Overexpression of Patatin-Related Phospholipase AIIIδ Altered Plant Growth and Increased Seed Oil Content in Camelina

Xuemin Wang
University of Missouri-St. Louis, wangxue@umsl.edu

Maoyin Li
University of Missouri–St. Louis

Fang Wei

Amanda Tawfall

Michelle Tang

See next page for additional authors

Follow this and additional works at: https://irl.umsl.edu/biology-faculty

Part of the Biology Commons

Recommended Citation

Wang, Xuemin; Li, Maoyin; Wei, Fang; Tawfall, Amanda; Tang, Michelle; and Saettele, Allison, "Overexpression of Patatin-Related Phospholipase AIIIδ Altered Plant Growth and Increased Seed Oil Content in Camelina" (2015). *Biology Department Faculty Works*. 39.

DOI: https://doi.org/10.1111/pbi.12304

Available at: https://irl.umsl.edu/biology-faculty/39

This Article is brought to you for free and open access by the Biology at IRL @ UMSL. It has been accepted for inclusion in Biology Department Faculty Works by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
Authors
Xuemin Wang, Maoyin Li, Fang Wei, Amanda Tawfall, Michelle Tang, and Allison Saettele

This article is available at IRL @ UMSL: https://irl.umsl.edu/biology-faculty/39
Overexpression of patatin-related phospholipase Alll\(\delta\) altered plant growth and increased seed oil content in camelina

Maoyin Li\(^{1,2,*}\), Fang Wei\(^{1,2}\), Amanda Tawfall\(^{1,2}\), Michelle Tang\(^{1,2}\), Allison Saettele\(^{1,2}\) and Xuemin Wang\(^{1,2,*}\)

\(^1\)Department of Biology, University of Missouri, St. Louis, MO, USA
\(^2\)Donald Danforth Plant Science Center, St. Louis, MO, USA

Received 4 January 2014; revised 21 October 2014; accepted 27 October 2014.
*Correspondence (M.L.: Tel 314 587 1243; fax 314 587 1343; email mali@danforthcenter.org) or
(X.W.: Tel 314 587 1419; fax 314 587 1519; email swang@danforthcenter.org)

Keywords: camelina, patatin-related phospholipase Alll\(\delta\), seed oil, cellulose, plant growth.

Summary

Camelina sativa is a Brassicaceae oilseed species being explored as a biofuel and industrial oil crop. A growing number of studies have indicated that the turnover of phosphatidylcholine plays an important role in the synthesis and modification of triacylglycerols. This study manipulated the expression of a patatin-related phospholipase Alll\(\delta\) (pPLAI\(\delta\)) in camelina to determine its effect on seed oil content and plant growth. Constitutive overexpression of pPLAI\(\delta\) under the control of the constitutive cauliflower mosaic 35S promoter resulted in a significant increase in seed oil content and a decrease in cellulose content. In addition, the content of major membrane phospholipids, phosphatidylcholine and phosphatidylethanolamine, in 35S:pPLAI\(\delta\) plants was increased. However, these changes in 35S:pPLAI\(\delta\) camelina were associated with shorter cell length, leaves, stems, and seed pods and a decrease in overall seed production. When pPLAI\(\delta\) was expressed under the control of the seed specific, \(\beta\)-conglycinin promoter, the seed oil content was increased without compromising plant growth. The results suggest that pPLAI\(\delta\) alters the carbon partitioning by decreasing cellulose content and increasing oil content in camelina.

Introduction

Camelina sativa belongs to the Brassicaceae family and has emerged as a promising oilseed crop in Pacific Northwest of the United States and Canada. Camelina oilseeds can be used for both food and nonfood purposes. Camelina seed oil is rich in omega-3 fatty acids, such as 18:3, which have commercial interests for nutritional values (Horn et al., 2013; Kang et al., 2011; Lu and Kang, 2008; Nguyen et al., 2013). Compared with other Brassicaceae species, camelina seeds have lower levels of glucosinolates which generate toxic intermediates and limit the livestock feed value (Pilgeram et al., 2007). Camelina can grow in low temperature and on marginal lands (Bramm et al., 1990; Zubr, 1997). In addition, camelina requires low levels of nutrients and therefore reducing the input costs of cultivation (Pilgeram et al., 2007). Camelina reaches maturity within approximately 3 months and is amenable to Agrobacterium-mediated transformation by floral dipping (Lu and Kang, 2008). Based on its commercial values, geographic suitability and engineering feasibility, camelina is a crop worthy for improving oil content and quality (Horn et al., 2013; Kang et al., 2011; Lu and Kang, 2008; Nguyen et al., 2013).

