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Environmental and density-dependent modulation of type III secretion system genes 

in Pseudomonas syringae pv. tomato DC3000 

Jennifer Stauber 

 

Abstract 

Pseudomonas syringae pathovar tomato strain DC3000 is a model bacterial 

pathogen that infects tomatoes and Arabidopsis.  This bacterium utilizes a dedicated 

protein export apparatus, the type III secretion system (T3SS), to translocate virulence 

proteins called effectors directly into host cells. Because effectors suppress plant immune 

responses, activation of the T3SS is critical upon entry into the host.  T3SS gene 

expression is controlled by a complex regulatory cascade.  HrpL is an alternate sigma 

factor that regulates expression of genes that encode structural elements of the secretion 

apparatus, as well as secreted effectors, such as AvrPto.  hrpL is activated by two 

members of the bacterial enhancer binding protein (bEBP) family, HrpR and HrpS, 

encoded by the hrpRS operon.  The mechanisms regulating hrpRS activation of hrpL 

expression are unclear.   Although previous studies have shown that T3SS genes are 

highly regulated by a variety of environmental signals, little is known about how these 

conditions control T3SS genes. 

In this work, I examine how environmental stimuli modulate T3SS gene 

expression in P. syringae, and analyze how each variable modulates the hrpRS-hrpL 

regulatory cascade.  Specifically, I show that hrpRS, hrpL, and avrPto in Pst DC3000 are 

regulated by pH and carbon sources in the growth media.  Contrary to expectations, I 

report that several carbon sources, including sugars, a sugar alcohol, glycerol, and 

organic acids, initially induce Pst DC3000 T3SS gene expression.  However, T3SS gene 
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expression decreases as the cell density increases in media with carbon sources that 

support faster bacterial growth rates.  Furthermore, T3SS genes are lower when the 

bacteria are cultured at high cell densities regardless of carbon source, or at low cell 

densities in conditioned media.  Therefore, I investigate the possibility that acyl 

homoserine lactone (AHL)-mediated quorum sensing regulates Pst DC3000 T3SS gene 

expression.  I confirm that psyRI is responsible for production of 3-oxo-C6 AHL in Pst 

DC3000, although neither addition of exogenous 3-oxo-C6 and C6 AHLs nor deletion of 

psyRI has any effect on the density-dependent regulation of hrpL.  Therefore, I conclude 

that there is a T3SS-repressive signal secreted by Pst DC3000 that accumulates at high 

cell densities, but the nature of the signal is still unknown.  Lastly, I report that T3SS 

genes are repressed when the auxin IAA is added to cultures of Pst DC3000, however the 

biological relevance of IAA as a T3SS repressing signal remains to be explored. 
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Chapter I.  Introduction 
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Pseudomonas syringae 

Pseudomonas syringae is a gram-negative, flagellated, rod-shaped bacterium that 

causes leaf spot or blight in a variety of important agricultural and model plants (Whalen 

et al., 1991, Hirano & Upper, 2000).  The taxonomic designation of P. syringae is based 

on the fact that it was first isolated from a diseased lilac (Syringa vulgaris) (Hirano & 

Upper, 2000).  Since then, it has been found infecting many plants, including trees, 

ornamentals, fruits, vegetables, and grains.  Although P. syringae has a broad host range, 

the species is broken down into ~50 subspecific pathovars (pvs) that each have narrower 

host ranges (Hirano & Upper, 2000).  For example, P. syringae pathovar pv. tomato 

(hereafter Pst) infects tomatoes and not beans, whereas P. syringae pv. phaseolicola 

(hereafter Psp) infects beans and not tomatoes.  Pathovar nomenclature refers to the 

diseased plant from which each strain was isolated, and does not reflect evolutionary 

phylogeny or host specificity (Sawada et al., 1999, Hwang et al., 2005).  For instance, P. 

syringae pv. syringae (hereafter Pss) was named for its host lilac, but can also cause 

disease in as many as 80 different plants (Hirano & Upper, 2000).  It is also important to 

note that strains within the same pathovar do not always share host specificity (Almeida 

et al., 2009).  Different strains of Pst infect tomatoes, however Pst T1 infects only 

tomatoes, and Pst DC3000 can also infect Arabidopsis thaliana and plants in the genus 

Brassica, such as turnip, kale, collard, and cauliflower  (Keith et al., 2003, Whalen et al., 

1991).   

P. syringae is a model pathogen    

P. syringae has become a model plant pathogen because it is genetically tractable 

and there are several fully sequenced and annotated strains, Pst DC3000 (Buell et al., 
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2003), Psp 1448a (Joardar et al., 2005) , and Pss B728a (Feil et al., 2005), representing 

three different pathovars. There is also now a draft sequences of Pst T1, allowing for 

genomic comparison between strains in pathovar tomato that have different host 

specificity (Almeida et al., 2009).  In addition, draft sequences of pvs. oryzae 1-6 

(Reinhardt et al., 2009) and tabaci 11528 (Studholme et al., 2009) have just been 

published, and the genomes of other pathovars are underway (Lindeberg, 2010).  

In addition, P. syringae utilizes a type III secretion system (T3SS) to infect plants 

(Höfte, 2006, Mohr et al., 2008).  T3SSs are essential virulence factors for many gram-

negative bacteria, including the plant pathogens Ralstonia, Erwinia, Pectobacterium, 

Dickeya, Pantoea, and Xanthomonas, as well as the animal pathogens Bordetella, Vibrio, 

Chlamydia, Yersinia, Salmonella,  Shigella, Escherichia  coli, and P. aeruginosa (Grant 

et al., 2006, Coburn et al., 2007).  T3SSs are also conserved in symbiotic bacteria, such 

as Rhizobium (Soto et al., 2006). Therefore, research on the T3SS in P. syringae can have 

broad impacts on agriculture and human health. 

Unlike some of the animal pathogens listed above, P. syringae is an excellent 

candidate for studies on the T3SS because infections can be performed on its natural 

hosts, which are easy to infect in the laboratory.  As mentioned previously, Pst DC3000 

infects the model plant A. thaliana.  Other strains of P. syringae can infect Nicotiana 

benthamiana, which is widely used as a model plant for studying host-pathogen 

interactions (Goodin et al., 2008).   
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P. syringae is not just a pathogen 

My research primarily focuses on the virulence of Pst DC3000.  However, it is 

important to point out that P. syringae is not just a plant pathogen.  Non-pathogenic 

strains of P. syringae have also been found colonizing plant leaves and roots, and some 

have even been shown to be beneficial as biocontrol agents for agriculture.   For example, 

non-pathogenic P. syringae strain 508 has antimicrobial activity that is used to control the 

apple scab fungus (Burr et al., 1996).  Similarly, strains ESC-10 and ESC-11 (Bio-

Save™) are used to protect crops from post-harvest fungal rot, and P. syringae strain 

TLP2 is even used to help protect tomato plants from Pst strains (Höfte, 2006, Wilson et 

al., 2002, Mohr et al., 2008).   

Non-pathogenic strains of P. syringae can also damage crops via ice-nucleating 

activity, which raises the freezing temperature of water and increases the risk of frost 

damage (Lindow, 1983, Lindow et al., 1982).  Researchers were able to overcome this 

detrimental trait by removing the ice-nuclease gene from non-pathogenic strains of P. 

syringae.  In 1989, ice-minus P. syringae became the first genetically modified organism 

deliberately released into the environment to outcompete the growth of ice-nucleating P. 

syringae (Drahos, 1991). Ice-minus P. syringae (Frostban 
TM

) is still commercially 

available to protect crops from frost damage. 

P. syringae is ubiquitous in the environment   

P. syringae is found everywhere linked to the water cycle, including clouds, 

pristine snow, and rivers (Morris et al., 2007, Morris et al., 2008, Hirano & Upper, 2000).  

Current research suggests that P. syringae aerosolizes from plants and water into clouds, 
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where its ice nucleating activity may play a significant role in precipitation (Christner et 

al., 2008).   Rain and snow deposit the bacteria onto undeveloped and agricultural 

landscapes, where the bacteria can colonize plants (Figure 1) (Hirano & Upper, 2000, 

Morris et al., 2008).  
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Figure 1.  Life cycle of P. syringae.   
P. syringae aerosolizes and precipitates with moisture, allowing it to move throughout the 

landscape.  When the bacteria encounter a plant, they first colonize the leaf surface, and then 

sometimes the plant apoplast.  Inside, they may trigger either a resistance response, such as the 

hypersensitive response (HR), or disease (necrosis and speck). 
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P. syringae – plant interactions 

P. syringae colonization of plants occurs in two stages 

P. syringae may be seed-borne and thereby present on emerging seedlings, or may 

arrive on leaves aerially, carried by wind, rain, or insects (Hirano & Upper, 2000, Morris 

et al., 2008).  Once deposited on the leaf surface, P. syringae can survive as an epiphyte 

without causing disease (Hirano & Upper, 2000).  Survival on leaf surfaces is not easy, as 

nutrients are scarce and environmental conditions are constantly fluctuating (Lindow & 

Brandl, 2003). Some strains of P. syringae, such as Pss B728a, are well adapted to an 

epiphytic lifestyle (Monier & Lindow, 2003).  In contrast, research suggests that Pst 

DC3000 is a relatively poor epiphyte, preferring to enter into the nutrient-rich plant 

interior (Boureau et al., 2002).  In fact, P. syringae infection of plants occurs in a two-

step process: first in an epiphytic stage and then (if successful) in an endophytic stage 

(Figure 1).  

Epiphytic stage  

Once on a leaf, P. syringae are highly motile and search for areas rich in nutrients 

leaching from the plant interior (Dulla, 2005).  These nutrients create a microhabitat, or 

“oasis”, that can support bacterial growth.  Bacteria sense when their population has 

reached a certain size, or quorum, by detecting small diffusible molecules called acyl 

homoserine lactones (AHL) (Loh et al., 2002).  These molecules are continuously 

produced by P. syringae and accumulate to high levels in dense populations, to facilitate 

the process known as quorum sensing (Dulla, 2005).  AHLs signal P. syringae to down-

regulate motility, aggregate into biofilms, and activate genes that provide protection from 
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environmental stresses (Dulla, 2005).  Although these epiphytic biofilms do not cause 

disease, they are a source for infection for the leaf interior (Hirano & Upper, 2000).   

Endophytic stage 

Once established on leaf surfaces, P. syringae can invade the leaf mesophyll (or 

apoplast) by entering through wounds or natural gas exchange openings called stomata 

(Melotto et al., 2008).  Inside the apoplast, P. syringae can utilize many nutrients to 

support bacterial growth (Rico & Preston, 2008, Kamilova et al., 2006).  If plant defenses 

cannot impede P. syringae from manipulating plant physiology, the bacteria multiply and 

cause disesase (Dulla, 2005).  P. syringae is considered a hemibiotrophic pathogen 

because it does not kill plant tissue until later stages of infection (Rico & Preston, 2008).  

Specific diseases caused by P. syringae are particular to each pathovar and host.  In Pst 

DC3000, disease symptoms are characterized by brown necrotic lesions resulting from 

cell death on leaves and sometimes fruits, and chlorosis, which is yellowing of leaf tissue 

due to chloroplast disruption (Figure 2) (Bender et al., 1999, Hirano & Upper, 2000). 
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Figure 2.  Pst DC3000 causes bacteria speck in tomato leaves. 

Tomato leaves dipped in Pst DC3000 bacterial suspensions develop necrotic specks surrounded 

by chlorotic halos.  
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P. syringae uses a variety of virulence factors to cause disease in host plants 

The disease symptoms caused by P. syringae are the result of multiple 

overlapping virulence factors.  Although the precise mechanisms of these virulence 

factors are still unclear, P. syringae orchestrates pathogenicity via both diffusible 

phytotoxins and secreted proteins known as effectors.  The repertoire of phytotoxins and 

effectors varies between P. syringae pathovars and strains.  

Phytotoxins 

Phytotoxins produced by P. syringae include coronatine (a polyketide), tabtoxin 

(a ß-lactam), phaseolotoxin (a sulfodiaminophosphinyl
 
peptide), and syringomycin (a 

lipodepsinonapeptide) (Hwang et al., 2005).  Coronatine acts as a phytohormone mimic 

to block salicylic acid-dependent plant defenses, open stomata, and cause chlorosis 

(Brooks et al., 2004, Bender et al., 1999, Boller & He, 2009).  Tabtoxin and 

phaseolotoxin also contribute to chlorosis, while syringomycin forms holes in the plant 

plasma membrane, resulting in necrosis (Bender et al., 1999).  A survey of 95 pathogenic 

strains of P. syringae reported that fewer than 50% of the strains produced any of these 

phytotoxins (Hwang et al., 2005).  Thus, although phytotoxins contribute to severity of 

symptoms, they are not essential for disease development.  Pst DC3000, the subject of 

this thesis, only produces the phytotoxin coronatine (Buell et al., 2003, Hwang et al., 

2005). 

Effector proteins  

Effectors are virulence proteins that are delivered by bacterial secretion systems 

directly into plant cells.  These proteins hijack plant signaling pathways to the benefit of 
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the invading bacteria (Gohre & Robatzek, 2008).  P. syringae secretes numerous 

effectors to suppress plant defense responses and promote disease (Schechter et al., 2006, 

Lindeberg et al., 2006, Chang et al., 2005).  Some effectors are also recognized by 

specific plants and trigger resistance.  It is thought that evolutionary pressures to 

modulate plant responses while avoiding detection by defense systems have driven 

effector diversity and redundancy (Stavrinides et al., 2008).  

Plants have multiple layers of defenses against P. syringae 

Most plants are resistant to most pathovars of P. syringae, due to two main types 

of pathogen detection and defense systems.  PAMP-triggered immunity (PTI) occurs 

earlier (within 10 minutes) after bacterial infection and has features in common with 

immunity in animals (Ausubel, 2005, Abramovitch et al., 2006, Nurnberger et al., 2004).  

While PTI is successful against some pathovars of P. syringae, many plants have evolved 

another more specific level of resistance known as effector triggered immunity (ETI), or 

R-gene mediated resistance, which occurs a little later (2-3 hours) after bacterial infection   

(Figure 3) (Jones & Dangl, 2006).  

PAMP-triggered immunity 

Plant basal defenses are triggered in response to conserved bacterial molecules, 

collectively known as PAMPS (pathogen-associated molecular patterns) or MAMPS 

(microbe-associated molecular patterns) (Boller & He, 2009).  Examples of PAMPS 

include lipopolysaccharide (LPS), peptidoglycan, flagellin, and the bacterial translation 

elongation factor EF-Tu (Zipfel, 2008).  PTI is activated in response to both pathogenic 

and non-pathogenic microbes and is generally conserved among plants (Zipfel, 2008). 
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Figure 3.  Activation and suppression of immune responses by Pst DC3000. 

Plants mount defense responses against Pst DC3000 when PAMPS, such as flagella, are detected 

by PRRs.  Pst DC3000 secretes effectors, such as AvrPto, that can suppress PTI.  However, 

plants with the R-protein Pto can recognize AvrPto and trigger ETI.  Therefore, the presence of 

Pto determines whether Pst DC3000 infection leads to bacterial pathogenicity or plant resistance.  
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PAMPS are detected by pattern recognition receptors (PRR) in the plant cell 

membrane, which then activate mitogen-activated protein kinase (MAPK) cascades that 

control defense gene expression (Boller & He, 2009, de Wit, 2007).  For example, in A. 

thaliana, flagellin is detected by the PRR FLS2 (Gomez-Gomez & Boller, 2000).  FLS2 

then interacts with BAK1, a convergent signaling molecule for multiple PRRs (Chinchilla 

et al., 2007).  Ultimately, flagellin perception leads to upregulation of nearly 1000 A. 

thaliana genes, and a variety of defense responses that limit bacterial invasion and spread 

(Chinchilla et al., 2007, Zipfel, 2008, Gomez-Gomez & Boller, 2002).  These plant 

responses include closure of stomata, reinforcement of the cell-wall with β-1,3-glucan 

(callose), restriction of vascular flow, and increased production of reactive oxygen and 

nitrogen species (Abramovitch et al., 2006, de Wit, 2007, Chisholm et al., 2006, Kim et 

al., 2008).  

Plants that utilize PTI to successfully defend against P. syringae infection are 

considered non-hosts.  Many P. syringae effectors promote disease by counteracting PTI 

(Boller & He, 2009, Guo et al., 2009). For example, a Pst effector, AvrPto, inhibits 

expression of the PAMP-induced defense genes NHO1 and FRK1, suppresses callose 

deposition in the cell wall, reduces the production of reactive oxygen species, and 

reinstates vascular flow (Oh & Collmer, 2005, Hauck et al., 2003, Li et al., 2005, He et 

al., 2006a).  Recent evidence suggests that AvrPto may suppress PTI by binding to 

BAK1, preventing its interaction with FLS2 (Shan et al., 2008).     
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Effector-triggered immunity 

 Some plants have evolved ETI as a second defense mechanism against 

effectors.  ETI is mediated by plant resistance (R) proteins that detect the presence of a 

specific bacterial effector (Cui et al., 2009).  Each plant R protein works on a gene-for-

gene basis, meaning that a particular R protein defends against one (or sometimes more) 

specific bacterial effector.  If a plant has the resistance protein that corresponds to an 

effector encountered during infection, then ETI results in the hypersensitive response 

(HR), which is rapid, localized apoptosis (Boller & He, 2009).  Plants that initiate ETI 

can successfully defend against P. syringae infection and are considered resistant.  For 

example, the R-protein Pto recognizes the P. syringae effectors AvrPto and AvrPtoB 

(HopAB).  Tomato plants that possess Pto are resistant to Pst DC3000, which delivers 

both AvrPto and AvrPtoB into plant cells (Figure 3)(Abramovitch & Martin, 2005).  

However, plants that lack Pto are susceptible to Pst DC3000 due to the virulence 

functions of AvrPto, AvrPtoB, in conjunction with other effectors.   

Successful P. syringae pathovars also secrete effectors to overcome ETI.  Recent 

analysis of Pst DC3000 effectors suggests that most can suppress ETI by blocking the 

ability of other effector proteins to trigger the HR (Guo et al., 2009).  There is also 

evidence for R-protein recognition of effectors that initially evolved to overcome ETI.  

