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Abstract: Backward electromagnetic waves are extraordinary waves with contra-directed phase
velocity and energy flux. Unusual properties of the coherent nonlinear optical coupling of the
phase-matched ordinary and backward electromagnetic waves with contra-directed energy fluxes are
described that enable greatly-enhanced frequency and propagation direction conversion, parametrical
amplification, as well as control of shape of the light pulses. Extraordinary transient processes that
emerge in such metamaterials in pulsed regimes are described. The results of the numerical simulation
of particular plasmonic metamaterials with hyperbolic dispersion are presented, which prove the
possibility to match phases of such coupled guided ordinary and backward electromagnetic waves.
Particular properties of the outlined processes in the proposed metamaterial are demonstrated
through numerical simulations. Potential applications include ultra-miniature amplifiers, frequency
changing reflectors, modulators, pulse shapers, and remotely actuated sensors.

Keywords: optical metamaterials; fundamental concepts in photonics; light–matter interactions
at the subwavelength and nanoscale; fundamental understanding of linear and nonlinear optical
processes in novel metamaterials underpinning photonic devices and components; advancing the
frontier of nanophotonics with the associated nanoscience and nanotechnology; nanostructures that
can serve as building blocks for nano-optical systems; use of nanotechnology in photonics; nonlinear
nanophotonics, plasmonics and excitonics; subwavelength components and negative index materials;
slowing, store, and processing light pulses; materials for optical sensing, for tunable optical delay
lines, for optical buffers, for high extinction optical switches, for novel image processing hardware,
and for highly-efficient wavelength converters

1. Introduction

The concept of electromagnetic waves (EMWs) with co-directed phase velocity and energy flux is
commonly accepted in optics and is true for natural isotropic materials. All optical devices, which we
use in everyday life, exploit this concept. However, the advent of the nanotechnology has made possible
the creation of metamaterials (MMs) [1] which enable the appearance of the electromagnetic waves with
contra-directed energy flux (Poynting vector) and phase velocity (wave vector). They are referred to as
backward electromagnetic waves (BEMWs). Such extraordinary properties have opened novel avenues
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in linear physical optics towards such exceptional (already realized) applications as the subwavelength
resolution, clocking of objects, etc. Nonlinear optics (NLO) significantly extends the methods of
manipulating light. Most important among them are the possibilities to convert light frequencies.
Phase matching of coupled light waves, i.e., equality of their phase velocities, is a paramount
requirement for coherent, i.e., phase-dependent, NLO coupling of light waves, which paves a way to
efficient frequency conversion and pulse shaping. However, phase matching imposes severe limitations
on the choice of practical NLO materials. It has been shown that coherent coupling of normal, forward,
EMWs (FEMWs) and BEMWs opens novel avenues for extraordinary NLO processes that hold promise
for great benefits in manipulating light. For example, consider parametric amplification at ω2 in a
transparent material slab of thickness L which originates from NLO three-wave mixing (TWM) and is
accompanied by difference-frequency generation of the idler at ω1 (ω1 = ω3 −ω2). Then, exponential
growth of the output amplitudes at ω1 and ω2, a1,2(L) ∼ exp(gL), inherent to common coupling
geometry of co-propagating waves, would dramatically change to a1,2 ∼ 1/ cos(gL) for the case of a
coupled normal signal wave a2 and contra-propagating BEMW a1 exiting the slab from the entrance
edge in the reflection direction [2,3]. Here, the factor g is proportional to the product of nonlinear
susceptibility and amplitude of the pump wave a3 at ω3. Furthermore, propagation direction is direction
of the energy flux and group velocity. The uncommon “geometrical”, i.e., slab thickness dependent,
pump intensity resonance emerges at gL → π/2, which allows for huge enhancements in the NLO
coupling, for miniaturization of corresponding photonic devices and for exotic pulse regimes [4].
Four-wave mixing with BEMWs possesses similar extraordinary properties [5,6]. Second harmonic
generation (SHG) with BEMWs also experiences significant changes because the fundamental wave
depletes and the generated second harmonic (SH) wave grows along the opposite directions [7–9].
Therefore, nonlinear energy exchange between the waves at different frequencies traveling with
equal co-directed phase velocities, whereas their energy fluxes are contra-directed, offers unusual
exciting possibilities in controlling and manipulating light waves. Basically, coherent NLO coupling
and quasi-phase-matching of contra-propagating light waves can be achieved in crystals through
periodically spatially modulated nonlinearity [10–15] where some of the extraordinary processes
described below have been or can be realized. The studies are on the way. Discussion of advantages
and disadvantages of these approaches is beyond the scope of this paper.

Nonlinear optics deals with phenomena that qualitatively depend on the intensity of the
light waves. Hence, qualitative changes occur in NLO processes with BEMs in pulse regimes,
because intensities of the coupled fields vary both in space and in time. For example, unusual behavior
can be foreseen when the intensity of the pump field varies in the vicinity of the above described
“geometrical resonance”. Nonlinear optics with BEMWs holds the promise for the creation of a
novel family of photonic devices with extraordinary operational properties and for their significant
miniaturization. However, practically the most important is the use of pulsed laser sources of which
light intensity varies in time and space. This gives rise to many questions to be answered in the outlined
context. Coupling of ordinary and contra-propagating backward pulses is described by a set of coupled
partial differential equations. In the case of BEMWs, unusual boundary conditions for amplitudes of the
coupled modes must be applied. Numerical solutions of such equations are usually the only approach
to the indicated challenging problem. A related research direction of the primary importance is the
nanoengineering of the MMs that could support the coexistence of ordinary and BEMWS, which would
satisfy the photon energy conservation requirement, travelling with equal co-directed phase velocities
while having opposite group velocities. This presents another challenging problem. This paper
addresses both outlined challenges of nanoengineering and nonlinear electrodynamics with BEMWs.
Theoretical studies and numerical demonstrations are described towards merging nonlinear optics and
metamaterials, which pave ways for extraordinary manipulation of light through coherent nonlinear
coupling of light waves in deliberately engineered spatially dispersive metamaterials. The possibilities
for nanoengineering of a family of novel NLO MMs, which would allow for phase matching of ordinary
and backward light waves and for its tailoring to a broad range of frequencies, are demonstrated.
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2. Hyperbolic Metamaterials Which Provide Phase Matching of Coupled Guided
Contra-Propagating Electromagnetic Waves [16–21]

A mainstream in the engineering of the MMs, which can support BEMWs, is grounded on
the relationship

S(r, t) = (c/4π)[E×H] = (c2k/4πωε)H2 = (c2k/4πωµ)E2. (1)

This suggests that simultaneously negative electric permittivity ε and magnetic permeability µ

would result in the direction of the wave-vector k to appear against the energy flow (Poynting vector
S) at the corresponding frequencies. Such MMs are commonly referred to as negative-index MMs
(NIMs). Electromagnetic waves cannot propagate in the materials with ε < 0, µ > 0, such as metals.
Hence, common major efforts are aimed at the creation of the MMs made of such nanoscopic LC
circuits (plasmonic mesoatoms and mesomolecules) that could produce a significant phase delay in
the response to the magnetic component of light, which is equivalent to negative µ. Metallic inclusions
provide for negative ε. Sometimes NIMs are referred to as the left-handed MMs as opposite to the
normal right-handed orientation of vectors E, H and k in ordinary materials.