Triacylglycerols (TAG) in seed oils are assembled in the endoplasmic reticulum (ER) while fatty acids, the building blocks of TAGs, are synthesized in the plastid (Bates et al., 2013; Chapman and Ohlrogge, 2012). The newly synthesized fatty acids in plastids have chain lengths of 16 carbons and 18 carbons with no or one double bonds, while the abundant fatty acyl chains in TAG are 18 carbons and 20 carbons with one to three double bonds (Bates et al., 2013; Chapman and Ohlrogge, 2012). Phosphatidylcholine (PC) is an important intermediate involved in fatty acid trafficking and modification, as well as the assembly of TAG (Chapman and Ohlrogge, 2012; Lu et al., 2009, 2011). For example, it has been proposed that lysophosphatidylcholine (LPC):acyl-CoA acyltransferase (LPCAT) produces PC using plastid-derived fatty acids and shuffles the fatty acids from the plastid to the ER (Wang et al., 2012). PC can be directly used for TAG production and is the substrate in the ER for fatty acid desaturation to synthesize polysaturated fatty acids. Phospholipase As (PLAs) can hydrolyse PC to release modified fatty acids and generate LPC for reacylation. Thus, the PLA reaction might be involved in lipid production through shuffling fatty acids and remodelling glycerolipids (Chapman and Ohlrogge, 2012). Recent studies indicate that a patatin-related phospholipase, pPLAI\(\delta\), is involved in the PC turnover and seed oil production in model plant Arabidopsis (Li et al., 2013).

In Arabidopsis, there are 10 pPLAs that are classified as pPLAI, pPLAI\(\alpha\), pPLAI\(\beta\), pPLAI\(\gamma\), pPLAI\(\delta\) and pPLAI\(\varepsilon\). pPLAI\(\beta\), pPLAI\(\gamma\), pPLAI\(\delta\) (Scherer et al., 2010). pPLAI and pPLAI\(\delta\) have been reported to be involved in pathogen defences (La Camera et al., 2005, 2009; Yang et al., 2007). The expression of pPLAI\(\alpha\) is up-regulated by various abiotic stresses (Matos et al., 2008; Rietz et al., 2004), and pPLAI\(\varepsilon\) deficiency results in a compromised growth under drought stress (Yang et al., 2012). Functions of pPLAI\(\beta\) and pPLAI\(\varepsilon\) have been investigated in Arabidopsis root in responses to hormones and phosphorus starvation (Rietz et al., 2010). Distinctive from pPLAI and pPLAI\(\delta\), pPLAI\(\alpha\)s contain the noncanonical esterase GXGXG motif (Li et al., 2011). Recent analyses show that pPLAI\(\beta\) and pPLAI\(\delta\) hydrolyse PC to produce LPC and free fatty acids (Li et al., 2011, 2013). Deficiency of pPLAI\(\beta\) in Arabidopsis leads to an increased...
hypocotyl and primary root length at early seedling stages whereas overexpression of it results in a decrease in plant height (Li et al., 2011). Activation-tagging of pPLAIII leads to a stunted plant growth (Huang et al., 2001). These studies indicate that pPLAs play roles in plant growth.

Of the four pPLAs (α, β, γ, δ), T-DNA insertion knockout of pPLAIII results in a decrease in seed oil content (Li et al., 2013). Overexpressing pPLAIII in Arabidopsis leads to improvement of the seed oil content, with increases in 20- and 22-carbon fatty acids at the expenses of 18-carbon fatty acids in seeds (Li et al., 2013). The results indicate that pPLAIII plays a role in fatty acid remodelling and oil production in Arabidopsis. To explore whether pPLAIII could enhance the seed oil production in oil crops, we overexpressed pPLAIII in camelina to determine its roles in seed oil production and plant growth.

Results

Overexpression of pPLAIIIδ results in a decreased longitudinal growth in vegetative and reproductive tissues

To investigate the function of pPLAIIIδ in camelina, the gene was placed under the control of the cauliflower virus 35S promoter and multiple 35S::pPLAIIIδ transgenic camelina lines were generated (Figure 1a). These transgenic lines (35S::OEs) consistently displayed a shorter stature than wild type (WT; Figure 1b). Transgene pPLAIIIδ was highly expressed in mutants of 35S::pPLAIIIδ (Figure 1c). The hypocotyl length of 35S::pPLAIIIδ plants was 35% shorter than WT as shown in 2-week-old plants (Figure 1d). 35S::pPLAIIIδ and WT plants had similar number of leaves but displayed more compact rosette (Figure 1e). The leaf length was 40% shorter and 10% wider in 35S::pPLAIIIδ than that of WT (Figure 1f). At 6-week stage, 35S::pPLAIIIδ plants were 50% shorter (Figure 1g,k), but the stem diameter of the transgenic plants was 35% wider than WT (Figure 1h,j). These results indicate that overexpression of pPLAIIIδ inhibits the longitudinal growth of vegetative tissues of camelina.

In reproductive tissues, the flower rosettes, which contain many buds in different developing stages, were much more compact in 35S::pPLAIIIδ plants than in WT (Figure S1a). The buds of 35S::pPLAIIIδ were 32% shorter and 16% wider than that of WT (Figure S1b–d). The siliques of 35S::pPLAIIIδ were 26% shorter and 6% wider than those of WT (Figure S1e–g). The pedicels of 35S::pPLAIIIδ were 47% shorter and 60% wider than those of WT (Figure S1h,i). The shorter pedicels and rounder

