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Abstract 30 

 The recently discovered presence of a species of Plasmodium infecting the 31 

endangered Galapagos penguin (Spheniscus mendiculus) potentially threatens their long-32 

term persistence. However, not much information is available on the transmission 33 

dynamics of Plasmodium in Galapagos or the impact of the parasite on infected penguins. 34 

The present work takes the model of the Galapagos penguin population devised by 35 

Vargas et al. (2007)—which did not include any impacts from disease—and adds a 36 

simple model of infection. Two variables—the probability of an individual becoming 37 

infected each year, and the increase in annual mortality caused by infection—define the 38 

dynamics of the disease component of the model; the stress from El Niño events could 39 

also affect infected individuals in different ways, and so three forms of stress-induced 40 

relapse are explored as well. The entirety of parameter space is explored for all three 41 

relapse scenarios. All the models show a high impact due to mortality from infection, and 42 

there are large parts of parameter space that have a 0% probability of persistence over the 43 

next 100 years. The probability of persistence decreases substantially if relapse events 44 

occur during all El Niño events, weak and strong. Increasing the breeding success of the 45 

population provides a modest benefit, but does not reverse the overall trend. In order to 46 

estimate the mortality that might be associated with Plasmodium infection, a comparison 47 

was made between census data from 1998–2009 and model predictions based on these 48 

same years. The models differed in their level of mortality from infection, and a range of 49 

plausible parameter values was determined from the best-fitting models; these ranged 50 

from 0–10% to 0–15%, depending on the type of relapse modeled. Even at these 51 
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relatively low levels of impact, Plasmodium infection still has the potential to drastically 52 

reduce the probability of persistence of the penguin population over the next 100 years. 53 

 54 

Introduction 55 

 It has long been feared that avian malaria would find its way to the Galapagos 56 

Islands (Wikelski et al. 2004). The introduction of avian malaria and a suitable vector 57 

have been implicated in the extinction of several endemic bird species in Hawaii over the 58 

past century (Warner 1968; Atkinson et al. 1995). Like Hawaii, the Galapagos Islands are 59 

home to many small populations of endemic birds, long isolated from the mainland 60 

(Harris 1973). These factors make disease-induced extinctions more likely (Castro and 61 

Bolker 2005). Therefore, the discovery by Levin et al. (2009) of a Plasmodium species 62 

infecting the endangered Galapagos penguin (Spheniscus mendiculus) represents a 63 

serious threat—not just to this particular species, but to the avifauna of the Galapagos 64 

Islands as a whole. 65 

 The Galapagos penguin is endemic to the archipelago, with a small population of 66 

about 1800 individuals (F. H. Vargas, pers. comm.), down from an initial survey of 4000 67 

individuals in 1970 (Vargas et al. 2005). Although the population experiences positive 68 

growth over the short term, the species has been experiencing a long-term decline over 69 

the past 40 years (Vargas et al. 2005). This is driven by the periodic occurrence of intense 70 

El Niño events. These events cause precipitous population declines, with over 50% 71 

reductions in the population, believed to be associated with reduced food availability 72 

(Vargas et al. 2006). In addition to reducing the size of an already small population, a 73 

stressful event such as El Niño could also worsen the effects of malaria infection 74 
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(Atkinson and van Riper 1991; Valkiunas 2005). Another cause for concern is that related 75 

species of Spheniscus penguins in captivity have shown high susceptibility to and 76 

mortality from Plasmodium infection (Stoskopf and Beier 1979; Cranfield et al. 1990; 77 

Fix et al. 1988). This vulnerability may be exaggerated in the Galapagos penguin 78 

population due to its low major histocompatibility complex (MHC) variation, which is an 79 

indicator of immune system strength against disease (Bollmer et al. 2007). The penguins’ 80 

small population, their potential vulnerability to Plasmodium infection, and the periodic 81 

occurrence of devastating El Niño events all suggest that the Galapagos penguin could be 82 

severely threatened by the presence of malaria in Galapagos. 83 

 Unfortunately, little is known about the characteristics of malaria in Galapagos or 84 

how the penguins respond to it. Infected penguins were initially discovered by using PCR 85 

to amplify parasite DNA within samples of the host’s blood. Using this technique, 86 

infected penguins have been found on the islands of Isabela, Fernandina, and Santiago, 87 

with a total prevalence of 5% (Levin et al. 2009). However, an enzyme-linked 88 

immunosorbent assay (ELISA), which is used to detect previous exposure to 89 

Plasmodium, was conducted on a subset of the same birds and found about 95% of the 90 

sample had been exposed (Palmer et al. in preparation). There is also reason to suspect 91 

that the Galapagos penguin is an unsuitable host for Plasmodium, due to the lack of 92 

observations, under the microscope, of the terminal stages in the life-cycle of the 93 

parasite—even in birds that have been recaptured and shown infection at multiple points 94 

in time (Parker et al. in prep.). 95 

 There are still many aspects of the situation that are currently unknown. Some of 96 

this information includes: How lethal is Plasmodium infection for the Galapagos 97 
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penguin? What mosquito species is the primary transmission vector, and what is the 98 

prevalence of infection in the vector? How exposed are the penguins to the vector? And 99 

are there other infected bird species that may act as reservoirs of infection? All of these 100 

parameters will be important in understanding how critical the situation in the Galapagos 101 

