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ABSTRACT 

This research addresses the problem of sequential decision making in the presence 

of uncertainty in the professional service industry. Specifically, it considers the problem 

of dynamically assigning resources to tasks in a stochastic environment with both the 

uncertainty of resource availability due to attrition, and the uncertainty of job availability 

due to unknown project bid outcome. This problem is motivated by the resource planning 

application at the Hewlett Packard (HP) Enterprises. The challenge is to provide resource 

planning support over a time horizon under the influence of internal resource attrition and 

demand uncertainty. To ensure demand is satisfied, the external contingent resources can 

be engaged to make up for internal resource attrition. The objective is to maximize 

profitability by identifying the optimal mix of internal and contingent resources and their 

assignments to project tasks under explicit uncertainty.  

While the sequential decision problems under uncertainty can often be modeled as 

a Markov decision process (MDP), the classical dynamic programming (DP) method 

using the Bellman’s equation suffers the well-known curses-of-dimensionality and only 

works for small size instances. To tackle the challenge of curses-of-dimensionality this 

research focuses on developing computationally tractable closed-loop Approximate 

Dynamic Programming (ADP) algorithms to obtain near-optimal solutions in reasonable 

computational time. Various approximation schemes are developed to approximate the 

cost-to-go function. A comprehensive computational experiment is conducted to 

investigate the performance and behavior of the ADP algorithm. The performance of 

ADP is also compared with that of a rolling horizon approach as a benchmark solution.  
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Computational results show that the optimization model and algorithm developed in this 

thesis are able to offer solutions with higher profitability and utilization of internal 

resource for companies in the professional service industry.  
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1. INTRODUCTION 

The problem of optimally assigning resources to tasks is ubiquitous in operations 

management. Given a set of tasks and resources, a typical assignment problem involves 

finding a one-to-one matching between the tasks and resources in order to either 

minimize the cost of the assignments or maximize their contributions. Examples include 

matching jobs to machines, workers to machines and jobs to workers in a variety of 

contexts.  

The classical assignment problem (Kuhn, 1955) is a single period problem where 

the availabilities of resources and tasks are known (for the period of interest) and can be 

assumed to be constant. The assignment problem has also been used to model various 

operating settings with resource limitations. Assignment problems with explicit resource 

constraints are known as  generalized assignment problems (GAP) (Cattrysse & Van 

Wassenhove, 1992). GAPs have abundant applications in personnel scheduling 

(Kennington & Wang, 1992), project planning (Drexl, 1991) and manufacturing (Foulds 

& Wilson, 1999). While GAP is a well-studied approach to deal with assignment 

decisions under limited resources, it has two main limitations – it is both static and 

deterministic in nature. It is a static problem because the assignment decision is made in 

one period, but does not address assignment decisions involving multiple periods (e.g., 

weeks, months or quarters). The classical GAP is also a deterministic optimization 

problem because all the problem data are assumed to be constant.  
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Business and industrial problems require that the decision maker 

implement assignments to satisfy current demand while also taking into account 

the need to satisfy future demand. For instance, in the business consulting setting 

professional workers need to be assigned to projects with different durations; in 

the manufacturing and production environment, machines and assembly lines 

need to be assigned to jobs which require several periods to complete; personnel 

scheduling involves the assignment of skilled workers to jobs over several shifts. 

Assignment problems that span multiple periods have a planning horizon over 

which the resource allocations are planned and implemented. Multi-period 

problems involve making decisions, implementing them, observing new 

information about the problem characteristics (supply and/or demand information) 

as it arrives, and making further decisions using the observed information. The 

process is repeated again at each decision point.  

Furthermore, in a multi-period assignment problem uncertainty often 

exists and should be explicitly addressed. For instance, in the business consulting 

context, project execution might be delayed due to unforeseeable circumstances, 

allocated resources might exit the organization, or additional work might arrive 

without prior notice; in manufacturing, projects can be delayed by machine failure 

or forecasted demand can surge or contract unexpectedly.  

In the multi-period assignment setting, it is ideal to consider both the immediate 

performance of the current decisions and their impacts on the future. In the sequential 

decision setting, uncertainty may have impact in the form of resource and task 
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availabilities over time. Due to the inherent presence of uncertainty it is important to 

dynamically adjust resource allocation over time, as more information becomes available 

on random variables such as resource availabilities, resource capacities and demand. 

Such multi-period assignment problems that address the sequential nature of decision 

making in the presence of uncertainty are termed dynamic assignment problems (Powell, 

1996). The dynamic assignment problem has been applied to a wide class of applications 

such as dynamic routing and scheduling problems in transportation (Powell, Snow, & 

Cheung, 2000), the assignment of specialists and cross-trained floating workers in the 

production lines (Sennott, Van Oyen, & Iravani, 2006), allocating cadaveric kidneys to 

patient for transplantation (Su & Zenios, 2002; Su & Zenios, 2005), load matching 

problems in long-haul trucking (Powell, 1996) and optimizing transit times taking 

regulated driver working hours into consideration (Goel, 2009). 

The proposed technical approach in this thesis is intended to tackle the complex 

multi-period assignment problems under uncertainty by: a) considering the dynamic (i.e., 

multi-period) nature of the problem via modeling the sequential characteristic of the 

decision process and; b) modeling the inherent stochastic environment involved in 

decision-making.  In particular, we name the addressed problem the multi-period 

stochastic resource planning (MPSRP) problem.  

The MPSRP can be informally described as follows. Consider a set of resources, 

with uncertain availabilities, that need to be assigned to tasks to meet stochastic demand 

over multiple time periods (the specific length of the planning horizon). The MPSRP 

aims at finding the optimal matching of resources to jobs that maximizes their 
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contribution over the planning horizon. For example,  a professional service organization 

may deal with thousands of employees with uncertain availabilities, and assign them 

weekly to a multitude of current projects and future projects which may not be won by 

the firm i.e., projects with uncertain win probabilities (Santos et al., 2013). Due to the 

inherent presence of uncertainty in this setting, it is important to dynamically and 

adaptively optimize resource allocation over time so that resource idleness and unplanned 

job reassignments are reduced. A distinctive application of the MPSRP is to optimize 

resource planning in the professional service industry, where heterogeneous jobs and 

resources are present. Moreover, the MPSRP addresses uncertainty in both demand (job 

availability) and supply (resource availability).  

A well-known approach to deal with multi-period problems under  uncertainty is 

to implement a rolling horizon (RH) procedure (Sethi & Sorger, 1991). In a typical RH 

procedure, the multi-period problem is solved at each decision point, using the realized 

information for the current period and forecasts for the future. The procedure implements 

the solution only for the current period. It makes use of forecasts of the future (that might 

come at a cost) and does not provide feedback between successive stages of the decision 

process. The RH procedure is able to update the estimates of random parameters between 

successive periods; however, its limitation is that it essentially relies on a deterministic 

solution based on point-estimates of random parameters, which does not explicitly handle 

uncertainty. Such a deterministic solution methodology might not provide high-quality or 

even feasible resource planning decision, because it may easily become infeasible due to 

resource or job unavailability.  
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A more attractive solution approach to the MPSRP is the dynamic or closed-loop 

policy in which resource planning decisions are made in a sequential fashion through the 

methodology of dynamic programming (Bellman, 1952). While the RH procedure 

attempts to find a deterministic solution based on point-estimates of random parameters, 

the closed-loop DP methodology attempts to find the optimal policy at each decision 

point based on the realized resource and job status, while optimizing both the immediate 

payoff and the expected future payoff.  The closed-loop DP approach is dynamic and 

adaptive in nature, because it is able to observe and use the information that arrives in-

between decision epochs. It also explicitly considers the impact of uncertainty in its 

solution paradigm.  

The objective of this research is to develop a computationally tractable algorithm 

for obtaining a closed-loop dynamic policy for the MPSRP. The MPSRP is first described 

as a multi-stage sequential decision problem which enables it to be modeled as a Markov 

Decision Process (MDP) (Puterman, 1994). An MDP provides a modeling framework 

that lends itself naturally for solving sequential dynamic problems. However, a 

computational challenge arises in the form of the so-called curse of dimensionalities for 

the exact stochastic dynamic programming (SDP) procedure: (i) large number of states in 

the system of the MDP; (ii) large number of alternative decisions, often combinatorial in 

nature; and (iii) large number of scenarios of random parameters (i.e., resource and job 

availabilities). In order to overcome these challenges, this thesis designs and develops a 

computationally tractable solution procedure, called approximate dynamic programming 

(ADP). The essence of ADP is to approximate the exact cost-to-go function in the exact 
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DP. Such an approximation helps circumvent the intensive computations required when 

solving the exact SDP procedure via the classical Bellman recursion.  

The remainder of this dissertation is organized as follows. Chapter 2 introduces 

the MPSRP and gives an overview of its characteristics. A literature review on the 

dynamic assignment problem is presented in Chapter 3. The MDP model for the MPSRP 

problem is developed in Chapter 4. The ADP algorithm and its approximation scheme is 

detailed in Chapter 5. Chapter 6 outlines the computational experiments and presents 

results. Conclusions and ideas for future research are discussed in Chapter 7.   
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2. MULTI-PERIOD STOCHASTIC RESOURCE 

PLANNING 

2.1 Introduction 

Resource planning is a critical component of efficient operations management in 

service settings (for e.g., healthcare, hospitality, entertainment etc.). It is important for 

business strategy and ensures that a service organization will be able to meet current and 

future demand with its available resources in a cost-effective way. Resource planning 

addresses multi-facet issues such as the creation of work schedules, assigning personnel 

to shifts, and developing cross-trained resources etc.  

One such problem that is encountered frequently in the service setting is the 

matching of human resources to various jobs. From this point onward, the term 

“resources” will be used to refer to human resources i.e., skilled professionals. Resources 

in the service setting are characterized by specific attributes such as their education, skill 

set, location and work experience. They are also characterized by other intrinsic attributes 

such as their personal interests, willingness to work in teams, ability to handle pressure, 

their learning capacity and so on. For example, in the healthcare industry, nurses will 

tend to have differing specialties, experience levels and work shift preferences. Similarly 

pilots and flight attendants in the airline industry will tend to have preferences for certain 

routes, flight times and would have obtained aircraft specific training. Efficiently 

managing a diverse set of skilled professionals and matching them to their best fitting job 

roles is a challenge for every service organization.  
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2.2 The Multi-Period Stochastic Resource Planning Problem 

The multi-period stochastic resource planning (MPSRP) problem is addressed in 

the service context. It is motivated by the resource planning challenges encountered by 

business consulting firms. The consulting business is characterized by firms who bid on 

contractual work and have resources that can be assigned to complete the work. Such 

firms need to match their internal workforce (IWF) to a similarly large set of diverse jobs, 

typically over the firm’s planning horizon. The MPSRP is concerned with staffing 

projects that are in the firm’s pipeline. A consulting firm’s pipeline consists of both 

projects that have been won by the firm, and projects that are being bid on concurrently. 

Hence the planned workforce would have to staff both the realized and anticipated 

projects.  

In the case that the firm does not have enough IWF capacity to staff the jobs in its 

pipeline or if the available IWF are not qualified, the jobs can be outsourced to a 

contingent workforce (CWF). The CWF is made of resources from an external 

organization who are hired temporarily to help staff jobs that cannot be satisfied with the 

IWF. Outsourcing jobs to the CWF ensures that the execution of projects in the pipeline 

proceed as planned without significant delays. The IWF have knowledge of jobs 

implicitly due to understanding of how the firm’s business processes work. The CWF do 

not have the business processes know-how and may incur a learning curve while 

executing the jobs, depending the job specialization (Lacity, Solomon, Yan, & Willcocks, 

2011). There are jobs that require “commodity” skills i.e., skills that easily substitutable 

(e.g., a Java developer, C++ programmer). Jobs that require non-commodity skills such 
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as a computer scientist, statistician or operations researcher are specialized in nature and 

incur a learning curve effect. The pay of the IWF is greater than the CWF but the IWF 

are a better fit to the jobs than the CWF. These are the two type of resources considered 

in the MPSRP. 

2.2.1 Project Decomposition 

With the well-known work-breakdown-structure (WBS), a project can be 

decomposed into several job roles, each of which needs to be staffed by only one 

resource. That is, we assume that there is a 1:1 matching between a job role and a 

resource. For example, a project, based on its requirements, might be broken down into 

the following job roles: Jr. Systems Analyst I, Jr. Systems Analyst II, Sr. Java Developer, 

and Sr. Project Manager. Based on these job roles, the firm will assign four professionals 

to execute the project. This is an assumption since in practice the notion of FTE (Full 

Time Equivalent) is considered for project staffing.  The FTE represents the resource 

capacity required to perform a job. For example, an FTE requirement of 0.5 for a job 

implies that a resource will be required 50% of its time to staff the job. FTE requirements 

are complicated to model because they are not equal to headcount but they need to be 

translated to headcount during resource allocation. Problems that consider FTE allocation 

will studied as future research.  

2.2.2 Project Value 

The value of a project (including revenue, profitability, good will, future business 

etc.) is shared between the jobs that make up a project.    
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2.2.3 Types of Project 

The following are different types of projects that a typical service firm staffs: 

1. Ongoing Projects:  

 Already won projects being executed currently 

 Ongoing projects account for 80%-90% of jobs at any given time 

2. Project Opportunities:  

 Projects that HP are bidding on and are expected to win 

 Project opportunities account for 10%-20% of jobs at any given 

time 

3. Unexpected Work: 

 New projects 

 Current projects extended to longer period 

Projects typically last anywhere between 3 to 18 months. This is the benchmark 

used for generating planning horizon for the problem. It is critical for the firm to assign 

the appropriate resources to the jobs as haphazard or inefficient assignments can turn out 

to be expensive. Suboptimal assignments may lead to substandard work quality, missed 

deadlines, declining employee productivity and customer dissatisfaction. While assigning 

resources to meet demand, the firm has to ensure that none of its resources are being 

wasted i.e., by being left unassigned. Similarly, due to its contractual obligations the firm 

will need to ensure that all of the jobs are being staffed and project execution is 

progressing well at each epoch in the planning horizon. Another important factor to 
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consider in this context is that the constant reassignment of a job to different resources 

should be avoided whenever possible. In the business consulting context we encounter a 

technically intensive work environment where job reassignments can be detrimental to 

on-the-job learning and productivity. These factors are critical and should be taken into 

consideration when matching the firm’s resources with its demand. 

2.3 Uncertainty 

A key characteristic of the MPSRP is that it addresses the uncertainty encountered 

in the service setting. The uncertainty is in the form of IWF resource attrition and job win 

probability. Each IWF resource and job have a probability of being available for each 

decision epoch over the planning horizon. 

2.3.1 Project Uncertainty 

Demand uncertainty due to uncertain project bid outcomes affects resource 

planning because planning decisions for future projects need to made early and cannot be 

put off until the projects have been actually won. Moreover, ongoing projects also have 

an element of uncertainty in the form of their renewal. Clients may cancel their current 

projects or may not renew a multi-year project for subsequent years. Each project has a 

win probability known to the decision-maker. The jobs that belong to a project all inherit 

the project's win probability. When a project is won, at any particular epoch, its jobs 

become available for staffing and execution from that period. There can be instances 

where a project can be won in a specific period but execution might begin at a subsequent 
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period. However, once the project’s execution begins its job availability is observable by 

the decision maker at the beginning of each period of the project’s duration.  

2.3.2 IWF Resource Uncertainty 

On the supply side, uncertainty may exist in the form of IWF resource attrition. 

Each IWF resource has a probability of attrition and this leads to uncertain resource 

availability over the planning horizon. While an IWF resource might be available at the 

beginning for a given period based on its probability, there is no assurance that the 

resource will continue to stay at the firm over the duration of that period (.i.e., month, 

quarter). Unlike jobs, resource status can become change during the course of a period 

when its assigned job might be in execution. The complete information regarding a 

resource’s availability over a period is observable only at the end of the period. This is in 

contrast with the job information as job availability is completely observable at the 

beginning of a period. The MPSRP explicitly accounts for this difference in the 

observability of the random parameters. This information delay in observing resource 

availability in each period brings forth interesting modeling challenges and will be dealt 

with in greater detail in chapter 6. 

