
University of Missouri, St. Louis University of Missouri, St. Louis

IRL @ UMSL IRL @ UMSL

Computer Science Faculty Works Computer Science

10-24-2017

Why We Should Have Seen That Coming Why We Should Have Seen That Coming

K.W Miller
University of Missouri–St. Louis

Marty Wolf
Bemidji State University

F.S. Grodzinsky
Sacred Heart University

Follow this and additional works at: https://irl.umsl.edu/cmpsci-faculty

 Part of the Library and Information Science Commons, Social Media Commons, and the Surgery

Commons

Recommended Citation Recommended Citation
Miller, K.W; Wolf, Marty; and Grodzinsky, F.S., "Why We Should Have Seen That Coming" (2017). Computer
Science Faculty Works. 37.
DOI: https://doi.org/10.29297/orbit.v1i2.49
Available at: https://irl.umsl.edu/cmpsci-faculty/37

This Article is brought to you for free and open access by the Computer Science at IRL @ UMSL. It has been
accepted for inclusion in Computer Science Faculty Works by an authorized administrator of IRL @ UMSL. For more
information, please contact marvinh@umsl.edu.

https://irl.umsl.edu/
https://irl.umsl.edu/cmpsci-faculty
https://irl.umsl.edu/cmpsci
https://irl.umsl.edu/cmpsci-faculty?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1018?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1249?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/706?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/706?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.29297/orbit.v1i2.49
https://irl.umsl.edu/cmpsci-faculty/37?utm_source=irl.umsl.edu%2Fcmpsci-faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu

Why We Should Have Seen That
Coming
Comments on Microsoft’s Tay “Experiment,” and Wider Implications
	
By M.J. Wolf, K. Miller, and F.S. Grodzinsky

In this paper we examine the case of Tay, the Microsoft AI chatbot that was launched in
March, 2016. After less than 24 hours, Microsoft shut down the experiment because the
chatbot was generating tweets that were judged to be inappropriate since they included
racist, sexist, and anti-Semitic language. We contend that the case of Tay illustrates a
problem with the very nature of learning software (LS is a term that describes any software
that changes its program in response to its interactions) that interacts directly with the
public, and the developer’s role and responsibility associated with it. We make the case
that when LS interacts directly with people or indirectly via social media, the developer
has additional ethical responsibilities beyond those of standard software. There is an
additional burden of care.

Keywords: learning software development, responsibility, AI, technologies of humility,
software profession
Categories:	• Social and professional topics~Socio-technical systems • Social and
professional topics~Computing profession • Social and professional
topics~Governmental regulations
Corresponding Author: Marty J. Wolf
Email: mjwolf@bemidjistate.edu

Introduction
On March 23, 2016, Microsoft Corporation unveiled a new chatbot they named “Tay.” Tay
was to interact with human users on the Internet via Twitter and pick up human habits of
speech1,2. After less than 24 hours, Microsoft shut down the experiment because the chatbot
was generating tweets that were judged to be inappropriate since they included racist,
sexist, and anti-Semitic language.

Soon afterward, Microsoft was widely criticized for deploying Tay in the way that they
had. Selena Larson wrote, “…Microsoft and Twitter suffer from the same problem: a lack
of awareness or understanding as to what potential harm these technologies can do, and
how to prevent it in the first place.”3 This claim is corroborated by the statement that
																																																								
1 Microsoft’s Racist Robot and The Problem with AI Development. Selena Larson. The Daily Dot, 25
March, 2016 – http://www.dailydot.com/debug/tay-racist-microsoft-twitter/ – Accessed 27/03/2016.	
2	Microsoft Created a Twitter Bot to Learn from Users. It Quickly Became a Racist Jerk. Daniel Victor,
Nytimes.com, 24 March, 2016 – http://www.nytimes.com/2016/03/25/technology/microsoft-created-a-
twitter-bot-to-learn-from-users-it-quickly-became-a-racist-jerk.html – Accessed 27/08/2016.	
3	Larson, op. cit.	

