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ABSTRACT 

 

Plant-pollinator interactions are important because they determine the reproductive success of 

animal-pollinated plant species, and contribute to speciation in plants and to the maintenance 

of biodiversity in the ecosystems. Plants pollinated by bats possess unique characteristics to 

attract them in order to be successfully pollinated. Also, pollinator bats have evolved several 

adaptations to feed from nectar and pollen. It is important to register and study these 

interactions, but also to analyze which activities could threaten them, in order to conduct 

optimal management decisions for their conservation. 

Our study addressed two topics related to bat-plant interactions. The first chapter is about bat-

plant interactions across a high biodiversity ecosystem, like the cloud forests of Ecuador, with 

an emphasis on the super-tongued bat species Anoura fistulata, a poorly studied species. And 

the second chapter is about the effect of artificial nectar feeders on bat-plant interactions also 

in an Ecuadorian cloud forest, a topic that has never been studied before. 

Regarding the first chapter, we described the diet of A. fistulata in a broader distribution range 

of the species, adding 13 new plant species to its known diet. We found that A. fistulata is the 

only visitor to the extremely long flowers of the species Centropogon nigricans and Marcgravia 

williamsii, whose nectar is inaccessible to other bat species with shorter tongues. However, A. 

fistulata does not have a more specialized diet than other nectar-bats, and it can occur in sites 

that lack long flower species. Finally, we found a geographic trait covariation between the 

tongue length of A. fistulata and the nectar depth of the species with the longest flower it 

consumes, supporting the geographic mosaic theory of coevolution. Regarding the second 

chapter, our results showed that there is an effect of artificial nectar feeders in the relative 

abundance of nectar bats, with closer areas to feeders presenting a higher bat relative 

abundance than further areas.  However, in spite of this, the presence of feeders does not 

affect other aspects of bat-plant interactions, such as, pollen loads carried by bats or the flower 

visitation rate and breeding success of the bat-pollinated species Burmeistera glabrata.  

 

 



    

 

CHAPTER 1 

 

Interactions between nectar bats and their flowers across cloud forests of Ecuador, with 

an emphasis on the super-tongued bat Anoura fistulata 

 

ABSTRACT 

 

Nectarivorous bats have evolved various adaptations to feed from nectar, such as long, 

extensible tongues. The tongue length champion, Anoura fistulata, can feed from flowers more 

than 80 mm deep. However, little is known about its ecology and coevolution with its floral 

guild. In this study we analyzed the diet of A. fistulata and co-occurring nectar-bats in seven 

sites across Ecuador to evaluate whether A. fistulata has a more specialized diet due to its 

extremely long tongue. We measured bat tongues and depths of bat-pollinated flowers to test 

whether the occurrence of A. fistulata in an area depend on the occurrence of long-tubed 

flowers in the same area. Finally, because it is known that A. fistulata coevolved with the long-

tubed flowers of the species Centropogon nigricans we evaluated evolutionary outcomes 

across space testing the geographic mosaic theory of coevolution, testing whether there is a 

trait covariation between the tongue length of A. fistulata and the flower lengths of species it 

feeds on in the sites it occurs. Our results added 13 new plant species to the known diet of A. 

fistulata, including both long and short-tubed flowers. We found that A. fistulata is the only 

visitor to the extremely long flowers of C. nigricans and Marcgravia williamsii, whose nectar is 

inaccessible to co-occurring bat species with shorter tongues. However, A. fistulata does not 

have a more specialized diet than other nectar-bats, and it can occur in sites that lack long-

tubed flowers. Finally, we found a geographic trait covariation between the tongue length of A. 

fistulata and the nectar depth of the species with the longest flower it consumes in the different 

sites in which it occurs, suggesting that natural selection is playing a role in the adaptation of 

A. fistulata to the local floral community, and also supporting the geographic mosaic theory of 

coevolution. 

 

Key words: Centropogon nigricans, coevolution, diet, ecology, geographic mosaic, Marcgravia 

williamsii. 



    

 

INTRODUCTION 

 

Nectarivorous bats present a series of adaptations (morphological, behavioral, ecological and 

physiological) to feed from nectar and pollen (Datzmann et al., 2010). However, among them 

their long and extensible tongues stand out, resembling the tongues of important pollinators 

such as hummingbirds, flies or moths (Winter & von Helversen, 2003). Among nectarivorous 

bats, the champion of tongue length is the species Anoura fistulata, with a maximum tongue 

extension more than 80 mm (equivalent to 150% of its body length), and special adaptations to 

store the tongue in its rib cage (Muchhala, 2006). A. fistulata represents an extreme outlier 

among nectar bats, resembling striking examples in other pollinator groups, such as the sword-

billed hummingbirds (Ensifera ensifera) with a 10 cm long bill, which also exceeds its body 

length (Snow & Snow, 1980), the mega-nosed fly (Moegistorynchus longirostris) with a 5.7 cm 

long proboscis (Johnson & Steiner, 1997) and the giant hawkmoth (Xanthopan morganii 

praedicta) with a 25 cm long proboscis (Nilsson et al., 1985).  

 

The tube-lipped bat A. fistulata was first discovered in the cloud forest of the Ecuadorian Andes 

(Muchhala et al., 2005). Its known distribution extends from Central Colombia (Mantilla-Meluk 

et al., 2014) to southern Peru (Gárate-Bernardo & Carrasco-Rueda, 2011), and it occurs in 

montane and pre-montane forest as well as arid and semiarid environments along its 

distribution range (Mantilla-Meluk et al., 2014). Muchhala et al. (2005) included notes on the 

diet of A. fistulata in montane forest of northern Ecuador; the bats carried pollen on their fur 

from long-tubed flowers such as Centropogon nigricans, Markea, Marcgravia and bromeliads, 

while the pollen of the short-tubed flowers of the genus Burmeistera were conspicuously 

absent. Previous studies on nectar-bats’ diets showed that they specialize in the consumption 

of nectar and pollen, but they do not specialize on a limited number of plant species (Muchhala 

& Jarrín-V, 2002). On the contrary, they use a large number of species within their habitats (for 

instance, 16 for Hylonycteris underwoodi, 15 for Glossophaga commissarisi (Tschapka, 2004), 

11 for A. caudifer and 10 for A. geoffroyi (Muchhala & Jarrín-V, 2002)). However, the known 

diet of A. fistulata suggests it could be specialized in long-tubed flowers, as it apparently did 

not visit short-tubed Burmeistera flowers present in their habitats (Muchhala, 2005). However, 

current information of A. fistulata’s diet is only based in a handful of samples from a specific 



    

 

area of its wide distribution in northern Ecuador (Muchhala et al., 2005; Muchhala, 2006). In 

addition, it is unknown if A. fistulata always co-occurs with long flowered species throughout its 

geographical distribution. 

 

As regards the pollinator role of A. fistulata, Muchhala (2006) reported that it was the only 

pollinator of the 8-9 cm long flowers of C. nigricans in northern Ecuador. What is more, 

Muchhala and Thomson (2009) showed that the long tongue of A. fistulata likely evolved in a 

coevolutionary race with the long-tubed flowers of C. nigricans, with selective pressures acting 

on longer tongues, because they could get access to more nectar, and on longer tubed-

flowers, because they could export and receive more pollen. The theory of coevolution 

suggests evaluating evolutionary outcomes not only over time (e.g., Slatkin and Maynard 

Smith 1979) but also across space (Thompson 1994; Nuismer et al. 1999; Gomulkiewicz et al. 

2000; Thompson 2005; Gomulkiewicz et al. 2007), due to selective pressures could vary 

geographically in accordance to local phenotypes, population sizes, biotic and abiotic factors 

(Gomulkiewicz et al. 2000; Thompson 2005). Thus, a geographic mosaic for the coevolutionary 

process is one possible result (Thompson, 2005). Previous studies testing the geographical 

mosaic of coevolution showed geographic trait covariation between the lengths of floral 

reproductive parts and the lengths of pollinator’s body traits involved in effective pollination (for 

instance mouthparts or legs). Trait covariation was observed between single pollinator species 

or pollinator guilds and single plant species or floral guilds (Anderson & Johnson, 2008; 

Cosacov et al., 2013; Boberg et al., 2014; Newman et al., 2014). We suspect that A. fistulata 

and its floral guild could show a similar pattern of trait covariation, with longer and shorter 

tongues in sites with local longer and shorter flowers, respectively.  

 

In this study we analyzed the diet of A. fistulata over a large portion of its geographical range, 

as well as the diet of co-occurring nectar bats, in order to evaluate 1) what does A. fistulata 

feed on in other areas of its range and 2) if there is a difference in diet specialization between 

A. fistulata and other nectar bats due to differences in their adaptations to feed from flowers. 

The long tongue of A. fistulata could allow it to specialize and limit its diet to long-tubed flowers 

that co-occurring bat species cannot use; alternatively, it may lead to a more generalized diet 

by allowing it to feed from both long and short flowers. We also measured bat tongue lengths 



    

 

and depths of bat-pollinated flowers to test 3) if the occurrence of A. fistulata in an area 

depends on the occurrence of long-tubed flowers in the same area and 4) if there is trait 

covariation between the tongue length of A. fistulata and the flowers’ depths of the species it 

feeds on in the sites it occurs. 

