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SUMMARY 

Cassava (Manihot esculenta Crantz) is an important staple and cash crop in 

Africa, Latin America and Asia.  In east and southern Africa, cassava brown streak 

disease (CBSD) caused by cassava brown streak virus (CBSV) is associated with 

significant losses in cassava production.  Previously, the disease was prevalent 

only along coastal eastern and southern Africa, but it recently emerged in Uganda 

and is spreading rapidly in the country as well as in neighboring countries.  Apart 

from a few cultivars that have shown tolerance to CBSV in Tanzania, no effective 

resistance to CBSV has been developed and deployed to date.  The full genome 

sequence of CBSV is not yet known, but it is thought to be monopartite, linear, 

positive sense ssRNA, translated into a polyprotein that is further auto-cleaved into 

functional proteins with the capsid protein (CP) at the C-terminus.  The present 

study aims to develop transient resistance to CBSV through CP-mediated 

protection and RNA interference (RNAi) strategies.  The entire CBSV CP gene 

was used to express the CP and thereby trigger CP-mediated protection against 

CBSV.  In addition, the full-length CP gene and its N- and C-terminal regions were 

used to generate three RNAi constructs, with RNAi-GFP as an internal control for 

transient studies in sap-inoculated GFP transgenic Nicotiana benthamiana.  An 

efficient protocol for sap transmission of CBSV to N. benthamiana was also 

developed and used in transient protection studies of the constructs as proof-of-

concept for control of CBSV using virus-derived resistance strategies in cassava.  

The constructs offered high levels of protection against CBSV and are highly 

recommended for use to transform cassava to generate CBSV resistant cassava 

plants for the farmers. 
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C h a p t e r  1  

INTRODUCTION 

1.1 Origin and importance of cassava 

Cassava, Manihot esculenta Crantz, is a tropical root crop that originated from the 

Amazon region of Latin America.  In the 16th century, the Portuguese sailors took 

cassava to West Africa and later to Central and East Africa through the Cape of 

Hope via Madagascar and Zanzibar (30).  Farmers adopted cassava cultivation 

and the crop was integrated into the farming systems of East Africa (16).  Cassava 

became established in Uganda during the 19th century and became a valuable 

food security crop in the 20th century.  Cassava is cultivated in an area of 16 million 

hectares, 50% in Africa, 30% in Asia and 20% in Latin America (26).  In Africa 

alone, the largest producing nations are Nigeria (39%), Democratic Republic of 

Congo (13%), Ghana (8%), Angola (7%), Tanzania (6%), Mozambique (6%), and 

Uganda (4%) (13).  

Cassava is being cultivated both for subsistence and commercial purposes across 

the world.  In sub-Saharan Africa, it is mainly used as a food security crop.  In 

Uganda, cassava ranks second after banana in terms of production and 

consumption.  It is a staple food crop and a major source of income for the poor 

rural communities (53).  Most farmers prefer cassava because of its ability to 

withstand unreliable rains and drought conditions, it performs relatively well on 

soils with low fertility compared to other crops, and is flexible in a number of crop 

production systems.  Processed cassava products can be stored for several weeks 

and the starchy storage roots can be harvested for up to 3 years.  All these 

characteristics make cassava a very important subsistence crop.  In addition to the 

roots, the cassava leaves are also an important source of nutrients and are used 

both as food and fodder by several Africans, as it contains significant amount of 

proteins, vitamins and minerals.  Cassava also has significant industrial value, as 

up to 10% of the world production is used to produce a range of products including 
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starch extracted from the roots and pharmaceutical products, and cassava is also 

grown as an ornamental plant. 

1.2 Constraints to cassava production in Uganda 

Despite the long history of cassava research and development in Africa and 

Uganda in particular, there are persistent major constraints to cassava production.  

Abiotic factors such as drought, poor soils, and unstable weather conditions limit 

cassava production.  The crop is often grown in poor soils and sometimes in 

drought-prone regions.  Low multiplication rate of improved varieties and long 

storage periods between planting seasons affect establishment of plants derived 

from such stem cuttings and compromise their viability.  Cassava is also affected 

by pests, which feed on cassava and reduce its productivity.  In Uganda the most 

common pests include cassava green mite, Mononychellus tanajoa and cassava 

mealybug, Phenacoccus manihoti Matt.-Ferr, which were introduced from South 

America in the early 1970s (16).  In addition to these introduced insect pests, 

whiteflies, which also transmit several viral diseases, have become an important 

pest of cassava.  The whitefly population in Uganda has increased tremendously 

in the recent past, reaching pest level with several thousands of whiteflies per leaf.  

The high population of whiteflies has been associated with the cassava mosaic 

disease (CMD) pandemic, suggesting that other whitefly-transmitted pathogens, 

such as CBSV, could easily spread to regions where CBSD was non-existent.  

Cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis 

occurs in Uganda too.  The bacteria can cause devastating effects on yields of 

cassava and availability of clean planting material (23).  Among the several viral 

diseases of cassava, CMD and CBSD are the two most important viral diseases 

affecting cassava production in Uganda and in several other African countries.  In 

East Africa, CMD is present everywhere cassava is cultivated.  CMD resistant 

varieties have been developed and CMD-free planting materials distributed.  This 

activity helped to rescue cassava production in Uganda in less than 3 years.  

However, all the CMD resistant cultivars succumb to the CBSD, making currently 

CBSD a major disease of cassava in East Africa.  The biology of CBSV is not yet 
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well studied and no reliable CBSD highly resistant cassava variety has been 

developed so far.   

1.3 History of CBSD in Uganda 

The first report of CBSD was in 1930s in Tanzania but it is now known to be 

endemic in Tanzania, Kenya and Mozambique mainly at altitudes below 1000 m 

(33).  Recently, there has also been reports of CBSD in Malawi and Zanzibar (21, 

33). In Kenya, CBSD was observed in the coastal areas but at low incidence and 

severity (7, 71).  The disease was first observed in Uganda in 1934 but was 

efficiently eliminated by destroying all plants showing CBSD symptoms (25).  A 

new outbreak of CBSD in Uganda has been recently reported and the presence of 

CBSV, which was confirmed by reverse transcription–polymerase chain reaction 

(RT-PCR) and nucleotide sequence analysis (2).  A survey for cassava pests and 

diseases conducted jointly by International Institute of Tropical Agriculture (IITA) 

and Uganda‟s National Agricultural Research Organization (NARO), which 

incorporated parameters for CBSD symptoms, revealed that CBSD is distributed 

throughout Uganda with greatest incidence in the south and central regions (52).  

The re-emergence of CBSD in Uganda shows that other countries in the region 

may be at high risk of spread and increased prevalence. 

1.4 Cassava brown streak virus 

CBSV is tentatively assigned to the genus Ipomovirus of the family Potyviridae (32, 

49).  The full genome sequence of CBSV is not yet known, but comparison of 

CBSV CP gene sequence indicates its close association with members of the 

genus Ipomovirus in the family Potyviridae.  Members of the genus Ipomovirus 

include Sweet potato mild mottle virus (SPMMV), Cucumber vein yellowing virus 

(CVYV), Squash vein yellowing virus (SqVYV), and a tentative member, Sweet 

potato yellow dwarf virus (SPYDV).  This genus is characterized by flexuous non-

enveloped filamentous (650-690 nm) virion particles, presence of inclusion bodies 

in infected plant cells and by having a polyprotein genome strategy.  The 

Ipomovirus genome organization is similar to that of Potato virus Y (PVY) (10).  

Therefore, CBSV is expected to have the genetic information contained in a 
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monopartite, linear, single stranded, positive sense RNA (+ssRNA) approximately 

10 kilobases (kb) in length coding for a polypeptide of ~3000 – 3400 amino acids.  

The 3' terminus has a poly (A) tract and the 5' terminus is expected to have a 

genome-linked protein (VPg).  The genetic maps of the sequenced Ipomovirus 

genomes indicate that the virus encodes a single protein that is proteolytically 

cleaved into smaller functional proteins.  The genome map of CVYV and SqVYV 

reveals that the polyprotein is cleaved into functional proteins designated as P1a, 

P1b, P3, cylindrical inclusion protein (CI), nuclear inclusion protein a (NIa), viral 

genome-linked protein (VPg), nuclear inclusion protein b (NIb), capsid protein 

(CP), and two smaller proteins 6K1 and 6K2 (35).  However, SPMMV has helper 

component proteinase (HC-Pro) instead of P1b, but the other proteins are the 

same (35). 

1.5 Characterization and variability of CBSV 

The first published data on CBSV characterization relates to isolates collected from 

Tanzania and Mozambique (49).  Each of the isolates elicited different symptom 

phenotypes in N. benthamiana and N. tabaci.  However, comparisons of CP gene 

sequences revealed only 8% differences in nucleotides (nt) and 6% differences in 

amino acid (49) sequences (49).  In late 2004, leaf samples were collected from 

plants showing typical CBSD symptoms from Mukono district in central Uganda.  

Comparisons of the partial CP gene sequence (222 bp) obtained from the 

Ugandan isolates showed 77.0% to 82.9% nt and 43.9% to 56.8% aa identity with 

those from Mozambique and Tanzania (2), therefore indicating at least a different 

strain of the virus (CBSV-UG).  There was 95.9% to 99.5% nt and 85.1% to 90.5% 

aa identity among the Ugandan isolates suggesting that the Ugandan isolates are 

variants of CBSV-UG (2). More recent data, based on analysis of the complete 

CP-encoding sequences (1,101 nt) of eight isolates obtained from the Lake 

Victoria basin in Uganda and the Indian Ocean coastal areas of East Africa, were 

only 75.8-77.5% nt, and 87.0-89.9% aa identical when compared to the partial CP 

sequences (714 nt) of the six CBSV isolates previously characterized from 
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Tanzania and Mozambique (48).  These findings further suggest that separate 

CBSV strains exist in East Africa.  

1.6 Host range of CBSV 

The host range of CBSV is fairly limited but does include several Solanaceous 

plants such as Petunia hybrida, Datura stromonium L., N. tabacum L., N. rustica 

L., and N. glutinosa L.(38).  

1.7 Symptoms of CBSD 

CBSD show a diversity of symptoms all over the plant but with considerable 

variation in expression levels depending on variety and growing conditions (19).  

Foliar symptoms include feathery chlorosis along veins (Fig. 1A and 1B), brown 

streaks on stem (Fig. 1C), and stem die-back in severe infections (Fig. 1D) (27).  

The internal root symptoms vary a lot, but most often consist of a yellow/brown 

corky necrosis of the starchy tissue (Fig. 1E).  In susceptible varieties, necrotic 

 

Fig.1: Symptoms of CBSD. (A) Symptoms on younger leaf, (B) symptoms on older leaf, (C) brown 

streak on young stem, (D) stem dieback, (E) necrotic rot of roots, and (F) root constrictions 
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lesions spread throughout the starch storage tissue discoloring it and thus making 

it unhealthy for human consumption.  Radial constrictions may show outside of the 

root in the surface bark (Fig. 1F) (19). 

1.8 CBSD detection and diagnostics 

Due to the variable nature of CBSD symptom expression, it is unreliable to visually 

inspect and diagnose CBSD.  Monger et al (2001) developed a reliable RT-PCR-

based diagnostic technique using primers specific to CBSV CP gene (49).  The 

primers were successfully used to amplify CBSV isolates from Uganda (2), 

nevertheless it is the only CBSV diagnostic method available thus far besides the 

use of indicator plants.  However, most laboratories in the region affected by 

CBSD lack the required capacity to perform the diagnostics effectively. In addition, 

there is a need to develop rapid and robust CBSV diagnostics techniques such as 

real-time PCR and enzyme-linked immunosorbent assay (ELISA) to facilitate 

disease monitoring and disease control.  Developing antibodies against CBSV for 

use in ELISA would facilitate cheaper and timely CBSD diagnosis.  