Figure 1 The morphological alterations of the vegetative tissues in camelina mutants overexpressing pPLAIIIδ. (a) Construct for overexpressing pPLAIIIδ in camelina. The Arabidopsis pPLAIII genomic DNA sequence was cloned into a vector with the constitutive expression promoter 35S and in frame with GFP tag at the C-terminus. (b) Morphology of the 2-week-old plants, showing the hypocotyl length. WT: wild-type camelina plants; 35S::OE1,2,3,4,5: independent overexpression lines in T4 generation. Bar = 10 mm. (c) Gene expression of pPLAIIIδ. Values are means ± SE (n = 3). (d) Hypocotyl length of the 2-week-old camelina plants. (e) Morphology of the 3-week-old plants, showing the length and width of leaves. Bar = 40 mm. (f) Leaf length of the 3-week-old camelina plants. (g) Morphology of the 6-week-old camelina plants, showing the height of the plants. Bar = 40 mm. (h) Stem width of the 6-week-old camelina plants. Bar = 10 mm. (i) Leaf width of the 3-week-old camelina plants. (j) Stem diameter of the 6-week-old camelina plants. (k) Plant height of the 6-week-old camelina plants. Values are means ± SE (n = 5 for d, f and i,k). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.
siliques were also observed in the 8-week-old inflorescent stalks (Figure S1j). These results indicate that overexpression of pPLAIII_d inhibits the longitudinal growth of reproductive tissues of camelina.

Overexpression of pPLAIII_d represses cell elongation and cellulose accumulation in tissues

To observe the changes in cell morphology, the epidermal cells of the cotyledon and hypocotyls were examined using scanning electron microscopy (Figure 2). The epidermal cells of WT plants were longer while those of 35S::pPLAIII_d mutants were shorter and much wider, with the ‘jigsaw’ morphology not as obvious as in WT (Figure 2a–c). Similarly, the epidermal cells of the 35S::pPLAIII_d hypocotyls were 30% shorter than WT (Figure 2d–f,h). The cell density of cotyledons was 35% lower in 35S::pPLAIII_d than in WT (Figure 2g). The shorter and wider cells in the 35S::pPLAIII_d were consistent with the shorter and wider morphology of leaves and hypocotyls (Figures 1 and 2). These results indicate that overexpression of pPLAIII_d inhibits the anisotropic growth of cells, which results in shorter and wider stems and leaves.

Cell elongation is a process that requires cellulose production and cell wall synthesis (Taylor, 2008). During the plant handling, it was apparent that 35::pPLAIII_d tissues were fragile and lacked mechanical strength. When the stems of 5-week-old plants were physically bent, the stems of 35::pPLAIII_d were more easily broken than those of WT (Figure 3a). As the mechanical strength comes from the cell wall, we determined whether the mutant plants have altered content of cellulose, a major component of cell wall. The levels of the cellulose decreased 20%, 8% and 14%, in seedlings, leaves and stems of 35S::pPLAIII_d plants, respectively, compared with that of WT (Figure 3b–d). These results indicate that overexpression of pPLAIII_d inhibits the

Figure 2 Altered cell length in leaves and hypocotyls of camelina plants overexpressing pPLAIII_d. The epidermal cells of leaves and hypocotyls were examined by scanning electron microscopy. (a–c) Leaf epidermal cells of the 1-week-old camelina plants of WT (a), 35S::OE1 (b) and 35S::OE2 (c), showing the increased width, the reduced cell length and the reduced convolution of epidermal cells in 35S::OE plants compared with that of wild type. (d–f) Hypocotyl cells of the 1-week-old camelina plants of WT (d), 35S::OE1 (e) and 35S::OE2 (f), showing the reduced length and the increased width of epidermal cells in OE plants compared with that of wild type. Arrows mark the beginning and the end of a hypocotyl cell. Bars = 100 μm. (g) Cell density of the leaves. Values are means ± SE (n = 3). (h) Cell length of the hypocotyls. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.
cellulose production, which may impede the mechanical strength of camelina tissues.

Overexpression of pPLAIII alters the glycerolipid composition in leaves

The content of glycerolipids in leaves, including phospholipids and galactolipids, were determined by electrospray tandem mass spectrometry (Figures 4 and S2). The levels of PC and phosphatidylethanolamine (PE) were significantly higher while the levels of phosphatidic acid (PA) and phosphatidylglycerol (PG) were significantly lower in 35S::pPLAIII than in WT (Figure 4). The levels of phosphatidylinositol (PI), phosphatidylserine (PS), monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were similar in WT and 35S::pPLAIII lines (Figure 4). The total glycerolipids tended to be higher in 35S::pPLAIII than in WT (Figure 4).

In camelina leaves, PC, PE, PI and PA had similar patterns of molecular species, of which the abundant species were 34C with

Figure 3 Altered mechanical strength of stems and the reduced cellulose content in tissues of the pPLAIII overexpressors of camelina. (a) Physical properties of the primary stem of 5-week-old camelina plants. The pPLAIII overexpressors displayed an easily broken stem after bending compared with that of wild type. Bar = 5 mm. (b) Cellulose content of 1-week-old seedlings. (c) Cellulose content of leaves from the 3-week-old plants. (d) Cellulose content of stems from the 5-week-old plants. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.