Islands is, and in determining how to manage the islands to minimize the risk of avian 102 

extinctions. 103 

 Investigating these factors will take time, and meaningful conservation decisions 104 

need to be made in the meantime to manage this vulnerable species. A useful tool in 105 

making these decisions is Population Viability Analysis (PVA), a technique used to 106 

predict the probability of extinction for a population by utilizing a stochastically driven 107 

computer simulation of future population growth (Possingham et al. 1993). It has been 108 

successfully used in predicting viability for some species (Brook et al. 2000; but see 109 

Ellner et al. 2002, Coulson et al. 2001). A previous PVA for the Galapagos penguin was 110 

conducted by Vargas et al. (2007) using the simulation program Vortex (Lacy et al. 111 

2010). The presence of Plasmodium in the population was unknown at that time, so their 112 

model focused on how the pattern of El Niño events might influence the probability of 113 

persistence of the penguin population. Under the current frequency of El Niño events, 114 

they predicted a 70% probability of persistence over the next 100 years for the penguin 115 

population. They found that the less frequent but more damaging strong El Niño events 116 

have a greater impact on the penguin population than the more frequent but weak El Niño 117 

events. Another important factor is the adult mortality rate, with rates over 5% being 118 

especially damaging. It is unknown, though, how reliable these results are in the face of 119 

malaria’s presence in Galapagos. 120 
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 The present work extends the model of Vargas et al. (2007) to include a disease 121 

component in the analysis. We explore the possible consequences of malaria’s 122 

introduction on the penguins’ long-term probability of persistence and use the modeling 123 

framework to estimate a range of plausible parameter values for mortality from 124 

Plasmodium infection. Box 1 provides a list of terminology used in this paper. 125 

 126 

Methods 127 

 The model was made in Vortex, version 9.99b (Lacy et al. 2010; Lacy 2000). 128 

Vortex is a stochastic, individual-based modeling program used for population viability 129 

analysis (PVA) (P. S. Miller and Lacy 2005). This type of modeling includes the effects 130 

of variable demography, environmental conditions, and rare catastrophes, instead of 131 

purely deterministic factors alone. The inclusion of these semi-random events means that 132 

a single run of the model gives only one possible outcome for the population, so each 133 

scenario (combination of parameter values) is run 1000 times to create a distribution of 134 

outcomes. Each run simulates the penguin population 100 years into the future, in one-135 

year increments. The probability of population persistence can be calculated as the 136 

proportion of the 1000 runs that predict an intact population after 100 years, with an 137 

intact population being defined as having at least one member of each sex still alive. 138 

Vortex is highly customizable, allowing parameters in the model to be functions of other 139 

parameters or of user-created variables. The framework shared by all of our modeled 140 

scenarios has three general components: the demographic parameters of the penguin 141 

population, the occurrence of El Niño events, and the dynamics of malaria infection. 142 

 143 



 Meile, Robert, 2012, UMSL, p. 7 

Penguin Demographics 144 

 The penguin demographic parameters are the same as used in the Vargas et al. 145 

(2007) paper’s Current El Niño (CEN) model (parameters given in Table 1), with two 146 

exceptions. First, the initial population size is now set at 1800 individuals, in accordance 147 

with the penguin population census estimate from 2009 (H. Vargas, pers. comm.; see 148 

Vargas et al. 2005 for details on the census estimation technique). The sizes of the four 149 

island subpopulations are taken to be proportional to the population sizes reported in 150 

Table 2 of Vargas et al. (2007). Second, the mortality rates for each age class are now 151 

functions that take the infection status of an individual into account (see Disease States 152 

below, and Appendix A for details). 153 

 154 

El Niño Events 155 

 As in Vargas et al. (2007), there are two types of El Niño events included in the 156 

model, strong and weak El Niño events (Vargas et al. 2006), and they are treated as 157 

‘catastrophes’ in Vortex that occur randomly with a set probability. The frequency of 158 

occurrence for El Niño events is the same as the previous model (Table 1), but their 159 

duration and severity have been slightly altered. An oversight in the Vargas et al. (2007) 160 

model’s implementation allowed both types of El Niño to occur in the same year, which 161 

has been fixed. Also, strong El Niño events are now modeled as two-year events, with 162 

differing severity for each year, to more closely match the dynamics of observed El Niño 163 

events. See Appendix A for details on these changes. 164 

 165 

Disease States 166 
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 Each individual penguin in the model can be in one of three disease states at any 167 

time: susceptible, acutely infected, or chronically infected. Susceptible individuals are not 168 

infected with Plasmodium, and so experience normal rates of mortality. Individuals 169 

become acutely infected for the first year after contracting malaria, and they experience 170 

increased mortality due to their infection. If an individual survives the first year of 171 

infection, they then become chronically infected; infection with Plasmodium can lead to 172 

persistent, long-term infections (Valkiunas 2005). Chronic infections are considered to be 173 

under control and so infected individuals in the model do not experience any increased 174 

mortality due to their infection, except under certain circumstances (see Relapse 175 

Scenarios below). 176 

 177 

Variables of Infection 178 

 There are two variables that control the spread and severity of infection of malaria 179 

in the model. The probability of infection gives the probability each year that a 180 

susceptible individual will become infected. The pathogenicity variable is the increase in 181 

the probability of mortality that an individual experiences due to infection. 182 

 183 

Relapse Scenarios 184 

 It is believed that individuals in high stress situations can become 185 

immunocompromised, leading to a worsening of symptoms from an existing infection 186 

