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ABSTRACT

We investigated determinants of local and regional species richness and community

composition of avian malaria parasites (Haemoproteus and Plasmodium) in the Lesser

Antilles.  Chapter 1 addresses the local parasite richness and community structure, or lack

thereof, on Barbados.  We found only two parasite lineages on this island, one of which

was recovered from only 2 birds, which stands in stark contrast to the much higher

diversity on other islands.  In addition, we investigated what factors may explain the

absence of avian malaria in southeastern Barbados, and found this area to be drier,

warmer, and supporting less vegetation.  Chapter 2 addresses parasite diversity, primarily

beta diversity, in the Lesser Antilles.  In this chapter, we investigated the role of host

history and compound communities in structuring local ensembles.  We found that host

genetic distance does not correlate with ensemble dissimilarity but that more

phylogeographically structured host species exhibit more unique parasite ensembles

compared to the compound community than do hosts that are not phylogeographically

structured, suggesting that host history does influence parasite ensembles.

Keywords: Avian malaria, Haemoproteus coatneyi, environmental variation, beta

diversity, island biogeography, Lesser Antilles
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CHAPTER 1:  LOW DIVERSITY AND HIGH INTRA-ISLAND VARIATION IN
PREVALENCE OF AVIAN MALARIA PARASITES ON BARBADOS, LESSER
ANTILLES

L. Maria E. Svensson and Robert E. Ricklefs

ABSTRACT

We screened common bird species on Barbados for avian malaria parasites to determine

whether the apparent absence of avian malaria parasite diversity found in previous studies

could be due to a small sample.  After screening the birds, we found that avian malaria

parasites were absent from the southeast, whereas they were abundant in several host

species in the northwest.  Therefore, we also investigated environmental and host

population genetic differences between the parasite-free and the parasite-afflicted

regions.  Sixty-two out of 257 birds were infected with avian malaria parasites on

Barbados in 2007.  Fifty-seven of the infections were identified as lineage HC, the only

lineage recovered in the previous study.  Two of the infections were identified as lineage

HD, a lineage prevalent in C. flaveola on Grenada.  We discuss the possibility of

infrequent colonization events and absence of vectors as explanations for Barbados’s low

avian malaria parasite diversity.  We found no host genetic differences but striking

environmental differences between the parasite-free and the parasite-afflicted regions.

The southeast is warmer and drier than the northwest.  The southeast also supported less

vegetation than the northwest in one of two years analyzed.  We discuss the influence this

harsher environment may have on vector survival.
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INTRODUCTION

The biogeography of malaria parasites in wildlife communities has been studied both on

continents and islands (e.g. Greiner et al., 1975; Bennett et al., 1992; Staats and Schall,

1996; Apanius et al., 2000; Perkins, 2001; Ricklefs and Fallon, 2002; Bensch and

Åkesson, 2003; Fallon et al., 2003a; Fallon et al., 2005; Gibb et al., 2005; Beadell et al.,

2006; Durrant et al., 2006).  Among other things, these studies have demonstrated that

distributions of parasites are often patchy in island systems, and that diversity of malaria

communities can vary greatly between locations.  The lower prevalence or complete

absence of particular parasite lineages in some locations may be explained by

competition between lineages (e.g. Bensch and Åkesson, 2003; Fallon et al., 2003a,

2005; Bensch et al., 2007), by evolved resistance to the parasites (e.g. Wakelin and

Apanius, 1997), by low host density, which will limit the resources available for parasites

(e.g. Price, 1990), as a result unsuccessful dispersal (Paterson and Gray, 1997), by local

extinctions (Fallon et al., 2005), or by unfavorable environmental conditions for parasite

transmission (Freed et al., 2005) and/or vector survival (e.g., Mellor et al., 2000).  For

example, low prevalence of vector-born parasites in arid regions (e.g. Bennett et al. 1992;

Little and Earle, 1995; Tella et al., 1999; Valera et al., 2003) and on islands compared to

the nearby mainland (Super and van Riper, 1995) has been documented, which suggest

that environmental variation in climate, vegetation, and dispersal may explain the

absence of avian malaria parasitism in certain areas.  This study focuses on the avian

malaria parasite community on the island of Barbados, which was found in an earlier

study to harbor a single parasite lineage with a broader host distribution compared to

other islands in the Lesser Antilles, where the avian malaria parasite community is more
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diverse (Fallon et al., 2005).  Additional sampling in this study confirms the low diversity

of the Barbados parasite community and also revealed a striking heterogeneity in parasite

prevalence between areas on the same island.

In the Lesser Antilles, avian malaria parasite communities exhibit high cross-

island variation in lineage diversity.  In general, the number of parasite lineages defined

by variation in mitochondrial gene sequences ranges from 5 on Barbuda, a low limestone

island in the north of the archipelago to 13 on St. Lucia, a high volcanic island in the

south (Fallon et al., 2005).  A survey of avian malaria parasite diversity in the Lesser

Antilles recovered only one lineage (Haemoproteus sp. haplotype C; HC, GenBank

Accession AY167242) from Barbados (Fallon et al., 2005).  The prevalence of HC on

Barbados (25%), however, was similar to the average avian malaria parasite prevalence

of 28% across 10 different islands.  HC is the most abundant parasite lineage in the

Lesser Antilles (195 recoveries; making up 44% of all infections), has a wide host

breadth (24 host species) and a broad geographic distribution (13 islands).  On Barbados,

HC was recovered from 5 species, two of which were not infected with HC on other

islands (Quiscalus lugubris and Columbina passerina), suggesting that this parasite

lineage exploits a wider range of hosts on Barbados (Fallon et al., 2005).

Barbados (Figure 1), unlike the other Lesser Antillean islands, is geologically

young (~1 million years compared to the other islands’ ages of 20-30 million years), dry,

coralline as opposed to volcanic, and has never supported tropical forests (Speed, 1994;

Lovette et al., 1999; Buckley and Buckley, 2004).  The eastern part of Barbados is

characterized by strong winds and stunted woody vegetation (Randall, 1970; Buckley and

Buckley, 2004).  Compared to the other Lesser Antillean islands, Barbados has few



Svensson, L. Maria E., 2008, UMSL, p. 8

resident species of birds.  Although as many as 42 non-raptorial land bird species occur

on a single island (St. Lucia), and 65 species occur throughout the Lesser Antilles

(Raffaele et al., 1998), Barbados is home to only 23 resident species (Buckley et al.,

2008).  However, some of the most abundant species in the archipelago (e.g. Coereba

flaveola, Tiaris bicolor, and Q. lugubris) are also abundant on Barbados.  Loxigilla

barbadensis is an endemic species to Barbados (Buckley and Buckley, 2004) and is

closely related to the widespread and abundant Loxigilla noctis (Lovette et al. 1999).

We sampled additional individuals on Barbados in 2007 to determine whether the

apparent absence of avian malaria parasite diversity could be due to the small sample in

1993 (n=85).  Avian malaria parasite diversity is high on other islands in the Lesser

Antilles, and it is surprising that additional parasite lineages did not reach Barbados with

colonizing birds.

An interesting finding during our survey was the absence of avian malaria

parasites on the southeastern coast of Barbados, which led us to do additional analyses to

investigate two possible reasons for this pattern: (1) whether southeastern host

populations are genetically different from the northwestern host populations, which

would suggest that the southeastern population has evolved in isolation long enough to

possibly have evolved resistance to the parasites, and (2) whether environmental

variables and vegetation differ significantly between the sample areas.

METHODS

We sampled four locations on the island (Figure 1; Table 1); one on the southeast

(windward) side (St. Martin, Parish of St. Philip), one in the middle/north (Turners Hall
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Woods, Parish of St. Andrews), and two on the west side (leeward; Holetown and Trents,

Parish of St. James).  The habitats were different between the net sites.  St. Martin was

heavily developed and had no forest.  Turners Hall Woods had dry forest with

interspersed grazing patches for cattle and sheep, was higher in elevation (185 m) than

the other locations (8-65 m), and relatively undeveloped.  The Trents locality consisted

mainly of grazing patches with interspersed clumps of trees.  The Holetown sites were in

the backyard of the Bellairs Research Institute (ground-trapping only) and in the Coral

Reef Club hotel garden, which consisted of lush green vegetation and flowering bushes.

Birds were captured in mist nets or in ground traps that were baited with cooked

rice and seeds, during the months of May and June in 2007.  Nets were typically opened

by 6:30 am and closed by 11 am.  We included an additional 15 samples of Q. lugubris

from Holetown, which were obtained during the same year by K. Monceau at the

Université de Bourgogne, Dijon, France.

Five to ten µL of blood was obtained via brachial venipuncture for each bird

individual.  Four drops of blood were spread onto a glass slide, which was subsequently

air dried and fixed for one minute in absolute methanol.  Slides were stained with

Giemsa, either using a differential rapid bloodstain solution kit (EK Industries, Inc.,

Joliet, IL) following the manufacturer’s protocol or following the protocol of Valkiunas

(2005).  Remaining blood was placed in 300 µL of lysis buffer (0.1 M Tris, pH 8.0; 0.1

M EDTA, pH 8.0; 0.01 M NaCl; and 2.5% SDS).  The entire 300 µL solution was used

when extracting DNA by the following procedure.  First, 10 µL of Proteinase K (10

mg/mL) was added and the mixture was incubated at 55°C overnight.  Proteins were

precipitated by adding 100 µL Puregene ammonium acetate precipitation (Gentra
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Systems, Inc., Minneapolis, MN) to the sample, vortexing it for 20 sec, and spinning it at

maximum speed for 3 min in a Spectrafuge 24D (Labnet International, Inc., Woodridge,

New Jersey) microcentrifuge.  The pellet was discarded and DNA was precipitated by

adding 300 µL of isopropanol (100%) at 0°C, turning the sample on end 50 times, and

spinning at maximum speed for 1 min in a microcentrifuge.  The DNA pellet was washed

with 300 µL 70% ethanol, dried, and eluted with 1X TE buffer.

We wished to determine whether the avian host populations were genetically

differentiated across the island and sequenced the cytochrome b gene of the hosts using

primers L14990 (Kocher, 1989 in Helm-Bychowski and Cracraft, 1993) and H16065

(Helm-Bychowski and Cracraft, 1993).  For C. flaveola, 24 individuals (7 from SE and

17 from NW) and 966 bp were analyzed.  For L. barbadensis, 25 individuals (11 from SE

and 13 from NW) and 994 bp were analyzed.  We created parsimony haplotype networks

in TCS v.1.21 (Clement et al., 2000). The TCS program produces a statistical parsimony

network using methods described by Templeton et al. (1992; Clement et al., 2000).

 Infection status of 257 birds was determined by PCR, following the protocol of

Fallon et al. (2003b), which amplifies a segment of mitochondrial ribosomal RNA-

encoding DNA.  The presence of a 153 bp long band scored an individual as positive for

Haemoproteus and/or Plasmodium.  In addition, a second screening of

Haemoproteus/Plasmodium infections was performed by amplifying the parasites’

cytochrome b gene, following the cytb/outer protocol of Martinsen et al. (2007).  All

samples screened using the latter set of primers also amplified using the former set.