For instance, although the N-terminus of AvrPtoB is recognized by Pto, the C-terminus 

of AvrPtoB has E3 ligase activity that targets Fen (a relative of Pto) for ubiquitination 

and degradation (Rosebrock et al., 2007).  When the E3 ligase activity of AvrPto is 
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inactivated, Fen recognizes the effector and triggers ETI in plants that lack Pto.  

Therefore, AvrPtoB may have obtained a C-terminal E3 ligase domain to inactivate Fen 

and avoid ETI.  Pto, on the other hand, may have evolved to evade the E3 ligase activity 

of AvrptoB and reinstate immunity (Rosebrock et al., 2007).  Current evidence suggests 

that a new avrPto allele has evolved to evade Pto in Pst race 1 strains (Kunkeaw et al., 

2010).  Thus, the outcome of P. syringae infection depends upon both the bacterial and 

host genotypes, and the success of the pathogen is linked to its ability to evolve new 

effectors and avoid detection.    
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The P. syringae T3SS 

The T3SS injectisome and secreted effectors  

T3SSs are dedicated protein export machines, structurally related to flagella, 

which inject effectors from the bacterial cytoplasm directly into the host cell cytoplasm 

(Figure 4) (Galán & Collmer, 1999).  Components of the P. syringae T3SS apparatus are 

encoded by the hrp/hrc gene cluster, also known as the hrp pathogenicity island (Figure 

4).  This locus was named hrp, which stands for hypersensitive response and 

pathogenicity, because the P. syringae T3SS is responsible for causing both the HR in 

resistant plants and disease in susceptible plants (Alfano & Collmer, 1997).  Some hrp 

genes were later renamed hrc (for hrp genes conserved across taxa) to denote the 

structural genes that are common to nearly all bacteria with T3SSs.   

The hrp/hrc gene cluster is flanked by two genetic loci called the conserved 

effector locus (CEL) and exchangeable effector locus (EEL).  As the names suggest, 

genes in these regions encode several (but not all) type III secreted effectors.  Other T3SS 

effector genes, such as avrPto, are scattered throughout the genome.  Bioinformatic and 

functional studies suggest that the Pst DC3000 genome encodes at least 33 T3SS 

effectors (Schechter et al., 2006).  

 

 

 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 17 

 

 

Figure 4.  The P. syringae T3SS. 

The hrp/hrc pathogenicity island (shown above) contains T3SS regulatory genes (red) and genes 

encoding T3SS injectisome structural proteins (colors are coordinated between the genes and 

structural proteins).  The injectisome is composed of intracellular and membrane-bound proteins 

in the bacterium, as well as the proteinaceous Hrp pilus and translocon, which functions to inject 

effectors directly from the bacterial cytoplasm into plant cells. 
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The P. syringae T3SS apparatus, also known as the injectisome, translocates 

effectors directly into plant cells, and is composed of many structural proteins that 

function together to penetrate two bacterial membranes and the plant cell wall and plasma 

membrane.  Each component of the injectisome plays an important role in the 

translocation process and is thus essential for virulence.  

Several proteins associate to form the base of the T3SS, which spans the bacterial 

inner and outer membranes.  The bottom of the T3SS, in the bacterial cytoplasm, is 

composed of homo-oligomers of HrcN, an ATPase essential for secretion (Pozidis et al., 

2003).  It has long been assumed that HrcN provides the energy for secretion of T3SS 

substrates.  However, secretion of proteins through the base of the flagellum is driven by 

the proton motive force, not ATP hydrolysis (Minamino et al., 2008).  Thus, HrcN may 

instead play a role in loading effectors in the bacterial cytoplasm into the T3SS (Paul et 

al., 2008, Buttner & He, 2009).  The HrcQ and HrcQB proteins form a cytoplasmic ring, 

similar to that found at the base of flagellum (Fadouloglou et al., 2004).  HrcR, HrcS, 

HrcT, HrcU, and HrcV proteins form a channel through the bacterial inner membrane 

(He, 1998, He et al., 2004).  HrcC multimerizes to form a channel in the bacterial outer 

membrane, possibly with the help of the small HrpT protein (Yuan-Chuen Lin, 2006).  

HrcJ is a lipoprotein believed to connect the two channels in the periplasmic space, 

although other proteins may also be involved (Deng & Huang, 1998).  

The base of the T3SS is connected to a hollow pilus (or proteinaceous extension) 

that radiates from the bacterial surface and serves as the conduit for translocation of 

effectors across the extracellular space into host cells (Jin & He, 2001).  In animal 
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pathogens, the extracellular transport channel is a rigid, needle-like structure.  In contrast, 

the P. sryingae T3SS pilus, which is composed of oligomers of the HrpA protein, is 

longer and more flexible (Buttner & He, 2009).  These characteristics may allow the P. 

syringae T3SS to translocate effectors across the thick plant cell wall (Buttner & He, 

2009).  In fact, structural studies have revealed that the Pst DC3000 Hrp pilus extends 5 

µm from the bacterial outer membrane and is ~6-8 nm in diameter, which is long enough 

to penetrate into plant cells but too narrow to hold many effectors in their folded form 

(Brown et al., 2001).  Therefore, it is hypothesized that effectors are secreted through the 

pilus in an unfolded state, and folding occurs after translocation into the host cytoplasm 

(Brown et al., 2001).  Recent research suggests that AvrPto folding is controlled by the 

environmental pH (Dawson et al., 2009).  At a mildly acidic pH, which exists in the 

bacterial cytoplasm, AvrPto unfolds and can be translocated.  Refolding occurs after 

delivery into the plant cell cytoplasm, which has a neutral pH (Dawson et al., 2009). 

While the HrpA pilus may penetrate the plant cell wall and membrane, it is 

hypothesized that additional proteins at the tip of the pilus form a translocon that inserts 

into these eukaryotic barriers (Buttner & He, 2009).  Although the composition of the P. 

syringae translocon has not been determined biochemically, genetic studies suggest that 

this channel may be composed of at least four different proteins:  HrpK, HrpZ, HrpW, 

and HopAK1 (Kvitko et al., 2007, Petnicki-Ocwieja et al., 2005).  The hrpK gene, 

located in the hrp/hrc cluster, encodes a protein that is similar to the putative translocator 

protein HrpF in Xanthomonas campestris pv. vasicatoria (Buttner et al., 2002, Petnicki-

Ocwieja et al., 2005).  Two lines of evidence support the idea that HrpK is a tranlocator.  

First, HrpK contains a transmembrane domain, which may allow it to associate with the 
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plant cell membrane.  Second, Pst DC3000 hrpK mutants can secrete effectors into the 

extracellular milieu, but cannot efficiently translocate effectors into plant cells (Petnicki-

Ocwieja et al., 2005).  However, it is important to note that Pss B728a hrpK mutants 

cause the HR in resistant plants as well as wild-type bacteria (Collmer et al., 2000). 

HrpZ, HrpW, and HopAK1 are all in a class of proteins known as harpins.  

Harpins are T3SS-secreted glycine-rich proteins that lack cysteine residues and have a 

high isoelectric point.  Curiously, purified preparations of harpin proteins also cause the 

HR when injected into the plant apoplast (Kvitko et al., 2007, Charkowski et al., 1998, 

He et al., 1993).  A role for harpins in translocation is supported by the finding that HrpZ 

binds to lipid bilayers and forms pores in vitro (Lee et al., 2001).  Although deletion of 

individual harpin genes does not affect the ability of Pst DC3000 to colonize host plants 

or cause the HR in non-hosts, a strain lacking all harpins caused the HR less efficiently 

(Charkowski et al., 1998, Kvitko et al., 2007). 

A recent study suggests that HrpK, HrpZ, HrpW, and HopAK1 may function 

together in translocation.  A mutant lacking hrpK and all harpin genes was significantly 

less efficient at translocating effectors than strains lacking just harpins or hrpK alone 

(Kvitko et al., 2007). Ectopic expression of hrpZ, hrpK, hrpW, or hopAK1 restored 

translocation in the polymutant (Kvitko et al., 2007).  Therefore, HrpK and harpin 

proteins may together compose a translocon that aids in translocation of effectors across 

the plant cell wall and membrane.  The translocon may contain multiple harpins and other 

proteins that have redundant functions. 
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Type III secreted effectors are named Hops (Hrp outer proteins) or Avr 

(avirulence) proteins depending on how they were discovered (Collmer et al., 2000, 

Lindeberg et al., 2005).  For example, AvrPto and AvrPtoB are named such because both 

are avirulence proteins recognized by Pto, although the two are functionally distinct 

effectors.  Avr proteins were discovered based upon their ability to cause the HR, but 

may still be effective virulence factors in plants that lack cognate R proteins.  On the 

other hand, Hops have been identified by their ability to be secreted by the T3SS 

(Lindeberg et al., 2005). However, the exact function of many Hop and Avr proteins is 

still unknown. 

Pst DC3000 has over experimentally 30 confirmed T3SS effectors (Lindeberg et 

al., 2006, Schechter et al., 2006).  Genomic comparison suggests that Pst DC3000 has 

considerably more effectors than other sequenced P. syringae pathovars, Psp 1448a or 

Pss B728a (Lindeberg et al., 2006).  T3SS effector repertoires vary widely between these 

pathovars, which may be responsible for their distinct host specificities.  Significant 

differences also occur in the repertoire of effectors in Pst DC3000 and of Pst T1, which 

may explain why Pst DC3000 is able to colonize plants other than tomato and Pst T1 

does not (Almeida et al., 2009). 

Targeting effectors to the P. syringae T3SS   

Most P. syringae effectors contain a high percentage of polar amino acids within 

the first 50 residues and also lack negatively charged amino acids near the N-terminus 

(Petnicki-Ocwieja et al., 2002, Schechter et al., 2004).  The N-terminal amino acid 

sequences appear to target most T3SS effectors for secretion.  However, T3SS-secreted 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 22 

effectors appear to lack a consensus targeting sequence, and the exact mechanism of 

effector recognition by the T3SS has remained elusive. 

Chaperone proteins may also help guide effectors to the secretion system 

(Guttman et al., 2002).  Chaperones are small, acidic proteins that are not secreted 

themselves, but assist in transporting type III secreted proteins to the injectisome (Buttner 

& He, 2009).  T3SS chaperones also stabilize T3SS effectors in the bacterial cytoplasm 

(Losada & Hutcheson, 2005, Page & Parsot, 2002).  Certain chaperones are dedicated to 

only one effector, while others can bind to several effectors (Wilharm et al., 2007, Page 

& Parsot, 2002).  Often, dedicated chaperones are encoded by genes just upstream of 

their cognate effectors, suggesting a conserved evolutionary relationship (Cornelis, 

2006). 

T3SS injectisome proteins, such as HrpA and harpins, must be secreted prior to 

translocation of effectors.  The order of secretion is dictated by substrate specificity 

switches, also known as T3S4 proteins (Buttner & He, 2009). In Xanthomonas
 

campestris, HpaC controls the switch from pilus protein secretion to translocon and 

effector secretion (Lorenz et al., 2008).  Although substrate specificity is not well 

understood in P. syringae, HrpP was recently identified as a T3SS substrate specificity 

switch in P. syringae  (Morello & Collmer, 2009).  In contrast to HpaC, HrpP is known 

to be a T3SS substrate.  X. 
 
campestris also controls substrate specificity by means of a 

secreted protein, HpaA, and a global chaperone, HpaB.  During assembly of the T3SS, 

HpaB is sequestered by HpaA inside the bacterial cytoplasm.   When the T3SS is mature 

and HpaA is translocated, HpaB is released to chaperone other effectors (Lorenz et al., 
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2008).  However, it is unclear how P. syringae coordinates T3SS substrate specificity, 

because HrpP translocation is not necessary for its regulatory role (Morello & Collmer, 

2009).  
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Regulation of P. syringae T3SS gene expression 

In most bacteria, T3SS genes are highly regulated so that they are only expressed 

at the appropriate times during infection.  P. syringae may need to regulate production of 

the T3SS because it is energetically expensive to synthesize and assemble the apparatus 

as well as to secrete effectors (Francis et al., 2002).  In addition, since some effectors 

activate ETI defense responses, constitutive expression of the T3SS might prematurely 

alert the host.  Activation of P. syringae T3SS gene expression occurs rapidly when 

bacteria are in plant tissue or media thought to mimic the plant apoplast (Hutcheson et 

al., 2001, Huynh et al., 1989, Rahme et al., 1992).  Regulation of T3SSs is usually 

carried out by one or more transcription factors encoded within the T3SS gene cluster 

(Tang et al., 2006).   

Multiple P. syringae T3SS regulators are encoded within the hrp/hrc island 

In P. syringae, three transcriptional regulators, HrpR, HrpS, and HrpL, are 

encoded by genes within the hrp/hrc cluster and function in a cascade that activates all of 

the components of the P. syringae T3SS, including other hrp/hrc genes as well as effector 

genes (Figure 5).  However, outstanding questions remain about how this cascade 

functions.  And although several upstream components have been identified that 

modulate the hrpRS-hrpL cascade in response to environmental signals, little is known 

about how external cues are perceived by P. syringae or how they modulate T3SS 

regulatory elements.   
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Figure 5.  Regulation of T3SS genes in P. syringae. 

T3SS genes include hrp/hrc genes (encoded withing the hrp gene cluster) and effector genes 

(scattered throughout the genome), both of which are directly activated by regulators encoded by 

hrpRS and hrpL.  T3SS genes and gene products (both shown in yellow) are modulated by 

environmental signals that transcriptionally and post-transcriptionally regulate the hrpRS-hrpL 

cascade, although the precise signals responsible for have not yet been characterized.   
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HrpL is an alternate sigma factor in the extracytoplasmic function (ECF) family, 

that binds directly to a consensus sequence (GGAACC-N16-CCACNNA) found in T3SS 

gene promoters, known as the hrp box (Fouts et al., 2002, Xiao & Hutcheson, 1994, 

Ferreira et al., 2006).  When HrpL binds to the hrp box, it recruits RNA polymerase to 

transcribe the downstream gene(s) (Xiao & Hutcheson, 1994).  HrpL is highly conserved 

in plant pathogenic species of Erwinia, Dickeya, Pectobacterium, Pantoea, and 

Pseudomonas, and is responsible for transcription of most hrp/hrc genes and T3SS 

effectors in all pathovars of P. syringae (Figure 4 and 5) (Xiao & Hutcheson, 1994).  

HrpL down-regulates flagellar genes and up-regulates genes for other virulence factors, 

such as those involved in coronatine production in Pst DC3000 (Ortiz-Martín et al., 2010, 

Ferreira et al., 2006, Fouts et al., 2002).  HrpL positively controls expression of corR, 

which encodes another regulator of coronatine biosynthesis genes, and CorR has also 

been shown to regulate hrpL in a positive regulatory loop (Sreedharan et al., 2006).  

HrpL may regulate the hrpRS operon as well (Thwaites et al., 2004, Ortiz-Martín et al., 

2010). 

In P. syringae, hrpL expression is positively regulated by the products of the 

hrpRS operon and rpoN, which encodes an alternate sigma factor (σ
54

) (Xiao et al., 

1994).  HrpR and HrpS are bacterial enhancer binding proteins (bEBP) that are ~60% 

identical (Xiao et al., 1994).  Although HrpR is only found in P. syringae, HrpS is 

conserved in Pectobacterium, Dickeya, Erwinia and Pantoea species (Tang et al., 2006).  

The exact mechanism of HrpR and HrpS activation of hrpL is unclear.  Other members of 

the bEBP family are known to bind to enhancer sequences located significantly upstream 

of the promoters they regulate (Rappas et al., 2007).  They also interact with RNA 
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polymerase holoenzyme containing σ
54

 (by DNA looping) and hydrolyze ATP to 

promote open complex formation (Rappas et al., 2007).   Yeast two-hybrid and 

copurification experiments show that HrpR and HrpS interact, suggesting that they may 

activate hrpL expression by heterodimerization (Hutcheson et al., 2001).  In Pss and Pst, 

the hrpR and hrpS genes are co-transcribed, and both proteins are required for optimal 

expression of a hrpL-lacZ reporter in E. coli (Hutcheson et al., 2001).  Nevertheless, 

HrpS alone can also activate hrpL-lacZ expression in E. coli, albeit at much lower levels 

than when both HrpR and HrpS proteins are present (Hutcheson et al., 2001).  In contrast, 

experiments in Psp suggest that HrpR activates hrpS, and that HrpS alone activates hrpL 

(Grimm et al., 1995)  Further experiments will be required to resolve these contradictory 

findings. 

Other hrp genes involved in regulation of the hrpRS-hrpL cascade include hrpA, 

hrpV, and hrpG.  Mutating hrpA, which encodes the Hrp pilus protein, reduces the 

expression of hrpRS and downstream hrp genes by an unknown mechanism.  HrpV is 

negative regulator that binds to the HrpS protein and prevents it from activating hrpL 

(Ortiz-Martin et al., 2010, Preston et al., 1998).  HrpG is a chaperone-like protein that 

may act as an anti-anti-activator by binding to HrpV and preventing its association with 

HrpS (Wei et al., 2005).  Therefore, several hrp island genes play a crucial role in 

modulating T3SS gene expression.  The finding that HrpV negatively regulates T3SS 

genes suggests a need to turn the secretion system off after it is activated.  
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Lon protease regulates P. syringae T3SS genes 

Lon is a cytoplasmic ATP-dependent protease with numerous substrates, many of 

which are involved in stress responses (Hori et al., 2002, Butler et al., 2006, Tsilibaris et 

al., 2006).  The proteolytic activity of Lon affects regulation of the T3SS in several 

animal pathogens.  Lon represses expression of T3SS genes in Salmonella that are 

involved in promoting invasion of the intestinal epithelial cells (Takaya et al., 2002).   

