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ABSTRACT  

 

Animals must make estimates about possible resources in order to choose the 

resource which will save them time and energy while conferring high energetic 

content. In order to make the most optimal decision, foragers must use various 

parameters to come up with an accurate estimate for each possible alternative. 

Learning rules allow us the possibility of analyzing which parameters animals 

may be using in order to make the best decision. We use compare known learning 

rules (i.e. Linear Operator Rule, Relative Payoff Sum Rule, Perfect Memory) and 

experimental data extracted from bumblebees (Bombus impatiens) subjected to a 

two armed bandit scenario in order to find what learning rule best describes their 

foraging choices in a changing environment. Our findings suggest that 

bumblebees seem to be using parameters consistent with the Linear Operator Rule 

and the Relative Payoff Rule. More importantly, our results suggest that there is 

great variance in learning rule use between individuals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 



 3 

I. Foraging and Choice Mechanisms  

Animals are constantly exposed to resources that vary in energetic content. Each 

resource will also have corresponding predation risks, commuting time and 

energetic expenditure costs to it. Consequently, foraging individuals should seek 

high rewarding resources that can compensate for the aforementioned acquisit ion 

costs.  The energetic content for each resource can be thought of as a currency 

that an individual forager must gain and invest at different times (Pyke 1979). 

This biological currency will allow foragers to compare between alternative 

resources in order to make the best possible decision, when choosing between the 

alternatives (Stephens and Krebs 1986).  

 

Finding a high value food resource is imperative for foragers due to the link 

between foraging efficiency and fitness (Schoener 1971). Foragers that obtain 

higher energetic resources will not have to constantly invest in the acquisit ion 

costs involved in needing to forage more. Compared to foragers that only attain 

low rewarding resources and have to concurrently seek resources that can 

compete with the demands of their current environment, successful foragers are 

more likely to survive and reproduce (Pyke et al. 1977). This is because animals 

saving foraging time can then invest that time into alternative behaviors such as 

avoiding predation, finding mates, and defending resources. In order to increase 

the amount of food attained over time, also known as the food intake rate, foragers 

must have knowledge of the reward values for all of the possible alternatives.  

 

Although foraging itself can seem incredibly complex, the analysis and 

expectations for behavior while foraging can be simplified through the use of 
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optimal foraging theory approaches. The optimal foraging models that arose after 

1966 proposed that animals should maximize their food intake by making optimal 

decisions. Robert H. MacArthur, Eric Pianka and John Merrit Emlen were the 

first to propose optimal foraging theory in 1966 by comparing foraging strategies 

to economic theories. In MacArthur and Pianka (1966), they propose that a 

forager should consider staying or defecting to other alternatives depending on 

the available prey choices. When prey abundance is low, foragers should switch 

to other prey types. Alternatively, Emlen (1966) suggested that prey choice 

should be dependent on prey value such as caloric intake that would then serve to 

measure the appropriate handling time appointed to the alternative. These models 

consider how animals analyze and evaluate prospective choices while includ ing 

the costs of each choice. The theory takes into consideration a forager’s possible 

resource values, a cost-benefit analysis, and its effects on an optimal behavior 

(Pyke et al. 1977). A basic assumption of these early foraging models is that in 

order for foragers to make optimal decisions, they would have information on 

various parameters pertaining to each resource alternative. Optimal foraging 

strategies would then incorporate known parameters that would guide the forager 

to the best alternative. Specifically, foragers would have to know the energetic 

content and distribution of each possible resource choice. 

 

Theoretically, animals select a behavior based on the information they have 

obtained from the environment (Blumstein 1996). In order to simplify this, 

scientists assumed that animals intuitively knew about their resources so as to 

optimize their food intake. It was assumed that animals should have some 

knowledge of the quality of each choice and behave accordingly in order to 
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optimize their food intake. Foragers would have knowledge of patch value to the 

extent of hierarchically categorizing resources and visiting them accordingly 

(Charnov 1973). The question remained as to what information were foragers 

using in order to make the optimal choice. For instance, animals that are foraging 

for the first time have yet to experience the given value of each resource. 

 

Further work on optimal foraging theory has brought to light various framewo rks 

on how animals use information. Essentially, animals could use various 

parameters such as handling time, caloric value, distance to resource, different 

resource types, abundance of resource and more, to make optimal foraging 

decisions. For instance, the Marginal Value Theorem (Charnov 1976) utilizes 

most of the previously mentioned parameters in order to estimate how animals 

should behave in order to optimize their food intake rate in a stochastic 

environment. Though Charnov’s (1976) work required an animal to know about 

every aspect of its environment and possible resources, we now believe that 

animals need not know about all of the parameters about their environment. 

Foragers must learn from their environment in order to compile the necessary 

information (Iwasa et al. 1981).  

 

II. Information Sources 

Given that animals are not omniscient, information can alter the behavior of a 

decision maker and influence their fitness (Danchin 2013), presumably because 

information is valuable. For instance, reliable information should influence the 

response of an individual by decreasing the uncertainty surrounding a certain 

choice (Schmidt et al. 2010). Foragers find themselves faced with a variety of 
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decision types, where they must decide on various alternatives starting from 

where to forage, to when to leave a patch, to electing the best alternative out of 

an array of choices (Stephens 2008). Given so many choices and types of choices, 

effective foraging is reliant on reliable information in order to maximize foraging 

efficiency and thus help increase potential fitness. 

 

Animals have many sources of information that can drive their behaviora l 

responses. For solitary foragers, prior information of a resource can be gained via 

their genes or from aspects of their environment. Without ever experiencing the 

environment, foragers can inherit preferences that may bias their decisions. 

Drosophila melanogaster display an innate bias for oviposition substrate site that 

can be changed after generations of experimental selection (e.g. Mery & Kawecki 

2004; Dunlap & Stephens 2009), but can also revert to their original preference 

when not being selected upon (Mery and Kawecki 2004). Examples such as these 

lead researchers to propose that though some foragers may rely heavily on 

inherited information, this inherited preference can theoretically be extinguished 

or even renew itself under selective pressures. Preferences might become fixed 

when the world remains unchanging and learning is not a reliable source of 

information. The information inherent to these preferences will be passed on 

through generations and remain relevant when deciding between possible 

resources (Dunlap and Stephens 2009).  

 

Because the choices of the individual allowed it to survive to reproduction, the 

offspring should adopt behaviors similar to its predecessor (Danchin 2013). 

However information need not only be transmitted genetically. Importantly, 
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information can also be gained through, for example, cultural transmission by 

means of social learning through the parents (Danchin 2013). Still, many animals 

do not have the benefit of socially acquiring information about their environment 

and must gain prior information exclusively through their genes. Individuals can 

display preferences based on a sensory bias, where an individual will display a 

stronger response to a specific stimulus (Raine and Chittka 2007).  Preferences 

that result in adaptive behaviors can then be strengthened through generations 

(Fuller et al. 2005), causing naïve foragers to commonly display an innate 

preference for certain resource. When given the option between the color blue or 

the color yellow, bumblebees of different species displayed varying preferences 

despite being associated to a negative payoff (Ings et al. 2009).  

 

In the case of low change within the environment, information is more valuable 

since the individuals will be able to accurately estimate the true state of their 

environment (Dewitt 1998; Koops 2004; McNamara and Dall 2010). Still, it is 

unrealistic to think of natural environments as being stable. In fact, animals must 

adapt to varying environments with ephemeral resources. Resources can be 

depleted by stochastic events in the environment, causing the environment to vary 

in its reliability. When the environment becomes less persistent, it is less 

predictable and fixed behaviors are no longer adaptive (Dunlap and Stephens 

2009). In this case animals must act on information gained from the environment 

itself in order to modify their behavior accordingly. Thus animals rarely have 

complete information about their environment, despite the early work on optimal 

foraging theory that assumed that foragers knew the value of important 

parameters such as prey size, handling time and encounter rates (Charnov 1973). 
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Finally, when one adds the random variation inherent in each parameter, this 

variation combines to produce imperfect information, as even inherited 

information in a relatively fixed environment can become no longer accurate 

(Stephens et al. 2007).  