1.9 Epidemiology of CBSD 

CBSV transmission to cassava by whiteflies was recently demonstrated (45).  The 

disease spreads naturally in the field between cassava plants (7, 59).  The use of 

infected cassava stem cuttings by farmers as planting materials provides 

alternative means of CBSV transmission, perpetuation and spread.  In the last five 

years CBSD invaded Kenya, moved into Uganda, Rwanda, Burundi, Democratic 

Republic of Congo, and down Zambia, Malawi and Mozambique (9, 52). 

In the lab, the disease can be transmitted by graft-inoculation from cassava to 

cassava (59) and also mechanically from cassava to herbaceous host plants (38).  

CBSV transmission rate by B. tabaci is very low in laboratory conditions compared 

to field situation (45).  This has made studying CBSD in laboratory conditions 

difficult due to lack of a means of transmitting the causal virus readily, and the 

absence of an infectious CBSV clone. 
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1.10 Economic impact of CBSD 

Losses due to CBSD depend not only on the susceptibility of the cultivar but also 

on the time the crop is harvested.  Studies in Tanzania demonstrated that more 

than 90% of plants of CBSD susceptible varieties sprouting from cuttings taken 

from diseased plants expressed leaf symptoms, and many of the same plants 

showed root symptoms at harvest and reductions in root weight (20).  The losses 

are worsened by necrosis on roots that render it unsuitable for consumption, 

prevent harvested roots from being marketed or encourage premature harvesting 

to avoid complete damage.  Thus CBSD is a very important drawback to farmers 

who rely on cassava as a food security crop.  An annual loss of about US $50 

million due to CBSD for the farmers in Tanzania alone has been reported (9).  

Recent CBSD surveys documented incidences of 90–100% in some fields in 

northern Mozambique (22, 63), while in Zanzibar and coastal Kenya higher 

incidences (30-100%) were prevalent along the coastal areas (50, 64); recently in 

Uganda, CBSD incidence ranged from 0-64% (2).  Root necrosis and yield loss 

increase with crop age (51).  Root necrosis in local varieties begins to increase 

from six months after planting, encouraging farmers to harvest prematurely (20).  

In Uganda, CBSD incidence is highest and severity greatest in CMD-resistant 

varieties which are highly popular with farmers and have spread rapidly within and 

between farming communities (52).  

1.11 Management of CBSD 

1.11.1 Use of CBSD tolerant/resistant varieties 

Surveys conducted in Tanzania and Mozambique indicated that some local 

cultivars showed tolerance to CBSD (22).  Recently in Zanzibar, a CBSV tolerant 

variety, variety 452, has been developed through conventional breeding (54).  In 

Uganda, conventional breeding for CBSD resistance started recently, yet cassava 

breeding is time consuming.  It is therefore vital that other approaches such as 

marker assisted breeding and genetic engineering be explored. 
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1.11.2 Phytosanitation 

At low disease incidence it may be advisable to remove and replace infected 

plants with disease-free cuttings, or select and use only disease-free cuttings.  

However, this has limitations such as having too few disease-free plants to provide 

sufficient planting material and disease diagnosis is not always straightforward and 

symptomless plants may be latently infected (27, 59).  

1.11.3 Engineering antiviral resistance in transgenic plant 

Many viruses cause disease in plants with some viruses infecting a huge number 

of host plants yet sources of resistance genes to such viruses are scarce. 

Nevertheless, transgenic approaches offer the ability to integrate a target-specific 

(virus-derived) resistance gene into unlimited elite varieties of a crop, irrespective 

of their genetic make-up, and avoiding the need for extensive back-crossing (55).  

Naturally, genes for resistance exist in wild species but are difficult to introgress 

into farmer preferred cultivars. Many potyviruses have been controlled through 

pathogen-derived resistance (PDR) approaches, which involve expression of 

pathogen-derived nucleotide sequences in transgenic plants to confer resistance 

against the pathogen. Resistance conferred by the expression of CP genes has 

been described for plant viruses in several different virus groups.  Besides, 

expression of virus-derived nucleic acid sequences in transgenic plants based on 

the principle of post-transcriptional gene silencing (PTGS) has been useful in 

developing virus-resistant plants. Although the full genome of CBSV excluding the 

CP gene sequence is not yet known, being a potyvirus, it has been suggested to 

be an appropriate target for PDR strategy (34).  Several approaches have been 

used to induce durable and safe resistance to plant viruses in the field (55).  Some 

of the major approaches are discussed. 

1.11.3.1 Coat protein-mediated resistance (CPMR) 

The viral CP plays vital roles in the life cycle of a virus notably genome 

encapsidation, viral RNA assembly and replication, insect transmission, and 

systemic viral infection (66).  The expression of functional or dysfunctional CP of 

many plant viruses in transgenic plants results in enhanced plant pathogen 
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resistance. Though discovered way back in 1986, the molecular mechanisms that 

modulate CPMR is still poorly understood (55).  The expression of viral CP in 

transgenic plant cells probably disrupts one or more of the essential functions of 

the CP, or interferes with the transcript and protein levels resulting in poor plant-

virus interaction. Some transgenic plants expressing virus-derived CP confer 

crossprotection to related viruses presumably by stabilizing and preventing virion 

replication, inhibition of viral uncoating, slower replication, or by interfering with 

vascular transport. Plants stably transformed with CP genes are inherited across 

generations and show varying levels of resistance ranging from wild-type 

phenotype to immunity.  Besides CP, other viral proteins such as movement 

proteins  and replicases have also been expressed in transgenic plants to confer 

virus resistance (61, 62).  Classic examples of CPMR include Tobacco mosaic 

virus (TMV: Tobamovirus) (5), Potato virus Y (PVY: Potyvirus), Tobacco etch virus 

(TEV; Potyvirus), Tomato spotted wilt virus (TSWV: Tospovirus) (36), and Papaya 

ring spot virus (PRSV; Potyvirus) (39). 

1.11.3.2 Post-transcriptional gene silencing  

Post-transcriptional gene silencing, also generally called RNA interference or gene 

silencing (37) is a defense mechanism in plants that specifically degrades alien 

RNA molecules. The degradation mechanism is triggered by double-stranded RNA 

molecules (dsRNA), which are substrates for an RNase III family enzyme Dicer. 

Sources of dsRNA molecules in plants include replicating viral RNA, single-

stranded hairpin RNA (hpRNA) or virus-derived dsRNA transgenes, and 

transposable elements.  In the cell, dsRNA is actively degraded into short 20–25 nt 

small interfering RNAs (siRNAs) with 2 nt overhangs at the 3‟ ends by Dicer(3).  

The siRNA duplexes are actively unwound and assembled into a nuclease 

complex called RNA induced silencing complex (RISC), which become activated.  

The activated RISC complex targets and degrades mRNA transcripts homologous 

to the RISC-incorporated single-stranded siRNA by complementary base pairing 

(46).  Thus, accumulation of mRNA homologous to the RISC-incorporated siRNA 

is controlled in the cell.  Transgenes encoding dsRNA or hpRNA are very effective 
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at triggering PTGS of both endogenous and alien genes and can be artificially 

introduced into cells for this purpose. 

1.11.3.3 Hairpin RNA transgenes silencing 

An hpRNA is a long single-stranded RNA molecule containing inverted repeat 

regions that folds back and hybridizes with itself to form a single-stranded hairpin 

loop and a double-stranded stem region (70).  The hpRNA structure mimics that of 

dsRNA because of the base-paired stem region and therefore effectively triggers 

RNAi (72).  Gene fragments in the range of 300 – 800 nts are normally cloned in 

the sense and antisense orientation across an intron to generate an inverted 

repeat hpRNA transgenes (72). The hpRNA transgene sequences can be 

obtained from almost any exon regions and from non-coding regions including the 

5‟- or 3‟- untranslated regions (UTR), although sequences from conserved regions 

are preferred (70).  For unknown reasons, the size of introns influences silencing 

efficiency of hpRNA transgene. Shorter introns enhances silencing efficiency better 

than longer introns (12).  Depending on the promoter used to control expression, 

hpRNA can be expressed in specific tissues or in every tissue.  

A diversity of genes has been effectively silenced using hpRNA transgenes with 

stable phenotypes resembling those of null allelic mutants of the target genes (55). 

Moreover, several genes can be simultaneously silenced if sequences of the 

individual genes are used in the hpRNA transgene (8). Members of a multi-gene 

family can also be simultaneously silenced if the hpRNA transgene sequences are 

derived from a less conserved region of the multi-gene family, usually the 5‟ or 3‟ 

UTR. Several virus-derived transgenes encoding hpRNA have been introduced 

into plants with exciting results. Among the plant viruses that have been effectively 

controlled using hpRNA transgene technology include Barley yellow dwarf virus 

(BYDV) (69) TSWV, Groundnut ring spot virus (GRSV), Tomato chlorotic spot 

virus (TCSV), Watermelon silver mottle virus (WSMoV), and PVY (8, 44). In a 

recent study, Bucher et al (2006) fused sequences of four tospoviruses in a single 

hpRNA transgene and were able to obtain plants with resistance against the 

multiple viruses (8). Plants transformed with hpRNA constructs generate 
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independent events with considerable variation in phenotype and target mRNA 

silencing and are inherited in a Mendelian manner to progeny plants (18). 

1.11.3.4 Small interfering RNA and MicroRNA 

Small interfering RNAs are 20-25 nucleotide-long double-stranded RNA 

molecules. An siRNA  interferes with expression of a specific gene by binding to 

complementary sequences on the mRNA transcripts of the gene, which in turn 

cause cleavage of the mRNA strand by the nuclease activity of RISC (4). Many 

RNAi-based transgenic plants, particularly those targeting virus resistance, have 

been derived through expression of long dsRNA derived from hpRNA transgenes 

or related dsRNAs, which are processed into siRNA. However, siRNA can also be 

synthesized and delivered into cells through biolistics or Agrobacterium-mediated 

transformation to silence a target gene. In essence, sequences of any known 

genes can be targeted with an appropriately tailored siRNA. Thus, RNAi is an 

important tool for analysis of gene function and post-genomic studies (55).  

Besides siRNA, microRNAs (miRNAs) are another class of small RNAs, 21-23 nt 

long that also act as effectors of RNA silencing. The difference between miRNA 

and siRNA is that miRNA are processed from endogenous single stranded RNA 

precursors in the nucleus and show only partial complementarities to mRNA 

targets (41). The miRNAs are first transcribed as primary miRNA and later 

processed by endonuclease Dicer into mature 21-24 nt siRNA-like molecules. The 

miRNAs are mainly negative regulators of post-transcriptional gene expression. 

They guide mRNA cleavage similar to siRNAs in plants where the target sites are 

typically highly complementary to the miRNA (70). miRNA also silence genes 

where the sequences are partially complementary by translational attenuation.    

1.11.4 Transcriptional gene silencing 

Recently, dsRNA have been discovered to induce sequence-specific DNA 

methylation in plants, referred to as RNA-directed DNA methylation (RdDM) (47).  

Several transgenes including virus-induced gene silencing (VIGS) transgenes, 

hpRNA transgenes or viral satellite RNA of potyviruses or potexviruses have been 
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shown to induce hypermethylation of cytosine residues of homologous nuclear 

transgene sequences at the CpG or CpNpG sites of the promoter sequences (55).  

This promoter methylation prevents transcription of the target genes as it 

presumably alters the chromatin conformation that results in loss of binding of 

transcription factors and thus loss of transcription of the target gene. Thus, dsRNA 

might silence genes at transcriptional and post-transcriptional levels. 

1.12 Introducing transgenes into plant cells  

The silence-inducing dsRNA or hpRNA can be delivered into plant cells by several 

means including particle bombardment of plants with nucleic-acid-coated gold or 

tungsten beads, by infiltrating plant cells with A. tumefaciens carrying the 

transgene, or by infecting plants with the virus.  The plants can be stably or 

transiently transformed with the transgenes. Particle bombardment, sometimes 

called microprojectile bombardment or biolistics has been the main method of 

plant transformation mainly of monocotyledonous plant species such as rice, 

maize, wheat and barley (58).  The method is also convenient for delivering 

dsRNA or DNA transgenes that encode hpRNA into plant cells.  However, 

Agrobacterium-mediated gene transfer system is another convenient way of 

delivering transgenes into plant cells for stable or transient transformation (28).  

