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Abstract: 

Predation can have large but variable impacts on prey species diversity.  Although the 

effects of predation are often deterministic, stochastic processes can often influence the 

outcome on community assembly regardless of predator presence.  Top predators can alter 

several properties of the community, including the abundance and richness of species, as well 

as the traits of species that can persist with predators.  These properties, in turn, may 

influence the pattern of community assembly and the predictability of community structure 

from site to site.  In this study, we investigated whether the presence of fish predators 

influenced the site-to-site predictability (similarity in community structure) of invertebrate 

and amphibian communities in small ponds.  First, we surveyed a series of ponds in natural 

areas that varied in their presence of fish predators and examined local and regional species 

richness, as well as site-to-site variation in community similarity (i.e., β-diversity).  Second, 

we established a mesocosm experiment in which we introduced fish to one-half of the arrays, 

and compared their community similarity.  In both cases, the presence of fish reduced both 

local and regional species richness, but importantly, they also caused communities to become 

more similar in community composition.  Thus, fish made communities more predictable 

from site to site. We conclude that the presence of top predators can alter the relative 

importance of stochastic versus deterministic processes in the assembly of communities.    

 

Key Words: Community assembly, predation, beta-diversity, local richness, regional 

richness, fish, Green sunfish, Lepomis cyanellus   
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Introduction: 

 Understanding the factors that shape the composition of a community in a given 

locality is central to the field of ecology (Gleason 1927; Clements 1938; Belyea and 

Lancaster 1999; Weiher and Keddy 1999).  These processes include species responses to the 

abiotic environment, such as nutrient availability (reviewed in Waide et al. 1999) and 

disturbance (reviewed by Sousa 1984, Jackson and Fureder 2006), species responses to 

spatial factors, such as habitat isolation (reviewed in Leibold et al. 2004), and species 

responses to biotic interspecific interactions, such as competition and predation (reviewed in 

Chase et al. 2002).  Thus, the numbers of species, or biodiversity, that can occur in a given 

locality is influenced by these same abiotic (productivity [reviewed by Mittelbach et al. 

2001]; disturbance reviewed by [Mackay and Currie 2001]), spatial (reviewed by Cadotte 

2006), and biotic factors (reviewed by Proulx and Mazumder 1998, Chase et al. 2002). 

All of the above-mentioned processes that influence the composition and diversity of 

species in a community are deterministic, suggesting that, given a set of environmental, 

spatial, and/or biotic factors in a given locality, the structure of the community in that locality 

should be quite predictable.  However, reasons often exist to expect that various random 

(stochastic) factors can also influence the composition of species that can occur in any given 

locality.  Such random factors could be legacies of different histories of localities, creating 

multiple stable states of community composition (Samuels and Drake 1997; Chase 2003a), or 

at the extreme, completely neutral processes of species colonization and extinction from a 

given locality (Hubbell 2001, Chave and Leigh 2002).  When these random factors are 

particularly strong, localities that are otherwise similar environmentally can differ 

considerably in their species composition (Sutherland 1974, Gilpin et al. 1986, Drake et al. 

1993, Jenkins and Biukema 1998, Chase 2003a).  Hence, examining the predictability of the 

composition of local communities that are otherwise similar in environment can give 
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considerable insight into relative importance of random versus deterministic mechanisms in 

determining community assembly (Samuels and Drake 1997, Chase 2003a).  Furthermore, 

because community assembly can lead to either similar or divergent communities from site to 

site, understanding the processes of community assembly can lead to important insights 

regarding the scaling of diversity from local (α-diversity) to regional (γ-diversity) scales 

through site to site variation in community composition (β-diversity) (Chase and Leibold 

2002, Forbes and Chase 2002, Chase 2003a, Chase and Ryberg 2004). 

Chase (2003a) recently synthesized a series of predictions regarding the 

environmental and spatial conditions in which historical effects, leading to divergent 

community structure, should be more prevalent, and when more deterministic effects, leading 

to convergent community structure should be more prevalent: (1) harsher environmental 

filters, such as high disturbance or low productivity, should reduce the importance of random 

processes, and lead to more convergent community structure (lower β-diversity with similar 

environmental conditions) by differentially filtering species that are unable to persist in those 

harsh conditions; (2) faster dispersal rates and larger habitat sizes should override the 

importance of random processes in determining community structure.  However, the 

influence of biotic factors, such as predation, on the patterns of community assembly, has 

heretofore not been included in this synthesis.   

Top predators often vary in the landscape due to deterministic factors such as habitat 

suitability (e.g., prey availability) and dispersal limitation.  Furthermore, these predators can 

alter prey species� abundance and distribution in a given habitat, and reshape community 

composition and diversity (e.g., Brooks and Dodson 1965; Paine 1966; Shapiro 1979; 

Leibold et al. 1997; McPeek 1998; Chase et al. 2002).  As a result, the presence or absence of 

top predators might also have a large influence on the assembly of their prey communities. 
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Top predators can alter several properties of the community that can in turn influence 

the pattern of assembly, and hence, the relative predictability of community structure from 

site to site.  Two mechanisms can lead to predators creating more unpredictable communities, 

and two can lead to predators creating more predictable community structure (Table 1).  First, 

top predators can reduce the number of individuals that can persist in a given locality.  When 

community size is thus decreased, the probability of priority effects influencing final 

community structure, and thus producing more divergent communities, increases (Orrock and 

Fletcher 2005).  Second, top predators can reduce the diversity of species that can live in a 

given habitat relative to the total number of species that persist in the regional species pool.  