Herewith, we describe a different approach to nonlinear photonics with BEMWs which does NOT
rely on optical magnetism. It is grounded on the more general relationship

S = vgU, vg = gradkω(k), (2)

where S is a Poynting vector, U is the energy density, and vg is the group velocity of light waves.
It is seen that the energy flux becomes directed against the wavevector if the directions of the phase
and group velocities become opposite. Hence, negative dispersion ∂ω/∂k < 0 would give rise to the
appearance of BEMW modes [22–24]. Equations (1) and (2) are valid for loss-free isotropic materials
and used here to demonstrate the distinction between the two approaches. The latter one opens a
novel avenue in nanoengineering the MMs that could support both BEMWs and ordinary FEMWs
based on different spatial dispersion at different frequencies.

The challenge is to choose such subwavelength building blocks of the MM and to space them in a
way that their overall electromagnetic (EM) response would cause such significant phase shift of the
propagating EMWs that the normal EM waves convert into backward EMWs (BEMWs). However,
the indicated problem is not the sole nor the major one. In the context of the stated goal, most restrictive
is the requirement to ensure a set of EMWs at different frequencies satisfying the photon energy
conservation law (e.g., ω1 + ω2 = ω3), which are the mixture of normal and BEMWs travelling with one
and the same phase velocity (phase matching). Proof-of-principle demonstration of such a possibility
and of the flexibility of the proposed approach is presented below [16,19–21]. Figure 1 depict a
“nanoforest”, the MM made of conducting nanorods of lengths h and of small diameter standing on a
conducting surface at a subwavelength spacing and bounded by a dielectric with electric permittivity
εs. The nanoforest is plunged in a dielectric with electric permittivity εh. The metaslab can be viewed
as tampered waveguide. Its eigenmodes and losses depend both on the properties of the constituent
materials and shapes of the nanoblocks, as well as on the orientation of the electric and magnetic fields.
Numerical demonstrations below refer to a particular case of “carbon nanoforest”, where the MM slab
is made of carbon nanotubes (CNTs) of radius r = 0.82 nm spaced at d = 15 nm whereas εh = εh = 1 (air).
The choice is motivated by the availability of extensive literature on EM properties of CNTs [25–28]
(and references therein) and by useful THz frequencies of the metaslab’s EM eigenmodes. A carbon
nanoforest possesses hyperbolic dispersion because only one component of electric permittivity, εzz,
which is along the CNTs, is negative. A review on hyperbolic dispersion properties can be found, e.g.,
in [29–31].
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Figure 1. An example of the spatially dispersive metamaterial composed of the conducting nanorods
of height h. The nanorods stand on the conducting surface and topped by a dielectric layer.
The phase-matched energy fluxes at the corresponding frequencies for second harmonic generation
(a) and three-wave mixing (b) depicted by arrows. All wave vectors (not shown) are co-directed.
Energy fluxes at 2ω, ω2, and ω3 are contra-directed relative their wave vectors due to the negative
waveguide dispersion ∂ω/∂k < 0 at these frequencies (Figures 2 and 3). Negative wave guide
dispersion can be thought as negative refraction at the corresponding frequencies.

1 2 3 4

20

40

60

c/v
ph

F
re

q
u

e
n

c
y,

T
H

z

f
1

f
2

1 1.2 1.4 1.6 1.8 2
c/v

ph

0

0.01

0.02

0.03

0.04

0.05

0.06

|k
x
''/

k
|

1 2 3 4c/v
ph

-40

-20

0

20

40

c
/v

g
r

(a) (b) (c)

Figure 2. (a) Dispersion of two lowest eigenmodes in the slabs of standing carbon nanotubes with
open ends. εh = εs = 1; h = 1.05µm (solid lines) and h = 0.85µm (dashed lines); (b) attenuation factor
k′′x for the lower-frequency mode (the descending red plot) and for the higher-frequency second mode
(the ascending blue plot) at h = 1.05 µm; (c) group velocity vs. phase velocity for the same two modes.
The descending dotted red line in panel (a) shows one of the very lossy guided modes. The vertical
lines in all panels mark the waves travelling with equal phase velocities while satisfying the relation
f2 = 2 f1.
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Figure 3. (a) Dispersion of the three lowest modes f (kx/k) at h = 3.5µm, where k′x/k = c/vph, k is
wavevector in vacuum for the corresponding frequency f , and vph is the phase velocity. The vertical line
marks the waves travelling with the same phase velocity while satisfying the requirement f1 + f2 = f3.
The dashed line represents the sum of the two lowest modes; (b) normalized attenuation constant
k′′x /k: the blue (solid) line corresponds to f1, the red (dashed) to f2, and the green (dash-dotted) to f3;
(c) group velocity indices c/vgr for the respective modes.
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Our studies have shown that the indicated guided eigenmodes peculiar to the given metaslab can
be tailored by changing the length of the nanotubes, their spacing, and electrical properties of the
bounding and the wafer materials. Most important is that the “nanoforest” can be tailored to achieve
phase matching (i.e., equal phase velocities) for the FEMWs and BEMWs, which satisfy the energy
conservation law for a given frequency-conversion process over a broad frequency range. Particularly,
the example depicted in Figure 2a proves the possibility of phase matching of normal fundamental
waves at f1 [∂ f1/∂(c/vph) > 0] and backward waves at f2 = 2 f1 [∂ f2/∂(c/vph) < 0] for the marked
frequencies [19,20] (see also Figure 2c). Figure 3a proves the possibility of phase matching of a normal
signal wave at f1 and two contra-propagating BEMWs [∂ f /∂(c/vph) < 0] at f2 and f3 ( f1 + f2 = f3),
which can be achieved through adjustment of lengths h of the carbon nanotubes. In the given examples,
the matching frequencies fall in the THz and thermal IR frequency ranges. The losses inherent to the
coupled guided waves may vary in a broad range and can be tailored as seen in Figures 2b and 3b.
Note that group velocities of the matching modes may differ greatly and may include “stopped light”
(vgr = 0) (Figures 2c and 3c), which paves the way to producing various coupling regimes and to
controlling a variety of outcomes.

3. Backward-Wave Second Harmonic Generation [2,7,9,19,20,32]

3.1. Continuous Wave Phase-Matched SHG in a Loss-Free Medium: Forward and Backward Waves

Major differences between the SHG in an ordinary NLO material and in a material that
supports BEMWs is explicitly seen in the ultimate case of phase-matched coupling of the continuous
fundamental and second-harmonic (SH) waves in a loss-free medium (Figure 4). Figure 4a,b depict a
common case of coupling of ordinary, forward waves (FWs). Figure 4c,d depict coupling geometry
and photon fluxes corresponding to the fundamental BW and ordinary (forward) SH wave (FSHW).
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Figure 4. Coupling geometry and energy fluxes in ordinary materials (a,b) and in backward-wave
materials (c,d).