Infiltrating plant leaves with a culture of recombinant A. tumefaciens, containing a 

transgene in its T-DNA plasmid through the stomata mediates transfer of the 

transgene from the T-DNA of the bacteria into plant cells resulting into transient 

expression of the transgene (57).  

1.13 Purpose of the study 

In East Africa, CMD is found almost everywhere cassava is cultivated.  Varieties 

resistant to CMD have been developed and widely distributed.  This has helped to 

restore cassava production in Uganda after the severe CMD pandemic that started  

in the early 1990s (53).  The recent outbreak of CBSD constitutes an additional 

and significant threat to cassava production.  For over seven decades since it was 

first observed, CBSD remained endemic only in the lowland coastal areas of East 

Africa, from the north-east border of Kenya to Mozambique and the low altitudes in 
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Malawi.  However, over the last five years, CBSD has emerged at several mid-

altitude locations in East Africa and is spreading rapidly in Uganda and 

Northwestern Tanzania.  Recent extensive surveys recorded CBSD incidences of 

90–100% in some fields in Tanzania and northern Mozambique (22, 63), and 30-

100%  in Zanzibar (64), and coastal Kenya (50).  In Uganda, CBSD incidences of 

up to 64% in individual fields were recorded (2).    Most CMD-resistant varieties 

succumb to CBSD.  There are only a few cultivars with tolerance to CBSD that 

have been developed through conventional breeding in Tanzania, but these have 

not been widely adapted and deployed (22, 33).  Some cassava varieties begin to 

show very severe root necrosis that finally cause complete root deterioration six 

months after planting, forcing farmers to harvest the crop early (20). No effective 

CBSD resistance has been deployed in the region, yet the disease significantly 

affects quantitative and qualitative yield of cassava.  It is therefore imperative that 

there is an exploration of alternative sources of resistance to complement 

conventional and marker assisted breeding.  Since CBSD directly affects the yield 

and quality of storage roots, it is a major threat to food security and incomes of 

millions of people who largely depend on cassava for their livelihood.  Effective 

management of CBSD will need development and deployment of CBSD resistant 

cassava.  This study aimed to develop resistance to CBSD through pathogen-

derived resistance using both CPMR and RNAi approaches.  

1.13.1 Goal 

The goal of the study is to develop resistance to CBSV using transgenic 

approaches. 

1.13.2 Specific objectives 

The specific objectives of the study were to: 

1. Develop an efficient protocol for mechanical transmission of CBSV to N. 

benthamiana  

2. Generate CBSV-derived RNAi and CP gene constructs using CP gene 

sequences of a Ugandan CBSV isolate  
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3. Assess effectiveness of CBSV-derived RNAi and CP gene constructs to 

confer resistance against CBSV in a transient assay using N. benthamiana 

1.13.3 Hypothesis 

Resistance to CBSV can be achieved through either gene silencing targeting the 

viral genes or through CPMR strategies. 

1.13.4 Expected output 

 Efficient protocol for mechanical transmission of CBSV to N. benthamiana  

optimized 

 Gene constructs conferring resistance to CBSV developed 

 Effectiveness of CBSV-derived gene constructs to confer resistance to CBSV 

determined in a transient assay with N. benthamiana 



Ogwok Emmanuel. 2009 UMSL   p. 15 

 

   

 
Chapter 2 

MATERIALS AND METHODS 

2.1  Development of an Efficient System for Mechanical Transmission of 

CBSV to N. benthamiana  

2.1.1 Virus source 

Stem cuttings were collected from cassava plants showing characteristic foliar 

CBSD symptoms from farmer‟s fields in Uganda and shipped to Donald Danforth 

Plant Science Center (DDPSC), St Louis, USA, where they were propagated and 

maintained in a growth chamber.  CBSV isolates from four different Ugandan 

cassava cultivars (I 92/0057, I 95/0087, Ebwanatereka and TME 204) were tested 

to confirm presence of CBSV.  All isolates were infectious in N. benthamiana with 

slight variation in symptom expression, but for further studies the CBSV isolate 

from the cassava cultivar Ebwanateraka was used.  Total RNA was isolated from 

symptomatic cassava leaves following cetyl trimethylammonium bromide (CTAB) 

protocol originally described for DNA isolation by Lodhi et al. (1994) (40), cDNA 

was synthesized using SuperScriptTM III first strand cDNA synthesis kit (Invitrogen, 

Carlsbad, CA, USA), and used in RT-PCR with CBSV specific primers (10F and 

11R) (49). 

2.1.2 Inoculum preparation and sap inoculation 

Infected cassava leaf tissues showing fresh symptoms of CBSD were ground 

using a chilled pestle and mortar with the aid of carborundum 320 grit (Fisher 

Scientific).  Freshly prepared ice-cold 0.01M potassium phosphate buffer (K2HPO4 

+ KH2PO4), pH 7.0, containing 0.2% sodium sulfite and 0.01M β-mercaptoethanol 

(1:6 [wt/vol] tissue:buffer) was added to the ground tissue and mixed well, 

transferred to Falcon tube, and the tissue debris was allowed to stand for 5 min in 

ice for debris to settle at the bottom of the tube.  The sap was used to inoculate 21-

day-old N. benthamiana plants.  Test plants were dusted with carborundum to act 

as abrasive and ice-cold drops of inoculum rubbed gently on the leaf surfaces 
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using gloved fingers.  After inoculation, the plants were gently sprayed with water 

to remove excess carborundum and plant debris.  Inoculation was done in the 

evenings and plants kept in the dark overnight.  The growth chamber was 

maintained at light intensity of 200 μM, 28°C, 70% RH, and alternating light and 

dark periods of 16 hr/8 hr photoperiod.  

2.1.3 Effects of antioxidants, inoculum concentration, temperature, and 

age of N. benthamiana on CBSV transmission 

2.1.3.1 Effect of antioxidant on sap transmission of CBSV 

To determine the effect of antioxidant on transmission of CBSV, 3 g of CBSV 

infected N. benthamiana leaf tissue was ground in 18 ml of four solutions; (i) sterile 

distilled water, (ii) 0.01 M potassium phosphate buffer, pH 7.0, (iii) phosphate 

buffer containing 0.2% sodium sulfite, and (iv) phosphate buffer containing 0.2% 

sodium sulfite and 0.01 M β-mercaptoethanol.  Eighteen 21-day-old N. 

benthamiana plants were inoculated with inoculum prepared using each of the four 

buffers, with 2 replications.  Symptoms were recorded daily, from two days after 

inoculation for a period of 14 days.  A scoring scale to record the CBSV symptom 

severity was developed based on the scoring system developed for cassava 

mosaic disease by Fauquet and Fargette (14).  Each plant was scored for their 

symptom severity on a scale of 0–5: 0 = no symptoms, 1 = slight leaf distortion, 2 = 

moderate leaf distortion, 3 = severe leaf distortion, 4 = very severe leaf distortion, 

stunting and wilting, 5 = necrosis and death of the plant (Fig. 2). Data were 

analyzed using GenStat software (GenStat for Windows 11th Edition, VSN 

International, Hemel Hempstead, UK.). ANOVA was used to obtain least 

significant difference (l.s.d) values, which were used to separate the means at P 

= 0.05. 

2.1.3.2 Effect of inoculum concentration on CBSV transmission  

To evaluate the effect of inoculum concentration on CBSV transmission, 10 g of 

infected leaf tissue was ground as described and 20 ml of freshly prepared ice-cold 

0.01 M potassium phosphate buffer (K2HPO4 + KH2PO4), pH 7.0, containing 0.2% 
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sodium sulfite and 0.01 M β-mercaptoethanol (1:2 [wt/vol] tissue:buffer) added, 

mixed well, transferred to Falcon tube, and centrifuged at 4°C for 5 min to remove 

the debris.  The supernatant (sap) was used to make seven dilutions ([wt/vol] 

tissue:buffer); (i) 1:5, (ii) 1:10, (iii) 1:20, (iv) 1:50, (v) 1:100, (vi) 1:500, and (vii) 

1:1000 and 18 plants were inoculated with the different inoculum dilutions, with 2 

replications.  Data was collected and analyzed as previously described (section 

2.1.3.1) 

 

Fig. 2: Symptoms of cassava brown streak disease in leaves of N. benthamiana. Plants were 

visually assessed for development of symptoms after inoculation with CBSV-infectious sap. Each 

plant was scored on a scale of 0–5 where symptom severity score was rated on a six-point scale: 0 

= no symptoms, 1 = slight leaf distortion, 2 = moderate leaf distortion, 3 = severe leaf distortion, 4 = 

very severe leaf distortion, stunting & wilting, 5 = necrosis and death of the plant 

2.1.3.3 Effect of age at inoculation on transmission of CBSV to N. 

benthamiana 

To identify the best age of N. benthamiana for efficient sap transmission of CBSV, 

18 test plants were inoculated at (i) 21 days after planting (DAP), (ii) 28 DAP, (iii) 

0 1 2 

3 4 5 
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35 DAP, and (iv) 42 DAP with sap prepared (1:6 [wt/vol] tissue:buffer) in 

phosphate buffer as previously described (section 2.1.2).  Only the topmost two 

fully open leaves were inoculated.  The number of days required for the initiation of 

symptoms and also the symptom progression were recorded and analyzed as in 

section 2.1.3.1.  The treatment was replicated 3 times.  

2.1.3.4 Effect of age of inoculum source plant on transmission of CBSV to 

N. benthamiana 

To evaluate the effect of the age of inoculum source plant on CBSV transmission, 

N. benthamiana plants of six different ages were used as source of inoculum.  

Infected leaf tissue was obtained from plants that were 14, 28, 42, 56, 70, and over 

80 days old.  For each source of inoculum, 18 healthy N. benthamina plants were 

inoculated in three independent replications with sap prepared (1:6 [wt/vol] 

tissue:buffer) in phosphate buffer containing 0.2% sodium sulfite and 0.01 M β-

mercaptoethanol as described in section 2.1.2. Data was recorded and analyzed 

as previously described (section 2.1.3.1).  

2.1.3.5 Effect of temperature on progress and severity of CBSV 

The effect of temperature on the rate of CBSV transmission was assessed at 

21°C, 25°C, 27°C, and 30°C.  Sap was prepared in phosphate buffer (1:6 [wt/vol] 

tissue:buffer) and 21-day-old plants were inoculated as described above.  The 

inoculated plants were maintained in growth chambers with a light intensity of 200 

μM, 70% RH, and alternating light and dark periods of 16 hr/8 hr photoperiod at the 

above four different temperatures.  The experiment was repeated three times and 

data recorded and analyzed as previously described (section 2.1.3.1). 

2.1.3.6 Assessment of virus-derived siRNA 

To determine viral RNA accumulation and virus-derived siRNA levels, symptomatic 

young leaf samples were collected daily from plants maintained at 21°C, 25°C, 

27°C, and 30°C, total RNA and siRNA isolated, and analyzed by northern-blot.  