Those samples that scored positive but did not amplify using the cytb/outer primers used

in Martinsen et al. (2007) were amplified using either primer set 413F (5’-GTG CAA
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CYG TTA TTA CTA A-3’) and 926R (5’-CAT CCA ATC CAT AAT AAA GCA T-3’;

Ricklefs et al., 2005) or the cytb/nested protocol of Martinsen et al. (2007).  Each of the

primers in the 413F-926R set were used at 200 nM concentrations along with 200 nM

dNTP, 1X buffer, 2 µM MgCl2, and 1.25 units of TaKaRa Taq™ (TaKaRa Bio Inc.,

Shiga, Japan) in a 50 µL reaction.  The PCR protocol follows that of Ricklefs et al.

(2005).

The likelihood ratio statistic (equivalent to the G statistic) was used in JMP™ 5.0

(SAS Institute Inc., Cary, NC) to determine significant differences in malaria parasite

prevalence between sites.  The whole or part of the cytochrome b gene was sequenced for

parasite haplotype identification.  All sequencing was performed on a 3100 Genetic

Analyzer (Applied Biosystems, Foster City, CA).  Sequences were edited and aligned in

SeqMan™ II 4.0 (DNASTAR Inc., Madison, WI).  G. Valkiunas assigned one of the

mitochondrial haplotypes we recovered to a morphological species using one L.

barbadensis and two C. flaveola blood smears.  Morphological characters used for

identification include number of granules present, shape, attachment to the host cell

nucleus and/or host cell wall, and the nucleus position of the parasite (see Valkiunas,

2005).

In DIVA-GIS (http://www.diva-gis.org/), we used climate data at a ~ 1 km

resolution from the WorldClim database (Hijmans et al., 2005) to characterize the

environments of the northwestern area, where avian malaria parasites were present,

including Holetown, Trents, and Turners Hall Woods, and the southeastern area, where

avian malaria parasites were absent, including St. Martin.  The WorldClim database

provides interpolated climate surfaces of monthly averages of temperature and
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precipitation between years 1950 and 2000 measured from weather stations (Hijmans et

al., 2005).

To determine whether our sampling areas could be differentiated by climate, we

created 300 random points in ArcGIS v9.2 (ESRI, Redlands, CA) and selected 40 points

each from the northwestern and southeastern regions.  None of these points had identical

coordinates, but they might have been in the same grid cells.  We exported data of 19

climate variables (each of which is a measure either of temperature or precipitation) for

each point from DIVA-GIS.  To determine whether it is possible to discriminate between

the malaria parasite-afflicted region in the northwest and the malaria parasite-free region

in the southeast using climate data, we performed a discriminant analysis in SPSS version

13.0 (SPSS, Inc., Chicago, IL).

RESULTS

Of the 257 birds screened for avian malaria parasites, 62 (24.1%) were infected (Table 1).

This prevalence is similar to that obtained in 1993 (25%).  Only four of the 11 species

sampled yielded infections.  Samples of several other species were small: 1 Molothrus

bonariensis, 6 Zenaida aurita, and 9 Tyrannus dominicensis. With a prevalence of 0.25,

the probability of detecting no infections in a sample of 9 individuals is 0.075. However,

screening of 140 additional Z. aurita did not yield any infected individuals (K. Monceau,

pers. comm.).  All 17 T. bicolor, 17 of 56 C. flaveola (30.4%), 27 of 72 L. barbadensis

(37.5%), and one of 12 Vireo altiloquus (8.3%) were infected.  None of the 46 birds

screened on the southeastern side of the island were infected.  These included 10 C.

flaveola and 11 L. barbadensis.  In Holetown, the prevalence in C. flaveola and L.
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barbadensis was 57.3% (13 of 39) and 39.5% (15 of 38), respectively.  In Trents,

prevalence in the two species was 100% (2 of 2) and 45.5% (5 of 11), respectively.  In

Turners Hall Woods, the prevalence was 40.0% (2 of 5) and 58.3% (7 of 12) respectively.

When C. flaveola and L. barbadensis from Turners Hall Woods, Trents, and Holetown

were combined into a single “parasite-afflicted” region, the total prevalence was 41.1%.

At this level, one would have expected 8 of the 21 sampled C. flaveola and L.

barbadensis from St. Martin to be infected.  The absence of avian malaria parasites in the

southeast is significant compared to the combined prevalence in the northwest sites

(G=19.8, df=1, P<0.0001).

We successfully obtained 42 parasite cytochrome b sequences of at least 983 bp

and an additional 17 sequences >450 bp from three host species (L. barbadensis, n=26;

C. flaveola, n=16; and T, bicolor, n=17).  Fifty-seven of these sequences (97%) were

identical and identified as lineage HC (GenBank Accession AY167242).  The longer

fragments we obtained differ by only one nucleotide from H. sp. haplotype 31 (GenBank

Accession AF465579).  Two sequences (3%) recovered from C. flaveola were identified

as lineage Haemoproteus sp. haplotype D (HD; GenBank Accession AY167243), which

is synonymous to H. sp. haplotype 6 (GenBank Accession AF465567).  We were unable

to sequence the single infection from V. altiloquus.  Lineage HC was identified by G.

Valkiunas as Haemoproteus (Parahaemoproteus) coatneyi.

The haplotype networks for both L. barbadensis and C. flaveola showed no intra-

island structure of mtDNA: the two regions share the most abundant host cytochrome b

haplotypes (Figure 2).
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Of the 19 climate variables included in the discriminant analysis, six failed the

tolerance test (a measure of redundancy), and the thirteen included variables are shown in

Table 3.  The discriminant analyses separated the two regions completely (Wilks’

lambda=0.041, χ2=228.4, p<0.001, df=13), recognizing, however, that the samples of

random localities were highly pseudo replicated.  Nonetheless, it is clear that the malaria

parasite-free, southeastern region is warmer, drier, and exhibits greater variation in both

temperature and precipitation throughout the year than the malaria parasite-afflicted,

northwestern region (Table 3).

DISCUSSION

Haemoproteus (Parahaemoproteus) coatneyi

H. coatneyi (lineage HC of Fallon et al. 2005 and lineage OZ21 of Ricklefs et al. 2005)

has been recorded from several emberizid passerine species from North America and the

West Indies including C. flaveola (Valkiunas, 2005).  This is the first recognition that the

parasites of L. barbadensis and T. bicolor on Barbados are H. coatneyi.  H. coatneyi is

synonymous with H. coereba, H. paruli, and H. thraupi (Valkiunas, 2005).  We do not

know whether additional mitochondrial lineages also would be considered the same

morphological species H. coatneyi.  Because of poor blood smear quality, we were

unable to identify the closely related mitochondrial sister lineage to HC, HH (which is

1.8% different in its cytochrome b sequence from HC) to its morphological species.

Because previous biogeographic studies on avian malaria parasite in the Lesser Antilles

discuss the distribution of mitochondrial lineages as opposed to morphological species,
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and because we are yet uncertain of species limits in avian malaria parasites in the Lesser

Antilles, we will hereafter refer to lineage HC instead of H. coatneyi.

Diversity and distribution

With 78 Haemoproteus sp. cytochrome b sequences from Barbados (19 from 1993 and 59

from 2007), of which 76 were HC and only 2 were HD, we conclude that Barbados

supports a much reduced parasite fauna compared to other Lesser Antillean islands

sampled to date.  Because HC is the most common avian malaria parasite elsewhere in

the Lesser Antilles, it would be the most likely lineage to successfully establish on

Barbados.  HD is rare on most islands and in most species, except on Grenada, where it is

the predominant lineage in C. flaveola (Fallon et al., 2005).

The low parasite diversity on Barbados could have resulted from a failure of

additional lineages of parasites to colonize the island or the extinction of previously

established lineages. Fallon et al. (2005) reasoned from the prevalence of several parasite

lineages on the probable source islands of St. Vincent and St. Lucia that additional

lineages must have arrived with avian colonists and either failed to become established or

went extinct.  The youth of the island and its peripheral location to the other islands also

would favor unsuccessful colonization by other parasite lineages.  Vector-borne parasites

are more likely to disperse via their vertebrate hosts, in which infection prevalence is

relatively high, than their smaller invertebrate vectors, which exhibit much lower

infection prevalence (Lehane, 1991; Gager, 2008).  Finding that all bird species on

Barbados trace back to a single founding mtDNA lineage per species, Lovette et al.

(1999) concluded that small land birds disperse to Barbados infrequently on an
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evolutionary scale.  This implies that there have been few opportunities for parasites to

colonize Barbados via their vertebrate hosts.

Also, failure of different parasite lineages to colonize Barbados may be the result

of an absence of appropriate vectors.   For example, the absence of vectors is thought to

underlie the much-reduced prevalence of avian haematozoa on San Miguel Island as

compared to the California coast (Super and van Riper III, 1995).  Data collected by

Belkin and Heinemann (1976) show that 3 potential vector species of mosquito (Aedes

[Howardina] busckii, Anopheles [Nyssorhynchus] aquasalis Curry, Culex

[Melanoconion] idottus Dyar) are absent from Barbados while present on Dominica, St.

Lucia, and Grenada, where the common Plasmodium lineage PC has been recovered

(Table 4).  Aedes (Howardina) busckii is the most abundant of the three, and it is not

know to be a human-biting mosquito (Stone, 1969).  In addition, the genus Anopheles is

completely absent from, and the genus Weyomyia was recovered from only one locality

on Barbados, while present on Dominica, St. Lucia, Grenada, and St. Vincent, where

Plasmodium is present.  However, Culex quinquefasciatus, which is known to vector

avian malaria parasites in Hawaii (Warner, 1968), is abundant on Barbados (Table 4).

Potential vector species are considered those belonging to a potential vector genus listed

in Valkiunas (2005, p. 134).

It remains to be determined how frequently a single infected colonist can lead to

the establishment of a new parasite lineage on an island.  This would depend largely on

the potential host breadth of the parasite and the diversity of other potential hosts on the

island.  Lineage HC infects a large number of bird species, and the arrival of a single HC

infection likely would immediately have large numbers of potential hosts to infect.  More
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specialized parasite lineages would lack this potential, relying on an initial rapid increase

in the colonist population to become established.

The widespread distribution of HC in the Lesser Antilles and its derived as

opposed to basal position in the cytochrome b phylogeny (Fallon et al., 2005), suggest

that it has spread throughout the archipelago recently.  T. bicolor, C. passerina, and Q.

lugubris are the most recent arrivals to Barbados because they are genetically identical to

their source populations at the mtDNA ATPase 6 and 8 locus (Lovette et al., 1999).