When many more species present in the species pool than can live in any given locality, 

simple probabilistic priority effects will lead to more divergent community structure when 

predators are present (Law and Morton 1993, 1996; Fukami 2004).  Third, if predators 

differentially influence some species from the regional species pool more than others 

(Wellborn et al. 1996, Leibold et al. 1997), they can limit the �realized� number of species 

that can persist in a given locality, creating a deterministic filter leading to more convergent 

community structure with predators.  Fourth, if prey trade-off in their ability to resist 

predation and their ability to compete with one another (Leibold 1996, McPeek 1998), 

species that can persist in the presence of predators are expected to be weaker interspecific 

competitors.  As a result, their ability to create priority effects leading to multiple stable 

states should be weakened (Chase 2003a), and lead to more convergent community structure 

with predators.   

Based on the above arguments, depending on a variety of mechanisms, predators can 

either increase or decrease the likelihood that random processes�Hubbell�s (2001) concept 

of �ecological drift��will create variation in community structure among habitats that are 

otherwise environmentally similar.  To date, only circumstantial evidence is available 
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allowing the evaluation of the effects of predators on patterns of prey community assembly 

and the consequent predictability of community structure.  In a comparative study taking 

advantage of the creation of a large reservoir, isolating once connected hilltops into islands, 

Terborgh et al. (2001, 2006) found that large predators (e.g., large cats) went extinct from 

these islands, allowing herbivore density to increase and decimate plants.  At the same time, 

herbivore communities appeared to vary more among predator-free islands, likely due to 

differentially stochastic extinctions of species from different islands.  Thus, predator loss may 

possibly have decreased the predictability of these herbivore communities.  Similarly, Glenn 

et al. (1992) found that grazing cattle increased the similarity among local plots of tallgrass 

prairies relative to when grazers were excluded. 

In this study, we explored the effects of top predatory fish on community assembly 

and site-to-site predictability in community structure among a diverse array of aquatic 

invertebrates and amphibians in small pond ecosystems.  The distribution of fish across 

landscapes is often deterministic because fish cannot persist in ponds that periodically dry or 

are highly anoxic.  However, fish are also limited to where they can and cannot disperse, so 

they are not present in many ponds and lakes that could support them (Magnuson et al. 1998; 

Knapp et al. 2001; Scheffer et al. 2006).  Fish often have dramatic, but variable impacts on 

the structure of freshwater fauna (Brooks and Dodson 1965; Hall et al. 1970; Eriksson 1979; 

Zaret 1980; Crowder and Cooper 1982; Wellborn et al. 1996; McPeek 1998).  The presence 

of fish often reduce the richness of many groups of pond dwelling invertebrates and 

amphibians (Sexton and Phillips 1986, Hansen and Riggs 1995, Hecnar and McLoskey 

1997), although in some instances, fish can increase local species richness by differentially 

reducing the dominant competitor (Werner et al. 1983, Gilinsky 1984, Sih 1985, Shurin 

2001).  More importantly, fish often a strongly selective filter on which species can and 

cannot coexist with them (Wellborn et al. 1996).  Finally, many species of a variety of taxa 
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that are able to persist with fish are inferior competitors when compared to closely related 

species that persist without fish (Werner and McPeek 1994, McPeek 1998, Tessier and 

Woodruff 2002, Wellborn 2002, Stoks and McPeek 2003, Johansson et al. 2006).   

Small ponds and experimental microcosms and mesocosms have been used to show 

large compositional site to site variation in a variety of taxa, much of which can be attributed 

to historical or random factors leading to multiple community states (Robinson and 

Dickerson 1987; Robinson and Edgemon 1988; Drake 1991; Drake et al. 1993; Weiher and 

Keddy 1995; Jenkins and Buikema 1998; Shurin 2001; Chase and Leibold 2002; Chase 

2003a,b,c; Chase and Ryberg 2004).  Further, the importance of these historical effects 

leading to variable community structure in otherwise similar habitats varies with pond 

productivity (Chase and Leibold 2002, Chase 2003a,b,c), permanence (Chase 2003a), and 

habitat isolation (Chase 2003a, Chase and Ryberg 2004).  To date, these studies have only 

considered ponds deliberately chosen to be fish-free. 

Thus, whether top-predatory fish would increase or decrease the similarity (β-

diversity) among ponds relative to fish-free ponds remains unclear.  If the selective effects of 

fish on the realized pool of species that can persist in those ponds and/or the selection of prey 

species that are poorer competitors dominate the assembly process, then we would expect 

that the presence of predatory fish would increase the similarity among ponds (decrease β-

diversity) (Table 1).  Alternatively, if the effect of fish on the reduction of local diversity 

and/or overall community size dominates the assembly process, then we would expect that 

the presence of predatory fish would decrease the similarity among ponds (increase β-

diversity) (Table 1). 