 

 

METHODOLOGY 

 

Study sites: We collected samples in seven cloud forest sites along both sides of the Andes in 

central Ecuador. The elevation in the different sites varied from 1000 to 3500 masl, and in each 

site we captured between two and four species of nectar-bats (Table 1). The authors 

conducted fieldwork from October 2009 to December 2010 (N.M) and June 2014 to January 

2016 (R.M).  

 

Diet analysis: To analyze their diet, we captured nectar-bats using mist-nets (2, 6, 9, 12 m x 

3, 2.5 m) placed close to known or suspected bat-adapted flowers. Nets were opened at dusk 

from 1800 to 0100 hrs. We collected pollen and fecal samples from the bats. We collected 

pollen from bats’ fur by touching transparent adhesive tape against different bat body areas 

(mainly head, belly and inner wing patagium) and then placing the tape on a glass microscope 

for later inspection and identification of the pollen. We held the bats in cloth bags for two hours 

to collect fecal samples, which were spread on a glass microscope and covered with adhesive 

tape. We inspected the fur and fecal samples using a SWIFT light microscope (SWIFT 

Microscope World, USA), scanning the tape at 100X magnification, switching to 400X as 

needed to identify and photograph the pollen grains. For each fecal sample we categorized the 

components as pollen, vegetative tissue, seeds and insects. For all samples (fur and fecal) we 

registered the presence or absence of pollen (pollen frequency), and when present we 

identified all pollen types to the lowest taxonomic level possible and estimated the abundance 

in percentage per pollen type. We identified the pollen using our pollen reference collection 

taken directly from flowers during fieldwork. For each bat species in each site, we estimated 

diet richness as number of flower species visited, diet diversity using the Shannon-Wiener (H’) 

diversity index and the Levin’s standardized Index (BA) which is a measure of niche breadth. BA 



    

 

ranges from 0 (only one resource used) to 1 (all consumed resources used evenly) indicating a 

narrow or wide niche breadth, respectively (Krebs, 1999). We also calculated the overall 

average diet richness, H’ and BA per bat species across all sites. We used one-way ANOVA to 

compare the average diet richness, H’ and BA index among bat species. 

 

Tongue and flower measurements: For a subset of the bats captured, after collecting pollen 

and fecal samples we held them individually in an experimental tent in order to measure 

tongue length. First, we trained the bat to feed from a plastic test tube (12 mm diameter) filled 

with a 1:4 sugar-water solution. If the individual did not feed from the tube after two hours, it 

was immediately released. For those that fed, we then offered the bat a modified drinking straw 

filled with sugar-water with a 6 mm diameter, this prevented the bat from inserting its snout, 

allowing us to isolate tongue length. Every 30 minutes we measured the depth of water-sugar 

consumed since the last check and then replaced approximately half of this. When the depth of 

water-sugar was the same for three consecutive visits, we considered this to be the bat’s 

maximum tongue length extension (sensu Muchhala, 2006). We also measured nectar depth 

for all bat-visited flowers in each reserve. We collected between one and ten flowers per 

species to measure corolla length; in the case of Marcgravia species, we collected nectaries 

and measured nectary depth. Our goal was to measure the corolla/nectary functional depth of 

the flowers, which represents the length a bat has to extend its tongue in order to reach the 

nectar. For tubular corolla flowers we measured from the top of corolla opening to the base of 

corolla, while for campanulate corolla flowers we measured from the top corolla edge to the 

base of corolla and then subtracted the average cranium length of each bat species, to 

account for the fact that bats insert their heads into these flowers before extending their 

tongues. Cranium measurements were taken from Muchhala et al. (2005). We complemented 

our field data with corolla length measurements of herbarium specimens (Missouri Botanical 

Garden) collected in the corresponding reserve sites, or from species descriptions when 

necessary. For statistical analyses we used Pearson’s correlation to measure the linear 

correlation between the average tongue length of A. fistulata per site and the average 

functional depth of the flowers consumed by the species in each site. We also selected the 

plant species with the longest measurement that was consumed by A. fistulata in each site and 

we correlated these measurements with the average tongue length, given that only the longest 



    

 

flowers would be expected to select on tongue length. We performed the same statistical 

analyses for A. caudifer and the plant species it consumed, but did not apply these analyses 

for other species given their low sample sizes. Finally, we applied a linear mixed-effects model 

(LMM) with flower depth as the fixed effect and bat species as a random effect. 

 

 

RESULTS 

 

Diet analysis: We captured a total of 323 nectar bats from six species in the seven 

Ecuadorian sites we visited: Anoura caudifer (N=145), A. cultrata (N=17), A. fistulata (N=25), 

A. geoffroyi (N=42), Lonchophylla robusta (N=91), and L. thomasi (N=3). We captured A. 

fistulata in three of the seven sites; namely Domono, Guajalito and Yanayacu. The diet of A. 

fistulata was composed of pollen (present in 96% of the samples) and insects (present in 66% 

of the samples, Table 2). No vegetative tissues were present in the samples of A. fistulata, 

unlike those of the other species of Anoura and L. robusta; however, the number of samples 

from A. fistulata is lower than the one of other species of Anoura and L. robusta. No seeds 

were present in any of the samples (Table 2). The insect remains in A. fistulata samples 

belonged to the orders Coleoptera and Hymenoptera, and we also recorded scales of the order 

Lepidoptera in other species of Anoura and L. robusta. We were not able to identify the 

vegetative tissues but we suspect that they came from fruit consumption. Pollen presented the 

highest frequency among all the components in all bat species. These results indicate that A. 

fistulata feed mainly on flowers (nectar and pollen) and supplements their diets with insects; 

other species of Anoura and L. robusta also feed mainly on flowers and supplement their diets 

with insects and likely fruits.  The plant species/genera/families identified corresponded to 51 

different taxa, 16 occurred in A. fistulata samples, adding 13 new records to the known diet of 

this species (Table 3). We found that A. fistulata feeds from long and short-tubed flowers 

(including species of Burmeistera); but it is the only species that was feeding from the long 

flowers of C. nigricans and Marcgravia williamsii. For further analyses of diet specialization we 

only included results from the species that were captured in two or more different sites and 

from which we collected at least five samples per site (fur or fecal samples, Table 2). The 

significance tests showed non-significant difference for diet richness, H’ and BA (one-way 



    

 

ANOVA test, p>0.05, Table 4) among nectar bat species, indicating that the diet specialization 

of these bats is similar. These results show that A. fistulata does not have a more specialized 

diet relative to that of other co-occurring nectar bat species.  

 

Tongue and flower measurements: We obtained measurements of bats’ tongues and 

flowers’ nectar depths in six and seven sites, respectively (Supplementary material, Tables 2 

and 3). We obtained measurements of the tongue length of A. fistulata from the three sites 

where we captured the species, and we also obtained flower measurements from at least three 

plant species in each of those sites (Table 5). The shortest average tongue length of A. 

fistulata was found in Yanayacu (81.5 ± 4.4), and the longest average was found in Guajalito 

(87.7 ± 1.1). The corolla/nectary functional depth of flowers consumed by A. fistulata ranged 

from 83.5 mm to 0 mm (Table 3). We found that A. fistulata occurs in sites with long flowers, 

such as Guajalito with C. nigricans and Domono with M. williamsii, however it also occurs in 

Yanayacu where the longest flower (Marcgravia brownei) does not exceed 50 mm. The 

Pearson test showed a non-significant correlation between the tongue length of A. fistulata per 

site and the average corolla/nectary functional depth of the plant species it consumed in each 

site (R2 = 0.58, p = 0.21), however, we did find a significant positive correlation with plant 

species with the longest measurement consumed by A. fistulata (R2 = 0.99, coef = 0.99, p = 

0.01, Fig. 1). Similarly, the Pearson test showed a non-significant correlation between the 

tongue length of A. caudifer per site and the average corolla/nectary functional depth of the 

plant species it consumed in each site (R2 = 0.24, p = 0.25), yet a marginally significant 

positive correlation with plant species with the longest measurement consumed by A. caudifer 

(R2 = 0.94, coef = 0.79, p = 0.07, Fig. 1). The LMM, with flower depth as fixed effect and bat 

species as a random effect, also showed a marginally significant positive relationship (p = 

0.05). These results show that the tongue length of A. fistulata and A. caudifer varies 

accordingly with the longest flower depth of the plant species they consume in the sites they 

occur. 

 

 

 

 



    

 

DISCUSSION 

 

This study greatly expands our knowledge of bat-plant interactions, adding 13 new plant 

species to the diet of A. fistulata. A. fistulata feeds from long and short-tubed flowers (including 

species of Burmeistera); but it is the only species that feeds from the extremely long flowers of 

C. nigricans and M. williamsii, which are inaccessible to co-occurring bat species with their 

shorter tongues. However, A. fistulata does not have a more specialized diet; there is no 

significant difference in dietary specialization relative to the other nectar bat species. Also, we 

found that the occurrence of A. fistulata in a site is independent of the occurrence of long 

flowers species in the same site. Finally, we found a geographic trait covariation between the 

tongue length of A. fistulata and the corolla/nectary functional depth of the longest flowers 

species it consumes in the sites it occurs, suggesting that natural selection is playing a role in 

the adaptation of A. fistulata to the local floral community, supporting the geographic mosaic 

theory of coevolution. 