Based on genetic relationship, T. bicolor and C. passerina apparently colonized Barbados

from St. Lucia, whereas Q. lugubris colonized Barbados from Trinidad (Figure 1).  On

St. Lucia, T. bicolor has a higher prevalence of a Plasmodium lineage (PC; 50% of

infections) than of HC (30% of infections); St. Lucia is the only island other than

Barbados where HC is known to infect T. bicolor (unpublished data).  Remarkably, all T.

bicolor individuals sampled on Barbados in 2007 were infected with HC (n=17).  On

other islands, the prevalence of malaria parasites in T. bicolor ranges from 6% on

Antigua to 73% on Guadeloupe (Fallon et al., 2005).  On islands closest to Barbados (i.e.,

St. Lucia, St. Vincent, and Grenada), avian malaria prevalence in T. bicolor ranges from

13% on Grenada to 56% on St. Lucia (Fallon et al., 2005).  In our 2007 sample from

Barbados, individuals of C. passerina and Q. lugubris were not infected with avian

malaria parasites. In 1993, however, one of 5 C. passerina and one of 14 Q. lugubris

were infected by lineage HC.  Moreover, C. passerina and Q. lugubris are both infected

with parasite lineages other than HC on their source-islands.  In fact, HC has not been

recovered from either Q. lugubris or C. passerina elsewhere (Fallon et al., 2005).  Thus,

if HC colonized recently, it did so either within a host species that has subsequently rid
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itself of lineage HC both on Barbados and throughout the rest of the Lesser Antilles, or

within T. bicolor, in which it has subsequently reached much higher prevalence than in

the host’s source populations.

Intra-island parasite prevalence

The absence of avian malaria parasites in the southeastern region of Barbados could be

due to any one or a combination of several factors: (1) evolved host resistance to the

parasites (e.g. Ricklefs, 1992; Wakelin and Apanius, 1997), (2) evolved vector resistance

to the parasites (e.g. Collins et al., 1986), (3) low host density (e.g. Price, 1990), or (4)

the absence of appropriate vectors (e.g. Bennett et al., 1992).  We could not investigate

either host or vector resistance directly, but mitochondrial data from L. barbadensis and

C. flaveola show that the northwestern and southeastern populations have not been

separated long enough for location-specific cytochrome b haplotypes to evolve.  It is

possible that they could have evolved resistance to avian malaria parasites even though

they have not been separated long enough to show mitochondrial differentiation;

nevertheless, the shared mitochondrial haplotypes between the southeast and northwest

suggests that L. barbadensis and C. flaveola may be panmictic across Barbados.  St.

Martin is closest to Turners Hall Woods of the malaria parasite-afflicted localities (19

km) and farthest from Holetown (22 km).  The three parasite-afflicted regions are within

7 km of each other.  The habitat between the parasite-afflicted and parasite-free regions is

mostly agricultural; however, C. flaveola and L. barbadensis are often found in gardens

and among human settlements, and it is unlikely that agricultural landscapes or the ~20
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km distance would create a significant barrier between populations of these two species

on an evolutionary time-scale.

The C. flaveola and L. barbadensis populations appeared to be denser in

Holetown (137 captures per 100 net-hours) than any other location.  However, host

density was lower in Turners Hall Woods and Trents, where parasite prevalence did not

differ from that in Holetown, than in St. Martin; thus, host density does not explain the

absence of avian malaria parasites in the southeast. We caught 24 C. flaveola and L.

barbadensis per 100 net-hours in St. Martin, 16 per 100 net-hours in Turners Hall

Woods, and 9 per 100 net-hours in Trents.  Although mist net capture data might provide

biased estimates of host density (e.g. Remsen and Good, 1996), they undoubtedly reflect

general trends in numbers provided that habitat, weather, and time of day are reasonably

matched.

The result of the discriminant analysis of 13 climate variables suggests that the

southeastern region is warmer and drier than the northwestern region (Table 3), which is

concordant with what Randall (1970) reported.  We also compared vegetative cover

between the two regions, as measured by the normalized difference vegetation index

(NDVI) in 2000 and 2001 (methods available upon request).  We found that whereas

there was no difference in vegetation cover in 2000 (SE NDVI = 0.13±0.22 and NW

NDVI = 0.l9±0.15 [mean ± standard deviation]; U=888.5, p=0.39), the index was lower

(which means that there was less vegetation cover) in the southeast (NDVI = 0.04±0.14)

than in the northwest (NDVI = 0.18±0.21) in 2001 (U=1227.5, p<0.001).

These environmental differences between the regions could explain why the

northwest harbors avian malaria parasites whereas the southeast does not.  Haemoproteus
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sp. may be sensitive to the ambient environment because much of their life cycle takes

place in an ectotherm vector.  Although no studies have investigated the influence of the

environment on Haemoproteus, Plasmodium has demonstrated sensitivity to ambient

temperature.  Freed et al. (2005) attributed the absence of avian Plasmodium at high

elevations in Hawaii to low temperatures that prevent malaria development in

mosquitoes.  Cool temperatures would not be a problem on Barbados, where

temperatures range from 18 to 32°C throughout the year.

More likely, the harsher environment on southeastern Barbados affects vector

communities.  Biting midges in the genus Culicoides, the suspected vectors of

Haemoproteus sp. (Valkiunas, 2005; Mullens et al., 2006), are highly influenced by

climatic conditions throughout their lifecycle (Mellor et al., 2000).  For example, larva

exhibit higher mortality rates under hot conditions (Mullens and Rodriguez, 1992,

reviewed in Mellor et al., 2000), and adults exhibit a higher mortality rate under hot and

windy conditions (Hunt et al., 1989; Wellby et al., 1996; reviewed in Mellor et al., 2000).

Rawlings et al. (2003), found a significantly lower (but not non-existent) prevalence of

Culicoides in dry, arid, and cold climates.  However, they did find high prevalence of

Culicoides in their dry, semi-arid, and hot areas, which would probably most closely

resemble Barbados’s southeastern region.  Purse et al. (2004) found that some Culicoides

species appear more moisture dependent than others and that prevalence of some species

is higher in cooler areas.  In sum, dry, hot, and windy conditions, which characterize the

southeastern region of Barbados, have been shown to be unfavorable to several

Culicoides species.
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Little is known about avian biting midges in the Caribbean region.  Surveys on

mammalian biting midges, however, suggest that they are abundant, but that the diversity

is lower on Barbados compared to many other West Indian and Central American regions

(Greiner et al., 1993).  Evidence from the distribution of mosquitoes, although not

suspected vectors of Haemoproteus, show that the most abundant mosquito species,

Culex (Culex) nigripalpus Theobald is present both in the northwest and southeast

regions on Barbados (Belkin and Heinemann, 1976); however, there are fewer records

from the parish of St. Philip than from most other parishes on Barbados.  This might be

the result of uneven sampling effort, but it might also reflect reduced mosquito

abundance in the southeast.  An important next step in avian malaria parasitism research

of this kind on Barbados would be a survey of the potential vector communities.
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TABLES

Table 1.  List of localities sampled on Barbados in 2007.  Total catch includes birds not

sampled (i.e., hummingbirds).  Net hours do not include ground-trap effort.  Coordinates

were obtained from Google Earth (2008, Europa Technologies).

Locality Coordinates Elev

(m)

Sites Days Date range Net

Hours

Total

Catch

St. Martin 13.09415 N;

59.45788 W

45 2 4 25-May;28-May 92.6 48

Turners

Hall

13.22791 N;

59.58521 W

185 1 3 30-May;01-Jun 106.5 44

Trents 13.19167 N;

59.62833 W

65 1 3 02-Jun;05-Jun 154.2 35

Holetown 13.19153 N;

59.63336 W

8 3 6 02-Jun;05-Jun

15-Jun;21-Jun

58.5 137
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Table 2.  Number of individuals of host species sampled, infected individuals,

successfully sequenced individuals, and prevalence in each infected species.

Family Species Infected Sampled Prevalence Sequenced

Columbidae Zenaida aurita 6

Columbidae Columbina passerina 18

Emberizinae Loxigilla barbadensis 27 72 0.375 26

Emberizinae Coereba flaveola 17 56 0.304 16

Emberizinae Tiaris bicolor 17 17 1.000 17

Icterinae Quiscalus lugubris 17

Icterinae Molothrus bonariensis 1

Parulinae Dendroica petechia 16

Tyrannidae Ealenia martinica 33

Tyrannidae Tyrannus dominicensis 9

Vireonidae Vireo altiloquus 1 12 0.083

TOTAL 62 257 0.241 59
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Table 3.  Average climatic values from 40 random points per region (northwest [NW]

and southeast [SE]).  T = temperature.  Variables are described in the text.  Temperature

variables are measured in degrees Celsius and precipitation variables are measured in

millimeters.  NW ± and SE ± are standard deviations.  An asterisk denotes significant

differences between group means.  More detailed description of the variables can be

found at www.worldclim.com.

Climate variable NE NW ± SE SE ±

Annual mean T* 25.43 0.46 25.87 0.23

Mean diurnal T range* 8.38 0.07 8.91 0.09

Isothermality (in percent) 76.06 0.41 76.10 0.48

T seasonality (in percent)* 88.84 1.47 92.76 2.51

Max T of warmest month* 30.42 0.43 31.19 0.29

Mean T of wettest quarter* 25.89 0.45 26.40 0.23

Annual Precipitation* 1389.10 49.36 1268.85 35.88

Precipitation of the wettest month* 191.38 6.41 177.23 2.57

Precipitation of the driest month* 42.45 1.72 39.93 1.29

Precipitation seasonality* 48.72 1.45 49.26 0.76

Precipitation of the driest quarter* 150.30 9.83 137.13 5.32

Precipitation of the warmest quarter 434.85 17.44 439.98 28.01

Precipitation of the coldest quarter* 233.00 8.60 217.68 6.07
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Table 4.  Distribution and abundance of Lesser Antillean mosquito species.  All species

from Barbados (BA; boldface), but only species with more than 10 records combined

between the islands of Dominica (DO), Saint Lucia (SL), Saint Vincent (SV), and

Grenada (GD) are included.  Species found in the Parish of St. Philip are marked with an

asterisk following the number of individuals identified.

Species DO SL SV BA GD

Aedes (Howardina) busckii 22 30 18

Aedes (Ochlerotatus) taeniorhynchus 15 8* 16

Aedes (Ochlerotatus) tortilis 18

Aedes (Stegomyia) aegypti 7 3 1 2 8

Anopheles (Nyssorhyncus) aquasalis Curry 7 22 7

Anopheles (Nyssorhyncus) argyritarsis Robineau-Desvoidy 21 8 5 18

Choretrella appendiculata Grabham 1 6 7

Culex (Culex) coronator Dyar and Knab 10

Culex (Culex) declarator Dyar and Knab 18 9

Culex (Culex) inflictus and/or nigripalpus 12

Culex (Culex) inflictus Theobald 9 5 3 4 2

Culex (Culex) nigripalpus Theobald 21 37 17 54* 22

Culex (Culex) quinquefasciatus Say 17 12 9 30 12

Culex (Melanoconion) atratus Theobald 5 2

Culex (Melanoconion) idottus Dyar 16 6 1
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Culex (Melanoconion) jocasta Komp and Rozeboom 5 19

Culex (Melanoconion) madininensis Senevet 39 2

Culex (Micraedes) bisulcatus 44 13

Deinocerites magnus 9 16 4 5 8

Haemagogus (Haemagogus) splendens Williston 18 7

Limatus durhamii Theobald 13 9

Psorophora (Grabhamia) sp. near cingulata 27 3

Toxorhynchites (Lynchiella) guadeloupensis 14

Trichoprosopon (Isystomyia) perturbans 18 1 3

Wyeomyia (Wyeomyia) greyii Theobald 40 25

Wyeomyia (Wyeomyia) pertinans 27 7 16
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Figure 1.  Sampling localities on Barbados island (right), Lesser Antilles (left).
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Figure 2.  Haplotype networks of northwestern (dotted) and southeastern (grey) C.