Figure 4c,d schematically show photon fluxes across the NLO material slab reduced by the
input magnitude for the fundamental wave, S2,1 ∝ |a2,1|2. a2,1 are reduced amplitudes of the SH and
fundamental waves that are described by the equations

s2da2/dz = −iga2
1, s1da1/dz = −i2g∗a∗1 a2. (3)

Here, g is the coupling parameter proportional to the SH NLO susceptibility, with the factors
s2,1 = 1 for the co-directed fluxes and s2 = 1, s1 = −1 for the contra-directed fluxes. The Manley–Rove
equation (photon conservation law) derived from Equations (3) is

s2d|a2|2/dz + (1/2)s1d|a1|2/dz = 0. (4)
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3.1.1. SHG in Ordinary NLO Medium

For the case of both coupled waves to be FWs (Figure 4a,b), (s1 = s2 = 1 and a20 = 0), one finds
from Equation (4) with account for a10 = 1 that

2|a2|2 + |a1|2 = 1. (5)

This states that sum of the pairs of the fundamental photons and of the generated SH photons is
conserved along the medium. The solution to Equations (3) is found as [33]

2|a2|2 = tanh2 (
√

2gz), |a1|2 = sech2 (
√

2gz). (6)

3.1.2. SHG: Backward Fundamental and Forward SH Waves

In the case of backward fundamental and ordinary SH waves (Figure 4c,d), factors s1,2 take
values s1 = −1, s2 = 1 and Equations (3) and (4) dictates fundamentally different behavior.
Equation (4) predicts

|a1|2 − 2|a2|2 = |B|2, (7)

where |B|2 is a constant, which, however, depends on the slab thickness and on the strength of the
input fundamental field. Equations (3) reduce to

da2/dz = −iga2
1, da1/dz = i2g∗a∗1 a2. (8)

Besides the fact that in this case the equations have different signs on the right sides, the boundary
conditions for fundamental and SH waves must be applied to opposite edges of the slabs of thickness
L: a10 = 1, a2L = 0. Indicated differences give rise to fundamental changes in the solution to the
equations for the amplitudes of the coupled waves.

3.1.3. Comparison of SHG for the Cases of Co-Propagating and Contra-Propagating Phase-Matched Waves

Figure 5a illustrates unparalleled properties of SH generation with BWs as compared with its
ordinary counterpart at similar other parameters for the particular example of gL = 1. As noted,
the remarkable property in this case is the fact that SH propagates against the fundamental BW
and, therefore, metaslab operates as frequency doubling metamirror with reflectivity controlled by the
fundamental wave. Figure 5b compares the output intensity of the SH and transmitted fundamental
wave for both coupling options. Major important conclusions are as follows. It appears that the
efficiency of SHG in ordinary settings exceeds that in the BW, contra-propagating settings at equal
to all other parameters. At that, the propagation properties of SH appear fundamentally different,
which holds promise for extraordinary applications. The intensity of SH is less than that of the
fundamental wave across the BW slab, although it can exceed that in the vicinity of the exit from an
ordinary, FW slab (Figure 5a). The quantum conversion grows sharper with an increase of intensity
of the fundamental beam, and higher conversion at lower intensities occurs for the co-propagating
coupling as compared with that for the counter-propagating coupling.
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Figure 5. Differences between second harmonic generation in the ordinary, forward-wave (FW),
setting and in the backward-wave (BW) settings. (a) Energy fluxes across the slab for fundamental
(descending dash-dotted blue line) and second harmonic (ascending dotted blue line) waves, where
both are ordinary forward waves; and for backward-wave fundamental (the descending solid red
line) and ordinary second harmonic (the descending dashed red line). gL = 1. (b) Output
transmitted fundamental (the descending blue dash-dotted line) and second harmonic (ascending
blue dotted line) at z = L, where both are ordinary forward waves; and transmitted backward-wave
fundamental (descending solid red line) flux at z = L and ordinary forward-wave second harmonic
contra-propagating flux at z = 0 (the ascending dashed red line) vs. pump intensity parameter gL.

3.2. Pulsed Regime

In the general case of the pulsed regimes, phase mismatch, different group velocities and lossy
medium, SHG is described by the following equations [9]:

s2
∂a2

∂ξ
+

v1

v2

∂a2

∂τ
= −igla2

1 exp (−i∆k̃ξ)− α̃2

2d
a2, (9)

s1
∂a1

∂ξ
+

∂a1

∂τ
= −i2g∗la∗1 a2 exp (i∆k̃ξ)− α̃1

2d
a1. (10)

Here, the quantities |aj|2 are proportional to the time-dependent photon fluxes aj = ei/e10;

ej =
√
|εj|/k jEj; Ej0 = Ej(z = 0); a10 = 1; the coupling parameter g = æE10; æ =

√
k1k2/|ε1ε2|4πχ

(2)
eff ;

χ
(2)
eff = χ

(2)
e,2 is the effective nonlinear susceptibility; the loss and phase mismatch parameters are

α̃1,2 = α1,2L and ∆k̃ = ∆kl; ∆k = k2 − 2k1; vi are are moduli of group velocities and α1,2 are absorption
indices at the corresponding frequencies; l = v1∆τ is the pump pulse length; ∆τ is duration of the
input fundamental pulse; the normalized slub thickness is d = L/l and normalized position is ξ = z/l;
the normalized time instant τ = t/∆τ. The parameters sj = 1 are for ordinary, and sj = −1 for
backward waves.

3.3. Comparison of FW and BW SHG in Short-Pulse Regimes

Significant difference of properties of the SHG pulse regime properties in the FW and BW settings
are explicitly seen for the examples considered below, where the input pulse shape is chosen close to a
rectangular form:

F(τ) = 0.5
(

tanh
τ0 + 1− τ

δτ
− tanh

τ0 − τ

δτ

)
. (11)

Here, δτ is the duration of the pulse front and tail, and τ0 is the shift of the front relative to t = 0.
The parameters δτ = 0.01 and τ0 = 0.1 have been selected for numerical simulations. Absorption is
neglected (α1 = α2 = 0). The phase velocities are supposed equal (∆k = 0). The modules of the group
velocities are also supposed equal (v1 = v2).