(Atkinson and van Riper 1991; Valkiunas 2005). El Niño events have the potential to be 187 

stressful events for the penguins, as they are believed to be food-limited during these 188 

events due to changes in the Cromwell Current system leading to reduced fish numbers 189 
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(Vargas et al. 2006). However, it is unknown how infected penguins will respond to 190 

different El Niño conditions; they may suffer a recurrence of their symptoms (hereafter 191 

referred to as a relapse) during some events or be unaffected. So, three separate modeling 192 

scenarios of relapse have been considered: a scenario where no relapses occur, one where 193 

relapses occur during strong El Niño events, and one where relapses occur during all El 194 

Niño events, weak and strong. In all three scenarios, whenever a relapse-triggering event 195 

occurs, chronically infected individuals experience increased mortality due to their 196 

infection according to the pathogenicity for the current model (see Exploration of 197 

Parameter Space below). The model does not take into account the possibility of 198 

pathogenicity changing between the acute infection phase and subsequent relapses, due to 199 

either increased resistance in the host or increased susceptibility from the stressful El 200 

Niño conditions. 201 

 202 

Exploration of Parameter Space 203 

 In order to assess the possible effect of malaria on the penguin population, the two 204 

variables that define the malaria dynamics—the probability of infection and 205 

pathogenicity—were varied over a range of possible values. Each variable could take on 206 

values from 5% to 100%, in 5% intervals, along with a baseline model that did not 207 

include any disease component; each unique combination of parameter values is a 208 

separate model of 1000 runs. In addition, this entire parameter space was individually 209 

analyzed for each of the three relapse scenarios described above. This resulted in the 210 

analysis of 1201 separate models (400 for each relapse scenario, plus the baseline), for a 211 
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total of 1,201,000 runs. For each model, the probability of population persistence over the 212 

next 100 years was recorded. 213 

 214 

Model Assumptions 215 

 All models are built with assumptions, and it is important to be explicit about 216 

them, as much as possible. Some assumptions of the disease component of the model are: 217 

• The probability of infection is the same for every individual, in every year, and on 218 

every island (within a set of 1000 runs for any model). 219 

• The pathogenicity of infection is the same for the initial and subsequent episodes. 220 

• Relapses only occur during El Niño years, if at all. This ignores other sources of 221 

stress that could lead to relapses, such as molting or reproduction (Richner et al. 222 

1995). 223 

• The dynamics of the vector(s) or possible reservoirs are not taken into account.  224 

 225 

Effect of Increased Breeding Success on Probability of Persistence 226 

 In their previous modeling work in this system, Vargas et al. (2007) made several 227 

suggestions for management actions to increase the probability of persistence for the 228 

Galapagos penguin. One suggestion was to increase the percentage of females that 229 

successfully breed in a year. To determine how effective this strategy might be in the face 230 

of malaria’s presence in the population, the analysis of 1201 models discussed above was 231 

repeated, but with the adult female breeding success increased by 10%, from 56.7% to 232 

66.7%. 233 

 234 
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Estimation of Parameter Values 235 

 In order to assess the current threat posed by Plasmodium, as opposed to the range 236 

of possible outcomes, it is necessary to estimate values for the malaria variables, the 237 

probability of infection and pathogenicity. The ELISA performed by Palmer et al. (in 238 

preparation) found around 95% exposure of sampled penguins to Plasmodium. A non-239 

systematic survey of the models’ results suggests that the individual probability of 240 

infection is similar to the population’s level of exposure, with exposure being a few 241 

percent lower than the probability of infection set for a particular scenario (unpublished 242 

data). The 95% exposure rate from the ELISA is therefore taken as an estimate of the 243 

probability of infection in the analysis on pathogenicity below. 244 

 The most reliable method for determining the pathogenicity of a strain of parasite 245 

on its host is to conduct experimental infections of parasite-free individuals (Valkiunas 246 

2005). In the absence of such data, we have used our modeling framework to estimate a 247 

range of plausible parameter values. By running several scenarios that differ only in the 248 

value of the pathogenicity parameter, and comparing their output to actual data, the 249 

scenarios that best fit the data provide the best estimates for the pathogenicity. 250 

The data used to assess the scenarios’ fit were the penguin population census data 251 

from 1998–2009 (Vargas et al. 2005; H. Vargas pers. comm.), specifically the growth 252 

rate from one year to the next, calculated as r=N(t+1)/N(t). Comparing the population 253 

size each year would be inappropriate, because the size of the population in one year is 254 

dependent on the size in previous years. The scenarios were run for 11 years, instead of 255 

100 years as in the main model. These 11 years represented those following the last 256 

strong El Niño event; choosing these years avoids complicating the analysis with the 257 
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possible interactions between infection, pathogenicity, and strong El Niño events, while 258 

still allowing enough data points for comparisons to be made. The years corresponding to 259 

2006, 2008, and 2009 were modeled as weak El Niño years, determined using sea-surface 260 

temperature data from the Charles Darwin Foundation Climate Database and the 261 

definition of ‘weak El Niño’ given in Vargas (2006). The demographic parameters of the 262 

model were kept the same, except that the starting population size was set to 780, the 263 

population estimate from 1998 (Vargas et al. 2005). 264 

To assess the fit of each scenario, the difference between the population growth 265 

rate of the model, averaged over all 1000 runs, and the census data was found for each 266 

year, and the differences were then averaged across all years. The scenarios included in 267 

this analysis had pathogenicity values from 5–30% in 5% intervals, along with a model 268 

that did not include any disease component. The decision to stop at 30% was arbitrary. 269 