 

III. Sampling and The Two Armed Bandit  

Stochastic environments present the problem of incomplete information 

(Stephens and Charnov 1982).  In stochastic environments, foragers may find 

themselves having to choose from a set of alternatives with unknown value. The 

only way for the forager to learn this value is through sampling the available 

resources to acquire new information about rewards and distributions of 

resources. Sampling rate itself can be optimized, and this sampling is necessary 

for high performance in a foraging task (Krebs et al. 1978).  

 

Incomplete information demands that a forager experience all possible 

alternatives before deciding on a possible choice (Pyke 1984). Sampling all 

possible alternatives can prove costly to foragers in terms of energy expenditure 

and time investment. To begin with, animals must invest in acquisition costs, as 

they must sample to acquire reliable information about a possible resource 

(Stephens 1987). Second, there are sampling error and overrun error costs that 

consist of missed productive opportunities and sampling unproductive options 

(Dechaume-Moncharmont 2005; Stephens 1987). Similar to both of these costs, 

foragers have to consider opportunity costs of choosing one alternative over 

another, and the probability of losing the profits of that unchosen alternative 

(Winterhalder 1983). Furthermore, sampling available information sources has 
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inherent predation risks attached to it. Still, in most types of environments, 

sampling should reduce uncertainty sufficiently to make better adapted decisions 

(Schmidt et al. 2010).  

 

For optimal foraging, sampling should be done consistently since most 

environments vary unpredictably. As the forager experiences various parameters 

it will be able to better track its environment and accurately adjust to its current 

state (Dunlap and Stephens 2012). Every experience with each parameter will 

accumulate to provide an estimate of the actual value of the resource. As 

previously mentioned, because resources are ephemeral their value is constantly 

oscillating between depleting and regenerating.  This means that every visit that 

a forager makes to a specific resource may result in a different value along a 

normal distribution curve. We expect that every resource has a different curve 

with its own specific mean. Foragers must then make an assumption on the mean 

value for each resource (Mangel 1990).  

 

Foragers are constantly exposed to various alternatives which they then may 

choose to sample or not. Given all the aforementioned costs and risks associated 

with sampling, foragers might choose a random resource in which to forage from 

and hope for the best. In a multi-armed bandit scenario, decision-makers must 

choose from multiple alternatives (i.e. arms) that have an unknown reward 

(Reverdy et al. 2015). The multi-armed bandit refers to a scenario with mult ip le 

arms or alternatives to choose from. At each time point, the forager will choose 

an arm and experience its value. From then on, the forager can continue to 

experience various arms or continue with a preferred arm. As a note, the first 
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choice can be random or chosen due to some prior preference that the individua l 

may have. The multi-armed bandit looks to understand how foragers sample their 

environment. The objective of the forager caught in a multi-armed bandit 

dilemma is to increase its gain of food, which matches the assumptions of the 

optimal foraging theory (Srivastava et al. 2013). Consequently, multi-armed 

bandits serve as a great tool to study optimal foraging.  

 

It is not always in the best interest of a forager to sample in high frequencies, 

since sampling errors and overrun errors increase accordingly (Stephens 1987). 

When a forager settles on a reliable pattern for the depletion and renewal of a 

resource, the variance of the estimated mean value for the resource should 

decrease and the forager should no longer sample its environment at high 

frequencies (Pyke 1984). Foragers are then faced with the problem of acting on 

new information that may be gained through sampling or foraging based on 

information that has already been collected (Sherratt 2011; Stephens 1991; 

Shettleworth et al. 1988). The central problem within the multi-armed bandit 

revolves around the concepts of exploration versus exploitation.  

 

Theoretically, foragers should choose the exploitation strategy when it encounters 

a high quality resource and an uncertain environment, as sampling can be costly 

(Dall and Johnstone 2002). In contrast, experimental work showed that blue jays 

exposed to a highly unpredictable environment will choose to sample their 

environment at higher frequencies and use an exploration strategy (Dunlap and 

Stephens 2012). To simplify this problem, let’s consider that a forager only has 

to choose between two options (i.e. a two-armed bandit scenario) and the 
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proportion of certainty of the world is unknown. The two-armed bandit scenario 

has only to options to choose from. When recreating a two-armed bandit scenario 

using great tits, researchers found that foragers will display an optimal balance 

between both strategies and suggest that foragers use simple rules to establish the 

optimal proportion of exploitation and exploration (Krebs et al. 1978).  

 

IV. Rules of Thumb 

The multi-armed bandit measures how foragers make optimal decisions when 

foraging. In order to maximize their profits, foragers must exhaust a known 

resource or keep sampling their environment. Additionally, foragers may increase 

a pre-existing preference through exploitation or learn through their environment 

via exploration (Scott 2010). As exploitation and exploration are mutually 

exclusive actions that can’t be done simultaneously, foragers should employ 

simple rules to cope with their environment. 

 

Let’s assume that while sampling their environment foragers employ simple 

mechanisms instead of investing in expensive neurophysiological costs 

associated to learning, retaining and retrieving memories. If this were the case, 

we would expect that natural selection would evolve simplistic mechanisms of 

choice that would result in effective foraging. Rules of thumb provide foragers 

with mechanisms that use minimal amounts of information about the environment 

and produce suitable behaviors while foraging (Real 1994).  

 

Rules of thumb provide foragers with low cost, low risk behaviors that allow it to 

handle complex foraging tasks (Naug and Arathi 2007). Some of these rules can 
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include Herrnstein’s matching law, where pigeons would continue choosing a 

specified alternative in correlation to the number of times the alternative was 

reinforced (Herrnstein 1961). We continue by mentioning a fixed giving up time 

rule, which was developed out of Charnov’s Marginal Value Theorem, where 

animals should depart a patch after a set amount of time (Krebs et al. 1974). 

Additionally, the number rule states that the forager should depart after collect ing 

a set number of prey items (Stephen and Krebs 1986). Finally, we conclude by 

mentioning the 𝜀-sampling rule where foragers continuously sample between 

resources at a constant probability, and the failures departure rule where foragers 

should switch food after experiencing a payoff under a set threshold (Thuijsman 

et al. 1995). Ultimately, the goal of many rules of thumb is to decrease the costs 

of sampling.  

 

Similar to the failures rule, foragers can also employ a win-stay/lose-shift rule. 

One of the simplest rules of thumbs, this rule states that foragers should switch to 

an alternative resource when the resource sampled proves unrewarding (e.g. 

Randall and Zentall 1997). This proves to be a reliable strategy with transitory 

resources, as foragers could potentially avoid visiting unrewarding patches. More 

so, foragers such as tamarins and free ranging titi monkeys have been observed 

to indulge in a win-stay/ lose-shift rule when resources are predictable (Bicca-

Marques 2005). On the other hand, marmosets did not adopt this rule of thumb 

(Platt et al. 1996) which leads us to look at other rules such as the win-shift rule 

which states that forager should switch to an alternative resource, even when the 

sampled resource proves to be rewarding. This rule can impede the forager’s 

ability to exhaust good resources (Olton and Schlosberg 1978).  
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One of the many benefits of rules of thumb is the lack of information required 

and the non-existent need for memory. Still, rules of thumb rarely take into 

account a dynamic environment and the associated costs of sampling (Naug and 

Arathi 2007). Accordingly, rules of thumb result in perceptual errors that may 

impede optimal decisions (Bouskila and Blumstein 1992). In addition, bumblebee 

foraging behavior has been proposed to relate better to more complex optimal 

models when compared to rules of thumb (Biernaskie 2009).  