Unusual properties of BWSHG in the pulsed regime stem from the fact that it occurs only inside
the traveling pulse of fundamental radiation. Generation begins on its leading edge, grows towards its
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trailing edge, and then exits the fundamental pulse with no further changes. Since the fundamental
pulse propagates across the slab, the duration of the SH pulse may be significantly longer than that
of the fundamental one. Depletion of the fundamental radiation along the pulse and the overall
conversion efficiency depend not only on the maximum intensity of the input pulse, on the matching
of the phase and group velocities of the fundamental and second harmonic, but also on the ratio
of the fundamental pulse length and slab thickness. Such properties are in strict contrast with that
of FWSHG as illustrated in Figures 6 and 7. The shape of the input fundamental pulse is given by
the function T1 = |a1(τ, z = 0)|2/|a10|2 when its leading front enters the medium. The results of
numerical simulations for the output fundamental pulse, when its tail reaches the slab’s boundary,
are given by T1 = |a1(τ, z = L)|2/|a10|2. The shape of the output pulse of SH, when its tail passes
the slab’s edge at z = 0, are given by the function η2 = |a2(τ, z = 0)|2/|a10|2. The pulse energies are
represented by the time integrated pulse areas Sj that vary across the slab. As seen from Figure 6a,b,
saturation is homogeneous across the FWSH pulse, and the shape of both the fundamental and SH
output pulses remain rectangular. On the contrary, the shapes of the output fundamental and FWSH
pulses are different and change with a change of intensity of the input fundamental pulse. Moreover,
it appears that the shapes of the output pulses vary with a change of the input pulse length but at other
parameters unchanged, as seen from Figure 7a. The basic properties of the FWSH and BWSH pulse
energy conversion across the corresponding slabs qualitatively resemble those in the continuous-wave
regime (Figure 6c,d). The unparalleled property of BWSHG is the growth of pulse energy conversion
with a shortening of the pulse length with constant instant intensity (cf. Figures 6c and 7b).
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Figure 6. Comparison of the pulse shapes and the energy conversion for second harmonic generation
at the forward-wave (FW) and the backward-wave (BW) settings in a loss-free metamaterial. The length
of the input pulse at the fundamental frequency is equal to the metaslab thickness. (a,b) The input
rectangular T1 pulse shapes for the fundamental radiation; η2—for the second harmonic; (c,d) change
of the pulse energy at the corresponding frequencies across the slab. Here, d = L/l, S1(z) is the
fundamental pulse energy, S10 = S1(z = 0), 2S2/S10 is the energy (photon) conversion efficiency
per pulse.
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Figure 7. Backward-wave second harmonic generation: the effect of pulse width. Here, the input
pulse duration is decreased four times as compared with Figure 6a at the same peak intensity. (a) T1

is the pulse shape for the fundamental radiation, and η2 is for the second harmonic; (b) S1(z) is the
fundamental pulse energy, S10 = S1(z = 0), 2S2/S10 is the energy (photon) conversion efficiency per
pulse, and d = L/l=4.

Figure 7a,b correspond to the fundamental pulse four times shorter than the slab thickness.
They show an increase of the conversion efficiency with an increase of intensity of the input pulse.
This is followed by the shortening of the SH pulse.

Figures 6c,d and 7b satisfy the conservation law in a loss-free metaslab: the number of annihilated
pair of photons of fundamental radiation (S10 − S1L)/2 is equal to the number of output SH photons
S20. Figures 6a,b and 7a prove that shapes and widths of the fundamental and generated SH pulses,
as well as the energy conversion efficiency to the reflected pulses at doubled frequency, can be
controlled by changing the intensity and ratio of the the input pulse length to the metamaterial
thickness (parameter d).

3.4. Backward-Wave Second Harmonic Generation in the Carbon Nanoforest [16,19,20]

For the particular model of the MM depicted in Figure 1a with the nanotubes of height
h = 1.05 µm, the outcomes of the numerical simulation are as shown in Figure 8. The following
values and estimates, which are relevant to the MM made of nanotubes of height h = 1.05 µm, are used
for the numerical simulations. The spectrum bandwidth corresponding to the pulse of duration
∆τ = 10 ps is on the order of ∆ f ≈ 1/∆τ = 0.1 THz. Hence, ∆ f / f ∝ 10−2÷ 10−3, and phase matching
can be achieved for the whole frequency band. This becomes impossible at ∆τ = 10 fs because of
∆ f / f ∝ 10 in this particular case. Phase matching occurs at k1 = 5.47× 105 m−1, k2 = 2k1 (Figure 2a).
Corresponding attenuation factors are calculated as α1 = 2k

′′
1 = 2(9.3× 10−3)k1 = 1.02× 104 m−1,

α2 = 2k
′′
2 = 2(2.72 × 10−2)k2 = 5.96 × 104 m−1. Since losses for the second mode are greater,

the characteristic metaslab thickness corresponding to extinction exp(−α2L) = 0.1, i.e., to α2L = 2.4,
α1L = 0.41, is estimated as L ≈ 40µm. The pulse length for the first harmonic (FH) is estimated
as l = ∆τv1 = ∆τc/ng,1 = 606µm, which is 15 times greater than L. The latter indicates that
the quasistationary process is established through almost the entire pulse duration, whereas some
transients occur at the pulse forefront and tail. Note that, at ∆τ ≤ 10 ps, which is still acceptable,
the effect of the transient processes significantly increases.
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Figure 8. Dependence of the energy conversion efficiency at backward-wave second harmonic
generation on the metaslab thickness, intensity, and duration of the pump pulse. (a,b) gl = 5; (c,d)
gl = 15; (a,c) L/l = 1/15; (a,d) L/l = 1.

Figure 8 presents the results of numerical simulations for the energy conversion efficiency
at BWSHG with an account for the above-calculated losses and group velocities. Here,
η2(x) = S2(x)/S10 =

∫
dt|a2(x, t)|2/

∫
dt|a10(t)|2 is the pulse energy (quantum) conversion efficiency,

and the factor S1(x)/S10 presents depletion of energy of the FH pulse along the slab and at the
corresponding exits: x = 0 for the SH and x = L for the FH. Two coupling parameters (gl = 5 and
gl = 15) and two different input pulse lengths (L/l = 1/15, and L/l = 1) are chosen for the simulations.
The coupling parameter gl is proportional to the total number of photons per input FH pulse. It can
be also thought of as the ratio l/x0 of the input pulse length l and the characteristic slab thickness
x0 required for the significant photon conversion from FH to SH for the given pulse intensity at its
maximum. The interplay of several processes contributes to the outlined dependencies. Figure 8 shows
that the conversion efficiency grows with an increase in the input pulse amplitude. However, the
important unusual property of BWSHG, i.e., frequency-doubling nonlinear reflectivity, is that it rapidly
saturates with an increase of the metaslab thickness. Such unusual behavior is due to the backwardness
of SH that propagates against the FH beam and is predominantly generated in the area where both FH
and SH are not yet significantly attenuated. It is seen that the overall nonlinear reflectivity provided by
such a frequency-doubling meta-reflector can reach values on the order of ten percent for the selected
values of the parameter gl. Calculations also show that the reflectivity in the pulse maximum for the
same parameters appears two times greater than the time-integrated values.

These dependencies are in stark contrast with SHG in ordinary materials, as seen from the
comparison with Figure 9. These display corresponding dependencies in the case of ordinary materials
with all other parameters the same as in Figure 8. Here, both FH and SH exit the slab at x = L. It is
seen that, in general, SH reaches its maximum inside the slab. This is due to the interplay of the
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nonlinear conversion and the attenuation processes. In order to maximize the SH output, the pump
strength, its pulse duration, and the slab thickness must be carefully optimized, as shown in Figure 9c.
Investigations prove that the shape and the width of the output pulses in the cases of ordinary SHG
and BWSHG also appear to be significantly different.
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Figure 9. Ordinary second harmonic generation at all other parametersthe the same as in Figures 8.
(a,b) gl = 5; (c,d) gl = 15; (a,c) L/l = 1/15; (a,d) L/l = 1.