For each value of pathogenicity, scenarios were run from 80–100% probability of 270 

infection in 5% intervals; however, for each level of pathogenicity, the results were very 271 

similar for all levels of the probability of infection, and so they were averaged together. 272 

This whole analysis was repeated for the scenario without relapses and the scenario with 273 

relapses during all El Niño events. 274 

 Although only one parameter value will give the best fitting model to the data for 275 

each relapse scenario, other values may not be significantly worse fits to the data. Using 276 

normal statistical tests, such as two-sample t-tests, to determine which models were 277 

significantly different would not be appropriate; the standard error in the fit of the models 278 

could be arbitrarily increased or decreased by changing the number of model runs. 279 

Instead, we took the 1000 runs of the best-fitting model and calculated the fit of each 280 
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individual run to the census data. The average fit of the other scenarios can then be 281 

compared to this statistical distribution, to determine which scenarios are significantly 282 

worse fits to the data. The Bonferroni-corrected significance level used for this 283 

comparison was α = 0.05/12 = 0.0042, to correct for multiple comparisons across both 284 

relapse scenarios. 285 

 286 

Results 287 

 Figure 1 shows the probability of persistence, after 100 years, across parameter 288 

space for all three scenarios of relapse. In all three scenarios, increasing pathogenicity 289 

leads to a steep decline in the probability of persistence, while increasing the individual 290 

probability of infection causes a less severe decline. Increasing both parameters causes a 291 

rapid decrease. There are large portions of the parameter space that show a 0% 292 

probability of persistence after 100 years. The scenarios without relapses and with 293 

relapses during strong El Niño events have similar shapes across parameter space, while 294 

the scenario with relapses for all El Niño events predicts a smaller probability of 295 

persistence for all parameter values. Figure 2 shows that increasing the proportion of 296 

adult females successfully breeding by 10% leads to an increase in the probability of 297 

persistence, and in a similar fashion for all three relapse scenarios. When the value of at 298 

least one of the disease parameters is kept low, there is a modest increase in the 299 

probability of persistence. When both parameters increase, though, the benefits of 300 

increasing the breeding success quickly decline, and there are still large areas of 301 

parameter space that have a 0% probability of persistence. 302 
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 The scenario that best fit the census growth rates was the scenario that did not 303 

include any effect of Plasmodium infection (Figure 3a). The no-disease scenario closely 304 

predicted the average trend in the actual growth rate, but only if the strong recovery of 305 

the population in 1999, immediately after the previous strong El Niño, is not included 306 

(Figure 3b). When the scenarios with malaria are compared to the distribution of the best-307 

fit model, the following parameter values fall within the rejection region: 20% 308 

pathogenicity when relapses do not occur in the model, and 15% pathogenicity when 309 

relapses occur during all El Niño events. This means that pathogenicity values up to 15% 310 

and 10% respectively are not significantly different from the best-fitting scenario. Figure 311 

4 shows the probability of persistence predictions for the next 25, 50, and 100 years for 312 

the plausible values of pathogenicity. 313 

 314 

Discussion 315 

 Our modeling work provides the first estimate for the pathogenicity of 316 

Plasmodium infection in the Galapagos penguin. Under both the relapse scenarios 317 

considered, the estimated levels of mortality associated with infection were relatively 318 

low. This is consistent with what information is available on Plasmodium’s presence in 319 

Galapagos. The Galapagos penguin population has continued to grow since 2003 (Vargas 320 

et al. 2005; F. H. Vargas pers. comm.), despite near-ubiquitous exposure to Plasmodium 321 

by the penguins (Palmer et al. in preparation). Over this period of time, ten individuals 322 

have been found and recaptured that were PCR-positive at both times (Levin et al. 2009; 323 

unpublished data). Five of these individuals have survived for three or more years. This 324 

all suggests that at least some of the penguins are suffering only minimal effects from 325 
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malarial infections. However, the recaptures and estimates of malaria exposure were all 326 

done starting in 2003, several years after the latest strong El Niño event. It is possible that 327 

infection is relatively benign under most conditions (as our results suggest), but that 328 

pathogenicity is high during strong El Niño events. Our models do not investigate this, as 329 

they assume that the pathogenicity of infection is the same for the initial, acute infection 330 

and for subsequent relapses. 331 

 It is possible, though, that malaria has played a role in previous penguin 332 

population crashes. A reanalysis of G. D. Miller et al.’s (2001) penguin blood samples, 333 

taken in 1996, found one infected penguin out of 109 retested (Parker, pers. comm.), 334 

showing that Plasmodium was present in the Galapagos penguin population during the 335 

1997–1998 strong El Niño. We do not know when Plasmodium arrived in the Galapagos 336 

Islands, leaving open the possibility that it was also present during the 1982–1983 strong 337 