 

V. Learning and Memory  

Learning rules bring into question long-term versus short-term memory. Foragers 

can make predictions of food rewards based on past experiences (e.g. Lewis 1986; 

McNamara and Houston 1987; McNamara et al. 2006). For instance, bumblebees 

exposed to a two-armed bandit experimental design were found to use prior 

choices when making a decision and not solely relying on their last choice (Keasar 

et al. 2002).  

 

In order for foragers to increase the frequency of correct choices and decrease the 

number of errors, they must learn to track their environment (Morand-Ferron and 

Giraldeau 2010). Though we’ve mentioned tracking experiences before, 

environmental tracking also implies the retrieval of past experiences that can be 

applied to current events (Dunlap et al. 2009). Though rules of thumb may prove 

to be successful in relatively fixed environments, stochastic environments call for 

an updating estimate of a resource value that can only be gained through learning 

and, thus, memory (Eliassen et al. 2009).  
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Animals need to retain information in order to make optimal foraging decisions 

(Papaj and Lewis 1993). Yet, foragers are also constantly sampling their 

environment and must integrate their newly acquired information to their 

previously experienced information.  Animals must find a way in which to 

balance both past and present information. One way that animals may do this is 

by weighing both types of information. 

 

Past information deteriorates and becomes unreliable with time, but can also be a 

good predictor of future conditions (McNamara and Houston 1987). If 

sufficiently sampled, animals can come up with a consensus about the current 

conditions of their environment and have a good estimation about resource 

values. To this point, animals must establish a rate at which past information is 

discounted in order to use reliable information. We can use D as the memory 

variable, also known as the discount rate. In other words, it is the rate by which 

past information is being deducted when making current choices. This means that 

the alpha for prior information can range from one to zero. If animals were to 

exponentially weight the past, they would attribute higher value to either the past 

of the present information and will remain fixed throughout their sampling trials 

(McNamara and Houston 1987). In this scenario, a smaller alpha would put less 

weight on past information and more weight on present events.  

 

Now let’s assume that the value of alpha is not fixed and will fluctuate with the 

amount of observations the forager is experiencing. According to McNamara and 

Houston (1987), the D should decrease with uncertainty and foragers should place 
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more value on current information. Thereby the value D should increase as the 

number of observations increases. Logically, foragers should not place a high 

value on past experiences when they start foraging as they have no past 

experience to rely on (Dunlap et al. 2009). As their experience increases, then 

they may place more value on past observations. Respectively, jays rely more 

heavily on past information when exposed to a highly variable environment 

(Dunlap and Stephens 2012).  

 

VI. Learning Rules  

Foragers exposed to an unpredictable environment should evolve learning 

mechanisms that surpass the limited capacities of the rules of thumb (Lea et al. 

2012). For this reason, researchers have moved to study optimality models and 

construct a specific model with relevant parameters thought to influence foraging 

behavior (Parker and Maynard Smith 1990). Optimality models would then take 

into account time, the state of the environment, and the actions of conspecific s 

(McNamara et al. 2001). Dynamic environments reflect a change of 

environmental state from one unit of time to another. As a result, simulat ions 

comparing optimality models and rules of thumb strengthen the claim that 

optimality models are better solutions for foraging problems (Janetos and Cole 

1981). Optimality models are classically represented as mathematical models that 

include parameters that seem relevant to the behavior being optimized. 

 

Naïve foragers may use strategies similar to rules of thumb that may be adjusted 

as the individual experiences its environment (Morand-Ferron and Giraldeau 

2010). Bumblebees, for instance, adjust their patch leaving rule with their 
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experience of the environment (Biernaskie et al. 2009). At this point, rules of 

thumb are no longer fixed and animals start utilizing learning rules. Learning 

rules are represented as equations that predict the likelihood of foragers selecting 

between possible alternatives (Mookherjee 1997). These rules will also determine 

how individuals will adjust their decisions as they sample their environment 

(Hamblin 2009). Most of the well-known learning rules integrate prior 

information to current observations. Successful learning rules have the ability to 

approximate optimal foraging strategies to the point of invading a population and 

becoming the predominant strategy used in said population (Beauchamp 2000).  

 

i. Bayes’ Theorem  
 
Probably the best known learning rule is Bayes’ theorem, where prior information 

is combined with current information to make a proper assessment of the 

environmental state (Hamblin et al. 2009). Assume that a forager has a choice 

between resource A and resource B; per Bayes’ theorem, we should be able to 

calculate the conditional probability of the forager choosing either alternative. 

Using the equation 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

 we can calculate the probability of the 

forager choosing A given that it could also choose B, while also taking into 

account the prior information of resource A and resource B. Keep in mind that a 

prior can be genetically acquired or through sampling the environment. The 

animal does not require any more information, other than its past experiences and 

will develop an average rate of the environment (McNamara et al. 2006).  

 

Bayes’ theorem does not directly employ the use of memory parameters or 

sampled value. We can view Bayes’ equation as a strengthening or dilution of a 
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given preference. The first choice a naïve forager makes will, theoretically, be 

driven by a preference (Valone 2006). If the first choice based on a preference 

proves to be rewarding, said preference will keep increasing. If the preferred 

choice proves to be unrewarding or becomes unrewarding at any given point, then 

the preference should start to fade and even go to extinction. Under this 

assumption, Bayes’ theorem may also be referred to as Bayesian updating, as each 

new choice will update the probability of choosing the same reward in the future.  

 

This model has gained support from both simulations and empirical studies. For 

instance, Apis cerana were proposed to follow Bayesian processes that allowed 

them to successfully complete a complex foraging task with correct behaviora l 

responses (Naug and Arathi 2007). Bayesian foragers have been predicted to 

reduce the cost of incomplete information, making this model one of the primary 

learning rules proposed to be used by animals (Olsson and Brown 2006). As Apis 

is not the only genera to follow the expectations of Bayesian processing, 

researchers have proposed that natural selection has driven animals to follow the 

parameters of Bayes’ theorem (Trimmer et al. 2011). Still, though many foragers 

closely follow the assumptions made by the model, bumblebees have been 

identified as less than perfect Bayesian foragers while still not following patterns 

that would fit known rules of thumb (Biernaskie et al. 2009). 

 

ii. Linear Operator  

Let’s suppose that instead of foragers updating previous preferences, they come 

up with an estimate about the value of each possible alternative. Not forgett ing 

that the value for each resource may change at different time points, foragers 
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should then update each estimate at every time point. Under these assumptions  

we arrive at the linear operator learning rule which integrates observed values, 

past estimates, and weighted memory using the equation 𝜇𝑛 = 𝛼𝑛𝜇𝑛−1 +

(1 − 𝛼𝑛)𝑥𝑛 (McNamara and Houston 1986).  

 

The given equation results in an estimation of the value of a resource at time n 

(𝜇𝑛). From here, the equation combines the rate in which the past is discounted 

with the estimated value at the previous time unit (𝛼𝑛𝜇𝑛−1 ). This first half of the 

equation will determine the weight that will be given to past estimates. Finally, 

the second half of the equation will generate the weight given to the observed 

value at the current time. The value (1 − 𝛼𝑛) will denote the residual of what was 

discounted from past information, and 𝑥𝑛 represents the observed value at time 

n. The result will also reflect current information. With more observations, the 

estimates for a resource should increase or decrease exponentially (Beuchamp 

2000).  