flaveola (top) and L. barbadensis (bottom) cytochrome b.  The rectangles represent the

most likely ancestral haplotype (Clement, et al., 2000).
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CHAPTER 2:  THE ROLE OF HOST PHYLOGEOGRAPHY IN STRUCTURING
AVIAN MALARIA PARASITE COMMUNITIES

L. Maria E. Svensson and Robert E. Ricklefs

ABSTRACT

We tested whether host phylogeography structures avian malaria parasite communities of

passerine birds in the Lesser Antilles.  We used the partial Mantel test to determine the

significance of correlations between host genetic distance and avian malaria parasite

ensemble dissimilarity (difference in the parasite lineages recovered from one particular

host species on two islands). The analysis encompassed three species of host on eight

islands.  We also determine the degree to which the entire parasite community of each

island, together with geographic distance, influenced local parasite ensembles.  We found

no significant correlations between host genetic distance and avian malaria parasite

ensemble dissimilarity in any of our three focal species, limited significant correlations

between geographic distance and ensemble dissimilarity for two focal species, and highly

significant correlation between the entire parasite community and ensemble

dissimilarities in one focal species.  Most of the ensemble dissimilarities between islands

remained unexplained by the Mantel models.  We discuss the possibilities of host

phylogeographic structure, dispersal capabilities, density, and parasite inter-specific

competition in structuring avian malaria parasite communities as well as the possibility

that these communities are stochastic.
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INTRODUCTION

Elucidating the mechanisms that structure biological communities is one of the central

goals in ecology (e.g. Ricklefs and Schluter, 1993; Weiher and Keddy, 1999).  Most

often, questions have been applied to free-living organisms, but there is a growing

interest in communities of parasitic organisms (Esch et al., 1990; Poulin, 2007).  One

reason for this increasing interest is the unambiguous community boundaries of parasites,

often being contained within the body of an individual host or a population of a single

host species (Simberloff and Moore, 1997).  However, studies on parasite communities

on vertebrates have been conducted almost exclusively on metazoan parasites of fish

(Poulin, 2007 and references therein).  Generalizations concerning parasite communities

require consideration of other parasite-host systems.

A parasite community has three levels (Esch et al., 1990; Poulin, 2007).  At the

lowest level is the infracommunity, which is composed of all parasite species infecting a

single host individual.  At the intermediate level is the component community, which is

composed of all parasite species infecting a single host population.  The highest level is

the compound community, which includes all parasite species infecting all host

populations in a particular region.  In an island system, for example, host populations are

isolated by island; thus, all parasites in all hosts on an island compose the compound

community.  Within each island, each host species (which on small islands can be

considered a single population) harbors a component community of parasites.  Finally,

within each host species on an island, individual hosts provide the habitats for parasite

infracommunities.  Although parasite communities should be characterized by all kinds

of parasites (helminths, lice, protozoans, etc), one may focus on a particular taxonomic
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group. In that case, it is more appropriate to substitute ‘component community’ with

‘ensemble,’ which can be defined as a group of organisms sharing both ancestry and

resources (Fauth et al., 1996; Magurran, 2004).

Host history is considered an important factor in structuring parasite communities

(e.g. Ricklefs and Schluter, 1993; Gregory, 1997; Poulin, 2007).  Davis and Pedersen

(2008), for example, demonstrated that host divergence time (i.e., host phylogeny) is the

strongest predictor of protozoan parasite community similarity (i.e., host sharing of

parasites) within primates.  The importance of host history to parasite community

structure is likely to vary depending on how specialized parasites are.  That is, in a

system where parasites are host specialists, each host species would be expected to harbor

a parasite ensemble quite unlike the compound community.  In a system where parasites

are generalists, however, ensembles should be highly contingent upon the compound

community.  Host history may be particularly important in island systems, because

parasites most likely colonize islands through their vertebrate hosts, in which they are

more prevalent, than within their dipteran vectors, in which they are less prevalent

(Lehane, 1990; Staats and Schall, 1996; Gager et al., 2008).  For instance, time since

arrival of the host species has been deemed an important predictor for how component

communities of freshwater fish parasites are structured (Guégan and Kennedy, 1993;

reviewed in Poulin, 2007).  Thus, if host history were important in predicting parasite

communities on islands, we would expect parasite ensemble dissimilarity (which is

equivalent to beta diversity; Magurran, 2004) between islands to be positively correlated

with host genetic distance.
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In this study, we consider pigmented haemosporidian (malaria) parasites of birds.

Currently, more than 200 morphological species of avian malaria parasites (Plasmodium

and Haemoproteus) have been described (Valkiunas, 2005), but studies on the genetic

variation in parasites have uncovered many times that number of distinct lineages, which

implies substantial overlooked cryptic diversity (Bensch et al., 2004).  Although strict

host specialization, that is, specialization of one parasite lineage on one host species,

appears to be rare in this group of parasites (Fallon et al., 2005), common parasite

lineages are often found more frequently on one host species than on others (Ricklefs et

al., 2004).  Single avian malaria parasite lineages can be widespread and abundant (e.g.

Fallon et al., 2005; Kimura et al., 2006), but parasite prevalence and community

composition may vary among regions.  In the Lesser Antilles, for example, there is no

significant difference in total parasite prevalence (Apanius et al., 2000) or in prevalence

of the most abundant parasite lineage, Haemoproteus sp. haplotype HC (HC; Fallon et

al., 2003), among islands.  However, there is a significant difference in parasite

prevalence between host species (some host species are free of parasite infection whereas

others, such as Loxigilla noctis, exhibit a prevalence greater than 50%; Fallon et al.,

2003).  In addition, both total prevalence and HC prevalence varies significantly within

species among islands (the island-times-host species effect; Apanius et al., 2000; Fallon

et al., 2003).  The latter authors raised the possibility that host populations evolve

independently and that this underlies the geographic structure demonstrated by a

significant island-times-host species interaction effect, but no one has tested associations

between parasite communities and host phylogeography directly.
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Here, we investigate whether host phylogeographic history influences the

structure of avian malaria parasite ensembles in three common emberizid passerine

(Emberizidae) hosts in the Lesser Antilles.  Parasite ensembles might also be highly

contingent on the compound community; that is, ensembles on a particular island might

merely reflect the relative abundance of parasite lineages represented in all hosts on each

island.  Therefore, we also investigate whether compound community composition

influences avian malaria parasite ensembles.  Finally, because movement of parasites

between closely situated islands is more likely than movement between islands that are

far apart, we also take into account that parasite ensembles that are closer geographically

may be more similar.  Specifically, we use Mantel tests to resolve the relative

contributions of genetic distance and compound community dissimilarity on parasite

ensemble dissimilarity while controlling for the effect of geographic distance.

METHODS

Study Site

The present study utilizes avian malaria parasite data from the Lesser Antilles (Figure 1),

which sit on the Caribbean-Atlantic plate subduction zone (Wadge, 1994).  Islands

previously screened for avian malaria parasites are (from north to south) Barbuda,

Antigua, Montserrat, Guadeloupe, Dominica, Martinique, St. Lucia, St. Vincent,

Barbados, and Grenada (Apanius et al., 2000; Fallon et al., 2003; Fallon et al, 2004;

Fallon et al, 2005).  In this study, we include all but Barbuda and St. Vincent, from which

samples are limited.  Except for Antigua, which is a limestone island, and Barbados,

which is a coralline island, the Lesser Antilles are of volcanic origin (Wadge, 1994).
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Most islands have been subaerial for approximately 20 million years (Ricklefs and

Bermingham, 2007a and references therein).  Barbados has been subaerial for less than 1

million years (Speed, 1994).  Island populations of birds are generally considered isolated

from each other, and distinct phylogeographic breaks occur between many island

populations (Ricklefs and Bermingham 2007b), but an assessment of gene flow between

the islands in the Lesser Antilles has yet to be attempted.

Sampling of birds and parasites

Bird communities were sampled discontinuously between 1991 and 2007 by mist netting.

St. Lucia was sampled both in 1991 and in 2000, and Barbados was sampled both in 1993

and in 2007.  The other islands were sampled either in 1991, 1993, or 2002.  All sampling

took place in the dry season (May to August).  DNA was extracted from blood, obtained

via sub-brachial venipuncture, and data on the avian malaria parasite lineages recovered

from the samples were identified in previous studies by sequencing part of cytochrome b

(Fallon et al., 2005; Chapter 1).  Our three focal bird taxa are Coereba flaveola, Loxigilla

noctis/barbadensis, and Tiaris bicolor.  We chose these species because these are

abundant, occur on all Lesser Antillean islands, and exhibit high prevalence of avian

malaria parasites.  L. barbadensis was recently considered a separate species (Buckley

and Buckley, 2004), but in this study we group both L. noctis and L. barbadensis, which

will hereafter be referred to as Loxigilla.  Sample sizes of each species are shown in

Table 1.
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Parasite lineage diversity

To describe parasite diversity in the Lesser Antilles, we calculated alpha diversities (α:

parasite lineage diversity on each island, both in the compound community and within

each focal species) and gamma diversity (γ: parasite lineage diversity within the Lesser

Antillean region, both in the compound community and within each focal species) using

Simpson’s index 

€ 

D =
ni
N
 

 
 

 

 
 
2

∑ , where ni = the number of individuals in the ith lineage and

N = the total number of individuals (Magurran, 2004).  For the γ diversity analysis, we

also included Barbuda and St. Vincent.  We used multiple regression to test the effect of

sampling effort and number of potential host species present on an island on parasite

diversity.  The regression was run through a generalized linear model procedure (GLM,

software SAS software, version 8.01; SAS Institute Inc., Cary, NC).  Potential host

species are all species belonging to families from which avian malaria parasites have

been recovered in the Lesser Antilles.  Thus, we exclude families of birds from which no

avian malaria parasites have been recovered (both families that have been screened and

considered non-infected and families that have not been sampled at all).

Parasite ensemble dissimilarity

To compare diversities between island pairs we calculated beta diversities, which will

henceforth be referred to as “dissimilarities.”  Because ensemble composition can differ

markedly over time in a single locality, with gain or loss of individual lineages

sometimes being observed within a decade (Fallon et al. 2004), we performed two

separate analyses; one included data from the 3-year period 1991-93 only (“1990’s”) and

the second included data from all years (1991-2007; “All-years”).  Because Grenada was
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sampled only in 2002, and because none of the 4 parasite infections of T. bicolor on

Grenada was identified, Grenada was excluded from both analyses of T. bicolor.

Avian malaria parasite mitochondrial lineage ensemble dissimilarity among

islands was calculated in EstimateS (Colwell, 2006).  When choosing the most

appropriate index for representing parasite lineage dissimilarities, we considered indices

that best handle small sample sizes and datasets where most lineages are rare, because in

our datasets, sample size varies by island and some parasite lineages are much more

abundant than others.  Therefore, we chose the following three indices that incorporate

abundance data when determining similarities between component communities; the

abundance-based Chao-Jaccard and Chao-Sørensen indices (Chao, et al., 2005) and the

Morisita-Horn quantitative dissimilarity index (reviewed in Magurran, 2004). The Chao-

Jaccard and Chao-Sørensen indices are calculated by: 

€ 

J =
UV

U +V −UV
 and

€ 

S =
2UV
U +V

, where U is the proportion of individuals from one community belonging to

shared species and V is the proportion of individuals from the other community belonging

to shared species (Chao et al., 2005).  Although Chao et al. (2005, 2006) demonstrate that

the most accurate indices are “estimated” abundance indices, which take into account the

probability of missing unseen shared species, Chao et al. (2006) cautions against using

the estimated indices when there are less than 10 shared species, as is the case in our data.