We used a two-pronged approach to test among these hypotheses.  First, we surveyed 

the composition of amphibians and invertebrates in ponds that were otherwise similar in 
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spatial and environmental conditions, but varied in whether top predatory fish were present or 

absent.  Second, in order to provide more control for environmental factors that might vary 

among natural ponds, we established a series of mesocosm arrays at Washington University�s 

Tyson Research Center, where we varied the presence of fish and measured the community 

structure and similarity among mesocosms within arrays.    

 

Methods: 

 

Pond Surveys: 

Pond surveys were performed in 4 natural areas (see Map 1) located near St. Louis, 

MO (USA): the Tyson Research Center, a ~800 ha biological field station run by Washington 

University in St. Louis; the Shaw Nature Reserve, a ~1100 ha reserve run by the Missouri 

Botanical Garden; and two areas operated by the Missouri Department of Conservation, 

Reifsneider State Forest (~500 ha) and Busch Conservation Area (~2800 ha).  Although 

natural ponds are rare in this region, each natural area had 10-90 ponds created as borrow 

pits, livestock and wildlife watering ponds, wetland mitigation ponds, and/or small fishing, 

recreation ponds (Smith et al. 2002) (Table 2).  Natural areas were dominated by terrestrial 

habitats typical of the region, including Oak-Hickory forest, prairie, and old-fields.   

We considered a pond to be fishless if no fish were found after seining 10-20% of a 

pond�s surface area with a mesh seine.  For fish ponds, we included only ponds that had one 

or more species of Centrarchidae sunfishes (Lepomis cyanellus, Lepomis macrochirus, and 

Micropterus salmoides), though many had several other species as well; ponds that had only 

smaller fish (e.g., Cyprinidae, Poeciliidae) were not sampled.  At each site, we chose 6 

ponds�three with fish and three fishless�to sample invertebrates and amphibians.  To 

ensure that any community compositional differences were most likely to be due to fish, and 
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not other covarying factors, we specifically chose ponds so that there were no systematic 

differences (paired t-tests among sites; all P>0.3) in several important factors, including area, 

average depth, canopy coverage, and water chemistry (Table 2). 

Each pond was sampled twice, once early in the growing season (May 15-June 5), 

and once later (August 15-Sept 3), in order to capture much of the natural phenology of 

species presence in the ponds (e.g., both early and late breeding amphibians and Odonates, 

zooplankton with seasonal succession).  A species was marked as present in a pond if it was 

found in either of the sampling periods.   

Macroinvertebrates and amphibians were sampled in two ways.  First, using methods 

similar to a box sampler (Macan 1958, O�Connor et al. 2004) and chimney sampler (James 

and Nicholls 1961, O�Connor et al. 2004), we used a 75 cm-diameter by 73 cm tall plastic 

cylinder deployed by pushing the bottom in the substrate.  After placing the sampler, we 

pulled a 0.33 mm mesh hand net through the area within the sampler to collect all 

encountered specimens (except for those large amphibians which could be readily identified 

to species, which were released after being counted).  We continued sampling until no new 

individuals were encountered in five sweeps.  We preserved all collected individuals in 70% 

ETOH which were then taken back to the laboratory for identification and enumeration (see 

below).  We repeated this procedure three times in each pond.  Second, to sample rare species 

and those that are not readily collected using the above methods (e.g., those which are fast 

swimmers), we used a second technique wherein we pulled a 5-mm mesh D-net with a 1.5 m 

handle through the water for 3-5 m at a time.  We collected and preserved any individual 

from a species that was not encountered in the previous sampling and/or when identification 

was difficult to do in the field (e.g., some Dytiscidae, Coenagrionidae, Libellulidae).  We 

repeated this procedure 20 times, and spread samples vertically and horizontally through the 

pond. 
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In the laboratory, with a few notable exceptions, we identified individuals to species 

(or in rare cases to taxonomic unit) using a variety of keys (for insects, Merritt and Cummins 

eds. 1996; for zooplankton, Balcer et al. 1989, Pennak 1989; for snails Wu et al. 1997; for 

invertebrates Thorp and Covich eds. 2001) or in some cases, comparisons to a library of 

collected specimens identified to species by taxonomic experts (Table 3).  Exceptions to this 

specific identification, where possible groups of very similar species were lumped into a 

single category due to the difficulty in distinguishing them, included: (1) members of the 

Rana pipiens species complex (Rana sphenocephala and Rana blairi in these sites) (Anura: 

Ranidae), (2) members of the Hyla versicolor/chrysocelis species complex (Anura: Hylidae), 

(3) members of the Anopheles quadrimaculatus species complex (Diptera: Culicidae), (4) 

members of the Hyalella azteca species complex (Amphipoda: Hyalellidae), (5) members of 

the Chironomidae (Diptera), which we identified only to subfamily, and (6) members of the 

Ostracoda, which we identified only to family.  Despite our efforts, particularly cryptic 

species of some difficult to distinguish taxa (particularly some genera of Coleoptera, 

Odonata, and Diptera) may have been lumped together.  Nevertheless, such minimal lumping 

should not alter our qualitative results comparing the community structure and predictability 

of fish versus fishless ponds, unless those difficult to distinguish species were more likely to 

be associated with one pond type over the other, which is unlikely. 

