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Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and re-
sponse conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and
the possible involvements of common neural mechanisms are yet to be established. We employed functional
magnetic resonance imaging (fMRI) in a 4–2 mapping practice-related Stroop task to determine the neural
substrates under these conflicts. Results showed that different patterns of brain activations are associated
with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cor-
tex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior fron-
tal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for
semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in
the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and
the late stage in “pure” response conflict using conjunction analysis. The different practice effects indicate
that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects
are attributable to the automation of stimulus processing, conflict and response control; response conflict
practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addi-
tion, the areas of common activation suggest that the semantic conflict effect may contain a partial response
conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of re-
sponse conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and
key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the ex-
ploration of semantic and response conflicts may need to be further examined.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Conflict control tasks such as the Stroop, Flanker and Simon tasks
have long been used to research human cognitive control functions
(Eriksen and Eriksen, 1974; Simon and Small, 1969; Stroop, 1935).
Cognitive control is a key process of flexible behavior. It helps us
move toward our goals, especially in conflict situations, through the
setting and maintaining of goals, the inhibition of inappropriate re-
sponses, and/or the amplification of target-relevant responses during
behavioral execution (Aron, 2007; Egner and Hirsch, 2005; Miller,
2000; Ridderinkhof et al., 2004b).

The brain regions most frequently associated with cognitive control
are the top-down frontal cortex networks, including the dorsolateral
prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC), and the
response organization regions, including the posterior parietal cortex
n and Personality (Ministry of
ity, Chongqing, 400715, China.

work.

rights reserved.
(PPC), supplementary motor areas (SMA), and pre-supplementary
motor areas (pre-SMA) (Aron, 2011; Banich et al., 2000; Wang et al.,
2010). The DLPFC is an integrative system; it receives and represents in-
formation from other cortical structures and initiates top-down biases
based on task demands (Brass et al., 2005a,b; Mansouri et al., 2009;
Miller and Cohen, 2001). The ACC is responsible for conflict monitoring,
and emotion- or motivation-related cognitive control operations
(Botvinick et al., 2001, 2004; Carter and van Veen, 2007; Ridderinkhof
et al., 2004a). The PPC modulates attentional orientation to task-
relevant information and prepares the stimulus–response (S–R) map-
ping (Coulthard et al., 2008; Scherberger and Andersen, 2007). The
SMA and pre-SMA are considered to play a role in the selection and exe-
cution of responses (Lau et al., 2006; Nachev et al., 2008; Rushworth
et al., 2007).

Experiments that focus on the practice-related effects of the
Stroop task are important for elucidating the mechanisms of the
Stroop task and cognitive control (MacLeod, 1991). In the Stroop
task, inked color words are presented to subjects, who are instructed
to response to the color of word while ignore its meaning. Regardless
of whether the word and color are congruent (e.g. “red” in red) or

http://dx.doi.org/10.1016/j.neuroimage.2012.10.028
mailto:xscat@swu.edu.cn
http://dx.doi.org/10.1016/j.neuroimage.2012.10.028
http://www.sciencedirect.com/science/journal/10538119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2012.10.028&domain=pdf
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incongruent (e.g. “red” in green), the word reading tends to be auto-
matically processed with higher priority over the color naming,
which is also the task-relevant task. The transferring from the early
stage of practice to the late stage of practice in the Stroop task is asso-
ciated with the reduction of this discrepancy through the reinforce-
ment of color naming pathways and changes in brain activity
(Cohen et al., 1990; Davidson et al., 2003; Polk et al., 2008), which
may involve quantitative functional change, qualitative reorganiza-
tion, or even the reorganization of cognitive control brain networks
(Jonides, 2004; Kelly and Garavan, 2005; Schumacher et al., 2005).
Thus, examining the practice effects can help us to understand the
role of specific brain areas in a dynamic way.

Erickson and colleagues studied the practice effects associated
with cognitive control using the Stroop task. They found a dramatic
decrease in ACC activity and an increase in DLPFC activation when
the first half of the trials were compared with the second half of trials
(Erickson et al., 2004; Milham et al., 2002). However, employment of
traditional Stroop paradigm prevented them from separating seman-
tic and response conflicts during the practice of the task. Thus, they
were unable to determine whether the changes in brain activity
were caused by the practice effects for semantic or response conflict,
or both. In addition, their experiment was comprised of only 162 tri-
als, markedly fewer trials than those used in other studies, which
often consist of hundreds or thousands of practice trials (Dulaney
and Rogers, 1994; Macleod, 1998). Erickson and colleagues did not
observe practice effects at the behavioral level, which further sug-
gests that the amount of practice was limited. As a result, the respec-
tive practice effects of semantic and response conflicts remain
unclear.