El Niño as well, but undetected. The heavy mortality observed during strong El Niño 338 

events may, in part, be due to the presence of infected penguins that cannot cope with the 339 

stressful conditions. However, with only two recent strong El Niño events to consider, 340 

and no information on pathogenicity or prevalence during these events, it is difficult to 341 

draw any conclusions on the matter. Observational studies of penguins during the next 342 

strong El Niño event, undertaken alongside continued disease monitoring, will shed light 343 

on this issue. 344 

It appears that the type of relapse that may occur during El Niño events, and even 345 

the pathogenicity of infection, does not have an appreciable effect on the probability of 346 

persistence over the short term (Figure 4). It is only when considering the population’s 347 

persistence over 50 or 100 years that differences in these parameters lead to different 348 
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predictions for the population’s fate. The presence of Plasmodium in the Galapagos 349 

penguin population represents a serious, long-term threat. 350 

 Looking at the whole of parameter space, and not just at the range of most 351 

plausible values, allows us to consider the effect of reducing one variable or the other on 352 

the 100-year probability of persistence. For instance, would conservation effort be more 353 

effectively spent on reducing disease transmission or pathogenicity? Somewhat counter-354 

intuitively, given the near ubiquity of exposure to Plasmodium, each percent decrease in 355 

pathogenicity has a greater impact than a similar decrease in the individual probability of 356 

infection. However, the effectiveness of an intervention also depends on how cost 357 

effective it is; the expense and logistical difficulty of protecting already infected penguins 358 

from the effects of their disease may be prohibitive compared to a campaign to greatly 359 

reduce—or eliminate—transmission to susceptible individuals. 360 

  361 

Conclusions 362 

 Under normal conditions during non-strong El Niño years, pathogenicity from 363 

malaria for the Galapagos penguin is likely low; even so, over the long term even low 364 

levels of mortality from disease can lead to a high likelihood of extinction if exposure is 365 

high. Increasing the breeding success of the population can increase the probability of 366 

persistence for a time, but does not alter the overall potential effect of malaria on 367 

population persistence. We have very little information on how infected penguins react to 368 

strong El Niño events, which could greatly affect the accuracy of our predictions. Future 369 

modeling projects in this system will also require more details on the roles of malaria 370 

vectors and reservoir species, factors which the present work did not account for. 371 



 Meile, Robert, 2012, UMSL, p. 17 

Despite the gaps in our knowledge, our work highlights the flexible and modular 372 

nature of population modeling research. A population viability analysis (PVA) will be 373 

accurate only if it contains reliable information on all of the relevant threats to a 374 

population’s persistence; this will be possible only for the most well studied systems, if at 375 

all. However, models can be updated as new threats are discovered, reparameterized as 376 

new data are gathered, and rerun when novel analyses are devised. There are benefits to 377 

modeling, despite its limitations and biases. In order to maximize these benefits, we 378 

recommend that modelers design their PVAs to facilitate future modification. How the 379 

model is programmed and implemented will have an effect on this, and extensive 380 

documentation of what the model is doing, and why, is essential. This allows other 381 

researchers to replicate or expand upon models already developed. 382 

 383 
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Scenario – a single scenario refers to the specific combination of parameters used for a 500 

particular simulation. A scenario may also refer to a set of models that use the same 501 

structure for relapses. 502 

 503 

Modeling framework – the equations used to define how the simulation runs. 504 

 505 

Year – one increment of time in the model; the current population size, births, deaths, 506 

catastrophes, etc. are used to calculate the new population size after that year. Each 507 

scenario runs for 100 years. 508 

 509 

Run – an independent, 100-year calculation of the model; the probability of persistence is 510 

calculated from 1000 runs of the model. 511 

 512 

Stochastic events – events that occur semi-randomly; they do not have the exact same 513 

value in each run of the model. 514 

 515 

Probability of persistence – the proportion of runs that end with an intact population 516 

(defined as one or more individuals of each sex remaining alive). 517 

 518 

Probability of infection – the probability of a susceptible individual becoming infected 519 

each year. 520 

 521 

Susceptible – an individual in the model that is not infected with Plasmodium. 522 

 523 

Acute infection – an individual in the model that is infected with Plasmodium and is 524 

currently experiencing symptoms of disease (increased mortality). 525 

 526 

Chronic infection – an individual in the model that is infected with Plasmodium, but is 527 

otherwise not affected. 528 

 529 

Pathogenicity – the probability of an individual dying in a year when acutely infected or 530 

suffering a relapse, in addition to (added to) their mortality rate without disease. 531 

 532 

Relapse – a reoccurrence of symptoms (i.e., pathogenicity) in a chronically infected 533 

individual, triggered in the model by El Niño events. 534 

 535 

Strong El Niño – a two-year event that reduces the penguins’ survival and reproductive 536 

success. 537 

 538 

Weak El Niño – a one-year event that reduces only the penguins’ reproductive success. 539 

 540 

 541 

 542 

Table 1: Basic Parameters of the Model. Adapted from Vargas et al. (2007) 543 

 544 

Parameter / variable     Basic Model 
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Number of iterations  1000   

Number of years   100   

Extinction definition   One sex remains 

Number of populations  4   

Inbreeding depression  No   

Correlation of demographic rates 0.9   

     among subpopulations     

Concordance of variation in  Yes   

     reproduction and survival     

Breeding system   Long-term monogamy 

Number of types of catastrophes 2   

Dispersing age range (youngest-oldest) (1-1)   

Dispersing sex(es)   Both   

Percent survival of dispersers  80   

Dispersal rates   *   

Age of first offspring for females 3   

Age of first offspring for males  3   

Maximum age of reproduction  20   

Maximum number of broods per year 1   

Sex ratio at birth (% male)  50%   

Annual reproductive rates     

   % adult females breeding  56.7   

     Annual variation in % breeding SD = 13   

   % females producing 1 progeny 33.5   

   % females producing 2 progeny 46.4   

   % females producing 3 progeny 12.4   

   % females producing 4 progeny 7.7   

Mortality rates (same for both sexes)    