4. Backward-Wave Three Wave Mixing: Parametric Amplification, Nonlinear Frequency-Shifting
Reflectivity, Transients and Pulse Shaping [2–4,21,34,35]

Three-wave mixing (TWM) with BEMws (BWTWM) also exhibits extraordinary properties.
Normalized amplitudes of the waves are given by the following equations, which account for the fact
that the propagation direction of the BEMW at ω1 must be opposite to others in order to have all phase
velocity co-directed and to achieve phase matching (Figure 1b)

(∂a1/∂ξ)− (v3/v1)(∂a1/∂τ) = −igla3a∗2 + (α̃1/2d)a1, (12)

(∂a2/∂ξ) + (v3/v2)(∂a2/∂τ) = igla3a∗1 − (α̃2/2d)a2, (13)

(∂a3/∂ξ) + (∂a3/∂τ) = ig∗la1a2 − (α̃3/2d)a3. (14)

Here, ξ = x/l, l = v3∆τ, τ = t/∆τ, d = L/l, α̃i = ajL, and vi are modules of the group velocities
and αi are attenuation indices at the corresponding frequencies, g = æE30, where Ei0 = Ei(x = 0),
æ = 4π

√
k1k2χ

(2)
eff , and χ

(2)
eff is the effective nonlinear susceptibility, ai =

√
|εiε3|/kik3(Ei/E30).

The quantities |ai|2 are proportional to the time-dependent photon fluxes. First, let us consider
the ultimate case of continuous waves and neglected depletion of the pump field at ω3.
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4.1. Three-Wave Mixing of Continuous Electromagnetic Waves: Approximation of Neglected Depletion of
Pump Wave

In this case, equations for amplitudes of the coupled waves reduce to

da1/dx = −iga∗2 exp(i∆kx) + (α1/2)a1, (15)

da2/dx = iga∗1 exp(i∆kx)− (α2/2)a2, (16)

where ∆k = k3 − k2 − k1. Here, the coupling model is simplified. The equations account for absorption
of the incident and reflected coupled fields, whereas depletion of the control field is neglected.

Three fundamental differences in Equations (15) and (16) distinguish them from their counterpart
forward-wave three-wave mixing in ordinary materials. First, the signs with g in Equation (15) are
opposite to that in Equation (16) because of the backwardness of this wave. Second, the opposite sign
appears with α1 because the energy flow S1 is against the x-axis. Third, the boundary conditions for
the incident and generated waves must be defined at opposite sides of the sample (x = 0 and x = L)
because the energy flows S1 and S2 are counter-directed. Consequently, the equations for a1 and a2

cease to be identical as they are in the case of co-propagating waves in ordinary NLO materials. As will
be shown below, this leads to dramatic changes in the solutions to the equations and in the general
behavior of the generated waves.

4.1.1. Tailored Transparency, Parametric Amplification and Compensating Optical Losses

If a1 is a BW signal traveling against the pump wave [a1(x = L) = a1L] and a2 is a
difference-frequency generated idler (ω2 = ω3−ω2) traveling against the signal [a2(x = 0) = a20 = 0],
the slab serves as an optical parametric amplifier at ω1. The transparency/amplification factor T10 is
given by the equation

T10 =

∣∣∣∣ a1(0)
a1L

∣∣∣∣2 =

∣∣∣∣exp {− [(α1/2)− s] L}
cos RL + (s/R) sin RL

∣∣∣∣2 . (17)

This predicts behavior that is totally different from that in ordinary media. Most explicitly, it is
seen at αj = ∆k = 0. Then, the equation for transparency reduces to

T10 = 1/[cos(gL)]2, (18)

where R =
√

g2 − s2, s = [(α1 + α2)/4][−i∆k/2]. The equation shows that the output signal
experiences an extraordinary enhancement at gL → π/2 that can be controlled by adjusting the
intensity of the control field (factor g) and/or the slab thickness L. In the given approximation,
the equations also show other “geometrical” resonances at gL → (2j + 1)π/2, (j= 1, 2, ...). However,
they diminish if depletion of the pump field due to amplification of the signal is accounted for.
As gL→ π/2, parametric amplification turns to parametric oscillations. Such behavior is in drastic
contrast with that in an ordinary FWTWM coupling, where in the ultimate case of αj = ∆k = 0,
the signal would grow exponentially as

T1 ∝ exp(2gL). (19)

The possibility of such extraordinary resonances was predicted for an exotic TWM phase-matching
scheme [36] (and in some earlier proposals refereed therein), which has never been realized,
and pointed out in a textbook [37]. As suggested in [36], all frequencies were to fall in the positive-index
domain, whereas one beam with far infrared wavelength was proposed to be directed opposite
to others so that anomalous dispersion could be used for phase matching. However, anomalous
dispersion usually occurs in the vicinity of absorption resonances and is accompanied by strong losses.
Backward-wave parametric oscillation without a resonator in the radio frequency range was reported
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in [38]. Coherent NLO coupling of ordinary contra-propagating light waves in the NLO crystals with
spatially periodically modulated crystals have been realized in [10–15].

4.1.2. Tailored Reflectivity and Nonlinear Optical Metamirror

In the approximation of depletion of the pump being neglected, both coupled weak waves behave
in the similar way. Thus, in the opposite case of a1L = 0 (the idler with the energy flux against that
of the pump wave) and a2(x = 0) = a20 (the signal traveling along the pump wave), the slab serves
as an NLO mirror, which emits at ω1 against the pump flux . Ultimately, in the approximation of a
spatially homogeneous control field and real nonlinear susceptibility, the analytical solution to the
Equations (15) and (16) are found, and the reflectivity, R1 = |a1(0)/a∗20|2, is given by the equation

R1 =

∣∣∣∣ (g/R) sin RL
cos RL + (s/R) sin RL

∣∣∣∣2 . (20)

It is seen that the NLO frequency changing reflectivity also experiences extraordinary
enhancement at gL→ π/2. For the case of a loss-free slab and exact phase matching, the reflectivity is
given by the equation R1 = tan2(gL) and tends to infinity at gL→ π/2, which indicates the possibility
of mirrorless parametric self-oscillations. The reflected wave has a differen frequency and, basically,
the reflectivity may significantly exceed 100%.

Overall, the simulations show the possibility to tailor and switch the transparency and reflectivity
of the metachip over a wide range by changing intensity of the control field. Giant enhancement
of the NLO coupling in the vicinity of the geometrical resonance indicates that strong absorption
of the BW and of the FW idler can be turned into transparency, amplification and even cavity-free
self-oscillations. Self-oscillations would provide for the generation of entangled counter-propagating
left-handed, h̄ω1, and right-handed, h̄ω2, photons without a cavity. Energy is taken from the control
field. Each point of the slab emits contra-propagating photons, and each of them stimulate emission
of the counterpart. Maximum correlation is achieved when the condition gL = π/2 is satisfied.
Extraordinary enhancement of the NLO (here TWM) coupling occurs due to the outlined distributed
NLO feedback, which is equivalent to greatly increasing effective coupling length. It is similar
to the situation where a weakly amplifying medium is placed inside a high-quality cavity, which
leads to lasing. The outlined features can be employed for the design of ultra-compact optical sensors,
selective filters, amplifiers, and oscillators generating beams of counter-propagating entangled photons.