In this study, we attempted to clarify this issue using different
types of conflict and practice design. De Houwer (2003) was the
first to identify the distinctions between semantic and response con-
flicts using the Stroop task. This was discovered via the logic of sub-
traction. The Stroop task comprises congruent (CO) stimuli (e.g., the
word “red” in red), semantic incongruent (SI) stimuli, and response
incongruent (RI) stimuli. Therefore, if red and yellow are mapped to
the left hand, and blue and green are mapped to the right hand, the
word “red” in yellow color (SI) is likely to provoke semantic conflict
(of word reading and color naming), but responses are congruent;
and the word “red” in blue color (RI) has both a semantic conflict
and a conflict in response selection. Hence, SI-CO can produce a se-
mantic conflict and RI-SI can prompt a response conflict (van Veen
and Carter, 2005).

Previous research has successfully distinguished response conflict
from semantic conflict. For instance, Kim et al. (2010) and van Veen
and Carter (2005) revealed the parallel attentional control mecha-
nisms underlying semantic and response conflicts using the Stroop
task (Kim et al., 2010; van Veen and Carter, 2005). Likewise, Banich
and colleagues were able to separate the response conflict by
subtracting the effects of response-ineligible incongruent trials
(e.g., the word “brown” in blue color, when red, blue are the set of
potential responses) from the response-eligible incongruent trials
(e.g., the word “red” in blue color, when red, blue are the set of poten-
tial responses). The semantic conflict was distinguished by contrasting
the response-ineligible incongruent trials with the neutral trials (Liu
et al., 2006; Milham et al., 2001, 2003a).

However, the study by van Veen and Carter (2005) revealed no
overlap in activation between semantic and response conflicts using
conjunction analysis. This appears to go against evidence from elec-
trophysiological studies, which showed common activation in terms
of N2 and N450 event-related potential (ERP) components (they are
associated with the ACC activation in conflict detection) for both re-
sponse and non-response conflict conditions (Wendt et al., 2007;
West et al., 2004). Furthermore, Liu et al. (2004) found that the
stimulus–stimulus conflict Stroop effects and stimulus–response con-
flict Simon effects had some common brain sources; both of them
implicated the DLPFC top-down modulation of the posterior cortex
(Liu et al., 2004). This indicates that semantic and response conflict
types may both correlate with the common mechanisms underlying
conflict monitoring and top-down conflict resolution processes.

In order to explore the common neural basis of semantic and re-
sponse conflicts, we employed a novel strategy for the conjunction
analysis. Since the stimulus–response mapping in the manual Stroop
task (color to key-pressing) is usually weaker than that in the oral
Stroop task (color to vocal response), the semantic conflict in our
manual Stroop task may also include some components of the
vocal-level response conflict (Gordon and Deborah, 1977; Repovš,
2004). We speculated that the effect of the early practice stage
SI-CO would be eliminated after practice. Because the practice
would reduce the vocal-level response conflict in SI stimuli due to
the increased connection between key-pressing and color naming
(S–R mapping) during the practice, which would also make the ef-
fects of RI-SI be “purer” in the late practice stage. Therefore, instead
of directly testing the overlap in activation between these conflicts
within the same practice stage, we examined the overlap between
the early stage SI-CO condition and the late stage “pure” RI-SI condi-
tion to see whether the semantic conflict effect contained response
conflict components or not.

Based on previous research investigating practice effects and at-
tentional control, we anticipated that brain activity associated with
semantic and response interference may appear as distinct distribu-
tions, and that many of the active areas will primarily belong to the
attentional networks (e.g., the DLPFC, ACC and PCC) (Adleman et al.,
2002; Kim et al., 2010; van Veen and Carter, 2005). The findings of
Erickson et al. (2004) expressed a rapid decline in ACC activity and in-
creased DLPFC activity in the incongruent condition after practice.
According to the subtraction logic, the RI stimuli will prompt both se-
mantic and response conflicts at the same time; the practice-related
changes of RI stimuli might be caused by both the semantic and re-
sponse conflict effects. Thus, in the current study, we anticipated
that the SI-CO and/or RI-SI would be associated with a decrease in
ACC activity and an increase in DLPFC activity after practice. In addi-
tion, based on our previous behavioral study (Chen et al., 2010), we
expected that the practice effects of sematic conflict might be respon-
sible for the decrease of activity in these areas, while the practice ef-
fects of response conflict might be responsible for the increase.