Zooplankton were sampled by pulling a 10 cm diameter 80 µm zooplankton net 

through the water column for ~ 5 m (e.g. Harris et al. 2000).  This was repeated 5 times at 

haphazardly varying locations and water depths throughout each pond.  Samples were 

concentrated to 50 ml, preserved in Acid Lugols solution, and brought back to the laboratory 

for identification and enumeration under a dissecting microscope.  Cladocerans and copepods 

were identified to species and rotifers were identified to species in most cases, but sometimes 
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to operational taxonomic units within genera (using Stemberger 1979, Balcer et al. 1984, 

Smith 2001).  Protists and other single-celled organisms were not examined because of the 

difficulty to morphologically distinguish between species. 

 

Experimental Mesocosms: 

Even though we attempted to maintain everything equal other than fish presence in 

our surveys, fish presence may have been non-random with respect to ponds.  As a result, to 

examine experimentally the effects of fish presence on patterns of community assembly, as 

part of a larger project (J. M. Chase, unpublished), we established 24 experimental 

mesocosms at Washington University�s Tyson Research Center (see Map 2).  Despite their 

similarity in environmental conditions, slight variations in initial conditions, even if 

unintended, could lead to large and long-term variation in species composition in these 

mesocosms (e.g., Forbes and Chase 2002, Chase 2003b, J. M. Chase unpublished). 

In May 2005, we established ~1000 L experimental mesocosms (cattle tanks; see 

Picture 1) in arrays of three (actually 4, but one was included in a different experiment) 

spread across the 800 ha facility.  Sites for mesocosm arrays were selected to be similar in 

forest canopy opening (10-20% canopy), and were situated in open forest gaps and old-field 

edges and each was a minimum of 200 m from other experimental units or existing ponds.  

Each mesocosm was initiated with 2 cm of topsoil and nutrient-poor well water (from the 

same well).  After the water and topsoil were allowed to settle, the nutrient levels were tested 

in all mesocosms to find they were intermediate relative to surrounding pond habitats (25±4 

µg/L P: 625±43 µg/L N).  For this experiment, we had 8 arrays of three mesocosms; four 

arrays were randomly assigned to examine community composition without fish, and four to 

examine composition with fish. 
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Because submerged plants, many algae, zooplankton, and some invertebrates (snails 

and amphipods) cannot readily colonize these habitats in a reasonable amount of time, we 

inoculated those species at the initiation of the experiment using a standardized protocol.  

Several species of macrophytes and macroalgae were collected from nearby ponds, sorted to 

species, and inoculated into each pond in a standardized amount.  Microorganisms and 

zooplankton (more than 40 species) were inoculated by collecting water concentrated with an 

80 µm zooplankton net from 10 nearby ponds that were known to vary considerably in their 

species composition; 100 ml aliquots of homogenized water were introduced to each 

mesocosm.  Snails (5 species) and amphipods (1 species) were collected from nearby ponds, 

and 10-15 individuals of each species were introduced to each mesocosm.  In addition, a 

majority of the species that occur in ponds in the area are highly effective colonizers, and 

readily establish in newly created mesocosms, albeit in a somewhat stochastic manner.  In 

this experiment, more than 40 taxa colonized independently, including Coleoptera 

(Dytiscidae, Haliplidae, Hydrophilidae, Noteridae), Diptera (Culicidae, Chironomidae, 

Chaoboridae, Tipulidae), Ephemeroptera (Baetidae), Hemiptera (Corixidae, Notonectidae, 

Pleidae), Odonata (Aeshnidae, Libellulidae, Coenagrionidae, Lestidae), and amphibians 

(Anura: Hylidae).   

  In the early spring (April) of the second year of the experiment, after most species 

had ample opportunity to establish within, and go extinct from, mesocosm arrays, we 

introduced predatory green sunfish (Lepomis cyanellus) (see Picture 2) to each of the (3) 

mesocosms in one-half (4) of the experimental arrays.  This allowed us to examine whether 

fish presence in an array would alter the similarity among each mesocosm relative to the 

fishless mesocosms.  L. cyanellus is one of the most widespread and abundant fish species in 

Missouri (Perry 1989) and throughout the Midwest (Werner et al. 1977) because of their 
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wide habitat tolerances, and their broad diet that includes zooplankton, macroinvertebrates, 

and amphibians (Werner and Hall 1976, 1977; Werner 1977).  Additionally, L. cyanellus is a 

relatively small fish (10-20 cm), which makes it an ideal species to use in these mesocosms.  

For each mesocosm identified to receive fish, we introduced three medium-sized (30-40 mm) 

individuals, representing an approximately average density of this species (mean=0.36/m2) in 

nearby ponds where this species exists in monoculture (J. M. Chase unpublished).  Fish used 

in this experiment were collected from a single pond with a very dense population at Tyson 

Research Center, and were monitored monthly to ensure individuals were still present.  No 

individuals died over the course of the experiment, and although not intended, many of these 

fish reproduced, so that ending fish density included many juveniles and was somewhat 

variable among mesocosms.   