Only the current status of resources and jobs are known to the decision-maker, but 

their future availabilities are not known. For example, a proposed bench of resources for 

future work might not end up fulfilling the realized demand if job and attrition estimates 

are conservative. Such a scenario may cause jobs to be left unstaffed and result in the 

need of either using the CWF, or giving-up them which might negatively affect the firm’s 

market share and competitiveness. Similarly, if the realized demand is lower than the 
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expected demand, there would not be enough jobs to assign to all of the planned 

resources. Both of these scenarios may increase costs. These additional costs are modeled 

as penalties to the planning decision and should be minimized.  Hence the objective of 

the MPSRP is to maximize the net project profitability, which is the difference between 

the total return of staffed (assigned) projects and the total costs including both the staffing 

(assignment) cost and the penalty costs. 

2.3.3 Supply and Demand Uncertainty 

2.4 Assignment Contribution & Penalties 

When a resource is matched with a job the firm realizes a contribution (or 

return/reward) from the assignment. Moreover there will penalties incurred when an IWF 

resource is unassigned (i.e., idle) and a job is reassigned. They are as follows: 

1. IWF assignment contribution 

2. CWF assignment contribution 

3. Idle resource penalty 

4. Job reassignment penalty 

We discuss these in detail next. 

2.4.1 IWF Assignment Contribution 

The primary contribution incurred by the firm when an internal resource is 

assigned to fulfill a job each period. This contribution is a period specific contribution 

and it is incurred for each assignment made in every period of the planning horizon. The 
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assignment contribution per period is a complex variable that includes the value obtained 

from staffing a job in that period, the matching score between the job and its assigned 

resource, and the pay of the resource for that period. The value attained from executing a 

job tends to be more than just the revenue – it can also include goodwill, potential for 

future business, and reputation enhancement. 

Contribution of an assignment =  

(Value of job per period) – (pay of the employee per period / matching score of IWF) 

2.4.1.1 Matching Score 

This component of the assignment contribution gives the decision maker an idea 

of the fit between each available IWF resource and each job that needs to be staffed. The 

matching score is calculated using the analytical hierarchy process (AHP) (Saaty, 1990) 

that  computes weights of job attributes that reflect each job attribute’s importance to 

executing the job. Based on the weights of the attributes we attempt to match each job to 

available resources. If there is a job-resource mismatch, we quantify the quality of the 

matching. Through this process, we develop a qualification table with both 100% 

matching and less than 100% matching. We take into consideration not only pay 

information but also the pay grades, resource location, resource expertise, and resource 

type (Santos et al., 2013). Moreover, the matching score can include certain psychometric 

factors such as personal interests, ability to work in teams, ability to handle pressure and 

so on. For example, a less qualified resource assigned to a project team can incur 

additional costs in the form of dissatisfaction of other team members. There can also be 

an impact on the client, in terms of likelihood of future work, if less qualified workers are 
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assigned to their project. Such additional psychometric costs would not be incurred if the 

resource is fully qualified. All of these factors combined can be viewed as the “fitness” of 

a resource to accomplish a specific job.  

2.4.2 CWF Assignment Contribution 

A job can be outsourced to be performed by a CWF for two reasons: (a) there are 

not enough resources to staff the job; (b) the job is not valuable enough to be staffed by 

the IWF. The critical jobs are prioritized for the IWF resources. Non-critical jobs can be 

staffed either by the IWF or outsourced to CWF. The contribution incurred if a job is 

outsourced to CWF in a period is calculated using the value obtained from staffing a job 

in a period and the cost of staffing the job using a CWF. 

Outsourced job contribution / period = (value of job per period) – (cost of 

outsourcing job to CWF per period) / matching score of CWF) 

2.4.3 Idle Resource Penalty 

A penalty is incurred if an IWF resource is idle (left unassigned) in a period. In 

practice there are no idle resources. If a resource is idle, then he/she is assigned to 

shadow another resource to help in their assignment. Shadow resources do not directly 

generate revenue but do so indirectly. When a resource is left unassigned for a specific 

period the firm will still need to pay them and may also incur additional training costs. 

This includes both the unallocated new hires and future bench (i.e., resources released 

from ongoing projects). 
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2.4.4 Job Reassignment Penalty 

We also consider the issue of reassignment which is assumed to be undesirable in 

the current model. Under certain conditions like developing a multi-skilled workforce, 

job rotation is encouraged. The projects that are encountered in the consulting business 

are highly technical and the jobs are mostly heterogeneous in nature. It is difficult to 

transfer learning from one job to another even within the same project as job 

requirements and skills tend to vary a lot. If a job is being reassigned frequently among 

different resources there might be negative impacts such as the management cost of 

handling reassignments, the learning curve incurred by resources, possible reduction in 

productivity and reductions in job satisfaction. For example, in a consulting firm with 

several hundreds of employees working simultaneously on a lot of projects, it would take 

additional cost and effort by the management to keep track and to handle reassignments 

between periods. Moreover, project teams tend to work well when their members are 

familiar with each other and have established a working relationship. Frequent 

reassignments changes team structures which can lead to disruptions in project execution. 

These side effects of reassignment can lead to additional costs and they can be considered 

as a penalty incurred when reassignment occurs. There are 3 types of reassignments that 

are penalized: 

1. IWF to IWF 

2. IWF to CWF 

3. CWF to IWF 
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2.5 Objective Function 

The objective of MPSRP is to maximize total contributions from the assignments 

over the planning horizon. An optimal solution policy will assign the resources to the 

various jobs over time while making sure that idle IWF resources and job reassignments 

are minimized.  

2.6 Additional Assumptions 

We further assume that resources’ performance on the jobs does not impact the 

win probability of the projects.  The situation where project win probability evolve over 

time will studied as future research.  
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3. LITERATURE REVIEW 

3.1 Dynamic Assignment Problems 

The assignment of resources (e.g., machines, personnel, finances) to tasks has 

been extensively studied in operations research. Typically, resources with specific uses 

and characteristics must be assigned to tasks with distinctive needs. In a stochastic 

environment, such assignment takes place in the presence of uncertainty. The objective of 

dynamic assignment problems are either to minimize total costs or maximize total 

rewards from assigning resources to tasks in the presence of stochastic parameters such 

as arrival rates and availabilities. The earliest work in stochastic assignment was a 

resource allocation problem studied by (Ferguson & Dantzig, 1956) who consider the 

problem of assigning several types of aircraft to routes in the face of uncertain demand. 

Since that time, stochastic assignment problems have been applied in various areas 

included logistics, telecommunications, computer science, traffic networks and 

healthcare.  

3.1.1 Dynamic & Stochastic Assignment Models 

Much of the research on stochastic assignment problems was motivated by 

(Derman, Lieberman, & Ross, 1972) who introduced the so-called sequential stochastic 

assignment problem (hereafter referred to as the DLR model). The DLR model can be 

described in the following way. Consider that there are n men or workers available to be 

assigned to n jobs. Times required for the n jobs are independently and identically 

distributed. The jobs arrive in sequential fashion over time. Uncertainty is in the form of 
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the probability of the worker being able to correctly perform a job i.e., the worker’s 

capability or fit for the job. After a worker is assigned to a job, he is unavailable for 

future assignments. The problem is to assign the n men to the n jobs so as to maximize 

total expected reward over the planning horizon. (Derman et al., 1972) develop an 

optimal policy that maximizes the expected reward, which is the sum product of job 

values and worker capability rates over all assignments.  

There have been several extensions to the DLR model over the years. Albright 

and Derman (1972) analyze the asymptotic behavior of the optimal policy for the DLR 

model. Albright (1974) extended the DLR model to consider an assignment problem that 

resembles a G/M/n queuing system where jobs arrive at random times and must be 

assigned to an individual whose processing time is exponential. Job importance, job 

arrival rates and processing time by each individual are assumed to be uncertain. The 

issue of unassigned workers is taken into account in the form of an idleness penalty cost. 

Kennedy (1986) deals with the case where the random demands (i.e., jobs) are not 

necessarily independent. Nakai (1986) develops an optimal policy for the case where 

states of the system are not known explicitly i.e., the problem is considered in the context 

of a partially observable Markov chain. The inclusion of random deadlines for jobs is 

considered in Righter (1989). The author deals with the case of having a single 

exponentially distributed random deadline for all jobs, and the case where each job has its 

own exponentially distributed random deadline. 

David and Yechiali (1995) develop the “sequential assignment match processes” 

(SAMP) based on the DLR model. The SAMP model is structurally similar to the DLR 
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wherein N candidates are waiting to be matched with M random offers that arrive 

sequentially and assignments are made one at a time. Each candidate and each offer is 

characterized by a vector of random attributes and the objective is to maximize the 

compatibility of the attributes from the match process. The SAMP was motivated by the 

donor-recipient assignment in organ transplantation. It differs from the DLR only in form 

of the reward structure. The reward from assigning an offer to a candidate in the DLR is a 

multiplicative function while the SAMP counts the matching attributes to assign reward 

to a match.  Instead of assuming a distribution for the value of the incoming jobs, Chun 

and Sumichrast (2006) assume a rank based assignment where the decision maker can 

rank the sequentially arriving jobs from best to worst and derive an optimal assignment 

strategy that minimizes the sum of weighted ranks using dynamic programming. Righter 

(2011) extends the DLR model to consider random arrivals of workers in addition to 

random arrivals of jobs. It should be noted that most of these extensions are theoretical in 

nature and motivated much of the early research on dynamic assignment problems. 

In order to introduce the impact of time on the generalized assignment problem, 

Kogan and Shtub (1997) developed the dynamic generalized assignment problem 

(DGAP). Their formulation is based on a dynamic continuous-time model which is 

similar to models used in optimal control theory. The model considers a set of jobs j and 

a set of machines (agents) m. Each machine can process a subset of the jobs and the same 

jobs are processed by different machines with different processing rates. A control 

variable, in the form of the production rate of machine m performing job j at time t, is 

included in the model. A job can be broken down into smaller tasks which can be 

processed by different machines, while making sure that each machine is assigned to only 
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one job at a time. A flow balancing equation is introduced through the use of the 

inventory level of job j at time t as its tasks flows through the machines. The objective of 

the DGAP model is to minimize the total processing, inventory and shortage costs. 

Kogan, Khmelnitsky, and Ibaraki (2005) extend the DGAP by including the idea of 

stochastic demand and develop the stochastic, dynamic generalized assignment problem 

(SDGAP). The SDGAP assumes stochastic demands, and many-to-many machine-job 

relationships i.e., each job can be assigned to multiple agents and each agent can process 

multiple jobs. Every agent deals with stochastic demand in each time period and is 

allowed to process limited number of jobs at a time within its time-dependent capacity. 

The model is applied in the context of stochastic flow shop scheduling of parallel 

workstations and flexible manufacturing cells. Tadei and Ricciardi (1999) consider the 

dynamic version of the multi-level stochastic assignment problem where there is a 

hierarchy of supply alternatives. The information received about the supply alternatives 

are random and hence utility from matching the supply to demand are stochastic in 

nature. The authors develop a stochastic extremal process to model the evaluation of the 

supply and demand over time. 

A different form of the stochastic generalized assignment problem was developed 

by Albareda-Sambola, van der Vlerk, and Fernández (2006) where uncertainty was 

modeled in the form of job availabilities. The demand (i.e., job availabilities) is modeled 

as a Bernoulli distributed parameter and the authors formulate the problem as a two stage 

stochastic programming model with recourse. The recourse model makes a priori 

assignments in the first stage and a posteriori adjustments in the second stage in order to 

model jobs that are either lost due to resource constraints or reassigned to other resources. 
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The objective is to meet all demand while minimizing assignment and penalty costs. 

Albareda-Sambola, Fernández, and Saldanha-da-Gama (2011) apply this two stage 

stochastic programming model with recourse to a facility location problem. Stage one of 

their model chooses the locations of the facilities, while the recourse function assigns 

customers to the open locations, and minimizes the penalty from unmet demand and 

unused locations. It should be noted that both these models differ from the MPSRP as it 

considers uncertainty in the availabilities of both resources and jobs, while these models 

consider only demand uncertainty. Furthermore, the MPSRP is a multi-period model as 

opposed to the two stage recourse models which consider only two successive periods at 

a time. 

In a different perspective, (Kleywegt & Papastavrou, 1998; Papastavrou, 

Rajagopalan, & Kleywegt, 1996) formulate the dynamic and stochastic version of the 

knapsack problem (DSKP) using Markov decision processes. The DSKP deals with the 

issue of having limited resources (i.e., a fixed capacity knapsack) and objects to be 

included in the knapsack arrive randomly over time. The weights of the objects and their 

rewards are also random and become known upon arrival. A deadline exists after which 

requests cannot be accepted and the objective is to maximize expected rewards 

accumulated by the deadline. The secretary problem proposed by Chow, Moriguti, 

Robbins, and Samuels (1964) can be considered to be a specific case of the knapsack 

problem where each object arrives randomly one at a time and the knapsack can hold 

only one object. Chun, Moskowitz, and Plante (1994) consider the case where more than 

one object can arrive at a time (i.e., the group interview problem) and develop a 

backward recursive equation using dynamic programming. Using different selection 
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criteria (e.g., minimum rank, maximum utility etc.) they develop different recursive 

equations and stopping rules.  

A different form of the dynamic assignment problem (DAP) is modeled using 

game theory and stochastic user equilibrium (SUE). Lennon, McGowan, and Lin (2007) 

develop a game theoretic model to manage the repeated assignment of a resource 

between two selfish agents. Such a problem arises when the objective of the agents and of 

the overall system can conflict with one another. The authors consider the scenario where 

the resource benefits the agent with the valuable task more than the agent with a routine 

task. The two selfish agents are concerned only with their own reward and do not have 

any incentive to report their task type truthfully. The objective is to optimize system 

performance and the authors develop a token system such that the agents have to spend 

their tokens in order to bid for the resource. The two selfish agents become players in a 

two-person non-zero-sum game and the authors find the Nash equilibrium of the game. 

Similarly, Wardrop (1952) stated the first and second principles of equilibrium which  is 

used commonly in traffic analysis models. Wardrop’s first principle states that each 

driver, on his own, tries to minimize his travel time until the network stabilizes to an 

equilibrium after which no user can lower his travel time by unilaterally changing his 

route. Traffic flows of this kind are referred to as a “User Equilibrium” state. Stochastic 

models include error (assumed to be independent and identically distributed) in user 

perceptions which impact estimates of travel times of a route. This would result in the 

user choosing the optimal route based on his error-prone perceptions. Traffic flows of this 

kind where a user can no longer reduce his perceived travel time by unilaterally changing 

his current route are generally called as Stochastic User Equilibrium (SUE).  
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3.1.2 Applications of Dynamic Assignment Problems  

While the DLR model was initially developed in the context of personnel 

assignment, it has been applied to several types of resource allocation problems. It has 

been used to the study the house selling problem (Albright, 1977), the secretary problem 

(Rose, 1982), organ donation problem (Su & Zenios, 2002), the job hiring problem (Ross 

& Wu, 2012), load sharing in computer networks (Shestak, Chong, Maciejewski, & 

Siegel, 2009, 2012) and the investment problem (Derman, Lieberman, & Ross, 1975). 

These problems are modifications of the DLR model and can be viewed as special cases 

of the general sequential stochastic assignment problem proposed by Derman et al. 

(1972).  

Apart from the DLR model, other forms of dynamic assignment problems have 

been applied, especially in logistics and supply chain management. Dynamic fleet 

management and vehicle routing problems tend to be dynamic in nature and exist in a 

stochastic environment. Terrab and Odoni (1993) introduce the “ground hold” problem 

where the decision is to whether ground an aircraft before take-off based on probabilistic 

capacity constraints at arriving airports. Nikolaev, Jacobson, and McLay (2007) consider 

the problem of aviation security by developing a two stage model. Stage I deals with the 

purchase and install of security devices. Stage II uses the DLR model to formulate a 

stochastic problem that determines how to assign arriving passengers to available devices 

and screen them in real time. Stage I is a deterministic model, while stage II incorporates 

uncertainty in the form of passenger assessed threat values that results from stage I. 

However, both stages are solved deterministically using mixed integer programming. 
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McLay, Lee, and Jacobson (2010) extends the two stage aviation security model 

proposed by Nikolaev et al. (2007).  The authors use Markov decision process to develop 

a sequential stochastic assignment model that sequentially assigns each passenger to a 

security class as they arrive.  