 

Before our study, the known diet of A. fistulata included only five plant species: C. nigricans, 

Marcgravia coriaceae, Aphelandra acanthus, Pitcairnia brogniartiana and Meriania tomentosa 

(Muchhala et al., 2005). Our study adds 13 new species to this list, presenting information from 

a wide area of its geographical distribution at both sides of the Andes in central Ecuador. We 

found that A. fistulata fed from both long and short-tubed flowers at the three sites we caught it. 

Two flowers were clearly specialized to A. fistulata: C. nigricans, with an average of 83.2 mm-

long corollas, and M. williamsii, with an average of 68.6 mm-long nectaries; since A. fistulata 

was the only species in which we found pollen of these plant species. Although the species 

Trianaea nobilis presents a long corolla functional depth (74.3 mm) after we subtracted 

cranium length of bats, A. fistulata was not the only species feeding from it; we also found 

pollen of T. nobilis in samples from A. geoffroyi with an average tongue length of 43.3 mm. The 

wide campanulate corolla and long nectar chamber (~40 mm length) of T. nobilis flowers would 

allow access to nectar to short-tongued bats, however, only A. fistulata would reach the base 

of the long nectar chamber to get all nectar available (N.M., pers. obs.). The exclusive feeding 

on C. nigricans and M. williamsii by A. fistulata indicates that its long tongue confers it an 

advantage to feed from long flowers that other bat species cannot reach. These interactions 



    

 

resemble those of other nectarivorous animals with extremely long mouthparts, for instance, 

the sword-billed hummingbird (Ensifera ensifera) that exclusively pollinates around 37 species 

of Passiflora in the Andes mountains (Abrahamczyk et al., 2014; Lindberg & Olesen, 2001) and 

the mega-nosed fly (Moegistorynchus longirostris) that is the sole pollinator of different species 

of orchids in the Cape Drakensberg mountains (Johnson & Steiner, 1997). What is more, all 

these interactions are asymmetrical in thus the plant species exclusively depend on a single 

pollinator to successfully reproduce but the pollinator does not depend on a single plant 

species to obtain food resources (Johnson & Steiner, 1997). 

 

In spite of the fact that A. fistulata can feed from short flowers, we noticed that the frequencies 

and percentages of abundance of pollen grains belonging to short flowers species were lower 

compared to species with longer flowers (Supplementary material, Fig. 1, Chi-squared, p<0.01 

in Yanayacu, p<0.01 in Guajalito). For instance, in Yanayacu, pollen of species M. brownei 

with 47.2 mm functional depth was present in 93% of the samples of A. fistulata and registered 

83% of abundance, whereas pollen of short flowers species of Burmeistera was present in 

40% of the samples and registered 15% of abundance or lower values. When we looked at the 

frequencies and abundances of the same plants in other (short-tongued) nectar bats, we 

always found higher values for Burmeistera species. For instance, A. caudifer in Yanayacu 

presented pollen of M. brownei in 81% of the samples, which registered 22% of abundance, 

whereas pollen of Burmeistera was present in 100% of the samples and registered 70% of 

abundance. We observed similar percentages for long (C. nigricans) and short (Burmeistera 

spp.) flowers in Guajalito (Supplementary material, Fig. 1, Chi-squared, p<0.01). These results 

indicate that A. fistulata could be mainly feeding from long flowers species (when they are 

present in an area), whereas the other nectar bats would consume species of Burmeistera 

more frequently than A. fistulata. Our findings concur with previous records about different 

frequency of visits to flowers in montane forest between species A. caudifer and A. geoffroyi, 

the larger bat A. geoffroyi visited longer flowers more frequently, whereas the shorter bat A. 

caudifer visited shorter flowers more frequently (Muchhala & Jarrín-V, 2002). It is likely that 

there is a partition of resources among nectar bats in montane forest habitats. Additionally, we 

estimated the percentage of diet overlap between A. fistulata and co-occurring nectar bat 

species, and the results showed percentages of diet overlap of only 17.6% (based on pollen 



    

 

frequencies) and 25.7% (based on pollen abundance). Interestingly, the percentages of diet 

overlap between other species of Anoura, do not exceed 20% (based on pollen frequencies) 

and 36.5% (based on pollen abundance) of overlap (Supplementary material, Table 2). These 

results support our previous idea about partition of resources. Finally, an important result from 

the diet analysis is that all bat species showed similar values of diet richness, H’ and BA, 

indicating that A. fistulata does not have a more specialized diet compared with co-occurring 

nectar-bats. Therefore, the striking morphological specialization of A. fistulata led it to 

generalization by allowing it to feed from a wider variety of food resources.  

 

The measurements we took from flowers along the visited sites showed that the occurrence of 

A. fistulata in an area does not depend on the occurrence of long-tubed flowers in the same 

area. These findings line up with our results about the ability of A. fistulata at feeding from a 

wide variety of resources, in terms of a wide depth range of the flowers it visits (from 0 mm to 

83.5 mm). Also, we found a geographic trait covariation between the tongue length of A. 

fistulata and the functional depth of the longest flower it feeds on in the sites it occurs. These 

findings suggest, that natural selection is playing a role in the adaptation of A. fistulata to the 

local floral community; and that the outcomes of the coevolution of A. fistulata and its floral 

guild concur with the geographic mosaic theory of coevolution. Previous studies found similar 

patterns of geographic trait covariation between plants and different pollinator guilds (Boberg et 

al., 2014; Cosacov et al., 2013; Newman et al., 2013; Nattero et al., 2011; Anderson & 

Johnson, 2008). In regards to hummingbirds, Nattero et al. (2011) found a correlation between 

the corolla length of Nicotiana glauca and the bill length of its most frequent hummingbird 

pollinator across a wide geographic scale along the mountain Andes of Bolivia and Argentina. 

In the case of flies, correlation was found between the proboscis length of flies and the corolla 

tube length of one mutualistic plant species (Anderson and Johnson, 2008) or the corolla tube 

length of a guild of plant species (Newman et al., 2013). Finally, in the case of moths, a recent 

study by Boberg et al. (2014) found a correlation between the spur length of the orchid 

Platanthera bifolia and the proboscis length of its local moth pollinators in northwestern 

Europe. As mentioned in previous studies about bats and other pollinator guilds, it is expected 

that selection will favor longer mouthparts because they confer more efficiency at extracting 

nectar from long-tubed flowers (Nattero et al., 2011; Muchhala & Thomson, 2009; Anderson & 



    

 

Johnson, 2008) and longer tubed-flowers because they can export and receive more pollen 

(Muchhala & Thomson, 2009). Taken together, these studies indicate the influence of 

geographical variation in creating changing selective pressures for the coevolution of 

pollinators and floral traits. For future studies, it would be interesting to examine the variation in 

tongue length of A. fistulata and traits of its floral guild with relation to other factors that could 

constraint or promote an increase in length of the mentioned traits in particular locations, such 

as abiotic variables, other floral traits or vegetative traits, population sizes, and presence of 

short-tubed species (Cosacov et al., 2013; Newman et al., 2013; Nattero et al., 2011; 

Anderson & Johnson, 2008). 

 

 

CONCLUSIONS 

 

A. fistulata feeds from a wide variety of plant species, including species with short and long 

flowers, however its long tongue allows it to exclusively feed from the longest flower species C. 

nigricans and M. williamsii, which other nectar bats cannot reach. In spite of this, A. fistulata 

does not have a more specialized diet compared to other nectar bats. In addition, the 

occurrence of A. fistulata in a site is independent of the occurrence of long-tubed flowers 

species in the same site, which makes sense because diet is not restricted to these species. 

Finally, the geographic trait covariation between the tongue length of A. fistulata and the 

corolla/nectary functional depth of the longest flowers species it consumes supports the 

geographic mosaic theory of coevolution, therefore different selective pressures along the 

geographic distribution of these species are shaping coevolutionary outcomes. 

 
 
 
 
 
 
 
 
 
 
 
 



    

 

BIBLIOGRAPHY 
 
Abrahamczyk, S., Souto-Vilarós, D., & Renner, S. S. 2014. Escape from extreme 
specialization: passionflowers, bats and the sword-billed hummingbird. Proceedings of the 
Royal Society of London B: Biological Sciences, 281(1795), 20140888. 
 
Aguirre, L. F., Mamani, C. J., Barbosa-Márquez, K., & Mantilla-Meluk, H. 2010. Lista 
actualizada de los murciélagos de Bolivia. Revista Boliviana de Ecología y Conservación 
Ambiental, 27(1), 1-7. 
 
Anderson, B., and S. D. Johnson. 2008. The geographical mosaic of coevolution in a plant-
pollinator mutualism. Evolution 62:220-225. 
 
—. 2009. Geographical covariation and local convergence of flower depth in a guild of fly-
pollinated plants. New Phytologist 182:533-540. 
 
Boberg, E., Alexandersson, R., Jonsson, M., Maad, J., Ågren, J., & Nilsson, L. A. 2014. 
Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera 
bifolia. Annals of Botany, 113(2), 267-275. 
 