More recently, Lon has also been implicated in environmental regulation of the Yersinia 

pestis T3SS; although in this case, Lon degradation activates expression of the secretion 

system (Jackson et al., 2004) 

Lon is also involved in regulating the Pst DC3000 T3SS.  Lon can target both 

effectors and transcriptional regulators for proteolysis.  Lon degrades T3SS effectors 

when chaperones are not present (Losada & Hutcheson, 2005).  In environmental 

conditions that repress T3SS genes, Lon inhibits transcription of hrpL by rapidly 

degrading HrpR, but not HrpS (Figure 5) (Bretz et al., 2002).  Thus Pst DC3000 lon 

mutants exhibit hypersecretion of T3SS effectors, and additionally cause an earlier HR 

response in non-host plants (Bretz et al., 2002).  Surprisingly, Lon may also positively 

regulate T3SS gene expression, as lon mutants in Pst DC3000 and three different Psp 

strains exhibit lower levels of hrpRS and hrpL expression in conditions that induce T3SS 

genes.  These same lon mutants also showed attenuated disease symptoms in planta  (Lan 

et al., 2007).  Further studies will be required to resolve this conflicting data.  Lon also 

may also be regulated by T3SS genes, as lon transcripts are higher in both hrpRS and 

hrpL mutants of PstDC3000 under T3SS inducing conditions (Deng, 2009).  
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Two-component systems regulate P. syringae T3SS genes 

Two component systems are generally composed of two proteins; a membrane-

bound sensor kinase and a cytoplasmic response regulator (Beier & Gross, 2006).  The 

sensor receives environmental signals and autophosphorylates itself on a conserved 

histidine residue.  The phosphate is then transferred to a cognate response regulator, 

which binds to DNA and controls transcription of target genes (Beier & Gross, 2006).  

There are several two-component systems involved in regulating the P. syringae hrpRS-

hrpL cascade.  However, the mechanisms of gene regulation by these systems are not 

fully understood. 

The Gac (Global regulator of antibiotic and cyanide production) two-component 

system is considered a master regulator of virulence in P. syringae (Chatterjee et al., 

2003, Heeb & Haas, 2001, Mole et al., 2007).  GacS is the sensor kinase that 

phosphorylates and activates the response regulator GacA (Rich et al., 1994).  In Pst 

DC3000, GacA regulates T3SS gene expression, as well as swarming motility and the 

production of AHLs, phytotoxins, pigments, exopolysacharrides, and regulatory RNAs 

(Chatterjee et al., 2003, Mole et al., 2007, Tang et al., 2006).  GacS/A modulates the 

T3SS regulatory cascade via transcriptional regulation of hrpRS and rpoN, which are 

both required for expression of hrpL (Figure 5) (Chatterjee et al., 2003).  The exact 

signals perceived by GacS are unclear, although transcription of gacA may be regulated 

by Lon protease and environmental conditions such as stress responses and growth phase 

(Chatterjee et al., 2003, Lan et al., 2007).     
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The Rhp (regulator of hrp genes) two-component system was identified in Psp 

NPS3121 and is conserved in the sequenced strains Psp 1448a, Pss B728a, and Pst 

DC3000 (Xiao et al., 2007).  Like the GacS/A system, environmental signals controlling 

the RhpR/S system are still unknown.  In contrast to GacA, the hrpRS-hrpL regulatory 

cascade is repressed when the response regulator, RhpR, is phophorylated.  Under 

environmental conditions that induce T3SS genes, the sensor kinase RhpS reverses the 

phosphorylation of RhpR, inhibiting its ability to repress T3SS gene expression (Xiao et 

al., 2007).  RhpR does not directly bind upstream of hrpRS, hrpL, or rpoN, and thus 

indirectly affects the T3SS regulatory cascade (Deng et al., 2010).  In T3SS inducing 

conditions, RhpR may transcriptionally regulate AefR, which controls AHL production 

and T3SS gene expression in Psp NSP3121 (Deng et al., 2009).  In addition, there is 

evidence that RhpR modulates T3SS gene expression by affecting Lon protease (Deng, 

2009), although transcription of gacA is not affected (Xiao et al., 2007). 

CorS and CorR are part of a modified two-component system responsible for 

production of the diffusible phytotoxin, coronatine (Rangaswamy & Bender, 2000).  

CorS is a sensor kinase and is modulated by temperature in vitro and in planta (Ullrich et 

al., 1995, Braun et al., 2008).  Two response regulators, CorR and CorP, are associated 

with CorS; however, only CorR has a DNA binding domain (Ullrich et al., 1995, 

Penaloza-Vazquez & Bender, 1998, Smirnova & Ullrich, 2004).  Coronatine production 

and the T3SS are co-regulated, as corR is directly transcriptionally regulated by HrpL, 

and hrpL is indirectly modulated by CorR (Sreedharan et al., 2006).  
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RNA-binding proteins and small RNAs regulate T3SS genes 

RsmA (Regulator of secondary metabolism) is an RNA-binding protein that 

promotes degradation of target mRNAs, often involved in carbon storage and virulence.  

Untranslatable small RNAs (sRNA), such as rsmB or rsmX/Y/Z, can bind RsmA and 

thereby relieve translational repression (Lapouge et al., 2008).  These sRNAs are often 

under the control of the Gac two-component system (Chatterjee et al., 2003).  RsmA 

positively regulates T3SS genes in P. aeruginosa, and negatively regulates T3SS genes in 

Erwinia carotovara 71 (Mulcahy et al., 2006, O'Grady et al., 2006).  In E. carotovara, 

rsmB positively regulates expression of hrpL by relieving repression by RsmA 

(Chatterjee et al., 2002).  In P. syringae, overexpression of rsmA significantly reduces 

production of several phytotoxins (Kong, 2007).  The Pst DC3000 genome contains 

several homologs of rsmA, including rsmA1, which negatively regulates expression of 

hrpL and other T3SS genes (Rife et al., 2005, Chatterjee et al., 2007).  In addition, the 

sRNAs rsmB and rsmZ are expressed in Pst DC3000 (Heeb & Haas, 2001, Chatterjee et 

al., 2003). 
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Environmental conditions modulate the P. syringae T3SS 

P. syringae T3SS genes are expressed and effectors are secreted in certain culture 

media, therefore, host-specific factors must not be essential for activation of the T3SS 

(Huynh et al., 1989, Rahme et al., 1992).  However, studies performed on bacteria grown 

in culture may not provide the most accurate information about when T3SS genes are 

expressed during P. syringae infection of plants.  Some studies have shown that P. 

syringae activates the T3SS more quickly upon entry into plant tissues than in culture 

(Rahme et al., 1992, Ortiz-Martín et al., 2010, Thwaites et al., 2004), while others 

suggest highest induction of T3SS genes in culture (Rico & Preston, 2008, Xiao et al., 

1992).  Regardless, manipulating conditions in P. syringae cultures has provided useful 

information about how the environment might affect expression of T3SS genes when the 

bacteria are in planta.  

The list of variables suggested to modulate T3SS gene expression in P. syringae 

includes carbohydrates (Huynh et al., 1989, Rahme et al., 1992, Xiao et al., 1992), amino 

acids (Huynh et al., 1989, Xiao et al., 1992), organic acids (Huynh et al., 1989, Rahme et 

al., 1992), and fatty acids (Xiao et al., 2004), as well as factors such as pH (Rahme et al., 

1992), temperature (Rahme et al., 1992), and osmolarity (Rahme et al., 1992).  Thus far, 

however, how each of these factors influences T3SS genes in Pst DC3000 has not 

thoroughly explained.  

The P. syringae T3SS is repressed in complex media and induced in minimal media 

When cultured in complex media, such as King’s B (KB) (King et al., 1954), P. 

syringae T3SS genes are repressed and effectors are not secreted.  However, T3SS genes 
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are induced and effectors are secreted into culture when P. syringae is grown in a defined 

minimal medium, such as hrp-derepressing minimal medium (HDM), which consists of 

50 mM potassium phosphate buffer, 7.6 mM (NH4)2SO4, 1.7 mM MgCl2, 1.7 mM NaCl, 

and 10 mM fructose (pH 6).  HDM is thought to mimic the plant apoplast environment, 

although it is unclear what components of the medium signal P. syringae to express T3SS 

genes (Huynh et al., 1989, Rico & Preston, 2008). 

Repression of T3SS genes in KB has been explained by the fact that the HrpR 

protein is degraded by Lon protease faster in KB than in HDM (Bretz et al., 2002).  

However, HrpS protein stability is similar in KB and HDM.  Therefore, HrpR protein 

levels may be a limiting factor for expression of T3SS genes in KB.   In addition, there is 

some debate as to whether hrpRS transcription is regulated by the composition of 

bacterial growth medium.  Bretz et al. (2002) found that a hrpRS::lacZ reporter was 

constitutively active in both media in Pss 61, while Xiao et al. (2007) found that the Pst 

DC3000 hrpR mRNA levels were higher in HDM than in KB (Bretz et al., 2002, Xiao et 

al., 2007).  These contradictory findings may be explained by the fact that the studies 

were carried out in different pathovars of P. syringae. 

T3SS genes are also induced in another minimal medium, Hoitink-Sinden 

amended with sucrose (HSS) (50 mM potassium phosphate buffer, 18.6 mM NH4Cl, 

232.4 µM MgSO4•7H2O, 10 mM sucrose, 2 µM FeCl3, pH 6.5) (Penaloza-Vazquez et al., 

2000). However, hrpL expression levels are much lower in HSS than in HDM 

(Sreedharan et al., 2006).  Several factors could be responsible for reduced T3SS gene 

expression in HSS, including the higher pH and/or the different carbon source.   
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The P. syringae T3SS is activated at a slightly acidic pH similar to that found in 

plants 

Minimal media used to culture P. syringae for studies on the T3SS typically has a 

pH below 6.5.  In fact, P. syringae T3SS genes are repressed at pHs higher than 6.5 in 

Psp NPS3121 (Rahme et al., 1992).  The mechanism by which pH regulates T3SS genes 

in Psp NPS3121is unclear since the effect of pH on the hrpL or hrpRS operon was not 

examined.  In contrast, another study found that AvrPto, HopA1, and HrpZ protein levels 

were roughly equivalent at pH 6.0 and 7.0 in Pst DC3000 or Pss 61, suggesting that pH 

has little or no effect on transcriptional regulation of T3SS genes (van Dijk et al., 1999).  

However, both AvrPto and HopA1were secreted into culture by Pst DC3000 and Pss 61, 

respectively, at pH 6.0 but not at pH 7.0 (van Dijk et al., 1999).  More recently, AvrPto 

was found to have a pH-sensitive folding switch, a mechanism allowing the protein to be 

translocated  prior to folding (Dawson et al., 2009). This mechanism supports a model in 

which pH plays a role in effector secretion without a strong regulatory effect at the 

transcriptional level. 

P. syringae T3SS genes are differentially affected by various carbon sources 

Different P. syringae pathovars infect distinct host plants, and the nutrients 

available within plants species may vary.  Therefore, particular carbon sources available 

in the plant apoplast may provide signals for different pathovars to regulate the T3SS.  

Pst DC3000 can utilize many carbon sources within the tomato plant apoplast, including 

organic acids, such as citrate and succinate, as well as sugars, such as fructose and 

glucose (Kamilova et al., 2006, Rico & Preston, 2008).  Also, Pst DC3000 regulates 

metabolism of specific carbon sources depending on environmental conditions, and in 
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some cases, in concert with T3SS genes.  For instance, a fructose specific 

phosphotransferase system is induced in HDM and down-regulated in KB (Lan et al., 

2006).  In Pst DC3000, fructose and citric acid metabolism are both inducible by plant 

apoplast extracts, while glucose and succinic acid are utilized equally in various media 

and apoplast extracts (Rico & Preston, 2008). 

Previous studies suggest that P. syringae T3SS genes are differentially induced in 

culture by various carbon sources.  However, the effects of specific carbon sources on 

T3SS gene expression varies depending on the pathovar studied.  T3SS genes in pathovar 

glycinea (hereafter Psg) race 0 were induced in HDM containing fructose, sucrose, or 

mannitol, but repressed when the carbon source was succinate or citrate (Huynh et al., 

1989).  The authors concluded that T3SS gene expression is inversely related with the 

growth supported by each carbon source and that preferred substrates, such as organic 

acids and other TCA cycle intermediates, repress T3SS genes, while carbohydrates that 

enter glycolysis prior to pyruvate induce T3SS genes (Huynh et al., 1989).  On the other 

hand, T3SS genes in Psp NPS3121 were induced by fructose and citrate, but not by 

mannitol or succinate (Rahme et al., 1992, Xiao, 2005).  In Pss 61, succinate induced 

T3SS gene expression equally as well as fructose, glucose, or glycerol (Xiao et al., 1992).  

Despite the conflicting results, much of the literature seems to favor the idea that sugars 

activate T3SS genes and organic acids repress T3SS genes (Tang et al., 2006, Huynh et 

al., 1989, Rahme et al., 1992). 

Interestingly, HDM with either mannitol, fructose, or no carbon source induced 

similar levels of T3SS gene expression after 12 hours in both Pst DC3000 and P. 
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syringae pv. maculicola (hereafter Psm) ES426 (Xiao, 2005).  In Psm ES426, T3SS 

genes continued to be induced over a longer period of time (up to 24 hrs) regardless of 

carbon source availability.  However, at later time points, Pst DC3000 T3SS gene 

expression decreased in cultures with no carbon source (Xiao, 2005).  In addition, 

fructose levels between 100 µM and 10 mM induced Psp NPS3121 T3SS genes in a 

dosage-dependent manner, but the same genes were repressed in 500 mM fructose, 

possibly due to changes in osmolarity (Xiao, 2005).  Together, these data suggest that 

carbon sources may not be required for activation of T3SS genes, but may still modulate 

their expression.  
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Small molecules could regulate P. syringae T3SS genes 

 Small diffusible molecules are involved in regulation of the T3SS in many plant-

pathogenic bacteria.  Autoinducers such as acyl homoserine lactones (AHLs), which are 

discussed in detail below, are involved in regulating some T3SSs via quorum sensing.  

However some bacteria use other autoinducers in a similar fashion.  Ralstonia 

solenacearum utilizes an autoinducer 3-OH-plamitic acid methyl ester (3-OH-PAME) to 

down-regulate early stage virulence factors, such as T3SS genes, and up-regulate late 

stage virulence factors, such as cellulase (Mole et al., 2007).  Xanthomonas campestris 

produces an autoinducer, cis-11-methyl-2-dodecenoic acid, called diffusible signal factor 

(DSF), which has also been implicated in down-regulation of T3SS genes (He et al., 

2006b).  Autoinducers have not been explored much in regulation of T3SS in P. syringae.  

However, there is some evidence in the literature that small signaling molecules produced 

by P. syringae can affect virulence. 

AHL-mediated quorum sensing may be involved in regulation of the T3SS 

As mentioned previously, AHLs are quorum sensing molecules that are produced 

by P. syringae to monitor population density on leaves (Dulla, 2005).  AHL molecules 

contain a fatty acyl chain linked by an amide bond to a homoserine lactone ring.  AHL 

was first described as the signal responsible for density-dependent regulation of 

luminescence (lux) genes in Vibrio fischeri (Fuqua & Greenberg, 2002).  The Lux 

regulatory system consists of an AHL-synthase (LuxI), which produces AHLs, and a 

response regulator (LuxR), which detects AHLs and regulates density dependent genes 

(Ng & Bassler, 2009).  Lux I and LuxR homologs have subsequently been found in many 

Gram-negative Proteobacteria, including plant and animal pathogens (Case et al., 2008).   
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AHL-mediated quorum sensing regulates expression of T3SS genes in P. 

aeruginosa (Hogardt et al., 2004, Bleves et al., 2005).  Whether AHLs affect T3SS genes 

in P. syringae is unknown.  Several different studies support the idea that AHLs regulate 

the virulence of P. syringae.  First, transgenic tobacco plants producing 3-oxo-C6 AHL 

and C6 AHL exhibit decreased disease symptoms when infected with P. syringae pv. 

tabaci bacteria (Quinones et al., 2005).  Second, deleting the ahlI AHL synthase gene (a 

homolog of luxI) in Pss B728a, increases virulence of the bacteria in beans (Quinones et 

al., 2005).  Finally, mutation of psrA (Pseudomonas sigma regulator) in Pst DC3000 

results in 8-fold higher AHL levels and reduced virulence in planta  (Chatterjee et al., 

2007).  However, PsrA also positively regulates T3SS genes in Pst DC3000, possibly by 

its negative effect on RNA-binding proteins encoded by rsmA1 (Chatterjee et al., 2007).   

AHL molecules produced by different bacteria can vary: the number of carbons 

range from 4 to 14, and the third carbon can be bound to either hydrogen (H), oxygen 

(O), or hydroxyl group (OH) (Loh et al., 2002, Dumenyo, 1998, Elasri et al., 2001).  In V. 

fischeri, LuxI synthesizes both N-( 3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6 

AHL) and N-hexanoyl-homoserine lactone (C6 AHL)  (Ng & Bassler, 2009, Kuo et al., 

1994).   P. aeruginosa has two Lux family quorum sensing circuits, LasRI and RhlR/I, 

which produce N-3-oxododecanoyl-homoserine
 
lactone (3-oxo-C12 AHL) and N-butyryl-

homoserine lactone (C4 AHL), respectively (Waters & Bassler, 2005).  The P. 

aeruginosa T3SS is down-regulated by the Rhl quorum sensing system (Hogardt et al., 

2004, Bleves et al., 2005).  
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The predominant AHL synthesized by P. syringae is 3-oxo-C6 AHL, although 

some pathovars may also produce C6 AHL and/or N-( 3-oxooctanoyl)-L-homoserine 

lactone (3-oxo-C8 AHL) (Marutani et al., 2008, Elasri et al., 2001, Cha et al., 1998, 

Shaw et al., 1997, Quiñones et al., 2004, Taguchi et al., 2006).  Pst DC3000 contains a 

single LuxI-like protein, PsyI (PSPTO3864), which together with the LuxR homolog, 

PsyR (PSPTO3863), forms a putative AHL quorum sensing system (Chatterjee et al., 

2007).  Case, Labbate, and Kjelleberg (2008) report a second LuxR homolog in Pst 

DC3000. Multiple LuxR proteins are not unusual in bacteria, and may be involved in 

sensing AHLs from other bacteria (Case et al., 2008).  It is also possible that Pss B728a 

and Pst DC3000 produce other AHL derivatives, since these bacteria contain homologs 

of another putative AHL synthase, HdtS (PSYR0009 and PSPTO0187, respectively) (Feil 

et al., 2005).  HdtS is not related to LuxI, but purportedly produces C6 AHLs as well as 

the longer chain AHLs, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone (3-

hydroxy -C14 AHL) and N-decanoyl-homoserine lactone (C10 AHL) (Laue et al., 2000).  