ACM Computers & Society | Volume 47 | Issue 3 54

Microsoft emailed that included: “Unfortunately, within the first 24 hours of coming
online, we became aware of a coordinated effort by some users to abuse Tay’s commenting
skills to have Tay respond in inappropriate ways.”4

This was not the first time a major U.S. tech company launched web-based software that
ended up embarrassing the developers. In May of 2015, Google released “Google Photos,”
an online bot that, among other things, “learned” from users how to label photos.
Unfortunately, the software was found to be labeling photos of black people as “gorillas.”5

In this paper, we will explore the idea that these two incidents are more than isolated cases
of technical programming errors. We contend that these incidents are symptoms of a deeper
problem with the very nature of learning software (LS-a term that we will use to describe
any software that changes its program in response to its interactions) that interacts directly
with the public, the developer’s relationship with it, and the responsibility associated with
it. We make the case that when LS interacts directly with people or indirectly via social
media, the developer has additional ethical responsibilities beyond those of standard
software. There is an additional burden of care.

The differences in the ethical implications between learning and non-learning software has
been known for some time. In the next section, we will identify some previous scholarship
that warned of the potential ethical problems that arise with the development of learning
software. These concerns are exacerbated today due to the prevalence of social media. We
use the case of Tay to illustrate these concerns. In the third section, we argue that there are
additional normative responsibilities for those who develop learning software that interacts
with the general public. We conclude the paper with a short summary.

Existing Literature and Its Application to Tay
In 2008, we identified some of the responsibilities surrounding the development of learning
software. We wrote:

Our focus in this paper has been on the designers of artificial agents. We
have argued that these designers need to take great care particularly in
developing artificial agents that exhibit learning* and intentionality*.
However, we are not arguing that designers are alone in having
responsibilities associated with such agents. The buyers of artificial agents,
the trainers of neural nets, and anyone who deploys an artificial agent (for
example, a bot on the Internet or an agent controlling a physical robot) all
share the responsibility of avoiding harmful consequences that might arise
from the deployment of the artificial agent. It is not sufficient to claim that
ignorance of an agent’s eventual behaviors insulates these stakeholders
from ethical claims regarding the agent’s behaviors. We assert that this

4	Victor, op. cit.	
5	Google Photos Mistakenly Labels Black People ‘Gorillas.’ Conor Dougherty. Nytimes.com, 1 July, 2015
– http://nyti.ms/1FSUQab - Accessed 10/07/2016.

ACM Computers & Society | Volume 47 | Issue 3 55

ignorance, willful or unintentional, is itself an ethical lapse, a lapse that is
shared6.

It should come as no surprise that the problems associated with Tay surfaced. The
application of our 2008 concerns to the case of Tay is obvious, but no less relevant. Based
on Peter Lee's statement on behalf of Microsoft in response to Tay's bad behavior7, it seems
that they were well aware that harmful consequences might occur. They “planned and
implemented a lot of filtering and conducted extensive user studies with diverse user
groups. We stress-tested Tay under a variety of conditions, ...”8 While Lee claims that this
was “a coordinated attack by a subset of people [who] exploited a vulnerability in Tay,”9
it is unclear whether this vulnerability was apparent to the developers prior to or only after
the release of Tay. An important point of our article quoted above is that LS always has
this sort of vulnerability, and therefore, a developer of LS should adopt a position of
expecting this behavior. The developer cannot be confident about knowing how the system
will behave because of the nature of software that learns.

Another important observation is that LS developers need to be more keenly aware of their
ethical responsibilities. The ACM Code of Ethics says that computer professionals must
give “comprehensive and thorough evaluations of computer systems and their impacts,
including analysis of possible risks.”10 And, while the developers may not have anticipated
this particular risk, they should have anticipated that Tay might behave in a way they did
not anticipate. Such a risk should have been mitigated prior to release. Taking Tay offline
when it became abusive was reactive, not proactive.