   % mortality between ages 0 and 1 67   

     Annual variation in % 0-1 mortality SD = 10   

   % mortality between ages 1 and 2 25   

     Annual variaiton in % 1-2 mortality SD = 5   

   % mortality between ages 2 and 3 5   

     Annual variation in % 2-3 mortality SD = 3   

   % mortality after age 3  5   

     Annual variation in % 3+ mortality SD = 3   

Catastrophe 1: Strong El Niño     

   Frequency   5%   

   Multiplicative impacts on reproduction, †   

     survival      
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Catastrophe 2: Weak El Niño     

   Frequency   20% ‡   

   Multiplicative impacts on reproduction, 0.8•, 1.0   

     survival      

% males in breeding pool  100%   

Initially at stable age distribution? Yes   

Initial population size  1800**   

Carrying capacity (K)  4200   

  SD in K due to environmental  420   

     variation (EV)      

Harvest    No   

Supplementation     No   

      

*See Vargas et al. (2007)    

†See Appendices A and B   

•The multiplicative impact on reproduction was incorrectly reported as 0.2 in Vargas et al. 

(2007) (R. Lacy, pers. comm.) 

**The population size of each subpopulation used the same 'mean percent of population' 

reported in Table 2 of Vargas et al. (2007) 

‡A weak El Niño won't occur in the same year as a strong El Niño; see Appendix B 

 545 

 546 
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 547 

 548 
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Figure 1: Mean probability of persistence for the next 100 years under the (a) scenario 549 

without relapses, (b) scenario with relapses during strong El Niño events, and (c) scenario 550 

with relapses during all El Niño events. Each graph shows the probability of persistence 551 

for each combination of parameter values (probability of infection and pathogenicity), 552 

starting at 5% and increasing in 5% intervals. The baseline model used by Vargas et al. 553 

(2007) gave a probability of persistence of 70%. 554 
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 555 

 556 

Figure 2: The improvement over the base model due to increasing the proportion of adult 557 

females successfully breeding by 10%, for (a) the scenario without relapses, (b) the 558 

scenario with relapses during strong El Niño events, and (c) the scenario with relapses 559 

during all El Niño events. 560 
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 561 

 562 

 563 

Figure 3: Yearly growth rates (in blue) and a linear regression (solid line) for the penguin 564 

census data, and the average predicted growth rates over 1000 runs for the best-fitting 565 

model, with no disease component (in red). The predictions of the no-disease model are 566 

similar to the linear trend of the census data, but only if the high growth in 1999 is not 567 

included. 568 
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 569 

Figure 4: Probability of persistence over the next 25, 50, and 100 years for the range of 570 

plausible parameter values for pathogenicity for the scenarios (a) without relapses (0–571 

15% pathogenicity), (b) with relapses during strong El Niño events (0–15%), and (c) with 572 

relapses during all El Niño events (0–10%). For (b), the plausible mortality values given 573 

are the same as for (a), as they have the same relapse schedule for the years tested here. 574 

All scenarios with malaria included had the probability of infection set at 95%. The data 575 

for 100 years are the same as reported in Figure 1. 576 
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 577 

Appendices 578 

 579 

Appendix A: Duration and Severity of Weak and Strong El Niño Events 580 

 581 

 In Vortex, catastrophes (such as the two types of El Niño events) are handled as 582 

rare, one-year events that can alter the survival probability and/or reproduction of 583 

individuals in the population. While Vargas et al. (2007) used constants for these values, 584 

the present model treats them as functions to achieve two ends: to prevent overlapping of 585 

El Niño events (eqtn. 15 in Appendix B), and to alter the duration and severity of strong 586 

El Niños to more closely match observations (eqtns. 3–4, 6, 12–14). Vortex treats each 587 

catastrophe as an independent event, and so, using the default settings, a weak and a 588 

strong El Niño event could occur simultaneously in the model. This would happen with a 589 

probability of (0.05 probability of strong El Niño * 0.2 probability of weak El Niño = 590 

0.01) per year. Having both types of events occurring together could affect the frequency 591 

of relapse events in the different model scenarios. 592 

 Two strong El Niño events have been observed over the past 47 years, in 1982–593 

1983 and 1997–1998, which lasted for 18 and 17 months respectively (Vargas 2006). The 594 

intensity of these events followed a bell-shaped curve—they started off as a weak El 595 

Niño, intensified into a strong El Niño for about a year, then tapered off into another 596 

weak El Niño. This contrasts with the representation of strong El Niño events in the 597 

Vargas et al. (2007) model, as one-year events with a single level of severity. The present 598 

modeling work treats strong El Niños as two-year events (eqns. 6, 12). Each time a strong 599 