In summary, the present study was an attempt to address above
unresolved issues related to cognitive control and examine the sub-
traction logic of the separateness for semantic and response conflicts,
through the exploration of the respective practice effects and the
common neural mechanisms of these two conflicts.

Materials and methods

Subjects

Twenty five right-handed college students, were recruited for the
study with a compensation (15 females; M=21, SD=1.67). All par-
ticipations had normal or corrected-to-normal vision, without
achromatopsia or color weakness. The fMRI data of two subjects
was excluded due to excessive head movement artifacts. This study
was approved by the University Human Ethics Committee for the
Brain Mapping Research, and written consent was obtained from
each subject before scanning.

Stimuli

A 4–2 Stroop paradigm was employed using four Chinese charac-
ters “Hong” (red), “Huang” (yellow), “Lan” (blue) and “Lv” (green).
Each character was presented in one of the four colors (i.e., red,
yellow, blue and green; 16 stimuli altogether). Subjects were asked
to respond according to the color of the characters; the red and yellow
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colors weremapped onto the thumb of the left hand, while the blue and
green colors were mapped onto the thumb of the right hand. There
were three types of stimuli: the congruent stimuli (CO, e.g., “Hong”
printed in red), the semantically incongruent stimuli (SI, e.g., “Hong”
in yellow) and the response incongruent stimuli (RI, e.g., “Hong” in
blue).

Design

Our experiment comprised 12 blocks; the first two and the last two
blocks were performed inside the scanner. The first two blocks repre-
sented the early stage and the last two represented the late stage. The
other eight blocks were completed outside the scanner and represent-
ed the practice stage. Each block consisted of 24 CO trials, 18 SI trials
and 18 RI trials, (720 trials in total), which were presented in a
pseudo-random order. Besides, there were only eight practice trials
before the experiment in order tomake our practice effectsmore pure.

Procedure

Stimuli were presented on a black background. Each trial started
with a white fixation for 500 ms. After the characters had been
displayed for 300 ms, there was a grey fixation for 1200 ms, which
was the response period, followed by an additional 12,000 ms grey
fixation, which acted as the inter-trial interval (ITI). The extended
time period between the Stroop stimuli allowed us to rule out the
possibility of any carryover effects from previous trials to current tri-
als (e.g., the Gratton effect, Gratton et al., 1992), and allowed time for
the BOLD signal to return to baseline, to achieve purer conflict effects
and practice effects. According to Bandettini and Cox (2000), the slow
event-related design can promote the detection ability of the BOLD
signal, and reduce the signal interference between trials (Bandettini
and Cox, 2000).

Image acquisition and analysis

Images were acquired with a Siemens 3 T scanner (Siemens
Magnetom Trio TIM, Erlangen, Germany). An echo-planar imaging
(EPI) sequence was used for data collection, and 432 T2⁎-weighted
images were recorded per run (TR=2000 ms; TE=30 ms; flip
angle=90°; FoV=220×220 mm2; matrix size=64×64; 32 inter-
leaved 3 mm-thick slices; in-plane resolution=3.4×3.4 mm2;
interslice skip=0.99 mm). T1-weighted images were recorded with
a total of 176 slices at a thickness of 1 mm and in-plane resolution
of 0.98×0.98 mm2 (TR=1900 ms; TE=2.52 ms; flip angle=9°;
FoV=250×250 mm2).

We used SPM8 (Wellcome Department of Cognitive Neurology,
London, UK, http://www.fil.ion.ucl.ac.uk/spm/spm8) to pre-process
the functional images (Friston et al., 1994). Slice timing was used to
correct slice order, the data was realigned to estimate and modify
the six parameters of head movement, and first six images were
discarded to achieve magnet-steady images. These images were
then normalized to MNI space in 3×3×3 mm3 voxel sizes. The nor-
malized data were spatially smoothed with a Gaussian kernel; the
full width at half maximum (FWHM) was specified as 8×8×8 mm3.