4.2. Three Alternative Coupling Schemes—Three Sensing Options

The outlined processes can be applied to all-optical sensing. The corresponding concepts of the
prospective sensors are as follows. Figure 10 depicts three possible options for the phase-matched
NLO coupling of the ordinary and backward waves.

Consider the example depicted in panel (a). Assume that the wave at ω1 with wave-vector k1

directed along the x-axis is an FW signal. Usually, it experiences strong absorption caused by metal
inclusions. The medium is supposed to possess a quadratic nonlinearity χ(2) and is illuminated by
the strong higher frequency control field at ω3, which falls into the BW domain. Due to the TWM
interaction, the control and the signal fields generate a difference-frequency idler at ω2 = ω3 − ω1,
which is also assumed to be a FW wave. The idler, in cooperation with the control field, contributes back
into the wave at ω1 through the same type of TWM interaction, and thus enables optical parametric
amplification (OPA) at ω1 by converting the energy of the control fields into the signal. In order
to ensure effective energy conversion, the induced traveling wave of nonlinear polarization of the
medium and the coupled electromagnetic wave at the same frequency must be phase-matched,
i.e., must meet the requirement of ∆k = k3 − k2 − k1 = 0. Hence, all phase velocities (wave vectors)
must be co-directed. Since the control field is a BW, i.e., its energy flow S3 appears directed against
the x-axis, and this allows to conveniently remotely interrogate the NLO microchip and to actuate
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frequency up-conversion and amplification of signal directed towards the remote detector by such a
metamirror [39]. The signal can be, e.g., incoming far-infrared thermal radiation emitted by the object
of interest, or a signal that carries important spectral information about the chemical composition of
the environment. The research challenge is that such a unprecedented NLO coupling scheme leads to
changes in the set of coupled nonlinear propagation equations and boundary conditions compared
to the standard ones known from the literature. This, in turn, results in dramatic changes in their
solutions and in multiparameter dependencies of the operational properties of the proposed sensor.
Two other schemes depicted in Figure 10b,c offer different advantages and operational properties for
nonlinear optical sensing [34,40].
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Figure 10. Three different options of the proposed nonlinear optical sensors. (a) S1,2 and k1,2 are
energy fluxes and wavevectors for the ordinary,forward-wave, signal and generated idler; S3 and
k3—backward-wave control field; (b,c) alternative prospective schemes; (b) the NLO sensor amplifies
the backward-wave signal S1 traveling against the control beam and frequency up-converts it to the
beam S2 directed along the control one; (c) the NLO sensor converts the signal wave S1 traveling along
the control field to the frequency-shifted backward-wave idler traveling in the reflection direction
against the control beam.

4.3. Parametric Amplification and Nonlinear Reflectivity in the Vicinity of the Critical Pump Intensity:
Extraordinary Transients

As shown, BWTWM experiences extraordinary dependence on the strength of the pump control
field. Therefore, extraordinary behavior can be anticipated in the pulse regime, as the pump intensity
varies in time. Consider a coupling scheme where the pump at ω3 and signal at ω2 are co-propagating
FWs, whereas the idler at ω1 is a BW. Basically, two different regimes are possible. In the first one,
the input pump a30 is a semi-infinite rectangular pulse and the input signal is a CW (a20 = const).
In the opposite case, the pump is a CW and a20 is a semi-infinite rectangular pulse. First, consider
the case of v3 = v2 = −v1 = v. The shape of a semi-infinite pulse with a sharp front edge travelling
with group velocity v along the axis x is given by the function F(t) =

{
1− tanh

[
(x/v− t)/t f

]}
/2,

where the parameter t f determines its edge steepness. In the following numerical simulation, it is
taken as equal to t f = 0.05∆t, where ∆t = L/v3 is the travel time of the fundamental pulse front edge
through the slab. In the first case, a30(t) = a30F(t), a20 = const. In the second case, a20(t) = a20F(t),
a30 = const. Here, aj0 is a maximum pulse amplitude magnitude at the slab entrance. The solution to
Equations (12)–(14) is obtained through numerical simulations.

In Figure 11a, the solid line depicts the output signal at the slab exit (x = L) for the case of
co-propagating ordinary waves, and the dashed line for the case of a BW setting. It is seen that any
changes in the output signal occur only after the travel period, both in the ordinary and BW regimes.
For the case of a pulsed input pump and CW input signal, the output signal experiences amplification
when the forefront of the pump pulse reaches the exit. For the co-propagating settings, the shape of the
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signal pulse almost follows the shape of the pump pulse. However, in the BW setting, the pulse shape
changes dramatically in the vicinity of the resonance intensity of the pump wave, which corresponds
to gL = π/2. The signal growth is slower, and the output signal maximum is greater and is reached
with significant delay. Figure 11b compares the transmitted signal at x = L and the idler at z = 0
traveling in the reflection direction for the case of a pulsed input signal and CW pump. This is a travel
time of ∆t for the signal pulse to appear at x = L, whereas the idler is generated immediately after the
pulse enters the slab. Hence, unlike the transmittance, the transients in the reflectivity are the same for
the pulsed signal and pulsed pump modes. Figure 11a,b show differences in OPA for the cases of the
pulsed signal and pulsed pump disappearing after a period of time about ∆t, whereas the reflectivity
and OPA develop in a similar way after a period of time about 2∆t.
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Figure 11. (a) Difference in transient processes under ordinary (solid lines) and backward-wave (dashed
lines) settings. T2(t) = |a2L(t)/a20|2 is transmission (optical parametric amplification) of the co-directed
seeding signal at the forefront area of the output signal pulse; (b) difference between transient processes
in T2(t) and in nonlinear optical reflectivity R1(t) = |a10(t)/a20|2 (contra-propagating generated idler)
for the case of the pulsed input signal and continuous wave pump. (a,b) −v1 = v2 = v3 = v, αj = 0,
gL = 0.984π/2.

Figure 12 depicts a more extended period of time. It demonstrates that the rise time and the
maximum of OPA increase when approaching the resonance strength of the pump field. It also
demonstrates the fundamental difference between the rise periods and four orders of difference in the
maxima achieved in the ordinary and BW TWM. It appears that calculated data can be approximated
by the exponential dependence T2(t) = A(1 − exp [−(t− ∆t)/τtr])2 (solid lines), where the rise
time τ grows approximately as 1/ cos(gL) in the vicinity of the intensity resonance. For example,
at gL = 0.996π/2, the fitting values are A = 2.99 × 104, τtr = 109.9∆t. The short initial period
(Figure 11) is not resolved here. As outlined above, the transient processes in OPA and in the NLO
reflectivity are similar through the given time period.
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Figure 12. Dependence of the transient processes in the optical parametric amplification on the
intensity of the pump field. The dashed line corresponds to three-wave mixing of co-propagating
waves. The points correspond to an ordinary signal and contra-propagating idler. The solid lines
depict an approximation of the transient optical parametric amplification by the function T2(t) =

A{1− exp [−(t− ∆t)/τtr]}2. −v1 = v2 = v3 = v, αj = 0.