El Niño event occurs, one year is randomly chosen (using eqns. 3–4) to be the year with 600 

the higher severity, while the other year takes into account the effect of the months of 601 

weaker El Niño activity (eqns. 13–14). The stronger year has the same impact on the 602 

population as the strong El Niño event used in Vargas et al. (2006)—reproduction is 603 

reduced to 1% of its normal rate, and survival is reduced to 30% of its normal rate. The 604 

weaker year has no effect on survival and reduces reproduction to 90% its normal rate. A 605 

full weak El Niño event, unassociated with a strong El Niño, reduces reproduction in the 606 

model to 80%; the weak activity before and after the main El Niño effect will in most 607 

cases likely overlap with only part of the breeding season, and so the effect in the model 608 

has been halved to account for this. 609 

 610 

 611 

Appendix B: Equations Used in Vortex to Define the Model 612 

 613 

These equations are presented in the same form that they were input into Vortex. 614 

In Version 9.99b, there are three types of user-created variables: Global State (GS) 615 

Variables, Population State (PS) Variables, and Individual State (IS) Parameters. Each of 616 

these types of variables requires different inputs or functions to determine their behavior. 617 

GS variables require a function that specifies its value for the first year of the simulation 618 

(the initial function), and how the value of the variable changes from one year to the next 619 

(the transition function). GS variables operate at the level of the metapopulation. PS 620 

variables only use a transition function, and they operate independently for each 621 

subpopulation. IS variables are assigned to every individual in the population; in addition 622 
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to the initial and transition functions, IS variables also have a function that determines 623 

their value for new-born individuals. For the mortality rates and catastrophe 624 

frequency/severity, these equations are functions of the original variables of the model. 625 

 626 

Global State Variables 627 

 628 

1) GS1: Probability of infection – Initial function is a proportion between 0 and 1.0. 629 

Transition: =GS1. 630 

 631 

This variable represents the probability of an individual becoming infected in a 632 

single year. This variable is included for ease of data entry; the variable PS1 (eqn. 633 

5) is what is actually used for transmission in the equations. 634 

 635 

2) GS2: Pathogenicity – Initial function is a whole number between 0 and 100. 636 

Transition: =GS2. 637 

 638 

In the model, an infected individual has an increased probability of dying in some 639 

years. This variable gives the amount of that increase; for example a mature 640 

individual normally has a 5% probability of dying in a year, but an infected 641 

individual has a (5+GS2)% probability of dying. The total probability of an 642 

individual dying is capped at 99% (see the Mortality Rates section, eqns. 9–11). 643 

 644 

Global state variables 3–5 are used for book-keeping, but not as part of the model itself. 645 

 646 

3) GS6 – Initial and Transition: =SRAND((R*100)+Y) 647 

 648 

4) GS7 – Initial and Transition: =SRAND((R*100)+(Y-1)) 649 

 650 

A strong El Niño event in this model has two strengths, one for each of its 651 

years—a strong effect [the same as the strong El Niño event in the Vargas et al. 652 

(2007) model] and a weak effect [corresponding to the build-up and settle-down 653 

time surrounding a strong El Niño event; see Appendix A]. These functions are 654 

used by the Catastrophe functions (eqns. 13 and 14) to determine the order in 655 

which these two effects occur. Note that GS7 returns the same result as GS6 from 656 

the previous year. 657 

 658 

Population State Variables 659 

 660 

5) PS1: Probability of infection =GS1 661 

 662 

This variable represents the probability of an individual becoming infected in a 663 

single year. It is the same for each subpopulation, and equals the value given in 664 

eqn. 1. 665 

 666 

6) PS2:  =(CAT(1)<1)*(PS2<1) 667 

 668 
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This function is what causes a strong El Niño event to take two years instead of 669 

one (see eqn. 12). During the first year of the strong El Niño, PS2=1, then it 670 

reverts to PS2=0 after the second year. 671 

 672 

Population state parameters 3–5 are used for bookkeeping, similar to the global state 673 

parameters 3–5. 674 

 675 

Individual State Parameters 676 

 677 

7) IS1: Chronic Infections – Initial: =(RAND<0.90)  Birth: =0.      Transition: =IS2 678 

 679 

In this model, an individual is assumed to retain their infection for life. The initial, 680 

acute infection period causes increased mortality, while the chronic infection is 681 

considered to be under control (except when relapses are allowed during El Niño 682 

events; see eqns. 9–11 below). The acute stage lasts for only the first year of an 683 

individual’s infection in this model. At the beginning of each run (at Year 0), 90% 684 

of the population is chronically infected, in accordance with the Plasmodium 685 

exposure found by Palmer et al. (in preparation). See also eqn. 8 below. 686 

 687 

8) IS2: Acute Infections – Initial: =((RAND<0.50)OR(IS1=0))   688 

 Birth: =(RAND<PS1)  Transition: =IS2+((IS2<1)*(RAND<PS1)) 689 

 690 

At the beginning of each run of the simulation, 5% of the population is given to 691 

be acutely infected (arbitrarily set as the PCR-detected level of infection found in 692 

Levin et al. (2009)). This, along with eqn. 7 above, gives 95% of the population as 693 

being exposed at the start of each run. Because 90% of the population has already 694 

been assigned to be chronically infected, half of the remaining 10% of the 695 

population is set as chronically infected. In every year following the first, PS1% 696 

(eqn. 5) of the population becomes infected. The name of this variable is a 697 

misnomer, though, because it stays non-zero after the acute period is over. The 698 

actual effect of infection on the model is handled by the Mortality functions. 699 

 700 

An individual's infection status is determined by their values for IS1 and IS2 701 

together (eqns. 7 and 8). If (IS1=0) and (IS2=0), then they are uninfected. If 702 

