molecules will help to investigate the exact roles of individual HMOs which remain largely unknown.

• The second family of building blocks will be used for the synthesis of high mannose N-glycans that are involved in many fundamental processes.

• The synthesized molecules will aid our collaborative efforts dedicated to understanding the roles of N-glycans in mediasion of the pathogenesis of cancers, AIDS, and other diseases.

Ultimate goals of the project

Synthesis of an Acceptor for HMOs

Synthesis of a Building Block for HMOs

Synthesis of a Building Block for High Mannose N-Glycan

Conclusions

• Successfully synthesized the building blocks for HMOs and high mannose N-glycans.

• Further synthesis is currently under progress.

Acknowledgements

References