After pre-processing, the four regressors from each run (i.e., congru-
ent, stimulus incongruent, response incongruent and error) were
modeled to create the design matrix, and for each subject all the four
runs were modeled in one general linear model (GLM). They were con-
volved with the canonical hemodynamic response function, and the six
realignment parameters for each subject were also included as
confounding factors. The contrasts of interest were RI vs. CO, reflecting
the traditional Stroop effects; SI vs. CO, reflecting the semantic conflict;
and RI vs. SI, reflecting the response conflict. These contrasts were
generated for both the early and late stages for group level analysis. In
the second-level model specification, we defined 2×2 conditions in the
practice stage (early and late) and conflict type (SI-CO and RI-SI) factors;
thus, there were four cells in our design (i.e., (SI-CO)early, (SI-CO)late,
(RI-SI)early and (RI-SI)late). The practice effects were defined as the
two sample paired t-test between (SI-CO)late and (SI-CO)early for the
semantic conflict and the two sample paired t-test between (RI-SI)late
and (RI-SI)early for the response conflict. Additionally, the contrasts of
each conflict type were combined across the early and late stages in
order to define regions of interest (ROIs). The practice stage×conflict
type interaction was used to represent differential changes in activity
between the early and late stages for each conflict type. The MNI coordi-
nates of activation were transformed into Talairach space (Talairach and
Tournoux, 1988) using the Brett transform (Brett et al., 2001).

The conjunction analysis for the (SI-CO)early condition and the
(RI-SI)late condition was performed based on the conjunction null hy-
pothesis (Friston et al., 2005; Nichols et al., 2005). The contrast im-
ages of each subject for the (SI-CO)early and (RI-SI)late were modeled
together in the full factorial design matrix and obtained with the con-
junction null option.

The significance level of the image threshold for fMRI data was
first set to pb0.005, uncorrected at the individual voxel level. Then
we performed AFNI's AlphaSim program (http://afni.nimh.nih.gov/
pub/dist/doc/manual/AlphaSim.pdf) for multiple comparison. We
ran 1000 Monte Carlo simulations with the correct value pb0.005,
Gaussian filter width in 8 mm and Cluster connection radius in
5 mm. The correction at pb0.05 for multiple comparison revealed a
clusters size of 70 contiguous voxels. We used this corrected
AlphaSim threshold as the significance level for our fMRI data below.

In order to avoid the circular argument, the ROIs were determined
according to the overall positive activations of early and late stages
under RI-CO, SI-CO, and RI-SI conditions, using MarsBaR software
(Brett et al., 2002). These ROIs were masked using automatic anatom-
ical labeling (AAL: Tzourio-Mazoyer et al., 2002) within the DLPFC,
dorsomedial frontal cortex (dMFC: including the ACC, SMA and
pre-SMA), and PPC to extract the percent signal change of the ROIs
for further analysis. Specifically, the ROIs of RI-CO were used to ex-
tract the signal of raw stimuli, and the ROIs of SI-CO and of RI-SI
were used to extract the signal of SI-CO and RI-SI, respectively.
Results

Behavioral data

Error trials were excluded from all analyses, which left at least
37 trials for congruent (CO) condition and 27 trials for stimulus in-
congruent (SI) and response incongruent (RI) conditions in each
stage. Table 1 shows the mean accuracy rate and response times
(RTs) for raw stimuli under CO, SI and RI conditions. There was no sig-
nificant difference in accuracy rate between the practice stages for
each stimulus type, but there were significant differences in RTs be-
tween the early and late stages under each stimulus type. Moreover,
there were significant differences in RTs and accuracy rate between
CO and SI, and SI and RI in the early stage as well as SI and RI in the
late stage.

The RTs for the traditional Stroop effect (RI-CO), the semantic con-
flict (SI-CO) and the response conflict (RI-SI) during each practice
stage were summarized in Fig. 1. The main effect of practice stage
was significant, (F[1, 22]=4.09, pb0.05); the main effect of conflict
type was marginally significant (F[1, 22]=3.06, pb0.09) and the in-
teraction between practice stage and conflict type was not significant
(F[1, 22]=0.67, p>0.41). The two-sample paired t-test revealed
a significant difference between the early and late stages for SI-CO,
(t[22] =1.99, pb0.05), whereas the practice stage effect was not
significant for RI-SI, (t[22]=1.14, p>0.25). These suggested that the
RT for SI-CO declined significantly after practice, whereas the degree
of interference for RI-SI was relatively stable.

http://www.fil.ion.ucl.ac.uk/spm/spm8
http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf


Table 1
The statistics for the response times and the accuracy rates from behavioral performance data by stimulus types and stages.