Cosacov, A., Cocucci, A. A., & Sérsic, A. N. 2013. Geographical differentiation in floral traits 
across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do 
pollinators matter? Annals of botany, mct239. 
 
Datzmann, T., von Helversen, O., & Mayer, F. 2010. Evolution of nectarivory in phyllostomid 
bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology, 10(1), 
165. 
 
Gárate-Bernardo, P., & Carrasco-Rueda, F. 2011. Range extension of Anoura fistulata, 
Muchhala, Mena and Albuja, 2005 (Chiroptera: Phyllostomidae) in Peru. Check List, 7(5), 612-
613. 
 
Gomulkiewicz, R., D. M. Drown, M. F. Dybdahl, W. Godsoe, S. L. Nuismer, B. J. Ridenhour. 
2007. Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity 98:249-
258. 
 
Gomulkiewicz, R., J. N. Thompson, R. D. Holt, S. L. Nuismer, and M. E. Hochberg. 2000. Hot 
spots, cold spots, and the geographic mosaic theory of coevolution. American Naturalist 
156:156-174. 
 
Johnson, S. D., & Steiner, K. E. 1997. Long-tongued fly pollination and evolution of floral spur 
length in the Disa draconis complex (Orchidaceae). Evolution, 45-53. 
 
Krebs, C. J. 1999. Ecological methodology (Vol. 620). Menlo Park, California: 
Benjamin/Cummings. 
 



    

 

Lee Jr, T. E., Burneo, S. F., Cochran, T. J., & Chavez, D. 2010. Small mammals of Santa 
Rosa, southwestern Imbabura Province, Ecuador. 
 
Lindberg, A. B., & Olesen, J. M. (2001). The fragility of extreme specialization: Passiflora mixta 
and its pollinating hummingbird Ensifera ensifera. Journal of Tropical Ecology, 17(02), 323-
329. 
 
Mantilla-Meluk, H., & Baker, R. J. 2008. Mammalia, Chiroptera, Phyllostomidae, Anoura 
fistulata: Distribution extension. Check List, 4(4), 427-430. 
 
Mantilla-Meluk, H., Ramírez-Chaves, H. E., Fernández-Rodríguez, C., & Baker, R. J. 2009. 
Mammalia, Chiroptera, Anoura fistulata Muchhala, Mena-V & Albuja-V, 2005: Distribution 
extensión. Check List, 5(3), 463-467. 
 
Mantilla-Meluk, H., Siles, L., & Aguirre, L. F. 2014. Geographic and ecological amplitude in the 
nectarivorous bat Anoura fistulata (Phyllostomidae: Glossophaginae). Caldasia, 36(2), 373 – 
388. 
 
Muchhala, N., & Jarrín-V, P. 2002. Flower Visitation by Bats in Cloud Forests of Western 
Ecuador 1. Biotropica, 34(3), 387-395. 
 
Muchhala, N., Patricio, M. V., & Luis, A. V. 2005. A new species of Anoura (Chiroptera: 
Phyllostomidae) from the Ecuadorian Andes. Journal of Mammalogy, 86(3), 457-461. 
 
Muchhala, N. 2006. Nectar bat stows huge tongue in its rib cage. Nature, 444(7120), 701-702. 
 
Muchhala, N., & Thomson, J. D. 2009. Going to great lengths: selection for long corolla tubes 
in an extremely specialized bat–flower mutualism. Proceedings of the Royal Society of London 
B: Biological Sciences, rspb-2009. 
 
Nattero, J., Sérsic, A. N., & Cocucci, A. A. 2011. Geographic variation of floral traits in 
Nicotiana glauca: relationships with biotic and abiotic factors. Acta oecologica, 37(5), 503-511. 
 
Newman, E., Manning, J., & Anderson, B. 2013. Matching floral and pollinator traits through 
guild convergence and pollinator ecotype formation. Annals of botany, mct203. 
 
Nilsson, L. A., Jonsson, L., Rason, L. & Randrianjohany, E. 1985 Monophily and pollination 
mechanisms in Angraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued 
hawkmoths (Sphingidae) in Madagascar. Biol. J. Linn. Soc. 26, 1–19. (doi:10.1111/j.1095-
8312.1985.tb01549.x) 
 
Nuismer, S. L., J. N. Thompson, and R. Gomulkiewicz. 1999. Gene flow and geographically 
structured coevolution. Proceedings of the Royal Society B 266:605-609. 
 
Pacheco, V., Cadenillas, R., Salas, E., Tello, C., & Zeballos, H. 2009. Diversidad y endemismo 
de los mamíferos del Perú. Revista peruana de biología, 16(1), 5-32. 
 



    

 

Slatkin, M., and J. Maynard Smith. 1979. Models of coevolution. Quarterly Review of Biology. 
 
Snow, D. W. & Snow, B. K. 1980 Relationships between hummingbirds and flowers in the 
Andes of Colombia. Bull. Br. Mus. Nat. Hist. (Zool.) 38, 105–139. 
 
Tschapka, M. 2004. Energy density patterns of nectar resources permit coexistence within a 
guild of Neotropical flower-visiting bats. Journal of Zoology, 263(01), 7-21. 
 
Thompson, J. N. 1994, The Coevolutionary Process. Chicago, University of Chicago Press. 
 
—. 2005, The geographic mosaic of coevolution. Chicago, IL, University of Chicago Press. 
 
Winter, Y., & von Helversen, O. 2003. Operational tongue length in phyllostomid nectar-feeding 
bats. Journal of mammalogy, 84(3), 886-896. 



    

 

TABLES AND FIGURES 
 
 
Table 1. Study sites information, fieldwork dates and bat species captured per site.  
 

Reserve (Province) Location Elevation (m.a.s.l) Fieldwork dates Bat species captured 

Bosque Domono, Macas  
(Morona Santiago) 

02°07’S, 78°08’W 1000 - 1300 Apr 2010 
A. caudifer, A. fistulata, A. 
geoffroyi, Lonchophylla thomasi 

Reserva Floristica Rio Guajalito 
(Pichincha) 

00°14'S, 78°49'W 1800 - 2200 Jun, Dec 2010 
Anoura caudifer, A. fistulata, A. 
geoffroyi 

San Francisco Scientific Station 
(Loja) 

03°58’S, 79°04’W 1900 - 2200 Mar-Apr 2010 A. caudifer, A. geoffroyi 

Siempre Verde Reserve (Imabura) 00°18'N, 78°16'W 1200 - 3300 Oct 2009 A. caudifer, A. geoffroyi 

Tapichalaca Biological Reserve 
(Zamora Chinchipe) 

04°30’S, 79°10’W 1800 - 3500 Nov 2010 A. caudifer, A. geoffroyi 

Yanayacu Biological Station (Napo) 00°35' S, 77°53'W 2000 - 2500 
Nov 2009, Jun-Jul, Oct 2010, 
Jul 2014 

A. caudifer, A. fistulata, A. 
geoffroyi 

Wildsumaco Wildlife Sanctuary 
(Napo) 

00°40'S, 77°35'W 1400 - 1700  
May 2010, Jun-Aug 2014, 
Jun-Jul 2015, Jan 2016  

A. caudifer, A. cultrata, A. 
geoffroyi, L. robusta 

 
  



    

 

 
Table 2. Total sample size per bat species and frequencies of pollen, insect and vegetative tissue in samples per species and sites 
(numbers show the frequency of items over the total number of samples per species in each site). 

 

Bat species N Domono Guajalito 
San 

Francisco 
Siempre 

Verde 
Tapichalaca Yanayacu Wildsumaco 

Pollen results (fur and fecal samples)             

Anoura caudifer 145 1/1 14/14 10/10 6/6 11/11 16/16 86/87 

Anoura cultrata 17 - - - - - - 17/17 

Anoura fistulata 25 5/5 5/5 - - - 14/15 - 

Anoura geoffroyi 42 2/2 10/10 2/2 19/19 5/5 2/2 2/2 

Lonchophylla robusta 91 - - - - - - 82/91 

Lonchophylla thomasi 3 2/3 - - - - - - 

Insects (top) and vegetative tissues (bottom) results 
     

Anoura caudifer 41 
- - 3/5 0/2 0/3 1/1 24/30 

- - 0/5 0/2 0/3 0/1 5/30 

Anoura cultrata 9 
- - - - - - 9/9 

- - - - - - 4/9 

Anoura fistulata 3 
1/1 0/1 - - - 1/1 - 

0/1 0/1 - - - 0/1 - 

Anoura geoffroyi 15 
0/1 1/1 1/1 8/9 2/2 0/1 - 

1/1 0/1 0/1 0/9 0/2 1/1 - 

Lonchophylla robusta 17 
- - - - - - 12/17 

- - - - - - 1/17 

Lonchophylla thomasi 1 
1/1 - - - - - - 

0/1 - - - - - - 



    

 

Table 3.  Plant species recorded in A. fistulata samples and their corolla/nectary functional 
depths. 