Powell, Carvalho, Godfrey, and Simão (1995) deal with the problem of a 

distribution network, where supply (containers) and demand (loads) wait to be matched. 

Demand arises in random fashion over the network, and the challenge is to optimally 

move and reposition supply (the containers) to meet it. Powell and Carvalho (1997) 

extend the model in their previous paper by assuming a heterogeneous fleet of containers 

and incorporate resource substitution to handle demand while Powell and Carvalho 

(1998) extends the fleet management problem to include delivery time windows. Powell 

(1996) introduces the problem of dynamically repositioning truck drivers in anticipation 

of loads that arrive randomly over the distribution network. Çalışkan and Hall (2003) 

extend the driver repositioning problem to include the issue of drivers returning to their 

home terminals within a pre-specified time period. Wang, Yang, and Yang (2006) 

consider the problem of automated intelligent transit systems reacting dynamically to 

demand in order to reduce passenger wait time. The automated transit systems they 

consider are similar to the ones found in airports traversing a predetermined set of stops 

(i.e., terminals). Turner, Lee, Daskin, Homem-de-Mello, and Smilowitz (2009) develop a 

dynamic fleet scheduling model that aims to minimize the fleet size required to meet 

demand that varies over the order interval. The model allows alternate delivery times and 

takes into consideration customer's tolerance to early or late deliveries by modeling 

penalty costs.  



26 

 

Chen and Xu (2006) address the dynamic vehicle routing problem with hard time 

windows in which customer orders arrive randomly over time to be picked up within their 

time windows. The objective is to develop optimal vehicle routes by dispatching vehicles 

over time to cover all orders in minimum distance. Haghani and Jung (2005) consider the 

dynamic vehicle routing problem with time-dependent travel times. The problem is a 

DVRP with soft time windows and considers multiple vehicles with different capacities, 

real time service requests, and real time variations in travel times between demand nodes. 

Meisel, Suppa, and Mattfeld (2011) address the issue of stochastic user requests in 

vehicle routing which requires adjusting routes dynamically. The issue of anticipating 

rare events in vehicle routing (i.e., accidents) is addressed by Thomas and White (2007). 

The authors develop a dynamic vehicle routing problem with anticipation i.e., the model 

deals with the case where traffic congestion occurs from rare events.  Instead of reacting 

(i.e., rerouting) to rare events once they occur, the model uses real time traffic 

information and congestion statistics  to anticipate congestion (and its clearance) so that 

the driver can position the vehicle en-route. 

Another area where dynamic assignment problems are applied is in the defense 

and military applications. Personnel planning and scheduling is an important optimization 

problem in military settings from the strategic level manpower planning (Gass, Collins, 

Meinhardt, Lemon, & Gillette, 1988) to operational level sailor assignment in the Navy 

(Holder, 2005; Li & Womer, 2009). The dynamic frequency assignment problem in 

military settings is an extension of the traditional frequency assignment that attempts to 

assign frequencies to communications throughout a battlefield deployment that avoids 

interference (Dupont et al., 2009). Such a model addresses the issue of dynamically 
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assigning frequencies to new communication links as they are established, instead of 

changing previously assigned frequencies. The weapons-target assignment problem is 

experienced in combat operations where a set of targets need to be assigned to a set of 

weapons. The objective is to determine the number of weapons of each type to be 

assigned to a target that minimizes the chances of target survivability (Ahuja, Kumar, 

Jha, & Orlin, 2007). Powell, Bouzaiene-Ayari, Berger, Boukhtouta, and George (2011) 

develop a dynamic assignment model that addresses airlift operations in a military 

setting. Airlift operations deal with managing a fleet of aircraft to serve customer demand 

to move passengers or freight with time window considerations. Both demand and supply 

are random in nature and the objective is to maximize overall reward over the planning 

horizon. 

3.2 Summary 

The dynamic assignment problem is widely studied in a variety of application 

areas such as healthcare, logistics, transportation, and the military. In surveying the 

literature, sequential resource allocation problems that address uncertainty in both supply 

and demand have not been studied. While the DLR model is similar in nature to the 

MPSRP, there are several key differences. The most obvious distinction is that in the 

MPSRP, uncertainty is in the form of resource and job availabilities, and not in their 

arrival rates. The availabilities of employees and jobs are modeled as binary variables and 

they are assumed to be Bernoulli distributed parameters. The MPSRP considers 

uncertainty in both supply and demand, while the classic DLR model considers 

uncertainty only on the demand side. Righter (2011) does consider uncertainty in the 
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arrival rates of both resources and jobs, but the approach is theoretical in nature. 

Moreover, since the DLR model assumes availability of the resources and the jobs, it 

does not address the issue of reassignment which can occur when resources or jobs 

become unavailable over time. The MRSRP explicitly considers the uncertainty in 

availability and models resource and job reassignments and their penalty costs. 

The MPSRP is a unique problem that can be applied to resource allocation 

problems in the business, military and telecommunication settings. Most treatments of 

stochastic assignment problems in the literature are theoretical in nature. This is due to 

the computational complexity of the problem domain. To address multi-period stochastic 

assignment problems we need a methodology that is adaptive and handles uncertainty. 

There is also a need for the solution methodology to handle realistic large scale 

applications. Our MPSRP model and ADP solution approach contributes to the existing 

literature in several ways. First, we develop a model for the resource planning problem 

where jobs availabilities and resource attrition vary over a planning horizon. The MPSRP 

model developed in this dissertation can applied to resource allocation problems in 

various settings such as project scheduling, workforce planning and capacity planning. 

Second, we develop an innovative ADP solution approach that solves the MPSRP in a 

sequential fashion under uncertainty. Specifically, we develop an ADP training algorithm 

for a combinatorial optimization model such as the MPSRP. To the best of our 

knowledge, ours is the first attempt to design ADP training mechanisms for 

combinatorial optimization models under uncertainty. 
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4. MODEL DEVELOPMENT 

We first present a deterministic integer programming (IP) formulation of the 

MPSRP that relies on using point estimates of the random parameters. Next, we describe 

a stochastic dynamic programming (SDP) model for the problem. The SDP model 

explicitly accounts for uncertainty in its formulation. We then discuss various extensions 

that can be made to the basic MPSRP problem. 

4.1 Formal Problem Description 

The MPSRP can be formally described as follows. Consider a services firm who 

needs to staff its projects with skilled resources. Each project is decomposed into the 

specific number of job roles required to execute it. Consider a set of jobs, 𝐽 that need to 

be staffed with a set of resources, 𝑅 over a planning horizon 1, 2, …,𝑇. Let 𝑉𝑗 be the 

value obtained from executing job 𝑗 ∈ 𝐽 in each period 𝑡 ∈ 𝑇 of the planning horizon. The 

decision-maker has two alternative resources to staff jobs i.e., internal (IWF) and 

contingent (CWF) resources as introduced in Chapter 2. Each IWF resource is associated 

with a specific salary pay per period 𝜔𝑟. Each job that is outsourced to a CWF resource 

incurs an outsourcing cost per period 𝜔𝑗. We assume a 1:1 matching between a job 𝑗 ∈ 𝐽 

and resource 𝑟 ∈ 𝑅. That is, a job can be executed to completion by a single IWF or CWF 

resource. A matching score 𝑀𝑟𝑗 captures the fitness of resource 𝑟 ∈ 𝑅 to each job 𝑗 ∈ 𝐽, 

based on attributes such as job requirement, job skills, resource location, resource 

expertise etc. This score 𝑀𝑟𝑗  is referred to as the assignment fitness and it quantifies the 

qualification of an IWF resource 𝑟 ∈ 𝑅 for each job 𝑗 ∈ 𝐽 as a fitness score (Santos et al., 
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2013). The matching score 𝑁𝑗  for CWF resources depends on the fitness of the CWF to 

the specific job 𝑗 ∈ 𝐽 that is being outsourced. We use the fitness scores developed by 

(Santos et al., 2013) using a flexible matching method. The flexible matching method 

enables the matching resource capabilities with job requirements at less than 100 percent. 

When there is a perfect match between a job and a resource, the matching score equals 1. 

A mismatch can be represented by a fractional value between 0 and 1. The fitness scores 

along with the value obtained from executing a job and the resource costs are used to 

calculate the contribution that is gained from assigning either an IWF resource or a CWF 

resource to a job for execution in a period. 

If a resource 𝑟 ∈ 𝑅 is left unassigned in a period, the firm will incur a penalty 𝑐𝑟
𝐼  

for keeping the resource idle for that period. Reassigning a job 𝑗 ∈ 𝐽 from its currently 

assigned internal or contingent resource 𝑟 ∈ 𝑅 to another resource is undesirable and 

penalized using a job reassignment penalty 𝑐𝛿
𝑗
 . Uncertainty is present in the problem 

setting in the form of resource attrition and job win probabilities. The availability of a 

resource  𝑟 ∈ 𝑅 is treated as a Bernoulli random variable, 𝑅𝑟𝑡 with a known availability 

probability 𝑝𝑟 over each period 𝑡 ∈ 𝑇 of the planning horizon. The availability of a job 

𝑗 ∈ 𝐽  is treated as a Bernoulli random variable, 𝐽𝑗𝑡 with a known win probability 𝑝𝑗 over 

each period 𝑡 ∈ 𝑇 of the planning horizon, based on the project’s win probability. We 

assume that the decision-maker knows the resource and job availability probabilities over 

the planning horizon. The model aims to provide an effective matching between the set of 

resources 𝑅 and jobs 𝐽 to meet demand for each period of the planning horizon. The 
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objective of the model is to maximize the total expected contributions from staffing 

which includes the expected assignment contributions and the expected penalty costs. 

4.2 Deterministic IP Model 

The deterministic integer programming model uses point estimates (mean) of the 

random parameters (i.e., resource and job availabilities). In this section we present the IP 

formulation of the MPSRP.  

4.2.1 Sets 

𝑅: Set of resources 

𝐽: Set of jobs 

𝑇: Set of time periods 

 

4.2.2 Parameters 

𝑉𝑗: Value obtained from staffing & executing job 𝑗 in a period 

𝜔𝑟: Pay per period of IWF resource 𝑟  

𝜔𝑗: Cost per period of outsourcing job 𝑗 to a CWF 

𝑀𝑟𝑗: Matching score of IWF resource 𝑟 for job 𝑗 

𝑁𝑗: Matching score of CWF resources for job 𝑗 

𝑐𝑟
𝐼: Penalty cost per period for resource 𝑟 to be left idle  

𝑐𝛿
𝑗
: Penalty cost per period of reassigning a job from its currently assigned IWF or CWF 
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𝐼𝑊𝐹𝑟𝑗: Contribution per period from assigning resource 𝑟 to job 𝑗 

IWF Assignment Contribution = (Value of job j per period) – (pay of the resource 

r per period / matching score of resource r to job j) 

𝐼𝑊𝐹𝑟𝑗 = 𝑉𝑗 − (
𝜔𝑟

𝑀𝑟𝑗
)                                                  (4.1) 

𝐶𝑊𝐹𝑗: Contribution per period from outsourcing job 𝑗 to a contingent workforce (CWF) 

CWF Assignment Contribution = value of job per period – (cost of outsourcing 

job j to CWF per period / matching score of CWF for job j) 

𝐶𝑊𝐹𝑗 = 𝑉𝑗 − (
𝜔𝑗

𝑁𝑗
)                                                        (4.2) 

4.2.3 Random Parameters 

The availability of a resource 𝑟 is treated as a Bernoulli random variable with a known 

availability probability 𝑝𝑟 (1–𝑟’s attrition rate). 

 

𝑅𝑟𝑡 = {
1 𝑖𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑟

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑟
 

 

The availability of a project 𝑗 is treated as a Bernoulli random variable with a known win 

probability 𝑝𝑗.  

 

𝐽𝑗𝑡 = {
1 𝑖𝑓 𝑗𝑜𝑏 (𝑝𝑟𝑜𝑗𝑒𝑐𝑡)𝑗 𝑤𝑖𝑙𝑙 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑗

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝𝑗)
 

 

   In the deterministic IP model, these random parameters are fixed at their point 

estimates. That is, the probabilities are fixed to the decision maker’s (assumed) thresholds 

for resource and job availability. For example, the decision maker can fix his threshold 

for resource attrition to be 0.20. This implies that the decision maker will assume that 
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resources whose probability of attrition for future periods exceeds 0.20 to be unavailable 

for staffing. Clearly, this method is flawed and can lead to erroneous resource planning 

decisions.  This method can be contrasted with Monte Carlo simulation where numerous 

samples of the random variables are generated. The Monte Carlo samples are used 

instead of the point estimates in the stochastic and approximate dynamic programming 

procedures. 

 

4.2.4 Decision Variables 

𝑥𝑟𝑗𝑡  =  {
1 𝑖𝑓  𝐼𝑊𝐹 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑜𝑏 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑗𝑡 =  {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑠𝑡𝑎𝑓𝑓𝑒𝑑 𝑏𝑦 𝐶𝑊𝐹 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐼𝑟𝑡 =  {
1 𝑖𝑓 𝐼𝑊𝐹 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝛿𝑗𝑡

= {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡 − 1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

4.2.5 Objective Function 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝐼𝑊𝐹𝑟𝑗𝑥𝑟𝑗𝑡 + ∑ ∑ 𝐶𝑊𝐹𝑗

𝑡∈𝑇𝑗∈𝐽

𝑦𝑗𝑡 − ∑ ∑ 𝑐𝑟
𝐼

𝑡∈𝑇𝑟∈𝑅

𝐼𝑟𝑡

𝑡𝜖𝑇𝑗𝜖𝐽𝑟𝜖𝑅

− ∑ ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑡∈𝑇𝑗∈𝐽
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4.2.6 Constraint Set 

Constraint 1: Each job if it’s available this period, can be assigned to an internal resource 

or outsourced to a contingent workforce 

∑ 𝑥𝑟𝑗𝑡 + 𝑦𝑗𝑡 = 𝐽𝑗𝑡                 ∀ 𝑗𝜖𝐽, 𝑡𝜖𝑇

𝑟𝜖𝑅

 

Constraint 2: Each resource, if it is available this period, can be assigned to a job or be 

idle 

∑ 𝑥𝑟𝑗𝑡 + 𝐼𝑟𝑡 = 𝑅𝑟𝑡                 ∀ 𝑟𝜖𝑅, 𝑡𝜖𝑇

𝑗𝜖𝐽

 

Constraint 3: Each available job in a period should either be assigned to the same 

resource as in the previous period (if that job existed in the previous period), or encounter 

a reassignment penalty 

(𝑖)𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑖. 𝑒. , 𝑡 = 1): Constraint not applicable  

(𝑖𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑖. 𝑒. , 𝑡 > 1): 

𝑦𝑗𝑡 + 𝑥𝑟𝑗𝑡 + 𝛿𝑗𝑡 ≥ 𝐽𝑗𝑡𝑥𝑟𝑗𝑡−1            ∀  𝑡𝜖𝑇, 𝑗𝜖𝐽, 𝑟𝜖𝑅 

𝑥𝑟𝑗𝑡, 𝐼𝑟𝑡, 𝑦𝑗𝑡 , 𝛿𝑗𝑡 , 𝛾𝑗𝑡𝜖 {0, 1} 
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4.2.7 Limitations of the Deterministic IP Model 

The deterministic IP model fixes the random parameters (i.e., resource and job 

availabilities) to point estimates over the planning horizon. This approach is simplistic 

and completely ignores the uncertain nature of the MPSRP problem. Point estimates do 

not capture the inherent randomness of the MPSRP decision making environment. For 

example, existing resources might exit the project due to attrition. . Similarly, jobs that 

are assumed to have been won in a specific period might end up being won in a later 

period, resulting in a large number of idle resources. This has motived the development 

of a stochastic dynamic programming model for the MPSRP to explicitly model 

uncertainty.  

4.3 Stochastic Dynamic Programming Model 

Stochastic dynamic programming (SDP) is a general approach to solving 

multistage sequential-decision problems that involve uncertainty. An SDP framework 

models decisions made in a sequential fashion.   

In a typical SDP model, decisions are made in multiple stages (e.g., time periods). 

The solution to a SDP model requires policy-type of solution, which is a rule that 

prescribes a decision given the current state of the system in interest. That is, a policy will 

prescribe what to do (decision) under certain system of the state, while considering the 

impact of uncertain parameters on the future payoffs. Each stage is associated with a state 

of the system. In general, the state should consist of all the information needed for 

making a decision at the current stage. The effect of the decision made at a stage is to 
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transform the current state to a state in the next stage. The solution procedure is designed 

to find an optimal policy for the overall problem - a prescription of the optimal policy 

decision at each stage for each of the possible states.   