The Morisita-Horn index is calculated as 

€ 

CMH =
2 (ai ⋅ bi)∑

(da + db ) ⋅ (Na ⋅ Nb )
, where 

€ 

Na= the total

number of individual parasites on island A; 

€ 

Nb= the total number of individual parasites

on island B; 

€ 

ai= the number of individuals of the ith lineage on A; 

€ 

bi= the number of
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individuals of the ith lineage on B; and 

€ 

da  and 

€ 

db  adjusts for abundance of particular

parasite lineages through the equation 

€ 

da =
ai
2∑

Ni
2  (Magurran, 2004).  This particular

index has demonstrated the least sensitivity to both sample size and diversity (Wolda,

1981).  In addition, it performs extremely well (i.e., it accurately estimates dissimilarities)

when α diversity is low, as is the case in our system (Wolda, 1981).  All three indices

range from 0, indicating no sharing of species between communities, and 1, indicating

community identity.  Because it is more intuitive (Magurran, 2004), we subtracted the

index from one, creating dissimilarity indices as opposed to similarity indices.  Now, 0

indicates high similarity and 1 indicates high dissimilarity.

Compound community dissimilarity

Two datasets, all-years and 1990’s, were produced for compound community

dissimilarity for each focal species.  For each matrix, all parasite lineages recovered from

all host species on an island, minus the focal species data, were included.  For example,

when performing the analyses on parasite ensembles of C. flaveola, the compound

community matrix did not include any parasite data for C. flaveola individuals on a

particular island.  Had we not excluded the focal species data, our results would be biased

in favor of a positive correlation between the ensemble and the compound community

structure, especially in datasets where several individuals from the focal species were

infected.  The same indices that were computed for ensembles were also computed for

the compound communities.
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Host genetic distance

Cytochrome b was amplified using primers H16065 (Helm-Bychowski and Cracraft,

1993) and L14990 (Kocher, 1989 in Helm-Bychowski and Cracraft, 1993) and sequenced

in both the forward and reverse directions on an ABI 3100 Genetic Analyzer (Applied

Biosystems, Foster City, CA).  A minimum of 2 individuals from each of the 3 host

species and each island were successfully sequenced, except for in T. bicolor on Antigua

of which we successfully sequenced only one individual.  From some islands, e.g.

Barbados and St. Lucia, we sequenced as many as 5 individuals.  Sequences were edited

and aligned in SeqMan™ II 4.0 (DNASTAR Inc., Madison, WI).  Host phylogeographic

variation was then estimated from pairwise distances that were corrected for ancestral

polymorphism in Arlequin 3.11 (Excoffier et al., 2005) by the equation

€ 

DC = PiXY − PiX + PiY
2

, where 

€ 

Pi is the average pairwise nucleotide difference between

two populations, 

€ 

PiXY  is the average pairwise nucleotide difference between two

populations from two different islands, and 

€ 

PiX  and 

€ 

PiY  are the average within-

population pairwise nucleotide differences.  Correcting for ancestral polymorphism is

important in studies addressing questions involving population divergence instead of

gene divergence (Edwards and Beerli, 2000).  Effectively, this procedure measures inter-

island population divergence controlling for how much of the variation is caused by intra-

island polymorphisms.  We used 897 bp and 29 sequences of C. flaveola, 941 bp and 38

sequences of Loxigilla, and 827 bp and 25 sequences of T. bicolor.  We also created a

haplotype network of each species in TCS v.1.21 (Clement et al., 2000).  The TCS

program produces a statistical parsimony network using methods described by Templeton
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et al., (1992; Clement et al., 2000).  Ambiguities were solved based on most likely

connections described in Posada and Crandall (2001).

Mantel tests

Pairwise geographic distances between islands were obtained from a wall map published

by the Oxford Cartographers, U.K.  Partial Mantel tests (Smouse et al., 1986; reviewed in

Legendre and Legendre, 2000), in which we estimated the correlation between ensemble

dissimilarity and the two independent variables (host genetic distance and compound

community dissimilarity) while controlling for the effect of geographic distance, were

performed in FSTAT 2.9.3 (Goudet, 2002) on both datasets (all-years and 1990’s).  We

performed 10,000 permutations to create a null sampling distribution of the normalized

Mantel statistic, r (Legendre and Legendre, 2000). In addition to the partial Mantel test,

we performed simple Mantel tests to calculate the percent variation attributed to

compound community dissimilarity and geographic distance separately, following the

procedures of Telles and Diniz-Filho (2005).  Simple Mantel tests were performed only

in those cases where the partial Mantel test produced significant correlations of both

independent variables.

RESULTS

Community diversity

The reciprocal Simpson’s diversity indices (

€ 

1
D) are listed in Table 2.  This reciprocal

index ranges from 1 (low diversity) to N (high diversity), where N is the total number of

parasite lineages.  The total diversity, or γ diversity, of avian malaria parasites in the
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Lesser Antilles has an index value of 5.7 (Table 2).  St. Lucia supported the greatest

compound diversity (α = 4.4).  Throughout the Lesser Antilles, Loxigilla supported the

lowest avian malaria parasite diversity (γ = 2.3) and C. flaveola supported the greatest

diversity (γ = 3.9), however this is not reflected in α diversity indices, where T. bicolor

most often supported the lowest diversity and Loxigilla supported the lowest diversity

only on St. Lucia.  One abundant parasite lineage, HD, was found almost exclusively on

C. flaveola (Fallon et al., 2004); this one lineage is probably largely responsible for the

higher diversity in C. flaveola.  C. flaveola also shared parasite lineages with Loxigilla

and T. bicolor.  The number of sequenced parasite infections was not related to parasite

diversity (p=0.72) whereas number of potential host species was significantly related

(F=24.0, p=0.001, R2=0.75) to parasite diversity exhibited on an island (slope of the

regression, b=0.141 ± 0.029 SE, t=4.90, p=0.001; Figure 2).

Community dissimilarities

Avian malaria parasite ensemble dissimilarity among islands varied between pairwise

comparisons from 0 (complete similarity) to 1 (complete dissimilarity; i.e., no shared

lineages).  In C. flaveola, there were few instances of both complete similarity (1 of 28

comparisons) and complete dissimilarity (3 of 28).  In Loxigilla, there were no instances

of complete similarity in parasite lineage ensembles but 9 instances of complete

dissimilarity.  In T. bicolor, complete dissimilarity between parasite lineage ensembles

dominated (13 of 21 comparisons).  Both ensembles and compound communities were on

average more dissimilar than similar (Table 3, Figure 3).  None of the compound

communities were identical.
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Host genetic distance

Loxigilla sp. exhibited the greatest genetic divergence between islands, and T. bicolor the

least (Table 3, Figure 4).  The values are slightly different in the two datasets because

Grenada was excluded in all 1990’s analyses.  Barbados exhibited the highest divergence

from the other islands in all species.  The maximum corrected genetic distances were

found between Barbados and Grenada for C. flaveola (0.66%), Barbados and

Montserrat/Guadeloupe for Loxigilla (0.92%), and Barbados and the four islands

Antigua, Montserrat, Dominica, and Martinique in T. bicolor (0.04%).  Most pairwise

comparisons within T. bicolor show no genetic divergence.  There is a large

phylogeographic disjunction within Loxigilla between the southern islands of Martinique,

St. Lucia, Barbados, and Grenada and the northern islands of Dominica, Guadeloupe,

Montserrat, and Antigua (Figure 4).  Within these two clusters, the average genetic

distance is 0.01% (±0.02%) and 0.23% (±0.12%) for the North and South, respectively.

The average genetic distance separating the northern and southern clusters is 0.70%

(±0.17%).  Equivalent disjunctions are not found in either T. bicolor or C. flaveola,

although Grenada (0.31%, ±0.15% different) and Barbados (0.43%, ±0.10% different) are

more distinct from the other islands phylogeographically in C. flaveola (Figure 4).

Mantel tests

Figure 5 shows how parasite ensemble dissimilarity correlates with genetic distance,

geographic distance, and compound community dissimilarity.  In some cases, genetic

distance is strongly correlated with geographic distance (r > 0.6), and in one case,

compound community dissimilarity is strongly correlated with geographic distance (r >
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0.6; Table 4).  The three indices (Chao-Jaccard, Chao-Sørensen, and Morisita-Horn)

produced slightly different values but were largely in agreement on the final results

(Table 5).  The correlation between genetic distance and ensemble dissimilarity and

between compound community dissimilarity and ensemble dissimilarity (Figure 5) were

calculated separately and will hereafter be referred to as the genetic model and the

compound community model, respectively.  Because we use the same datasets to test two

hypotheses (the correlation with genetic distance and the correlation with compound

community dissimilarity), we use the Bonferroni correction and consider significance at a

p-value lower than 0.025.

Three models were significant, as determined by significant R2 values (Table 5):

one genetic model (Loxigilla, all-years dataset) and two compound community models

(T. bicolor, both datasets).  Significant correlation coefficients usually accompanied

significant models.  The genetic model for Loxigilla explained approximately 30% of the

variation.  However, this could not be attributed to genetic distance, but solely to

geographic distance (Table 5).  The compound community model for T. bicolor explained

more than 50%, and in one case 69%, of the variation (Table 5).  This variation is

attributed primarily to compound community dissimilarity, but geographic distance alone

explained up to 19% of the variation (Table 6).

DISCUSSION

Five results emerged from our analyses.  First, α diversity is significantly related to

number of potential host species.  Second, host genetic distance does not correlate with

parasite ensemble dissimilarity and is, therefore, unlikely to be a determinant of ensemble
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composition.  Third, some ensembles change in parallel with the compound communities

indicating that the host contracts whatever parasite lineages are present on an island.

Fourth, some of the variation in ensemble structure can be explained by geographic

distance.  Fifth, most of the variation in ensemble structure is unrelated to host genetic

distance, compound community structure, and geographic distance.

α diversity

Parasite diversity increases with an increasing number of potential host species,

suggesting that diverse host communities have the potential to support more parasite

lineages (Figure 3).  Because parasite specialization is rare in the Lesser Antilles (Fallon

et al., 2005), any particular host species is likely to support a more diverse parasite

ensemble if they themselves are members of a more diverse community.