Plant Species/Genera/Families 
Corolla tube/nectary 

functional length 
(mm) 

Bellavista * 
N = 5 

Yanayacu        
N = 14 

Domono          
N = 5 

Guajalito         
N = 5 

Centropogon nigricans  83.23 x 
  

x 

Marcgravia coriaceae - x 
   

Aphelandra acanthus 38.73 x 
   

Pitcairnia brogniartiana 85.9 x 
   

Meriania tomentosa 0 x 
  

x 

Markea sp. - x 
   

Bromeliads - x x x x 

Marcgravia brownei 47.19 
 

x 
 

x 

Marcgravia williamsii 68.68 
  

x 
 

Marcgravia sp. - 
  

x 
 

Trianaea nobilis 74.37 ** 
   

x 

Trianaea speciosa 31.43 
 

x x 
 

Ochroma-Ceiba - 
  

x x 

Passiflora unipetala 9.9 
   

x 

Burmeistera borjensis 17.59 
 

x 
  

Burmeistera ceratocarpa 21.49 
 

x 
  

Burmeistera cylindrocarpa - 
   

x 

Burmeistera lutosa 17.84 
   

x 

Burmeistera sodiroana 19.71 
 

x 
  

Burmeistera succulenta 17.15   x     

* Results from Muchhala et al. (2005) from Bellavista Reserve, northern Ecuador 

** Likely overestimated functional depth due to extend corolla width 

 
 
Table 4. Diet richness, diet diversity (H’) and Levins’ index (BA) results (± SE). 

 

Bat species Diet richness H' 
BA (pollen 
frenquecy) 

BA (pollen 
abundance) 

A. caudifer 4.13 ± 0.8 1.88 ± 0.26 0.57 ± 0.15 0.26 ± 0.14 

A. fistulata 4.07 ± 1.6  1.63 ± 0.25 0.68 ± 0.14 0.27 ± 0.17  

A. geoffroyi 4.35 ± 0.45  1.98 ± 0.11 0.68 ±0.12 0.29 ± 0.02 

Significance test (one-
way ANOVA) 

p=0.95 p=0.21 p=0.42 p=0.93 

 
  



    

 

Table 5. Measurements of tongue length and corolla/nectary functional depth of the longest 
flowers; ± SE and sample size between parenthesis.  

  Domono Guajalito Yanayacu Wildsumaco 
Pearson’s 
correlation 

Longest flower 
Marcgravia williamsii Centropogon nigricans  Marcgravia brownei  - 

p = 0.01 68.68 ± 7.59 (6) 83.51 ± 3.75 (5) 49.73 ± 7.44 (23) - 

Anoura fistulata  84.73 ± 2.35 (3) 87.73 ± 1.19 (3) 81.5 ± 4.41 (3) - 

Longest flower 
- Marcgravia brownei  Marcgravia brownei  Burmeistera glabrata  

p = 0.07 - 41.22 ± 1.2 (2) 49.73 ± 7.44 (23) 17.11 ± 1.39 (10) 

Anoura caudifer - 35.26 ± 0.57 (3) 36.2 (1) 34.44 ± 2.34 (9) 

 
 
 
 
 

 
 

Figure 1. Correlations between the average tongue length per site and longest flower depth 
consumed per site.  
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SUPPLEMENTARY MATERIAL 
 

Table 1. Pollen carried by nectar bats in seven different Ecuadorian cloud forest sites; each cell gives number of bats with that type of pollen 
on their fur or in their feces. Acau = A. caudifer; Acul = A. cultrata; Afis = A. fistulata; Ageo = A. geoffroyi; Lrob = L. robusta; Ltho = L. 
thomasi. 

 

 

Plant list 

Yanayacu 
Guajalito Domono 

Wildsumaco 
Siempre Verde Tapichalaca San Francisco 

Acau Afis Ageo Acau Afis Ageo Acau Afis Ageo Ltho Acau Acul Ageo Lrob Acau Ageo Acau Ageo Acau Ageo 

N=16 N=15 N=2 N=14 N=5 N=10 N=1 N=5 N=2 N=3 N=87 N=17 N=2 N=91 N=6 N=19 N=11 N=5 N=10 N=2 

Acanthaceae 
                    

     Aphelandra acanthus 
              

1 15 
     

Bignoniaceae 
 
     Bignoniaceae sp1. 

          
1 

  
2 

      

Bromeliaceae 
                    

     Pitcairnia fusca 
               

4 
    

     Weriauhia gladioliflora 
      

1 5 2 2 
          

     Bromeliaceae sp1. 
                  

6 
 

     Bromeliaceae sp2. 
                  

5 
 

     Bromeliaceae spp. 10 4 
 

8 5 6 
    

60 7 
 

17 
  

11 5 
  

Campanulaceae 
                    

     Burmeistera borjensis 14 6 2 
                 

     Burmeistera cylindrocarpa 
              

4 15 
    

     Burmeistera glabrata 
          

82 11 
 

47 
      

     Burmeistera sodiroana 5 
 

1 
           

6 22 
    

     Burmeistera ceratocarpa/succulenta 12 2 1 
                 

     Burmeistera cylindrocarpa/lutosa/succulenta 
   

8 3 7 
              

     Burmeistera draconis/zamorensis 
                

9 3 
  

     Burmeistera truncata 
   

13 
 

5 
              

     Centropogon nigricans 
    

5 
               

     Syphocampylus sp. 
                

5 1 
  



    

 

Cucurbitaceae 
                    

     Cayaponia sp. 
          

2 
  

21 
      

     Calycophysum sp. 
          

2 
         

     Gurania sp. 
          

1 1 
        

     Cucurbitaceae sp1.  
          

3 
  

1 
       

Fabaceae 
 
     Fabaceae sp1. 

             
5 

      

Gesneriaceae 
                    

     Capanea grandiflora 
                  

4 
 

     Gesneriacea sp1.  
          

1 
  

4 
      

Macrocarpaceae 
                    

     Macrocarpea harlingii 
          

7 1 
 

9 
    

10 2 

     Macrocapea sp. 
                  

5 1 

Malvaceae 
                    

     Abutilon pictum 
          

43 4 
 

10 
      

     Ochroma-Ceiba 
   

1 1 4 
  

1 1 14 1 
 

39 
      

Marcgraviaceae 
                    

     Marcgravia brownei 13 14 1 14 5 10 
         

6 
    

     Marcgravia williamsii 
       

2 
            

     Marcgravia sp. 
      

1 3 2 
 

76 16 2 55 
  

10 5 6 
  

Melastomataceae  
 
     Meriania tomentosa 

    
2 

     
5 

  
5 6 21 6 2 

   
Onagraceae 
 
     Onagraceae sp1. 

                 
1 

  

Passifloraceae 
                    

     Passiflora unipetala 
   

2 3 5 
              

     Passiflora spp. 
           

1 
 

2 
   

1 
   

Polemoniaceae  
 
     Cobaea trianae 

              
1 18 

     
Rubiaceae 
 
     Rubiaceae sp1. 

          
2 

  
3 

      



    

 

Solanaceae 
                    

     Trianaea nobilis 
    

1 2 
         

2 
    

     Trianaea speciosa 9 4 
                  

     Trianaea sp. 
          

24 1 
 

4 
  

11 4 8 
 

     Solanaceae spp. 
                  

4 
  

Urticaceae  
 
     Cecropia sp. 

             
2 

      

Others (Asteraceae, Euphorbiaceae, Moraceae, 
Poaceae, Urticaceae)              

7 
 

1 2 1 
  

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       

Table 2. Percentages of diet overlap based on pollen frequencies (below grey cells) and pollen 
abundances (above grey cells). Acau = A. caudifer; Acul = A. cultrata; Afis = A. fistulata; Ageo 
= A. geoffroyi; Lrob = L. robusta. 
 

Guajalito Acau Afis Ageo 

Acau   12.60% 24.70% 

Afis 11.70%   23.80% 

Ageo 17.20% 12.50%   

Yanayacu Acau Afis   

Acau   25.70% 
 

Afis 17.60%   
 

Wildsumaco Acau Acul Lrob 

Acau   36.5% 19.7% 

Acul 19.2%   30.1% 

Lrob 13.1% 15.3%   

Siempre Verde Acau Ageo   

Acau   24.30% 
 

Ageo 17.30%   
 

Tapichalaca Acau Ageo   

Acau   20.80% 
 

Ageo 14.60%     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

     

 
 

 
Figure 1. Pollen frequencies (A) and abundance (B) of Burmeistera spp. and Marcgravia 
brownei in nectar bat samples of Yanayacu (Chi-squared, p<0.01), and pollen frequencies (C) 
and abundance (D) of Burmeistera spp. and Centropogon nigricans in nectar bat samples of 
Guajalito (Chi-squared, p<0.01). Acau = A. caudifer; Afis = A. fistulata; Ageo = A. geoffroyi. 
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Figure 2. Nectar bats visiting flowers in the study sites; Yanayacu: A. Anoura fistulata and 
Marcgravia brownei. B. A. geoffroyi and Burmeistera sodiroana, C. A. caudifer and B. 
ceratocarpa, D. A. caudifer and B. borjensis; Guajalito: E. A. fistulata and Centropogon 
nigricans, F. A. fistulata and Trianaea nobilis, G. A. fistulata and Passiflora unipetala, H. A. 
caudifer and B. succulenta, I. A. geoffroyi and B. truncata, J. A. caudifer and B. lutosa; 
Domono: K. A. fistulata and Werauhia gladioliflora, L. A. fistulata and M. williamsii; 
Wildsumaco: M. A. cultrata and Burmeistera glabrata, N. A. cultrata and Marcgravia sp.; 
Siempre Verde: O. A. geoffroyi and Cobaea trianae, P. A. geoffroyi and B. cylindrocarpa; 
Tapichalaca: Q. A. caudifer and Meriania tomentosa; San Francisco: R. A. geoffroyi and 
Capanea grandiflora, S. A. geoffroyi and Macrocarpea harlingii. Picture credits: N. Muchhala. 
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CHAPTER 2 

 

Do artificial nectar feeders affect bat-plant interactions in an Ecuadorian cloud forest? 