Small RNA was isolated using the protocol of Akbergenov et al (2006) (1) with 

some modifications.  Total RNA was extracted from a single symptomatic leaf of N. 
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benthamiana using Trizol reagent (Invitrogen) as per the manufacturer‟s 

instructions.  The total RNA was fractionated using RNeasy Plant mini kit (Qiagen) 

to remove the long RNAs.  Ten micrograms of fractionated small RNAs was run on 

a pre-cast 15% TBE Urea gel (Criterion-BioRad) at 150V using the Criterion gel 

apparatus.  The RNA was blotted to the Hybond N+ membrane using the semidry 

electro blotter at 10V for 1 h.  The membrane was UV cross-linked and pre-

hybridised in DIG Easy-hyb buffer (Roche) at 42°C for an hour.  To produce a 

probe, CBSV CP isolate from the cassava cultivar Ebwanateraka was cloned in 

the in vitro transcription vector pSPT19 and subjected to in vitro transcription using 

DIG RNA labelling kit (Roche).  The labelled RNA was hydrolysed for 5-7 min in 50 

mM sodium bicarbonate/carbonate at 95°C and denatured before hybridization in 

DIG Easy-hyb buffer.  The hybridization was done for 16 hrs (overnight) at 42°C 

and the membrane was subjected to different treatments as described in the 

manual (DIG High Prime DNA labeling and detection kit (Catalogue 11585614910, 

Roche Applied Science).  Autoradiography was done by exposing the membrane 

to Amersham high performance chemiluminescence film (GE healthcare) and 

developed in automated developer (KODAK X-OMAT) and the auto-radiograms 

were scanned and adjusted for clarity.  The siRNA titers were estimated by 

quantifying the signals on autoradiogram by using the IMAGE-J software (National 

Institutes of Health, USA).  

2.2 Construction of CBSV-Derived RNAi and CP Genes  

2.2.1 Oligonucleotide primer design 

The computer program “Gene Runner” was used to design oligonucleotide primers 

flanking known sequence regions on the N-terminus, C-terminus, and of the full 

length CP gene based on available sequences in the database (Table 1).  The 

primer sequences were designed such that the melting temperature (6) values of 

the primer pairs do not differ by more than 5°C; no inverted repeat sequences or 

self-complementary sequences more than 3 base pairs are present; the primer 

length is 18-25 nucleotides long and primer pairs do not differ by more than 3 base 

pairs in length; the forward and reverse primers are well-matched with similar C + 
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G content of between 40-60%; and the primers have no obvious tendency to form 

secondary structures and have no significant homology with other sequences on 

either strands of the target gene.  The 5‟-end of the oligonucleotide primer 

contained enzyme restriction sites and „clamp‟ sequences of 2-3 additional bases. 

The clamp sequences besides protecting the 5‟-end of the amplified DNA anchors 

the restriction enzyme firmly during DNA cleavage. 

2.2.2 Extraction of RNA from plant leaves 

Total RNA was extracted from infected leaf material using the CTAB protocol 

originally described for DNA isolation by Lodhi et al., (1994) (40) with slight 

modifications.  About 200 mg of infected symptomatic mature or maturing cassava 

and/or N. benthamiana leaf material were picked, wrapped in aluminum foil and 

immediately frozen in liquid nitrogen.  The working surfaces, pipettes, centrifuges 

were thoroughly cleaned with RNase Zap to ensure an RNase-free environment 

and RNase-free tips and tubes were used.  Leaf tissues were ground, with the aid 

of liquid nitrogen, in a sterile pestle and mortar wiped with RNase Zap.  The 

powder was transferred using sterile spatula/pipette tips into 1.5 ml microcentrifuge 

tube and to it 700 µl of CTAB buffer (containing β-Mercaptoethanol), pre-warmed 

at 65°C added.  The mixture was vortexed to disperse tissue in buffer, incubated at 

65°C for 30 min, and mixed by inversion every 10 min.  The tubes were kept at 

room temperature for 10 min before adding an equal volume (700 µl) of 

chroloform:isoamylalcohol (24:1) and mixing by inversion for 10 min and spinning 

at 12,000 rpm for the next 10 min to separate the organic and aqueous layers. The 

upper aqueous phase (~550 µl) was transferred to a clean tube. 

Chloroform:isoamylalcohol extraction and centrifugation was repeated and about 

~490 µl of aqueous phase transferred to a clean tube,  0.7 volume (~343 µl) of 

cold (-20°C) isopropanol added, gently mixed, followed by centrifugation at 13,000 

rpm for 10 min.  The isopropanol was decanted to leave behind the nucleic acid 

pellet to which 500 µl of 70% ethanol was added to wash the pellet.  The ethanol 

was decanted after 10 min centrifugation at 13,000 rpm.  The nucleic acids pellet 

was left to air dry for ~ 40 min and re-suspend in 50 µl of RNase-free water. 
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Table 1: List of primers sequences and expected fragment sizes. Clamp sequences are in black 

uppercase, enzymes sites are in blue uppercase and CBSV–CP sequences in lowercase letter  

 

2.2.2.1 Cleaning RNA of DNA contamination  

To retain RNA, but eliminate DNA from the total nucleic acids extract, up to 35 µl of 

extract, 4 µl of 10X DNAse I buffer and 1 µl DNAse I enzyme were mixed in 0.5 ml 

tube and incubated at 37°C for 30 min.  After incubation, the DNAse I enzyme was 

inactivated by adding 4 µl of DNAse inactivation reagent and incubation at room 

temperature for 2 min with occasional mixing (2-3 times) to disperse the DNAse 

inactivation agent.  The RNA was isolated from the mix by centrifugation at 10,000 

rpm for 2 min to pellet the DNAse inactivation agent.  The supernatant (RNA) was 

carefully transferred to a fresh tube, avoiding the pellet. 

2.2.2.2 Estimation of RNA concentration  

The quantity and purity of nucleic acids in solution was estimated spectrometrically 

by measuring the absorbance at 260 and 280 nm.  The RNA concentrations were 

Primer codes Sequences Size (bp) 

CP-FL-XbaI-F GCTCTAGAgtggtggatgatgatagtn 908 

CP-FL-KpnI-R GGGGTACCttcaattgcggcaccactn  

CP-FL-BamHI-F CGCGGATCCgtggtggatgatgatagtn 908 

CP-FL-BstBI-R CGTTCGAAttcaattgcggcaccactn  

CP-NT-BamHI-F CGCGGATCCgtggtggatgatgatagtn 402 

CP-NT-BstBI-R CGTTCGAAaattgtacgataaaattcctn  

CP-CT-Xba1-F CCGTCTAGAtgccagcttggattgtgaactgt 503 

CP-CT-Kpn1-R CGCGGTACCttcaattgcggcaccactg  

CP-CT-BamH1-F CGCGGATCCtgccagcttggattgtgaactgt 503 

CP-CT-BstBI-R CGGTTCGAAttcaattgcggcaccactg  

CP-FL-XhoI-F CCGCTCGAGgtggtggatgatgatagtn 908 

CP-FL-BamHI-R CGCGGATCCttattcaattgcggcaccacn  
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calculated by taking 1 OD260 unit equal to 40 g/ml. The purity of RNA was 

estimated based on the A260/A280 ratio.  

2.2.2.3 First strand cDNA synthesis  

To synthesize cDNA, SuperScriptTM III first strand cDNA synthesis kit (Invitrogen, 

Carlsbad, CA, USA) was used.  In a 0.2 or 0.5 ml tube, 20-µl reaction volume 

containing up to 5 µg of total genomic RNA, 1 µl of 50 µM oligo(39)20 primer, 1 µl 

10 mM dNTP mix, and up to 10 µl DEPC-treated water was mixed and briefly 

centrifuged before incubation at 65°C for 5 min, then place on ice for at least 1 

min.  In the mean time, the following cDNA synthesis mix was prepared, adding 

each component in the indicated order; 2 µl 10X RT buffer; 4 µl 25 mM MgCl2; 2 µl 

0.1 M DTT; 1 µl RNaseOUT (40 U/µl) and 1 µl SuperScriptTM III RT (200U/µl). To 

each RNA/primer oligo(39)20 mix, 10 µl of cDNA synthesis mix was added, gently 

mixed, collected by brief centrifugation, and incubated at 50°C for 50 min.  The 

reactions was terminated at 85°C for 5 min, chilled on ice and collected by brief 

centrifugation (picofuge).  To each tube was added 1 µl of RNase H and incubated 

at 37°C for 20 min.  The cDNA synthesis reaction was stored at -20°C or used for 

PCR immediately. 

2.2.3 Amplification of cDNA fragments 

Double stranded DNA (dsDNA) fragments were amplified using primer sets 

targeting specific CBSV-CP sequence on the cDNA template.  The 25 µl PCR 

reaction mix contained 16.8 µl of sterile distilled water, 2.5 µl of 10x PCR buffer, 

1.5 µl of MgCl2 (25mM), 1 µl dNTPs (10mM), 0.2 µl of Taq polymerase (1u/µl), 0.5 

µl of each primer, and 2 µl of cDNA template.  Thermal cycling conditions 

comprised an initial denaturation at 94°C for 5 min, 35 cycles of 94°C for 30 s, 

52°C for 30 s, and 72°C for 1 min; a cycle of 72°C for 10 min, and stored at 4°C. 

2.2.3.1 Agarose gel electrophoresis 

DNA samples were resolved by electrophoresis on 1% (wt/vol) agarose gel 

prepared by dissolving 1 g of agarose in 100 ml of 1x TAE buffer (40 mM Tris, 1 

mM EDTA, adjusted to pH 7.6 with glacial acetic acid), heated till agarose 
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completely dissolves in the buffer, cooled to about 45°C and 2.5 µl of ethidium 

bromide (10 mg/ml) added.  The mixture was cast into a tray and a comb placed in 

the gel to form wells.  The gel was placed in an electrophoresis unit, filled with 

electrophoresis buffer (1x TAE) to cover the gel and comb carefully removed.  2 µl 

of gel loading dye was mixed with 25 µl of the PCR product and carefully loaded 

into the well.  0.7 µg of the DNA size marker (1 kb+) was included in each gel for 

comparison of DNA fragments.  Electrophoresis was performed at 80 V for 40 min 

to 1 h.  Fragments were visualized by UV radiation (302 nm) and gel pictures 

taken using Alpha Inotech AlphaImagerTM 2200 gel documentation system.  

2.2.3.2 Extraction and Purification of DNA fragments from agarose gels 

The desired fragments were identified using standard molecular weight marker 

(1kb+ ladder) and purified using the QIAquick Gel Extraction Kit (QIAGEN) 

according to manufacturer instruction.  The DNA fragments were excised from the 

agarose gel with a clean, sharp scalpel and weighed in a colorless tube.  Three 

volumes of buffer QG was added to 1 volume of gel and incubated at 50°C for 10 

min (or until the gel slice completely dissolved), or vortexed every 2–3 min during 

the incubation to help dissolve gel.  After the gel slice dissolved completely, 1 gel 

volume of isopropanol was added to the sample and mixed.  The sample was 

applied to the QIAquick column to bind DNA to the column membrane, centrifuged 

at 17,900 x g (13,000 rpm) for 1 min, the flow-through discarded and the QIAquick 

column put back in the same collection tube.  Traces of agarose were removed by 

adding 0.5 ml of buffer QG to QIAquick column and spinning for 1 min (13,000 

rpm).  To wash the DNA fragment, 0.75 ml of buffer PE was added to QIAquick 

column and centrifuged for 1 min (13,000 rpm), the flow-through discarded and the 

QIAquick column centrifuged for an additional 1 min (13,000 rpm) to completely 

remove residual ethanol from buffer PE.  The QIAquick column was placed into a 

clean 1.5 ml microcentrifuge tube, 30-50 μl of Buffer EB (10 mM Tris·Cl, pH 8.5) or 

water (pH 7.0–8.5) added to the center of the QIAquick membrane, allowed to 

stand for 1 min, and centrifuged for 1 min (13,000 rpm) to elute DNA. The DNA 

was stored at –20°C. 
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2.2.3.3 Purification of PCR products 

PCR products used in subsequent analysis were purified using QIAquick PCR 

Purification Kit (Qiagen, MD, USA) according to manufacturer‟s instructions. Five 

volumes of buffer PBI was added to 1 volume of the PCR product, mixed, sample 

transferred to a QIAquick spin column and centrifuged for 30–60 s in a 2 ml 

collection tube to bind DNA to the QIAquick column membrane.  The flow-through 

was discarded and the QIAquick column placed back into the same tube.  Buffer 

PE (0.75 ml) was added to wash the QIAquick column.  To remove ethanol, the 

QIAquick column was centrifuged for 30–60 s, flow-through discarded, and 

QIAquick column placed back in the same tube for an additional 1 min 

centrifugation to remove completely residual ethanol.  The QIAquick column was 

put in a clean 1.5 ml microcentrifuge tube, 50 μl buffer EB (10 mM Tris·Cl, pH 8.5) 

or water (pH 7.0–8.5) added to the center of the QIAquick membrane, the column 

allowed to stand for 1 min, then centrifuged for 1 min to elute DNA. 