Host genetic distance and ensemble dissimilarity

The variation in genetic diversity between island populations in the three focal host

species is intriguing.  The Lesser Antillean endemic Loxigilla has diversified extensively

in the Lesser Antilles (Table 3, Figure 5, Appendix 1), even within L. noctis.  C. flaveola

also exhibits relatively high diversity in the Lesser Antilles, but the northern and central

islands are not phylogeographically distinct (Figure 5, Appendix 1).  T. bicolor, in

contrast, is relatively uniform (Table 3, Figure 5, Appendix 1).  Thus, if the

phylogeographic history of hosts causes parasite ensembles to differ between islands, one

would expect Loxigilla’s parasite ensembles to vary greatly between islands, whereas T.

bicolor’s parasite ensembles would be uniform, mirroring the different levels of host
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genetic divergence.  On the contrary, T. bicolor’s ensembles exhibit the greatest average

dissimilarity, whereas Loxigilla’s ensembles exhibit the greatest average similarity (Table

3).  Within C. flaveola, little genetic divergence is observed between most islands

(average nucleotide difference = 0.01% when Grenada and Barbados are removed),

whereas Grenada and Barbados are phylogeographically distant from the other islands

(average nucleotide difference = 0.31% and 0.43%, respectively) and highly divergent

from each other (average nucleotide difference is= 0.66%).  The Grenada and Barbados

isolation is reflected in the statistical parsimony haplotype network (Figure 4).  Pairwise

genetic distances are presented in Appendix 1.  The average ensemble dissimilarity

between Grenada and all other islands (Chao-Jaccard index, 

€ 

JGD / others  = 0.79, ±0.25) and

between Grenada and Barbados (

€ 

JBA /GD  = 0.88) are higher than the average (

€ 

Javg= 0.66,

±0.27), which is what we predict if host genetic distance correlates with parasite

ensemble dissimilarity.  However, the average ensemble dissimilarity between Barbados

and all other islands (

€ 

JBA / others= 0.57, ±0.30) is lower than the average, which is contrary

to what we predict if host genetic distance correlates with parasite ensemble dissimilarity.

Thus, within our datasets, we have contrasting patterns of ensemble dissimilarity and host

genetic distance.

Consequently, the partial Mantel model of genetic distance and ensemble

dissimilarity performed poorly for most comparisons (Table 5), and where the model is

significant (in Loxigilla only) it is entirely due to a significant correlation between

geographic distance and ensemble dissimilarity (Table 5).  We also found that genetic

and geographic distances are strongly correlated (Table 4).  However, the simple Mantel

tests ascribe all the variation in ensemble composition to geographic distance (Table 5),



Svensson, L. Maria E., 2008, UMSL, p. 50

which means that genetic distance alone, even when we do not control for the effect of

geographic distance, does not explain any of the ensemble dissimilarity.  Taken together,

our results lead to the rejection of the hypothesis that host genetic distance underlies

ensemble dissimilarity.

Compound community diversity

Avian malaria parasites are to a certain extent generalists, although some are restricted to

a single host species (Fallon et al., 2005; Ricklefs et al., 2005).  Hence, with few

limitations on the parasites’ capability of exploiting different host species, one would

expect ensembles to closely mirror the compound community, especially when the

phylogeographic histories of the hosts have no influence in structuring parasite

ensembles.  Fallon et al. (2003) hinted at the discrepancy between compound

communities and ensembles when they demonstrated a significant island-times-host

effect of HC prevalence in the absence of a significant island effect (in which they

considered the compound community).  Here we extended the analysis to investigate the

variation between islands in all lineages so far recovered.  We show that despite

generalist behavior, avian malaria parasite ensembles in the Lesser Antilles do not always

mirror the compound community, except for in the case of the T. bicolor ensembles

(Tables 5 and 6).  Considering that Barbados may bias the correlation, since one lineage

dominates the compound community there and the prevalence of this lineage is extremely

high in T. bicolor, we removed Barbados from the matrices and re-analyzed the

remaining data.  This did not change the significance or correlations between ensemble

dissimilarity and compound community dissimilarity (results not shown).
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Host genetics, parasite compound communities, and parasite ensembles

The high genetic divergence (Table 3, Appendix 1) between islands suggest that the

Loxigilla island populations have been isolated from each other for a long time.  The low

genetic divergence within T. bicolor, on the other hand, suggests that the T. bicolor island

populations are not phylogeographically structured.  We do not attempt to distinguish

between time of colonization and levels of gene flow within T. bicolor; either of these

mechanisms would produce relatively similar phylogeographic patterns.  C. flaveola, on

the other hand, exhibits no clear, consistent phylogeographic pattern within the Lesser

Antilles, except that St. Lucia and Grenada seem more phylogeographically distant from

the other islands than average.  That is, the corrected pairwise genetic distances are

generally low, but there also seems to be high diversity within islands (Appendix 1),

possibly caused by multiple colonization events or large effective population sizes. The

Grenada separation is consistent with results in Seutin et al. (1994), where a clear

phylogeographic disjunction separates Grenada/St. Vincent from the northern islands.

Combining the results from our two models, we see an intriguing pattern: the host

populations exhibiting no phylogeographic structure (those of T. bicolor) reflect the

community composition of the compound community of which they are members,

whereas phylogeographically structured host populations (those of Loxigilla) do not

mirror the compound community at all.  Ensembles of both unstructured and structured

populations correlated to a similar low degree with geographic distance.  As mentioned

before, because ensemble dissimilarity and host genetic distance in Loxigilla are not

correlated, host phylogeographic history is unlikely to be the primary underlying force in
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structuring parasite communities.  Nevertheless, that the compound community is not

mirrored in Loxigilla’s parasite ensembles argue for this host population having evolved

long enough with the parasite community for independent structuring among islands of

the ensembles to occur.  That is, parasite ensembles in Loxigilla are not stochastic, but are

likely the result of local coevolution between hosts and parasites.

In contrast, the unstructured host populations of T. bicolor exhibit a high positive

correlation between compound community dissimilarity and ensemble dissimilarity.  This

high correlation is not the result of regional homogeneity of parasite communities; pairs

of islands are in general more dissimilar than similar, both in their parasite compound

communities and ensembles (Table 3, Appendix 2).  Thus, T. bicolor populations closely

mirror the compound community structure suggesting that their defenses against parasites

do not discriminate among parasite lineages.

The unexplained variation

For vector-borne parasites, several factors are likely to be important in structuring

communities: for example, dispersal capability of hosts may homogenize relatively

isolated communities (Poulin, 2007), inter-specific competition may exclude certain

parasite species from either particular ensembles or compound communities (e.g. Richie,

1988; de Roode et al. 2005), and abundance and/or densities of hosts may influence the

survival of parasite populations (Price, 1990).  These “hosts” could be either the birds or

the dipteran vectors in the case of malaria parasites.

Frequent movement of parasites between islands may reduce the likelihood of

detecting correlations between host phylogeography and ensemble dissimilarity.
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However, the great average dissimilarity of compound communities between islands

suggest that if movement of parasites is frequent, it has not succeeded in homogenizing

the parasite communities.

Interspecific competition could play a role in structuring parasite communities

either through direct competition for resources or apparent competition resulting from

strain-transcending immunity (Richie, 1988; de Roode et al., 2005).  Avian malaria

parasites share one common resource—haemoglobin—and competition for this resource

has been shown to exist in other vertebrate malaria parasite hosts (de Roode et al., 2005).

Yet, on average only 28% of birds exhibit infections in their peripheral blood tissue in the

Lesser Antilles (Fallon et al., 2005), and parasitemia are generally low (Apanius et al.,

2000); hence, there are plenty of non-utilized resources present.  The fact that few birds

exhibited multiple infections (Durrant et al., 2008; Fallon et al., 2005) could be the result

of competitive exclusion (Bensch et al., 2007), or just a low probability of detection.

Alternatively, the rarity of multiple infections could be the result of a low probability that

two infected vectors, carrying two different parasite lineages, bite the same individual

bird.  The low prevalence of avian malaria parasites in Lesser Antillean birds coupled

with the extremely low prevalence in vectors observed in another Neotropical area

(Gager et al., 2008) argues strongly for the latter explanation; i.e., parasites are unlikely

to be given the opportunity to competitively exclude each other in nature.  Thus, although

parasite competition has been observed in infracommunities (de Roode et al., 2005), the

role of competition in structuring component communities is likely minimal.

Nevertheless, it is intriguing that the most abundant lineage in the Lesser Antilles, HC, is

absent or in low prevalence in compound communities where its sister lineage, HH,
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predominates (Fallon et al., 2005), and that the prevalence of HC alternates between

hosts on different islands (Fallon et al., 2003), indicating some level of interaction even

at the component community level.

Host and vector abundance must have an impact on parasite communities.

Although we have no quantitative data on the abundance of our focal species, it is clear

that they are currently some of the most abundant birds in the Lesser Antilles, and it is

highly unlikely that their populations would not be able to maintain a parasite population,

at least on an ecological time-scale.  On an evolutionary time-scale, abundance of

individuals within host populations may have fluctuated and exhibited what is referred to

as taxon cycles (Wilson 1959,1961); that is, recurrent extinction and re-colonization of

island populations  (Ricklefs and Cox, 1972; Ricklefs and Bermingham, 1999).  Taxon

cycles of host populations would likely result in frequent local extinctions of specialized

parasite lineages.  Local extinctions of parasite lineages in the Lesser Antilles are thought

to be frequent (Fallon et al., 2005).  For example, local extinctions likely caused the

current disjunct distribution of parasite lineage HD, which was recovered most frequently

from C. flaveola, but exhibited some spillover to other species (Fallon et al., 2005).

Thus, some patterns in the Lesser Antillean avian malaria system are consistent with what

one would predict if taxon cycles occurred.  Testing the relationship between host taxon

cycles and parasite community structure has yet to be attempted.  Unfortunately, we

know nothing of vector abundance or communities in the Lesser Antilles, which could

influence parasite communities in the same way as host communities could.

Finally, it is possible that parasite ensembles and compound communities in the

Lesser Antilles are assembled stochastically.  This is especially likely when parasites are
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generalists, and has been considered the most likely explanation in freshwater eel

helminth community assemblages (Kennedy, 1990).  Stochasticity is supported by the

high dissimilarity both between compound communities and ensembles, of which little is

explained by geographic distance.  However, the inconsistency between compound

community dissimilarity and ensemble dissimilarity in two of our three focal species

suggests that some demographic variable(s) within each host species influences parasite

community structure.  In addition, some host species, although extensively sampled, do

not harbor a parasite lineage that is a common part of the host’s ensemble in most of its

range, even when it is present in the compound community.  For example, 176 C.

flaveola were sampled on Grenada.  Of these, 41 were infected with avian malaria

parasites and 32 of these infections were identified.  None of these infections were

identified as HC, which is the most frequently detected lineage in C. flaveola on the other

islands.  This is in spite of HC being present in other hosts on Grenada.  This observation

suggests that an infection obstacle, whether host resistance, competition, or vector

dynamics, has shaped Grenada’s C. flaveola ensemble. Many factors of this kind,

expressed uniquely in different host populations, would give the appearance of

randomness in parasite ensembles.

Any tests of correlations between ensemble dissimilarity and alternative, or rather,

additional structural factors such as parasite competition and/or host abundance, will

likely fail to take into account that hosts are not passive exploitable habitats.  Hosts and

malaria parasites represent a true interaction, where parasites incur costs to the hosts

(Marzal et al., 2005; Gilman et al, 2007) and hosts evolve defenses against the parasites

(van Riper et al. 1986).  Thus, the influence of host history, as determined in this study
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by phylogeography, on parasite ensembles may be masked by additional forces

structuring communities, but host history most certainly influences community structure

of avian malaria parasites to some degree.
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TABLES

Table 1.  Sample sizes (sequenced infections/total number sampled) for the two different

datasets (all-years and 1990’s).