 

ABSTRACT 

 

Bat-pollinated plants rely on bats for their reproduction, and have evolved various traits to 

attract them, however, when artificial nectar feeders are available in the area; these 

interactions could be disturbed if bats are drawn away from the plants. In this study we tested 

the effects of feeders in a cloud forest of eastern Ecuador on four aspects of bat-plant 

interactions: (1) bat relative abundance, (2) pollen loads carried by bats, (3) visitation rates to 

bat-pollinated plants and (4) breeding success of these plants. We divided the study area in 

close (~30m) and far (~500m) areas from three different feeders site. In each distance area we 

captured nectar-bats (Anoura caudifer, A. cultrata and Lonchophylla robusta) using mist-nets 

to estimate their relative abundance and to collect pollen samples from them to record pollen 

frequency, abundance and diversity. We also videotaped flowers to estimate the visitation rate 

by bats, and recorded different breeding success variables (based on fruit and seed numbers 

and fruit abortion rates) of the bat-pollinated species Burmeistera glabrata. Our results showed 

that there is an effect of artificial nectar feeders in the relative abundance of nectar bats, with 

closer areas to feeders presenting a higher bat relative abundance than further areas by a 

factor of 40.  However, in spite of this, the presence of feeders does not affect pollen loads 

carried by bats or the flower visitation rate and breeding success of the bat-pollinated species 

B. glabrata. Additionally, we found differences in pollen loads between the three species of 

bats captured in closer areas from feeders, and particular observations about L. robusta 

activity suggested that feeders could draw bats away from long distances. 

 

Key words: nectar bats, pollen loads, flower visitation rate, plant-breeding success, 

Burmeistera glabrata 

 

 

 



   

     

INTRODUCTION 

 

Plant-pollinator interactions determine the reproductive success of animal-pollinated plant 

species, and more generally they can contribute to speciation in plants and to the maintenance 

of biodiversity (Fontaine et al., 2006; Gegear & Burns, 2007 Fleming et al., 2009). Bats as 

pollinators provide specific benefits to the plants they pollinate, different from other pollinators; 

bats can deposit large amounts of pollen and a variety of pollen genotypes on plant stigmas, 

and can deliver pollen long distances (Muchhala & Thomson, 2010).  

Plants pollinated by bats possess a unique combination of characteristics to attract them, 

including nocturnal anthesis, drab coloration, musty smell, flowers positioned well-exposed 

beyond the foliage, high volume of nectar, wide bell-shaped flowers or brush morphology 

(Faegri & van der Pijl, 1979, Helversen, 1993, Muchhala & Jarrin-P, 2002, Garibaldi et al., 

2011;) and long blooming periods (Sazima et al., 1999). However, when artificial nectar 

feeders are available in an area, there exists the possibility that these traits are no longer 

sufficient to attract bats, due to the feeders supplying enormous and predictable quantities of 

artificial nectar that could draw bats away from plants (Arizmendi et al., 2007; Brockmeyer & 

Schaefer, 2012). For instance, for hummingbirds, one feeder can provide the equivalent of 

2000 to 5000 flower visits (True, 1993 cited in Arizmendi et al. 2007), and for bats we 

estimated an equivalent of 800 to 4000 visits. 

In many South American countries there is a growing market for ecotourism, and bird watching 

is a very popular activity for these tourists (Brockmeyer & Schaefer, 2012). Hummingbirds are 

particularly appreciated, and in order to allow prolonged observation of them there has been an 

increasing use of artificial nectar feeders in many ecolodges, including nature reserves that 

protect important remnants of endangered ecosystems (Brockmeyer & Schaefer, 2012). The 

reasons for establishing feeders range from purely economical to the general belief that they 

will benefit the hummingbirds (Avalos et al., 2012). Since the feeders typically remain 

functional during the night they not only attract to hummingbirds, they may also attract bats 

(pers. obs.).   

It is not clear how artificial nectar feeders affect plant–pollinator interactions (Brockmeyer & 



   

     

Schaefer, 2012; Avalos et al., 2012), in terms of animal behavior or reproductive success of 

their associated plants (Arizmendi et a., 2007). Such information is necessary in order to 

implement optimal management decisions for conservation (Ghazoul, 2005). Most of our 

knowledge about the effects of feeders on plant-animal interactions is derived from studies of 

plant-hummingbird interactions, and this literature shows contrasting results. For instance, 

Brockmeyer and Schaefer (2012) found that there are no overall effects of feeders on 

hummingbird’s visitation to flowers in the Ecuadorian Andes, while Sonne et al. (2015) found 

hummingbird abundance and visitation rates to flowers of Psychotria nuda increased near 

feeders (<100m radius) in a Brazilian Atlantic rainforest. Other studies concluded that artificial 

feeders attract hummingbirds across considerable distances (3 km. radius), drawing them 

away from flowers and decreasing visitation rates (Inouye et al., 1991; Arizmendi et al., 2007; 

Avalos et al., 2012). Furthermore, hummingbirds captured close to feeders carried very low 

abundance and diversity of pollen on their bodies (Avalos et al., 2012). In addition, Arizmendi 

et al. (2007) found a significant decrease of plant reproductive success of the native Salvia 

fulgens in areas close to feeders within an urban park in Mexico.  

In the case of bat-plant interactions the impact of artificial feeders is unknown, as no previous 

studies have addressed the topic. Bat biologists frequently mist-net bats near hummingbird 

feeders to increase capture success (pers. obs.), which suggests that bats are also using the 

feeder as nectar resources. For this study we experimentally tested the effect of artificial nectar 

feeders on bat-plant interactions in a cloud forest of eastern Ecuador. While previous studies 

analyzed only one to three aspects of pollinator-plant interactions (Arizmendi et al., 2007; 

Brockmeyer & Schaefer, 2012; Avalos et al., 2012; Sonne et al., 2015), we analyzed the effect 

of feeders on four aspects of bat-plant interactions: (1) bat relative abundance, (2) pollen loads 

carried by bats, (3) visitation rates to bat-pollinated plants and (4) breeding success of these 

plants. We expect that bat relative abundance will be higher in areas closer to the feeders, 

which could either lead to an increase or decrease in pollination of nearby flowers. Bats could 

prefer feeding from feeders rather than nearby flowers, causing lower visitation rate, pollen 

loads and plant breeding success in closer than further areas. Alternatively, bats could feed 

from feeders and nearby flowers, and the higher number of bats would thus increase flower 

visitation rate and plant breeding success in those areas, although pollen loads would likely 

decrease.  



   

     

METHODOLOGY 

 

Study site and focal species: We conducted this study in a cloud forest of the eastern 

Ecuadorian Andes, in the private protected area of Wildsumaco Wildlife Sanctuary (0° 40.3' S, 

77° 35.5' W). This area is located in the Napo province at elevations between 1310 and 1480 

m., adjacent to the Sumaco-Napo Galeras National Park, and harbors a wide diversity of flora 

and fauna, with more than 500 species of birds and 100 species of mammals, including 22 bat 

species (Coloma-Santos, 2007). Wildsumaco has a tourist lodge, a biological research station, 

and eight well-maintained trails. It maintains three areas with hummingbird feeders: one near 

the lodge, one near the biological station, and one along a trail. 

We focused our work on the nectarivorous bats species Anoura caudifer, A. cultrata and 

Lonchophylla robusta, previously recorded in the area. Our focal plant species, Burmeistera 

glabrata (Campanulaceae), is an understory free-standing or hemi-epiphytic subshrub 

(Jeppesen, 1981). Species of Burmeistera are primarily adapted to pollination by bats 

(Muchhala, 2006), and B. glabrata presents floral traits corresponding to chiropterophilous 

pollination syndrome (Helversen, 1993): the flowers are white and emit odor, they are well 

exposed on long pedicels, anthesis is nocturnal (lasting between 4-6 days), and the individuals 

remain in flower throughout the year with 1-4 flowers open at a time. We chose this species as 

our focal plant because it is very abundant and easy to find at the study site.  