Distributed NLO feedback gives rise to significant enhancement of the OPA and to depletion of
the fundamental wave at gL > π/2. The latter leads to the stationary regime and to a decrease of the
transient period (Figure 13). As seen from Figure 13b, the delay of the output signal maximum relative
to the pump maximum may reach impressive values on the order of hundreds of the travel periods ∆t.
Maximum delay is reached at gL = π/2.
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Figure 13. (a) The shape of the signal forefront in a transparent material at pump intensities above the
critical input value gL = π/2; (b) dependence of the transient period τtr on the maximum intensity of
the pump field. −v1 = v2 = v3 = v, αj = 0.

Absorption causes change in the delay time. For the case of CW and neglected depletion of the
pump, the parameter g must be replaced by ge f f =

√
g2 − (α1 + α2)2/16 [2,41]. Hence, losses shift

the maximum delay to gL > π/2 as seen in Figures 14 and 15a. The described dependencies can be
summarized as follows. The opposite direction of phase velocity and energy flux in BEMWs gives
rise to extraordinary transient processes, which cause a change in the output pulse shapes and a delay
in the formation of their maximums. The closer maximum in the pump intensity approaches the
resonance value, the longer becomes the transient period. The delay of the output maximum relative
to the input one may occur up to several hundred times longer than the travel time through the metaslab
of the forefront of the semi-infinite fundamental pulse. Similar transients emerge in the idler emitted
in the opposite direction (in the frequency up- or down-shifted NLO reflectivity). Figures 15b and 16
demonstrate dependence of the transition processes on dispersion of the group velocities.
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It appears that changes in the output pulse shapes are strongly dependent on the ratio of the
pump and signal pulse lengths, of the pulse lengths and the metaslab thickness, and on the ratio of
the pulse group velocities. Figure 17 demonstrates one of the possible scenarios. Here, a continuous
wave pump a3 travels through a loss-free slab. Input co-directed FW signal is a rectangular pulse,
which is approximately five times longer than the metaslab length L as shown in Figure 17a (for
gL = 0). Because the BW idler is first generated at the forefront of the signal pulse, their output
maximums are shifted. At lower pump intensity, amplification of the rear edge of the signal is greater
than the forefront one. As its intensity approaches the critical value gL = π/2, amplification grows,
and enhanced idler contributes back to amplification of the signal tail, which leads to significant
broadening of the pulses.
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Figure 17. The output normalized signal η1 = |a2L/a20|2 at x = L (dotted lines) co-directed with a
rectangular pump pulse and the output contra-directed idler T2 = |a10/a20|2 at x = 0 (the solid lines)
for different values of the pump amplitude gL. The input signal value is |a20/a30|2 = 10−8; ∆t is the
pump pulse travel time through the slab. (a) gL ≤ 0.83π/2; (b) 0.83π/2 < gL ≤ π/2. Inset: blow up
of the peak tip. The dashed lines mark the exit time for the signal pulse rear edge if the pump is not
turned on.

4.4. Parametric Amplification and Frequency-Shifting Nonlinear Reflectivity in the Carbon Nanoforest [21]

Consider the particular model of the metaslab depicted in Figure 1b. Figure 3a presents a spectrum
of the lowest eigen EM modes and their dispersion ω(k′x) calculated for h = 3.5µm. For the sake of
simplicity, we assume further that εh = εs = 1. The complex propagation constant is kx = k′x + ik′′x .
The reduced wavevector k′x/k = c/vph represents the phase velocity vph. It proves the possibility of the
phase-matching for the three-wave mixing frequency down conversion process ω3−ω2 = ω1 and OPA
at ω2. The simulations also prove the possibility of the phase-matching for different sets of frequencies
by adjusting the nanotube lengths h. For convenience, a sum of the mode frequencies ω1 + ω2 is
shown by the dashed line. However, only its crossing with the third mode satisfies frequency mixing.
Phase matching occurs at k

′
x/k = 1.447 (marked with the vertical line). Figure 3c shows group velocity

indices for the respective modes. The split for the second mode indicates the slow-light regime vgr → 0.
It is seen that in the vicinity of phase matching, the group velocities at f2 and f3 are directed against
the phase velocity with the values significantly less than the speed of light. Alternatively, the group
velocity for the first mode is of the opposite sign.

Figure 3b depicts attenuation of the respective modes. As seen, the attenuations may differ greatly
despite the fact that the electron relaxation rate is the same. The difference is due to the nanowaveguide
propagation regime.

At the pump pulse duration ∆τ = 10 ps, the pulse spectrum bandwidth is ∆ f ≈ 1/∆τ = 0.1 THz
or ∆ f / f ∝ 10−2 ÷ 10−3. Hence, the pump can be treated as quasi-monochromatic. Alternatively,
for ∆τ = 10 fs, ∆ f / f ∝ 10, the spectrum covers all modes. The data used for the simulations described
below are summarized in Table 1. The values La indicate the metaslab length corresponding to
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attenuation Ii/Ii0 = exp(−αiLi) = 0.1, i.e., αiLi = 2.3 for the respective frequencies. A thickness
L = L3 = 78.3µm was chosen to satisfy α3L3 ≈ 2.3 for the mode with highest attenuation. For the
same slab thickness, α2L3 = 2.04, and α1L3 = 0.077. Therefore, attenuation at the lowest frequency
appears significantly less than for the two others which are comparable. The pump pulse length for
∆τ = 10 ps is l = ∆τv3gr = ∆τ(c/n3gr) = 477 µm, i.e., about 6 times greater than L3. Hence, in this
case, a quasi-stationary process is stabilized through the major part of the pulse. Transient processes at
the forefront and at the tail of the pulse can be neglected.

Table 1. Calculated Metaslab Eigenmodes Data.

Mode f , THz k, 105 m−1 |k′′x /k|, 10−3 ng α = 2k
′′
x , 10−2µm−1 La, µm λvac, µm λmed, µm

1 10.43 2.186 2.26 1.45 0.988 2331 28.74 19.86

2 34.95 7.325 17.8 −7.71 2.61 88.2 8.58 5.93

3 45.38 9.511 15.46 −6.29 2.94 78.3 6.61 4.57

Consider the case where the input signal at f2 is a continuous wave with a20 = 10−5a30. Figure 18
demonstrates the dependence of the output amplified signal at f2 and of the idler at f1 generated in the
opposite direction on the intensity of the pump, as well as the effects of attenuation and the pump pulse
duration on the outputs. Panels (a) and (b) depict the cases of a long pump pulse (quasi-CW regime).
Here, T2,3(x = L) = |a2,3(L)/a30|2 are the transmission factors, and a30 is the input pump maximum.
The value T2(L) represents OPA. The nonlinear optical reflectivity (NLOR) at f1 is given by the value
R10 = |a1(x = 0)/a30|2. Panel (a), which corresponds to the attenuation-free regime, shows that
a huge enhancement in the OPA and the NLOR occurs when the pump intensity reaches a certain
threshold value. This is the effect specific to BW coupling, which originates from the appearance
of the intensity-resonant distributed NLO coupling feedback addressed above. Here, the photon
conversion efficiency reaches 100% at a relatively small increase of the pump above the threshold
value. The attenuation significantly decreases OPA (panel (b)). Remarkably, NLOR does not experience
such a significant decrease. This is because the reflected wave is predominantly generated near the
MM entrance, where the pump and the signal are not yet significantly attenuated. Besides that,
the attenuation for the f1 mode appears to be significantly less than the one for the two other modes.
Panels (c) and (d) depict the case of a shorter pulse l = L. Here, the transmitted and reflected photon
fluxes per pulse are given by the values Si(x)/S30 =

∫
dt|ai(x, t)|2/

∫
dt|a30(t)|2. It is seen that the

dispersion and opposite signs of the group velocities cause a significant increase of the pump threshold
and a decrease of the sharpness of the enhancement in the vicinity of the threshold.