Figure 4 Alterations of glycerolipid levels in leaves of the pPLAIII overexpressors. Leaves from the 3-week-old plants were sampled for lipid profiling by ESI-MS/MS. The phospholipid levels, including PC, PE, PI, PS, PA and PG, and the galactolipid levels, including MGDG and DGDG. The total lipid levels referred to the total amount of phospholipids and galactolipids measured. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.
1-3 double bonds and 36C with 2-6 double bonds (Figure S2). The MGDGs and DGDG had similar molecular patterns, in which the abundant species were 34:6 and 36:6. PS was enriched in very long fatty acyl chains, with 42C as the most abundant species. By comparison, PG was enriched in 34C species with 16C and 18C fatty acyl chains (Figure S2). Most PC and PE species tended to be higher whereas PA and PG species lower in 35S::pPLAIII than WT plants (Figure S2). The levels of MGDG-36:6 and DGDG-36:6 were higher in 35S::pPLAIII than in WT (Figure S2).

Overexpression of pPLAIII alters the levels of soluble primary metabolites in leaves

As level of glycerolipids in leaves of 35S::pPLAIII mutants tended to be higher (Figure 4), we wondered whether the carbon source shifting to glycerolipid synthesis will impact levels of other metabolites. The soluble metabolites in the leaves were analysed, and marked changes were observed in the levels of several organic acids, amino acids and soluble sugars in the leaves of 35S::pPLAIII (Figure 5). The levels of 15 organic acid species were measured, including five species that are related to tricarboxylic acid cycle (TCA cycle), six species that are related to sugar acids, two species that are related to phytotoxins and 2 other species (Figure 5a). Most of the organic acids measured displayed a decreased level while some of them had an increased level in mutant leaves (Figure 5a). The levels of three organic acid species in TCA cycle, including malate, fumarate and succinate, were decreased by 53%, 34% and 70%, respectively, in leaves of 35S::pPLAIII compared with that of WT (Figure 5a). Pyroglutamic acid and propanic acid are biosynthetically linked to the TCA cycle components of α-ketoglutarate and succinyl-CoA, respectively. The level of pyroglutamic acid increased 117% while the level of propanic acid increased 22% in 35S::pPLAIII as compared with that of WT (Figure 5a). The corresponding sugar acids can be derived from sugar species, such as glucose, galactose, ribose, threose, arabinose and mannose. The levels were decreased in 35S::pPLAIII for glucaric acid (37%), galactaric acid (36%), ribonic acid (27%), threonic acid (59%) and arabinonic acid (43%); the level of mannonic acid was similar in 35S::pPLAIII and WT (Figure 5a). The levels of two phytohormone-related compounds, benzoic acid and 2-methyl benzoic acid, were twofold higher in 35S::pPLAIII than in WT (Figure 5a). The levels of 3-butenic acid increased 49% in 35S::pPLAIII and WT, and 1,2,3-propanetricarboxylic acid was comparable between two genotypes (Figure 5a).

Five amino acids were determined. Serine, threonine and glycine are biosynthetically linked. The levels of serine and glycine tended to be higher but not significantly in leaves of 35S::pPLAIII and WT (Figure 5b). The levels of threonine, aspartate and proline decreased 18%, 55% and 33%, respectively, in 35S::pPLAIII compared with WT (Figure 5b).

Seven of 11 measured monosaccharide species displayed a decreased level in 35S::pPLAIII compared with WT, including erythrose (40%), lyxose (56%), galactose (36%), mannose (33%), glucopyranose (37%), galactopyranose (29%) and inositol (38%; Figure 5c). The levels of glucose and fructose tended to be 9% and 12% lower in 35S::pPLAIII compared with WT (Figure 5c). The level of sorbitol had a 20% increase in 35S::pPLAIII compared with WT (Figure 5c). No change was observed for threitol (Figure 5c). The level of glucopyranosides, a glucose derivative, was 29% lower in 35S::pPLAIII than in WT (Figure 5c). The levels of disaccharide species, melibiose and maltose, were decreased 45% and 41%, respectively, in 35S::pPLAIII as compared with WT (Figure 5c). These results indicate that the overexpression of pPLAIII has profound impact on carbon metabolism.

Constitutive overexpression of pPLAIII increases seed oil content but decreases seed production

We determined the impact of constitutive overexpression of pPLAIII on seed morphology and seed oil content (Figure 6). 35S::pPLAIII seeds displayed altered seed morphology, being 12% shorter and 26% wider than WT seeds (Figure 6a). As a result, the ratio of width to length was increased 44% in OE seeds compared with WT (Figure 6b). However, the florescent stem of 35S::pPLAIII plants were approximately 50% shorter with approximately 10% fewer seed pods and the number of seeds per pod decreased approximately 10%. These changes resulted in fewer seeds, with the seed yield per plant of 35S::pPLAIII being 60% lower than that of WT plants (Figure 6c). 35S::pPLAIII seeds had a decreased level of 18:1 and an increased level of 20:1 (Figure 6d). The seed oil content was 6.5% higher in 35S::pPLAIII than in WT seeds (Figure 6e). 35S::pPLAIII seeds were larger in size and 7% heavier than WT seeds (Figure 6f). Thus, a per seed basis, one 35S::pPLAIII seed contained 14% more oil than one WT seed. The content of cellulose was 17% lower in 35S::pPLAIII than in WT seeds (Figure 6g).