However, thin layer chromatography analysis of Pst B728a and several strains of Pst 

(although not DC3000) detected primarily 3-oxo-C6 AHL and only trace amounts of C6 

AHL or 3-oxo-C8 AHL (Elasri et al., 2001, Quiñones et al., 2004, Cha et al., 1998).  

Therefore, 3-oxo-C6 AHL is likely the main AHL signal produced by Pst DC3000.  

Further studies will be required to determine whether HdtS is active and produces 

physiologically relevant levels of AHL.  

Auxin may be involved in regulation of T3SS genes 

Auxins are an essential group of plant hormones that control plant growth and 

development (Vanneste & Friml, 2009).  The most important and abundant plant auxin, 
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indole-3-acetic acid (IAA), is also produced endogenously by diverse plant-associated 

bacteria, including P. syringae (Glickmann et al., 1998, Spaepen et al., 2007).  Most 

studies to date have focused on the effects of bacterially-produced IAA on plant 

physiology.  However, recent research suggests that IAA may also function as a 

regulatory molecule in bacteria (Charkowski, 2009, Spaepen et al., 2007).  For example, 

in Agrobacterium tunefaciens, IAA represses expression of vir genes, which are required 

for transfer of T-DNA into plant cells (Liu & Nester, 2006).  IAA may inhibit vir gene 

expression by interacting with the two-component sensor kinase, VirA (Liu & Nester, 

2006).     

Bacteria produce IAA via several tryptophan-dependent pathways, including the 

indole-3-acetamide (IAM)  and indole-3-pyruvate (IPyA), indole-3-acetonitrile (IAN), 

and tryptamine (TAM) pathways (Spaepen et al., 2007).  There may also be tryptophan-

independent pathways, however they are less well characterized (Spaepen et al., 2007).  

The IAM pathway requires iaaM, which encodes tryptophan-2-monooxygenase, and 

iaaH, which encodes indole-3-acetamide hydrolase, and both genes have been found in 

many plant pathogenic bacteria (Mazzola & White, 1994, Glickmann et al., 1998, Buell 

et al., 2003, Spaepen et al., 2007, Joardar et al., 2005).   

Several lines of evidence suggest that IAA regulates T3SS gene expression in 

various bacteria.  For example, a mutation in iaaM in Erwinia chrysanthemi reduces 

expression of T3SS genes (Yang et al., 2007).  In contrast, an iaaH mutant of Pantoea 

agglomerans pv. gypsophilae (D. Dadantii) has higher T3SS gene expression 

(Chalupowicz et al., 2009).  In addition, a signal that inhibits T3SS gene expression in P. 
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aeruginosa was identified in the culture medium of mutants that did not produce AHLs 

(Shen et al., 2008).  This novel quorum sensing molecule was dependent on trpA (a 

tryptophan biosynthesis gene) for its synthesis, and addition of IAA to P. aeruginosa 

cultures had a similar inhibitory effect on T3SS genes (Shen et al., 2008).  Whether IAA 

(or an IAA-derivative) can function as a quorum sensing molecule in P. aeruginosa 

remains to be determined.  

Many pathovars of P. syringae produce IAA (Glickmann et al., 1998).  The three 

sequenced and annotated strains of P. syringae (Pss B728a, Psp 1448a, and Pst DC3000) 

all contain homologs of iaaM and iaaH (Joardar et al., 2005, Buell et al., 2003).  In 

addition, Pss B728a encodes a nitrilase enzyme that can hydrolyze indole-3-acetonitrile 

and produce IAA via the IAN pathway (Feil et al., 2005, Howden et al., 2009).  Although 

Pst DC3000 has a homologous nitrilase gene, it does not appear to be active (Howden et 

al., 2009).  Pst DC3000 also contains iaaL, which encodes an IAA-lysine ligase that 

inactivates IAA (Glass & Kosuge, 1988, Romano et al., 1991).  

The idea that bacterially-produced IAA could regulate P. syringae genes 

expression has not been explored to date.  However,  Pss Y30 mutants that are deficient 

in IAA biosynthesis produce disease symptoms in bean plants quicker and at lower 

innoculum levels than the wild-type parental strain (Mazzola & White, 1994).  

Furthermore, disruption of iaaL in P. savastanoi (previously P. syringae pv. savastanoi) 

increases IAA accumulation in bacterial culture and decreases virulence in oleander 

plants (Glass & Kosuge, 1988).  Taken together, these results suggest that IAA or IAA-

lysine could regulate virulence in plant pathogenic Pseudomonads. Intriguingly, iaaL in 
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Pst DC3000 is regulated by hrpL (Buell et al., 2003).  Therefore, inactivation of auxin 

could play a role in virulence or T3SS regulation in Pst DC3000. 
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Thesis Overview 

The T3SS is essential for P. syringae to inactivate host defenses and successfully 

colonize plants.  The hrpRS-hrpL regulatory cascade is central to control of T3SS genes, 

and is turned on quickly under very specific conditions.  Previous studies have defined 

several environmental factors that modulate T3SS gene expression, including growth 

media components, such as carbon sources, and pH, however few have examined how 

these variables affect hrpRS or hrpL.  In addition, studies in different pathovars of P. 

syringae do not always reach the same conclusions as to how each specific condition 

regulates T3SS genes.  The goal of my thesis research is to identify environmental 

variables that modulate expression of T3SS genes in the sequenced strain Pst DC3000 

and to determine whether conditions that regulate hrpRS or hrpL act at the transcriptional 

or post-transcriptional level.  To this aim, I created T3SS::gusA transcriptional reporter 

strains by fusing a promoterless gusA reporter to three T3SS genes: hrpRS, hrpL, and 

avrPto.  These reporters can be used for in vitro and in planta studies, as neither P. 

syringae nor plants have naturally occurring beta-glucuronidase (GUS).  I analyzed GUS 

specific activity of each T3SS::gusA reporter strain (hrpRS::gusA, hrpL:: gusA, & 

avrPto:: gusA) under variable culture conditions reported to activate or repress T3SS 

gene expression.  I verified that repression of Pst DC3000 T3SS genes in KB acts 

upstream of the hrpRS operon, and demonstrate that this repression can be relieved by 

overexpression of either hrpR or hrpS.  In addition, I show that pH has a small but 

measurable effect on Pst DC3000 T3SS genes.  Results of several different assays 

suggest that quorum sensing may be involved in regulation of the T3SS in Pst DC3000.  

First, T3SS genes are optimally expressed in the presence of carbon sources that promote 
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slower growth rates, and when bacteria are at to low cell densities.  In addition, I show 

that a T3SS repressive signal is released into Pst DC3000 cultures and accumulates at 

high cell densities.  However, density-dependent repression of T3SS genes is independent 

of psyRI, which mediates quorum sensing by acyl homoserine lactones (AHLs).  T3SS 

gene expression was unaffected by exogenous application of 3-oxo-C6 or C6 AHLs.  In 

contrast, another small molecule produced by Pst DC3000, IAA, had a strong inhibitory 

effect on T3SS gene expression when added to the growth medium.   
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Materials and Methods 

Bacterial strains, plasmids, and culture conditions 

Bacterial strains and plasmids used in this study are listed
 
in Table 1 and Table 2, 

respectively.  Escherichia coli was maintained in Luria-Bertani (LB) or LM 

supplemented with 8.6 mM phosphate buffer (Hanahan, 1983, Sambrook et al., 1989).  P. 

syringae strains were maintained in King’s Broth (KB) or LM (King et al., 1954).  For 

GUS assays, P. syringae strains were cultured in hrp-deprepressing medium (HDM) at 

pH6 with 10 mM fructose, except where otherwise noted (Huynh et al., 1989) and in HSS 

(Sreedharan et al., 2006).  Antibiotics and other additives were used at the following 

concentrations: ampicillin (Ap), 100 μg/ml; chloramphenicol (Cm), 20 μg/ml; kanamycin 

(Km), 50 μg/ml; rifampicin (Rf), 50 μg/ml; tetracycline (Tc), 10 μg/ml; bromo-chloro-

indolyl-galactopyranoside (X-gal), 20 μg/ml; and 5-bromo-4-chloro-3-indolyl-beta-D-

glucuronic acid (X-gluc), 20 μg/ml.  Synthetic AHLs, N-(3-Oxohexanoyl)-L-homoserine 

lactone (3-oxo-C6 AHL) and N-hexanoyl-L-homoserine lactone (C6 AHL) (Cayman 

Chemicals), were dissolved in DMSO to make 140 mM stock solutions, and 60 mM 

aqueous dilutions were made fresh before each assay.   Final concentrations (10 µM) of 

AHLs were obtained by adding aqueous dilutions of AHLs to KB for the cross-streak 

assay or HDM for the GUS assay.  Optical density (OD600) of bacterial suspensions was 

determined using a Spectronic 20+ spectrophotometer (Thermo Electron Corporation).   



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 47 

DNA manipulations 

PCR for cloning was performed with Vent DNA polymerase (New England 

Biolabs), while diagnostic PCR was performed with Taq polymerase purified from E. 

coli.  All primers were obtained from Integrated DNA Technologies.  Plasmids were 

isolated using standard methods (Sambrook et al., 1989) or Wizard Plus Miniprep DNA 

purification kits (Promega).  Ligations were performed using T4 DNA Ligase (TaKaRa).  

All restriction digestions were performed using enzymes from New England Biolabs.  

DNA sequencing was performed at the University of Missouri – Columbia DNA Core 

Facility using the 3730 DNA Analyzer (Applied Biosystems). 

Construction of T3SS::gusA transcriptional fusions 

To create the Pst DC3000 T3SS::gusA fusions, approximately 1 kb upstream and 

downstream of the hrpRS, hrpL, and avrPto translation stop sites were PCR-amplified 

using the appropriate primer pairs listed in Table 3 (Figure 6).   PCR products were then 

digested with the relevant restriction enzymes and products were ligated into pUC18, 

which was then transformed into E. coli DH5αmcr.  The resulting plasmids, containing 

the hrpRS, hrpL, or avrPto region, were sequenced to ensure that no mutations were 

introduced into the T3SS genes.  A promoterless β-glucuronidase gene (gusA) was then 

inserted after the translation stop codon of hrpS, hrpL, or avrPto using the engineered 

XhoI restriction site to create the plasmids, pJS8, pJS7, and pJS9, respectively.  All three 

T3SS::gusA fusions were then subcloned into the broad host range suicide vector, 

pK18mobsac (Schafer et al., 1994).  The resulting plasmids, pJS3, pJS1, and pJS6 were 

electroporated into Pst DC3000 and allele replacement was performed as described in 

Schäfer et al (1994) and diagramed in Figure 21 (Schafer et al., 1994).  Briefly, P. 
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syringae transformants were plated on LM + kanamycin to select for those colonies in 

which the suicide vector has integrated via a single homologous recombination event.  

Several colonies were tested for sucrose sensitivity on LM + kanamycin +5% sucrose, 

and then one or more of the most sensitive colonies were plated on KB + 10% sucrose 

with X-gluc to force a second recombination event.  The resulting colonies were screened 

for kanamycin sensitivity and rifampicin resistance on LM and blue color on HDM + X-

gluc, confirming excision of the plasmid and chromosomal insertion of the T3SS::gusA 

gene fusion.  The T3SS::gusA reporter strains were then confirmed by colony PCR using 

primers to gusA and Pst DC3000 chromosomal sequences (Table 3).  Three 

independently constructed biological replicates were maintained for each T3SS::gusA 

strain.  
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Figure 6.  Creation of T3SS::gusA reporter strains. 

(I.) Creation of pJS3, a suicide vector containing the hrpRS gene region with insertion of gusA at 

the end of the hrpRS operon.  This vector allows positive selection (Km
R
) and negative selection 

(SacB, which confers sucrose sensitivity).  (II. And III.) Homologous recombination of pJS3 into 

WT Pst DC3000 replaced the endogenous allele and resulted in (IV.) the hrpRS::gusA reporter 

strain.  Similar strategies were used to create both the hrpL::gusA and avrPto::gusA reporter 

strains 
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Construction of psyRI mutants 

Regions flanking psyRI were PCR amplified with the following primer pairs: 

p166-p167 (flanking region #1) and p168-p172 (flanking region #2).  PCR products were 

approximately 1 kb each and were engineered to contain the restriction sites XbaI and 

BamHI (flanking region #1) or BamHI and EcoRI (flanking region #2).  These fragments 

were digested and cloned into the vector, pUC18.  A gel-purified chloramphenicol 

resistance cassette from pHP45ΩCm (Fellay et al., 1987) was then ligated into the 

BamHI site.  The resulting plasmid, pJS12, was confirmed by restriction digest analysis 

and the insert (psyRI flanking regions with chloramphenicol resistance cassette) was 

ligated into pK18mobsac (Schafer et al., 1994) to create pJS16.   This plasmid was then 

electroporated into Pst DC3000 and derivative T3SS::gusA reporter strains. Chromosomal 

integration of pJS16 was selected on LM + kanamycin + chloramphenicol, and 

replacement of psyRI was achieved by streaking individual colonies onto LM + 

chloramphenicol + 10% sucrose. Sucrose-resistant colonies were patched onto LM + 

chloramphenicol and onto LM + chloramphenicol + kanamycin to confirm excision of 

pK18mobsac, leaving only the chloramphenicol resistance cassette in place of psyRI. All 

psyRI deletion strains were confirmed by colony PCR using primers that hybridized to 

the chloramphenicol cassette and chromosomal sequences flanking psyRI.  Two 

independently constructed biological replicates were maintained for each ΔpsyRI deletion 

strain.   

Overexpression of hrpR or hrpS  

For overexpression, I cloned hrpR or hrpS under control of the lac promoter 

(Plac).  Briefly, hrpR and hrpS were subcloned from pS308 and pS284 into the broad host 
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range vector, pCPP46, resulting in the plasmids, pJS14 (Plac::hrpR) and pJS15 

(Plac::hrpS), respectively.  pJS14, pJS15, and the vector control, pCPP46, were then 

electroporated into Pst DC3000 WT and the hrpL::gusA and avrPto::gusA reporter 

strains.  Plasmids were selected for and maintained using tetracycline. 

Hypersensitive Response (HR) Assay 

Pst DC3000 strains were harvested from plates and suspended in 5 ml MES [2-

(N-morpholino)ethanesulfonic acid] buffer to an optical density at 600 nm (OD600) of 0.3 

(~1x10
8 
CFU/ml)

 
and then serially diluted to create suspensions of  approximately 2x10

7
, 

4x10
6
, and 8x10

5
 CFU/ml.  These dilutions were then infiltrated into 4-6 week old 

Nicotiana tabacum cultivar Xanthi leaves by pricking the leaves with a sterile needle and 

inoculating bacteria suspensions using a blunt syringe.  The area of infiltration was 

circled.  Leaves were observed and photographed approximately 48 hrs later.   

GUS Reporter Assays 

Bacterial strains were inoculated from plates into a liquid KB preculture and 

shaken at 30 ºC shaker for 1-2 days.  Bacterial cells were then harvested from the 

preculture by centrifugation, washed 3-4 times in 10 mM MgCl2 buffer, and inoculated 

into 5-6 ml of fresh media at an OD600 of approximately 0.05 unless otherwise noted.  

Specific media and conditions for individual assays are provided in the figure legends.  

All assay cultures were incubated at room temperature (~25ºC) with shaking.  At 

specified time intervals, noted as hours post inoculation (hpi), optical densities of each 

culture were determined and 50-100 µl samples were collected in 96 well plates and 

frozen at -80 ºC until assayed for β-glucuronidase (GUS) specific activity.  To dilute 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 52 

samples and lyse bacteria, GUS extraction buffer (50mM NaHPO4 pH 7.0, 10mM 

Na2EDTA, 0.1% sodium laryl sarcosine, 0.1% Triton-X 100, 10 mM β-mercaptoethanol) 

was added to frozen samples in the 96 well plates. Cells were lysed as samples thawed to 

limit changes in gene expression. Sample/extraction buffer dilution ratios varied by assay 

(depending upon final optical density of cultures) and were used to calculate culture 

volume (ml) for GUS specific activity.  Diluted samples (8-10 µl) were transferred to 

opaque 96-well plates and brought up to 37ºC in a water bath.  50 µl of GUS reaction 

buffer [extraction buffer plus 1 mg/ml 4-methylumbelliferyl β-D-glucuronide (MUG) 

(Gold Biotechnology, Inc.)] preheated to 37ºC was then added to each sample well.  

Reactions were incubated at 37ºC for 10-15 minutes, and terminated by adding 200 µl of 

0.2 M Na2CO3.  Preliminary studies tested several incubation times (5-20 minutes) to 

verify that the assay results were linear over time.  Results within the linear range were 

consistently achieved within 10-15 minutes of incubation.  The fluorescent product, 4-

methylumbelliferone (MU), was quantified in a fluorometer (VICTOR
2 

Perkin-Elmer)
 

and fluorescent units (counts) were compared to an MU (Sigma-Aldrich) standard curve 

to determine pmol MU produced.  Only samples within the linear range of the MU 

standard curve (<10,000,000 counts) were used in the final analysis.  GUS specific 

activity was then calculated as follows: (pmol MU)/(ml culture)(min assay)(OD600). 

Cross-streak Assay to Screen for AHL Production  

Pst DC3000 strains to be tested for AHL production were cultured in KB without 

antibiotics with shaking at 30°C for two days.  E.coli JLD271 harboring biosensor or 

control plasmids (Table 2) were cultured overnight with shaking in LB +  tetracycline at 
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37°C.  JLD271 does not produce AHLs and has a deletion in the native LuxR homolog, 

sdiA, to reduce interference with AHL detection.   