We sampled mesocosms during July 2006, in order to capture the majority of species 

(early and late breeding species) present in the pond.  We sampled only once because of the 

potential destructiveness of our methods, and the time intensiveness of the sampling, 

identification, and enumeration.  Benthic macroinvertebrates and amphibians were sampled 

in three ways to ensure that we were able to capture a majority of the species in the 

mesocosm.  First, we used a 0.2m2 x 1 m tall cylinder sampler similar to that used in the pond 

surveys above.  We deployed the sampler in three haphazard locations in each mesocosm and 

collected, preserved, and identified organisms as above (Table 3).  Second, because these 

mesocosms have steep sides, many organisms preferentially use the sides, and are less likely 

to be captured in the above methodology.  Thus, we used a 25 cm wide 0.33 mm mesh 

rectangular net; the net was pressed firmly against the side of the tank at the bottom, and 

rapidly pulled up towards the surface, effectively catching most of the individual organisms 

on the sides.  This was repeated 4 times in each mesocosm, equally spaced around the 

circumference.  Individuals were collected, preserved, and identified as above.  Finally, to 
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discover any rare species and/or fast swimming species that might have eluded our 

quantitative surveys, we pulled a 1 mm mesh D-net 5 times through the water column in 

opposite directions at varying locations and depths, and collected and preserved any taxa not 

encountered using the other two methods.    

Zooplankton were sampled using a modified integrated tube sampler (5-cm diameter 

PVC pipe x 1 m tall) (Leibold and Wilbur 1992, Paggi et al. 2001, Shurin 2001, Forbes and 

Chase 2002).  The entire water column was sampled at five haphazard locations within each 

mesocosm to sample a total of 15 L, which were combined in a large bucket and concentrated 

to ~50 ml with an 80µm mesh zooplankton net.  Samples were preserved in Acid Lugols 

solution and later identified and counted under a dissecting microscope as above.   

 

Statistical Analyses:   

For the pond survey data, we used paired t-tests to compare fish and fishless ponds 

paired within sites.  We compared average local richness as the mean of the 3 ponds from 

fish and fishless ponds, and regional richness as the total richness observed in all 3 fish or 

fishless ponds.  We further calculated the species compositional similarity among the three 

ponds with fish and the three fishless ponds for each site using EstimateS software (Colwell 

2005).  Although we calculated several incidence-based (Jaccard�s, Sorenson�s) and 

abundance-based (e.g., Bray-Curtis) similarity metrics, we discuss only the results from the 

Jaccard�s incidence-based metric here.  This is because all of the incidence and abundance-

based metrics showed qualitatively similar results, and Jaccard�s index is one of the most 

frequently used similarity metrics in ecological studies.  We arcsine square-root transformed 

Jaccard�s similarity values to meet the assumptions of normality, and with a paired t-test 

compared fish and fishless ponds by pairing pond types within sites. 
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For the mesocosm data, we calculated local richness within each array as the average 

number of species from the 3 mesocosms in an array, regional richness as the total number of 

species in all 3 mesocosms, and Jaccard�s similarity among the 3 mesocosms.  We compared 

the average local, regional, and Jaccard�s similarity (after arcsine-square root 

transformations) among mesocosm arrays with and without fish using two-sample t-tests.    

To further understand the distribution of species between the fish and fishless ponds 

and mesocosms, we examined the proportion of the total number of pond/mesocosms with 

and without fish that were occupied by each species.  This method allowed us to determine 

whether species occurring in one of the pond/mesocosm types were more (occurring in a 

higher proportion of the total ponds) or less (occurring in a lower proportion) predictable than 

in the other pond/mesocosm type.  We then performed a one-sided paired t-test (after arcsine-

square root transformations) to determine whether any differences seen were significant 

between fish and fishless for both the ponds and mesocosms.   

 

Results: 

 

Pond Survey: 

The presence of fish significantly reduced both local and regional richness, while 

increasing the similarity among those ponds in their community structure.  Local richness 

with fish (27-31 species) was ~70% that of local richness without fish (36-47 species) (paired 

t-test: df = 3; t = 4.315, P < 0.023) (Figure 1a).  Regional richness (the total number of 

species found in all 3 ponds at each site) with fish (34-41 species) was ~45% that of regional 

richness without fish (68-94 species) (df = 3; t = 8.464, P < 0.003) (Figure 1b).  The 

Jaccard�s indices of similarity among ponds were considerably lower in fishless ponds (0.23 -

0.29) than in fish ponds (0.55 to 0.65) (df = 3; t = 26.765, P < 0.0001) (Fig. 1c).  Overall, 45 
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species occurred only in fishless ponds, while 7 species occurred only in fish ponds; the 

remaining species were observed in both pond types.   

The proportion of the total number of pond/mesocosms that were occupied by each 

species was significantly different between fish and fishless ponds.  Proportionally, a higher 

amount of species occur at a lower amount of fishless ponds, while a higher amount of 

species occur at a higher number of fish ponds (df = 124, t = 4.043, P < 0.0001) (figure 3 a).   