2.2.4 Construction of hairpin CBSV-CP genes (hpCBSV-CP) 

The strategy outlined in Fig. 3 was designed to clone the CBSV fragments in the 

sense and antisense orientation to generate hairpin gene constructs.  The CBSV-

CP fragments were amplified with primers containing both enzyme restriction sites 

and „clamp‟ sequences and cloned directly into CGT11003-intron vector after 

sequential digestion of both PCR product and the vector with the respective 

enzymes.  The resulting plasmids were transformed in E. coli strain DH5α.  
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Fig. 3: Cloning strategy to generate CBSV-CP RNAi hairpin constructs.  (A) How different CBSV-

CP gene fragment were amplified.  (B) How the fragments were cloned in the sense and antisense 

orientation in the shuttle vector.  The question marks (?) represent unknown sequences. 

2.2.4.1 Restriction digestion of DNA 

DNA fragments and cloning vectors were prepared for digestion reaction by mixing 

up to 30 µl (~30 ng) of DNA with 2-6 µl of appropriate enzyme buffer, 2-6 µl of 1x 

bovine serum albumin (depending on enzyme requirement), 0.2-4 µl (1u/µl) 

restriction enzyme, and the volume made up to 20-50 µl with double distilled water.  

The digested DNA was always separated by agarose gel electrophoresis and the 

fragments visualized by ethidium bromide staining in UV trans-illuminator.  

Preparations containing DNA fragments of expected sizes were selected and 

purified from the gel for further analysis.  Digestions were done using appropriate 

restriction endonucleases.  XbaI and KpnI were used for cloning gene fragments in 

the sense orientation, while BamHI and BstBI were used for cloning gene fragment 

in the antisense orientation in the vector CGT11003-intron. 

(A) 

(B) 
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2.2.4.2 Ligation of DNA fragments into CGT11003-intron vector 

The vector CGT11003-intron has a Pdk intron derived from the vector 

pHELLSGATE (from Dr. P. Waterhouse, Accession No. AJ311874).  This vector 

provides a convenient system for cloning PCR products amplified with 

oligonucleotide primers containing enzyme restriction sites and „clamp‟ sequences 

(Table 1).  The vector and inserts (FL, CT, and NT) were prepared by digesting 

with restriction enzymes XbaI and KpnI, or BamHI and BstBI, to generate sticky 

ends for cloning sense and antisense PCR amplified fragments, respectively.  The 

cloning was done sequentially starting with the sense fragment, and later the 

antisense fragment.  Isolated plasmids containing PCR fragments were confirmed 

by a combination of enzyme digestion, PCR/colony PCR using specific primers, 

and sequence analysis.  

2.2.5 Cloning of CBSV CP gene for expression 

For expression of CBSV CP, the full-length CP gene (amplified with a primer pair 

containing XhoI & BamHI sites) was cloned in a pUC vector, digested with the 

same enzymes, between 35S CaMV promoter and tNOS terminator.  The 35S 

CaMV promoter-FL-CP-tNOS terminator gene cassette was digested and sub-

cloned in pCambia2300, to generate a construct pCambia2300-CBSV-CP 

(pILTAB721), for transient assay in N. benthamiana.  

2.2.6 Transfer of DNA into Escherichia coli DH5α cells  

2.2.6.1 Culture media  

The bacterial cells used throughout the study were cultured in LB medium (10 g 

Bacto Tryptone, 5 g Bacto Yeast Extract, and 10 g Sodium Chloride, pH 7.0) from 

SIGMA. 

2.2.6.2 Preparation of competent E. coli DH5α cells 

A protocol according to Sambrook et al. (2001) (56) was used to prepare 

competent E. coli DH5α with minor changes.  Small volume of bacterial cells from 

a stock culture was grown in 6 ml LB medium incubated at 37°C with shaking 
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overnight in LB medium.  One ml of the overnight culture was transferred to 100 ml 

of LB to which 1 ml of 10 mM magnesium chloride was added in 500 ml flask and 

incubated at 37°C with vigorous shaking at 200-250 rpm for 2-4 hrs until the OD600 

reached between 0.4-0.6.  The suspension was transferred to ice-cold 30 ml sterile 

centrifuge tubes (SS-34 tubes), centrifuged for 10 min at 4000 rpm at 4°C, medium 

decanted from cell pellet and allowed to stand in an inverted position on a pad of 

paper towels for 1 min to allow the last traces of media to drain away.  The 

bacterial pellet was resuspended by swirling or gentle votexing first in 1-2 ml of 

100 mM ice-cold CaCl2 and then final volume made up to 50 ml and incubated on 

ice for 1 h.  Cells were collected by centrifugation at 4000 rpm for 10 min at 4°C, 

decanted, tubes allowed to stand in an inverted position on a pad of paper towels 

for 1 min to allow the last traces of CaCl2 to drain away and resuspended in 2 ml of 

100 mM CaCl2, containing 20% glycerol (1.2 ml 100mM CaCl2 + 0.8 ml 100% 

glycerol) and incubated at 4°C for 2-10 hrs.  Aliquots (0.1 ml) of this cell 

suspension were dispensed into Eppendorf tubes, quick-freezed in liquid nitrogen 

and stored at -80°C. 

2.2.6.3 Transformation of E. coli DH5α cells 

Plasmid DNA (~200 ng) containing gene fragments of interest were gently mixed 

with 100 µl competent cells (thawed on ice) in a 1.5 ml Eppendorf tube before 

incubating on ice for 30 min.  The cells were subjected to heat shock at 42°C in a 

water bath for exactly 90 s without shaking tubes and chilled immediately on ice for 

1-2 min.  To allow transformed cells to recover and express the antibiotic 

resistance gene/marker encoded by the plasmid, 200-250 µl LB medium was 

added to the tubes and incubated for 45 min to 1 h at 37°C with slow shaking. 100 

µl aliquots of each transformation reaction were plated onto LB agar plates 

containing 100 mg/ml of ampicillin.  The plates were incubated upside down at 

37°C overnight. 

2.2.6.4 Colony and plasmid PCR 

Colony PCR using specific primers was used to determine whether a specific 

colony on a plate had the desired clone.  Colonies of transformed E.coli cells were 
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picked, streaked on master plate and a portion resuspended in 100 µl of LB 

medium, votexed and incubated for 5-10 min at 95°C and 2 µl used for PCR 

reaction.  In addition, plasmid mini preparations were analyzed for the presence of 

inserts using the vector primers flanking the expected fragment.  The PCR product 

was analyzed for presence of DNA fragments by electrophoresis in a 1% agarose 

gel. 

2.2.6.5 Isolation of recombinant plasmid DNA from transformed E. coli 

Plasmid DNA was purified from colonies with desired clones using QIAprep Spin 

Miniprep kit (Qiagen) according to manufacturer‟s instruction.  A single colony of 

bacteria was picked from a freshly streaked selective plate to inoculate a starter 

culture of 5 ml LB medium containing the appropriate selective antibiotic.  The 

culture, in a tube or flask with a volume of at least 4 times the volume of the culture 

was incubated overnight at 37°C with vigorous shaking (approx. 250-300 rpm).  

The bacterial cells were harvested by centrifugation at 4,000 rpm for 10 min at 

4°C, pellets resuspended in 250 µl of buffer P1 (kept at 4°C) and transferred to a 

microfuge tube.  250 µl of Buffer P2 added, mixed thoroughly by inverting the 

sealed tube 4–6 times, and 350 µl of buffer N3 added, mixed immediately and 

thoroughly by inverting 4–6 times, centrifuged at 13,000 rpm for 10 min, 

supernatant containing plasmid DNA removed promptly by pipetting and applied to 

the QIAprep spin column.  The QIAquick spin column was centrifuged for 30–60 s 

in a 2 ml collection tube to bind DNA to the QIAquick column membrane.  The 

flow-through was discarded and the QIAquick column placed back into the same 

tube.  Buffer PE (0.75 ml) was added to wash the QIAquick column and centrifuge 

for 30–60 s, flow-through discarded, QIAquick column placed back in the same 

tube and the column centrifuged for an additional 1 min to completely remove 

residual ethanol.  The QIAquick column was put in a clean 1.5 ml microcentrifuge 

tube, 50 μl buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–8.5) added to the 

center of the QIAquick membrane, the column allowed to stand for 1 min, then 

centrifuged for 1 min to elute DNA 
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2.2.6.6 Sequencing of DNA 

Plasmid DNA samples confirmed by PCR and restriction analysis to have the 

desired genes were sent to PNACL Washington University sequencing facility, 

4559 Scott Avenue Biotech building room 406 Saint Louis, Missouri, USA for 

sequencing 

2.2.6.7 Preparation of glycerol stock cultures 

Permanent cultures of bacterial cells were prepared for clones containing desired 

DNA fragments.  Well grown bacteria culture (800 µl) in media with appropriate 

antibiotic was mixed with 200 µl of sterile glycerol by inverting in 2 ml sterile 

Eppendorf tubes and frozen at -80 C. 

2.2.7 Sub-cloning hpCBSV-CP genes into vector AKK-1420-RNAi-GFP 

The plasmid CGT 11003-intron containing the sense and antisense gene 

fragments of FL, CT and NT were digested with the restriction enzyme AscI to 

release the sense-intron-antisense cassette and the CsVMV promoter and tNOS 

terminator sequences.  The digested plasmids were run on 1% agarose gel and 

cassette extracted and purified.  To clone the cassette in the binary vector AKK-

1420-RNAi-GFP (11), the same enzyme AscI was used to digest the vector 

followed by treatment with calf intestinal alkaline phosphatase (CIP).  The 

cassettes released from CGT 11003-intron vector were ligated into the vector 

AKK-1420-RNAi-GFP to form the plasmids AKK-1420-RNAi-GFP-CBSV-CP-FL 

(pILTAB715), AKK-1420-RNAi-GFP-CBSV-CP-CT (pILTAB717), and AKK-1420-

RNAi-GFP-CBSV-CP-NT (pILTAB716) harbouring hairpin gene constructs for FL, 

CT and NT of CBSV-CP respectively, and assigned pILTAB plasmid codes 

indicated, and also collectively referred to as hpCBSV-CP.  The hpCBSV-CP 

plasmids were transformed directly in A. tumefaciens strain GV3103 for transient 

assay.  Presence of respective genes, FL, CT, and NT were confirmed by PCR 

using gene specific primers, enzyme restriction digestion and sequencing.  
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2.3 Transient Protection Study of CBSV-Derived RNAi and CPMR 

Gene Constructs in N. benthamiana 

2.3.1 Plant material for transient assay 

Transgenic N. benthamiana for GFP (line 16c) were grown under a 28°C/25°C 

day/night period and a 16 h/8 h photoperiod.  For all assays 3- to 5-week-old N. 

benthamiana plants were used. 

2.3.2 Preparation of competent Agrobacterium tumefaciens cells 

Small volume of A. tumefaciens stock culture was used to inoculate 2 ml of LB 

media with appropriate antibiotics and cultured at 28°C on shaker overnight.  The 

2 ml of overnight growth was used to inoculate a 50 ml flask of media with 

antibiotics and incubated on a shaker at 220 rpm, 28°C until OD at 600 nm 

reached 0.6 – 1.  The culture was chilled on ice for 5 min, 30 ml of culture 

transferred to centrifuge tube (pre-cooled to 4°C) and centrifuged at 7,000 rpm at 

4°C for 5 min, supernatant discarded, pellet resuspended in 10 ml of ice-cold 0.15 

M NaCl and incubated on ice for 15 min.  The bacteria suspension was centrifuged 

again at 7,000 rpm and pellet resuspended in 1 ml of ice cold 20 mM CaCl2, and 

dispensed in 100 µl aliquots in sterile, pre-chilled Eppendorf tubes, quick-freezed 

in liquid nitrogen and stored at -80°C. 