Each Pst DC3000 strain was cross-streaked with each biosensor pair as described 

by Ahmer et al. (2007).  Briefly, 20 µl of the culture to be tested was rolled horizontally 

onto KB agar plates without antibiotics, followed by two separate cross-streaks with 10 

µl each of the E. coli biosensor or control strain (Ahmer et al., 2007).  DMSO was used 

as a negative controls, and 3-oxo-C6 AHL (10 µM) was used as a positive control for 

strains with pAL103 and pAL104.  Plates were incubated for 24 hours at room 

temperature (~25ºC) and photographed in the dark with a CCD camera (Canon 

Powershot A610) set to ISO 400 and a 15 second exposure time. 
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Table 1. List of bacterial strains 

Strains 

Relevant  

Characteristics 

Abbreviatio

n 

Antibiotic 

Resistanc

e 

Reference 

E. coli     

DH5αmcr    Stratagene 

JLD271 ΔsdiA  Cm 
(Lindsay & Ahmer, 

2005) 

P. syringae pv. tomato    

DC3000 Wild-type  WT Rf (Cuppels, 1986) 

CUCPB5114  Pst DC3000 ΔT3SS ΔT3SS Cm (Fouts et al., 2003) 

SCH788 Pst DC3000 hrpRS::gusA (1) RS1 Rf This study 

SCH789 Pst DC3000 hrpRS::gusA (2) RS2 Rf This study 

SCH790 Pst DC3000 hrpRS::gusA (3) RS3 Rf This study 

SCH791 Pst DC3000 hrpL::gusA (1) L1 Rf This study 

SCH792 Pst DC3000 hrpL::gusA (2) L2 Rf This study 

SCH793 Pst DC3000 hrpL::gusA (3) L3 Rf This study 

SCH794 Pst DC3000 avrPto::gusA (1) A1 Rf This study 

SCH795 Pst DC3000 avrPto::gusA (2) A2 Rf This study 

SCH796 Pst DC3000 avrPto::gusA (3) A3 Rf This study 

SCH774 Pst DC3000 ΔpsyRI (1) WTΔ1 Cm This study 

SCH775 Pst DC3000 ΔpsyRI (2) WTΔ2 Cm This study 

SCH776 
Pst DC3000 hrpRS::GUSA ΔpsyRI  

(1) 
RSΔ1 Cm This study 

SCH777 
Pst DC3000 hrpRS::GUSA ΔpsyRI  

(2) 
RSΔ2 Cm This study 

SCH778 
Pst DC3000 hrpL::GUSA ΔpsyRI  

(1) 
LΔ1 Cm This study 

SCH779 
Pst DC3000 hrpL::GUSA ΔpsyRI  

(2) 
LΔ2 Cm This study 

SCH780 
Pst DC3000 avrPto::GUSA ΔpsyRI  

(1) 
AΔ1 Cm This study 

SCH781 
Pst DC3000 avrPto::GUSA ΔpsyRI  

(1) 
AΔ1 Cm This study 

 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 55 

 

 

Table 2. List of plasmids 

Plasmids 

Relevant  

Characteristics 

Antibiotic 

Resistance 
Reference 

pUC18 cloning vector  Ap (Norrander et al., 1983) 

pK18mobsac mob, Suc
S
  Km (Schafer et al., 1994) 

pHP45ΩCm chloramphenicol resistance cassette Cm (Fellay et al., 1987) 

pCPP46 
Plac , broad host range, low copy cloning 

vector 
Tc (Deng et al., 2003) 

pS308 hrpS with S-tag and his-tag at 5’ end Km Gift of Thota and Schechter  

pR284 hrpR with S-tag and his-tag at 5’ end Km Gift of Thota and Schechter 

pAL101 rhlRI’::luxCDABE, detects C4 AHLs Tc (Lindsay & Ahmer, 2005) 

pAL102 rhlI’::luxCDABE,  rhlR
- 
control for pAL101 Tc (Lindsay & Ahmer, 2005) 

pAL103 luxRI’::luxCDABE, detects oxoC6 AHLs Tc (Lindsay & Ahmer, 2005) 

pAL104 luxI’::luxCDABE ,  luxR
- 
control for pAL103 Tc (Lindsay & Ahmer, 2005) 

pAL105 lasRI’::luxCDABE, detects oxoC12 AHLs Tc (Lindsay & Ahmer, 2005) 

pAL106 lasI’::luxCDABE ,  lasR
- 
control for pAL105 Tc (Lindsay & Ahmer, 2005) 

pJS7 hrpRS::gusA Ap This study 

pJS8 hrpL::gusA Ap This study 

pJS9 avrPto::gusA Ap This study 

pJS3 mob, sacB, hrpRS::gusA Km This study 

pJS1 mob, sacB, hrpL::gusA Km This study 

pJS6 mob, sacB, avrPto::gusA Km This study 

pJS12 psyRI flanking regions + Cm
r
  Ap, Cm This study 

pJS16 mob, sacB, psyRI flanking regions + Cm
r
  Km, Cm This study 

pJS14 Plac::hrpR Tc This study 

pJS15 Plac::hrpS Tc This study 
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Table 3.  List of primers. 

Primer # Sequence (5’ – 3’) 
a
 Purpose 

M13F CGCCAGGGTTTTCCCAGTCACGAC Sequencing  

M13R AGCGGATAACAATTTCACACAGG Sequencing  

P8 GGGAATTCGACGCGGTGCTTCAGGAG Cloning Pst DC3000 hrpRS region 

P9 AAAAACTCGAGTCAGATCTGCAATTCTTTGATGCGTC Cloning Pst DC3000 hrpRS region 

P10 TGCAGATCTGACTCGAGTTTTTTGCAAAGACGCTGG Cloning Pst DC3000 hrpRS region 

P11 CATCTAGAGCCGCCGTCCCGAGTAG  Cloning Pst DC3000 hrpRS region  

P12 GCCTCGAGGAGTCCCTTATGTTACGTC Cloning gusA 

P13 CGCTCGAGGGTACCAGGAGAGTTGTTGATTC Cloning gusA 

P14 GTGAATTCCAGCCCGGTGTCCTGATCG Cloning Pst DC3000 hrpL region  

P15 TCGAGATCTCGAGTCAGGCGAACGGGTCGAT Cloning Pst DC3000 hrpL region 

P16 TCGCCTGACTCGAGATCTCGATCATTTTTTCTGG Cloning Pst DC3000 hrpL region 

P17 GCTCTAGATGCCCGCTTCGTCTACCTG Cloning Pst DC3000 hrpL region 

P18 CCGAATTCCAGAGTCACACCAGGACAGTC Cloning Pst DC3000 avrPto region 

P19 ACACACGGCTCGAGATCATTGCCAGTTACGG Cloning Pst DC3000 avrPto region 

P20 GCAATGATCTCGAGCCGTGTGTGGCGTCA Cloning Pst DC3000 avrPto region 

P21 GGGATATCAGCCTGGCCTTGAGTCTTGG Cloning Pst DC3000 avrPto region 

P25 TCGATAAGGACGTCCGAGAGTGTTG Verify gusA insertion after hrpRS 

P123 GGCGGCTTGCAACACCAC Verify gusA insertion after hrpL 

P126 GATTTCACGGGTTGGGGTTTC Verify gusA insertions  

P127 CGCAGCAGGGAGGCAAAC Verify gusA insertions  

P128 CAGGCCATTGTCTTCCTTCAGC Verify gusA insertion after hrpRS 

P129 TCGCGTCGAACATCTTATCAGG Verify gusA insertion after hrpL 

P130 CGATGACCAACGCCGAGC Verify gusA insertion after avrPto in Pst DC3000 

P131 CATTATCCAAAGGGCGAAGGTG Verify gusA insertion after avrPto in Pst DC3000 

p166 CATCTAGAGCAATCGACAGCCCAGTG Deletion of psyRI in Pst DC3000 

P167 GCGGATCCTCATTGGTTTTTCACGGTATG Deletion of psyRI in Pst DC3000 

P168 AAGGATCCACTTAACTGGCCGCCTGAAAC Deletion of psyRI in Pst DC3000 

P172 CGGAATTCTTTTTCGGGCTGGCTC Deletion of psyRI in Pst DC3000 

P173 CAGCCGGGTATAGCTTGGG Verify psyRI deletion in Pst DC3000 

P174 GGCCTTGATGTTACCCGAG Verify psyRI deletion in Pst DC3000 

P175 GCCCTACACAAATTGGGAGATA Verify psyRI deletion in Pst DC3000 

P176 GCGCCAGCCGAATGTAAC Verify psyRI deletion in Pst DC3000 

a 
 Engineered restriction digest sites are underlined 
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Chapter III:  Results 
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Construction of Pst DC3000 T3SS::gusA reporter strains  

In order to monitor gene expression at multiple levels of the T3SS regulatory 

cascade, I inserted a promoterless gusA gene downstream of the translation stop site of 

three T3SS genes, without interrupting upstream or downstream genes, resulting in the 

gusA transcriptional fusion (T3SS::gusA) strains SCH788-796 listed in Table 1 [hereafter 

referred to as hrpRS::gusA (RS1-3), hrpL::gusA (L1-3), and avrPto::gusA (A1-3)].  All 

of the T3SS::gusA reporter strains formed blue colonies when plated on HDM with 5-

bromo-4-chloro-3-indolyl-beta-D-glucuronic acid (X-gluc) and were confirmed by PCR 

using primers that hybridize to each T3SS gene region and gusA (Figure 7).  Primers for 

confirmation of the T3SS::gusA strains were either upstream or downstream of primers 

used to construct the plasmids for allele replacement, to ensure that amplification was not 

from plasmids used for allele replacement.  When chromosomal DNA from the 

hrpRS::gusA strains was used as template, PCR products of the expected size were 

amplified (~1.9 kb product from p25 - p126, and a ~1.1 kb product from p126 - p128).  

Similarly, PCR of chromosomal DNA from hrpL::gusA and avrPto::gusA strains 

specifically amplified products of the expected sizes (~1.2 kb product from p123 - p126, 

a ~1.1 kb product from p127 - p129, ~1.1 kb products from p130 and p126, and 127 and 

131).   These products were not amplified when the WT Pst DC3000 chromosomal DNA 

was used as the template, although non-specific bands were seen in reaction products 

from primer pairs p127 - p129 and p123 - p126.   
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Figure 7.  PCR Confirmation of T3SS::gusA reporter strains. 

Diagrams of the Pst DC3000 (A) hrpRS::gusA, (B) hrpL::gusA, and (C) avrPto::gusA 

chromosomal regions are shown, including the positions of PCR primers.  The expected sizes of 

PCR products for all three T3SS::gusA reporters are shown below each diagram.  (D) 

Electrophoresis of PCR products confirming hrpRS (lanes 2-5), hrpL (lanes 7-10), and avrPto 

(lanes 12-15) gene regions.  Lanes 1, 6, and 11 are DNA markers.  PCR reaction contained 

chromosomal DNA from either wild-type (W), hrpRS::gusA (R), hrpL::gusA (L), or 

avrPto::gusA (A) PstDC3000 strains.  The primers used in each reaction are:  lanes 2-3, p25-

p126;  lanes 4-5, p127-p128;  lanes 7-8, p123-p126;  lanes 9-10, p127-p129; lanes 12-13, p130-

p126;  lanes 14-15, p127-p131.   
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gusA fusion does not disrupt the function of hrpRS and hrpL 

Previous studies have shown that disrupting the function of the T3SS abolishes 

the ability of P. syringae to cause the HR in resistant plants (Deng et al., 1998, Huang et 

al., 1991, Lindgren et al., 1986).  Therefore, disruption of hrpRS and hrpL should also 

abolish the ability of Pst DC3000 to cause the HR in resistant plants.  To confirm that 

insertion of gusA did not disrupt hrpRS and hrpL function, I inoculated N. tabacum 

cultivar Xanthi with the hrpRS::gusA, hrpL::gusA, and avrPto::gusA, as well as wild-

type (WT) Pst DC3000 and a mutant lacking the entire T3SS gene cluster (ΔT3SS) at 

various concentrations of inoculum (1x10
8
, 2x10

7
, and 4x10

6
 CFU/ml) (Fouts et al., 

2003).   

As indicated by visible necrosis within the area of infiltration, Pst DC3000 WT 

bacteria caused the HR at concentrations of 2x10
7 
CFU/ml or above, while the ΔT3SS 

mutant did not cause the HR at any concentration (Figure 8).  The three reporter strains, 

hrpRS::gusA, hrpL::gusA, and avrPto::gusA, all caused the HR at the same 

concentrations as WT, confirming that the hrpRS and hrpL function normally in the gusA 

reporter strains.  Pst DC3000 lacking avrPto still causes the HR in N. tabacum cultivar 

Xanthi, suggesting that AvrPto is not the sole determinant of ETI in the plant, nor does it 

impact function of the T3SS (Lin & Martin, 2005).  Therefore, the experiment in Figure 8 

does not discern whether the gusA insertion downstream from avrPto alters the function 

of the avrPto gene.  However, since my research is concerned with the regulatory cascade 

upstream of avrPto, the avrPto::gusA strain is primarily used to confirm results observed 

in the hrpRS::gusA and  hrpL::gusA reporter strains.
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Figure 8.  Induction of the HR by Pst DC3000 strains in N. tabacum cv. Xanthi. 

WT Pst DC3000, ΔT3SS, and T3SS::gusA reporter strains were infiltrated into 4-6 week old 

leaves at the innoculum densities indicated to the left and the areas of infiltration were circled. 

After 24 hours, leaves were inspected for HR (indicated by darker, necrotic tissue within the area 

of infiltration) and photographed.   



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 62 

T3SS::gusA reporters are differentially regulated in various growth media 

Previous studies have shown that T3SS genes are repressed when P. syringae is 

grown in rich medium, such as King’s B (KB) or Luria-Bertani (LB), and induced when 

P. syringae is grown in defined minimal media, such as hrp-derepressing minimal 

medium (HDM), Mb3M and M9-sucrose (Huynh et al., 1989, Rahme et al., 1992, Rico & 

Preston, 2008, Xiao et al., 1992).  T3SS genes are induced to a lesser degree in another 

minimal medium, Hoitink-Sinden medium with sucrose (HSS) (Sreedharan et al., 2006).  

To confirm that my T3SS::gusA reporters are regulated in a manner consistent with 

previously published results, I assayed three independently constructed biological 

replicates of hrpRS::gusA (RS1, RS2, RS3), hrpL::gusA (L1, L2, L3), and avrPto::gusA 

(A1, A2, A3) for GUSspecific activity after culturing the bacteria in KB, HSS, and HDM.  

T3SS::gusA reporter strains were routinely grown overnight in KB liquid cultures 

prior to each assay.  Because KB represses T3SS gene expression, bacterial cells 

harvested from  these precultures were washed  in 10 mM MgCl2 buffer before 

resuspending in different assay media (Rico & Preston, 2008).  If 10 mM MgCl2 induces 

T3SS genes, it is not a suitable wash buffer for assaying T3SS gene expression in 

potentially repressive conditions.  Thus, I tested whether the buffer altered T3SS gene 

expression by comparing GUS activity of T3SS::gusA reporter strains cultured in KB and 

in 10 mM MgCl2.  Reporter strains exhibited low basal levels of GUS activity over a 22 

hour period in KB, confirming repression of T3SS gene expression.  Comparable levels 

of GUS activity were observed when reporter strains were assayed  in 10 mM MgCl2 , 

suggesting that GUS activity in 10 mM MgCl2 reflects basal activity from KB pre-
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cultures and T3SS genes are not induced in the wash buffer (Figure 9).  
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Figure 9.  Analysis of GUS activity in PstDC3000 after growth in various media or buffer. 

WT and T3SS::gusA PstDC3000 reporter strains were grown overnight in KB broth precultures 

and washed in 10mM MgCl2.  Cells were then inoculated into KB, HSS, HDM, or 10 mM MgCl2 

to OD600 ~0.05.  (A-C) Comparison of three independently constructed biological replicates of 

(A) hrpRS::gusA, (B) hrpL::gusA, and (C) avrPto::gusA PstDC3000 reporter strains.  Graphs 

show the average GUS specific activity (pmol MU)/(ml culture)(min assay)(OD600) for two 

samples taken from each biological replicate, at 0.5, 4, 6, and 22 hours post inoculation (hpi), and 

error bars represent the standard deviations.  Similar results were obtained in two independent 

assays. (D) Growth of PstDC3000 WT and one biological replicate of each T3SS::gusA reporter 

strain in HDM, HSS, KB, and 10 mM MgCl2. 
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As expected, T3SS::gusA reporter strains are highly induced in HDM and 

somewhat induced in HSS (Figure 9).  Induction of hrpRS::gusA, hrpL::gusA, and 

avrPto::gusA expression was observed in HDM within 6 hours post inoculation (hpi) and 

continued to increase over the entire 22 hours.   Expression of T3SS genes also increased 

in HSS, but GUS activity levels were much lower than in HDM.  These results are in 

agreement with previous studies of T3SS gene expression.  Therefore, the hrpRS::gusA, 

hrpL::gusA, and avrPto::gusA reporter strains can be used to accurately measure T3SS 

gene regulation under different environmental conditions.   

My data also shows that KB repressed the T3SS regulatory cascade by acting 

upstream of the hrpRS operon.  These results are in agreement with Xiao et al. (2007), 

who showed that the hrpRS operon is expressed more in HDM than in KB (Xiao et al., 

2007).  However, hrpL and avrPto expression were more induced by HDM than hrpRS.  

By 22 hpi, hrpRS::gusA expression was approximately 5-fold higher in HDM than in KB, 

while hrpL::gusA and avrPto::gusA were each more than 20-fold higher in HDM (Figure 

9). 