LS that is designed to behave in human-like ways raises additional ethical concerns. In
2011, we wrote (AA here stands for artificial agent):

Some AA developers are attempting to make AAs more human-like by
programming them to be more adaptable to their environment by allowing
them to self-modify their programs. We contend that the potential gains of
this strategy are not sufficient to justify the enormous risks, especially when
the adaptation process is poorly understood by the developer and not easily
recognized by humans who have e-trust relationships with the AAs. We
prefer that AAs be boringly predictable. We are far more concerned about
the trustworthiness of AAs and far less concerned that they mimic human
adaptability. In almost all situations, we think that AA developers have an
obligation to the safety of the public. That duty should restrict their use of

6	The Ethics of Designing Artificial Agents. Frances Grodzinsky, Keith Miller, and Marty Wolf. Ethics and
Information Technology, 10 (2-3), 115-121, 2008.	
7	Learning from Tay's Introduction. P. Lee – http://blogs.microsoft.com/blog/2016/03/25/learning-tays-
introduction/#sm.0001nruhc8bnyf3jqtf2mlsfn6aut – Accessed 27/07/2016.	
8	Ibid.	
9	Ibid.	
10	ACM Code of Ethics. Ronald Anderson, et al. 1992 – http://ethics.acm.org/code-of-ethics/ –Accessed
26/07/2016.	

ACM Computers & Society | Volume 47 | Issue 3 56

self-modifying code to implement AAs and place limitations on the use of
neural nets in AAs11.

One of the reasons that Tay was deployed on Twitter was to “experiment” with a learning
algorithm designed to acquire human conversational skills12. The fact that the software
ended up behaving in a way that its developers had not anticipated demonstrates that the
Microsoft team released the software without having a clear sense of the breadth of possible
ways the bot would develop after deployment. As we explained in 2011, we consider that
ethically unacceptable and reckless. The Latin proverb “ignorantia juris non excusat” is
loosely translated “ignorance of the law is no excuse.” In the case of LS, we adapt that
saying to “ignorance of a program’s future behavior is no excuse” for dismissing
responsibility for software that one releases.

More recently, Ibo van de Poel set about developing an ethical framework for evaluating
new technology13. In this work, he identifies new technologies as experimental “if there is
only limited operational experience with them, so that social benefits and risks cannot, or
at least not straightforwardly, be assessed on basis of experience.”14 Tay clearly meets this
definition of experimental, especially since the engineers at Microsoft envisioned Tay as
an experiment. Thus, van de Poel’s more general moral principles for responsible
experimentation with new technology, non-maleficence, beneficence, respect for
autonomy, and justice, also apply here. While a thorough application of the conditions of
his ethical framework to this case is beyond the scope of this paper, it is clear that while
Microsoft was consistent with the some of the conditions, there are demonstrable points of
inconsistency.

In the remainder of this section we expand on communication styles, deception, and the
practice of the computing profession as applied to Tay.

Communication styles
According to Daniel Victor, “Microsoft had a fairly reasonable goal here: They wanted to
develop better ‘conversational understanding’ for their products. Part of the reason
computers and humans don’t interact well is that humans tend to communicate obliquely
while robots think literally.”15 Was this goal realistic?

																																																								
11	Developing Artificial Agents Worthy of Trust: ‘Would you buy a used car from this artificial agent?’.
Frances Grodzinsky, Keith Miller, and Marty Wolf. Ethics and Information Technology, 13 (1), 17-27,
2011.
12	Victor, op. cit.	
13	An Ethical Framework for Evaluating Experimental Technology. Ibo van de Poel. Science and
Engineering Ethics, 22, 667-686, 2016.	
14	Ibid., 669.	
15	How Microsoft’s Twitter Experiment Became a Racist Nightmare. Dan Seitz. Uproxx, 24 March 2016 –
http://uproxx.com/technology/microsoft-tay/ – Accessed 27/03/2016.	