2.3.3 Transformation of competent A. tumefaciens cells by 

electroporation  

About 50-100 µl aliquots of competent cells were thawed on ice, 10-50 ng of 

plasmid DNA (either of pILTAB715, pILTAB716, pILTAB717 or pILTAB721) added 

to cells, mixed gently by tapping tubes, transferred into pre-chilled electroporation 

cuvettes and incubated on ice for 10-30 min.  The Gene Pulser unit set to a 

voltage of 2.5 kV, capacitance 25 FD, and resistance low range 200 ohms was 

used to transform A. tumefaciens cells.  Immediately after electroporation, 1 ml of 

LB liquid medium was added to the cell suspension, kept at room temperature for 

1-2 min then incubated horizontally on shaker at 28°C for at least one hour (~180 

rpm).  Cells were centrifuged and 100 l of pelleted cell suspension spread on LB 
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solid medium containing 50 mg/l kanamycin and 100 mg/l rifamycin (for plasmid + 

insert selection).  Cell were incubated at 28°C and allowed to grow for 2- 3 days. 

2.3.4 Confirmation of successful plasmid transfer into A. tumefaciens 

Transformed A. tumefaciens that grew to colonies were sampled and transferred 

into tubes containing 2 ml of LB medium and the relevant antibiotics and incubated 

at 28°C on a shaking platform overnight. Plasmid DNA was isolated from the cell 

culture using “QIAprep Spin Miniprep Kit” (Qiagen) following manufacturer‟s 

instructions.  The isolated plasmid DNA was used to transform competent E. coli 

cells to quickly multiply the DNA, and were later isolated from the E. coli colonies 

for confirmation of clone by restriction analysis and PCR. 

2.3.5 Preparation of A. tumefaciens cultures for agro-infiltration 

Agrobacterium tumefaciens strain GV3103 containing the hpCBSV-CP constructs 

and pILTAB721 were grown overnight at 28°C in 100 ml conical flask containing 

10 ml of LB medium supplemented with 50 μg kanamycin per ml on a shaker (240 

rpm).  Aliquot of 50 μl of this overnight culture was used for inoculation of 10 ml of 

LB medium supplemented with 10 mM MES buffer, pH 5.7, 50 μg kanamycin per 

ml and 150 μM acetosyringone (3,5-dimethoxy-4‟-hydroxy-acetophenone) (68) and 

cultured for 12-20 hrs to an OD600 of 0.5-1.0.  The bacterial cells were centrifuged 

at 6,000 rpm at 4°C for 10 min, washed once with an equal volume of liquid MS 

medium (pH 5.3) and cells pelleted again by centrifugation at 4°C for 10 min.  The 

bacterial pellet was finally resuspended to a final concentration corresponding to 

an optical density of 1.0 (67) at 600 nm in a solution containing 10 mM MgCl2, 10 

mM MES pH 5.7, and 150 μM acetosyringone.  Cultures were incubated at room 

temperature for 2-5 hrs before infiltration. 

2.3.6 Agro-infiltration procedure  

Eighteen N. benthamiana plants at 4-6 leaf stage (21 days old) were infiltrated.  

Fully open 2-3 top-leaves per plant were infiltrated with the culture of recombinant 

A. tumefaciens strain GV3103 on the undersurface of the leaves using a 2-ml 

syringe without a needle.  
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2.3.7 GFP imaging  

Visual detection of GFP fluorescence in whole transient transformed leaves was 

performed using a hand-held long-wavelength ultraviolet lamp.  The transiently 

transformed leaves were photographed with a Digital Camera Nikon Coolpix 995 

Ultra Zoom through a Yellow filter.  

2.3.8 Detection of short RNAs in agro-infiltrated N. benthamiana plants 

To check expression of constructs and determine siRNA levels, leaf samples were 

collected daily from agro-infiltrated plants, siRNA isolated, and analyzed by 

northern-blot as previously described (section 2.1.3.6).  

2.3.9 Virus challenge of agro-infiltrated plants 

Test plants were inoculated with CBSV infectious sap 3 days after agro-infiltration 

and kept in the growth chamber (16 hrs day 28°C; 8 hrs night 25°C; RH 70%).  

Symptom development was monitored daily from 2 days after inoculation for 14 

days.  Disease symptom severity on fully expanded leaves was recorded on a 0-5 

scale as previously described (section 2.1.3.1).  



Ogwok Emmanuel. 2009 UMSL   p. 33 

 

   

Chapter 3 

RESULTS 

3.1  Development of an Efficient System for Mechanical Transmission of 

CBSV to N. benthamiana  

3.1.1 Overview 

To complement the ongoing efforts for CBSD control via conventional breeding, 

cassava cultivars with broad-spectrum resistance to CBSD can be developed 

through genetic engineering using transgene sequences derived from CBSV.  

These constructs need to be transiently evaluated for resistance to CBSV initially 

in a susceptible laboratory host plant prior to transformation into cassava, which is 

a highly laborious and time consuming task.  To develop and deploy CBSD 

resistant germplasm, inoculation techniques that consistently separate resistant 

from susceptible cultivars are a prerequisite.  CBSV transmission rate by Bemisia 

tabaci is very low in laboratory conditions when compared to the field situation 

(45).  Availability of a highly efficient method for mechanical transmission would 

facilitate further understanding of the etiology and biological properties of CBSV.  

The objective of this study was to develop an efficient protocol that ensures 

reliable mechanical transmission of CBSV to N. benthamiana, a widely used 

laboratory host plant for study of several plant viruses.  

3.1.2 Sap transmission of CBSV from cassava to N. benthamiana  

CBSV isolates from four different Ugandan cassava cultivars (I 92/0057, I 95/0087, 

Ebwanateraka and TME 204) were used as source of inoculum for transmission of 

CBSV to N. benthamiana.  The presence of CBSV was confirmed by RT-PCR as 

previously described (section 2.1.1) (Fig. 4).  Symptomatic leaf tissues were 

obtained from CBSV positive plants and used to prepare infectious sap as 

previously described.  The sap was used to inoculate 21-day-old N. benthamiana 

plants. Inoculums from all the cassava cultivars were infectious in N. benthamiana 

but the rate of transmission was low.  For further studies the CBSV isolate from the 

cassava cultivar Ebwanateraka was used to ensure consistency.  Leaf samples 
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from inoculated plants were tested by RT-PCR to confirm transmission of CBSV. 

The CBSV positive plants were maintained as live culture in the growth chamber 

for subsequent sap transmission. 

 

 

 

Fig. 4: CBSV-CP DNA fragment amplified by RT-PCR.  Lane M, 2 kb+ DNA size marker. Lanes 1-

6, cDNA synthesized from CBSV-infected cassava leaf samples from different plants.  Lane +, 

CBSV positive control 

 

3.1.3 Effect of antioxidants on rate of CBSV transmission to N. 

benthamiana 

To offset the oxidation process and thus the production of antioxidants like 

phenolics, which degrade RNA, the antioxidants β-mercaptoethanol and sodium 

sulphite were added to the phosphate buffer.  A transmission rate of 100% (N = 

18) was achieved at 3 to 5 DPI when inoculum was prepared in buffer containing 

the antioxidants, Na2SO3 and β-mercaptoethanol.  By 7 DPI, the final rates of 

transmission were 63.9%, 72.3%, and 80.2% with water, buffer, and buffer 

containing Na2SO3, respectively (Fig. 5). 

3.1.4 Effect of inoculum concentration on CBSV transmission 

The concentration of sap is another important factor that determines successful 

transmission of the virus.  The effect of inoculum concentration on CBSV 

transmission was studied using different sap dilutions.  The rate of CBSV 

transmission decreased with increasing sap dilution.  At dilution 1:5, 61.1% of 

inoculated plants (N = 18) produced symptoms at 3 to 5 DPI (Fig. 6); at dilution 

1:10, 1:20, 1:50, 1:100, 1:500, and 1:1000, transmission rates of 72.3%, 50%, 13.9 

%, 11.1 %, 5.6 %, and 2.8 % resulted, respectively (Fig. 6).  

~200bp 

M           1          2         3         4          5          6         + 
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Fig. 5.  Sap transmission of CBSV to N.  benthamiana using buffers of different compositions.  Bars 

represent mean incidence from two trials at 14 days post-inoculation.  Bars marked with the same 

letter are not significantly different from each other at P = 0.05. 

 

Fig. 6: Transmission of CBSV to N. benthamiana with sap of varying concentrations. Bars 

represent mean incidence from two trials at 14 days post-inoculation. Bars marked with the same 

letter are not significantly different from each other at P = 0.05. 
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3.1.5 Effect of age at inoculation on efficiency of transmission of CBSV 

to N. benthamiana 

A plants‟ age determines the success of virus transmission and infection. When 

seedlings at different growth stages were inoculated (N = 18), symptoms started 

developing in the majority (50 to 75%) of inoculated plants by 3 to 5 DPI and in the 

rest of the plants symptoms appeared by 7 DPI.  For plants inoculated at 21 days 

after planting (DAP), a final CBSD incidence of 94.4% resulted.  Inoculation with 

plants 28, 35 and 42 DAP resulted into transmission rate of 100% in the three trials 

and 50 to 60% of the inoculated plants developed symptoms at 6 DPI, and by 10 

DPI, the remaining plants produced symptoms.  The average incubation period 

increased with the age of plants inoculated.  In the three inoculation trials, an 

average incubation period of 3.3, 3.1, 4.3 and 5.0 days were required for the 21, 

28, 35, and 42 days old plants respectively (Fig. 7).  Symptoms in the plants 

inoculated after flowering stage (42 DAP) were less prominent in the beginning 

though eventually it became severe.  It took an average of 5.0 days for symptoms 

to clearly develop.  

Fig. 7: Transmission of CBSV to N. benthamiana plants of varying age. Bars represent mean 

incubation days from three trials (N = 18). Bars marked with the same letter are not significantly 

different from each other at P = 0.05. 
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3.1.6 Effect of age of inoculum source plants on transmission of CBSV 

to N. benthamiana 

When seedlings were inoculated with sap from 14-day-old infected leaf tissues, 

19.5% of the inoculated plants were infected (Fig. 8).  However, inoculum from 28, 

42, 56, 70 and over 80 days old infected leaf tissues resulted in 38.9, 41.7, 55.6, 

94.5, and 100% infection respectively, in the two trials (Fig. 8).  

 

Fig. 8: Transmission of CBSV to N. benthamiana from inoculum source plants varying in age.  Bars 

represent mean incidence from two trials at 14 days post-inoculation.  Bars marked with the same 

letter are not significantly different from each other at P = 0.05. 

3.1.7 Effect of temperature on CBSV transmission and expression 

Temperature is known to greatly influence plant virus interactions.  To determine 

its effect on CBSV infectivity and symptom severity, N. benthamiana plants 

inoculated with CBSV infectious sap were kept at varying temperature conditions 

while keeping the other factors fairly constant.  The symptom severity of CBSV in 

inoculated plants increased with increase in temperature (Fig. 9A) while the 

average incubation period decreased with increasing temperature (Fig.10B).  

When seedlings were inoculated and kept in the temperature chamber maintained 

at 21°C, symptoms started developing in the majority (>60%) of plants by 6 to 8 
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DPI and in the rest of the plants symptoms appeared by 11 DPI.  The average 

incubation period was 7.1 days (Fig. 9B).  When plants were inoculated and kept 

at 25°C, over 60% of the inoculated plants developed symptoms at 5 DPI, and by 

10 DPI, the remaining plants produced symptoms.  The average incubation period 

was 5.2 days (Fig. 9B).  At 27°C, up to 50% of the inoculated plants developed 

symptoms at 4 DPI, and by 9 DPI, the remaining plants produced symptoms.  The 

average incubation period was 4.4 days (Fig. 9B).  At 30°C over 60% of the 

inoculated plants developed symptoms at 3 DPI, and by 5 DPI, the remaining 

plants produced symptoms.  The average incubation period was 3.6 days (Fig. 