There are no published studies showing induction of hrpRS in HSS.  My results 

show that the average expression level of hrpRS::gusA is slightly higher in HSS than KB, 

although the difference is less than a 2-fold difference (Figure 9).  By 22 hpi, there was 

no significant difference between hrpRS expression in HSS and KB.  Nevertheless, hrpL 

and avrPto expression were clearly induced in HSS at 6 hpi, with approximately 4-fold 

higher expression in HDM than in KB by 22 hpi.  Together, these data suggest that HSS 
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only minimally induces hrpRS, but at levels that may be sufficient to induce downstream 

T3SS genes.   

Growth rates of PstDC3000 also varied significantly when cultured in KB, HDM, 

or HSS (Figure 9D).  Within 22 hpi, a Pst DC3000 culture in KB was saturated (OD600 

>1.4), while bacteria in HDM were still at the beginning of exponential phase (OD600 ~ 

0.2). HSS supported faster growth than HDM, although not as fast as KB.  The 

T3SS::gusA reporter strains had comparable growth rates to WT PstDC3000 in all media 

tested. None of the bacterial cultures grew in 10 mM MgCl2.  Several of the variable 

components of KB, HSS, and HDM, such as carbon sources and pH, have been 

previously suggested to modulate T3SS genes.  While these variables may affect growth 

rates and T3SS genes independantly, it is also possible that the rate of growth regulates 

expression of T3SS genes.   
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Overexpression of hrpR or hrpS can overcome repression of T3SS genes in KB 

My results suggest that KB represses expression of the T3SS regulatory cascade 

by reducing transcription of hrpRS.  Therefore, I hypothesized that expression of hrpR or 

hrpS from a heterologous promoter might overcome repression of T3SS genes by KB. To 

explore whether over-expression of either hrpR or hrpS would relieve repression of hrpL 

in KB, I transformed plasmids pJS14 (Plac::hrpR) and pJS15 (Plac::hrpS) into the 

hrpL::gusA and avrPto::gusA reporter strains.  These plasmids ectopically express hrpR 

or hrpS from the lac promoter in the broad host range vector pCPP46.   

Both hrpL::gusA and avrPto::gusA show significantly higher expression levels in 

KB when either hrpR or hrpS are constitutively expressed (Figure 10).  These results 

confirm that repression of the T3SS in KB via transcriptional regulation of hrpRS can be 

overcome by increasing expression of either hrpR or hrpS.  Interestingly, hrpS 

overexpression induced higher levels of hrpL::gusA than hrpR overexpression, despite 

the fact that each gene should be similarly expressed from the lac promoter in pCPP46.  

It is possible that HrpS is more stable than HrpR, or that HrpS is a better activator of the 

hrpL promoter.  

. 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 68 

  

  

 

Figure 10.  The effect of overessing hrpR or hrpS on hrpL and avrPto expression after 

culturing in T3SS-repressive conditions. 

(A) hrpL::gusA and (B.) avrPto::gusA Pst DC3000 reporter strains containing no plasmid or 

either pJS14 (Plac::hrpR), pJS15 (Plac::hrpS), or pCPP46 (empty vector) were grown overnight in 

KB, and then washed and resuspended in 10mM MgCl2 to standardize the bacteria to OD600 

~0.05, and immediately sampled for GUS activity.  GUS specific activity is shown as the average 

of two biological replicates for each strain with error bars representing the standard deviations. 
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Pst DC3000 T3SS genes are transcriptionally regulated by pH  

The effect of pH on P. syringae T3SS gene expression has not been examined in 

detail.  The plant apoplast has a pH below 6.5 (Felle, 2001). Rahme et al (1992) found 

that expression of several T3SS genes significantly decreased in minimal media as the pH 

was raised above 5.5 (Rahme et al., 1992). However, this study did not examine the effect 

of pH on the hrpRS operon. On the other hand, van Dijk et al (1999) found that pH does 

not alter AvrPto protein levels, suggesting that pH does not significantly affect regulatory 

elements upstream of avrPto (van Dijk et al., 1999).  To determine if Pst DC3000 T3SS 

gene expression is regulated by pH, I assayed expression of hrpRS::gusA, hrpL::gusA, 

and avrPto::gusA in HDM with variable pHs, ranging from 5.4 to 7.6.   

My results show that hrpRS, hrpL, and avrPto are regulated by pH and suggest 

that the regulatory effect is upstream of the hrpRS operon (Figure 11).  Maximum 

expression of hrpRS::gusA, hrpL::gusA, and avrPto::gusA was seen at pH 5.9 and 

minimal expression at 7.6.  However, there was only an ~2-fold difference in GUS 

activity between pH 5.9 and pH 7.6 in all three reporter strains.  The pHs of KB, HSS, 

and HDM are normally 7.5, 6.5, and 6.0, respectively.  Therefore, although pH is one 

factor that varies between these media, pH alone is not enough to account for the large 

differences in T3SS gene expression seen in KB, HSS, and HDM (Figure 9).  The growth 

of Pst DC3000 in HDM at different pHs was similar, although by 21.5 hpi, the bacteria 

grew slightly faster at the higher pHs (>7) (Figure 11D). 
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Figure 11.  The effect of pH on expression of Pst DC3000 T3SS genes. 

PstDC3000 (A) hrpRS::gusA, (B) hrpL::gusA, and (C) avrPto::gusA strains were 

suspended to an OD600 of ~0.05 in 6 ml HDM with final pHs of  5.4, 5.9, 6.3, 6.8, 7.2, and 

7.6. Each reporter strain preculture was washed in each of the 6 different pHs of HDM 

prior to inoculation into culture tubes containing the corresponding pH medium.  Average 

GUS specific activity is shown for two samples per culture for each T3SS::gusA reporter 

strain at 21.5 hpi, with error bars showing standard deviations.  Similar results were 

observed in two independent assays.  (D) Growth curves of WT PstDC3000 in HDM with 

various pHs. 
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Carbon sources differentially affect Pst DC3000 T3SS genes  

Various carbon sources have been reported to differentially regulate T3SS genes 

in diverse P. syringae pathovars.  Minimal media with fructose has been suggested to 

provide the optimal conditions for T3SS gene expression, although other sugars or sugar 

alcohols still induce T3SS genes (Huynh et al., 1989, Rahme et al., 1992, Xiao et al., 

1992).  HSS, which contains sucrose as the carbon source, induces hrpL expression in Pst 

DC3000, albeit at a lower level than in HDM (Figure 9) (Sreedharan et al., 2006).  To 

determine if carbon sources differentially regulate the Pst DC3000 T3SS, expression of 

hrpRS::gusA, hrpL::gusA, and avrPto::gusA was assayed in HDM containing the sugars 

fructose, glucose, or sucrose, or the sugar alcohol mannitol.   

All three T3SS::gusA reporters were induced by fructose, glucose, sucrose, and 

mannitol by 9 hpi (Figure 12).  Induction of hrpRS::gusA, hrpL::gusA, and avrPto::gusA 

expression in the first few hours was similar regardless of which carbon source was used 

in the culture medium, suggesting that none of these carbon sources repress T3SS genes.  

However, by 26.5 hpi, expression of all three T3SS::gusA reporters leveled off in HDM 

containing sucrose, glucose, or mannitol.  Only bacteria growing in HDM with fructose 

showed increasing T3SS gene expression levels over the entire assay.  By 26.5 hpi, 

hrpRS::gusA, hrpL::gusA, and avrPto::gusA expression was much higher in HDM 

containing fructose than with any of the other carbon sources.  Interestingly, expression 

patterns in HDM with sucrose were similar to those previously observed in HSS (Figures 

9 and 12), suggesting that carbon source variation may be sufficient to explain 

differences in T3SS gene expression between HDM and HSS, despite other 

dissimilarities between the two media. 
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Figure 12.  The effect of sugars or sugar alcohols on expression of Pst DC3000 T3SS genes. 

WT and T3SS::gusA reporter strain precultures were washed in 10mM MgCl2 and inoculated to 

OD600 ~0.5 into HDM containing 10mM glucose, 10mM sucrose, 10 mM mannitol, or 10 mM 

fructose as the carbon source.  Expression patterns for (A) hrpRS::gusA, (B) hrpL::gusA,  and (C) 

avrPto::gusA are shown as average GUS specific activity for two biological replicates of each 

reporter strain, with error bars representing the standard deviation.  (D) Growth curves of 

hrpRS::gusA in the same media are shown as average optical density (OD600) for two biological 

replicates, with error bars representing the standard deviation. Samples for both expression and 

growth were taken at 2, 5, 9, and 26.5 hours post inoculation (hpi).  Similar GUS activities and 

growth rates were observed in two independent experiments. 
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Tricarboxylic acid (TCA) cycle intermediates, such as the organic acids citrate 

and succinate, have been shown to repress P. syringae T3SS genes (Huynh et al., 1989, 

Rahme et al., 1992).  Glycerol enters glycolysis before the TCA cycle and does not 

inhibit T3SS genes (Xiao et al., 1992, Huynh et al., 1989, Xiao, 2005).  Therefore, I 

hypothesized that expression of Pst DC3000 T3SS genes would be higher in HDM 

containing sugars or glycerol than in HDM containing organic acids, and I assayed 

expression of the Pst DC3000 hrpRS::gusA, hrpL::gusA, and avrPto::gusA reporters in 

HDM containing fructose, glycerol, citrate, or succinate.   

By 8 hpi, the hrpL::gusA and avrPto::gusA fusions were similarly induced by 

fructose, glycerol, citrate, or succinate (Figure 13).  Therefore, at early time points after 

inoculation into HDM, organic acids do not repress T3SS genes.  In contrast, by 23.5 hpi, 

expression of T3SS genes in HDM containing succinate was approximately 4-5-fold 

lower compared to HDM with fructose.   In addition, bacteria grown in HDM containing 

glycerol or citrate expressed intermediate levels of GUS.   
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Figure 13.  Organic acids and glycerol do not repress Pst DC3000 T3SS gene expression. 

WT and T3SS::gusA reporter strain precultures were washed in 10mM MgCl2 and inoculated to 

OD600 ~0.5 into HDM containing 20 mM glycerol, 10 mM succinate, 10 mM citrate, or 10 mM 

fructose as the carbon source.  The pH of HDM containing succinate and citrate was adjusted to 

be the same as the media containing fructose or glycerol (pH6). Expression patterns for (A) 

hrpRS::gusA (B) hrpL::gusA (C), and avrPto::GUS are shown as average GUS specific activity 

for two biological replicates of each reporter strain, with error bars representing the standard 

deviation.  (D) Growth curves of hrpRS::gusA in the same media are shown as average optical 

density (OD600) for two biological replicates, with error bars representing the standard deviation. 

Samples for both expression and growth were taken at 0.5, 2, 5.5, 8, 10, 20, and 23.5 hours post 

inoculation (hpi).  Similar GUS activities and growth curves were observed in two independent 

experiments. 
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 None of the previously published studies tested the effect of varying carbon 

sources on transcription of the hrpRS operon.  hrpRS expression was induced by fructose, 

glycerol, citrate, and succinate, although it was only ~2-fold higher in HDM containing 

succinate than the basal expression in MgCl2 wash buffer controls (data not shown).  

Small differences (<2-fold) in expression of hrpRS between the different carbon source 

treatments were observed at earlier time points than in hrpL and avrPto.  Still, by 24 hpi, 

hrpRS expression was approximately 3-fold lower in HDM when fructose was replaced 

with succinate, and an intermediate level (~ 2-fold lower) of hrpRS expression was 

observed when the carbon source was glycerol or citrate (Figure 13).  Because expression 

of hrpRS in HDM containing fructose, glucose, sucrose, and mannitol, glycerol, citrate, 

or succinate fit the same pattern as observed in the downstream T3SS genes (Figures 12 

and 13), I conclude that carbon source related conditions regulate T3SS upstream of the 

hrpRS operon.  However, there may also be post-transcriptional regulation of hrpRS, as 

there is a larger effect seen at the level of hrpL and avrPto. 

Pst DC3000 T3SS gene expression patterns are correlated to growth rate 

Growth curves for hrpRS::gusA are shown in Figures 12D and 13D, and the 

growth rates were similar for wild-type Pst DC3000, hrpL::GUS, and avrPto::GUS in 

HDM with each carbon source tested (data not shown). However, various carbon sources 

differentially affected the growth rate of Pst DC3000 (Figures 12D and 13D).  

Furthermore, the growth rate supported by each carbon source was inversely related to 

the level of T3SS::gusA expression.  For example, Pst DC3000 strains grew slowest in 

HDM containing fructose, the medium that induced the highest expression of T3SS::gusA 
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fusions.  The cell density of Pst DC3000 cultures in HDM with fructose barely rose 

above OD600 0.2 by the end of the assay.  In contrast, Pst DC3000 cultures grew fastest in 

HDM containing succinate; yet T3SS::gusA expression peaked within 6 hpi, and then 

decreased, as the OD600 of the culture surpassed 0.2.  In fact, T3SS::gusA expression 

leveled off or decreased in HDM with all the other carbon sources once the OD600 rose 

above 0.2.  Therefore, I hypothesized that growth rate or culture density, rather than the 

particular carbon sources, may be affecting T3SS gene expression.  

Pst DC3000 T3SS genes are regulated by cell density 

Many pathogens regulate virulence gene expression in response to population 

density.  For instance, P. aeruginosa down-regulates T3SS genes in response to high cell 

density (Bleves et al., 2005, Hogardt et al., 2004).  To test whether cell density affects 

T3SS gene expression in Pst DC3000, I assayed the GUS activity of PstDC3000 

T3SS::gusA reporter strains after the bacteria were suspended in HDM at different cell 

densities.   

A ~5 fold decrease in hrpL expression was observed in bacterial cultures that 

were inoculated at high cell densities (OD600 ~0.5) compared to low cell densities (OD600 

~ 0.02) (Figure14).  The difference in expression of hrpRS in high and low cell density 

cultures was only ~2-fold (Figure 13), however other assays in this study have shown that 

very slight increases in hrpRS expression can be amplified into much larger increases in 

hrpL expression (Figures 9, 11, 12, and 13).   Therefore, I conclude that cell density may 

affect hrpRS transcription at a subtle level, which could account for increased 

transcriptional regulation observed in downstream T3SS genes.   
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Figure 14.  The effect of cell density on hrpRS and hrpL expression in PstDC3000. 

WT and T3SS::gusA reporter strain KB precultures were washed in HDM and inoculated to a low 

(~0.02), medium (~0.5), and high cell density (~1.5).  Samples for both expression and cell 

density were taken at 5.5 hours post inoculation (hpi).  Expression of hrpRS::gusA and 

hrpL::gusA  at various cell densities is shown as average GUS specific activity for two samples 

from each T3SS::gusA reporter strain culture, with error bars representing standard deviations.  

Similar results were obtained in multiple independent experiments.   
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Pst DC3000 T3SS genes are repressed by high cell density conditioned media 

 Regulation of gene expression by cell density usually involves small diffusible 

molecules that accumulate extracellularly as bacteria grow and divide (Waters & Bassler, 

2005).  To explore whether Pst DC3000 releases a small molecule that causes repression 

of T3SS genes in high cell density cultures, I assayed expression of T3SS::gusA reporters 

in conditioned media.  Conditioned media was made by inoculating Pst DC3000 into 

HDM at either a lower cell density (OD600 = 0.04) or a higher cell density (OD600 = 0.6), 

growing the bacteria for 16 hours, and removing the cells by filtration.  These 

conditioned media were then inoculated with T3SS::gusA reporter strains.  If small 

signaling molecules accumulating at high cell density are responsible for repressing T3SS 

gene expression, hrpL::gusA should be repressed when bacteria are inoculated at low cell 

density into the high cell density conditioned medium.  In contrast, hrpL::gusA 

expression should be induced normally when bacteria are inoculated into the low cell 

density conditioned medium or into fresh HDM.  

After a six hour incubation, the hrpL::gusA strain expressed comparable amounts 

of GUS in fresh or low density conditioned media.  However, hrpL::gusA expression was 

approximately 3-fold lower in the high-cell-density conditioned media (Figure 15A).  

There was no observable effect of conditioned media on hrpRS expression.   

 To rule out the possibility that repression of T3SS gene expression by high cell 

density conditioned HDM could be due to depletion of nutrients, I examined the growth 

of Pst DC3000 in fresh or conditioned HDM supplemented with an additional 50 or 

100% of the standard HDM nutrients.  Analysis of growth showed that bacteria grew 
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similarly in fresh HDM and unsupplemented conditioned media prepared from either low 

(starting OD600 = 0.04) or higher (starting OD600 = 0.6) cell density cultures (Figure 14).  

In addition, supplementing fresh HDM or either conditioned medium (low or high-cell 

density) allowed the bacteria to grow faster in a similar manner (Figure 15B).  Therefore, 

I concluded that neither conditioned medium was nutritionally depleted. 

Supplementing the fresh and conditioned media also confirmed that changes in 

nutrient levels did not alter T3SS::gusA expression data, as I assayed the hrpRS::gusA 

and hrpL::gusA reporter strains in fresh or conditioned HDM, with or without 

supplementation.   My results show that extra nutrients did not significantly alter T3SS 

gene induction (Figure 15A).  Therefore, I conclude that the repression of hrpL 

expression observed at higher cell densities is due to a small molecule that is released by 

Pst DC3000 into the culture medium.  
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Figure 15.  The effect of conditioned HDM on the expression of hrpL. 

Conditioned HDM was prepared by inoculating fresh HDM with WT Pst DC3000 at a lower 

density (OD600 = 0.04) or higher density (OD600 = 0.6), followed by shaking overnight (16 hrs) at 

23 ºC.  Bacteria were removed by filtration and the conditioned media (supernatant) were tested 

for sterility by plating on KB.  Supplemented conditioned media were made by adding either 50% 

(+1/2X) or 100% (+1X) of the standard concentrations of HDM nutrients (HDM salts, fructose, 

and MgCl2). WT and T3SS::gusA reporter strain precultures were washed in 10 mM MgCl2 buffer 

and inoculated into fresh HDM or conditioned media (high or low density), with or without 

supplementation.  (A) Expression of hrpL::gusA (green) and hrpRS::gusA (blue) was measured at 

6 hpi. (B) Growth of hrpL::gusA in the various media treatments over an extended period of time.  