Seed-specific overexpression of pPLAIII increases seed oil content without compromising plant growth

To overcome the adverse effect on plant growth and seed production, we utilized the seed-specific promoter of β-conglycinin to drive the expression of pPLAIII in camelina plants (Figure 7a). We compared the growth of mutants overexpressing pPLAIII by 35S constitutive promoter and seed-specific β-conglycinin promoter, designated as 35S::OE and CON::OE, respectively (Figure 7). Analysis of three independent lines in T4 generation showed that CON::pPLAIII overexpressors and WT plants had similar morphology at different development stages, such as at 1-, 4 and 5 weeks of growth (Figure 7b-d). No differences were observed in the shape of leaves between CON::pPLAIII and WT (Figure 7e). These results suggest that overexpressing pPLAIII by seed-specific promoter has no observable impact on plant vegetative growth.
The production of the recombinant protein pPLAIII_d-GFP was detected in the developing seeds of CON::pPLAIII_d (Figure 7f). The green fluorescence protein (GFP) signal of pPLAIII_d-GFP was observable at 17 day-after-pollination (DAP), reached the maximum at 21 DAP and maintained the presence till 25 DAP which corresponds to seed maturation (Figure S3).

Figure 6 Characterization of camelina mutant seeds overexpressing pPLAIII_d. (a) Morphology of mature camelina seeds of wild-type and pPLAIII_d overexpressors, showing OE seeds were rounder than WT ones. Bar = 1 mm. WT, wild type; 35S::OE, constitutive overexpressors. CON::OE, seed-specific overexpressors. (b) Ratio of seed width over seed length, an indicator of seed shape. (c) Seed yield of individual plant. (d) Fatty acid compositions. (e) Seed oil content. (f) Weight of individual seed. Five replicates of seed samples from each genotype were weighed and the number of the seeds from each replicate was counted. (g) Seed cellulose content. Values were means ± SE (n = 5 for b-e and g; n = 10 for f). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.

The production of the recombinant protein pPLAIII_d-GFP was detected in the developing seeds of CON::pPLAIII_d (Figure 7f). The green fluorescence protein (GFP) signal of pPLAIII_d-GFP was observable at 17 day-after-pollination (DAP), reached the maximum at 21 DAP and maintained the presence till 25 DAP which corresponds to seed maturation (Figure S3). CON::pPLAIII_d seeds
were 5% shorter and 25% wider than WT ones (Figure 6a). The CON::pPLAIIIδ seeds were rounder; the ratio of width over length was 30% greater than WT seeds (Figure 6b). Individual seed weight and seed yield per plant were comparable between CON::pPLAIIIδ and WT plants (Figure 6c,f). Seeds from two of the CON::pPLAIIIδ lines exhibited a lower level of 18:0 and a slightly lower level of 18:1 (Figure 6d). CON::pPLAIIIδ seeds tended to have a higher level of 20:1 (Figure 6d). The CON::pPLAIIIδ lines displayed a significant 4% increase in seed oil content compared with WT seeds (Figure 6e).

We determined the harvest index for mutants of CON::pPLAIIIδ (Figure 8). For a direct comparison, WT plants and CON::pPLAIIIδ mutants were grown in containers with a dimension of length 32 cm, width 32 cm and height 32 cm (Figure S4). The plant dry mass and seeds were harvested, and the seed parameters and harvest index were measured. The seed oil content was approximately 9% higher in CON::pPLAIIIδ than in WT (32.7% vs 30.0%; Figure 8a). No significant difference was found in plant height, total dry mass per plant, seed yield per plant and seed starch content between WT and CON::pPLAIIIδ overexpressors (Figure S4d–g). The oil yield per plant was approximately 15% higher in CON::pPLAIIIδ lines than in WT (Figure 8b; Table S2). These results indicate the seed-specific overexpression of pPLAIIIδ enhances an overall seed oil yield in camelina plants.

The seed yield per plant, seed oil content and oil yield per plant were compared between plants growing in pots and in growth containers (Table S1). Plants growing in pots set more seeds per plant than those in growth containers (Table S1), and this difference may be contributed by the less plant density and thus larger growth area in pots than in growth containers (Table S1). The level of seed yield per area was higher for plants growing in containers than those in pots (Table S1). Under both growth conditions, the seed oil content and oil yield per plant were higher in CON::pPLAIIIδ lines than in WT (Table S1). These results indicate enhancement of seed oil content in transgenic plants is due to the overexpression of pPLAIIIδ.

Discussion

The present study shows that the overexpression of pPLAIIIδ in camelina enhances seed oil content with an increased proportion of long chain fatty acids. These effects of pPLAIIIδ in camelina are consistent with recent findings in Arabidopsis (Li et al., 2013), indicating the potential to use pPLAIIIδ for improving oil produc-
tion. While it enhances lipid production, the 35S promoter-driven, constitutive expression of pPLAIII is detrimental to biomass and seed production. Seed-specific overexpression of pPLAIII increases oil content without compromising overall plant growth and seed production in camelina.