 

Experimental design: To measure the effect of artificial nectar feeders on bat-plant 

interactions, we divided each of the three nectar feeder areas into one region within a 30 m 

radius of the feeders and a second, paired region approximately ~500m away, for a total of 6 

sites. Each feeder area contained 8 to 10 feeders, which reserve employees fill every morning 

with a 1:4 sugar-water solution. At night, bats feed on remaining nectar. Fieldwork was 

conducted during June 12-July 12, 2015 and January 12-February 3, 2016. Each night, we 

worked simultaneously in a ‘closer’ feeder area and its paired ‘further’ area to avoid any 

temporal biases in sampling. We employed four methods to study bat-plant interactions in 

these areas: 

1. Bats relative abundance: We captured bats in each distance area using mist nets (2, 6, 9, 

12 m x 3, 2.5 m). We set up the nets closer to bat-pollinated plant species, 35 and 76 mist 



   

     

nets in close and far distance areas, respectively. We opened the mist nets from 1900 to 

2400 hrs, 1900 hr being one hour after dusk which would allow bats to feed before we 

caught them, and thus increase chances of obtaining pollen in fur and fecal samples. We 

calculated bat relative abundance as the number of bats captured per mist net per hour.  

2. Pollen loads: We collected pollen from the fur of captured bats by gently pressing 

transparent adhesive tape against three different bat body areas: head, belly and inner 

wing patagium. We placed the tape on a microscope slide for later analysis in the lab. Bats 

were then placed in cloth bags for two hours to collect fecal samples, which were 

preserved in 70% ethanol. In the lab, we mounted fecal samples on a glass microscope 

and covered them with adhesive tape for analysis. We inspected the fur and fecal samples 

using a SWIFT microscope (SWIFT Microscope World, USA), conducting a scanning of the 

tape at 100X, and switching to 400X to identify and photograph the pollen grains. For each 

sample we registered the presence or absence of pollen (pollen frequency); when it was 

present we also estimated the pollen abundance under the categories rare (<= 100 pollen 

grains) and abundant (> 100 pollen grains); as well as pollen diversity counting the number 

of pollen types present in the samples. Additionally, we recorded the presence or absence 

of only B. glabrata pollen (B. glabrata pollen frequency). We identified the pollen using our 

pollen reference collection compiled during previous research conducted at the same area.   

3. Flowers visitation rate: To obtain B. glabrata flower visitation rates, we videotaped flowers 

using a SONY camcorder with the Night Vision function (SONY Corporation of America, 

USA) from 1800 to 2300 hrs. We did not videotape flowers the same day that we mist-

netted bats to avoid affecting the results. For each flower that we videotaped, we counted 

all open flowers from the focal individual and from all individuals in the 5m radius to 

estimate local floral patch size. Additionally we measured the relative abundance of B. 

glabrata in both distance areas using circular plots (5m radius), four per distance area in 

each feeder site. 

4. Plant breeding success: We measured the breeding success of B. glabrata using three 

different approaches. First, we selected and marked between 5 and 10 individuals of 

similar sizes in each distance area, and counted the number of fruits present on each 

individual to estimate the average number of fruits in each distance area. Second, we 

collected between one and seven fruits per individual and counted the number of seeds 



   

     

produced per fruit. Finally, after flowers fell we tracked the remaining hypanthia (which 

eventually form the fruits) in order to track fruit abortion. We counted and marked the 

hypanthia present on each individual and after five days we recounted the marked 

hypanthia that remained on each individual. That same day we counted and marked new 

hypanthia present and after five more days we recounted the new marked hypanthia. We 

calculated the percentage of fallen hypanthia per individual in each distance area. 

Additionally, we multiplied the average number of seeds per fruit by the proportion of 

remaining hypanthia and marked hypanthia to calculate the seed set per flower in each 

distance area.  

Statistical tests: To assess whether bats relative abundance, flower visitation rate and 

breeding success variables differ between close and far distance areas we applied a Linear 

Mixed-effects Model (LMM) using distance area as a fixed effect and feeder site as a random 

effect. We transformed the non-parametric data (bat relative abundance, flower visitation rate, 

percentage of fallen hypanthia) using adjusted ranks (Leys & Schumann, 2010). To compare 

B. glabrata relative abundance we applied a T-test. To compare pollen load variables we 

applied Chi-squared for normal distributed data and Mann-Whitney U and Kruskall-Wallis for 

non-parametric data. Also, we used a Spearman’s correlation to determine if the number of 

open flowers from the individual recorded and from the nearby individuals (5m radius) was 

related to the flower visitation rate in each distance area. All statistical analyses were 

performed with R 3.2.2. 

 

RESULTS 

 

Bats relative abundance: We captured 91 and 8 bats in closer and further areas from 

feeders, respectively, including the species A. caudifer, A. cultrata and L. robusta. However, A. 

cultrata and L. robusta were only captured in closer areas. The LMM showed that bat relative 

abundance was significantly higher in closer (0.9 ± 1.7 bats per mist-net/hour) than in further 

areas (0.02 ± 0.06 bats per mist-net/hour) from feeders (p<0.01, Table 1).  

 



   

     

Pollen loads: We collected pollen samples from 91 and 8 bats in closer and further areas from 

feeders, respectively. Pollen was present on 89 (97.81%) and 8 (100%) samples for closer and 

further areas, respectively; there was no significant difference between them (Chi-squared, 

p=0.42, Figure 1A). Further areas had a significantly (Chi-squared, p<0.01) greater proportion 

of samples categorized as having abundant pollen (>100 grains), with 8 (100%) versus 58 

(63.73%), as well as a significantly higher pollen diversity with 4.3 ± 1.6 pollen types/sample 

versus 3.3 ± 1.2 pollen types/sample (Mann-Whitney U-test, p=0.02, Figure 2A). Because the 

species A. cultrata and L. robusta were captured only in closer areas (as mentioned before), 

we tested only A. caudifer samples for pollen presence, abundance and diversity in the two 

areas. The new sample set was 36 and 8 in closer and further areas, respectively. In this case 

we did not find significant difference between any of the variables (Chi-squared, p=1, Figure 

1B, Mann-Whitney U-test, p=0.73, Figure 2B). Additionally, we also tested whether frequency, 

abundance and diversity of pollen loads differ between the three captured species considering 

only the closer areas samples. Results showed significant difference among bat species for 

abundance (Chi-squared test, p<0.01, Figure 3) and diversity of pollen loads (Kruskall-Walllis 

test, p<0.01, Figure 4), A. caudifer and A. cultrata presented higher pollen abundance than L. 

robusta, and A. caudifer presented the highest pollen diversity among the three species. 

Finally, B. glabrata pollen frequency was significantly higher in further than closer areas (Chi-

squared, full data set, p<0.01 and only A. caudifer samples, p=0.05, Figure 5). 

Flower visitation rate: We videotaped 30 and 44 flowers of B. glabrata in closer and further 

areas from feeders, respectively. The LMM showed that flower visitation rate was not 

significantly different between closer (0.276 ± 0.4 visits per flower/hour) and further (0.313 ± 

0.53 visits per flower/hour) areas (p=0.31, Table 2). The relative abundance of B. glabrata was 

also not significantly different between closer (2.58 ± 2.23 individuals) and further (2.23 ± 1.87 

individuals) areas (T-test, p=0.674, Table 2). The flower visitation rate was not related to the 

number of open flowers from the individual recorded in closer (Spearman’s correlation, 

R2=0.01, p>0.05) or further areas (Spearman’s correlation, R2=0.01, p>0.05) or to the number 

of open flowers from all the nearby individuals in closer (Spearman’s correlation, R2=0.01, 

p>0.05) or further areas (Spearman’s correlation, R2=0.04, p>0.05).  



   

     

Plant-breeding success: We took measurements of plant-breeding success variables from an 

average of 19.2 and 26.8 plant individuals in closer and further areas from feeders, 

respectively. We did not always achieve taking all measurements from all plant individuals 

(Table 2). The LMM showed no significant differences between distance areas, close or far 

from feeders, for the four plant-breeding success variables: number of fruits, number of seeds, 

percentage of fallen hypanthia or seeds set per flower (Table 2).  

 

 

DISCUSSION 

 

This study found an effect of artificial nectar feeders in the relative abundance of nectar bats in 

the study area; bats are more abundant in closer areas to the feeders than further from them. 

Despite this, we found no effect of feeders on pollen loads, flower visitation rate and the 

breeding success of the bat-pollinated species B. glabrata. The only exception was the pollen 

frequency of B. glabrata, which was higher in further than closer areas, although this did not 

affect the breeding success of that species in those areas. Additionally, we found differences in 

pollen loads between the three species of bats in closer areas to the feeders. 

 

Bats relative abundance: We found a higher relative abundance of bats in areas closer to the 

feeders by a factor of 40. These results agree with previous studies that found a higher relative 

abundance of hummingbirds in areas closer to feeders (Sonne et al., 2015). Therefore, the 

presence of feeders during the day and night will similarly attract and affect the local 

distribution of hummingbirds and bats. Additionally, we found that the species L. robusta and 

A. cultrata were only captured in areas closer to the feeders. Previous captures conducted at 

Wildsumaco were equally poorly successful in capturing L. robusta with mist-nets located at 

further distances from the feeders (one capture in 8 nights using 4 mist-nets in July 2015). 