GUS specific activity is shown as the average from 2 biological replicates for each reporter strain, 

with error bars representing the standard deviation.  Similar results were observed in two 

independent assays. 
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 Pst DC3000 produces AHLs that activate LuxR 

Results from the cell density and conditioned media assays prompted me to 

explore whether Pst DC3000 T3SS gene expression is regulated by AHL-mediated 

quorum sensing.  Surveys of various pathovars suggest that the predominant AHL 

synthesized by P. syringae is 3-oxo-C6 AHL, although some pathovars also produce C6 

AHL and/or 3-oxo-C8 AHL (Marutani et al., 2008, Elasri et al., 2001, Cha et al., 1998, 

Shaw et al., 1997, Quiñones et al., 2004, Taguchi et al., 2006).  To exmine AHL 

production by Pst DC3000, I used three different biosensor strains of E. coli designed to 

produce bioluminescence in response to various AHL species (Table 2).  Each biosensor 

strain contains a plasmid encoding a different LuxR homolog (rhlR, luxR, or lasR), which 

activates a luxCDABE operon regulated by the promoter of the corresponding LuxI 

homolog (rhlI’, lux I’, or las I’).  E. coli/pAL101 utilizes RhlRI’ to detect C4 AHLs, 

while E. coli/pAL103 contains LuxRI’, and responds best to 3-oxo-C6 AHL, but can also 

detect C6, C8, and 3-oxo-C8 AHLs.  E. coli/pAL105 contains LasRI’, and is designed to 

detect 3-oxo-C12 AHL, but also responds to C10, C12, and 3-oxo-C10 AHLs.  Each 

biosensor strain glows in the dark when the bacteria are exposed to an AHL detected by 

the specific LuxR homolog, while control strains (E. coli/pAL102, E. coli/pAL104, E. 

coli/pAL106) contain a plasmid lacking the LuxR homolog, and thus cannot  respond to 

AHLs (Lindsay & Ahmer, 2005).   

In order to identify AHLs produced by Pst DC3000, bacterial suspensions were 

cross-streaked on agar plates with the E. coli biosensor strains containing pAL101, 

pAL102, pAL103, pAL104, pAL105, or pAL106.  The E. coli/pAL103 biosensor strain 
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produced luminescence that intensified in the vicinity of the WT Pst DC3000 or 10 µM 

3-oxo-C6 AHLs cross-streak, while the E. coli/pAL104 control strain did not show 

differential luminescence (Figure 16).   Luminescence was not detected when either E. 

coli strain was cross-streaked with a solvent control, DMSO (data not shown).  Based on 

previous reports of AHLs produced by P. syringae, I conclude that the AHLs detected are 

most likely 3-oxoC6 AHL, although they could also be C6 and/or 3-oxo-C8 AHLs.  Pst 

DC3000 did not induce luminescence in other E. coli strains containing pAL101 or 

pAL105 (data not shown), consistant with the fact that shorter and longer chain AHLs 

have not been detected in P. syringae.    

Although it is unknown how much AHL is produced by Pst DC3000, saturated 

cultures of Pss B728a generate nearly 500 µM AHL (Quiñones et al., 2004).  Previously 

published results suggest that Pst DC3000 produces less AHL than Pss B728a (Cha et al., 

1998).  In Pss B728a, the luxI homolog ahlI is autoregulated by its LuxR homolog, AhlR 

(Quiñones et al., 2004)   Exogenous application of 10 µM 3-oxo-C6 AHL rescued AHL-

deficient mutant strains (∆aefR and ∆gacA) of Pss B728a, by inducing ahlI levels above 

that of WT (Quiñones et al., 2004).  In addition, I observed that WT Pst DC3000 or 10 

µM 3-oxo-C6 AHL both induced similar qualitative levels of luminescence in the E. 

coli/pAL103 biosensor (Figure 16).  Therefore, I hypothesized that adding 10 µM 

exogenous AHLs to low-cell-density Pst DC3000 cultures would be sufficient to mimic 

high cell-density conditions and might thereby repress hrpL expression.  
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Figure 16.  Production of AHLs by Pst DC3000. 

A suspension of PstDC3000 or 10 µM 3-oxo-C6 AHL (Caymen Chemical) was rolled 

horizontally across a KB agar plate.  E. coli strains containing pAL103 (luxR luxI’::luxCDABE) 

or pAL104 (luxI’::luxCDABE) were cross-streaked by rolling bacterial suspensions vertically 

down the same plate.  Plates were incubated at room temperature (~25°C) for ~24 hrs and then 

photographed in the dark.  The E. coli/pAL103 biosensor strain emits light strongest in the 

vicinity of AHLs, while the E. coli/pAL104 control strain produces basal levels of luminescence, 

which do not increase near the cross-streak.  Non-luminescent bacteria are barely detectable in 

the photograph.  Similar results were obtained from three independent assays. 
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Neither 3-oxo-C6 AHL nor C6 AHL affect T3SS gene expression 

Results from my previous assay suggest that Pst DC3000 may produce 3-oxo-C6 

AHL or C6 AHL.  Also, transgenic tobacco expressing both 3-oxo-C6 AHL and C6 AHL 

are more resistant to infection by P. syringae pv tabaci than wild-type plants (Quinones et 

al., 2005).  Therefore, to determine if expression of hrpL is repressed by exogenous 

AHLs, I assayed GUS activity in low cell density cultures of the hrpL::gusA reporter 

strain in HDM with and without the addition of 3-oxo-C6 AHL, C6 AHL, or DMSO 

(solvent control).  Unexpectedly, my results show that expression of hrpL::gusA was not 

affected by addition of either exogenous AHL (Figure 17).
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Figure 17.  The effect of exogenous AHLs on hrpL::gusA expression. 
Pst DC3000 hrpL::gusA reporter strain KB precultures were washed in 10 mM MgCl2 buffer, and 

resuspended to OD600 ~0.05 in HDM without AHLs (white), or with 10 µM concentrations of 

either 3-oxo-C6-HSL (horizontal stripes) C6-HSL (vertical stripes), or DMSO (grey).  GUS 

specific activity is shown for each media treatment at both 4.25 and 23.25 hpi as the average of 2 

samples per culture with error bars representing the standard deviation.  Similar results were 

observed in two independent assays. 
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Construction of Pst DC3000 psyRI deletion Strains  

Exogenous AHLs may not adequately mimic in vivo quorum sensing signals, and 

it is possible that Pst DC3000 produces other AHLs than 3-oxo-C6 and C6 AHLs.  

Therefore, I also created an AHL-deficient mutant strain of Pst DC3000. There are two 

genes in Pst DC3000 that could encode AHL-synthases: an hdtS homolog (PSPTO0187) 

and a luxI homolog, psyI (PSPTO3864)(Feil et al., 2005).  PsyI in P. syringae pv tabaci 

reportedly produces oxo-C6 AHL and C6 AHL, and the PsyI homolog in Pss B728a, 

AhlI, produces 3-oxo-C6 AHL (Taguchi et al., 2006, Quiñones et al., 2004). Hdts is not 

related to LuxI and may synthesize multiple AHLs, including C6, C10, and 3-OH-C14 

AHLs in P. fluorescens, although it is unknown if homologs in P. syringae encode 

functional AHL synthases (Laue et al., 2000, Feil et al., 2005).  I chose to focus on PsyI 

for several reasons.  First, prior studies suggest that PsyRI is actively involved in 

quourum sensing in Pst DC3000 (Chatterjee et al., 2007).  In addition, results from my 

previous assay show that Pst DC3000 producesAHLs consistant with those synthesized 

by PsyI homologs.  Furthermore, Pss B728a ∆ahlI mutant bacteria caused increased 

disease symptoms in host plants compared to WT bacteria (Quinones et al., 2005).       

Two LuxR homologs have been reported in Pst DC3000 (Case et al., 2008).  The 

luxR homolog, psyR, is adjacent to and in an opposite orientation from psyI (Figure 18A), 

and both psyR and psyI are expressed at low levels when Pst DC3000 is grown in KB 

(Chatterjee et al., 2007). To determine whether psyRI is responsible for repression of 

hrpL at high cell densities, I deleted psyRI in the Pst DC3000 WT and hrpL::gusA 

reporter strain.  I hypothesized that expression of hrpL::gusA could be derepressed at 

high cell densities in the psyRI mutant.
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Figure 18.  Creation and confirmation of psyRI deletion strains. 

(A) Organization of the psyRI locus in Pst DC3000.  The psyR gene encodes a homolog of LuxR, 

an AHL-responsive transcription regulator, and psyI encodes a homolog of LuxI, an AHL 

synthase.  The genes are convergently transcribed and overlap at their 3’ ends.  Primers p166, 

p167, p168, and p172, which were used to construct the allele replacement vector, pJS16 

(described in the Materials and Methods), are indicated by arrows below the diagram.  Primers 

p170 and p171, which hybridize to psyR and psyI, respectively, were used to detect the presence 

of the psyRI sequences in Pst DC3000 WT and hrpL::gusA reporter strains, and ΔpsyRI mutant 

derivatives.  The gel to the right of the diagram shows the results of colony PCR with p170 and 

p171 on the following Pst DC3000 strains: (1) WT, (2) hrpL::gusA, and (3 and 4) two biological 

replicates of hrpL::gusA ΔpsyRI.  The last lane (5) is DNA marker.  (B) Replacement of psyRI 

with a Cm
r 
cassette.  The Cm

r 
cassette, derived from pHP45ΩCm (Fellay et al., 1987), contains 

transcription terminators at both ends.  Primers p173 and p175, shown as arrows below the 

diagram, hybridize to sequences upstream of psyRI (and p166) and within the Cm
r 
cassette, 

respectively.  The results of colony PCR on the Pst DC3000 strains described in (A) are shown on 

the gel to the right of the diagram.   
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I made psyRI deletion strains by replacing psyRI in the Pst DC3000 WT and 

hrpL::gusA reporter strains with a chloramphenicol resistance cassette as described in the 

Materials and Methods.  The absence of psyRI in the Pst DC3000 psyRI deletion strains 

was confirmed by PCR with p170 and p171, which amplified a 2.3 kb product from WT 

Pst DC3000, but not from the psyRI deletion strains (Figure 18A).  To confirm that the 

Cm
r
 cassette replaced psyRI in the ∆psyRI mutants, a PCR reaction was performed with 

p173 and p175, which hybridize to the Cm
R
 cassette and upstream of psyRI, respectively.  

A ~1.3 Kb product was present in the ∆psyRI mutants and not in the WT Pst DC3000 

(Figure 18B).   

Pst DC3000 psyRI deletion strains are deficient in AHL activity 

To confirm that deletion of psyRI affects Pst DC3000 AHLs, I assayed AHL 

activity in the Pst DC3000 WT, hrpL::gusA, and derivative psyRI deletion strains.  The 

E. coli/pAL103 biosensor produced strong luminescence in the vicinity of the cross-

streak with WT Pst DC3000 and the hrpL::gusA reporter strain, but not with either of the 

psyRI deletion strains (Figure19).  The control strain (E. coli/pAL104) produced little or 

no luminescence, and intensity did not increase close to any of the cross-streaked strains.  

Therefore, I conclude that deletion of psyRI resulted in decreased production of AHLs by 

Pst DC3000.   
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Figure 19.  Detection of 3-oxo-C6-HSL production by psyRI deletion strains. 

Pst DC3000 strains to be tested (A) WT, (B) hrpL::gusA, and (C and D) their respective ΔpsyRI 

mutant derivatives were horizontally streaked on KB agar plates.  The 3-oxo-C6 AHL biosensor 

(E. coli/pAL103) and the control strain that lacks luxR (E. coli/pAL104) were then streaked 

vertically across each plate.  Plates were incubated at room temperature (~25°C) for 

approximately 24 hrs and then photographed with a CCD camera in the dark.  Basal luminescence 

is higher in pAL104 than in pAL103, but does not increase near the cross-streak, as noted by 

Lindsay and Ahmer (2005) .  Similar results were observed in three independent assays. 
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psyRI does not regulate Pst DC3000 T3SS gene expression 

To determine if expression of hrpL is derepressed in the psyRI mutant, I assayed 

Pst DC3000 hrpL::gusA and its ΔpsyRI derivative for GUS activity in low and high cell 

density cultures.  My results show that deletion of psyRI has no effect on expression of 

hrpL::gusA (Figure 20).  Because I did not delete the hdtS homolog, which may also 

synthesize AHLs in Pst DC3000, I cannot rule out the possibility that an AHL molecule 

involved in quorum sensing mediated regulation of T3SS genes.  However, PsyI appears 

to be the primary enzyme responsible for AHL production in Pst DC3000 (Figures 16 

and 19). Therefore, I conclude that T3SS genes are not regulated by the PsyRI AHL-

mediated quorum sensing system.  
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Figure 20.  The effect of psyRI on T3SS gene expression. 
Pst DC3000 T3SS::gusA reporter strains (A) hrpRS::gusA and (B) hrpL::gusA and their ΔpsyRI 

derivatives were suspended in HDM at low cell density (OD600 ~ 0.1) or high cell density 

(OD600~ 0.7) and shaken at 23°C for 6 hours.  Values are the average GUS specific activity for 2 

samples per culture for each strain with error bars representing the standard deviation.  Similar 

results were seen in multiple independent assays.  
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Exogenous IAA inhibits Pst DC3000 T3SS gene expression 

Since psyRI and exogenous AHLs do not appear to regulate Pst DC3000 T3SS 

genes, a non-AHL quorum sensing molecule could be responsible for the observed 

repression of hrpL and avrPto at high cell densities.  A tryptophan-dependent stationary-

phase T3SS-repressing signal was recently reported in supernatants from P. aeruginosa 

mutants unable to produce known quorum sensing signals (Shen et al., 2008).   Shen et al. 

(2008) found that the auxin indole-3-acetic acid (IAA) represses P. aeruginosa T3SS 

genes (Shen et al., 2008).  IAA is primarily known as a plant hormone, but bacteria also 

produce IAA and use it as a signaling molecule (Charkowski, 2009, Lambrecht et al., 

2000, Spaepen et al., 2007).  Most pathovars of P. syringae produce IAA, especially 

when supplemented with tryptophan, however little is known about why (Glickmann et 

al., 1998, Fett et al., 1987).  To ascertain whether IAA similarly represses T3SS genes in 

P. syringae, I assayed expression of hrpRS and hrpL in the presence or absence of 

exogenous IAA using concentrations ranging from 10µM to 1 mM.   

Indeed, hrpL::gusA was repressed in a concentration dependent manner by IAA 

(Figure 21A).  My results show that after 9 hour incubation in the presence of 1 mM 

exogenous IAA, hrpL expression was reduced 20-fold.  There was a 3-4-fold difference 

in expression in the presence of 500 µM IAA, but the reduction in hrpL expression was 

less than 2-fold with 100 µM IAA.  There was a slight reduction in hrpRS in high 

concentrations of exogenous IAA, although the effect was less than 2-fold.  Therefore, 

both IAA and high cell density repress T3SS genes in a similar manner.  



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 93 

 

Figure 21.  Exogenous auxin has a dosage-dependent effect on hrpL::gusA expression and 

growth of Pst DC3000. 
WT and T3SS::gusA Pst DC3000 KB precultures were washed in 10 mM MgCl2 buffer and 

inoculated to OD600 =0.05 into HDM containing indole-3-acetic acid sodium salt (Sambrook et 

al.) (Sigma-Aldrich) at the indicated concentrations.  The pH of HDM was not altered at any of 

the concentrations of IAA tested. (A) Expression of hrpRS::gusA and hrpL::gusA at 9 hpi shown 

as average GUS specific activity of 3 biological replicates for each reporter strain, with error bars 

representing standard deviation.  (B) Growth of WT Pst DC3000 under the same conditions.  

Optical densities were taken at 9 and 21 hpi.  Similar growth was observed in the T3SS::gusA 

reporter strains.  This assay was repeated twice with comparable results. 
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IAA also had a significant effect on Pst DC3000 growth (Figure 21B).  At 9 hpi, 

the growth Pst DC3000 was reduced in a concentration dependent manner by IAA, 

although the effect was small.  However, by 21 hpi, growth of Pst DC3000 was ~50% 

lower in HDM with 1 mM exogenous IAA.  When 10 µM IAA was added to the culture 

medium, growth was not inhibited, but there was no observable effect on T3SS gene 

expression.  Previously, exogenous IAA was reported to affect both virulence gene 

expression and growth of A.  tumefaciens cultures (Liu & Nester, 2006).  My results also 

show PstDC3000 responds similarly to increased IAA levels.   
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Chapter IV:  Discussion 
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Although it is well known that environmental conditions affect the expression of 

P. syringae T3SS genes, the molecular mechanisms underlying this regulation are not 

well understood.  Many of the previous studies on this subject have yielded conflicting 

results.  In addition, few studies have tested whether environmental signals affect the 

expression or activity of HrpR, HrpS, and HrpL, which are key components of the T3SS 

regulatory cascade.  In this work, I explored how various environmental conditions 

modulate expression of T3SS genes in Pst DC3000.  To do this, I constructed 

chromosomal gusA fusions to T3SS genes that encode regulatory factors or secreted 

proteins.  Importantly, these fusions did not alter the function of the T3SS (Figure 8).  

These reporter strains were then utilized to address some areas of disagreement in the 

literature, such as which environmental factors encountered in plants alter P. syringae 

T3SS genes expression in culture, and how each condition affects the hrpRS-hrpL 

regulatory cascade.  While many of my results confirm previous reports, the breadth of 

conditions tested and the techniques employed allowed me to define regulatory patterns 

that may have gone unnoticed in previous studies.  In addition, I identified new 

environmental variables that modulate expression of Pst DC3000 T3SS genes in culture, 

which could also potentially regulate the T3SS in planta.  

KB (a rich growth medium) represses P. syringae T3SS genes, while HDM (a 

defined minimal medium) may mimic the plant apoplast because it induces the same 

genes.  One way that KB might inhibit T3SS genes is by repressing the expression of 

hrpRS.  In fact, Xiao et al (2007) found that hrpR transcript levels in Psp 3121 were 

significantly lower when bacteria were cultured in KB (Xiao et al., 2007).  My results 

confirm that hrpRS expression is also repressed by KB in Pst DC3000 (Figure 9).  
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Another way that KB might repress T3SS gene expression is by modulating T3SS 

regulators at the post-transcriptional level.  For example, one study found that the hrpR 

gene is similarly expressed in KB and HDM, but that in both Pss 61 and Pst DC3000, 

HrpR protein is preferentially degraded by the Lon protease in KB (Bretz et al., 2002).  