RT,SDRT (ms) (ACC,SDACC) CO SI RI SI vs. CO RI vs. SI

Early 593,119
(95.20%, 4.68%)

621,156
(96.50%, 3.67%)

657,161
(93.00%, 5.97%)

0.02
(0.02)

b0.001
(b0.001)

Late 558,113
(95.47%, 6.43%)

562,122
(96.01%, 5.48%)

588,136
(93.84%, 6.70%)

0.21
(0.23)

b0.001
(b0.001)

Early vs. Late 0.04
(0.40)

0.01
(0.33)

0.004
(0.28)

Note. The numbers in the parenthesis are the accuracy rates (ACC) and their corresponding SDs and p-values.
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Functional MRI data

In order to compare our results with the results of Kim et al.
(2010) and Van Veen and Carter (2005), we reanalyzed our data to
achieve two stages aggregate effects of semantic and response con-
flict (Fig. S1 in the Supplementary Materials). Results showed that
the activations of these two conflicts were mostly separate in the
DLPFC and completely separate in the PPC, which were consistent to
the results of Kim et al. (2010) and Van Veen and Carter (2005). How-
ever, the activation in the ACC was only found under the RI-SI condi-
tion but not existed under the SI-CO condition.

The comparison between the late and early stages under SI-CO
condition showed that for the late stage, there were significantly de-
creased activations in the response control areas that included the in-
ferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula,
pre-SMA, subthalamic nucleus (STN), striatum, and cerebellum as
well as the posterior cortex areas (parietal, temporal and occipital
lobes) (Aron, 2011; Aron et al., 2007) (see Fig. 2a and Table 2). The
comparison of the late and early stages under RI-SI condition showed
significantly increased activations in the parietal, temporal and occip-
ital lobes, striatum, and cerebellum in the late stage (see Fig. 2b and
Table 2). The activation changes in traditional Stroop effects (RI-CO)
from the early to the late stages showed that the activations of
RI-CO were significant decreased in the DLPFC after practice (Fig. S2
in the Supplementary Materials).

Fig. 3 shows the percent signal change of the conflict process-
related activity in the DLPFC, dMFC and PPC areas from the early to
the late stage for each raw stimulus (CO, SI, RI), and conflict condition
(SI-CO and RI-SI). There were significant practice effects for each raw
stimulus in these areas (pb0.05–0.001). In the early stage, there
were significant differences in raw stimulus under SI vs. CO condition
in these areas (pb0.005–0.001), but then these differences were
disappeared after practice (p-values>0.25); however, under the RI
vs. SI condition, there was a significant difference only in the DLPFC
in the early stage (pb0.05), but in the late stage the differences
existed in all of these areas (pb0.01–0.005) (see Fig. 3a).
Fig. 1. Mean response times for the early and late practice stages in the RI-CO, SI-CO
and RI-SI conditions. NB. Error bars show the mean of standard error (SEM); * repre-
sents pb0.05; *** represents pb0.001.
For SI-CO, activity in these regions significantly decreased after
practice (paired t-test: tDLPFC[22]=2.05, pb0.05; tdMFC[22]=2.57,
pb0.01; tPPC[22]=2.94, pb0.005). However, there were significant or
marginal significant increases in activity for RI-SI in these areas from
the early to the late stage (paired t-test: tDLPFC[22]=1.67, pb0.06;
tdMFC[22]=1.79, pb0.05; tPPC[22]=1.92, pb0.05). In addition, there
was a significant interaction between practice stage and conflict
type in these areas (FDLPFC[1, 22]=7.20, pb0.01; FdMFC[1, 22]=7.68,
pb0.01; FPPC[1, 22]=11.46, pb0.001) (see Fig. 3b).

For each single stage, the activations of the early and late stages
for the SI-CO condition showed that the brain areas activated in
the early stage did not stay activated into the late stage of practice
(Fig. S3(a) and Table S1 in the Supplementary Materials). For the
RI-SI conflict type, the activations in the conflict control networks
(e.g., left DLPFC, dMFC, and PPC) increased in the late stage. In addi-
tion, more posterior areas were activated in the late stage compared
with the early stage (e.g., visual cortex, inferior template gyrus, and
cerebellum) (Fig. S3(b) and Table S2 in the SupplementaryMaterials).

The specific areas of activity associated with the Stage×Conflict
type interaction are displayed in Fig. 4, involving the DLPFC,
pre-SMA, ACC, PPC, temporoparietal junction (TPJ), parietal, temporal
and occipital lobes, basal ganglia and cerebellum.

The conjunction analysis revealed no overlapping activity be-
tween semantic and response conflict within each practice stage,
which is in line with the results of van Veen and Carter (2005). How-
ever, for (SI-CO)early and (RI-SI)late, a significant conjunction was
found in the left hemisphere within the DLPFC, ACC and PPC (see
Fig. 5).