Given the current state, an optimal policy for the remaining stages is independent 

of the policy decisions adopted in previous stages. Therefore the optimal immediate 

decision depends only upon the current state and not how the system got there. This is 

called the Markovian property and establishes the principle of optimality for dynamic 

programming.  

Let 𝑆𝑡 be the current state and 𝑥𝑡 be the current decision. 𝐶(𝑆𝑡, 𝑥𝑡) is the 

contribution from making decision 𝑥𝑡 in the current state, 𝑆𝑡. 𝑝(𝑠′|𝑆𝑡, 𝑥𝑡) is the 

probability of transitioning to next state 𝑠′ if we are to take decision 𝑥𝑡 in the current state 

and 𝛾 is a discount factor. The foundation of SDP is a recursive equation called as the 

Bellman optimality equation (Puterman, 1994) and it is written as:  

𝑉𝑡(𝑆𝑡) = 𝐶(𝑆𝑡, 𝑥𝑡) +  𝛾 ∑ 𝑝(𝑠′|𝑆𝑡, 𝑥𝑡)𝑉𝑡+1(𝑠′)

𝑠′∈𝑆

                                         (4.3) 

The bellman optimality equation states that the value of being in 𝑆𝑡 is the sum of 

the immediate reward from making decision  𝑥𝑡 in state 𝑆𝑡 and the expected future reward 

from the next state if 𝑥𝑡 is implemented in the current state. The objective is to choose 𝑥𝑡 

that maximizes the expected reward (immediate and future). 
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4.3.1 MDP Formulation 

This section outlines the stochastic dynamic programming formulation using the 

terminology of Markov Decision Processes (MDPs). Stochastic dynamic programming 

(SDP) problems are expressed using the language of MDPs and the two terms are used 

interchangeably. An MDP can be used to model the SDP such that the value of state-

decision pairs are estimated using the Bellman equation discussed in the previous section. 

The problem can be implemented as a decision tree in which all possible decisions can be 

enumerated for each state and the iterative optimality equation can be used to solve the 

tree. The MDP can be described as follows: 

 Stages:  

Let 𝑇 be the number of stages (i.e., number of periods in the planning 

horizon) and 𝑡 be the label for the current stage(𝑡 = 1, … , 𝑇).  

 

 States:  

𝑆𝑟𝑗𝑡
′  =  {

1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐼𝑊𝐹 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

𝑆𝑗𝑡
′′  =  {

1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶𝑊𝐹 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

The state of the system is indicated by which resource, either IWF or 

CWF, is currently assigned to each job at the beginning of each period. It is a 

record of current assignments. 
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 Decision Variables:  

Let 𝑥𝑡be the decision variable for stage 𝑛. 𝑥𝑡 is the set of decision 

variables that comprise of all decisions discussed in the deterministic IP in the 

section above {𝑥𝑟𝑗𝑡, 𝑦𝑟𝑡, 𝑧𝑗𝑡 , 𝛿𝑗𝑡}. 

 

 System dynamics: 

The dynamics of the system at time 𝑡 are given by: 

𝑆𝑟𝑗𝑡+1
′  = 𝑥𝑟𝑗𝑡                 ∀ 𝑗𝜖𝐽, 𝑟𝜖𝑅                                                    (4.4)  

𝑆𝑗𝑡+1
′′  = 𝑦𝑗𝑡                  ∀ 𝑗𝜖𝐽                                                              (4.5)  

 Decisions at each stage: 

Given 𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝐽𝑗𝑡 & 𝑅𝑟𝑡 the set of feasible decisions at time 𝑡 are: 

𝕏(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝐽𝑗𝑡, 𝑅𝑟𝑡) ={𝑥𝑡: 

∑ 𝑥𝑟𝑗𝑡

𝑟𝜖𝑅

+ 𝑦𝑗𝑡 = 𝐽𝑗𝑡                      ∀ 𝑗𝜖𝐽   

∑ 𝑥𝑟𝑗𝑡

𝑗𝜖𝐽

+ 𝐼𝑟𝑡 = 𝑅𝑟𝑡                     ∀ 𝑟𝜖𝑅 

𝑦𝑗𝑡 + 𝑥𝑟𝑗𝑡 + 𝛿𝑗𝑡 ≥ 𝐽𝑗𝑡𝑥𝑟𝑗𝑡−1             ∀ 𝑟𝜖𝑅, 𝑗𝜖𝐽  

𝑥𝑟𝑗𝑡, 𝐼𝑟𝑡, 𝑦𝑗𝑡 , 𝛿𝑗𝑡  𝜖 {0, 1} 

} 
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We also set 

𝕐(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝐽𝑗𝑡 , 𝑅𝑟𝑡) = {(𝑥𝑡, 𝑆𝑟𝑗𝑡+1
′ , 𝑆𝑗𝑡+1

′′ ): 

𝑆𝑟𝑗𝑡+1
′ = 𝑥𝑟𝑗𝑡                  ∀ 𝑗𝜖𝐽, 𝑟𝜖𝑅, 𝑥𝑡 ∈  𝑋(𝑆𝑟𝑗𝑡

′ , 𝑆𝑗𝑡
′′ , 𝐽𝑗𝑡, 𝑅𝑟𝑡)                     (4.6) 

  𝑆𝑗𝑡+1
′′ = 𝑦𝑗𝑡                  ∀ 𝑗𝜖𝐽, 𝑥𝑡 ∈  𝑋(𝑆𝑟𝑗𝑡

′ , 𝑆𝑗𝑡
′′ , 𝐽𝑗𝑡 , 𝑅𝑟𝑡)                                (4.7) 

     } 

The set of decisions that make up 𝕏(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′ , 𝐽𝑗𝑡 , 𝑅𝑟𝑡) are concerned with 

the current state and realizations of the random parameters in the current stage. 

The decisions which make up 𝕐(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′ , 𝐽𝑗𝑡 , 𝑅𝑟𝑡) are concerned with how 

decisions made in the current stage generate the next state. That is, 𝑥𝑡 is a feasible 

decision when the states of the system are 𝑆𝑟𝑗𝑡
′  and 𝑆𝑗𝑡

′′, supply outcome is 𝑅𝑟𝑡, 

demand outcome is 𝐽𝑗𝑡, and applying the decision 𝑥𝑡 on the state vectors 𝑆𝑟𝑗𝑡
′  and 

𝑆𝑗𝑡
′′ generates the state vectors 𝑆𝑟𝑗𝑡+1

′  and 𝑆𝑗𝑡+1
′′  for the next time period. 

 Cost-to-go function: The cost-to-go function is the total contribution of the best 

overall policy for the remaining stages, given that the system is in states 𝑆𝑟𝑗𝑡
′  & 𝑆𝑗𝑡

′′, 

ready to start the next stage and selects 𝑥𝑡 as the immediate decision. The cost-to-

go function comprises of two components: the immediate contribution in the 

current stage and the maximum future contributions for the rest of the stages 

(assuming optimal decisions are taken for the rest of the stages).   
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𝑉𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′ ) = 𝐶𝑡𝑥𝑡

+  𝛾 ∑ 𝑝(𝑆𝑟𝑗𝑡+1
′ , 𝑆𝑗𝑡+1

′′ |𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝑥𝑡)𝑉𝑡+1(𝑆𝑟𝑗𝑡+1
′ , 𝑆𝑗𝑡+1

′′ )      (4.8)

𝑆𝑟𝑗𝑡+1
′ ,𝑆𝑗𝑡+1

′′ ∈𝑆

 

 

4.4 Challenges of Solving the SDP 

While solving SDP via the Bellman recursion is guaranteed to provide optimal 

solutions, it suffers from two main issues: 

i. The transition probabilities and rewards make up the “theoretical model” 

of an SDP system and obtaining them is very challenging. SDP hence 

suffers from the “curse of modeling” (Gosavi, 2003).  

ii. SDP also suffers from the “curse of dimensionality” (Powell, 2007) that 

can arise in problems with a large number of states, as in the MPSRP.  

For example, a system with 4 resources and 4 jobs creates a state space with 28 

unique scenarios of resource and job availabilities. Moreover, the decisions are 

combinatorial in nature, which makes it computationally intractable to enumerate and 

visit every state-decision pair.  

 

4.5 MPSRP Extensions 

The current version of the MPSRP considers only the impact of job 

reassignments. The model penalizes the reassignment of a job from its currently assigned 
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resource to another resource. This is to avoid potential frequent reassignments of a job to 

different resources. We focus on the reassignment of jobs, and not on the reassignment of 

resources. This is based on the assumption that the job reassignment penalty incorporates 

the impact of reassigning both the job and the resource. If the impact of reassigning 

resources and jobs are different, and if they need to be penalized differently, the 

following parameters and constraint can be added to the IP model. 

Let 𝑐𝛿
𝑟represent the penalty of reassigning a resource. We introduce a new binary 

decision variable 𝛿𝑟𝑡 to indicate whether a particular resource has been reassigning from 

its currently assigned job to another job in each period. The objective function will now 

include the resource reassignment cost term as shown below: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝐼𝑊𝐹𝑟𝑗𝑥𝑟𝑗𝑡 + ∑ ∑ 𝐶𝑊𝐹𝑗

𝑡∈𝑇𝑗∈𝐽

𝑦𝑗𝑡 − ∑ ∑ 𝑐𝑟
𝐼

𝑡∈𝑇𝑟∈𝑅

𝐼𝑟𝑡

𝑡𝜖𝑇𝑗𝜖𝐽𝑟𝜖𝑅

− ∑ ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑡∈𝑇𝑗∈𝐽

− 𝑐𝛿
𝑟 ∑ ∑ 𝛿𝑟𝑡

𝑡∈𝑇𝑟∈𝑅

 

An additional constraint is required to model resource reassignment.  

(𝑦𝑟𝑡 + 𝑥𝑟𝑗𝑡 + 𝛿𝑟𝑡)𝐽𝑗𝑡 + (𝑦𝑟𝑡 + ∑ 𝑥𝑟𝑗𝑡)(1 − 𝐽𝑗𝑡)

𝑗

≥ 𝑅𝑟𝑡𝑥𝑟𝑗𝑡−1            ∀ 𝑟𝜖𝑅, 𝑗𝜖𝐽, 𝑡𝜖𝑇 

Resource reassignment is different from job reassignment in implementation. All 

reassignments of a job need to be penalized. However, a resource can be reassigned 

without penalty if it has executed its previously assigned job to completion. The resource 

is then available for a new assignment and it can be reassigned to a different job without 

penalty. The above constraint models this feature. 
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A job can be left unstaffed in a period if there are no sufficient internal resources 

to staff all the jobs that exist in that period. There are two different ways to handle such a 

scenario. The first way is to make sure that the job is completed by hiring a contingent 

workforce (CWF) through outsourcing (at a higher cost). If the firm ends up hiring the 

CWF to meet demand, then the assignment cost per period for the CWF will be:  

Fitness cost of CWF to that job + CWF sunk cost for that period – Value from 

completing that period’s component of the job 

If the firm hires the CWF but doesn’t need to use them in a period, then it will not incur 

the idle resource cost as the CWF are paid only when they are assigned to work. The 

second way to handle the scenario is to abandon the jobs. If that is the case, then the 

assignment cost will be zero (as no resources are assigned to the jobs) but the firm might 

incur additional business costs like contractual penalties, loss of business reputation, 

reduced chances of future contracts and so on.  
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5. ADP ALGORITHM 

We have seen two different models and solution methodologies to solve the 

MPSRP in the previous chapter. The first one is the deterministic IP which uses point 

estimates of the random parameters. It is clearly a naïve approach as it solves the problem 

for the entire horizon in an open-loop fashion, without obtaining new information about 

the state of the system in between periods. The deterministic IP solution would not be 

useful for decision making if the actual realization of the random parameters deviates 

from the assumed point estimates. This is the so called flaw of averages that is common 

in deterministic models. The second approach is the stochastic dynamic programming 

model which uses the Bellman optimality equation. SDP is better than deterministic 

approaches as it a) explicitly accounts for uncertainty and b) solves the problem in a 

sequential fashion, capturing the impact of uncertainty and the decisions made on future 

stages.  

The ADP methodology can help overcome the computational challenges faced in 

SDP. In order to overcome the curses of dimensionality, we use Monte-Carlo simulation 

to simulate sample paths for the system evolution. We also use stochastic approximation 

methods to estimate the value function without transition probabilities, overcoming the 

curse of modeling. We develop the ADP formulation in this chapter. Certain benchmarks 

which will be used to compare the results of the ADP methodology will also discussed. 
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5.1 DP Approximation Schemes 

Sequential decision problems can be modeled using both continuous states & 

time, as well as discrete states and time. Since the MPSRP is modeled using discrete 

states (resource and job availabilities assumed to be Bernoulli distributed parameters) and 

time, our approach parallels that of reinforcement learning (RL) in artificial intelligence 

and approximate dynamic programming (ADP) in operations research. Both of these 

areas have developed approximation schemes to overcome the curses of modeling and 

dimensionality specified above. We will first review reinforcement learning, followed by 

approximate dynamic programming. 

5.1.1 Reinforcement Learning 

Gosavi (2003) provides a detailed analysis of RL concepts and much of the 

material in this section is adapted from that text. RL can be viewed as a way of 

implementing DP algorithms within a simulator. RL algorithms help overcome the curse 

of modeling as the model-free algorithms of RL do not need the transition probabilities. 

RL can solve MDPs without the theoretical model and can still produce high quality near 

optimal solutions. Similarly, RL uses function approximation methods such as neural 

networks, regression and interpolation which need a small number of scalars to 

approximate the value function of millions of states. 

Note that the main tool used by RL algorithm is simulation. In fact, RL also been 

referred to as “simulation based dynamic programming” (Gosavi, 2003). It uses 

simulation to avoid calculating transition probabilities and the transition rewards are 
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automatically calculated within the simulator. RL theory is based on two fundamental 

concepts which we will discuss below: a) The Q-factor and, b) Robbins-Monro algorithm 

5.1.1.1 The Q-Factor 

The classic value iteration algorithm used to solve MDPs calculates the “value 

function” of each state. RL algorithms also calculate the value function but store them in 

the form of Q-factors. In RL, each element of the Q-factor vector is related to a “state-

action” pair. It is evident then, that if the Q-factors are known, one can find the value 

function of a given state. The value function associated with the optimal policy for 

discounted reward MDPs is defined by the Bellman optimality equation as: 

𝐽∗(𝑖) = max
𝑎∈𝐴(𝑖)

[∑ 𝑝(𝑖, 𝑎, 𝑗)

𝑠

𝑗=1

[𝑟(𝑖, 𝑎, 𝑗) + 𝜆𝐽∗(𝑗)]]                                  (5.1) 

Where, 

i. 𝐽∗(𝑖) is the ith element of value function vector associated with the optimal 

policy. 

ii. 𝑟(𝑖, 𝑎, 𝑗) is the immediate reward earned when action 𝑎 is selected in state 

𝑖 and the system transitions to state 𝑗. 

iii. 𝑝(𝑖, 𝑎, 𝑗) is the probability of transitioning to state 𝑗  when action 𝑎 is 

selected in state 𝑖. 

iv. 𝜆 is a discount factor for future contributions. 
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For a given state-action pair, the Q-factor can be defined as: 

𝑄(𝑖, 𝑎) =  ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑠
𝑗=1  [𝑟(𝑖, 𝑎, 𝑗) +  𝜆 max

𝑏∈𝐴(𝑗)
𝑄(𝑗, 𝑏)]                           (5.2)                           

The above equation is fundamental to RL and can be viewed as the Q-Factor version of 

the Bellman optimality equation for discounted reward MDPs. 