 

Similar to Bayes’ theorem, linear operator allows for the forager to update its 

information in accordance to its sampling. Unlike Bayes’ theorem, this model 

doesn’t take into account preferences or prior information. When both models 

were compared in terms of performance Grob et al. (2005) demonstrated that 

though both models adequately chose the best course of action in the short-term, 

neither could perform adequately over a longer period of time.   
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iii. Relative Payoff Sum 

The relative payoff sum integrates both of the prominent features of the linear 

operator and Bayes’ theorem. Mathematically similar to the previous learning 

rule, this model integrates rates of discounting the past, observed values at the 

current time, past estimates and priors. Distinct from the linear operator, 𝜇𝑛 =

𝛼𝑛𝜇𝑛−1 + (1 − 𝛼𝑛)𝑟𝐴 + 𝑥𝑛, this equation includes a prior (𝑟𝐴 ) for a given 

resource. By adding this new variable, the estimated value of a resource cannot 

be reduced to zero due to the prior (Hamblin and Giraldeau 2009).  

 

First proposed by Harley (1981), the relative payoff sum gets its name due to the 

probability of choosing a given alternative in correlation to the payoff gained 

from it during previous trials. Seemingly the learning rule that yields the most 

optimal behaviors, relative payoff sum has moved to fixation faster in computer 

simulations when compared to linear operator and perfect memory (Hamblin and 

Giraldeau 2009).  

 

iv. Perfect Memory  

Lastly, the perfect memory learning rule does not integrate either current 

observed values or memory windows. Instead it employs the use of priors and 

cumulative payoffs for one alternative averaged over the number of times the 

forager has selected that alternative. The equation 𝜇𝑛 = 𝛼+𝑅𝐴𝑛
𝛽+𝑁𝐴𝑛

, starts with an 

estimated value for resource A at time n. For this equation 𝛼 will no longer 

represent the rate of discount for past information. Instead 𝛼 will represent the 

prior or preference expressed for the alternative A ranging from zero to one, while 

𝛽 will equal the residual value of the prior. After which point the first part 𝑅𝐴𝑛
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will represent the total amount of payoff gained from alternative A up to time n. 

Subsequently, 𝑁𝐴𝑛
 symbolizes the amount of times alternative A was chosen up 

to time n.  

Contrary to the Linear Operator Rule and the Relative Payoff Sum rule, the 

Perfect Memory Rule does not discount memory. In fact, this rule gives equal 

importance to all its past rules and integrates a preference for each choice 

(Houston and Sumida 1987). In there lies the problem with the Perfect Memory 

Rule according to Hamblin and Giraldeau (2009). Their work suggests that due 

to its mathematical parameters, the Perfect Memory Rule cannot keep up with 

sudden changes consistent with a stochastic environment.  
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I. Introduction   

Nature is composed of ephemeral food resources that are constantly fluctuat ing 

between high and low values of reward. Consequently, foragers have to make 

decisions based on the variance exhibited by potential resources. The goal of said 

foragers is to enhance their food intake rate and their overall fitness (Schoener 

1971). Foragers must accurately estimate the reward value associated to each 

resource by using various environmental parameters (McNamara and Houston 

1987). Accurate estimates of resource values will lead to successful foraging 

decisions, which is the basis of optimal foraging theory.  

 

Early works on optimal foraging theory assumed that foragers had complete 

information about every environmental parameter (Papaj and Lewis 1993, 

Charnov 1973). Yet, animals are not omniscient about the state of their current 

environment and must learn how to best exploit it. Furthermore, foragers do not 

require all of the available information in their environment to make optimal 

foraging decisions (Iwasa et al. 1981). Instead, individuals should rely either on 

inherited information or information gained through sampling in order to modify 

their foraging decisions to best suit their current environmental state. When given 

the choice between flowers of differing colors, bees display an innate 

predisposition for colors such as blue and yellow which have been associated to 

flowers with high nectar rewards (Giurfa et al. 1995). Thus, color preferences 

result from inherited information that can be favored by natural selection and used 

to make adequate foraging decisions (Raine and Chitka 2007). Still, as the 

environment becomes less predictable and preferences may no longer be 

adaptive, foragers must learn by sampling their environment (Dunlap and 
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Stephens 2009).). Bees have been shown to disregard colors when color 

preference is no longer the optimal foraging strategy (Hill et al. 1996).  However, 

sampling all the available alternatives would be time consuming, energetica lly 

expensive and prone to predation risks (Dechaume-Moncharmont 2005, 

Dornhause et al. 2005, Stephens 1978, Winterhalder 1983).  

 

In a multi-armed bandit scenario, foragers must extract information from the 

environment itself by sampling from an unknown set of alternatives (Reverdy et 

al. 2015). With each new choice, the decision-maker will attempt to maximize its 

food intake rate by combining known environmental parameters in order to make 

accurate estimates about their environmental conditions (Krebs et al. 1978).  It 

was originally suggested that foragers should employ simple rules of thumb in 

order to make the most optimal decisions with a minimal amount of information 

(Real 1994). It has now been suggested that foragers, such as bees, follow 

foraging patterns consistent with more complex learning rules (Biernaskie et al. 

2009). 

 

If foragers are indeed learning with each new choice, then we would expect them 

to be incorporating past information to current events. Under the assumptions of 

known learning rules, foragers should update information with each new choice 

and have a choice mechanisms based on estimated values for each possible 

alternative (Beuchamp 2000). Most notable, Baye’s theorem has been often used 

to study how foragers incorporate past experiences to their current knowledge in 

order to make adaptive decisions (McNamara et al. 2006). In this case, innate 

preferences could serve as a prior that can tend towards fixation, extinction or 
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remain in fluctuation (Valone 2006). Although bees follow trends similar to the 

assumptions established by Baye’s theorem there may be other learning rules that 

better describe how bumblebees make foraging decisions (Biernaskie et al. 2009).  

 

By exposing individual bumblebees (Bombus impatiens) to a two-armed bandit 

scenario where the reward values of two resource are known and changing, we 

aim to find what parameters bees are using to make optimal foraging decisions. 

We compare well established learning rules: Baye’s Theorem, Linear Operator, 

Relative Payoff Sum, and Perfect memory to find the one that best describes the 

bees foraging patterns. By comparing the learning rules various parameters, we 

hope to find how animals are processing information. We believe that foragers 

should utilize more than just preference and integrate the use of current values 

sampled as well as prior estimates consistent with the relative payoff sum rule. 

Furthermore, we compare the weight that foragers are placing on current 

observations versus past experiences.  

 

II. Methods  

a. Study Design 

We exposed ten individual foraging bees, Bombus impatiens, to a T-maze 

mirroring a two-armed bandit dilemma in order to measure how bees make 

continuous decisions in a changing environment.  The maze consisted of a total 

of ten nodes and two branches per node representing a possible alternative to 

choose from. At the start of the maze, bees would have no prior knowledge about 

the reward value for each alternative.  After making a choice between the left or 

right branch, panels would be placed to prevent the bees from back tracking or 
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sample the other alternative. This was repeated after each choice made. The bees 

would then have to experience the completed maze a total of eight times for a 

total of 80 choices.  

 

The first 20 trials experienced by the forager would always be a bad state, 

meaning that the bee would have to choose between a stable resource equal to six 

microliters of 20% sugar solution and a fluctuating resource of six microliters of 

5% sugar solution. The next 20 trials would then switch to a good state, where 

the fluctuating resource will now equal to six microliters of 50% sugar solution. 

This pattern would then repeat itself once more, for a total of 40 choices in a bad 

state and 40 choices in a good state. New maze liners where placed after each run.  