Discussion

The behavioral and percent signal change data of raw stimuli
showed that in the early stage the RI invoked more response errors
than did SI, and the SI invoked more response errors than CO, indicat-
ing that in the early stage RI and SI invoked more conflicts than CO.
However, after practice the accuracy became similar between CO
and SI but lower for RI in comparison to SI and CO. The changes of
RTs and of percent signal changes in the attentional networks of
these stimuli also showed the similar trend to the changes of accura-
cy, which indicated that there were more response conflicts in RI than
SI and CO in the late stage (van Veen and Carter, 2005). Moreover, the
reduced RTs and signal changes of these stimuli in late stage
suggested the practice effects, which was further discussed below.

Consistent with the findings of Kim et al. (2010) and Van Veen and
Carter (2005), the separate activations in the DLPFC and PPC
suggested that there may be two parallel neural substrates under
the semantic and response conflicts at the conflict resolution and re-
sponse levels (Kim et al., 2010; van Veen and Carter, 2005). The dis-
appearance of activation in the ACC under semantic conflict
indicated that the ACC is more sensitive to the response conflict
than the semantic conflict (Liu et al., 2006; Milham et al., 2001,
2003a,b).

One of the main aims of the present study was to investigate the
respective practice effects of semantic conflict and response conflict.
The comparison of the late and early stages SI-CO showed that there



Fig. 2. The comparisons of brain area activations between late and early stages for the SI-CO (a) and RI-SI (b) conditions, pb0.05, corrected.
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were more activations in the response control areas in the early stage
than the late stage (Aron, 2011; Aron et al., 2007). This finding indi-
cated that the practice effects of semantic conflict might contain the
automation of response control, and some response conflict compo-
nents were included in the early stage semantic conflict. In addition,
the comparing of the late and early stages RI-SI showed that there
was more activation in the posterior cortex, indicating that the in-
creasing cognitive resources were allocated to the stimulus process-
ing and response output for the response conflict stimuli. These
changes might be influenced by the top-down modulation from the
frontal lobes (Miller and Cohen, 2001; Wang et al., 2010).

Moreover, the findings of ROI analysis and stage-wise random
group effects for SI-CO and RI-SI at the early and late stages revealed
differential activation changes of these two conflicts. Specifically,
there was a reduced activity within the DLPFC, ACC, PPC and other re-
gions for semantic conflict and an increased activitywithin these areas
for response conflict. Two possible reasons for these practice-related
changes are quantitative automation of conflict control and qualitative
processing reorganization (Schumacher et al., 2005). In the current
experiment, we suggested that practice-related changes took place
as a result of automatic processing for SI-CO and proportional
reallocation of conflict-related cognitive resources for RI-SI.
Table 2
Contrasts of brain activations between the late and early stages for SI-CO and RI-SI (Talaira

Region BA

(SI-CO) late stage-(SI-CO) early stage
L. Superior/Medial Frontal/Cingulate Gyrus 6/32
L. Middle/ Inferior Frontal/Precentral Gyrus 6/9
L. Inferior Frontal/Superior Temporal Gyrus 47/38
R. Inferior Frontal Gyrus/Insula 47/13
L. Superior Temporal Gyrus/Insula/Thalamus 41/22
R. Lingual Gyrus/Cerebellum 18
L. Superior/Inferior Parietal Lobule/Postcentral Gyrus/Precuneus 40/7/2
L. Cuneus 18/19
R. Thalamus/Striatum
L. Cerebellum/Lingual/Posterior Cingulate Gyrus 30/18/19
L. Cerebellum/Fusiform Gyrus 37
R. Cerebellum

(RI-SI) late stage-(RI-SI) early stage
L. Superior/Middle Temporal Gyrus 39
L. Superior/Inferior Parietal Lobule/Precuneus 7
R. Striatum/Thalamus
L. Cerebellum/Fusiform Gyrus 37
For the semantic conflict, alongwith the disappearance of activity in
the ACC, DLPFC and posterior cortex associated with practice, we found
a concomitant reduction in behavioral RT. This practice-induced reduc-
tion in activation indicates that the processing of semantic conflict had
become more effective. According to the functions of the attentional
networks in cognitive control (Fan et al., 2002, 2005; Posner and
Petersen, 1990; Raz and Buhle, 2006), the automation of semantic con-
flict is reflected by fewer resources needed for alerting, detecting and
the executive control of semantic incongruent stimuli at the late stage
of practice. The disappearance of the activation in the posterior cortex
might stem from a reduction in cognitive resources, which included
the enhancement of automatic stimulus processing at the stimulus
input level and color naming pathway (task-relevant dimension)
(Cohen et al., 1990;MacLeod, 1998; MacLeod and Dunbar, 1988). How-
ever, although brain regions previously activated during semantic con-
flictwere not activated at the late stage of practice,we cannot arbitrarily
deduce that these areas were no longer involved (Kelly and Garavan,
2005).