5.1.1.2 Robbins-Monro Algorithm 

The Robbins-Monro (RM) algorithm (Robbins & Monro, 1951) helps estimate the 

mean of random variable from its samples. If we denote the 𝑖𝑡ℎ independent sample of a 

random variable X by 𝑆𝑖 and the expected value by E(X), then the estimated produced by  

∑ 𝑆𝑖𝑛
𝑖=1

𝑛
 tends to the real value of the mean as 𝑛  ∞ as a result of the law of large 

numbers. The RM algorithm is derived from this straight forward averaging process. If 

we denote the estimate of X in the 𝑛𝑡ℎ iteration, that is, after 𝑛 samples have been 

obtained by X𝑛: 

X𝑛 =
∑ 𝑆𝑖𝑛

𝑖=1

𝑛
                                                                      (5.3) 

After transformations the above term can be defined as: 

X𝑛+1 = (1 − α𝑛+1)X𝑛 + α𝑛+1S𝑛+1  (if α𝑛+1 =
1

𝑛+1
) 

The above equation is referred to as the RM algorithm or the RM scheme. α is 

called the step size or learning rate. When (α𝑛+1 =
1

𝑛+1
) the RM algorithm is directly 
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equivalent to averaging. Other forms of α𝑛+1 can be used as long as they indirectly 

perform averaging. The RM scheme can be used for estimating Q-factors. It can be 

shown that every Q-factor can be expressed as an average of a random variable: 

𝑄(𝑖, 𝑎) =  ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑠
𝑗=1  [𝑟(𝑖, 𝑎, 𝑗) +  𝜆 max

𝑏∈𝐴(𝑗)
𝑄(𝑗, 𝑏)] 

𝑄(𝑖, 𝑎) =  E [𝑟(𝑖, 𝑎, 𝑗) +  𝜆 max
𝑏∈𝐴(𝑗)

𝑄(𝑗, 𝑏)] 

𝑄(𝑖, 𝑎) =  E [SAMPLE]                                                                                                 (5.4) 

Due to the difficulty in obtaining the transition probabilities, the idea is to remove the 

expectation operator using the RM scheme. If samples of the random variable can be 

generated within a simulator, we can use the RM scheme to estimate the Q-factor.  

Q𝑛+1(𝑖, 𝑎) = (1 − α𝑛+1)Q𝑛(𝑖, 𝑎) + α𝑛+1 [𝑟(𝑖, 𝑎, 𝑗) +  𝜆 max
𝑏∈𝐴(𝑗)

𝑄(𝑗, 𝑏)]          (5.5)  

Such an algorithm that does not use the transition probabilities in its updating 

equation is called as “model-free” algorithm. For the estimation of the Q-factors to be 

perfect, we must obtain, theoretically, an infinite number of samples of each Q-factor i.e., 

each state-action pair must be tried infinite times. An effective strategy is to try each 

action in each state with equal probability and simulate the system in such a way so that 

each state-action pair is tried a large number of times. The simulator will take the system 

from one state to another selecting each action with equal probability in each state. The 

RL algorithm, which will be embedded with the simulator, will update the values of the 

Q-factors. The values of the Q-factors are stored in a lookup table explicitly. This is 



48 

 

feasible only for a manageable number of state-action pairs. When we have a huge 

number of state-action pairs, function approximation methods can be used in which not 

all Q-factors are stored explicitly.  

5.1.2 OR Based ADP Algorithms 

The ADP methodology encountered in the OR literature is quite similar to that of 

reinforcement learning. The exact DP methodology uses the value iteration algorithm to 

visit each possible state and computes the impact of every feasible decision, in each stage 

of the problem. It then steps back in time and exactly computes the value function which 

is used to produce optimal decisions. The value function provides the expected value of 

each decision which is the sum of the immediate reward and the expected discounted 

future rewards. It is evident that value iteration is not a practical strategy for even small 

problem sizes due to the curse of dimensionality. Powell (2007) shows that there can be 

three different curses of dimensionality for certain problems:  

 The state space: If the state variable 𝑆𝑡 = (𝑆𝑡1, 𝑆𝑡2, … , 𝑆𝑡𝐼) has I dimensions, and if 𝑆𝑡𝐼 

can take on L possible values, then we might have up to 𝐿𝐼 different states. 

 The outcome space: The random variable 𝑊𝑡 = (𝑊𝑡1, 𝑊𝑡2, … , 𝑊𝑡𝐽)  might have J 

dimensions. If 𝑊𝑡𝐽can take on M outcomes, then our outcome space might take on up 

to 𝑀𝐽 outcomes. 

 The action space: The decision vector 𝑋𝑡 = (𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝐾)   might have K 

dimensions. If 𝑋𝑡𝐾 can take on N outcomes, we might have up to 𝑁𝐾  outcomes. 
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While DP steps backward in time, ADP, like RL, steps forward in time. When we step 

forward in time, we have not computed the value function, so we have to turn to an 

approximation in order to make decisions.  

5.1.2.1 Exogenous Information Process 

The system evolves according to several types of exogenous information 

processes that include random changes to the system parameters i.e., supplies and 

demand, for example. For complex problems, it is convenient to have a generic variable, 

𝑤𝑡 to represent all the information that first arrives between (𝑡 − 1)and 𝑡. Using 𝑆𝑀 to 

represent a transition function, we represent the evolution of our state variable generically 

using: 

𝑆𝑡+1 = 𝑆𝑀(𝑆𝑡, 𝑥𝑡 , 𝑊𝑡+1)                                                   (5.6) 

 This is called the system model and it indicates the system transition to the next state 

based on the current state, current decision and the realization of the exogenous 

information between the current state and the next. 

5.1.2.2 ADP Algorithmic Framework 

The section provides an overview of the generic ADP framework. Let V̂𝑡(𝑆𝑡) be 

an approximation of the value function. We assume that we have an initial estimate of 

V̂𝑡(𝑆𝑡) for each state 𝑆𝑡. Such an approximation introduces error and the challenge is to 

find approximations that are good enough. ADP proceeds by iteratively estimating the 

approximation V̂𝑡(𝑆𝑡). The key idea of the ADP framework is to replace the exact value 

function vector by a statistical approximation in order to overcome the difficulty of 
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dealing with high dimensional state spaces. However, there is still the problem of 

computing expectation over the random parameters. The second key idea is to use Monte-

Carlo samples of the random parameters to simulate a sample path for the system to 

follow. The approximate sub-problem in step 3 of the framework encapsulates both these 

ideas.  If the value function approximations are close to the true value functions, then the 

performance of the policy recommended by the approximation should be close to that of 

the optimal policy. In the next section, we will develop the ADP algorithm for the 

MPSRP.  

The generic framework for ADP is as follows: 

Step 1: Initialize the iteration counter for the algorithm by letting 𝑛 = 1. Choose initial 

value function approximations for the first iteration, �̂�𝑡
1(𝑠𝑡). 

Step 2: Initialize the time period by letting 𝑡 = 1. Initialize the state vector 𝑆1
𝑛to reflect the 

initial state of the system. 

Step 3: Sample a realization of the exogenous information processes, 𝑤𝑡+1
𝑛 and solve the 

approximate sub-problem. 

(𝑥𝑡
𝑛, 𝑠𝑡

𝑛) = argmax
(𝑥𝑡,𝑠𝑡+1)∈𝑋𝑡(𝑠𝑡

𝑛,𝑤𝑡
𝑛)

𝑐𝑡. 𝑥𝑡 + �̂�𝑡+1
𝑛 (𝑊𝑡+1)                                  (5.7) 

Step 4: Increase 𝑡 by 1. If 𝑡 ≤ T, then go to step 3. 

Step 5: Use the information obtained by solving the approximate subproblems to update 

the value function approximations. The update function uses the Robbins and Monro 
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(1951) scheme to stochastically approximate the value function vectors. It can be viewed 

as a function that maps the value function approximations, the state vectors, the 

realization of the random parameters at iteration n to the value function approximations at 

iteration n +1. 

Step 6: Increase n by 1 and go to step 2.  

5.2 ADP Algorithm for the MPSRP  

The ADP algorithm uses the SDP or MDP formulation of the MPSRP presented 

in Section 4.3 of Chapter 5 as its basis. However, instead of solving the cost-to-go 

function exactly to optimality, the ADP algorithm approximates the value of the 

contributions from future stages in order to overcome the curses of dimensionality and 

make the problem tractable. The subsequent sections outline the details of the 

approximation method used by the ADP algorithm for the MPSRP problem. 

5.2.1 Value Function Approximation 

We are interested in finding a policy that maximizes the expected contribution 

over all the time periods. By the principle of optimality, we can find the optimal policy 

by solving: 

𝑉𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′ ) = 𝔼{𝑉𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝑅𝑟𝑡, 𝐽𝑗𝑡)|𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′}                               (5.8) 

Where,  

𝑉𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, 𝑅𝑟𝑡, 𝐽𝑗𝑡) = 
𝑚𝑎𝑥

𝑥𝑡
  𝐶𝑡𝑋𝑡 + 𝑉𝑡+1(𝑆𝑟𝑗𝑡+1

′ , 𝑆𝑗𝑡+1
′′ )                       (5.9) 
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We replace the value function 𝑉𝑡+1with a suitable approximation denoted by �̂�𝑡+1. 

Now we solve the following problem for one Monte Carlo sample of 𝑅𝑟𝑡 & 𝐽𝑗𝑡 (denoted 

by �̂�𝑟𝑡 & 𝐽𝑗𝑡): 

�̃�𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, �̂�𝑟𝑡, 𝐽𝑗𝑡) = 
𝑚𝑎𝑥

𝑥𝑡
  𝐶𝑡𝑋𝑡 + �̂�𝑡+1(𝑆𝑟𝑗𝑡+1

′ , 𝑆𝑗𝑡+1
′′ )                          (5.10) 

The above problem is referred to as the approximate subproblem for time 

period 𝒕. We let �̃�𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, �̂�𝑟𝑡, 𝐽𝑗𝑡) be the optimal objective value of the approximate 

subproblem. Starting with a set of value function approximations and an initial state 

vector, we sequentially solve one subproblem for each time period using one sample 

of 𝑅𝑟𝑡 & 𝐽𝑗𝑡. 

We have to devise a method for solving (5.10) to update and improve the value 

function approximations �̂�𝑡. After the updating procedure, we obtain a new set of value 

function approximations. Then we solve all the subproblems using the new value 

function approximations and new sample realizations. 

 

5.2.2 Linear Value Function Approximation 

We take our value function approximations to be 

�̂�𝑡(𝑆𝑟𝑗𝑡
′ ) =  ∑ ∑ �̂�𝑟𝑗𝑡(𝑆𝑟𝑗𝑡

′ )

𝑗𝑟

                                                   (5.11) 



53 

 

�̂�𝑡(𝑆𝑗𝑡
′′) =  ∑ �̂�𝑗𝑡(𝑆𝑗𝑡

′′)

𝑗

                                                   (5.12) 

Where each  �̂�𝑟𝑗𝑡 is a linear function �̂�𝑟𝑗𝑡(𝑆𝑟𝑗𝑡
′ ) =  𝑣𝑟𝑗𝑡𝑆𝑟𝑗𝑡

′ . Similarly, each �̂�𝑗𝑡 is a 

linear function �̂�𝑗𝑡(𝑆𝑗𝑡
′′) =  𝑣𝑗𝑡𝑆𝑗𝑡

′′. Then the approximate subproblem (5.12) can be written 

as: 

�̃�𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, �̂�𝑟𝑡, 𝐽𝑗𝑡) = 

𝑚𝑎𝑥 ∑ ∑ 𝐼𝑊𝐹𝑟𝑗𝑥𝑟𝑗𝑡

𝑗∈𝐽𝑟∈𝑅

+ ∑ 𝐶𝑊𝐹𝑗

𝑗∈𝐽

𝑦𝑗𝑡 − ∑ 𝑐𝑟
𝑖  𝐼𝑟𝑡

𝑟∈𝑅

− ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑗∈𝐽

+ (∑ ∑ 𝑣𝑟𝑗𝑡+1

𝑗∈𝐽𝑟∈𝑅

𝑆𝑟𝑗𝑡+1
′ )  + (∑ 𝑣𝑗𝑡+1

𝑗∈𝐽

𝑆𝑗𝑡+1
′′ )      

But, 

𝑆𝑟𝑗𝑡+1
′ = 𝑥𝑟𝑗𝑡           ∀ 𝑗𝜖𝐽, 𝑟𝜖𝑅  

𝑆𝑗𝑡+1
′′ = 𝑦𝑗𝑡             ∀ 𝑗𝜖𝐽     

Hence we rewrite (5.14) as: 

�̃�𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, �̂�𝑟𝑡, 𝐽𝑗𝑡) = 
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𝑚𝑎𝑥 ∑ ∑ 𝐼𝑊𝐹𝑟𝑗𝑥𝑟𝑗𝑡

𝑗∈𝐽𝑟∈𝑅

+ ∑ 𝐶𝑊𝐹𝑗

𝑗∈𝐽

𝑦𝑗𝑡 − ∑ 𝑐𝑟
𝑖  𝐼𝑟𝑡

𝑟∈𝑅

− ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑗∈𝐽

+ (∑ ∑ 𝑣𝑟𝑗𝑡+1

𝑗∈𝐽𝑟∈𝑅

𝑥𝑟𝑗𝑡)  

+ (∑ 𝑣𝑗𝑡+1

𝑗∈𝐽

𝑦𝑗𝑡)    

Therefore, the approximate subproblem at time period 𝑡 can be defined as: 

𝑚𝑎𝑥 ∑ ∑(𝐼𝑊𝐹𝑟𝑗+𝑣𝑟𝑗𝑡+1)𝑥𝑟𝑗𝑡

𝑗∈𝐽𝑟∈𝑅

+ ∑(𝐶𝑊𝐹𝑗

𝑗∈𝐽

+𝑣𝑗𝑡+1)𝑦𝑗𝑡 − ∑ 𝑐𝑟
𝑖  𝐼𝑟𝑡

𝑟∈𝑅

− ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑗∈𝐽

    (5.13) 

5.2.3 Updating Value Function Approximations 

Let us assume that at iteration 𝑛, �̂�𝑟𝑡
𝑛  is the sequence of supply realizations, 𝐽𝑗𝑡

𝑛  is 

the sequence of demand realizations. Let �̂�𝑡
𝑛 be the sequence of value function 

approximations. Let 𝑆𝑟𝑗𝑡
′𝑛  and 𝑆𝑗𝑡

′′𝑛 be the sequence of system states generated by solving 

approximate subproblems of the following form by using current value function 

approximations, supply realizations and demand realizations: 

�̃�𝑡(𝑆𝑟𝑗𝑡
′ , 𝑆𝑗𝑡

′′, �̂�𝑟𝑡, 𝐽𝑗𝑡) =  

𝑚𝑎𝑥 ∑ ∑(𝐼𝑊𝐹𝑟𝑗+𝑣𝑟𝑗𝑡+1)𝑥𝑟𝑗𝑡

𝑗∈𝐽𝑟∈𝑅

+ ∑(𝐶𝑊𝐹𝑗

𝑗∈𝐽

+𝑣𝑗𝑡+1)𝑦𝑗𝑡 − ∑ 𝑐𝑟
𝑖  𝐼𝑟𝑡

𝑟∈𝑅

− ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑗∈𝐽

        (5.14) 
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At each period our objective is to approximate the value of each feasible state. At 

each period, the VF approximation of the next state is calculated by the approximate 

subproblem. In order to get VF approximations of other feasible states, we calculate the 

reduced costs of each feasible resource – job assignment pair. For linear approximations, 

the VF approximation of each state is described by a single slope. At each period, we 

change the state variable and rerun the approximate subproblem for each feasible state. 