(IS1=0) and (IS2=1), they are acutely infected. If (IS1=1) and (IS2=1), then they 703 

are chronically infected. 704 

 705 

Mortality Rates 706 

 707 

Base mortality for each age class: 708 

 709 

0–1 years old: 67%;  710 

1–2 years old: 25%;  711 

2–3 years old: 5%;  712 

3+ years old: 5% 713 

 714 
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Mortality functions for the no-relapse model: 715 

 716 

9) =67+((MIN(GS2:32))*((IS1=0)*(IS2=1))) 717 

 718 

=25+((MIN(GS2:74))*((IS1=0)*(IS2=1))) 719 

 720 

=5+((MIN(GS2:94))*((IS1=0)*(IS2=1))) 721 

 722 

When an individual is uninfected, they experience an X% chance of mortality 723 

each year, according to their age class (with X = 67, 25, or 5). For an individual to 724 

experience increased mortality (GS2, capped at 99%), they must be infected 725 

(IS2=1, eqn. 8). Additionally, the infection must not yet have become chronic 726 

(IS1=0, eqn. 7). This means that, under this model, individuals only experience 727 

increased mortality from disease the year that they become infected, not anytime 728 

afterward. 729 

 730 

Mortality functions for the all El Niño relapse model: 731 

 732 

10) =67+((MIN(GS2:32))*(IS2=1)*((IS1=0)OR((CAT(1)=0)OR(CAT(2)=0))) 733 

 734 

=25+((MIN(GS2:74))*(IS2=1)*((IS1=0)OR((CAT(1)=0)OR(CAT(2)=0))) 735 

 736 

=5+((MIN(GS2:94))*(IS2=1)*((IS1=0)OR((CAT(1)=0)OR(CAT(2)=0))) 737 

 738 

As in eqn. 9, individuals will experience heightened mortality when (IS1=0, eqn. 739 

7) and (IS2=1, eqn. 8); that is, they are acutely infected. However, in this model 740 

only (IS2=1) is strictly necessary; mortality for these individuals will also be 741 

increased during a strong El Niño year (CAT(1)=0) or a weak El Niño year 742 

(CAT(2)=0). This translates into chronically infected individuals experiencing 743 

increased mortality during all El Niño events. 744 

 745 

Mortality functions for the strong El Niño relapse model: 746 

 747 

11) 748 

=67+((MIN(GS2:32))*(IS2=1)*((IS1=0)OR(((PS2=1)*(GS6<0.5))OR((CAT(1)=749 

0)*(PS2=0)*(1-(GS7<0.5)))))) 750 

 751 

=25+((MIN(GS2:74))*(IS2=1)*((IS1=0)OR(((PS2=1)*(GS6<0.5))OR((CAT(1)=752 

0)*(PS2=0)*(1-(GS7<0.5)))))) 753 

 754 

=5+((MIN(GS2:94))*(IS2=1)*((IS1=0)OR(((PS2=1)*(GS6<0.5))OR((CAT(1)=0)755 

*(PS2=0)*(1-(GS7<0.5)))))) 756 

 757 

This model includes relapses, but only during the stronger year of a strong El 758 

Niño event. Which of the two years is stronger is randomly chosen, determined in 759 

part by the variables GS6 (eqn. 3) and GS7 (eqn. 4). If (GS6<0.5), then the first 760 
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year of the Strong El Niño (as given by PS2=1, eqn. 6) will be the stronger year. 761 

If (GS6>0.5) [or equivalently, (1-(GS7<0.5))], then the second year of the Strong 762 

El Niño [given by (CAT(1)=0)*(PS2=0)] will be the stronger year. Again, this is 763 

used to determine when a relapse will occur for chronically infected individuals. 764 

 765 

Catastrophe Functions 766 

 767 

12) Strong El Niño Frequency: =5+(100*(PS2!=0)) 768 

 769 

Strong El Niño events begin with a probability of 5% each year. At the beginning 770 

of the second year, PS2 (eqn. 6) equals 1, causing the strong El Niño event to 771 

continue for that second year, at which point PS2 returns to 0. 772 

 773 

13) Strong El Niño Reproduction Severity: =((PS2=1)*(((GS6<0.5)*0.01)+((1-774 

(GS6<0.5))*0.9)))+((PS2=0)*(((1-(GS7<0.5))*0.01)+((GS7<0.5)*0.9))) 775 

 776 

During the first year of a strong El Niño (PS2=1, eqn. 6), the El Niño severity will 777 

be strong (if GS6<0.5, eqn. 3) or weak (if GS6>0.5). In the second year (PS2=0), 778 

the opposite effect will occur (because GS7, eqn. 4, returns the same number as 779 

last year’s GS6). The value of 0.9, from the terms ((1-GS6<0.5)*0.9) and 780 

((GS7<0.5)*0.9), represents the effect of the weaker year during a strong El Niño 781 

event (see Appendix A).  782 

 783 

14) Strong El Niño Survival Severity: =((PS2=1)*(((GS6<0.5)*0.3)+((1-784 

(GS6<0.5))*1.0)))+((PS2=0)*(((1-(GS7<0.5))*0.3)+((GS7<0.5)*1.0))) 785 

 786 

The effects of this function are similar to the above, but affecting survival instead 787 

of reproduction. 788 

 789 

15) Weak El Niño Frequency: =20-(100*(CAT(1)=0)) 790 

 791 

Weak El Niños occur with 20% probability each year, except in years when a strong El 792 

Niño is already occurring. 793 
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