Besides, it might be that a part of response conflicts were
contained within the semantic conflict, because the relatively innate
connection between color naming and vocal response is much more
automatic and of higher priority than its learned mapping to the
ch Atlas).

No. voxels Peak t-value x y z

80 −3.46 −9 14 49
208 −4.54 −57 11 34
80 −3.76 −45 17 −5

132 −4.04 27 23 −2
367 −5.30 −33 −37 10
78 −3.61 3 −82 −11

538 −4.47 −33 −52 64
71 −3.68 −3 −94 22

126 −3.84 30 −22 −5
219 −5.14 −3 −49 −5
139 −4.20 −33 −61 −23
175 −5.13 30 −55 −29

138 4.87 −39 −37 4
82 4.27 −27 −55 58

181 4.90 24 −49 19
117 4.04 −36 −61 −23

image of Fig.�2


Fig. 5. The conjunction areas of neural activation for SI-CO in the early practice stage
and RI-SI in the late practice stage, pb0.005, cluster≥10 voxels, uncorrected (as the ac-
tivation cluster size is 57 voxels in the dMFC).

Fig. 3. The changes in neural activity in the DLPFC, dMFC and PPC during the early and
late practice stages for each raw stimulus (a) and conflict type (b). NB. Error bars show
the SEM; #=marginally significant (pb0.1); *=pb0.05; **=pb0.01; ***=pb0.001.
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key-pressing (Gordon and Deborah, 1977; Repovš, 2004). Although
the color naming and word reading were mapped to the same key
in the semantic conflict condition, they were different at the verbal
level; and so the semantic conflict would comprise an element of
vocal-level response conflict, especially in the early stage of practice
when the subjects had not yet mastered the rule of response to an ap-
propriate level, and the connection between key pressing and color
Fig. 4. Areas of neural activation associated with the practice Stage×Conflict type in-
teraction. Sagittal, coronal, and axial views of the spatial map are presented with a
threshold of pb0.05, corrected.
naming was not yet strong enough. After practice, however, the fa-
miliarity of the S–R mapping of the key-pressing would cause the dis-
appearance of semantic conflict effects through the transferring of the
vocal-level response conflict components from the semantic conflict
effects to the key-pressing response conflict. This process may make
the activations of semantic conflict to decline and the activations of
response conflict to increase as the semantic and response conflicts
became purer.

For the response conflict, our results suggest that changes in re-
source allocation are reflected in variations in brain activity related
to RI-SI. Unlike brain activations associated with semantic conflict,
we found that the activations in the DLPFC, ACC and posterior cortex
increased after practice for RI-SI. One reason may be that the subjects
were more familiar with the CO and SI stimuli in the late stage and
needed minimal cognitive resources to process these two conditions.
However, the response conflict was more difficult to be settled.
Hence, more resources were needed to be allocated to the RI conflict
(Schumacher et al., 2005).

In order to allocate more resources to the RI stimuli, the subject
would first need to improve their detection of the RI stimuli, which
is reflected in the increased activity within the ACC, an area responsi-
ble for conflict monitoring (Botvinick et al., 2001). The DLPFC also be-
came more active, which may reflect the subjects’ increased attention
and their attempts to amplify task-relevant information and/or inhib-
it task irrelevant information for RI stimuli (Aron, 2007; Egner and
Hirsch, 2005). In addition, because of the increased top-down modu-
lation from the PFC to the posterior cortex (e.g., the fronto-parietal
network) (Brass et al., 2005b; Liu et al., 2004; Miller and Cohen,
2001; Wang et al., 2010), there was more activity in the visual cortex,
PPC, inferior and superior template gyri, and so on. These changes
suggest that the subjects used a resource reallocation strategy that
emphasized the processing of the RI stimuli both at the stimulus
input level and response conflict control level. Maybe because of
this emphasis, there was a decreasing trend in the response time for
RI-SI from 36 ms to 26 ms, although the decreasing was not signifi-
cant (p>0.05).