One intriguing question arising from these results is how the glycerolipid-hydrolysing pPLAIII increases lipid accumulation. One hypothesis is that pPLAIII-mediated PC turnover facilitates the movement of fatty acids from the plastid to the ER. Fatty acids in higher plants are synthesized primarily in the plastids and exported to ER for glycerolipid synthesis, including PC, PE and TAG (Bates et al., 2013). pPLAIII hydrolyses PC to produce free fatty acids and LPC (Li et al., 2013). LPC can be reacylated to PC by LPCAT using fatty acyl-CoA derived from the plastids. The LPCAT reaction has been implicated in shuffling fatty acids from the plastid to the ER (Bates et al., 2012; Tjellström et al., 2012). The release of acyl chains from PC to ER is predicted to be catalysed by phospholipase A activities (Lands, 1960; Chapman and Ohlrogge, 2012). pPLAIII may hydrolyse acyl chains from PC and generate LPC as substrate for LPCAT. Therefore, overexpression of pPLAIII could enhance the acyl flux into ER and increase the overall levels of glycerolipids, such as PC and PE. Newly formed PC is enriched in fatty acids with chain length of 16 carbons and 18 carbons with no or one double bond (16:0, 18:0, 18:1). These plastid-originated fatty acids in PC are further desaturated to form 18:2 and 18:3. In addition, fatty acids on PC can be released to form acyl-CoA for elongation to form 20 carbon fatty acids. The fatty acid trafficking and modifications, including desaturation and elongation, are very active during oilseed development (Bates et al., 2013). pPLAIII-overexpressing seeds tended to have a higher level of 20:1 and polyunsaturated 18 carbon fatty acids at the expense of 16:0, 18:0 and 18:1, which are direct products of fatty acid synthesis in the plastid. These findings suggest pPLAIII may play roles in trafficking fatty acids from plastids to ER, as well as in modifying fatty acids to produce the ones with over 20 carbons.

Many compounds of the amino acids, organic acids and sugar species are linked metabolically (Figure 5d). More carbon shifting to glycerolipid synthesis may impact the levels of metabolites in tricarboxylic acid (TCA) cycle. Our results showed that the levels of organic acids in TCA cycle decreased around 50% in 35S::pPLAIII leaves, such as malate, fumarate and succinate (Figure 5a). The increased demand for glycerolipid synthesis in 35S::pPLAIII mutant resulted in less carbon entering TCA cycle (Figure 5d). The metabolic relationship of glycerolipid synthesis and TCA cycle is also observed in other mutants. In both shrunken seed 1 mutant (sse1) and mutant overexpressing biotin carboxyl carrier protein 2, the decreased demand for glycerolipid synthesis is accompanied by more carbons entering TCA cycle (Chen et al., 2009; Lin et al., 2006). The decreased levels of metabolites in TCA cycles may impact the levels of amino acids that are metabolically linked to the TCA cycles, such as asparagine and proline. Our results showed that the levels of asparagine and proline decreased by around 40% (Figure 5a). Cellulose is derived from glucose units, which are linked through β-(1→4)-glycosidic bonds. The cellulose level was lower in leaves of 35S::pPLAIII (Figure 3c), suggesting a less utilization of glucose for cellulose synthesis and more carbon source could be allocated to glycerolipid synthesis (Figure 5d). The overall lower levels of many types of soluble sugars and their derived sugar acids all support more carbons were directed toward lipid production resulting from the increased pPLAIII expression (Figure 5c).

An interesting question arising from the overt impact of pPLAIII overexpression on plant growth is the role of the pPLAIII subfamily in overall plant growth regulation. The impairment in cell elongation and anisotropic growth has been proposed to result from decreased cellulose production (Burk et al., 2001; Fagard et al., 2000). Longitudinal cell growth requires cellulose deposition, and cellulose deficient mutants, such as the fragile arabidopsis2 (fra2) and Cellulose synthase 6-deficient prc1-1, displayed similar loss of anisotropic cell growth (Burk et al., 2001; Fagard et al., 2000). The changed membrane compositions might

Figure 8 Oil content and harvest index of camelina seed with seed-specific overexpression of pPLAIII. (a) Seed oil content. (b) Oil yield per plant. (c) Harvest index. WT, wild-type; CON::OE, seed-specific overexpressors. Plants were growing in containers with dimension of length 32 cm, width 32 cm and height 32 cm. Seven WT plants and 7 CON::OE plants grew in one container. The seeds and the total dry plant mass of the 7 individual plants were put together as one sample. Total plant dry mass was from the above-ground parts of the plants, including seeds, dried leaves and dried stems. Values were means ± SE (n = 10 for WT and 5 for CON::OE). *Significant difference at P < 0.05 compared with the WT, based on Student’s t-test.
impede the function of membrane-associated proteins, such as FRA2. FRA2 is a microtubule-severing protein with ATPase activity and is involved in cellulose deposition in Arabidopsis stamens; loss of function mutant, fra2, results in decreased levels of cellulose content and mechanical strength (Burk et al., 2001). Fatty acids can inhibit ATPase activities (Lamers and Hülsmann, 1977; Swann, 1984; Swarts et al., 1991). pPLAIII is localized on the plasma and intracellular membranes, and pPLAIII-overexpressing Arabidopsis has elevated levels of free fatty acids and lysophospholipids (Li et al., 2013). It might be possible that pPLAIII-derived products, such as fatty acids and LPC, impair the ATPase activity of FRA2. FRA2 is a katanin-like protein (Burk et al., 2007).

Suppression of katanin expression results in a lower cellulose content and a higher lipid content (Burk et al., 2007; Qu et al., 2012), a consequence similar to overexpression of pPLAIII. pPLAIII-derived membrane disturbance may also impact the trafficking and function of the cellulose synthase complex on cellulose deposition. Future investigations on how a higher level of pPLAIII decreases cellulose accumulation may reveal an important regulatory mechanism that coordinates lipid and cellulose metabolism.