The change in objective function value is the contribution of each feasible state. We use 

𝑒𝑟𝑗 and 𝑒𝑗  to denote the modification of the state variables and rerun the approximate 

subproblem as shown below: 

𝜑𝑡
𝑛(𝑒𝑟𝑗) =  �̃�𝑡(𝑆𝑟𝑗𝑡

′ ~𝑒𝑟𝑗, �̂�𝑟𝑡, 𝐽𝑗𝑡) −  �̃�𝑡(𝑆𝑟𝑗𝑡
′ , �̂�𝑟𝑡, 𝐽𝑗𝑡)                      (5.15) 

𝜑𝑡
𝑛(𝑒𝑗) =  �̃�𝑡(𝑆𝑗𝑡

′′~𝑒𝑗 , �̂�𝑟𝑡, 𝐽𝑗𝑡) −  �̃�𝑡(𝑆𝑗𝑡
′′, �̂�𝑟𝑡, 𝐽𝑗𝑡)                            (5.16) 

𝜑𝑡
𝑛(𝑒𝑟𝑗) and 𝜑𝑡

𝑛(𝑒𝑗) can be likened to the reduced cost of each assignment. It is 

an estimate of how much the objective function will change when the state variable 

changes. We assume each linear value function approximation component  (�̂�𝑟𝑗𝑡
𝑛  and 

�̂�𝑗𝑡
𝑛) is characterized by slopes  �̂�𝑟𝑗𝑡

𝑛  and  �̂�𝑗𝑡
𝑛  respectively. We update our estimate of the 

value function approximation using the following equation to obtain the slope of the 

value function approximation component �̂�𝑟𝑗𝑡
𝑛+1and 𝑣𝑗𝑡

𝑛+1.  𝛼𝑛 is the step size at 

iteration 𝑛: 

𝑣𝑟𝑗𝑡
𝑛+1 = (1 − 𝛼𝑛)𝑣𝑟𝑗𝑡

𝑛 + 𝛼𝑛 𝜑𝑡
𝑛(𝑒𝑟𝑗)                                             (5.17) 

𝑣𝑗𝑡
𝑛+1 = (1 − 𝛼𝑛)𝑣𝑗𝑡

𝑛 + 𝛼𝑛 𝜑𝑡
𝑛(𝑒𝑗)                                             (5.18) 
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5.3 ADP Algorithmic Framework for the MPSRP 

Step 1: Initialize the iteration counter for the algorithm by letting 𝑛 = 1. Choose initial 

value function approximations for the first iteration, �̂�𝑡
1(𝑆𝑟𝑗𝑡

′ ) and �̂�𝑡
1(𝑆𝑗𝑡

′′). 

Step 2: Initialize the time period by letting 𝑡 = 1. Initialize the state vector 𝑆𝑟𝑗𝑡
′𝑛  and 𝑆𝑗𝑡

′′𝑛 to 

reflect the initial state of the system. 

Step 3: Sample a realization of the exogenous information processes, �̂�𝑟𝑡, 𝐽𝑗𝑡 and solve 

the approximate sub-problem for 𝑡. 

𝑚𝑎𝑥 ∑ ∑(𝐼𝑊𝐹𝑟𝑗+𝑣𝑟𝑗𝑡+1)𝑥𝑟𝑗𝑡

𝑗∈𝐽𝑟∈𝑅

+ ∑(𝐶𝑊𝐹𝑗

𝑗∈𝐽

+𝑣𝑗𝑡+1)𝑦𝑗𝑡 − ∑ 𝑐𝑟
𝑖  𝐼𝑟𝑡

𝑟∈𝑅

− ∑ 𝑐𝛿
𝑗
 𝛿𝑗𝑡

𝑗∈𝐽

 

Step 4: Increase 𝑡 by 1. If 𝑡 ≤ T, then go to step 3. 

Step 5: Use the information obtained by solving the approximate subproblems to update 

the value function approximations. It can be viewed as a function that maps the value 

function approximations, the state vectors, the realization of the random parameters at 

iteration n to the value function approximations at iteration n +1. 

𝑣𝑟𝑗𝑡
𝑛+1 = (1 − 𝛼𝑛)𝑣𝑟𝑗𝑡

𝑛 + 𝛼𝑛 𝜑𝑡
𝑛(𝑒𝑟𝑗)                                  (5.19) 

𝑣𝑗𝑡
𝑛+1 = (1 − 𝛼𝑛)𝑣𝑗𝑡

𝑛 + 𝛼𝑛 𝜑𝑡
𝑛(𝑒𝑗)                                      (5.20) 

Step 6: Increase iteration counter n by 1 and go to step 2.  
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5.4 Alternative ways to update the value function 

The commonly used method to update the value function is the Robbins and 

Monro (1951) stochastic approximation scheme. This scheme is the same as the simple 

exponential smoothing technique without trend, seasonal components and adaptive 

mechanisms. Such a model uses only the historical information of the time series (value 

function approximations in our case) to estimate future values. There are alternate forms 

of exponential smoothing models that can also be considered in our update function. The 

following are some forms: 

 Holt’s Model: 

o This is the simple exponential smoothing model with a linear trend 

added in. The trend is the average rate of change in the value function 

approximation from one period to another.  

 Winter’s Additive Model: 

o If the value function approximations are subject to an additive seasonal 

factor, for example, increase in attrition during a specific quarter every 

year, then Winter’s additive model accounts for it. We deseasonalize 

the time series to remove the impact of seasonality. 

 Winter’s Multiplicative Model: 

o This model is similar to that of the previous model, except that this 

model accounts for multiplicative seasonal factors that impact the time 

series (i.e., value function approximations). 
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5.5 Rollout Algorithms 

Other solution methodologies applied to stochastic dynamic problems are 

heuristic based rollout algorithms (Bertsekas & Castanon, 1999; Bertsekas, Tsitsiklis, & 

Wu, 1997). Rollout algorithms are based on the policy iteration methods of DP as 

opposed to value iteration that is used is reinforcement learning and OR based ADP 

algorithms. These algorithms use heuristic versions of policy iteration to approximate the 

cost-to-go function which are used to guide decision making in the current state. Rollout 

policies are implemented within an ADP algorithm that looks ahead one step and solves 

the subproblem using a heuristic.  

From a current state and for a given action, the one-step rollout policy transitions 

to all possible states that might be observed at the next stage of the problem. From each 

pre-decision state we execute the heuristic to obtain a policy along with its value. In a 

one-step rollout algorithm, the estimate of the cost-to-go function when selecting an 

action in a state is the expected value of the policies obtained in all possible states at the 

next decision point. For each feasible action a, one-step rollout executes the heuristic |(s, 

a)| times (where is the s is the number of states). Hence one-step rollout still suffers from 

the curse of dimensionality and will not be applicable to large problems. Another 

characteristic of rollout algorithms that differentiates them from ADP algorithms is that 

they use a heuristic, as opposed to a mathematical model, at each decision point. 
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5.6 The Information Observation Process & Sequence of Management Action 

The ADP solution procedure can be implemented in different ways based on the 

manner in which resource planning decisions are structured in practice. Specifically, it is 

related to the sequence of observing realized information about the state of the system 

and decision making. In the MPSRP, information about available resources and realized 

jobs is observed in each period of the planning horizon. The management decision 

involved is that of assigning available internal resources or contingent resources to the 

realized jobs in each period in order to maximize their contribution.  Hence there are two 

steps in the resource planning process (a) information observation, and (b) management 

action. There are three different ways in which information observation and management 

actions can be sequenced in each period. 

5.6.1 Observe information first & make decisions 

In this method, resource and job availabilities are observed first at the beginning 

of each period. Based on the observed realizations, management decisions are 

implemented to match resources to jobs. This approach is referred to as the “wait-and-

see” approach where no planning is considered and assignment decisions are made on 

realizations of resource and job availabilities. This is the ideal situation where the 

decision maker makes resource assignments with perfect information. However, such a 

situation is not realistic as the decision maker needs to plan for resources to fill job 

requirements and decisions have to be made before information is observed.  
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5.6.2 Make decisions first and observe information 

In this case, resource planning decisions are made prior to information 

observation and the assignments are planned based on the decision maker’s point 

estimates. Sample data are used to calculate point estimates, such as the mean 

availabilities of resources, and they serve as a best estimate of the random parameter. 

Such a scenario might arise when the resource planning is completed prior to the start of 

the planning horizon and actual realizations of information cannot be observed. The 

accuracy of decisions made in this method depends on the accuracy of the point 

estimates.  

5.6.3 Delayed observation of information  

Information about certain features of the problem setting may not be observable at 

the beginning of each period in the planning horizon. For example, information about the 

availability of resources at the beginning of each time period can be incomplete as 

attrition can occur during the course of that period. The decision maker will have 

accurate information about resource availability only at the end of the period. Job 

availability, on the other hand, is different – jobs that are already won will be available to 

be staffed over their duration in the planning horizon. In such a case, at the beginning of 

each period the decision maker will be able to observe job availability but not resource 

availability. Such a scenario is labeled as a “resource planning” approach where planning 

decisions have to be made before observing all the information needed to make decisions. 

Hence assignment decisions for the current period have to be made based on either the 

availabilities of resources in the previous period or their point estimates for the current 
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period. In this thesis we focus on developing an ADP algorithm for the case with resource 

information delay.  

5.7 ADP Training & Testing Phases 

 

 

Figure 5.1 – Outline of the ADP Algorithmic Framework 

This section presents an outline of the ADP training and testing phases. Phase 1 of 

ADP is a training phase where the algorithm is trained, over multiple iterations, using the 

static assignment contributions and Monte Carlo samples of resource and job 
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availabilities. In each iteration of the training phase, a N-period subproblem is built using 

the Monte Carlo sample for that iteration and the updated value function vectors from the 

previous iteration (the first iteration uses only the contribution matrix). Let’s refer to the 

solution value of the subproblem as SUB. In order to update the contribution of each 

resource-job pair, a sensitivity model is run to get the reduced cost of each pair. The 

updated contribution of each resource-job pair is required to approximate the cost-to-go 

function of the Bellman equation. Let’s refer to the solution value of the sensitivity run as 

SEN. The sensitivity run is designed as follows: the optimal solution from the 

subproblem (in each period for each iteration) is our reference solution. In order to obtain 

the reduced cost of each available resource-job pair, we either turn ON or turn OFF each 

pair in the subproblem and run the sensitivity model. That is, for optimal resource-job 

assignments which would be ON in the subproblem, we turn it OFF in the sensitivity run. 

Similarly, for sub-optimal resource-job assignments which would be OFF in the 

subproblem, we turn it ON in the sensitivity run. The reduced cost is calculated as seen in 

equation (5.18): 

𝜑𝑡
𝑛(𝑒𝑟𝑗) =  �̃�𝑡(𝑆𝑟𝑗𝑡~𝑒𝑟𝑗, �̂�𝑟𝑡, 𝐽𝑗𝑡) −  �̃�𝑡(𝑆𝑟𝑗𝑡, �̂�𝑟𝑡, 𝐽𝑗𝑡)                         (21) 

For the ON runs, we calculate: 

𝜑𝑡
𝑛(𝑒𝑟𝑗) = 𝑆𝐸𝑁 − 𝑆𝑈𝐵                                                       (22) 

For the OFF runs, we use:  

𝜑𝑡
𝑛(𝑒𝑟𝑗) = 𝑆𝑈𝐵 − 𝑆𝐸𝑁                                                      (23) 
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This is because the ON runs measure decrease in contribution due to a suboptimal 

assignment pair. The pair is OFF in the subproblem and is turned ON in the sensitivity 

run. The SEN objective value will reduce due to the suboptimal pair being forced on and 

will be lower than the subproblem objective value. In contrast, the OFF runs measure 

gain in contribution due an optimal assignment pair. The pair is ON in the subproblem 

and is turned OFF in the sensitivity run. The SEN objective value will decrease and we 

are able to measure the reduced cost of the optimal pair. This is done for each available 

resource-job assignment pair in the period for the specific sample path being used.  

 

Table 5.1 – Value Function Update Mechanism 

 

In this manner, the ADP algorithm is trained via each of the sample paths and is 

used to update the value functions of each resource-job pair. 𝜑𝑡
𝑛(𝑒𝑟𝑗), as seen in (5.18), is 

used to obtain the reduced cost of each resource-job pair and to approximate their 

contributions and update their value functions. The updated value function vectors at the 

end of the training phase is input to the testing phase. New Monte Carlo testing samples 
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are input to the testing phase along with the value function vectors to provide resource 

planning decision support.  

5.8 Summary 

Reinforcement learning in artificial intelligence and ADP in operations research 

provides approximate algorithmic frameworks for these problems. Contrasting with RL, 

the ADP methodology found in the OR area is heavily based on mathematical 

programming methods. While RL methods are often labeled as “model-free” to indicate 

that they do not need the theoretical MDP model, we extend that definition to include 

mathematical programming models as well. While RL depends on function fitting 

methods such as regression and neural networks (Gosavi, 2003) to define the 

approximate sub-problem, the ADP framework develops and solves mathematical models 

(Powell & Topaloglu, 2006). The advantages of the ADP framework, based on 

mathematical models, can be seen from its application to large scale problems from 

practice (Topaloglu & Powell, 2006). Moreover, since it includes the impact of current 

decisions on future outcomes, ADP clearly provides better decision support when 

compared to deterministic models, rolling horizon models and open-loop simulation 

optimization.  
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6. COMPUTATIONAL EXPERIMENTS 

6.1 Experimental Design 

We use a three-level full factorial design to evaluate the performance of the ADP 

and RH algorithms. We vary four factors in our experiments and their explanations are 

given in Table 6.1. 

Table 6.1 - Factors included in the experimental design 

Factor Factor Explanation Value 

|J| The Number of Jobs to be staffed {15, 30, 50} 

|R| The Number of internal workforce resources available {5, 10, 20} 

RP Job Reassignment Penalty {10%, 25%, 50%} 

IP Internal Resource Idle Penalty {50%, 75%, 100%} 

The size of the MPSRP problem is influenced by the number of jobs |J|, the 

number of internal workforce resources |R| and the planning horizon. In our experiment, 

|J| is chosen from the set {15, 30, 50} and |R| is chosen from {5, 10, 20}. The planning 

horizon is fixed to be 8 periods. The job reassignment penalty is a percentage of the job 

value contribution per period. The internal resource idle penalty is a percentage of the 

IWF resource cost incurred by the company per period. The CWF contribution is set to 

25% of the job value contribution per period. The nine size combinations and nine 

penalty combinations gives rise to a total of 81 experimental combinations. 
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6.2 Sample Path Generation 

Sample paths for resource and job availabilities are generated using Monte Carlo 

simulation. The market type indicates the value of the jobs that are being bid on. In this 

dissertation we consider a regular market where 20% of the jobs are low priced, 70% are 

medium priced and 10% are high priced. The win probabilities of these job categories, in 

a regular market, are as follows: 

Table 6.2 - Job win probabilities 

Job Type Win Probability 
Percentage (Regular 

Market) 

Low Priced Job 0.90 - 1 20% 

Medium Priced Job 0.70 - 0.90 70% 

High Priced Job 0 - 0.70 10% 

Based on the stated ranges, the win probability for each job is generated using a 

uniform distribution. Additionally, each job has a time window randomly generated from 

a uniform distribution within which it is expected to be won by the company. Within its 

time window, a job has its specified win probability and it reduces to zero outside of it. 

The job durations are fixed to 6 periods. The resource attrition probabilities are as 

follows: 

Table 6.3 - Internal resource attrition probabilities 

Resource Type Attrition Probability Percentage 

Low Attrition Resources 0 - 0.10 20% 

Medium Attrition Resources 0.10 - 0.25 70% 

High Attrition Resources 0.25 - 0.35 10% 
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We generate 100 training sample paths and 100 testing sample paths using Monte 

Carlo simulation for both resource and job availabilities. ADP is first trained using the 

training sample paths and the updated value function vectors from the training algorithm 

are tested using the testing sample paths. We use the step size 𝛼𝑛 = 20/(40 + 𝑛) at sample 

path 𝑛. RH is implemented using the testing sample paths and the point estimates. 

6.3 Benchmark Solution Approach: Rolling Horizon 

The rolling horizon procedure uses point estimates of future supply and demand 

realizations. An n-period rolling horizon solves an n-period deterministic IP for every 

time period. For the first time period we use the actual resource and job realizations of 

the current sample path at time t and the next n-1 time periods use the expected values of 

the realizations. Once this IP is solved, we implement decisions of the first time period 

and proceed to solve the problem for time period t+1 with the boundary conditions 

changed appropriately. 

6.3.1 Generating Point Estimates for Rolling Horizon 

Rolling horizon makes use of point estimates for fixing future availabilities of 

jobs and resources deterministically. We use a threshold of 0.75 for job win probabilities 

and 0.20 for resource attrition probabilities for the deterministic rolling horizon 

procedure. For example, if a job’s win probabilities is greater than 0.75 the decision 

maker will assume that job to be won and will include it in his staffing plans. If the job’s 

win probability is less than the decision maker’s threshold, the job will be assumed to be 
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lost. IWF resource availability is also determined in a similar manner by the decision 

maker.  

6.3.2 Delayed Observation of Resource Availability 

As mentioned earlier in section 5.6.3, this thesis deals with the case where job 

availabilities are observed at the start of a period but resource availabilities are only 

completely observed at the end of a period. In this manner we make provision for 

resource attrition to occur during the course of any planning period.  