9B).  

3.1.8 Analysis of virus-derived siRNA in CBSV inoculated plants at different 

temperatures  

To determine how fast CBSV-derived siRNA accumulate at 21, 25, 27, and 30°C, 

leaf samples were collected from the inoculated plants of the previous temperature 

experiment (section 2.1.3.5) for a period of 14 days commencing a day after 

inoculation.  Analysis of the siRNA levels showed that plants kept at 30°C 

accumulated siRNA faster than plants kept at 21°C (Fig. 10).  The siRNA 

accumulation corresponded with the days to onset of symptom expression at the 

respective temperature conditions.  These results indicate that higher temperature 

favor CBSV transmission and expression.  Taken together, these results show that 

buffer composition, inoculums source and concentration, plant age, and 

temperature of growth environment play vital roles in CBSV transmission and 

disease progress. 
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Fig. 9: Progress in expression of symptoms incited by CBSV in 21-day-old N. benthamiana at 

different temperatures.  (A), changes in severity over time.  (B), mean number of days to first 

appearance of symptoms.  Bars marked with the same letter are not significantly different from each 

other at P = 0.05.  
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Fig. 10:  The levels of viral siRNA accumulation in infected tobacco plants in four temperature 

conditions: 21°C, 25°C, 27°C, and 30°C.  (A) Northern blots using CBSV CP specific probe.  (B) 

Graphical representation of densitometric values of siRNA band intensity in (A) obtained using 

ImageJ software.  

3.2 Construction of CBSV-Derived RNAi and CP Genes Constructs  

3.2.1  Overview 

Pathogen-derived resistance approaches have been used to develop to 

commercial level virus resistant crop plants such as squash, potato and papaya. 

Many of the viruses controlled by PDR approaches such as TSWV, TEV, TMV, 

PVY, and PRSV belong to the family Potyviridae, to which CBSV is a member 

(36). Thus, CBSV is an appropriate target for PDR strategy.  The aim of this study 

was to develop gene constructs tailored to confer resistance to CBSD through 

RNAi and CPMR.  The full-length CP gene and its N-and C-terminal regions were 

used to generate three RNAi (hpRNA) constructs in addition to a construct for 
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expression of full-length CP gene for CPMR studies.  Plants transformed with 

hpRNA constructs produce visible or measurable silencing effect in 70–100% of 

the resulting plants (18, 72), and are stably inherited from generation to 

generation, thereby enabling the continued study of a phenotype.  

3.2.2 Amplification of CBSV-CP fragments by RT-PCR 

Several sets of primers were designed from the published CBSV sequence 

(GenBank accession No. AY007597) using the Gene Runner computer program 

(Table 1).  The primers, CBSV 10F (5‟-ATC AGA ATA GTG TGA CTG CTG G-3‟) 

and CBSV 11R (5‟-CCA CAT TAT TAT CGT CAC CAG G-3‟) previously designed 

by Monger et al (2001) were used as control primers to confirm presence or 

absence of CBSV in samples (49) (Fig. 4).  

The full-length, N- and C-termini of CBSV CP were amplified in the sense 

orientation using the primer sets CP-FL-XbaI-F and CP-FL-KpnI-R, CP-CT-XbaI-F 

and CP-CT-KpnI-R, and CP-NT-XbaI-F and CP-NT-KpnI-R that introduced an 

XbaI site and an KpnI site at the 5‟-ends and the 3‟-ends, respectively.  The 

antisense fragments were amplified using the primer sets CP-FL-BamHI-F and 

CP-FL-BstBI-R, CP-CT-BamHI-F and CP-CT-BstBI-R, and CP-NT-BamHI-F and 

CP-NT-BstBI-R that introduced a BamHI site and a BstBI site at the 5‟-ends and 

the 3‟-ends, respectively.  The expected fragment sizes were 908 bp, 503 bp, and 

402 bp for the full-length, C- and N-termini of CBSV CP, respectively.  The 

amplified fragments were resolved by electrophoresis in 1% agarose gel.  A DNA 

size marker (1 kb+, Invitrogen) was included in each gel for comparison of DNA 

fragment sizes.  Fragments were visualized by UV irradiation (302 nm) and gel 

pictures taken using Alpha Inotech AlphaImagerTM 2200 gel documentation 

system.  The observed fragment sizes matched with the expected sizes (Fig. 11). 

For expression of CBSV CP, the primer pair CP-FL-XhoI-F and CP-BamHI-R was 

used and introduced XhoI and BamHI restriction sites at the 5‟-end and the 3‟-end, 

respectively.  
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Fig. 11: Amplification of CBSV-CP gene fragments using specific primers. Lane M, 2 kb+ DNA 

size marker.  Lanes 1-3, cDNA synthesized from CBSV-infected cassava leaf samples from cultivar 

Ebwanateraka.  (A) Full-length CP gene fragment, (B) N-terminal, and (C), C-terminal gene 

fragment.  

3.2.3 Construction of the hairpin CBSV-CP gene (hpCBSV-CP) 

The resulting PCR fragments were run in 1% agarose gel, extracted from the gel, 

purified and digested with XbaI and KpnI, or BamHI and BstBI for the sense and 

antisense fragments, respectively.  The cloning strategy shown in figure 12 was 

followed.  The fragments were sequentially cloned, one fragment at a time, into 

CGT11003-intron vector at the corresponding sites, forming the sense-intron-

antisense cassettes for the full-length, N- and C-termini of CBSV-CP, respectively 

(Fig. 13 A-C).  The restriction enzyme AscI was then used to digest and release 

the cassette, including the CvMV promoter and tNOS terminator regions, from the 

plasmid.  The entire cassettes containing the promoter and terminator regions 

were cloned into the vectors AKK-1420, into the AscI site (Fig. 13 D-F), and into 

SmaI site in pCambia2300 after blunt ligation of the cassette using Klenow DNA 

polymerase (Fig. 13 G-I).  A total of seven different constructs were therefore 

generated, three hairpin constructs in AKK-1420 (pILTAB715, pILTAB716, and 

pILTAB717, corresponding to the plasmids AKK-1420-RNAi-GFP-CBSV-FL, AKK-

1420-RNAi-GFP-CBSV-CT, AKK-1420-RNAi-GFP-CBSV-NT, respectively) (Fig. 

13 D-F), and four (three hairpin constructs, and a CP expression construct) in 

pCambia2300 (pILTAB718, pILTAB719, pILTAB720, and pILTAB721, 

corresponding to the plasmids pCambia2300-RNAi-CBSV-FL, pCambia2300-

(A) (B) (C) 

M      1       2      3 M       1      2       3 M      1       2     3 

~0.9 kb 

~0.4 kb ~0.5 kb 
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RNAi-CBSV-CT, pCambia2300-RNAi-CBSV-NT, and pCambia2300-CBSV-CP, 

respectively) (Fig. 13 E-I and Fig. 14).  Presence of inserts was confirmed by PCR, 

restriction analysis, and sequencing. 

3.2.4 Construction of the CBSV-CP expression cassette 

The RT-PCR fragments amplified using the primer pair CP-FL-XhoI-F and CP-

BamHI-R was purified from the gel, digested with restriction enzymes XhoI and 

BamHI, and cloned in a pUC19 vector at the corresponding sites, between 

CaMV35S promoter and tNOS terminator, forming the CaMV35S-promoter-FL-CP-

tNOS-terminator gene cassette (Fig. 14).  The restriction enzymes HindIII and SacI 

were used to digest and release the cassette, including the CaMV35S promoter 

and tNOS terminator regions, from the plasmid.  The released cassette was cloned 

in pCambia2300, in the corresponding restriction sites (HindIII and SacI sites), to 

generate a construct pCambia2300-CBSV-CP (pILTAB721) (Fig. 14). 
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Fig.12: Flow diagram showing vector maps and approach used to clone hpCBSV-CP genes (using 

CBSV-CP-CT as example) 
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Fig. 13:  Vector maps showing positions of cloned CBSV-CP genes.  (A) Full-length CBSV-CP 

cloned in sense and antisense orientation in vector CGT11003-intron.  (B) N-terminal CBSV-CP 

gene fragment cloned in sense and antisense orientation in vector CGT11003-intron.  (C) C-

terminal CBSV-CP gene fragment cloned in sense and antisense orientation in vector CGT11003-

intron.  (D) Full-length CBSV-CP cassette sub-cloned in vector AKK-1420.  (E) N-terminal CBSV-

CP cassette sub-cloned in vector AKK-1420.  (F) C-terminal CBSV-CP cassette sub-cloned in 

vector AKK-1420.  (G) Full-length CBSV-CP cassette sub-cloned in vector pCAMBIA2300.  (H) N-

terminal CBSV-CP cassette sub-cloned in vector pCAMBIA2300.  (I) C-terminal CBSV-CP cassette 

sub-cloned in vector pCAMBIA2300. 
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Fig. 14: Vector maps showing cloning of CBSV CP for CP expression.  (A) Cloning CBSV CP in 

vector pUC19.  (B), cloning CBSV CP expression cassette in vector pCambia2300  

3.3 Transient Protection Study of CBSV-Derived RNAi and CP Gene 

Constructs in N. benthamiana 

3.3.1 Overview 

Transgenes can be introduced into plant cells by either microprojectile 

bombardment, or through Agrobacterium-mediated gene expression system (65, 

70) to generate stably or transiently transformed plants (section 1.12).  For this 

study, a transient protection assay protocol previously developed by Wydro et al 

(73) for expressing genes in leaves of N. benthamiana was used.  Transgenic N. 

benthamiana for GFP and A. tumefaciens strains GV3103, transformed with the 

recombinant binary vector, AKK-1420-RNAi-GFP, harboring hairpin gene encoding 

plasmids pILTAB715, pILTAB716, pILTAB717 or pILTAB721 were used in 

transient vaccination studies.  Two to three top-leaves of N. benthamiana plants at 

4-6 leaf stage were infiltrated with culture of recombinant A. tumefaciens strain 

GV3103 on the undersurface of the leaves using a 2-ml syringe without needle.  

The test plants were sap-inoculated with CBSV after agro-infiltration and kept in 

the growth chamber.  CBSD symptoms on fully expanded leaves were assessed 

daily after 2 days of sap inoculation for a minimum of 2 weeks on a scale 
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previously described (section 2.1.3.1).  The aim of this study was to evaluate the 

level of expression of the CBSV-derived gene constructs and their potential to 

protect against CBSV in transiently transformed N. benthamiana before stable 

transformation into cassava which is a time consuming and labor intensive task. 

3.3.2 Plant material for transient assay 

N. benthamiana plants which have been stably transformed with the sense and 

antisense genes for GFP (line 16c) were grown as previously described and used 

as control to check for GFP silencing by the hpCBSV-CP constructs.  

3.3.3 Preparation of A. tumefaciens cells for Agro-infiltration 

Suspensions of competent A. tumefaciens strain GV3103 were prepared as 

described (section 2.3.2).  The cells were transformed with the plasmid DNAs of 

pILTAB715, pILTAB716, pILTAB717 or pILTAB721 as described (section 2.3.3). 

Plasmids were isolated from transform cells and analyzed by PCR and restriction 

digestion to confirm presence of target genes before use in transient assay 

(Fig.15).  Suspensions of recombinant A. tumefaciens cells containing plasmids 

pILTAB715, pILTAB716, pILTAB717 or pILTAB721 were prepared (section 2.3.5) 

and infiltrated into leaves of test plants.  