The described dependencies are due to the unusual Manley–Rowe relationship. Here, a difference
of the pump and of the contra-propagating idler photon numbers is a constant along the slab, whereas the
sum of the pump and of the co-propagating signal photon numbers is a constant, as seen in Figure 19
calculated for the ultimate case of the attenuation-free metaslab. The width of the gap between the
pump and the idler curves represents a conversion rate. The gap sharply decreases, and the conversion
rate increases in the vicinity of the threshold pump intensity.

Figure 20 is calculated for the co-propagating coupling in an ordinary material with the same
other parameters as in Figure 18a,b. It is seen that higher conversion efficiency at lower pump intensity
is achieved in the first BEMW coupling case.
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Figure 18. Optical parametric amplification and frequency-shifting nonlinear optical reflectivity vs.
intensity of the pump. (a,b) A long pump pulse (quasi- continuous-wave regime). Here, T2,3(x =

L) = |a2,3(L)/a30|2 are the transmission factors, and a30 is the input pump maximum. The value T2(L)
represents optical parametric amplification. R10 = |a1(x = 0)/a30|2 is nonlinear optical reflectivity.
(c,d) The case of a shorter pulse l = L. Here, the transmitted and reflected photon fluxes per pulse are
given by the values Si(x)/S30 =

∫
dt|ai(x, t)|2/

∫
dt|a30(t)|2.
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Figure 19. Backward-wave three-wave mixing: the field distribution along the attenuation-free
metaslab in the vicinity of the resonance pump intensity. (a) gL = 1.6; (b) gL = 1.7.
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Figure 20. Output fields vs. intensity of the pump for the ordinary, co-propagating coupling scheme.
(a) Attenuation-free material; (b) effect of attenuation dispersion. All attenuation parameters are the
same as in Figure 18 (a,b), respectively.

5. Conclusions

Coherent, i.e., phase-dependent nonlinear optical processes, such as harmonic generation and
wave-mixing, play an important role in manipulating light waves by changing frequencies, propagation
direction, pulse shapes, and creation of the entangled photons. Properties of such processes experience
dramatic changes if some of the coupled waves become backward, while all waves travel with
equal phase velocities. Backward electromagnetic waves, also referred to as left-handed waves,
are extraordinary waves with contra-directed energy flux and phase velocity (contra-directed group
and phase velocities).

Extraordinary properties of the backward-wave second-harmonic generation, optical parametric
amplification, and difference frequency generation in the reflection direction are described and
contrasted by the comparing with their counterpart in ordinary nonlinear optical materials. Among the
unparalleled properties is the appearance of the resonance value of the input pump intensity inherent
to backward-wave three-wave mixing, which depends on the nonlinear susceptibility and the thickness
of the metaslab. The indicated extraordinary resonance provides giant enhancement in the three-wave
coupling. In the vicinity of the resonance intensity, extraordinary transient processes develop, which
cause a change in the output pulse shapes and a significant delay in formation of their maximums.
The closer the maximum in the pump intensity approaches the resonance value, the longer the transient
period becomes. The delay of the output maximum relative to the input one may occur up to several
hundred times longer than the travel time through the metaslab of the forefront of the semi-infinite
fundamental pulse. Great enhancement occurs both in optical parametric amplification of the signal
and in the oppositely directed idler (in the frequency up- or down-shifted reflectivity). Such an effect
does not exist in ordinary optical parametric amplification in the case of all co-directed energy fluxes,
where the indicated frequency-changing nonlinear reflectivity does not exist either. The described
processes hold promise for engineering of a family of miniature photonics devices with unparalleled
operational properties. They can also be employed for coherent compensating losses of the backward
waves to be used for the numerous extraordinary linear optical applications.

Instead of the commonly accepted concept of the negative-index metamaterials, which can support
backward electromagnetic waves, we describe an alternative approach that is grounded on a concept
of negative dispersion, dω/dk < 0. Phase and group velocities become contra-directed if dispersion
becomes negative. However, the key requirement in the outlined context is that the metamaterial slab
must not only support a set of electromagnetic waves, some of which are backward whereas others are
normal, but their frequencies must combine in accordance with the particular process while all waves
must travel with the same phase velocity.
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We offer a model of the metaslab that can satisfy the set of these requirements as described,
which can be employed both for the phase-matched backward-wave second-harmonic generation
and backward-wave three-wave mixing. Carbon nanotubes standing on the metal surface,
plunged in a dielectric and bounded by a dielectric, are proposed as the building nanoblocks.
This (“carbon nanoforest”) possesses hyperbolic dispersion. The corresponding frequencies fall
in the THz through near-IR wavelength ranges. The corresponding electromagnetic modes can be
viewed as guided modes in a tampered nanowaveguide. We demonstrated that the frequencies,
phase and group velocities, as well as the losses inherent to the guided electromagnetic modes
supported by the proposed metamaterial, can be tailored to maximize the conversion efficiency and to
reverse the propagation direction of the generated entangled photons. This proves that the proposed
approach can be generalized for other frequency ranges, and losses can be decreased by changing the
constituent materials, size, shape and spacing of the nanoblocks. Among the prospective materials are
refractory materials that can work at very high temperatures [42], transparent conducting ceramics [43],
and plasmonic materials, where properties can be dynamically tuned [44]. Phase matching of
contra-propagating fundamental and backward second harmonic wave in a plasmonic metamaterial
is reported in [45]. The described approach can be applied to layered metal-dielectric metamaterials,
which include layers of highly nonlinear dielectric as was proposed in [46] for the case of
co-propagating waves.

The anticipated properties of the backward-wave second-harmonic generation, parametric
amplification, and induced frequency shifting reflectivity are numerically simulated as applied to the
particular proposed nanoengineered metaslabs. The described outcomes of numerical simulations of
properties of the aforementioned nonlinear optical processes have been presented in the particular
proposed backward-wave metamaterials.

Overall, the uncommon behavior of the outlined processes for the proposed advanced
metamaterials, both in the time and the space domains, hold promise for the applications to
microscopic nanophotonic device technologies, which employ novel principles of extraordinary
parametric amplification, switching, and changing the propagation direction and frequencies of
the entangled photons.
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Abbreviations

The following abbreviations are used in this manuscript:

BW Backward wave
FW Forward wave
MM Metamaterial
FH First harmonic (fundamental wave)
SH Second harmonic
SHG Second harmonic generation
BWSH Backward wave second harmonic generation
TWM Three-wave mixing
BWTWM Backward-wave three-wave mixing
OPA Optical parametric amplification
CW Continuous wave
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