6.3.2.1 ADP Implementation 

We blindfold the ADP testing phase to resource attrition and purely depend upon 

the updated VF vectors from the training phase to guide the ADP testing phase. After the 

actual resource availabilities are realized for the period, the assignments are validated. If 

a job was assigned to an unavailable resource, the job is sent to CWF on an urgent basis. 

After the post-decision updates are completed for the period, the assignments are fixed 

and the ADP procedure moves on to the next period.  

 6.3.2.2 Rolling Horizon Implementation 

At the start of each period the job availabilities for that period are observed. 

Based on the observed information for the current period, the point estimates can be 

updated. If a job starts this period, its point estimates is updated to be available for the 

job’s duration if it assumes the job to be unavailable.  If a job did not start in the current 

period but the point estimate assumes that it starts, then the point estimate is modified to 
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be unavailable. In this way, the job point estimates are updated at the start of each period. 

The resource point estimates cannot be updated at the start of a period as accurate 

resource information is not observable yet. The availability of a resource over a period is 

only precisely observable at the end of the period. Hence the RH procedure uses the 

resource point estimates without updating them. The problem is solved, for each period, 

using the updated job point estimates and the static resource point estimates.  

After the current period’s problem is solved and the assignments are made, the 

resource availabilities can be observed at the end of the period. Now, the assignments that 

were made using the resource point estimates can be validated. There are 3 possible 

conditions based on the actual resource realizations: 

1. The resource point estimate assumes that a resource is unavailable while 

in reality the resource was available to be staffed. In this case, the resource 

is considered to be idle and an idle penalty is imposed on the objective 

value. 

2. The resource point estimate assumes that a resource is available and 

assigns it to a job. However, the resource is unavailable in reality. In this 

case, the assignment is considered to be invalid. The job is sent to the 

CWF on an urgent basis. 

3. The point estimates assumes that a resource is available but leaves the 

resource unassigned, thus incurring an idle penalty. If the resource is not 

available in reality, then the idle penalty is removed. 
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In this manner, after the assignments are made in each period, they are updated 

based on actual realizations of resource information. After the update is completed, the 

current period’s assignments are fixed and the RH proceeds to solve the next period’s 

problem following the same procedure as the previous period. 

6.4 Computational Results 

The algorithms are implemented in ILOG CPLEX 12.5.1. The experiments were 

run on two different machines. The ADP training phase was run on a machine with an 

Intel core i-7 processor at 3.40 GHz with 32 gigabytes of RAM. The ADP testing phase 

and the RH procedure was run on a machine with an Intel core i-5 processor at 2.50 GHz 

and 16 gigabytes of RAM. 

6.4.1 Summary of Key Observations 

No. of 

Resources 
No. of 

Jobs 

RH Mean Obj. Value ADP Mean Obj. Value 
Mean ADP - 

RH Gap 

Mean 

Relative 

Percentage 

Gap 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 
5 15 $2,555,121 $270,638 $3,366,253 $592,634 $811,132 31.75% 
5 30 $4,810,941 $270,159 $5,837,759 $723,361 $1,026,818 21.36% 
5 50 $9,151,764 $278,698 $10,236,626 $787,782 $1,084,861 11.82% 
10 15 $2,535,074 $539,736 $3,117,662 $679,454 $582,588 23.38% 
10 30 $5,041,450 $502,777 $6,360,408 $978,498 $1,318,958 26.23% 
10 50 $9,787,938 $545,235 $11,484,262 $1,315,615 $1,696,324 17.21% 
20 15 $769,390 $1,118,755 $665,337 $1,140,602 -$104,052 -20.20% 
20 30 $5,882,393 $919,539 $6,253,479 $1,184,688 $371,086 5.97% 
20 50 $11,570,076 $1,015,648 $12,625,090 $1,934,410 $1,055,014 8.74% 

 

Table 6.4 - Summary Results of Computational Experiments by Problem Size 

OBSERVATION 1: The ADP algorithm outperforms the RH procedure in 8 of the 9 size 

combinations. RH performs better than ADP in the case where there are a greater number 
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of IWF resources than jobs that need to be staffed. Table 6.4 exhibits the summary results 

by problem size. RH performs well when demand is low and supply is high. Upon 

investigation, we found that, in this case, RH relies less on CWF, more on low risk IWF 

resources and incurs less job reassignment penalty. 

 

Figure 6.1 - Mean Objective Values by Reassignment Penalty & Idle Penalty 

OBSERVATION 2: There is an inherent trade-off between the job reassignment penalty 

and the idle IWF resource penalty. RH incurs higher idle IWF resource penalty and ADP 

incurs higher job reassignment penalty. 
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Figure 6.1 shows the difference in mean objective values for ADP and RH over 

the various penalty combinations. The gap between ADP and RH can be referred to as the 

ADP-RH gap and it indicates the extent to which ADP outperforms RH. The ADP-RH 

gap decreases when job reassignment penalty increases and increases when IWF idle 

penalty increases. RH is marginally better than ADP when reassignment penalty is high 

and idle penalty is low. Tables 6.5 through 6.7 provide detailed results broken down by 

the reassignment penalty level and they clearly show the trade-off between the idle 

penalty level and the job reassignment penalty level. The rolling horizon procedure incurs 

higher idle IWF resource penalty while ADP incurs higher job reassignment penalty. The 

experiments have been setup in a way that job reassignments are unavoidable. That is, 

since the number of jobs are greater than the number of IWF resources and IWF resource 

attrition is inevitable, job reassignments and the use of CWF is required. The two 

procedures differ in how they handle this situation and it is discussed in the next 

observation.  
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Job 

Reassignment 

Penalty 

Idle IWF 

Resource 

Penalty 
No. of IWF 

Resources 
No. of 

Jobs 
RH Mean 

Obj. Value 
ADP Mean Obj. 

Value 
Relative 

Gap 

LOW LOW 5 15 $2,964,670 $3,987,880 34.51% 
LOW MED 5 15 $2,687,340 $4,029,550 49.95% 
LOW HIGH 5 15 $2,410,010 $3,955,400 64.12% 
LOW LOW 10 15 $3,378,920 $3,969,470 17.48% 
LOW MED 10 15 $2,864,040 $3,718,600 29.84% 
LOW HIGH 10 15 $2,345,620 $3,401,290 45.01% 
LOW LOW 20 15 $2,325,760 $2,214,210 -4.80% 
LOW MED 20 15 $1,071,910 $947,796 -11.58% 
LOW HIGH 20 15 -$180,211 -$303,116 -68.20% 
LOW LOW 5 30 $5,208,680 $6,636,300 27.41% 
LOW MED 5 30 $4,920,120 $6,647,960 35.12% 
LOW HIGH 5 30 $4,631,560 $6,620,350 42.94% 
LOW LOW 10 30 $5,818,390 $7,419,540 27.52% 
LOW MED 10 30 $5,336,410 $7,468,950 39.96% 
LOW HIGH 10 30 $4,850,000 $7,426,740 53.13% 
LOW LOW 20 30 $7,350,950 $8,014,120 9.02% 
LOW MED 20 30 $6,534,640 $7,335,480 12.26% 
LOW HIGH 20 30 $5,669,450 $6,752,730 19.11% 
LOW LOW 5 50 $9,577,930 $11,096,200 15.85% 
LOW MED 5 50 $9,297,670 $11,178,200 20.23% 
LOW HIGH 5 50 $9,017,400 $11,207,100 24.28% 
LOW LOW 10 50 $10,631,600 $12,852,200 20.89% 
LOW MED 10 50 $10,147,900 $12,965,300 27.76% 
LOW HIGH 10 50 $9,674,120 $12,822,400 32.54% 
LOW LOW 20 50 $13,158,700 $15,023,100 14.17% 
LOW MED 20 50 $12,405,500 $14,753,300 18.93% 
LOW HIGH 20 50 $11,667,700 $14,522,800 24.47% 

 

Table 6.5 - Mean Objective Value & Gap for Low Reassignment Penalty Level 
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Job 

Reassignment 

Penalty 

Idle IWF 

Resource 

Penalty 

No. of 

IWF 

Resources 
No. of 

Jobs 
RH Mean 

Obj. Value 
ADP Mean 

Obj. Value 
Relative 

Gap 

MED LOW 5 15 $2,853,430 $3,601,040 26.20% 
MED MED 5 15 $2,576,090 $3,433,650 33.29% 
MED HIGH 5 15 $2,298,760 $3,329,440 44.84% 
MED LOW 10 15 $2,955,840 $3,598,830 21.75% 
MED MED 10 15 $2,603,520 $3,206,010 23.14% 
MED HIGH 10 15 $2,094,680 $3,051,770 45.69% 
MED LOW 20 15 $2,069,350 $1,959,420 -5.31% 
MED MED 20 15 $827,933 $791,120 -4.45% 
MED HIGH 20 15 -$429,557 -$624,294 -45.33% 
MED LOW 5 30 $5,116,170 $5,878,670 14.90% 
MED MED 5 30 $4,827,610 $5,837,950 20.93% 
MED HIGH 5 30 $4,539,050 $5,959,340 31.29% 
MED LOW 10 30 $5,575,670 $6,608,550 18.52% 
MED MED 10 30 $5,082,630 $6,380,670 25.54% 
MED HIGH 10 30 $4,598,410 $6,354,240 38.18% 
MED LOW 20 30 $6,799,780 $6,944,950 2.13% 
MED MED 20 30 $5,999,080 $6,394,880 6.60% 
MED HIGH 20 30 $5,158,730 $5,905,710 14.48% 
MED LOW 5 50 $9,454,210 $10,299,500 8.94% 
MED MED 5 50 $9,173,950 $10,010,600 9.12% 
MED HIGH 5 50 $8,893,690 $10,247,800 15.23% 
MED LOW 10 50 $10,344,300 $11,595,000 12.09% 
MED MED 10 50 $9,866,600 $11,691,500 18.50% 
MED HIGH 10 50 $9,384,290 $11,799,300 25.73% 
MED LOW 20 50 $12,458,500 $13,259,700 6.43% 
MED MED 20 50 $11,664,200 $12,553,700 7.63% 
MED HIGH 20 50 $10,905,500 $12,399,800 13.70% 

 

Table 6.6 - Mean Objective Value & Gap for Medium Reassignment Penalty Level 
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Job 

Reassignment 

Penalty 

Idle IWF 

Resource 

Penalty 
No. of IWF 

Resources 
No. of 

Jobs 
RH Mean 

Obj. Value 
ADP Mean 

Obj. Value 
Relative 

Gap 

HIGH LOW 5 15 $2,679,640 $2,815,690 5.08% 
HIGH MED 5 15 $2,401,740 $2,641,950 10.00% 
HIGH HIGH 5 15 $2,124,410 $2,501,680 17.76% 
HIGH LOW 10 15 $2,785,440 $2,833,170 1.71% 
HIGH MED 10 15 $2,220,550 $2,520,380 13.50% 
HIGH HIGH 10 15 $1,567,060 $1,759,440 12.28% 
HIGH LOW 20 15 $1,651,940 $1,638,820 -0.79% 
HIGH MED 20 15 $419,666 $296,878 -29.26% 
HIGH HIGH 20 15 -$832,283 -$932,798 -12.08% 
HIGH LOW 5 30 $4,973,860 $5,114,270 2.82% 
HIGH MED 5 30 $4,684,990 $5,101,600 8.89% 
HIGH HIGH 5 30 $4,396,430 $4,743,390 7.89% 
HIGH LOW 10 30 $5,191,730 $5,265,950 1.43% 
HIGH MED 10 30 $4,697,230 $5,277,480 12.35% 
HIGH HIGH 10 30 $4,222,580 $5,041,550 19.40% 
HIGH LOW 20 30 $5,866,340 $5,797,270 -1.18% 
HIGH MED 20 30 $5,189,300 $4,884,110 -5.88% 
HIGH HIGH 20 30 $4,373,270 $4,252,060 -2.77% 
HIGH LOW 5 50 $9,263,940 $9,477,500 2.31% 
HIGH MED 5 50 $8,983,670 $9,439,310 5.07% 
HIGH HIGH 5 50 $8,703,420 $9,173,420 5.40% 
HIGH LOW 10 50 $9,829,220 $10,107,100 2.83% 
HIGH MED 10 50 $9,346,950 $9,844,530 5.32% 
HIGH HIGH 10 50 $8,866,460 $9,681,030 9.19% 
HIGH LOW 20 50 $11,343,700 $10,621,500 -6.37% 
HIGH MED 20 50 $10,660,600 $10,607,200 -0.50% 
HIGH HIGH 20 50 $9,866,280 $9,884,710 0.19% 

 

Table 6.7 - Mean Objective Value & Gap for High Reassignment Penalty Level 
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Figure 6.2 - CWF Contribution by Reassignment & Idle Penalty Levels 

 

OBSERVATION 3: ADP utilizes more of the internal workforce to staff the jobs, while 

RH utilizes more of the external contingent workforce. ADP has higher IWF utilization. 

RH discards the high-risk IWF resources and depends more on CWF resources to 

staff jobs. RH gets a higher level of contribution from outsourcing the jobs to the CWF, 

especially when the reassignment penalty levels are low as seen in figure 6.2. Indeed, this 

is evident in the way RH makes use of point estimates. RH takes a safer route through its 

solution process by discarding high risk IWF resources i.e., resources with higher levels 
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of attrition probability. ADP, on the other hand, includes uncertainty into its solution 

process and uses more IWF resources than RH which is evident from figure 6.3. ADP 

does not discard high-risk IWF resources but rather intelligently balances the two 

penalties. Indeed, it is clear from the results that when job reassignment penalty is low, 

ADP uses more of IWF resources (which increases the likelihood of job reassignments 

due to IWF attrition) but reduces dependence on the IWF resources when the job 

reassignment penalty increases. 

 

Figure 6.3 - IWF Contribution by Reassignment & Idle Penalty Levels 
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OBSERVATION 4: RH incurs higher idle IWF resource penalty than ADP. It discards 

high risk IWF resources. 

One consequence of RH sending more jobs to the CWF is that it would have to 

keep IWF resources idle. This can be seen from figure 6.4 which shows the idle penalty 

incurred for RH and ADP. From the figure, it is not only clear that ADP incurs less idle 

penalty than RH, but ADP is intelligent in how it balances the job reassignment penalty 

and the idle IWF resource penalty. ADP’s idle penalty is high when reassignment penalty 

level is high. This indicates that ADP keeps more IWF resources idle for high 

reassignment penalty levels i.e., this implies that the jobs that have been sent to the CWF 

by ADP as a result of IWF attrition are not being brought back to the IWF to avoid the 

high reassignment penalty. However as reassignment penalty levels reduce, ADP incurs 

lesser idle IWF penalty indicating that it is reassigning jobs back to the IWF. This shows 

ADP’s balancing act of managing the job reassignment penalty and the idle resource 

penalty. RH’s idle penalty remains fixed regardless of the reassignment penalty which is 

evidence of the myopic nature of the procedure. This indicates a lack of sensitivity by the 

RH procedure to the IWF resource attrition. Discarding high risk IWF resources results in 

suboptimal assignments and higher levels of idle penalty for RH. 
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Figure 6.4 - Idle Penalty by Reassignment & Idle Penalty Levels 



80 

 

 

Figure 6.5 - Reassignment Penalty by Reassignment & Idle Penalties 

OBSERVATION 5: ADP’s propensity to use more IWF resources for staffing the jobs 

results in a higher number of reassigned jobs.  

This is the result of ADP using the updated value function vectors instead of point 

estimates. The point estimates used by RH discards the high risk resources which can 

result in lower reassignments but higher idle resources. ADP incurs higher levels of job 

reassignments but lower levels of idle resources. Figures 6.6 and 6.7 show the resource 

utilization for RH and ADP respectively. We can observe that RH utilizes similar 

percentages of IWF and CWF for various penalty levels. That is, its resource mix for 

staffing is the same regardless of the penalty faced. ADP, on the other hand, balances the 
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use of IWF and CWF resources against the penalty. ADP provides a better resource mix 

that takes into consideration the IWF attrition levels and the various penalty levels. 