ACM Computers & Society | Volume 47 | Issue 3 57

Alvidrez and Rodriguez have shown that people tend to use different communication styles
that rely on the social context in which they communicate16. In order to understand social
mobilization facilitated by Twitter, Tay would have had to have to power of interpretation
of these styles. Twitter is good for social mobilization: “Twitter’s speed and reach have
made it a communication tool used widely by public figures to attract the attention of users,
creating emotional bonds with their followers and ultimately, mobilizing people to
undertake a concrete action.”17 So we can understand Microsoft’s desire to harness this
power in an automatic way. Conversational understanding would be a move in that
direction, albeit an unrealistic one given the limited ability of the bot. Alvidrez and
Rodriguez indicate that people who use Twitter are trying to ascertain the credibility and
the persuasive effect of the source by examining communication style, gender, and
congruency of style18. Tay had no way to ascertain the credibility of those who manipulated
it and, therefore, was easily led to take on their antisocial rhetoric. It is beyond the scope
of our paper to examine socio-linguistic theories in depth. However, if Microsoft were truly
vested in conversational understanding, on one hand, it might enquire how a bot emulating
a human would convince people that it is a credible source of information, as “…credibility
is a basic condition for persuading users of marketing web pages or information sources in
social media” according to Shi, Messaris and Capella19. On the other hand, Tay might have
avoided being “taught” objectionable speech if it were programmed to evaluate the
credibility of its senders as well.

This is the approach taken by Candid (becandid.com) a social media platform that, rather
than generate “speech”, uses LS to classify posts as negative or positive statements and
then give them a score. Posts that are beyond a cut-off are not posted20. This sort of
approach seems to achieve the same sort of goals as Tay, without the breadth of risk.
Nothing the LS generates is subjected to the public. It still learns a conversational
understanding. Furthermore, since Candid is designed to read conversations from people,
there is a chance that this LS will develop a conversational understanding of constructive
discussion. Essentially, the people that use Candid will be aware of the chance that their
posts might not meet muster and self-moderate to ensure that their posts are not culled.
While this may be seen as a threat to free speech, the Candid LS can quite simply inform a
poster of the apparent offensive nature of the post. The poster can either modify the
language or, better, Candid could have an appeal process in place that allows developers
to guide the learning of the LS based on borderline posts. In this way, Candid developers
have a LS that has minimized its potential for harm. In contrast with Tay, large swaths of

																																																								
16	Powerful Communication Style on Twitter: Effects on Credibility and Civic Participation. Salvador
Alvidrez and Oziel Rodriguez. Comunicar, 47 (XXIV), 89-97, 2016.	
17	Ibid., 90.	
18	Ibid.	
19	Effects of Online Comments on Smokers’ Perception of Antismoking Public Service Announcements.
Rui Shi, Paul Messaris, and Joseph Cappella. Journal of Computer-Mediated Communication, 19 (4), 975–
990, 2014.	
20	Can Candid Conversations Happen Online Without the Trolls? Bindu Reddy. An interview by Kelly
McEvers on NPR’s All Tech Considered, 1 August, 2016 –
http://www.npr.org/sections/alltechconsidered/2016/08/01/488256587/can-candid-conversations-happen-
online-without-the-trolls – Accessed 2/08/2016.

ACM Computers & Society | Volume 47 | Issue 3 58

the public are not subject to the impact of its actions. Any harm is directed at a single
individual and the broader societal implications are balanced.

Deception
Deception is commonplace, and ultimately software made for human interaction will have
to include sophisticated approaches to recognizing deception in others, and perhaps
deploying deceptions itself. Nonetheless, it is a tricky feature to get right ethically. In 2015,
we wrote about deceptions in software:

Our default position is that deception is unacceptable and that benign or
beneficial deceptions are exceptions. Responsible developers should be
required to make a strong case-by-case analysis of any deceptions they plan
to implement and should justify why a particular deception should be an
exception to the default prohibition. We believe that an appropriate policy
framework should be developed and implemented now. We anticipate
significant practical, ethical, and legal problems in the foreseeable future
when AAs become increasingly human-like. Users “enchanted” by
deceptive machines are likely to make inappropriate decisions based on
these deceptions. Therefore, we recommend that developers acknowledge
their responsibility to justify any deceptions they program into their
artifacts21.

On the one hand it is clear that Tay is not a human because Tay's Twitter account is clearly
identified as belonging to a bot. Yet, Microsoft seemed to promote the idea that Tay was
acting as a person in subtle, yet powerful ways. Tay's profile image was that of a young,
white woman. Tay's header photo, although distorted and abstract, also contained hints of
people's faces. Clearly, the developers were trying to have Tay act as if it were human. It
is noteworthy that it requires special effort on the part of the user to see the text that says
Tay is a bot. The suggestive profile image is by default attached to every tweet in a Twitter
feed. At the very least, this is a case where an implicit deception was attempted: trying to
make Tay behave in a way that was sufficiently human-like.