AN MO GU DO MA SL BA GD

All-years

 Compound 21/94 63/141 53/167 58/222 32/139 118/41

6

78/342 51/530

 C. flaveola 4/16 6/18 21/28 11/18 3/7 24/61 19/66 32/176

 Loxigilla 11/20 6/11 6/29 15/30 16/26 46/71 37/93 1/40

 T. bicolor 1/18 2/10 8/11 7/10 3/7 9/18 20/24 0/30

1990's

 Compound 21/94 63/141 53/167 58/222 32/139 90/213 19/85 N/A

 C. flaveola 4/16 6/18 21/28 11/18 3/7 10/28 3/10 N/A

 Loxigilla 11/20 6/11 6/29 15/30 16/26 23/35 11/21 N/A

 T. bicolor 1/18 2/10 8/11 7/10 3/7 4/9 3/7 N/A
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Table 2.  Alpha (α) and gamma (γ) diversity of avian malaria parasite mitochondrial

lineages in the Lesser Antilles.  The first row represents the diversity in the compound

community, and the final three rows represent the diversity in the three focal host species.

The minimum diversity is 1 and the maximum is the number of lineages present in each

community.  AN=Antigua, MO=Montserrat, GU=Guadeloupe, DO=Dominica,

MA=Martinique, SL=St. Lucia, BA=Barbados, GD=Grenada.

α diversity

AN MO GU DO MA SL BA GD

Mean

α

γ

€ 

γ
α

Compound 2.5 2.7 4.4 3.9 3.5 4.4 1.1 3.8 3.3 5.7 1.7

C. flaveola 1.0 3.0 2.3 1.4 3.0 2.7 1.3 1.6 2.0 3.9 2.0

Loxigilla 1.2 2.0 2.6 2.5 1.5 1.7 1.0 1.0 1.7 2.3 1.4

T. bicolor 1.0 2.0 1.3 1.8 1.0 2.3 1.0 N/A 1.5 2.9 1.9
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Table 3.  Mean ensemble dissimilarity, mean compound community (CC) dissimilarity,

average corrected genetic distance (percent nucleotide difference), and standard

deviations for each focal species divided in two different sampling periods.  Because all

similarity indices used were comparable, only results from the Chao-Jaccard index are

shown here.

Mean

ensemble

dissimilarity SD

Mean CC

dissimilarity SD

Mean

genetic

divergence SD

All-years

  C. flaveola 0.662 0.275 0.665 0.265 0.167 0.192

  Loxigilla 0.674 0.307 0.615 0.218 0.450 0.329

  T. bicolor 0.799 0.296 0.504 0.216 0.009 0.015

1990's

  C. flaveola 0.633 0.301 0.634 0.268 0.118 0.181

  Loxigilla 0.577 0.258 0.628 0.227 0.447 0.364

  T. bicolor 0.792 0.380 0.518 0.218 0.009 0.015
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Table 4.  Correlations between geographic distance and compound community

dissimilarity (left) and geographic distance and genetic distance (right).  All three

ensemble dissimilarity indices produced comparable values and only the Chao-Jaccard

index results are shown.  Where only 7 islands are included, Grenada is the excluded

island.  One asterisk denotes an associated p-value smaller than 0.05 and two asterisks

denotes a p-value smaller than 0.025.

No. islands

€ 

rCC/Geo

€ 

RCC/Geo
2

€ 

rGen /Geo

€ 

RGen /Geo
2

All-years

  C. flaveola 8 0.61** 0.37** 0.52** 0.28**

  Loxigilla 8 0.29 0.08 0.68** 0.47**

  T. bicolor 7 0.38 0.14 0.62* 0.38**

1990's

  C. flaveola 7 0.47* 0.22* 0.60** 0.36**

  Loxigilla 7 0.38 0.14 0.76** 0.58**

  T. bicolor 7 0.38 0.14 0.62* 0.38**
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Table 5.  Partial Mantel test results with all samples included and from the 1990’s only;

€ 

RED/Gen
2 , variation described by the ensemble dissimilarity/genetic distance model;

€ 

rED/Gen , partial correlation coefficient of ensemble dissimilarity and genetic distance

controlling for the effect of geography; 

€ 

RED/CC
2 , variation described by the ensemble

dissimilarity/compound community dissimilarity model; 

€ 

rED/CC , partial correlation

coefficient of ensemble dissimilarity and compound community composition; 

€ 

rED/Geo,

correlation coefficient of geographic distance and ensemble dissimilarity.  One asterisk

denotes a p-value smaller than 0.05, two asterisks denotes a p-value smaller than 0.025.

€ 

RED/Gen
2

€ 

rED/Gen

€ 

RED/CC
2

€ 

rED/CC

€ 

rED/Geo

All-years

C. flaveola

  Chao-Jaccard 0.02 -0.03 <0.01 -0.04 0.09

  Chao-Sørensen 0.03 -0.02 0.02 0.09 0.14

  Morisita-Horn 0.02 -0.02 <0.01 0.06 0.09

Loxigilla

  Chao-Jaccard 0.31** -0.06 0.15 0.18 0.36

  Chao-Sørensen 0.37** -0.05 0.17 0.14 0.41*

  Morisita-Horn 0.31** -0.01 0.16 0.15 0.40*

T. bicolor

  Chao-Jaccard 0.26 0.32 0.53** 0.67** 0.51**

  Chao-Sørensen 0.28 0.32 0.53** 0.66** 0.53**

  Morisita-Horn 0.27 0.33 0.69** 0.79** 0.52**
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1990's

C. flaveola

  Chao-Jaccard 0.06 -0.22 0.06 -0.21 -0.20

  Chao-Sørensen 0.03 -0.16 0.03 -0.17 -0.13

  Morisita-Horn 0.05 -0.23 0.02 -0.07 -0.14

Loxigilla

  Chao-Jaccard 0.09 -0.12 0.05 0.23 0.09

  Chao-Sørensen 0.13 -0.11 0.04 0.19 0.14

  Morisita-Horn 0.10 -0.06 0.03 -0.02 0.16

T. bicolor

  Chao-Jaccard 0.26 0.40 0.50** 0.66** 0.50**

  Chao-Sørensen 0.27 0.41 0.49** 0.64** 0.51**

  Morisita-Horn 0.26 0.40 0.63** 0.74** 0.50**
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Table 6.  The variation explained by the partial compound community model from Table

5 is partitioned into percent explained by compound community dissimilarity and

geographic distance combined (Both), only compound community dissimilarity (CC),

and only geographic distance (Geo).  Only models producing significant correlations for

both independent variables are shown here.  All data below is from T. bicolor models.

The variable contributing the most to the model is boldfaced.

Both CC Geo

All-years

  Chao-Jaccard 35 51 14

  Chao-Sørensen 33 48 19

  Morisita-Horn 29 61 10

1990’s

  Chao-Jaccard 35 51 14

  Chao-Sørensen 36 48 16

  Morisita-Horn 27 60 12
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FIGURES

Antigua
Montserrat

Guadeloupe

Dominica

Martinique

St. Lucia

Barbados

Grenada

Figure 1.  The West Indies (left) and part of the Lesser Antilles (right).  Islands included

in this study are labeled and shown in black.
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Figure 2.  The relationship between the number of potential host species present in a

community (x-axis) and the reciprocal Simpson’s index of parasite lineage richness (y-

axis).  The line equation is

€ 

y = 0.1414x − 0.4233.  The y-intercept (-0.4233) is not

significantly different from zero (p=0.60).
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Figure 3.  Avian malaria parasite ensembles in C. flaveola (A), Loxigilla (B), T. bicolor

(C), and the compound community (D) in the early 1990’s and over all years sampled.

Haemoproteus sp. lineages start with an “H” and Plasmodium sp. lineages start with a

“P.”  Grey areas represent haplotypes unique to a particular island.  Parasite lineages

recovered from hosts other than C. flaveola, Loxigilla, and T. bicolor are shown in white.

Antigua (AN), Montserrat (MO), Guadeloupe (GU), Dominica (DO), Martinique and
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(MA) were only sampled in the early 1990’s; thus the ensembles on these islands are

identical in the graphs both on the left and on the right.  St. Lucia (SL) and Barbados

(BA) were sampled both in the early 1990’s and in the 2000’s and changed in some

cases.  Grenada (GD) was sampled only in 2002 and is included only in the graphs to the

right.
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Figure 4.  Statistical parsimony haplotype networks of C. flaveola (A), Loxigilla (B), and

T. bicolor.  Colors correspond to islands (right).
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Figure 5.  Ensemble dissimilarity (y-axis) and genetic distance, geographic distance (log-

transformed), or compound community dissimilarity (x-axes) in C. flaveola (A), Loxigilla

(B), and T. bicolor (C).
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APPENDICES

Appendix 1.  Uncorrected genetic pairwise distance (above diagonal), within-island

genetic pairwise distances (diagonal, in bold), and corrected genetic pairwise distances

(below diagonal), in percent nucleotide differences.

C. flaveola
AN MO GU DO MA SL BA GD

AN 0.00 0.04 0.04 0.11 0.00 0.02 0.41 0.38
MO 0.00 0.11 0.06 0.17 0.06 0.08 0.50 0.45
GU 0.00 0.00 0.07 0.17 0.06 0.08 0.50 0.45
DO 0.01 0.01 0.03 0.20 0.11 0.13 0.56 0.47
MA 0.00 0.00 0.02 0.01 0.00 0.02 0.45 0.39
SL 0.00 0.00 0.02 0.01 0.00 0.04 0.45 0.40
BA 0.36 0.40 0.42 0.41 0.40 0.38 0.09 0.84
GD 0.25 0.26 0.28 0.24 0.26 0.25 0.66 0.26

Loxigilla
AN MO GU DO MA SL BA GD

AN 0.00 0.03 0.07 0.30 0.74 0.79 0.83 0.81
MO 0.00 0.06 0.13 0.38 0.89 0.96 0.98 0.96
GU 0.00 0.02 0.15 0.39 0.94 0.96 1.02 1.00
DO 0.00 0.04 0.01 0.62 0.79 0.81 0.91 0.96
MA 0.66 0.77 0.77 0.39 0.18 0.17 0.34 0.49
SL 0.74 0.87 0.84 0.45 0.03 0.11 0.40 0.51
BA 0.81 0.92 0.92 0.58 0.23 0.33 0.04 0.63
GD 0.58 0.70 0.70 0.43 0.18 0.23 0.39 0.45

T. bicolor
AN MO GU DO MA SL BA GD

AN 0.00 0.06 0.05 0.03 0.00 0.00 0.10 0.06
MO 0.00 0.12 0.10 0.09 0.06 0.06 0.16 0.12
GU 0.00 0.00 0.10 0.08 0.05 0.04 0.13 0.11
DO 0.00 0.00 0.00 0.06 0.03 0.03 0.13 0.08
MA 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.06
SL 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.06
BA 0.04 0.04 0.02 0.04 0.04 0.03 0.12 0.16
GD 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.12
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Appendix 2a.  Chao-Jaccard (J), Chao-Sørensen (S), and Morisita-Horn (MH)

dissimilarity matrices including data from all years sampled.  “ED” subscripts denote

ensemble dissimilarities, “CC” subscripts denote compound community dissimilarities

minus data of the focal species.