Seed-specific overexpressors were tested for growth and seed oil production in pots and growth containers (Figures 6 and 8). In both growth conditions, levels of the seed oil content per weight and oil yield per unit of growth area were higher in seed-specific overexpressors than in WT (Table S1), suggesting a positive impact of pPLAIII on seed oil accumulation. The difference in the magnitude of oil increases in pots and growth containers may result from the different growth conditions. In particular, the growth conditions in individual pot tended to be more variable such as soil water content and potentially fertilizer levels because each plant was in a separate pot. By comparison in growth containers, WT and seed-specific overexpressors were growing in a same container so the soil moisture and nutrient levels were the same. In addition, seeds from 7 plants growing in a same growth container were put together and treated as one sample, while seeds from one plant growing in an individual pot was treated as one sample. Therefore, the data for plants growing in growth containers had a smaller variation and were more directly comparable among genotypes than those growing in separated pots.

In summary, our study shows that the ubiquitous overexpression of pPLAIII results in a significant increase in seed oil content, but decrease in cellulose accumulation, longitude growth and seed production in camelina plants. Seed-specific overexpression of pPLAIII enhances seed oil content without the detrimental effects on the plant growth and seed yield. Targeted manipulation of pPLAIII has the potential to improve seed oil production in oilseed crops.

Experimental procedures

Generation of 355::pPLAIII and CON::pPLAIII overexpression plants

To overexpress pPLAIII, the genomic sequence of pPLAIII (At3g63200) was obtained by PCR using Col-0 Arabidopsis genomic DNA as a template and by forward primer 5′-ATGTTAAACAGCTTTGATCCATGCCCTT-3′ and reverse primer 5′-ATGGCGGCGCAACGGCTCGACGGAGGTAA-3′. The genomic sequence of pPLAIII was cloned into the pMDC83 vector before the GFP-His coding sequence and between the Pad and AscI sites, with the expression of pPLAIII under the control of the 35S cauliflower mosaic virus promoter (pMDC83-35S::pPLAIII). The β-conglycinin promoter sequence was amplified by forward primer 5′-AGTGTAAACAGCTTTGATCCATGCCCTT-3′ and reverse primer 5′-ATTAAATGAACTCGGCAGATATACTTAAATTCT-3′ and then cloned into pMDC83-35S::pPLAIII between the sites of Pmcl and Pci. The 35S promoter was replaced by β-conglycinin promoter and a new construct, pMDC83-CON::pPLAIII was obtained.

The sequences of the constructs were verified before they were introduced into the Agrobacterium tumefaciens strain CS81C. Camelina sativa (cv. Suneson) plants were transformed by the pMDC83-35S::pPLAIII- or pMDC83-CON::pPLAIII-containing Agrobacterium tumefaciens using a floral dip technique (Lu and Kang, 2008). Transgenic plants were screened by hygromycin resistance selection and confirmed by PCR using one primer specific to the pPLAIII gene and the other specific to the promoter. Homozygous transgenic lines were obtained, and three independent lines for each were further characterized at T4 generation.

Real-time PCR was applied to determine the expression of pPLAIII in camelina plants. The primers for detecting pPLAIII were 5′-CCAGCTTGTGTCGATGGAAATGTC-3′ and 5′-ATTAACCTGAAAGTCTGGCTG-3′. CtTubulin was used as control gene, and the primers were 5′-CACCTCAAGAGGTCTCAGC-3′ and 5′-AGTTCACGATCTCGTCGTC-3′ (Jang et al., 2014; Kwak et al., 2013). The detailed PCR conditions were described previously (Li et al., 2013).

Analysis of fatty acid composition, oil content and harvest index

Ten camelina seeds were placed in glass tubes with Teflon-lined screw caps, and 1.5 mL 5% (v/v) H2SO4 in methanol with 0.2% butylated hydroxytoluene was added. The seeds were crushed by a glass pestle, and samples were incubated for 1 h at 90 °C for oil extraction and transmethylation. Fatty acid methyl esters (FAMES) were extracted with hexane, and quantified using gas chromatography on a SUPELCOWAX-10 (0.25 mm × 30 m) column with helium as a carrier gas at 20 mL/min and detection by flame ionization. The oven temperature was maintained at 170 °C for 1 min and then ramped to 210 °C at 3 °C per min. FAMES from TAG were identified by comparing their retention times with FAMES in a standard mixture. Heptadecanoic acid (17:0) was used as the internal standard to quantify the amounts of individual fatty acids. In calculation of harvest index, the dry matter of the above-ground parts of 7 plants from one container was put together and treated as one samples. The wild-type plants had 10 samples and each line of CON::pPLAIII had five samples. The oil yield was calculated by multiplying oil content and seed yield. The harvest index was expressed as mg oil per mg of total plant dry matter. The principle for calculating harvest index was followed as reported previously (Nanja Reddy et al., 2003).