The Practice of the Computing Profession
Above we suggested that Microsoft did not practice appropriate professional diligence with
Tay. A counter-argument to that claim might be that they shut Tay down very quickly.
However, based on Lee's response, it is unclear how closely they were monitoring Tay.
Human monitoring of Tay, especially in the first 24 hours it was online, is a minimum level
of appropriate professional behavior, especially since this was where they “expected to
learn more.”22 Such monitoring would have resulted in none of the offensive behavior
being seen by the public. The attackers would not have known whether they had been
successful in corrupting Tay. They likely would have thought Tay was impervious to such

																																																								
21	Developing Automated Deceptions and The Impact on Trust. Frances Grodzinsky, Keith Miller, and
Marty Wolf. Philosophy & Technology, 28 (1), 91-105, 2015.
22	Lee, op. cit.	

ACM Computers & Society | Volume 47 | Issue 3 59

an attack. This sort of monitoring would have removed a large public stage on which people
could misbehave.

A second concern that stems from Microsoft's reactive taking down of Tay is that it is
unclear whether the takedown was a reaction to Tay's offensive tweets or a reaction to the
Twittersphere objecting to the offensive tweets. Even though Lee says that Microsoft takes
“full responsibility for not seeing this possibility ahead of time”23, it is unclear whether
they were the first to see Tay's tweets as being offensive. This raises the question of whether
Microsoft was so committed to “learning more” that they left Tay up for as long as they
could and only decided to take Tay down when the external pressure made it apparent that
it was necessary. This identifies important considerations for the development of
appropriate professional best practice for internal processes when “releasing” LS to the
general public. A web page to report a problem with the software is not sufficient. Closer
monitoring by the developer is an ethical imperative for LS software that has contact with
the public.

Traditionally, the in-house part of the development of software typically culminates in the
testing of that code against some specification. This testing and subsequent fixing is done
without interaction with the public. There are established rules of best practice, and
reputable firms adopt those practices, although with some inconsistency from firm to firm
as to which protocols are in place and how software is deemed suitable for release to the
public. When the software meets some level of closeness to the specification, it is released
to the public. The important point here is that at the point of release, the code is fixed. It
does not change. Because of that, at a certain level, there is a group of people who
understand the code well enough so that when an error occurs, they can at least offer some
explanation that connects the error to the code.

This is not to say that the public are not involved with the development of this sort of
software. In beta testing, people who use the software identify errors in the software that
had escaped notice by the developers and testers. They report these problems back to the
company and eventually many errors are fixed, and then the developer pushes patches back
out to the users. Fixes are possible, due to the understanding that the developers have
between the code and the error in behavior that the code is exhibiting. While such a
connection may not always be immediately apparent to the developers, they eventually
determine such connections and can offer the sort of explanation mentioned above that
leads to a thoughtful modification to the code that fixes the error and does not introduce
new errors.

Simply migrating this model of interaction with the public to LS is not justifiable. We note
that LS is different from traditional software in that the code that underlies the system is
not static while the system is running. A typical implementation for LS includes a neural
network. Learning systems dynamically make changes to their underlying code as they
gain more input and take in responses to the output that they produce. It is unlikely that
anyone on the development team has the same sort of understanding of the underlying code

																																																								
23	Ibid.	

ACM Computers & Society | Volume 47 | Issue 3 60

that is commonplace for developers of non-learning software. This lack of understanding
is not due to the competence or professionalism of the developers. Rather, it is due to the
fundamental nature of learning software that effectively precludes such knowledge. On the
other hand, there are scholars who are beginning to address this problem by designing more
sophisticated LSs that do have this capability, at least in a rudimentary sense24. Another
important and immediate ethical difference between LS and traditional software is that LS,
and especially LS that is in contact with the general public, is not in widespread use, and
we are in the early stages of developing our understanding of best practices. Thus, LS
requires different practices that incorporate a more proactive ethical stance.