C. flaveola
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 0.83 0.71 0.75 0.92 0.85 0.96
AN-GU 0.38 0.24 0.14 0.94 0.88 0.92
AN-DO 0.18 0.10 0.04 0.88 0.79 0.92
AN-MA 1.00 1.00 1.00 0.95 0.91 0.98
AN-SL 0.75 0.60 0.64 0.74 0.58 0.87
AN-BA 0.13 0.07 0.02 1.00 1.00 1.00
AN-GD 1.00 1.00 1.00 1.00 1.00 1.00
MO-GU 0.85 0.74 0.73 0.64 0.47 0.72
MO-DO 0.84 0.72 0.74 0.63 0.46 0.91
MO-MA 0.88 0.78 0.83 0.89 0.80 0.89
MO-SL 0.82 0.69 0.86 0.31 0.19 0.80
MO-BA 0.67 0.50 0.70 0.90 0.82 0.89
MO-GD 0.84 0.73 0.73 0.91 0.84 0.92
GU-DO 0.33 0.20 0.10 0.21 0.12 0.09
GU-MA 0.83 0.70 0.84 0.37 0.23 0.62
GU-SL 0.30 0.18 0.42 0.38 0.24 0.52
GU-BA 0.43 0.28 0.12 0.89 0.80 0.90
GU-GD 0.94 0.89 0.98 0.90 0.82 0.91
DO-MA 0.87 0.77 0.88 0.21 0.12 0.37
DO-SL 0.71 0.55 0.60 0.33 0.20 0.32
DO-BA 0.27 0.15 0.04 0.75 0.59 0.69
DO-GD 1.00 1.00 1.00 0.79 0.65 0.75
MA-SL 0.38 0.23 0.41 0.23 0.13 0.07
MA-BA 0.90 0.82 0.93 0.41 0.26 0.19
MA-GD 0.39 0.24 0.40 0.66 0.49 0.39
SL-BA 0.71 0.55 0.61 0.56 0.39 0.30
SL-GD 0.46 0.30 0.83 0.69 0.53 0.45
BA-GD 0.88 0.78 0.86 0.55 0.38 0.44
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Loxigilla
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 0.84 0.72 0.77 0.88 0.79 0.93
AN-GU 0.92 0.85 0.93 0.79 0.66 0.54
AN-DO 0.92 0.85 0.94 0.76 0.61 0.54
AN-MA 1.00 1.00 1.00 0.85 0.75 0.80
AN-SL 0.80 0.67 0.85 0.79 0.66 0.67
AN-BA 1.00 1.00 1.00 0.28 0.16 0.20
AN-GD 1.00 1.00 1.00 0.51 0.35 0.39
MO-GU 0.71 0.56 0.50 0.50 0.34 0.73
MO-DO 0.62 0.45 0.31 0.56 0.39 0.84
MO-MA 0.42 0.27 0.08 0.93 0.87 0.98
MO-SL 0.26 0.15 0.04 0.52 0.36 0.81
MO-BA 0.33 0.20 0.11 0.88 0.79 0.96
MO-GD 1.00 1.00 1.00 0.89 0.80 0.94
GU-DO 0.26 0.15 0.09 0.18 0.10 0.06
GU-MA 0.69 0.53 0.49 0.45 0.29 0.26
GU-SL 0.28 0.16 0.40 0.38 0.24 0.13
GU-BA 0.67 0.50 0.52 0.65 0.48 0.54
GU-GD 1.00 1.00 1.00 0.77 0.62 0.73
DO-MA 0.58 0.41 0.30 0.36 0.22 0.16
DO-SL 0.25 0.14 0.22 0.36 0.22 0.12
DO-BA 0.53 0.36 0.33 0.73 0.57 0.56
DO-GD 1.00 1.00 1.00 0.76 0.61 0.74
MA-SL 0.35 0.21 0.03 0.33 0.19 0.18
MA-BA 0.19 0.10 0.03 0.85 0.74 0.86
MA-GD 1.00 1.00 1.00 0.59 0.42 0.74
SL-BA 0.24 0.14 0.05 0.77 0.62 0.71
SL-GD 1.00 1.00 1.00 0.54 0.37 0.75
BA-GD 1.00 1.00 1.00 0.39 0.24 0.67
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T. bicolor
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 1.00 1.00 1.00 0.82 0.69 0.91
AN-GU 1.00 1.00 1.00 0.77 0.62 0.71
AN-DO 1.00 1.00 1.00 0.71 0.55 0.69
AN-MA 1.00 1.00 1.00 0.68 0.51 0.63
AN-SL 1.00 1.00 1.00 0.30 0.18 0.56
AN-BA 1.00 1.00 1.00 0.67 0.51 0.66
MO-GU 1.00 1.00 1.00 0.45 0.29 0.62
MO-DO 0.88 0.78 0.86 0.51 0.34 0.81
MO-MA 1.00 1.00 1.00 0.81 0.68 0.84
MO-SL 1.00 1.00 1.00 0.34 0.21 0.76
MO-BA 1.00 1.00 1.00 0.82 0.69 0.85
GU-DO 0.35 0.21 0.06 0.17 0.09 0.06
GU-MA 0.13 0.07 0.02 0.34 0.21 0.23
GU-SL 0.49 0.32 0.20 0.34 0.21 0.10
GU-BA 1.00 1.00 1.00 0.59 0.42 0.44
DO-MA 0.29 0.17 0.08 0.25 0.15 0.20
DO-SL 0.55 0.38 0.19 0.31 0.18 0.08
DO-BA 1.00 1.00 1.00 0.62 0.44 0.41
MA-SL 0.44 0.29 0.22 0.20 0.11 0.13
MA-BA 1.00 1.00 1.00 0.35 0.21 0.14
SL-BA 0.67 0.50 0.53 0.55 0.38 0.33
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Appendix 2b.  Chao-Jaccard (J), Chao-Sørensen (S), and Morisita-Horn (MH)

dissimilarity matrices including data from the early 1990’s only.  “ED” subscripts denote

ensemble dissimilarities, “CC” subscripts denote compound community dissimilarities

minus data of the focal species.

C. flaveola
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 0.83 0.71 0.75 0.92 0.85 0.96
AN-GU 0.38 0.24 0.14 0.94 0.88 0.92
AN-DO 0.18 0.10 0.04 0.88 0.79 0.92
AN-MA 1.00 1.00 1.00 0.95 0.91 0.98
AN-SL 0.80 0.67 0.68 0.60 0.43 0.69
AN-BA 0.00 0.00 0.00 1.00 1.00 1.00
MO-GU 0.85 0.74 0.73 0.64 0.47 0.72
MO-DO 0.84 0.72 0.74 0.63 0.46 0.91
MO-MA 0.88 0.78 0.83 0.89 0.80 0.88
MO-SL 0.81 0.68 0.83 0.32 0.19 0.76
MO-BA 0.83 0.71 0.75 0.90 0.82 0.88
GU-DO 0.33 0.20 0.10 0.21 0.12 0.09
GU-MA 0.83 0.70 0.84 0.37 0.23 0.62
GU-SL 0.40 0.25 0.47 0.42 0.26 0.43
GU-BA 0.38 0.24 0.14 0.89 0.80 0.89
DO-MA 0.87 0.77 0.88 0.22 0.12 0.38
DO-SL 0.70 0.54 0.62 0.38 0.24 0.27
DO-BA 0.18 0.10 0.04 0.75 0.59 0.67
MA-SL 0.40 0.25 0.33 0.41 0.25 0.14
MA-BA 1.00 1.00 1.00 0.39 0.24 0.14
SL-BA 0.80 0.67 0.68 0.64 0.48 0.36
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Loxigilla
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 0.84 0.72 0.77 0.88 0.79 0.93
AN-GU 0.92 0.85 0.93 0.79 0.66 0.54
AN-DO 0.92 0.85 0.94 0.76 0.61 0.54
AN-MA 1.00 1.00 1.00 0.85 0.75 0.80
AN-SL 0.70 0.53 0.69 0.72 0.57 0.61
AN-BA 1.00 1.00 1.00 0.56 0.39 0.22
MO-GU 0.71 0.56 0.50 0.50 0.34 0.73
MO-DO 0.62 0.45 0.31 0.56 0.39 0.84
MO-MA 0.42 0.27 0.08 0.93 0.87 0.98
MO-SL 0.26 0.15 0.04 0.50 0.33 0.72
MO-BA 0.33 0.20 0.11 0.92 0.85 0.95
GU-DO 0.26 0.15 0.09 0.18 0.10 0.06
GU-MA 0.69 0.53 0.49 0.45 0.29 0.26
GU-SL 0.36 0.22 0.40 0.35 0.21 0.12
GU-BA 0.67 0.50 0.52 0.64 0.47 0.49
DO-MA 0.58 0.41 0.30 0.36 0.22 0.16
DO-SL 0.34 0.20 0.23 0.35 0.21 0.12
DO-BA 0.53 0.36 0.33 0.72 0.56 0.54
MA-SL 0.43 0.28 0.09 0.41 0.26 0.20
MA-BA 0.19 0.10 0.03 0.93 0.86 0.86
SL-BA 0.35 0.21 0.12 0.82 0.69 0.70
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T. bicolor
Ensemble Compound Community

Pairwise
comparisons

€ 

JED

€ 

SED

€ 

MHED

€ 

JCC

€ 

SCC

€ 

MHCC

AN-MO 1.00 1.00 1.00 0.82 0.69 0.91
AN-GU 1.00 1.00 1.00 0.77 0.62 0.71
AN-DO 1.00 1.00 1.00 0.71 0.55 0.69
AN-MA 1.00 1.00 1.00 0.68 0.51 0.63
AN-SL 1.00 1.00 1.00 0.26 0.15 0.43
AN-BA 1.00 1.00 1.00 0.78 0.64 0.67
MO-GU 1.00 1.00 1.00 0.45 0.29 0.62
MO-DO 0.88 0.78 0.86 0.51 0.34 0.81
MO-MA 1.00 1.00 1.00 0.81 0.68 0.84
MO-SL 1.00 1.00 1.00 0.30 0.18 0.70
MO-BA 1.00 1.00 1.00 0.83 0.71 0.85
GU-DO 0.35 0.21 0.06 0.17 0.09 0.06
GU-MA 0.13 0.07 0.02 0.34 0.21 0.23
GU-SL 0.32 0.19 0.07 0.35 0.21 0.11
GU-BA 1.00 1.00 1.00 0.58 0.41 0.43
DO-MA 0.29 0.17 0.08 0.25 0.15 0.20
DO-SL 0.55 0.38 0.19 0.31 0.18 0.08
DO-BA 1.00 1.00 1.00 0.62 0.44 0.41
MA-SL 0.44 0.29 0.22 0.20 0.11 0.13
MA-BA 1.00 1.00 1.00 0.35 0.21 0.14
SL-BA 0.67 0.50 0.53 0.55 0.38 0.33
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