However, in the case of A. cultrata, captures were successful setting up mist-nets closer to 

plant species of the genus Marcgravia, regardless their location according to the feeders (pers. 

obs.). We suspect that the altitude of Wildsumaco (~1400 m) was close to the altitudinal limit of 

the distribution range of L. robusta (Davalos et al., 2015), contrary to the two species of Anoura 

collected, which altitudinal distributions reach up to 1500 m (A. caudifer, Bejarano-Bonilla et 



   

     

al., 2007) and 2600 m (A. cultrata, Tamsitt and Nagorsen, 1982). Previous studies suggested 

that L. robusta might roost at medium altitude and cover a larger altitudinal gradient to 

opportunistically feed from high-energy density resources, such as species that produce high 

nectar volumes (Tschapka, 2004). Tschapka (2004) observed that L. robusta individuals 

appeared regularly 1 hr later than smaller bat species when mistnetting, and that they were 

captured in large numbers at the same place (even in different years) next to a high-energy 

density plant; suggesting that they fly daily since sunset (c. 30 km. in 1 hr) to distant feeding 

areas with predictable and rich resources. Similarly, we captured L. robusta individuals late at 

night and only next to feeders (a high energy-density resources with large amounts of artificial 

nectar), which suggest that they might be conducting a similar feeding behavior observed by 

Tschapka (2004) at La Selva Biological Station (Costa Rica). These observations also suggest 

that feeders can attract bats from far away, rather than only locally.  

 

Pollen loads: We did not find any effect of feeders on pollen loads carried by the species A. 

caudifer in Wildsumaco. It is worth noting that our analyses showed contrasting results when 

we included different sample sets. Results using the full sample set showed higher abundance 

and diversity of pollen in bats captured in further areas, however, results including only A. 

caudifer sample set showed similar values of pollen frequency, abundance and diversity in 

both distance areas. Thus the low pollen loads carried by L. robusta and A. cultrata appear to 

be driving this pattern. We suspect that there might be differences in feeding behavior among 

bat species in terms of flower preferences or feeding activity patterns. The pollen frequency of 

B. glabrata was higher in further than closer areas in both analyses, however our other results 

(below) suggest that this does not affect the breeding success of the species. Ours is the first 

study to statistically compare pollen loads between pollinators flying close and far from 

feeders, although Avalos et at. (2012) anecdotally noted that hummingbirds captured close to 

feeders carried little or no pollen on their bodies (low frequency and abundance) and the 

majority of those with pollen had only one type (low diversity). 

 

Flower visitation rate: There was no effect of feeders on B. glabrata flower visitation rates by 

bats in Wildsumaco. Our results concur with previous studies that found no significant 

differences in hummingbird visitation rate to flowers located at different distances to feeders 



   

     

(Brockmeyer and Schaefer, 2012), but contrast with others that found an increase (Sonne et 

al., 2015) or a decrease (Arizmendi et al., 2007) in visitation rates in plant individuals located 

closer to the feeders. Sonne et al. (2015) stated that the increase in flower visitation rate is due 

to higher hummingbird abundance in the area, however, although we found higher bat 

abundance closer to feeders we did not find a higher visitation rate. This could be due to 

unknown behavioral differences among these two pollinator guilds, or to differences in sugar 

concentration among hummingbird and bat pollinated plant species (Perret et al., 2001) that in 

the case of B. glabrata, could make it be less attractive than the feeders. Regarding the study 

of Arizmendi et al. (2007), they applied a different methodology that could be the principal 

cause of contrasting results with our study (and that of Sonne et al., 2015). They designed an 

experiment with control and treatment areas containing 10 individuals of hummingbird-

pollinated plants. At the treatment areas they presented two feeders during one day and they 

registered flower visitation rate at both areas. Our experimental design considered feeders that 

were presented at specific locations for at least 7 years, allowing time for the pollinators to 

adjust their distribution to the presence of feeders (Sonnet et al., 2015). The sudden presence 

of feeders would likely attract many hummingbirds during the day, drawing them away from 

further areas, increasing flower visitation rates in closer areas and decreasing it in further 

areas (Arizmendi et al., 2007). In the case of bats, a similar experiment to the one of Arizmendi 

et al. (2007) would probably fail because it could take multiple nights for bats to find the new 

feeder resources.  

 

Plant-breeding success: We did not find an effect of feeders on the reproductive success of 

B. glabrata. There were similar values for number of fruits, number of seeds, percentage of 

fallen hypanthia and seed set per flower in both closer and further areas from feeders. Our 

results are consistent with findings of Sonne et al. (2015), that collecting and counting pollen 

deposited on flower stigmas of one hummingbird-pollinated species did not find differences in 

the amount of pollen deposited on flower stigmas (another variable to measure plant-breeding 

success) of individual located along a distance gradient from feeders. Although Arizmendi et al. 

(2007) conducted a different experimental design (as mentioned before), it is worth noting that 

they obtained different breeding success results for each of the plant species they worked with. 

Seed production of Salvia fulgens was lower in individuals exposed to the feeders, whereas 



   

     

seed production of S. mexicana was similar between exposed and non-exposed individuals 

(Arizmendi et al., 2007), suggesting that effects may be species-specific. In our study we did 

not find a negative effect of feeders on the breeding success of B. glabrata, but we note that 

this is the most abundant bat-pollinated species in the area; feeders might be expected to have 

a larger negative impact on rare plant species (McCaffrey & Wethington, 2008).  

 

 

CONCLUSIONS 

 

We conclude that feeders are highly attractive to bats, increasing their relative abundance 

close to the feeders by a factor of 40. Despite the increase in bats relative abundance, the 

presence of feeders does not affect pollen loads carried by bats, flower visitation rate by bats, 

and breeding success of the bat-pollinated species B. glabrata. Additionally, we found 

differences in pollen loads between the three species of bats captured close to the feeders, 

suggesting that there might be differences in feeding behavior among bat species in terms of 

flower preferences or feeding activity patterns. Particular observations about the time and 

place of capture of the species L. robusta suggest that feeders could attract bats from long 

distances. Further studies on the feeding behavior of different bat species under the presence 

of feeders as well as analyzing the effect of feeders on the breeding success of other bat-

pollinated species, in a variety of habitats than the cloud forest of eastern Ecuador, are 

needed.  
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TABLES AND FIGURES 
 
 
Table 1. Bat relative abundance in close and far areas to the feeders. 
 

Bat species 

Close areas Far areas 

Captured 
individuals 

Mean relative 
abundance * 

Captured 
individuals 

Mean relative 
abundance * 

Anoura caudifer 36 0.5 ± 1.1 8 0.03 ± 0.07 

Anoura cultrata 4 0.07 ± 0.3 0 0 

Lonchophylla robusta 51 0.43 ± 0.7 0 0 

Total 
91 

0.907 ± 1.7 
bats/mist-net/hour 

8 
0.023 ± 0.06 

bats/mist-net/hour 

* ± SE, LMM, Estimate (SE) = 26.84 (5.3), df = 107, t = 5.01, p < 0.01 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

     

Table 2. Results summary for flower visitation rate and breeding success variables of Burmeistera glabrata. 
 

Variables N Mean ± SE   Sample unit 

Fixed effect Random effect (SD) 

Estimate (SE) df t value p value Intercept Residual 

Flower visitation rate * 
     Close areas  14 0.276 ± 0.4 visits/hr 

plant individual -4.95(4.9) 70 -1 0.32 6.46 20.7 
Far areas 12 0.313 ± 0.53 visits/hr 

Average number of fruits** 
     Close areas  23 16.78 ± 16.8 fruits 

plant individual -0.45(0.3) 47 -1.62 0.11 2.96 x 10-5 0.98 
Far areas 28 7.67 ± 6.09 fruits 

Average number of seeds* 
     

Close areas  25 1166.22 ± 374.01 seeds 
plant individual 29.77(80.4) 54 0.37 0.71 141.43 292.17 

Far areas 33 1192.87 ± 323.04 seeds 

Percentage of fallen hypanthia (%fh)** 
     

Close areas  16 35.86 ± 33.18 %fh 
plant individual -0.19(4) 39 -0.04 0.96 15.35 26.2 

Far areas 27 48.66 ± 36.99 %fh 

Seeds set per flower ** 
     

Close areas  13 832.83 ± 433.82 seeds/flower 
plant individual -194.79(166.5) 28 -1.16 0.25 0.02 462.59 

Far areas 19 638.03 ± 480.82 seeds/flower 

* Sampled in 2015 and 2016, ** Sampled only in 2016 
       SE = Standard error, SD = Standar deviation 
        

 

 

 

 

 

 



   

     

 

 
 

Figure 1. Percentage of samples with pollen and abundant pollen based on full sample set (A) 
and only A. caudifer sample set (B).  
 

 

 
 

Figure 2. Pollen diversity in close and far distance areas based on full sample set (A) and only 
A. caudifer sample set (B). 
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Figure 3. Percentage of samples with abundant pollen in the three bat species analyzed in 
close areas to feeders. 
 

 

 

 
 

Figure 4. Pollen diversity in the three bat species analyzed in close areas to feeders. 
 

 

 

 

 

 

 

N = 36 N = 4

N = 18

0

20

40

60

80

100

A. caudifer A. cultrata L. robusta

%
 o

f 
s
a
m

p
le

s

Bat species

A. caudifer A. cultrata L. robusta

0
2

4
6

8

Pollen diversity

Bat species

#
 o

f 
p
o

lle
n
 t

y
p

e
s



   

     

           A              B 

  
Figure 5. Pollen frequency of Burmeistera glabrata in close and far distance areas based on 
full sample set (A) and only A. caudifer sample set (B)
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