Further justification for a more proactive ethical stance in the development of LS is the
research theme that underlies Microsoft's desire to learn more about Tay. Most software
developers are not researchers in the traditional sense. Even those software developers with
PhDs are rarely involved with research that involves people. Learning software puts
developers at the forefront of experimentation and the use of social media (and other
technologies such as robotics) makes people an integral part of the research aspect of the
software development process. Clearly this sort of research calls for an expert in human
subject experimentation to be part of the development team. An additional difference is
that historically, this sort of “pure” research was the purview of universities and
government labs. While there were clear violations of ethical boundaries over the years,
university and governmental researchers now abide by protocols that are in place to protect
the research subjects and the public from potential ill effects of the research and the
research methodology. Currently, at least in the U.S., there is little in the way of law and
little public pressure for corporations to adopt similar protocols and practices in their
experimentation with technology, which increasingly interacts with people in significant
ways.

A final concern with respect to the profession of computing that we reiterate here is that
fixing errors in LS is no simple task. Neural networks are notoriously opaque. Their
developers may not have a deep understanding of relationships between behavior and what
in the underlying network manifested those behaviors. Even if those relationships were
understood, it is unclear that we have the expertise needed to make instant modifications
to neural networks to mitigate errors and change behaviors of the system.

Extraordinary Responsibilities of Learning Software Developers
In this section we suggest four imperatives for the developers of LS as they develop
software that learns through directly engaging with the public. These imperatives are
undergirded by Floridi’s distributed morality (DM) in the context of multi-agent systems
(MAS) in which actions “are assessed on the basis of their impact on the environment and
its inhabitants.”25 DM is called for in the cases under study here. The developers, the LS,
and the trainers constitute the minimal set of agents that share some responsibility in the
																																																								
24	Rationalizing Neural Predictions. Tao Lei, Regina Barzilay, and Tommi Jaakkola. arXiv preprint
arXiv:1606.04155v2, 2016.
25	Distributed Morality in an Information Society. Luciano Floridi. Science and Engineering Ethics, 19,
727-743, 2013.

ACM Computers & Society | Volume 47 | Issue 3 61

development of learning systems. Floridi’s analysis includes the observation that most
actions are morally neutral. However many of them have a potential bias toward being
morally good or morally evil. He calls for the establishment of infra-ethics, “a first-order
framework of implicit expectations, attitudes, and practices that can facilitate and promote
morally good decisions and actions”26. His idea is to foster the development of ethical
infrastructures that include moral aggregators, which tend to harness actions with a morally
good bias, and moral fragmenters, which tend to isolate and neutralize actions with morally
evil bias. The first imperative is that the initial learning environment must be controlled in
some way so that it works to “aggregate good actions” and “fragment evil actions.”

One might argue that the kind of experiment that Microsoft was attempting is a step in the
right direction, a way to advance automated understanding of human language. However,
like all good science, an experiment whose effects we are trying to understand needs a
controlled environment with subjects who opt in as volunteers. Microsoft would have been
better served if it had regulated the conversational input to their bot and then experimented
with different variables and recorded the perceived changes and responses of Tay. That is
responsible science, and while we may not like to think that social media experimentation
is “science,” it, at the very least, deserves the same checks and controls as any legitimate
scientific experiment because it potentially affects a large demographic. If this
“experiment” had been proposed in a university setting, it would likely have run afoul of
an institutional review board, a body likely to object to the unpredictable responses of Tay.
We support this objection. But our objection is not a reflection of a Luddite position; it is
rather a rational insistence on responsible experimentation. Using the language of Floridi,
we are calling for a system with a moral aggregator in order to promote morally good
actions. We note that the case of Candid demonstrates a much more responsible approach
to developing the same sort of understanding of human language. It has an ethical
infrastructure that isolates clearly morally evil statements. As its LS becomes more refined,
it will isolate more morally neutral statements that have a bias toward moral evil.