 

We provided two different stimulus of colors, blue and yellow, to work as sensory 

cues for the bees. Each alternative would be randomly assigned to one of the 

colors for each individual bee. Color stimuli did not remain attached to a specific 

alternative for all bees. Additionally, placement of the alternative resources was 

randomized for left or right for each trial. The first choice for each individual was 

used to average the strength of preference for each color and compared it to a 

generalized model to quantify the strength of color preference for each individua l.  

 

b. Optimizing Memory Weight  

Using Beuchamp (2000) algebraic equations for the learning rules, we simulated 

and compared each equation using various memory weights. Memory weight has 

been proposed to be either constantly weighted in favor of past experiences or 

present observations, or be a memory window. Memory window has gained more 
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support based on McNamara and Houston (1987) claim that individuals give 

more weight to past experience as they gain more experience of their 

environment. We ran the linear operator rule and the relative payoff sum using 

constantly weighted alphas ranging from zero to one. Furthermore, we also 

simulated both learning rules using a memory window following the equation 

𝛼𝑛 = 𝑛−1
𝑛

, where n equals the number of trials experienced by the individual bee. 

After running each simulation and obtaining the estimates for the values of the 

stable resource and the fluctuating resource at each time unit, we calculated the 

expected choice for each time point and compared it to what was actually 

observed. The expected choice is the proportion that the individual bee will 

choose a given resource based on the past estimate, 𝜇𝑖
𝜇𝑖+𝜇𝑗

. The difference between 

the expected choice and the observed choice determine a new value, which we 

call the behavioral consistency to model.   

 

An repeated measures univariate ANOVA was ran to see if there were differences 

between each alpha, including the memory window (𝛼𝑛). We ran two statistica l 

tests per learning rule, for the values of the stable resource and the fluctuat ing 

resource.  Both resources assume either a stable environment or a fluctuat ing 

environment. Each alpha was a treatment and the subject and trial number were 

considered as factors influencing the behavioral consistency to model. Following 

the repeated measures univariate ANOVA, we ran a post-hoc Tukey test to 

compare each group.  

 

Finally, we also simulated the Perfect Memory rule using Beauchmap (2000), but 

as there is no use of memory weight, we solely compared estimated choice to the 
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observed choice. Similar to our other simulations, we used a repeated measures 

ANOVA while only taking into consideration individuals and trials as factors.  

  

c. The Role of Preference 

To uncover each individual’s color preference, we used Y=1 or 0 to denote which 

alternative the bee chose. We averaged the first choice of all ten foraging 

individuals to get a proportion of 0.6 strength of preference for the color blue and 

0.4 strength of color preference for the color yellow. By using a generalized 

model, we tested the preference for each color for each individual be in order to 

obtain the exact preference displayed by the bee. In which case, 𝑟𝑖 and 𝑟2  will 

correspond to the residuals for each color and i will now equal the bees from one 

to ten.  

 

d. Simulations and Comparing Learning Rules  

We used the algebraic equations used in Beuchamp (2000) for the Linear 

Operator Rule, the Relative Payoff Sum Rule and the Perfect Memory Rule. As 

the bees were introduced to a two armed bandit scenario, they had the to choose 

between two possible options consistent with the assumptions of the learning 

rules. Essentially, bees had to make an estimate for each of the alternatives and 

choose accordingly. Our first aim was to simulate the estimates made by the 

foraging bees at each time point for both alternatives. The stable alternative will 

be representative of a stable environment, while the fluctuating alternative will 

equal an unpredictable environment.  

i. Linear Operator Rule 
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Following the equation equation 𝜇𝑛 = 𝛼𝑛𝜇𝑛−1 + (1 − 𝛼𝑛)𝑥𝑛, were the 𝜇𝑛 equals 

the estimate for the reward value of an alternative and 𝑥𝑛 equals the observed 

values. We will discuss  𝛼𝑛, memory weight, in the next section. For the stable 

environment, 𝑥𝑛 will always equal 20, unless it is not chosen and then it will be 

zero. The fluctuating resource will equal 5 in a bad state or 50 in a good state, if 

not chosen then it will equal zero. 𝜇𝑛 will have a value for each trial or time unit 

determined by the observed value chosen, the memory weight and the past 

estimate. Additionally, every estimate for the stable alternative, 𝜇𝐴, will have a 

corresponding estimate for the fluctuating alternative, 𝜇𝐵.  

 

ii. Relative Payoff Sum Rule 

Similar to the equation for the Linear Operator Rule, the Relative Payoff Sum 

now includes a residual which we equaled to a prior preference exhibited by the 

individuals. The residual was calculated by averaging the first choice for color 

for all ten individuals, concluding in a residual of 0.6 for blue and 0.4 for yellow. 

Under these assumptions we follow the equation 𝜇𝑛 = 𝛼𝑛𝜇𝑛−1 + (1 − 𝛼𝑛)𝑟𝐴 +

𝑥𝑛 and repeat the same process as with the Linear Operator Rule. In contrast to 

the Linear Operator Rule, we apply the residual for every individual forager. As 

colors as not consistently associated with one resource alternative, we made sure 

to combine every individual with their corresponding residual for each 

alternative. 

 

iii. Perfect Memory Rule  

In the case of the Perfect Memory Rule, 𝜇𝑛 = 𝛼 +𝑅𝑖𝑛
𝛽+𝑁𝑖𝑛

, we make use of the 

corresponding residuals similar to how we did for the Relative Payoff Sum. 
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Furthermore, we use the same values for the observed values, but these are joined 

into the total payoff for that alternative, 𝑅𝑖.  

 

e. Modelling and Comparing Learning Rules   

In collaboration with Dr. Yuefeng Wu, we used the observed data to compare  

various models, each with their own parameter to uncover how bees are weighing 

memory and their learning process.  The individual foraging bees must follow the 

assumptions of the learning rules and estimate the value of the alternatives during 

that time unit. Each learning rule discussing carries its own set of assumptions 

and parameters used. Similar to Baye’s theorem, the linear operator and the 

relative payoff sum update their current estimates about the value of a resource 

using previous estimates for that same resource. In contrast, Linear Operator 

excludes the use of preference for some sensory cue and includes the actual 

reward value obtained during that time unit. The Relative Payoff Sum also uses 

previous estimates, current observed values, and includes a residual value that 

represent preference for color. For each of these rules there is the added 

component of a rate of memory discount where the forager should place weight 

on past estimates or current observations. Under the assumptions of McNamara  

and Houston (1987), foragers could have a weighted memory and place a constant 

weight to the past and the present observations or have a memory window the 

weight placed on past observations should increase with every new observation. 

Finally, the Perfect Memory rule assumes that all past experiences are 

remembered and equally weighted by the forager. Due to the nature of our 

experimental study, there was a need to reparametrize the original equations 

suggested in Hamblin and Giraldeau (2009).   
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i. Relative Payoff Sum  

(1)  𝜇𝑖 = 𝛼𝜇𝑖−1 + (1 − 𝛼)𝑟𝑖 + 𝑥𝑖  

here the 𝜇𝑖 is the estimate where  i= 1 or 2 corresponding to the two alternatives, 

𝑥𝑖  equals the reward value of alternative i  at time t , ri  is the residual 

corresponding to the information or preference that the bees had before it obtains 

any "new" information in current experiments for alternative i , and   𝛼𝑖 reflects 

the rate of memory discount.  

 

Re-parametrize Relative Payoff Sum  

We let 𝜇𝑖(1) = 𝑟𝑖 before acquiring any reward during the first time point. 