 

Mesocosm Experiment:   

The results of the mesocosm experiment mirrored the results for the survey data.  The 

presence of L. cyanellus significantly reduced the local and regional richness, while 

increasing the similarity of those tanks in community structure. The local richness of the fish 

treatments (10 to 15 species) was ~60% that of local richness of the no fish treatments (17-26 

species), (df = 6; t = 3.939; P < 0.013) (figure 2a).  Regional richness of the fish mesocosms 

(16-22 species) was ~50% that of fishless mesocosms (28-46 species)(df = 6; t = 4.589; P < 

0.012) (figure 2b).  When comparing the similarity of the two different treatments, with and 

without fish, we found that treatments with fish had a significantly higher Jaccard�s index 

(0.401 to 0.583) than the treatments without fish, (0.248 to 0.38) (df = 6, t = 3.644 P < 0.011) 

(figure 2c).  Here, 33 species were observed only in fishless mesocosms, whereas 4 species 

occurred only in fish mesocosms; the remaining occurred in both type of treatments of 

mesocosms.   

 The proportion of the total number of pond/mesocosms that were occupied by each 

species was significantly different between fish and fishless mesocosms.  Species in fish 

treatments were more likely to occur at a higher number of mesocosms, while species in 

fishless treatments were more likely to occur at a lower number of mesocosms (df = 65, t = 

7.760, P < 0.0001)(figure 3b).    
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Discussion: 

 

Comparisons of the faunal assemblages between fish ponds and fishless ponds, as 

well as in the experimental mesocosms, reveal dramatic differences in the structure of the 

invertebrate and amphibian community.  Specifically, we found that both local (α) and 

regional (γ) species richness declined with fish, but that site-to-site similarity increased with 

fish (lower β-diversity)(Fig. 1 and 2).  The fact that fish reduced local diversity is not 

necessarily surprising, and the same result has been found in several studies (Hanson and 

Riggs 1995, Batzer et al. 2000; but see Sih 1985, Shurin 2001).  However, fish are sometimes 

thought to be able to increase regional diversity by allowing niche opportunities for species 

that are less susceptible to predation (but often weaker competitors) to coexist regionally 

(McPeek 1998, Shurin and Allen 2001, others).   

The perspective that predators can enhance regional diversity by allowing different 

species to coexist in each habitat (Shurin and Allen 2001) does not, however, take into 

account: (1) the fact that communities are often highly divergent from site to site, leading to 

high β-diversity, as a result of stochastic factors, and (2) predators may alter this site-to-site 

predictability through one or more mechanisms (Table 1).  Indeed, we found that sites with 

fish predators were considerably more similar to one another in community composition than 

sites without fish predators (Fig. 1c and 2c).  Fish had a larger effect on regional species 

diversity, by making species composition from site to site more similar, than on local species 

diversity. 

Our results show that fish predators increased the community compositional 

similarity among habitats that were similar (in the surveys) or close to identical (in the 



Biro, Elizabeth, 2007, UMSL, p. 21 

mesocosms).  This suggests that predators altered the assembly process, taking communities 

that were assembled more stochastically, and making them more deterministic.  Indeed, in the 

experimental mesocosms, although individuals of many species were introduced into every 

mesocosm in an identical manner, small variations in survivorship and population growth 

likely led to large variations in community structure.  This combined with the stochastic 

colonization of other species in the regional species pool led to considerable variation among 

communities in fishless mesocosms.  However, the addition of fish to one-half of the 

mesocosm arrays in the second year of the experiment created a precipitous increase in the 

similarity of the communities.   

Overall, our results suggest that fish imposed a deterministic filter onto these 

communities and erased the importance of the stochastic assembly process, making them 

more predictable.  In that context, Jaccard�s index, as a unit of similarity, is somewhat 

confounded because it varies with species richness (Rice and Belland 1982; Real and Vargas 

1996).  As local species richness declines (but the regional pool remains the same), the null 

expectation would be that communities would become on average more different from one 

another.  This is because when fewer species are present in a locality with the same regional 

pool, by random probability alone, those communities are likely to share fewer species than 

when more species are present in the locality (J. M. Chase et al. unpublished).  Since the 

presence of fish reduced the local richness of ponds and mesocosms, the null expectation 

would be that the presence of fish should cause communities to become more different from 

one another.  But because fish increased community similarity, this result was not due to 

random chance alone, and instead, fish created more predictable communities.     

 The four hypotheses by which predators might alter patterns of community 

predictability (Table 1) predict opposing patterns.    The first two hypotheses (1 and 2) 

predict that top predators will cause communities to diverge, thus making them less 
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predictable.  The other two hypotheses (3 and 4) make the prediction that predators will cause 

communities to converge and be more predictable.  Since our results found that top predators 

cause the community composition to converge, we can immediately conclude that even if the 

mechanisms inherent to hypothesis 1 and 2 are occurring, they are overridden by the 

mechanisms in hypotheses 3 and 4.  This does not mean that the mechanisms are not 

occurring, as both stochastic and deterministic processes can occur simultaneously.  For 

example, predators in our study did reduce overall prey biomass (unpublished data), and this 

result has been found often (Hall et al. 1970, Eriksson 1979, Zaret 1980, Crowder and 

Cooper 1982, Morin 1984; Townsend 1996, Batzer et al. 2000).  Such reductions could 

increase the likelihood of stochastic processes by reducing the community size (Orrock and 

Fletcher 2005), even though these processes seem to be overridden by factors that increase 

the likelihood of deterministic processes (e.g., reductions in the realized species pool).    