The second imperative is that there needs to be better law and regulation to protect the
public when a LS uses public involvement. While the Tay experiment is instructive, there
can be more dire consequences when an LS interacts with the public. The recent case of
Tesla Motors in which someone was killed due to the autopilot, which is not an LS, in a
self-driving car failed to distinguish between the sky and a white tractor-trailer brings up
an important consideration. In this case, the “driver” of the vehicle on autopilot who was
killed had opted into the experiment27. On the other hand, the driver of the tractor-trailer
had not. Even though the autopilot system was not an LS, Tesla was conducting an
experiment on U.S. highways without the same sort of oversight that comes with an
institutional review. While the National Highway Transportation Safety Administration
had approved the use Tesla’s autopilot on the highways, the level of scrutiny was likely
not at the same level of concern for the general public as one finds in an institutional review.
As Douglas Rushkoff reminds us, “As autonomous vehicle proponents like to point out,
these problems would be solved if robotic cars weren't required to share the road with
																																																								
26	Ibid., 738, emphasis in the original.
27	Tesla Crash Highlights Real Problem Behind Self-Driving Cars. Douglas Rushkoff. CNN, 1 July 2016 –
http://www.cnn.com/2016/07/01/opinions/tesla-self-driving-car-fatality-rushkoff/ – Accessed 2/08/2016.	

ACM Computers & Society | Volume 47 | Issue 3 62

humans. We people are the problem.”28 The concern here, as applied to LS development,
is that the developers and the enthusiasts are too close to the decision making process about
what constitutes suitable risk for the general public who do not know that “they are the
problem” for an LS with which they may or may not be interacting. The development of
something akin to institutional review boards for all LSs that interact with the general
public is in order.

Our third imperative for LS developers is one of exceptional transparency and humility
about what can be known about the LS. We have observed this imperative in academic
literature throughout the years with emerging technology. In the 1980s, Joseph
Weizenbaum called for caution29 as did Bill Joy in 200030. In 2003 Sheila Jasanoff called
for “technologies of humility” in which shortcomings regarding the uncertainties and
ambiguities about new technology are made plain31. It is now 2017. We have not made
enough progress in the area of transparency. In order for a review board to do its work, it
must have access to all the details about the system, and especially about what is not known
about the system. While a certain level of confidence about the behavior of non-learning
software is intellectually justified, the same cannot be said about LS. The wide range of
possible behaviors makes a similar level of confidence ethically unjustified.

Finally, LS developers must put in place additional safeguards and testing procedures that
are beyond those used for non-learning software. There must be more testing, more safety
features, more filtering, and longer lead times before the impact of LS is experienced by
anyone beyond the development process. As a technology, LS is less well understood and
more unpredictable than other software. It demands an entirely new set of best practices
for its development. These new best practices must become the infra-ethics for LS
developers as quickly as possible.

Conclusion
Potential problems with the development and deployment of artificially intelligent
machines have been foreseen for many years in both computer ethics literature and science
fiction; yet, despite the warnings, best practices for the creation of the LS artefacts that
interact directly with the public have yet to become prevalent. Our intent in this paper was
to have a more important message than “we told you so.” Collectively, developers and
stakeholders alike need to learn from these incidents, and behave differently in the future.
Floridi has a given us one possible mechanism to think through the implications of learning
software and to structure the environments in which LS will operate in order to increase
the likelihood of good ethical outcomes. Software developers must recognize software that
is unpredictable is dangerous by design and take steps to limit its interaction with the public
until it has been thoroughly tested in a controlled environment. Then, upon limited release,
they should inform their customers, their users, and the general public not only of the
																																																								
28	Ibid.	
29	Computer Power and Human Reason: From Judgement to Calculation. Joseph Weizenbaum. Penguin
Books, 1985.	
30	Why the Future Doesn’t Need Us. Bill Joy. Wired Magazine, April, 238-262, 2000.	
31	Technologies of Humility: Citizen Participation in Governing Science. Sheila Jasanoff. Minerva, 41 (3),
223–244, 2003.	

ACM Computers & Society | Volume 47 | Issue 3 63

advantages of software that evolve during its use, but also of the vulnerabilities introduced
by unpredictable consequences for changed behavior. Then and only then can LS move
forward in an ethically responsible manner.

ACM Computers & Society | Volume 47 | Issue 3 64

	Why We Should Have Seen That Coming
	Recommended Citation

	Microsoft Word - CEPEETHICOMP_2017_paper_14.docx