Plant growth, lipid profiling and metabolite measurements

Camelina plants were grown in an air-conditioned, climate-controlled (Argus Control Systems) greenhouse set to the following conditions: heating set point of 20 °C; cooling set point of 21 °C; 50% minimum humidity; 16-h light/8-h dark cycle; supplemental light threshold of 566 µmol/m²/s (supplemental lights turn off when outside solar radiation is 566 µmol/m²/s or above); 100% shading with shade cloth when solar radiation is 1415 µmol/m²/s or above; and 50% shading at day.
1132 μmol/m²/s or above. Plants were watered regularly and fertilized with Jack’s® 15-16-17 Peat-lite water-soluble fertilizer once a week. Each plant was growing in a separate pot (8 × 8 × 8 cm, width × length × height) and 9 pots were put in a tray (26 × 52 cm, width × length). Therefore, each individual plant had a growth area of 150 cm² when growing in pots. In the experiments of measuring harvest index, 14 plants were grown in a growth container (32 × 32 × 32 cm, width × length × height) and each individual plant had a growth area of 73 cm².

The leaves were harvested from 3-week-old plants for measurement of metabolites. The levels of PA, PC, PE, PI, PG, PA, and phospholipids were determined as previously described (Welti et al., 2002) with modifications described by Xiao et al. (2010). Lipid extracts were obtained by continuous infusion into the electrospray source on a triple quadrupole mass spectrometer (APi4000; Applied Biosystems, Foster City, CA).

The levels of metabolites of amino acids, organic acids and sugar-related compounds were determined by gas chromatography-mass spectrometry (GC-MS) using the protocol defined by Broeckling et al. (2005). The sample was analysed by an Agilent 7820A GC coupled to a 5975 MSD scanning from m/z 50-650. A 60 m DB5-MS column (0.25 mm ID, 0.25 um film thickness). J&W Scientific, Santa Clara, CA, USA) was utilized to separate metabolites at a constant flow of 1.0 ml/min and by a temperature programming of a 80 °C for 2 min, ramped at 5 °C/min to 315 °C and held for 12 min.

Microscopy imaging
Images of developing seeds from camelina silicas were captured using a Nikon Eclipse 800 widefield microscope and an ×60 differential interference contrast, 1.2-numerical aperture objective, with mercury lamp excitation, a 492/18 BP excitation filter and a S35/40 B emission filter. For scanning electron microscopy, fresh samples were fixed to specimen stubs using OCT, frozen in liquid nitrogen for 1 min and then immediately transferred to the scanning electron microscope for observation in the frozen state using the backscatter detector of a Hitachi TM 1000 tabletop scanning electron microscope (Hitachi High-Technologies Canada, Inc. Toronto, Ontario, Canada).

SDS-PAGE and immunoblotting
Leaf samples, each weighing approximately 1 g, were harvested and ground in 3 mL buffer of 30 mM HEPES, pH 7.5, 400 mM NaCl, 1.0 mM phenylmethanesulfonyl fluoride, 1 mM dithiothreitol. The homogenates were centrifuged at 12 000 g for 15 min at 4 °C. Supernatants were assayed for protein content, and equal amounts of proteins were separated by 8% SDS-PAGE and transferred to a polyvinylidene difluoride filter. The filter was incubated with GDF antibodies overnight. The membrane was visualized with alkaline phosphatase conjugated to a secondary anti-mouse antibody after blotting.

Cellulose and starch measurement
Plant matter was cut into pieces, immersed in liquid nitrogen and ground into powder. The materials were extracted twice with 70% ethanol at 70 °C for 1 h. Cell wall materials were dried under vacuum for cellulose content measurement (Updegraff, 1969). Whatman 3MM filter paper was used to establish a standard curve for quantification of cellulose. Anthrone reagent was used to determine the cellulose content. The protocol for measuring starch content was followed as reported previously (Bahaji et al., 2011; Chow and Landhäusser, 2004; Eimert et al., 1995).

Acknowledgements
The authors thank Anureet Kaur and Netiggya Harsh for assistance on确认 transgenic plants, Dr. Howard Berg at the Donald Danforth Plant Science Center’s Integrated Microscopy Facility for assistance on Arabidopsis seed imaging, Kevin Reilly at the Donald Danforth Plant Science Center’s Plant Growth Facility for assistance on camelina growth, Dr. David Osborn at the Center for Nanoscience at the University of Missouri-St. Louis for assistance on maintenance of mass spectrometry machine and Brian Fanella for critical reading of the manuscript. Work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Award # DE-SC0001295.

Authors’ contributions
ML designed the study, performed the experiments, analysed the results and wrote the manuscript. WF performed the metabolic analysis. AT, MT and AS participated the genetic cloning, camelina transformation, genetic screening and mutant confirmation. WX designed the study, analysed the results and revised the manuscript. All authors participated in correction of the manuscript and approved the final version.

References

Supporting information

Additional Supporting information may be found in the online version of this article.
Figure S1 The morphological alteration of the reproductive tissues in camelina mutants overexpressing pPLAIII6.
Figure S2 Profiling of individual species of phospholipids and galactolipids in leaves of wild type and the pPLAIII6 overexpressors.
Figure S3 Detection of pPLAIII6 protein expression in developing seeds of seed-specific overexpressors.

Camelina plants growing in containers with dimension of length 32 cm, width 32 cm, and height 32 cm.

Table S1 Seed yield, oil content, and oil yield of plants growing in pots and growth containers.
Table S2 Oil content, oil yield and harvest index of plants growing in growth containers.