Both hypotheses 3 and 4 predict that predators should increase the predictability of 

community structure, however, we cannot necessarily discern the relative importance of these 

hypotheses, even though both are likely occurring simultaneously.  Hypothesis 3 (Table 1) 

states that if predators differentially influence some species from the regional species pool 

relative to others (Wellborn et al. 1996, Leibold et al. 1997), they can restrain the �realized� 

number of species that can persist in a given locality. We found this in our study, whereby 

fish lowered the realized pool of species that could persist in fish ponds, which likely created 

a deterministic filter leading to more convergent community structure.  Hypothesis 4 (Table 

1) states that prey trade-off in their ability to resist predation and their ability to compete with 

one another (Leibold 1996, McPeek 1998), such that species that can persist in the presence 

of predators are expected to be weaker interspecific competitors.  As a result, their ability to 

create priority effects leading to multiple stable states should be weakened (Chase 2003a), 

and lead to more convergent community structure with predators.  Although, we could not 
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test this hypothesis directly, this trade-off does indeed seem to be important in our system 

(Werner and McPeek 1994, Leibold 1996, McPeek 1998, Tessier and Woodruff 2002, 

Wellborn 2002, Chase 2003b, Stoks and McPeek 2003, Johansson et al. 2006).    

Predation can have significant consequences on the local, regional and β-diversity of 

communities.  In this study, we find that an increase in predictability among pond 

communities with predatory fish, suggesting more deterministic community assembly, 

whereas in the absence of fish, communities are less predictable and thus assembled more 

stochastically.  Several mechanisms may contribute to the observed pattern, and we suggest 

that future research should focus on testing these mechanisms directly.  Investigating how 

communities assemble in the presence of certain conditions (i.e. predation, productivity, 

disturbance, and spatial isolation) is central not only to community ecology but also 

restoration ecology (Keddy 1999).  Understanding the patterns and mechanisms that naturally 

shape the composition of a community will help to focus restoration efforts to maximize 

species diversity at different spatial scales.   
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Table 3.  List of species found in fish and fishless ponds for the survey and mesocosm 
experiment. 
 
Survey Species Present:   
    
Order Species Fish Pond Fishless Pond 
Caudata Notophthalmus viridescens Y Y 
 Ambystoma maculatum Y Y 
 Ambystoma annulatum Y Y 
Salientia Pseudacris crucifer Y Y 
 Pseudacris triseriata Y Y 
 Acris crepitans Y Y 
 Hyla versicolor Y Y 
 Rana clamitans Y Y 
 Rana catesbeiana Y Y 
 Rana sylvatica Y N 
 Rana sphenocephala Y Y 
 Bufo americanus Y Y 
Decapoda Cambarus Y Y 
 Orconectes virilis Y Y 
 Orconectes punctimanus Y Y 
 Orconectes immunis Y N 
Veneroida Sphaeriidae Y Y 
Euhirudinea Erpobdella Y Y 
 Plecobdella Y Y 
Isopod Isopod Y Y 
Amphipoda Hylalla Y Y 
 Gammarus Y Y 
Mesogastopoda Campanula N Y 
 Amnicola Y Y 
Lymnaeidae Physa gyrina Y Y 
 Gyralus parvus Y Y 
 Helisoma trivolvis Y Y 
 Helisoma aceps Y N 
 Pseudosuccinea columella Y Y 
 Lymnea elodes Y Y 
 Ferrisea Y Y 
 Lymnea stagnalis  Y Y 
Coleoptera Acilius fraternus Y Y 
 Acilius mediatus N Y 
 Agabus 1 N Y 
 Agabus 2 N Y 
 Hydroporus 1 N Y 
 Hydroporus 2 N Y 
 Hydroporus 3 Y Y 
 Hygrotus 1 N Y 
 Hytgrotus 2 N Y 
 Laccophilus maculosa N Y 
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 Laccophilus mediatus N Y 
 Peltodytes literalis Y Y 
 Berosus 1 Y Y 
 Berosus 2 Y N 
 Tropisternus lateralis N Y 
 Tropisternus blatchleyi Y Y 
 Dytiscus hybridus Y Y 
 Suphisellus bicolor punctipennis Y Y 
 Suphisellus puncticollis N Y 
 Hydrocanthus iricolor N Y 
 Hydrobiomorpha Y Y 
 Hydropchara N Y 
 Hydrophilius Y Y 
 Paracymus confluens N Y 
 Lioproeus N Y 
 Thermonectus basillaris N Y 
 Uvarus lacustris N Y 
 Hydrovatus pustulatus N Y 
 Copleatus glyphicus Y Y 
 Dyticus hybridus Y Y 
 Heterosternulta pulcher N Y 
 Hydaticus N Y 
Diptera Chaoborus N Y 
 Mochlonyx N Y 
 Anopholes quadrimaculatus Y Y 
 Culex territans Y Y 
 Culiseta impatiens N Y 
 Anopheles punctulatus Y Y 
 Culex pipiens Y Y 
Ephemeroptera Callibaetis Y Y 
Hemiptera Belostoma flumineum Y Y 
 Buenoa N Y 
 Notnecta irrorata N Y 
 Notonecta undulata Y Y 
 Neoplea plea N Y 
 Hesperocorixa N Y 
 Sigara Y Y 
 Pelocoris Y Y 
 Ranatra N Y 
 Lethocerus N Y 
Odonata Anax junius N Y 
 Aeshna N Y 
 Epiaeschna N Y 
 Epitheca  Y Y 
 Erythemis simplicicollis Y Y 
 Libellula cynaea Y Y 
 Libellula incesta Y Y 
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 Libellula pulchella Y Y 
 Pachydiplax longipennis Y Y 
 Pantala hymenea Y Y 
 Perithemis tenera  Y Y 
 Plathemis lydia Y Y 
 Sympetrum rubicundulum N Y 
 Sympetrum corraculatum N Y 
 Tramea lacerata Y Y 
 Lestes 1  Y Y 
 Lestes 2  Y Y 
 Ischnura N Y 
 Enallagma A N Y 
 Enallagma B Y N 
 Argia  Y Y 
 Eurycercus Y Y 
Cladocera Kurzia  N Y 
 Macrothrix Y Y 
 Moina  N Y 
 Pleuroxus N Y 
 Scapholeberis Y Y 
 Simocephalus N Y 
 Sida N Y 
 Ceriodaphnia quadrangula Y Y 
 Diaphansoma birgei Y Y 
 Chydorus Y N 
 Bosmina N Y 
 Daphnia pulex Y N 
 Daphnia ambigua Y Y 
 Daphnia rosea Y Y 
 Daphnia mendotae N Y 
 Mesocyclops edax Y Y 
 Diaptomus oregonensis Y Y 
 Tropocyclops parsinus Y Y 
Copepoda Diacyclops N Y 
 Diaptomus 2 N Y 
 Cyclopoid  Y Y 
Ostracoda Ostracod cypricercus Y Y 
 