Moreover, the ROI analysis of raw stimuli and the activation
changes of traditional Stroop effects between the early and late stages
showed that the activations of the raw stimuli and Stroop conflict
processing were declined, suggesting that the whole conflict-related
cognitive resources were decreased after practice. Thus, the increased
activations under RI-SI may be stemming from the proportional in-
crease of conflict-related cognitive resources for response conflict;
the practice effects of response conflict may be a proportional re-
source reallocation. Furthermore, as mentioned above, the strength-
ened S–R mapping of stimulus and key-pressing response would
make the vocal-level response conflict components, which were
contained in the early stage semantic conflict effects, to be translated
to the key-pressing response conflict effects after practice. These
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findings indicated that the purification of semantic and response con-
flicts effects during the practice also made a contribution to the in-
creased activations of the response conflict.

On the other hand, the interactions between practice stage and
conflict type were associated with activity in the DLPFC, dMFC (ACC
and pre-SMA), PPC, TPJ, medial temporal lobes, cerebellum, basal
ganglia, and so on. The TPJ is related to alerting and stimulus driven
attention (Corbetta and Shulman, 2002; Matsuyoshi et al., 2010;
Todd et al., 2005). The medial temporal lobes, cerebellum and basal
ganglia are associated with responding to the implicit perceptual
and motor skills learning of task-relevant S–R mapping (Ashby et
al., 2010; Doya, 2000; Packard and Knowlton, 2002; Rose et al.,
2011). Therefore, these interactions provided differential practice ef-
fects between semantic and response conflict for conflict monitoring,
resolution, memory and the top-down attentional modulation of the
perception of conflict stimuli.

Additionally, the conjunction analysis revealed common areas of
brain activation for semantic and response conflict within the
DLPFC, ACC and PPC of the left hemisphere, all of which are implicat-
ed in the fronto-parietal attentional network (Wang et al., 2010). As
the ACC has been related more to the monitoring of response conflict
(Liu et al., 2006; Milham et al., 2001, 2003a; Paus, 2001; Swick and
Jovanovic, 2002), the common activation in the ACC may be an indi-
cation that some components of the response conflict effect were
contained within the semantic conflict effect at the early stage of
practice. The common activation within the DLPFC and PPC may indi-
cate that both conflict types are associated with top-down modula-
tion from the DLPFC to the PPC in the regulation of attentional
processing (Brass et al., 2005b; Liu et al., 2004; Miller and Cohen,
2001; Wang et al., 2010). These also suggest that some response con-
flict effects were contained in the semantic conflict effects in the early
stage.

As a consequence, separating the semantic conflict and response
conflicts using the subtraction strategy may not adequately conform
to the pure insertion or linear additivity principles (Price and
Friston, 1997), as the semantic and response conflicts are not inde-
pendent of each other during the early portions of the experiment.
And the use of the subtraction method for the exploration of semantic
and response conflicts may need to be reviewed. What deserves to be
mentioned here is that the task which was used by Kim et al. (2012)
might give us some advice to exclude the confusion of semantic and
response conflicts.

In summary, associating with Erickson et al. (2004), our findings
further support the suggestion that the decrease in activity within
the ACC was attributable to the automation of conflict detection for
semantic conflict, and that the rise in activity within the DLPFC was
associated with the increased allocation of cognitive resources to at-
tentional control for response conflict. The practice effects in our
study could be defined as the practice-related concentration of con-
flicts to the response conflict, which was accompanied by the reduc-
tion and reallocation of conflict resolution resources. These findings
demonstrate that the nature of Stroop effect is response conflict rath-
er than semantic conflict and there are two kinds of response conflicts
that are contained in the key-pressing Stroop paradigm, namely, the
vocal-level response conflict (mainly in the early stage) and the
key-pressing response conflict (mainly in the late stage). This distinc-
tion should be taken into consideration in the future key-pressing
Stroop research.

Conclusions

The present study revealed differential practice effects for seman-
tic and response conflicts. However, there were also some common
brain activations, suggesting shared mechanisms for these two con-
flict types. These findings can further our understanding of the neural
mechanisms underlying semantic and response conflicts, and the
practice-related effects associated with these conflicts. It would be in-
teresting for future studies to address the different practice effects be-
tween response conflict and semantic conflict in other subject groups,
such as the elderly, and patients with dysfunction of attentional con-
trol. If the practice effects of such groups were different from normal
subjects, we would also want to know whether the inflexibility of
cognitive control associated with these groups (Edwards et al.,
2010; Lesh et al., 2011; Milham et al., 2002) was caused by difficulties
in automatic processing or in the reallocation of cognitive resources.
In addition, simultaneous EEG-fMRI will be utilized to investigate
the dynamical organization of the practice-related effects associated
with semantic and response conflicts (Lei et al., 2011a,b). Our study
would provide some important comparative findings for such
researches.
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