My results show that both hrpL and avrPto expression were significantly higher in KB 

when hrpR was overexpressed, suggesting that activation of hrpL by HrpR is not affected 

by Lon when hrpR is expressed at sufficient levels (Figure 10).  In contrast to HrpR, the 

HrpS protein was not degraded by Lon and was equally stable when Pss 61 and Pst 

DC3000 were grown in KB or HDM (Bretz et al., 2002).  I also found that hrpL 

expression was higher in KB when hrpS was overexpressed compared to when hrpR was 

overexpressed (Figure 9), which could be explained by greater HrpS stability.  However, 

Hutcheson et al. (2001) observed that HrpS alone activated the hrpL promoter in E. coli, 

while HrpR alone did not (Hutcheson et al., 2001).  These results might indicate the: (i) 

HrpS is also more stable in E. coli, or (ii) HrpS is a more effective activator of the hrpL 

promoter than HrpR.  Further experiments will be required to distinguish between these 

two possibilities.  One way to answer this question would be to overexpress tagged hrpR 

and/or hrpS proteins in a ΔhrpRS mutant derivative of the hrpL::gusA Pst DC3000 

reporter strain.  The relative expression of HrpR and/or HrpS could then be correlated to 

the expression of hrpL. 

My results also confirm the finding by Sreedharan et al. (2006) that hrpL 

expression in Pst DC3000 was higher when the bacteria were cultured in HDM compared 

to HSS (Sreedharan et al., 2006).  I additionally found that hrpRS and avrPto are lower in 

HSS than in HDM (Figure 9).  The differences between expression of T3SS genes in HSS 
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and HDM may be attributed to the different carbon sources in the two media (sucrose and 

fructose, respectively). This hypothesis is supported by the finding that expression levels 

of hrpRS, hrpL, and avrPto were similar in HSS and HDM containing sucrose in place of 

fructose (Figure 9 and 12). 

 Because the pH in the plant apoplast is slightly acidic, pH could be an important 

environmental signal controlling expression of the T3SS.  However, my results indicate 

that pH by itself is not entirely responsible for the T3SS expression differences between 

KB and HDM.  I found that hrpL and avrPto were maximally expressed at pH ~5.9, and 

that expression decreases by only ~2.5-fold at pH 7.6 (Figure 11).  The effect of pH on 

hrpRS was relatively small (<2-fold lower at pH 5.9 compared to 7.6).  However, the 

small changes in hrpRS at various pHs could lead to the larger effect of pH on hrpL and 

avrPto.  In contrast to my results, van Dijk et al. (1999) demonstrated that AvrPto protein 

levels were comparable in Pst DC3000 grown at pH 6 or 7, suggesting that pH does not 

affect transcriptional regulation of avrPto (van Dijk et al., 1999).  However, the 

difference in expression of avrPto between pH 5.9 and 7.2 was less than 2-fold in my 

experiment.  Thus, my conclusions may not contradict the results of van Dijk et al (1999).   

The other study that examined the effect of pH on transcriptional regulation of P. 

syringae T3SS genes was performed in Psp NPS3121 (Rahme et al., 1992).  Rahme et al. 

(1992) reported maximum expression of several T3SS genes at pH 5.5, with a significant 

decrease (several log units) at pH 7.5.  Because neither van Dijk et al. (1999) nor I found 

such a large effect of pH on Pst DC3000 T3SS genes, it is possible that pH differentially 

regulates T3SS genes in Pst DC3000 and Psp NP3121.  However, Rahme et al. (1992) 
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tested five T3SS apparatus genes, and curiously, one of the genes was only slightly 

affected by the increase in pH. Therefore, another possibility is that pH regulates hrpRS 

in both pathovars, and in addition, independently and differentially regulates downstream 

T3SS genes.  

P. syringae is exposed to various carbon sources during the process of colonizing 

plants (Kamilova et al., 2006, Rico & Preston, 2008).  Because pathovars may encounter 

different levels and types of carbon sources in their plant hosts, various carbon sources 

may signal P. syringae to activate the T3SS.  Overall, my results show that initial 

induction of T3SS gene expression is similar in HDM regardless of whether sugars, sugar 

alcohols, organic acids, or glycerol were used as the sole carbon sources (Figures 12 and 

13).  At later time points, induction of T3SS genes continued when the carbon source was 

fructose, but not other preferred growth substrates, such as citrate and succinate.  These 

findings may explain some of the conflicting observation reported in other studies.  For 

example, the organic acid succinate was reported to repress T3SS genes in Psg race 0 

(Huynh et al., 1989) and Psp NPS3121 (Rahme et al., 1992), but not in Pss 61 (Xiao et 

al., 1992).  However, Xiao et al. (1992) analyzed T3SS expression at 6 hpi, while Huynh 

et al. (1989) and Rahme et al. (1992) analyzed samples at 12 hpi and 10 hpi, respectively.   

I found that succinate induced T3SS genes at 6 hpi, but repressed them by 10 hpi (Figure 

13).  Therefore, my results do not actually differ much from previous studies.  My 

conclusions are different, however, because I analyzed the effect of various carbon 

sources on changes in T3SS expression over time rather than at any individual time point.  

Particularly in Pst DC3000, it makes sense that T3SS expression is not inhibited by 

succinate.  Succinate is one of the most abundant organic acids in tomato plants, where 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 100 

organic acids are a more available carbon source than sugars (Kamilova et al., 2006).  To 

successfully colonize tomato plants, Pst DC3000 must be able to activate the T3SS in the 

presence of succinate.  

I also found that sugars and sugar alcohols affected expression patterns of T3SS 

genes in Pst DC3000 in ways that differed from previous studies.  For instance, both 

mannitol and fructose were comparable in inducing T3SS genes in Psg race 0 (Huynh et 

al., 1989) and in Pss 61 (Xiao et al., 1992), yet I detected variation in expression patterns 

over time using these two carbon sources.  Although fructose and mannitol had similar 

effects on avrPto in Pst DC3000 at 12 hpi, avrPto expression was ~3-fold lower in 

mannitol compared to fructose at 24 hpi (Figure 12).  My results are similar to those 

reported in the Ph.D. thesis of Yan Mei Xiao (2005), who also found that fructose and 

mannitol differentially affected T3SS genes in P. syringae pv. tabaci 11528 and Pst 

DC3000 (Xiao, 2005).  However, Psp NPS3121 T3SS genes were not induced at all by 

mannitol (Xiao, 2005).  Therefore, particular carbon sources may not uniformly affect 

T3SS genes in diverse pathovars of P. syringae.   

Similar to Huynh et al. (1989), I observed that the level of T3SS gene expression 

in P. syringae varies inversely with the growth rate supported by various carbon sources.  

However, Huynh et al. (1989) concluded that preferred growth substrates (such as the 

TCA cycle intermediates citrate and succinate) repress T3SS genes, while those that enter 

glycolysis before pyruvate (such as sugars and sugar alcohols) do not.  My data suggest 

that the carbon source itself may not repress T3SS genes.  Instead, I propose that T3SS 

gene expression declines when cultures reach higher cell densities.  
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Rahme et al. (1992) additionally noted that growth rates of Psp NPS3121 were 

variable when different carbon sources were added to the inducing media.  The authors 

attempted to minimize the variation by pre-adapting the bacteria to each specific carbon 

source in the KB pre-culture before inoculating bacteria into inducing media (Rahme et 

al., 1992).  I did not find a significant change in growth rates in HDM after pre-

adaptation to each carbon source.   Pst DC3000 grew slower in HDM containing fructose, 

whether fructose was included in the KB pre-culture or not (data not shown).  

The effect of carbon sources on growth rate and expression of T3SS genes led me 

to investigate the effect of cell density on T3SS expression.  I report here that hrpL 

expression is inversely related to cell density and is highest at low cell densities (<0.1) 

(Figure 14).  This is surprising for a couple of reasons.  First, many bacterial pathogens 

up-regulate their virulence genes at high population densities (Antunes et al., 2010, Mole 

et al., 2007).  Second, T3SS genes are positively regulated by GacA, and gacA transcripts 

increase with growth phase (Chatterjee et al., 2003).  GacA also positively regulates AHL 

production, as well as rpoS, which encodes a stationary-phase sigma factor (σ
S
) 

(Chatterjee et al., 2003).  Thus one might expect GacA to mediate increased expression 

of T3SS genes at high cell densities.  Since T3SS genes are actually repressed at high cell 

densities, other regulatory systems may counteract the positive effects of GacA in this 

condition.  

Cell density dependent gene regulation is usually mediated by small extracellular 

signaling molecules.  I found that when Pst DC3000 was inoculated to a low cell density 

in conditioned medium from a high cell density culture, T3SS gene expression decreased 
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(Figure 15).  This result suggested that Pst DC3000 secretes a T3SS-inhibiting molecule 

into the culture medium that accumulates as bacteria reach high-cell densities.  AHLs 

were a strong candidate for this signaling molecule, since they are known to be produced 

by P. syringae (Quiñones et al., 2004, Dumenyo, 1998), and I confirmed that Pst DC3000 

produces AHLs (Figure 16). Furthermore, Pss B728a mutants that do not synthesize 3-

oxo-C6 AHL are more virulent in beans (Quinones et al., 2005).  Unexpectedly, I found 

that exogenous application of 3-oxo-C6 AHL or C6 AHL did not alter expression of 

T3SS genes (Figure 17).  In addition, deletion of psyRI  reduced production of AHLs by 

Pst DC3000 (Figure 19), but did not alter density dependent repression of hrpL (Figure 

20).  It is possible that another AHL is responsible for quorum sensing regulation of 

T3SS genes, since the Pst DC3000 genome encodes an HdtS-family AHL synthase. 

Nevertheless, the only species of AHL reportedly produced by HdtS which may not have 

been detected by the E. coli biosensors in this study is 3-OH-C14 AHL.  Still, it is 

possible that Pst DC3000 produces psyRI-independent AHLs below the threshold of 

detection of these biosensors.  However, it seems likely that a non-AHL signaling 

molecule may be involved in quorum sensing regulation of the T3SS in Pst DC3000.  

Many other types of AHL-independent quorum sensing signals have been 

identified in bacteria.  Examples mentioned earlier, 3OH PAME and DSF, are diffusible 

molecules responsible for density-dependent regulation of virulence in R. solanacearum 

and X. campestris, respectively.  P. aeruginosa coordinates virulence genes using another 

quorum sensing molecule, Pseudomonas quinolone signal [(PQS) (3,4-dihydroxy-2-

heptylquinoline)], which links together two AHL-mediated quorum sensing.  V. cholerae 

utilizes several quorum sensing signals in conjunction with AHLs to orchestrate virulence 



S t a u b e r ,  J e n n i f e r ,  2 0 1 0 ,  U M S L ,  P a g e  | 103 

gene expression,  including autoinducer-2 [(AI-2), which is a furanosyl borate diester 

(2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate, as well as cholerae 

autoinducer-1 (CAI-1), which is (S)-3-hydroxytridecan-4-one] (Miller et al., 2002, 

Higgins et al., 2007).  A homolog of the CAI-1 synthase, CqsA, may be present in Pst 

DC3000, but there are no obvious homologs of the other known quorum sensing 

molecule synthases (Schechter personal communication).  Therefore, quorum sensing 

regulation of Pst DC3000 T3SS genes expression may occur by a novel mechanism. 

Shen et al. (2008) recently suggested that the tryptophan catabolite IAA or a 

related molecule might serve as a non-AHL quorum sensing signal that represses T3SS 

genes in P. aeruginosa (Shen et al., 2008).  Since IAA is produced by P. syringae 

(Glickmann et al., 1998, Spaepen et al., 2007), I tested whether IAA could also repress 

T3SS genes in Pst DC3000.  Although I found that IAA reduced hrpL expression in a 

concentration dependent manner, relatively high levels of IAA were required to the 

effect.  Exposure of Pst DC3000 to 1 mM IAA reduced hrpL expression by 20 fold, while 

0.1 - 0.5 mM IAA reduced hrpL expression by ~2-3-fold (Figure 21).  In contrast, Liu et 

al. (2006) found that only 32 µM IAA repressed vir genes by 50% in A. tumefaciens (Liu 

& Nester, 2006).   However, Shen et al. (2008) also found that high levels of IAA were 

required to decrease T3SS gene expression in P. aeruginosa, with 1 mM IAA decreasing 

T3SS gen expression by 2-3-fold.  IAA had a much more modest effect on hrpRS 

expression, as 1 mM IAA reduced hrpRS::gusA by less than 2-fold.  Again, it is possible 

that this small effect on transcription of hrpRS is magnified downstream in expression of 

hrpL.  However, it is also possible that IAA may act on hrpRS at the post-transcriptional 

level or may affect hrpL in a hrpRS-independent manner. 
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The correlation between IAA and cell-density dependent repression of hrpL raises 

an intriguing question:  is IAA a secreted cell to cell signaling molecule in P. syringae?  

To answer this question, I attempted to quantitate the levels of IAA in the supernatant 

from a high cell density culture of Pst DC3000.  Unfortunately, I was unable to detect 

extracellular IAA using Salkowski’s reagent (data not shown).  Therefore, more sensitive 

tests may be required to quantitate IAA or IAA may not be the density-dependent T3SS 

repressing signal.  Future biochemical and genetic studies will be required to determine if 

IAA or a related molecule functions as a quorum sensing molecule in P. syringae cultures 

at high cell densities.   

In addition to synthesizing IAA, P. syringae is exposed to plant-produced auxins 

during colonization of its hosts.   Curiously, infection of A. thaliana with Pst DC3000 

causes an increase in free IAA levels in plants, although it is not clear whether the auxin 

is derived from the plant or bacteria (Schmeltz, 2003).  It remains to be determined 

whether Pst DC3000 encounters high enough levels of plant or bacterial derived IAA for 

the auxin to be a biologically relevant T3SS repressor during infection.   HDM does not 

contain tryptophan and Pst DC3000 reportedly produces relatively low levels of IAA 

unless the culture media is supplemented with tryptophan (Glickmann et al., 1998, Fett et 

al., 1987) (Kunkel personal communication).  It will be interesting to see if IAA also 

inhibits T3SS gene expression in other pathovars, such as P. syringae pv. syringae, which 

synthesizes high levels of IAA with or without tryptophan supplementation (Glickmann 

et al., 1998, Fett et al., 1987).     
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It is also possible that IAA is converted to another molecule that is involved in 

repression of T3SS genes.  Indole and derivatives of indole have been implicated in 

quorum sensing in several bacteria (Ryan & Dow, 2008).  For example, besides AHLs 

and DSF, R. solanacearum, may utilize (3S)-3-hydroxy-indolin-2-one as a quorum 

sensing molecule (Delaspre et al., 2007).  This indole is unusual in that it appears to 

interact with a LuxR homolog, which normally only responds to AHLs (Delaspre et al., 

2007).  PQS is another indole derivative that functions as a signaling molecule in P. 

aeruginosa (Mole et al., 2007).  However, as mentioned above, P. syringae appears to 

lack the enzymes that synthesize this molecule.  Finally, the IaaL enzyme may convert 

IAA into IAA-lysine in Pst DC3000, which could repress T3SS genes.  Alternatively, 

conjugating lysine to IAA might inactivate the ability of IAA to repress T3SS genes.  In 

support of this theory, mutations of iaaL in P. savastanoi increase IAA accumulation in 

culture and decrease virulence in planta (Glass & Kosuge, 1988).  Further studies are 

needed to ascertain whether IaaL inactivates auxin or affects virulence in Pst DC3000.  

Interestingly, HrpL activates iaaL expression, suggesting that production of IAA-lysine 

may be important under T3SS-inducing conditions. 

Although my experiments were performed on bacterial cultures, cell-density 

dependent regulation of T3SS gene expression in Pst DC3000 may also be important for 

efficient infection of plants.  Considering that the primary function of P. syringae type III 

secreted effectors is to disarm plant defense responses, the T3SS would be essential for 

survival of the first bacteria entering the apoplast, which would be at low population 

densities.  My data suggest a model in which a quorum sensing signaling molecule would 

enable P. syringae to transition from early stage to late stage virulence factors.  T3SS 
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genes may be repressed in biofilms on the leaf surface due to a variety of environmental 

cues, including an extracellular density dependent signaling molecule (Figure 22).  Upon 

entry into the apoplast, P. syringae would initially be at low cell densities.  Therefore, 

repression of T3SS genes would be relieved, allowing the secretion system to be 

employed to translocate effectors and disarm plant defenses.  Once the bacteria overcome 

barriers to multiplication in the apoplast, the density dependent singal could again 

accumulate and down-regulate T3SS genes, allowing P. syringae to conserve energy.  

The signal involved may reduce T3SS expression by modulating the levels or activity of 

HrpV, a known repressor of HrpS activity (Ortiz-Martin et al., 2010, Preston et al., 1998).  

Alternatively (or additionally), the repressing signal might increase Lon-mediated 

degradation of HrpR.  However, it remains to be seen exactly how quorum sensing might 

be involved in density dependent regulation of P. syringae T3SS genes during infection. 
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Figure 22.  Model for cell-density dependent regulation of P. syringae T3SS gene expression. 

(I.) T3SS genes are repressed by high cell density conditions, such as encountered in biofilms on 

the leaf surface.  (II.)  The repressive signaling molecule diffuses away from the first bacteria 

entering into the plant apoplast, and repression of the hrpRS-hrpL regulatory cascade is relieved.  

HrpL then activates production of the T3SS injectisome and type III secreted effectors.  (III.)  P. 

syringae utilizes the T3SS to disarm plant defense reponses, allowing the bacteria to multiply.  

(IV.) Multiplication of P. syringae within the apoplast leads to high-cell density conditions and 

T3SS genes are once again repressed.  
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