 

 

Figure 6.6 - RH Resource Utilization by Reassignment & Idle Penalties 
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Figure 6.7 - ADP Resource Utilization by Reassignment & Idle Penalties 

OBSERVATION 6: As demand increases, ADP’s performance benefit over RH 

improves contingent on penalties 

A two-way between-groups analysis of variance was conducted to explore the 

impact of the number of jobs and reassignment penalty level on the ADP-RH gap. The 

interaction between the number of jobs and reassignment penalty level was significant (𝑝 

< 0.001). Both the number of jobs and the reassignment penalty level have significant 

main effects (𝑝 < 0.001). The interaction plot is shown in Figure 6.8. From the plot, it is 

clear that the gap reduces when reassignment penalty levels increase. We can also see 

that the gap is greater when the number of jobs under consideration for staffing increases.   
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Figure 6.8 - Two Way ANOVA: No. of Jobs & Reassign Penalty on ADP-RH 

Gap 

A second two-way between-groups analysis of variance was carried out to look at 

the impact of the number of jobs and idle penalty level on the ADP-RH gap. The 

interaction between the number of jobs and idle penalty level was not significant (𝑝 = 

0.902). There was a statistically significant main effect for the number of jobs (𝑝 = 

0.001), but not for the idle penalty level (𝑝 = 0.079). From the plot, it is clear that the gap 

increases as the idle penalty levels increase. We can also see that the gap is greater when 

the number of jobs to be staffed increases. That is, the contribution from the ADP is 

greater than RH when the two procedures have a greater number of jobs to contend with.  
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Figure 6.9 - Two Way ANOVA: No. of Jobs & Idle Penalty on the ADP-RH Gap 

 

OBSERVATION 7: ADP’s performance stochastically dominates the RH procedure, 

contingent on the reassignment and idle penalty levels 

Figures 6.10 through 6.12 show the ADH-RH gap over the 100 sample paths for 

the experimental combinations under consideration. These graphs exhibit the 

performance benefit of ADP over RH over each of the sample paths instead of the 

average performance over all sample paths. It is clear from the graphs that ADP 

completely dominates RH when the reassignment penalty is low. The performance 
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degrades when the penalty level increases, however for high levels of idle penalty ADP 

performance is superior even at high reassignment penalty. For instance, in Figure 6.12 

the gap reaches zero at about the 65th percentile for high idle penalty compared to the 

37th percentile for low idle penalty. This shows ADP’s ability to counteract the job 

reassignment penalty with the better IWF resource utilization. 

 

Figure 6.10 - ADP-RH Obj. Value Gap for Low Reassignment Penalty 
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Figure 6.11 - ADP-RH Obj. Value Gap for Medium Reassignment Penalty 

 

 

 
 

Figure 6.12 - ADP-RH Obj. Value Gap for High Reassignment Penalty 
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No. of 

Resources No. of Jobs 
ADP Training 

Phase (Minutes) 
ADP Testing 

Phase (Minutes) 
Rolling Horizon 

(Minutes) 
5 15 22.39 1.03 1.58 
10 15 97.56 1.90 3.40 
20 15 358.15 3.74 7.10 
5 30 88.45 2.04 3.34 
10 30 357.90 3.83 7.49 
20 30 1609.31 8.45 17.45 
5 50 264.57 3.65 6.90 
10 50 1013.05 7.58 14.53 
20 50 2276.64 16.56 36.89 

Table 6.8 - Run times for the ADP phases and the RH procedure 

Observation 8: Learning the approximation of the cost-to-go function during the ADP 

Training Phase is computational intensive. 

Idle IWF 

Resource 

Penalty Level 

Job 

Reassignment 

Penalty Level 

Job Threshold = 0.75 Job Threshold = 0.50 

RH Mean 

Obj. Value 

Mean 

Percentage 

ADP - RH 

Gap 

RH Mean 

Obj. Value 

Mean 

Percentage 

ADP - RH 

Gap 

LOW LOW $6,712,844 18.01% $6,721,476 17.93% 

LOW MED $6,403,028 11.74% $6,418,121 11.03% 

LOW HIGH $5,953,979 0.87% $5,954,504 0.80% 

MED LOW $6,140,614 24.72% $6,146,158 24.80% 

MED MED $5,846,846 15.59% $5,841,731 15.94% 

MED HIGH $5,400,522 2.17% $5,409,660 1.92% 

HIGH LOW $5,565,072 26.38% $5,574,379 27.10% 

HIGH MED $5,271,506 20.42% $5,268,729 20.86% 

HIGH HIGH $4,809,736 6.36% $4,832,766 5.45% 

Table 6.9 - RH Mean Objective Value for different job thresholds 

Observation 9: The performance benefit of ADP over RH holds when the job availability 

point estimate threshold for RH is varied. 
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The job availability threshold is used by the decision maker to fix future job 

availabilities for the deterministic RH procedure. In order to test the sensitivity of the RH 

solution to varying point estimate thresholds, a different RH run was implemented with a 

job availability threshold of 0.50. The results are summarized and compared with the 

original threshold of 0.75 in table 6.8. The performance of RH does not vary much with 

the lower threshold. This is because RH discards the high risk IWF resources and it is 

unable to improve its IWF utilization as seen from the following table.  

No. of 

Jobs 

No. of 

IWF 

Resources 

Mean RH IWF Job 

Assignments (Job 

Threshold = 0.75) 

Mean RH IWF Job 

Assignments (Job 

Threshold = 0.50) 

15 5 14.36 14.36 

15 10 32.46 32.59 

15 20 54.35 54.26 

30 5 14.50 14.50 

30 10 35.09 35.02 

30 20 79.20 79.40 

50 5 14.50 14.50 

50 10 35.42 35.39 

50 20 85.94 85.73 

Table 6.10 - RH IWF resource utilization for varying job availability thresholds 

 

6.5 Comments 

We have tested the ADP and RH algorithms on 81 MPSRP computational 

instances based on a full factorial experimental design. The results clearly show the 

superiority of ADP over RH in resource planning under uncertainty. ADP excels in 

solution quality including the objective value and in terms of IWF utilization. The data 

analysis reveals the trade-off that exists between job reassignment penalty and IWF idle 
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resource penalty. It is these two factors that have the highest impact on algorithmic 

performance. This is to be expected as both job uncertainty and resource attrition impact 

these factors and the two algorithms differ in the way they balance the uncertainties and 

penalties.  

ADP takes both job uncertainty and resource attrition into account in its training 

phase and provides updated value function vectors that reflect the inherent uncertainties. 

RH, on the other hand, discards high risk resources and does not consider them to be 

available. This is evident in the way RH sends most of the jobs to the CWF. However, by 

doing so it incurs a higher level of IWF idle penalty. Assigning jobs to the CWF is a safer 

option, since we do not consider any attrition for the CWF. However, this results in lower 

IWF utilization. ADP does not discard high risk resources but rather has a higher 

utilization of the IWF resources. This practice can result in higher job reassignments due 

to IWF attrition coming into play. Hence ADP has better IWF utilization, higher levels of 

profitability, and more job reassignments.  

The two-way analyses of variance conducted corroborates the results discussed 

above. It is also evident that ADP is better able to balance the two penalties than RH. 

While RH makes high use of CWF regardless of the reassignment penalty, ADP 

moderates its use based on the penalty level. ADP incurs higher idle penalty at the high 

level of reassignment penalty but the idle penalty incurred reduces at lower levels of 

reassignment penalty. This indicates that ADP intelligently decides against reassigning 

CWF jobs to the IWF when the penalty is high. When the reassignment penalty reduces, 

ADP brings back the CWF jobs to the IWF thus increasing IWF utilization.  
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7. SUMMARY AND CONCLUSIONS 

7.1 Resource Planning under Uncertainty 

The first objective of this research was to develop a model for resource planning 

in the service industry under the influence of uncertainty. With this aim in mind, we 

developed the MPSRP. The model contributes to the extant literature in several ways. 

First, it accounts for uncertainty in both resource and job availability. To the best of our 

knowledge, this is the first attempt at modeling uncertainty in both the supply and 

demand side of resource planning problems. Previous attempts at modeling multi-period 

resource planning either assumes the availabilities to be deterministic or considers partial 

uncertainty (either on the resource or job side). We also consider a complex staffing 

scenario where the potential set of jobs over the planning horizon is greater than the set of 

internal resources thus requiring the use of a contingent workforce. The CWF resources 

are less expensive than IWF resources but they also offer lower overall contribution.  

This problem setting addresses the key issue of obtaining the appropriate resource 

mix which can be described as follows: when a service organization faces attrition among 

its internal resources, how does it create project staffing plans and to what extent does it 

need to depend on a contingent workforce to meet its demand? Another factor that makes 

the problem scenario more realistic is the prohibition of job reassignments due to the 

highly technical nature of projects that are being staffed. Job reassignments will tend to 

occur in order to balance IWF attrition and the goal here is to develop staffing plans that 

minimizes such job reassignments and dependency on CWF resources. 
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7.2 Stochastic Approximate Dynamic Programming Algorithm 

The second goal of this research was to develop a tractable stochastic ADP 

algorithm for solving the MPSRP which is a complex combinatorial optimization 

problem. The exact dynamic programming algorithm is susceptible to the curses of 

dimensionality and is not suitable for solving real life problem sizes. ADP algorithms 

have been used intensively in recent years for overcoming the challenges faced by the 

exact DP solution methodology. The ADP algorithmic framework and the value function 

update procedures have been discussed in chapter 5.  

The ADP algorithm is trained using a set of Monte Carlo samples over which it 

learns the impact of job and IWF resource uncertainty. The updated value function 

vectors capture both the impact of uncertainty and the contribution of each resource-job 

assignment. We develop a unique training mechanism that rewards optimal and feasible 

(in terms of availability) IWF resource-job assignments, and penalizes sub-optimal and 

infeasible IWF resource-job assignments. The value function vectors that result from the 

training phase is tested using a different set of Monte Carlo samples.  The performance of 

the ADP algorithm is compared to that of a rolling horizon procedure, which is the 

commonly used approach to address multi-period problems.  

Computational experiments has provided evidence that the ADP algorithm is 

advantageous over the RH procedure both in terms of solution quality and IWF 

utilization. A key objective of a service organization in determining its project staffing 

plan is maximizing its IWF utilization. The resource planning support provided by ADP 

makes higher utilization of IWF resources and generates more contribution from them 
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when compared to the rolling horizon procedure. ADP’s performance improvement over 

RH also becomes higher when the number of jobs to be staffed increases. That is, when 

the resource planning situation become complex, ADP outperforms RH to a greater 

extent. 

The resource planning support provided by ADP makes maximal use of IWF 

resources, minimizes the dependency on CWF and generates higher profitability in the 

presence of resource and job uncertainty. ADP incurs a higher level of job reassignments 

but this is offset by the higher IWF utilization. This has a significant impact on the 

human resource recruiting policy and the need to develop the appropriate resource mix to 

satisfy probabilistic demand. Indeed, the intelligent balancing act provided by ADP to 

manage the reassignment and idle resource penalties offers appropriate levels of IWF and 

CWF job assignments under varying demand levels. 

The ADP framework lends itself well to implementation in real life business 

setting. A graphical user interface (GUI) frontend can be added to the ADP framework to 

obtain a user friendly Stochastic Resource Planning (SRP) tool. Such a system would 

remove the user from the technical details of the algorithm. The users of such a system 

can be the HR operations manager, project team leaders and top management. The data 

that the user would need to run the tool would be the set of resources and jobs under 

consideration, the length of the planning horizon, the IWF attrition probabilities and the 

job win probabilities.  The ADP training phase can be conducted in an offline setting. 

That is, using either estimated, historical or simulated data (IWF attrition probabilities 

and job win probabilities) the user can begin the training phase of the ADP algorithm. In 
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the case that a simulated dataset is used, a Monte Carlo simulator can be built into the 

SRP tool. The addition of a simulator would provide the opportunity for the user to study 

different supply and demand patterns, in addition to the estimated and historical data at 

hand. The training phase can be run before the onset of the planning horizon.  

Once the training phase is completed, its output (the updated VF vectors) can be 

input to the testing phase for resource planning. The testing phase can be conducted right 

before the start of each period of the planning horizon. The output of the testing phase 

will be a detailed resource plan that outlines the staffing requirements for the realized 

jobs in the current period. It will provide the specific mix of IWF and CWF required to 

staff all the jobs. Detailed information on the IWF resources who will be kept idle, job 

reassignments and the jobs outsourced to the CWF can be obtained. 

7.3 Future Research 

This research effort has laid the foundation for modeling multi-period resource 

planning in the presence of resource and job uncertainty. The MPSRP model and ADP 

algorithm has opened up possibilities of applying rigorous simulation based OR 

algorithms for solving this family of problems. Three lines of research related to this 

dissertation are possible in the future. 

First, from a modeling perspective, there is a need to study the impact of CWF job 

assignments. That is, in our current model we do not consider CWF attrition or job 

reassignments between the CWF resources. While it is critical for a service organization 

to focus on IWF utilization, attrition and reassignment among the CWF will impact the 
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contribution obtained from CWF assignments and will be worth investigating. It would 

also be useful to study variations in CWF contribution. That is, the CWF contribution 

might not always be positive. If the jobs are highly technical and require non-commodity 

skills (such as operations research, statistics, artificial intelligence), CWF resources might 

not be able to satisfactorily execute such jobs. Thus, it will be insightful to study the 

impact of zero or even negative CWF contributions. Another extension can be the 

assignment of a job to two or more resources which is quite reasonable and is 

encountered frequently in practice. Also, as discussed in chapter 2 it would be interesting 

to study the impact of FTE allocations on project staffing under uncertainty.  Finally, in 

this research we assume the project win probabilities and IWF resource attrition 

probabilities to be static over the planning horizon. Modeling changes in the probabilities 

over the planning horizon would be a beneficial extension to this work. 

Second, from an algorithmic perspective, there is room to develop training 

algorithms that exploit the problem structure and reduces computational time. As 

problem size increases, the current implementation of the ADP algorithm will become 

less desirable as it requires extensive effort for the training procedure. This is both an 

algorithmic issue and a modeling issue. There needs to be investigation into modeling the 

MPSRP into other forms such as network models, and also to modify the training 

mechanism such that it is more efficient. It would be beneficial to investigate the use of 

heuristics (for e.g., linear relaxation method) for the training phase as it is the most time 

consuming component of the ADP framework. The key issue here is obtaining and 

updating the value of each resource – job assignment pairs over the planning horizon. It is 
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also critical to focus on methods to update the value of assignment pairs that have low 

probabilities and are less feasible.  

Finally, from an application perspective, more real world applications can be 

modeled by the MPSRP. For example, our current formulation deals with project-

oriented demand where jobs are decomposed from projects and reassignments are not 

desired. The model can be modified to deal with process-oriented demand like call 

centers where jobs are independent and are not project based. In this case it is possible to 

remove the reassignment constraint. In fact, job reassignments will be encouraged in such 

a case with multi-skilled resource. It is a natural extension of this research and will make 

the MPSRP more generalizable. A different set of computational experiments that vary 

the point estimate thresholds based on the decision maker’s risk profile will be beneficial. 

The point thresholds are used by the decision maker to fix future resource and job 

availabilities for the deterministic RH procedure. It would be insightful to investigate the 

impact of different thresholds for resource and job availabilities. Another extension is the 

inclusion of project scheduling to the resource planning support. For example, the jobs 

that make up a project might need to be executed in phases due to dependencies. Our 

current assumption is that all the jobs of a projects can be executed in parallel as soon as 

they are won. There are cases where job 1 of a project need to be executed before work 

on job 2 can start, and so on. This is an important theoretical consideration that should be 

investigated. 
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Come, Thou fount of every blessing,  
tune my heart to sing Thy grace. 
Streams of mercy, never ceasing,  
call for songs of loudest praise. 

Teach me some melodious sonnet,  
sung by flaming tongues above;  

Praise His name, I'm fixed upon it,  
name of God's redeeming love. 

 
Hitherto, Thy love has blessed me,  
Thou hast drawn me to this place. 
And I know Thy hand will lead me,  

safely home by Thy good grace. 
Jesus sought me when a stranger,  
wandering from the fold of God;  
He to rescue me from danger,  

bought me with His precious blood. 
 

O to grace, how great a debtor,  
daily I'm constrained to be. 

Let Thy goodness, like a fetter,  
bind my wandering heart to Thee. 

Prone to wander, Lord I feel it,  
prone to leave the God I love;  

Here's my heart, O take and seal it,  
seal it for Thy courts above. 
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