We assume that the first choice made by the individual bee will be 

determined by the residual term. This gives us the equation  

(2) 𝜇𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝛼𝑥𝑖(𝑡 − 1) + 𝛼2𝑥𝑖(𝑡 − 2) + ⋯ + 𝛼𝑡−1𝑥𝑖(1) + 𝑟𝑖 

Assume 𝑥𝑖(𝑡) are identically distributed with 𝜇, then  

(3) 𝐸(𝜇𝑖(𝑡)) →  1
1−𝛼

𝜇 + 𝑟𝑖 

as 𝑡 →  ∞ 

 

ii. Linear Operator  

(4) 𝜇𝑖 = 𝛼𝜇𝑖−1 + (1 − 𝛼)𝑥𝑖 

the equation removes the residual from the relation payoff sum rule 

 which causes the current observations to be directly multiplied by the 

 weight placed on current observations.  

 

Re-parametrize Linear Operator  
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(5) 𝜇𝑖(𝑡) = (1 − 𝛼)[𝑥𝑖(𝑡) + 𝛼𝑥𝑖(𝑡 − 1) + 𝛼2 𝑥𝑖(𝑡 − 2) + ⋯ + 𝛼𝑡−1𝑥𝑖(1)] 

Assume 𝑥𝑖(𝑡) are identically distributed with mean 𝜇, then  

(6) 𝐸(𝜇𝑖(𝑡)) →  𝜇 

as 𝑡 →  ∞ 

The linear operator would be the same as the relative payoff sum while 

excluding the residual term. The difference would be the asymptotic 

expected values of the alternatives due to the absence of the residual term, 

which allows the value to fall to zero. This would have no meaning for 

the decision-making mechanisms of the bees.  

 

iii. Perfect Memory 

(7) 𝜇𝑖(𝑡) = 𝛼+𝑅𝑖
𝛽+𝑁𝑖

 

in which case the ratio of 𝜇1 and 𝜇2 is the only thing that will affect the bees 

choice, 𝛼 will no longer represent a discounting memory factor and will now 

equal the residual for i, Ri will be the total payoff from alternative i till time t, and 

Ni is the total payoff till time t.  

 

Re-parametrize Perfect Memory 

𝛼 will now equal to 𝑟1  and 𝛽 will equal to 𝑟1 + 𝑟2  .  ∑ 𝑋𝑖(𝑗)𝑡
𝑗=1  will be 

the total payoff from alternative i till time t. This will be a special case of 

the relative payoff sum with 𝛼 = 1.  

(8) 𝜇𝑖 = 𝑟𝑖 + ∑ 𝑋𝐼(𝑗)𝑡
𝑗=𝑖  

Another type of Perfect Memory model:  

(9) 𝜇𝑖 = 𝛼𝑡 𝜇𝑖(𝑡 − 1) + (1 − 𝛼𝑡) 𝑋𝑖(𝑡) 
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where 𝛼𝑡 = (𝑡 − 1)/𝑡. This model has the same form as the Linear 

Operator with alpha serving as a memory window denoted as 𝛼𝑡. Using 

a simple transformation, we can equal the Linear Operator equation to  

(10 ) 𝜇𝑖 =
∑ 𝑋𝐼(𝑗)𝑡

𝑗=1
𝑡

 

This new equation can be used as a special case model where the 

residual is 0 and up to some multipliers of 1/t.  

Perfect Memory and Linear Operator are special cases of the Relative Payoff Sum.  

 

iv. Iterative form and memory window  

The general memory window type of model  

(11) 𝜇𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝛼1𝑥𝑖(𝑡 − 1) + 𝛼2𝑥𝑖(𝑡 − 2) + ⋯ + 𝛼𝑡−1𝑥𝑖(1) + 𝑟𝑖 

with 𝛼1,… , 𝛼𝑤 ≠ 0 and 𝛼𝑤+1 ,… , 𝛼𝑡−1 = 0 

Because the alpha can be seen as the strength of memory, so we assume that the 

weight of memory decreases as the time lag increases  

(12) 𝛼𝑡 = ∏ 𝐴𝑗
𝑡−1
𝑗=1  

and estimate {Aj} will show the pattern if it exists. Notice that 0<Aj<1 for 

j=1,…,t.  

This model should not be used at the individual level as it will cause over fitt ing. 

A larger sample size is required to find the memory patterns.  
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III. Results  

A. Optimizing Memory Weight  

a. Linear Operator  

A univariate repeated measures ANOVA of 11 memory weights from zero to one 

(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) showed that alpha is a statistica lly 

significant factor (F(11,1719)=251.04, p<0.00000001). Except for when the alpha 

is one, the difference between the observed values and the predicted values of ten 

out of the 11 memory weights used tend to zero, and thus follow the predictions 

of the model more closely.  We used the difference between observed choices and 

the predictions of the model to analyze how closely the behaviors of the bees 

followed the assumptions of the Linear Operator rule. The predicted choices were 

calculated using the equation 𝜇𝑖
𝜇𝑖 +𝜇𝑗

 . As the values calculated using each of the 

memory weights tend to zero, the observed choice and the predicted choice are 

equal to one another. Negative values will indicate that the bees are choosing the 

predicted choice less and positive value indicate that bees are over-choosing the 

predicted alternative. When alpha is equal to one, we see an extreme value that 

diverges from the observed trend. Once the memory weight of one is dropped 

from the analysis, we observe that memory weight is no longer statistica lly 

significant (F(10,1575)=1.33., p=0.21).   

We also included a memory window ( 1
1−𝛼

) in our analysis, which also tends 

towards zero, but differs from the 11 memory weights used. In an individua l 

contrast analysis within the ANOVA, we observe the memory window is 

significantly different from the other memory weights used (F(1,1719)=7.99, 

t=2.83, p=0.005).  
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Effect Effect 
(F/R) 

SS Degrees 
of 
Freedom 

MS F P 

Intercept  Fixed 4.42652 1 4.426518 18.1175 0.002122 

Bee Random  2.1981 9 0.244323 10.1135 0.000000 

Alpha Fixed  66.71027 11 6.064570 251.0361 0.000000 

Trial  Fixed 13.53926 15 0.902617 37.3628 0.000000 

Alpha*Trial Fixed 6.67781 165 0.040472 1.6753 0.000001 

Error   41.52788 1719 0.024158   

 
Table 1. Linear Operator Univariate Repeated Measures ANOVA 
 
 

Effect Effect 
(F/R) 

SS Degrees 
of 
Freedom 

MS F P 

Intercept  Fixed 0.11474 1 0.114737 1.27904 0.287312 

Bee Random  0.80735 9 0.089705 4.47227 0.000008 

Alpha Fixed  0.26605 10 0.026605 1.32639 0.210464 

Trial  Fixed 14.80415 15 0.986943 49.20432 0.000000 

Alpha*Trial Fixed 4.69693 150 0.031313 1.56111 0.000039 

Error   31.59144 1575 0.020058   

 

Table 2. Univariate Test of Significance for the Linear Operator Rule excluding alpha equal to 

one.  
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Figure 1. Linear Operator Rule Consistency to Data for the Stable Resource   

The x-axis displays the alphas used from zero to one. The y-axis displays the mean of the predicted 

values and for the observed choices. At each of the points that the lines intersect the value of the 

observed choice overlaps with the values of the predicted choices and are equal to each other. 

Overlapping points reflect the efficiency of the model in predicting the choices of the bees for the 

stable resource.  
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Figure 2. Linear Operator Rule Consistency to Data for the Fluctuating Resource   

The x-axis displays the alphas used from zero to one. The y-axis displays the mean of the predicted 

values and for the observed choices. At each of the points that the lines intersect the value of the 

observed choice overlaps with the values of the predicted choices and are equal to each other. 

Overlapping points reflect the efficiency of the model in predicting the choices of the bees for the 

fluctuating resource.  

 
i. Function of memory weight in trials  

Trials are statistically significant for the Linear Operator Rule (F(15,1719)=37.36, 

p<0.00000001),  even when alpha equal to one has been removed 

(F(15,1575)=49.20, p<0.00000001). Furthermore, there was a statistica lly 

significant trial by alpha interaction (F(165,1719)=1.67, p<0.00000001).   