Biro, Elizabeth, 2007, UMSL, p. 38 

 

Mesocosm Experiment Species Present:   
    
Order Species Fish Pond Fishless Pond 
Salientia Hyla versicolor N Y 
Amphipoda Hylalla Y Y 
Lymnaeidae Physa gyrina Y Y 
 Gyralus parvus Y Y 
 Helisoma trivolvis Y Y 
 Lymnea elodes N Y 
Coleoptera Acilius mediatus  N Y 
 Acilius fraternus N Y 
 Agabus Y Y 
 Berosus N Y 
 Peltodytes literalis Y Y 
 Tropisternus lateralis N Y 
 Laccophilus maculosa  N Y 
 Laccophilus mediatus  N Y 
Diptera Anopheles A  N Y 
 Anopholes quadrimaculatus N Y 
 Culex territans Y Y 
 Charborous A N Y 
 Charborous B Y N 
 Chironomid A Y Y 
 Chironomid B Y Y 
Ephemeroptera Callibaetis N Y 
Hemiptera Notonecta irrorata Y Y 
 Notonecta undulata N Y 
 Buenoa  N Y 
 Neoplea plea N Y 
 Sigara N Y 
Odonata Pantala hymenea N Y 
 Plathemis lydia N Y 
 Libellula puchella N Y 
 Libellula luctuosa  Y Y 
 Libellula A N Y 
 Libellula B  Y Y 
 Pachydiplax longipennis Y Y 
 Erythemis simplicicollis N Y 
 Archilestes grandis N Y 
 Ischnura N Y 
Rotifera Rotifer B N Y 
 Lecane A Y Y 
 Lecane B N Y 
 Trichocerca  N Y 
 Platyias patalus Y Y 
 Brachionus quadridentata Y N 
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 Brachionus angularis Y Y 
 Monostyla bulla Y Y 
 Habrotrocha  N Y 
 Tintinnid Y Y 
 Difflugia oblonga N Y 
 Difflugia  N Y 
 Difflugia elegans N Y 
Cladocera Ceriodaphnia quadrangula Y Y 
 Cladoceran A Y Y 
 Chydorus sphaericus Y Y 
 Diaphanosoma birgei N Y 
 Daphnia  Y Y 
 Bosmina longirostris Y Y 
 Macrothrix laticornis Y N 
 Diaphanosoma brachyurum N Y 
 Cladoceran B Y Y 
Copepoda Mesocyclops edax Y Y 
 Copepod A  Y Y 
 Diaptomus oregonensis Y Y 
 Tropocyclops Y N 
Ostracoda Ostracod cypricercus Y Y 
Hydrachnida Hydrovolziodea  Y Y 
Oligochaetes branchiodellida A Y Y 
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Figure 1.  (a) Local species richness (P < 0.023), (b) regional species richness (P < 0.003), 
and (c) similarity (Jaccard�s index) (P < 0.0001) of fish and fishless ponds for survey data.  
Asterisk indicates values are significantly different. 
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Figure 2.  (a) Local species richness (P < 0.013), (b) regional species richness (P < 0.012), 
and (c) similarity (Jaccard�s index) (P < 0.011) of fish and fishless ponds for mesocosm 
experiment data.  Asterisk indicates values are significantly different.  
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Picture 1. Array of mesocosms at Tyson Research Center. 

 

Picture 2. Green sunfish (Lepomis cyanellus) 
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