 

 

 

 

 



 37 

ii. Function of memory weight with resource type 

 

Figure 3. Linear Operator Rule Consistency to Data by Resource Type  

The x-axis displays the alphas used for the Linear Operator rule ranging from zero to one. The y -

axis displays the difference between the observed choices and the predicted choices, where zero  

means that there is no difference. The blue line reflects the s table resource which continuously 

has the same reward value, the red line is the fluctuating resource that changes value every 20 

trials. Values higher than zero equal to over-choosing the resource. Bees seem to be choosing 

stable and fluctuating resources  more than predicted.  

 

b. Relative Payoff Sum  

Our univariate repeated measures ANOVA showed that memory weights was a 

statistically significant factor (F(10,189)=34.22, p<0.00000001) . We compared 11 

memory weights from zero to one (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). 

Similar to the Linear Operator Rule, alpha equal to one diverges from the trend 

towards zero. In contrast to the Linear Operator Rule, the Relative Payoff Sum 
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with a memory weight of 0.8 is closest to zero, following the predictions of the 

model the closest.  

 

Effect Effect 
(F/R) 

SS Degrees 
of 
Freedom 

MS F P 

Intercept  Fixed 0.385083 1 0.385083 3.80490 0.082885 

Bee Random  0.910864 9 0.101207 26.92548 0.000000 

Resource  Fixed  0.044905 1 0.044905 11.94662 0.000676 

Alpha Fixed 1.286203 10 0.128620 34.21859 0.000000 

Resource*Alpha Fixed 3.115407 10 0.311541 82.88334 0.000000 

Error   0.710411 189 0.003759   

 
Table 3. Relative Payoff Sum Rule Univariate Repeated Measures ANOVA  
 

 

Figure 4. Relative Payoff Sum Rule Consistency to Data for the Stable Resource   

The x-axis displays the alphas used from zero to one. The y-axis displays the mean of the predicted 

values and for the observed choices. At each of the points that the lines intersect the value of the 



 39 

observed choice overlaps with the values of the predicted choices and are equal to each other. 

Overlapping points reflect the efficiency of the model in predicting the choices of the bees for the 

stable resource.  

 

Figure 5. Relative Payoff Sum Rule Consistency to Data for the Fluctuating Resource   

The x-axis displays the alphas used from zero to one. The y-axis displays the mean of the predicted 

values and for the observed choices. At each of the points that the lines intersect the value of the 

observed choice overlaps with the values of the predicted choices and are equal to each other. 

Overlapping points reflect the efficiency of the model in predicting the choices of the bees for the 

fluctuating resource.  

 

i. Function of memory weight with resource type 

The stable resource (𝜇𝐴) and the fluctuating resource (𝜇𝐵 ) were analyzed 

separately, both displaying a interaction with alpha (F(10,189)=82.88, 

p<0.00000001). When compared to each other, we observe differences in alpha 

equal to zero (t=2.60, p=0.01), alpha equal to 0.1 (t=2.72, p=0.007), alpha equal 

to 0.2 (t=2.66, p=0.008), alpha equal to 0.3 (t=2.50, p=0.013), and alpha equal 

to 0.4 (t=2.26, p=0.025). Memory weights of 0.5 and above showed no difference 
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between the stable resource and the fluctuating resource. As the memory weight 

increases, the difference between the observed values and the predicted values 

declines towards zero. The fluctuating resource displays a closer trend towards 

zero, in comparison to the values of the stable resource.  

             

Figure 6. Relative Payoff Sum Consistency to Data by Memory Weight for Resource Type  

The x-axis displays the 11 different memory weights used ranging from zero to one. The y -axis  

displays the observed choices of the bees to the predicted choices based on the model. We can 

observe that as memory weight increases, the data tends towards zero  which means that the 

predicted choice and the observed choice are the same. More so, we observe that there is a 

significant difference between the memory weights and the memory weight equal to one. 

Additionally, the values of the fluctuating resource are more consistent with the predictions of the 

Relative Payoff Sum.  
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Figure 7. Consistency to the Relative Payoff Sum based on Resource Type  

The x-axis displays the two possible resources encountered by a bee: the stable resource and the 

fluctuating resource that changes every 20 trials. The y-axis displays the difference between the 

observed choice and the predicted choice of the model. The closer the values are to zero, the better 

the model predicted the choice of the bee. The choices made in the stable resource seem the more 

consistent to the model (~0.027) than that of the fluctuating resource (~0.055).  

 

B. The Role of Preference  

Using the first choice of the ten bees, we got an average of 0.6 for the color blue 

and a 0.4 for the color yellow. We then confirmed this preference using the using 

of 30 different bees exposed to the T-maze, were we found that the preference for 

the initial choice of the color blue is 0.63 and 0.36 for the color yellow. The 

generalized model showed that nine out of 10 bees had a strong preference for the 

color blue, while subject eight showed a strong preference for the color yellow. 

Essentially, the ratio for each bee demonstrated a flexible preference, except for 

subject #8 whose ratio reflected a strong preference for the color blue.   
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C. Simulating and Comparing Learning Rules  

a. Perfect Memory 

A univariate repeated measures ANOVA was ran for the Perfect Memory rule 

and resulted in statistical significance for subject and trial (F(9,303)=8.32, 

p<0.00000001; F(15,303)=11.89, p<0.00000001), but no statistical significance for 

the interaction between trial and subject.  

 

 Table 4. Perfect Memory Rule Univariate Repeated Measures ANOVA 

 

b. Comparing Learning Rules  

We chose the memory weight that best explained the data for the Relative Payoff 

Sum and the Linear Operator. Due to all the memory weight stability in the Linear 

Operator rule, we chose a memory weight of 0.8 for both learning rules. We then 

compared the rules to the Perfect Memory rule. Neither individual variation nor 

learning rule came out as significant. Yet there is a significant interaction between 

individual variation and learning rules (F(18,30)=9.44,, p<0.00000001). 

 A Tukey HSD Post-hoc Test showed that the Linear Operator and the Relative 

Payoff Sum don’t differ from each other, but both are significantly different to 

Effect Effect 
(F/R) 

SS Degrees 
of 
Freedom 

MS F P 

Intercept  Fixed 1.73291 1 1.732914 15.61214 0.00334 

Bee Random  0.99898 9 0.110998 8.32604 0.000000 

Trial Fixed  1.96385 14 0.140275 11.89447 0.000000 

Bee*Trial  Fixed 1.48596 126 0.011793 0.16818 1.000000 

Error   23.14071 330 0.070123   
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the Perfect Memory Rule. Additionally, when analyzing each rule based on trials, 

there is no statistical significant difference in any of the 16 blocked trials. 

Effect Effect 
(F/R) 

SS Degrees 
of 
Freedom 

MS F P 

Intercept  Fixed 1.73291 1 1.732914 15.61214 0.003349 

Bee Random  0.99898 9 0.110998 0.31516 0.957730 

Rule Fixed  2.24418 2 1.122091 2.95051 0.077930 

Trial Fixed 1.96385 14 0.140275 11.89447 0.000000 

Bee*Rule  Random 6.84548 18 0.380304 9.43856 0.000000 

Bee*Trial Random 1.48596 126 0.011793 0.29006 1.000000 

Rule*Trial Fixed 2.69216 28 0.096149 2.36480 0.000243 

Bee*Rule*Trial Random  10.24586 252 0.040658 1.51739 0.085392 

Error   0.80384 30 0.026795   

 

 Table 5. Comparison of Learnings Rules Univariate Repeated Measures ANOVA  
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Figure 8. Consistency of the Learning Rules based on Number of Choices  

The x-axis displays the number of choices made by the bees blocked in five choices for a total of 

16 blocks of the 80 trial choices. By block four, 20 choices have been made and the learning rules 

are similar. From block four to block 12 there is more variation between the learning rules. After 

block 12, 55 choices have been made, the learning rules converge once more. The closer the values 

are to zero, the more the observed choices are following the predictions of the model. Negative 

values reflect that bees are choosing the predicted alternative less than expected. Positive values 

reflect that bees are choosing the predicted alternative more than expected.  

 

i. Individual Variation in Learning Rules  

Due to the statistical significance for the interaction of subject and the learning 

rule that best describes the choice patterns observed. By getting the difference of 

the observed to the predicted choice and comparing it to zero, which means that 

there is no difference between both values, we looked for values that were not 
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significant. As we are comparing the values to zero, any value that differs from 

zero assumes that the bee is not following the predictions of the model and the 

model does not best describe the behavior of the bee. We looked at the p-values 

for each bee for each learning rule and found that there is no statistical difference 

for any bee when using the Linear Operator rule. Subject 11 was the only 

statistically significant bee when evaluating the Relative Payoff Sum rule. Nine 

out of ten individuals showed no difference when using the Relative Payoff Sum 

rule. Only three individuals followed the predictions made by the Perfect Memory 

rule, the other six individuals were statistically significant for the Perfect Memory 

rule. Individuals showed a consistent trend in statistically significant values in all 

the learning rules for both of the resource types.  

 

D. Modeling and Comparing Learning Rules  

We used a defiance information criterion for the Bayesian model selection. This 

criterion allows us to examine which model best fits the observed data. As the 

defiance information criterion increases, the better the model. We found that a 

linear operator that uses a memory window, 𝛼𝑛, has a DIC of 1043. A linear 

operator model with a constant alpha and constant has 𝑟𝑖  a DIC of 1051. The 

relative payoff sum with individual 𝑟𝑖 and a constant alpha for every individua l 

had a DIC of 900. A relative payoff sum with a memory window, 𝛼𝑛, and 

common 𝑟𝑖 had a DIC of 912. When the alpha remains constant and the 𝑟𝑖 varies 

for each individual the DIC  is 891. When both the 𝑟𝑖 vary and the memory 

windows are used the DIC is 886. For the perfect memory model with constant 

preferences, 𝑟𝑖, the DIC is 896. The perfect memory model with different 𝑟𝑖 for 

each individual bee, we observe a DIC of 893.  
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E. Individual Differences  

All learning rules displayed bees as being a statistically significant factor. 

Comparably, the Linear Operator rule (F(9,1719)=10.11, p<0.00000001), the 

Relative Payoff Sum rule (F(9,189)=26.93, p<0.00000001) and the Perfect 

Memory (p=0.04) , which is why individual subjects were used as a random 

factor for the analysis done. Simulations showed higher variation per individua l 

in the Perfect Memory rule in comparison to the remaining rules. In contrast, 

when modeling and comparing learning rules models with varying preferences 

for each bee displayed a large margin of error. Furthermore, the relative payoff 

sum demonstrated the largest margin of error due to its individual differences in 

color preferences and the memory weights. 
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Figure 10. Individual Differences in Constancy to the Learning Rules  

The x-axis displays the three different learning rules and the y-axis displays the difference between the 

observed choices and the predicted choices of the model. When the values are at zero, there will be no 

difference between the observed and the predicted choices. Negative values represent under-choosing 

the predicted resource and the positive values represent the bees choosing the predicted alternative more 

often than expected. Each line represents of one subject and how well its choice patterns are pre dicted 

by each learning rule. Perfect Memory displays more variation in comparison to the clustered groups in 

Relative Payoff Sum and Linear Operator.  
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IV. Discussion   

Bees seem to be using more than just color preferences to make estimates about 

resources. Our data shows than when given the choice between placing more 

weight on past experiences or present observations, bees tend to place more 

weight on past choices. When simulating the Linear Operator rule bees will not 

really care about the weight they are placing on their memories, but instead 

modulate the strength they place on past experiences depending on the number of 

choices they’ve made. In other words, memory seems to vary with the number of 

choices when employing the Linear Operator rule. For the Relative Payoff Sum 

rule, we observed that bees should place more weight on past experiences. 

Theoretically, choice number will not matter in this case since the bees are already 

preferring to base their current estimates based on past estimates, which is a 

summary of all past choices. Furthermore, we see that it is very unlikely that bees 

are making estimates solely on past experiences. We propose that foraging bees 

are not likely to give equal weight to past and new information as suggested by 

the Perfect Memory rule and they should not only use past information as they 

may not have past information.  

 

Contrary to our initial predictions, bees do not seem to be using a memory 

window to make decisions when using the Relative Payoff Sum rule. On the other 

hand, the Linear Operator factors in the possibility that foragers are modifying 

the strength they place on past experience depending on the number of choices 

they’ve made similar to a memory window. Still, our findings show us that bees 

show distinct individual variation for which learning rule best describes their 

choice patterns. There may be the possibility that individual foragers are 
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employing different parameters different times. Our analysis suggest that bees are 

using the parameters suggested by the Linear Operator rule, but some bees may 

also be incorporating color preference in their estimations and, thus, using the 

parameters predicted by the Relative Payoff Sum rule. Though Perfect Memory 

rule seems to be the rule that bees should be using, our simulations indicate that 

most of our bees are not using the parameters set by this learning rule. 

 

Up to now, preference for color has been the only thing that has been considered 

in an animals decision-making process with the use of Bayes’ Theorem. Our data 

suggests that preference for color is indeed important in a foragers decision to the 

point that there is great variation between individuals. Individual variation seems 

to be prevalent for color preference and even in the preference for the use of past 

or present information. For which reason, the Perfect Memory rule and the 

Relative Payoff Sum rule will be more prone to error, particularly the later.  

Though very similar, we believe that Linear Operator does not require a fixed 

memory weight for the individuals, since it does not take into consideration a 

prior such as color preference. Though there is variation in color preference 

displayed in individuals, there seems to be a consensus for color preference 

throughout the bees. As we know, foraging bees are genetically related, that 

strengthens the idea that color preference is inherited. Under the assumption that 

color preference is inherited, we believe that the stable memory weight in the 

Relative Payoff Sum is being used as a way to protect a color preference from 

going extinct in a population. Memory weight will also place weight on present 

observations and thus other color preferences that the forager may have. Simila r 
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to Bayes’ Theorem, Relative Payoff Sum ensures that a foraging bee will give 

take into consideration an alternative given another alternative.  

 

When exposed to an unchanging world or a stable resource, foraging bees display 

more variation than when exposed to a fluctuating environment. Naïve foragers 

seem to initially over-estimate the values of the resources, but decline once 

they’ve experienced a low reward. Soon after the resource fluctuates to a higher 

reward, bees are observed to increase their estimations of the rewards once more. 

Once the world changes back to low reward, the bees will regress to under -

estimating the resources’ true reward value. Our data suggests that foraging bees 

adopt a cyclical pattern of over- and under- estimating their resources depending 

on their last experience.  

 

Future studies should focus on individual variation during decision-mak ing 

processes. We also encourage work done on the individual variation between the 

use of information sources, as our work demonstrated that some individuals place 

different weights on past and present experiences. Our own work will now focus 

on the use of learning rules when exposed to different information sources, where  

we would expect a larger difference between the Relative Payoff Sum and the 

Linear Operator as new priors will need to be taken into consideration. Finally, 

we believe that novel information sources may affect the memory weight as the 

current observation may now have more weight over past experiences.  
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