 

 

 

 

 

 

 

 

Fig. 15: PCR and Restriction analysis to confirm presence of pILTAB plasmids in transformed A. 

tumefaciens strains GV3103 and LBA4404.  (A, B and C) PCR reactions using primers specific to 

FL (A), NT (B) and CT (C) of CBSV-CP.  (D) Restriction digestion of cassettes in vector 

pCambia2300 using XbaI.  Lanes M =1kb+ DNA marker, lanes + = positive controls.  (A) Lanes 1-8 

= pILTAB715; (B) lanes 1-6 = pILTAB716; (C) lanes 1-8 = pILTAB717; (D) Lanes 1-4 = pILTAB720, 

lanes 5-8 = pILTAB719, lanes 9-12 = pILTAB718. 
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Fig. 16:GFP visualization of N. benthamiana in white light and UV illumination.  (A) Non-infiltrated 

transgenic N. benthamiana in white light.  (B) Non-infiltrated N. benthamiana in (A) under UV 

illumination.  (C) N. benthamiana infiltrated with GFP construct and challenged with CBSV-

infectious sap 3 DPI as seen in white light condition.  (D) N. benthamiana in (C) under UV 

illumination.  (E) N. benthamiana infiltrated with pILTAB715 and challenged with CBSV-infectious 

sap 3 DPI seen in white light.  (F) N. benthamiana plant in (D) under UV illumination 

 

3.3.4 Agro-infiltration 

Suspensions of recombinant A. tumefaciens strain GV3103 containing ~150 μM 

acetosyringone (to induce virulence) were used to infiltrate 2-3 fully open top-

leaves per test plant using a 2-ml syringe without a needle.  

3.3.5 GFP imaging 

The agro-infiltrated plants were visually checked for GFP fluorescence in whole 

transient transformed leaves with the aid of a hand-held long-wavelength 

ultraviolet lamp.  The transiently transformed leaves were photographed with a 

Digital Camera Nikon Coolpix 995 Ultra Zoom through a Yellow filter (Fig. 16).  

Non-infiltrated plants showed no GFP silencing while plants infiltrated with either 

GFP control construct or either of the hpCBSV-CP constructs showed clear GFP 

silencing.  This indicated that the constructs were being expressed.  
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3.3.6 siRNAs accumulation in Agro-infiltrated plants 

To further check expression of constructs and determine siRNA levels, leaf 

samples were collected daily from agro-infiltrated plants, siRNA isolated, and 

analyzed by northern-blot as previously described (section 2.1.3.6).  The results 

revealed that siRNA levels accumulated fairly rapidly in the first three days and 

then stabilized (Fig. 17B). 

3.3.7 Virus challenge of agro-infiltrated plants 

To determine the best day for challenging the plants after agro-infiltration, 

preliminary challenging of test plants was performed.  Six trays each containing 18 

N. benthamiana plants were separately infiltrated with recombinant A. tumefaciens 

harboring GFP (control) or pILTAB715 plasmids.  The agro-infiltrated plants were 

inoculated with CBSV infectious sap, one tray a day for six consecutive days 

beginning a day after agro-infiltration.  Symptom development was monitored daily 

from 2 days after inoculation for 14 days.  Disease symptom severities on fully 

expanded leaves were recorded on a 0-5 scale as previously described (section 

2.1.3.1).  The results indicated that the third day offered higher level of protection 

against the virus, corresponding to the siRNA analysis results (Fig. 17A).  The 

subsequent challenging experiments were therefore performed three days after 

agro-infiltration of plants with the constructs, for all four constructs at a time.  

Symptom development was monitored daily commencing two days after virus 

challenge and the percentage of CBSV-protected plants for each construct 

determined.  The results of three independent experiments showed very high level 

of protection for all the constructs with 12.8% escape plants (GFP, control) and up 

to 79.8%, 80.6% 74.6% and 70.3% protection for the pILTAB715, pILTAB716, 

pILTAB717 and pILTAB721 constructs, respectively (Fig. 18).  
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Fig. 17: Preliminary challenging of test plants with recombinant A. tumefaciens harboring GFP 

(control) or pILTAB715 (31) plasmids.  (A) Mean CBSD incidence at different days after challenge.  

Bars marked with the same letter (a-c, or x) are not significantly different from each other at P = 

0.05. (B) siRNA accumulation over time (1-6 days) after agro-infiltration of test plants with 

constructs. 

 

 

 

 

 

 

 

Fig. 18: Level of protection offered by different CBSV-derived constructs against CBSV in transient 

protection assay in N. benthamiana.  Bars marked with the same letter are not significantly different 

from each other at P = 0.05. 
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Chapter 4 

DISCUSSION 

4.1  Sap Transmission of CBSV to N. benthamiana  

Plant viruses are transmitted mostly by insect vectors, in seeds, or by mechanical 

means. Insect vectors transmit viruses by feeding on infected plant tissues and 

later on uninfected plants. Mechanical inoculation occurs when sap from infected 

plant tissues come in direct contact with tissues of uninfected plants. Several 

factors influence the rate of transmission and ability of the virus to cause infection 

in a host plant. This study has identified important factors that influence sap 

transmission of CBSV to host plants including buffer composition, age of inoculum 

source plants, age of plants at inoculation, and temperature of growth environment 

after inoculation (42).   

The rate of sap transmission of CBSV from cassava to N. benthamiana was low 

compared to between N. benthamiana.  This was reported by Lister (38) who 

showed that within cassava plant the virus is at low concentration (especially in 

developing leaves), a situation that was confirmed by Monger et al when they only 

detected the virus in radioactively probed dot blots of artificially infected N. 

benthamiana and not in infected cassava (49).   

Use of the two antioxidants Na2SO3 and β-mercaptoethanol together in the 

extraction buffer improved the transmission rate of CBSV.  The β-mercaptoethanol 

may have reduced the oxidation process and thus the production of antioxidants 

like phenolics, which degrade RNA.  Carborundum is a commonly used abrasive 

for sap transmission of plant viruses to produce sub lethal injury and to overcome 

the physical barrier on the leaf lamina.  Gentle rubbing of inoculum with the 

abrasive did not cause lethal damage to the assay plants. 

The concentration of sap determines its infectivity, which reflects that high virus 

titers are required for successful transmission of the virus. Infectivity was high at 

higher concentration but gradually reduced on dilution and by dilution 1:1000 the 
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sap was almost non-infective, thus indicating that the virus titer was not above the 

threshold levels to cause infection.  Sap dilution up to 1:10 gave highest rate of 

transmission and therefore, it is good concentration range for mechanical 

transmission of CBSV. 

The age of the plant is also a very important criterion for successful virus 

transmission and infection.  The N. benthamiana plants of 21 days old or less were 

readily infected, but the sap inoculation caused severe damage when the abrasive 

was applied on the very tender leaves of these very young plants.  But, at 28 DAP, 

with the lamina expanded, it was easier to apply the inoculum by rubbing without 

causing much mechanical injury, and thus a higher transmission rate was 

achieved.  Inoculation of older N. benthamiana plants also resulted in higher 

transmission rates, but again application of sap was not convenient due to very 

thick lignified leaves, which hindered smooth sap application.  Therefore, 28-day-

old N. benthamiana plants were found to be ideal for mechanical inoculation, 

considering the transmission level and the ease with which sap inoculation can be 

done.  Evaluation of susceptibility of N. benthamiana at various growth stages 

(pre- and post flowering stages) revealed that infection at early stages of growth 

produced severely stunted plants, whereas inoculation at post flowering stages did 

not cause obvious reduction in plant height, which is also true for other plant 

viruses.  The rate of transmission and average incubation days increased 

significant with age.  

The transmission rate increased gradually up to 100% with increased inoculum 

source plant age.  Inoculation of test plants with sap prepared from younger plants 

gave lower rate of infection compared to sap prepared from older plants although 

both plants showed severe CBSD symptoms.  The RT-PCR analysis of individual 

leaves of a CBSV infected plant showed that the older leaves had a higher virus 

titer compared to the younger symptomatic leaves, thus supporting above 

observations.  This is opposite of most plant viruses with no obvious explanation 

and require further investigation.   
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Environmental factors greatly influence plant virus interactions. This study 

indicates that infectivity and symptom severity of CBSV are highly influenced by 

temperature.  The average incubation period of CBSV in inoculated plants 

decreased significantly with increased temperature and symptom severity 

increased with increasing temperature and this was confirmed by molecular 

analysis of the virus-derived siRNA accumulation over time.  This unusual behavior 

for plant viruses is however not restricted to CBSV and has also been 

demonstrated for CVYV, another ipomovirus, which was reported to have infected 

all tobacco plants exposed to 37°C, while plants kept at 16°C were not infected 

(45).  Thus, it is not surprising that the re-emergence of CBSD in Uganda could 

have been due to changes in weather, especially the frequent occurrence of the 

unusually prolonged hot and dry seasons in the recent years (2).  However the 

behavior of CBSV and CVYV seem to be contrary to other viruses earlier 

investigated.  In virus-infected plants, high temperature has been frequently 

associated with attenuated symptoms (heat masking) and with low virus content 

(29).  By contrast, low temperature is often associated with rapid spread of virus 

diseases and the development of severe symptoms (15, 24).  Thermotherapy has 

been a method of choice to free vegetative material from infected viruses (43), but 

whether it can be effective for CBSV control remains unknown given its response 

at higher temperatures.  The underlying molecular mechanism behind the effect of 

temperature on CBSV is not yet understood.  For instance, increasing temperature 

dramatically elevated virus-derived siRNA accumulation of Cymbidium ring spot 

virus (CymRSV; a positive sense ssRNA virus), resulting in less symptom 

development (60).  It is probable that other mechanisms control the accumulation 

of CBSV at high temperatures and therefore this needs further investigation.  

Evaluation of several factors affecting the sap transmission of CBSV to N. 

benthamiana resulted in development of a highly efficient protocol using infected 

tissue from different host plants such as cassava and tobacco.  In the present 

study, a single isolate of CBSV was used to evaluate the inoculation procedure.  

Transmission variability may exist among the isolates originating from different 
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places and different plant species, and the present procedure has not been 

examined for a lot of other CBSV isolates.  The inoculation methods described 

here was used to rapidly evaluate CBSV-derived gene constructs for CBSD 

resistance in N. benthamiana and can be used to evaluate other gene constructs 

for virus resistance to accelerate breeding programs for developing CBSV 

resistant cultivars. 

4.2 Construction of CBSV-Derived hairpin genes 

PTGS using gene constructs encoding self-complementary hairpin RNA of viral 

origin have been demonstrated to efficiently control viral infection in plants (8, 72).  

The double-stranded RNA produced by the self-complementary single stranded 

hairpin RNA in which the double stranded region has the same sequence as part 

of the target viral mRNA incite sequence specific RNA degradation (17).  The 

degradation results in silencing of all targeted genes irrespective of whether it is 

viral gene, transgene or endogenous gene, and the silencing is usually uniform 

within tissues in which the hpRNA is expressed (72).  Intron-spliced hpRNA 

constructs in particular have been shown to offer higher proportion of silencing in 

transformed plants than intron-free hpRNA constructs (72).  In an attempt to 

generate plants with protection against CBSV, a very serious and rapidly 

spreading virus of cassava in Africa, CBSV-derived sequences were used to 

generate hairpin RNA constructs consisting of an inverted repeat of the full-length, 

N- and C-terminal fragments of the CP gene sequence separated by an intron.  

The primer design and use of the vector CGT-intron eased cloning to produce 

CBSV-derived hairpin RNA constructs for all the amplified gene fragments.  

Addition of the clamp sequences and restriction sites to primer sequences did not 

affect amplification of the PCR products as these were of good yield and expected 

sizes as compared to the molecular size marker.  The length of amplified 

fragments (402 bp, 503 bp and 908 bp) were decided based on the 

recommendation that gene fragments ranging from 50 bp to 1kb (especially 

between 300 bp to 800 bp) are suitable for successful silencing of genes (17), and 

also the published CBSV-CP sequence excluding the poly(A) region fall within this 
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range (~900 bp).  The vector CGT-intron have been designed to allow directional 

insertion of gene fragments into an inverted repeat conformation separated by an 

intron into the multiple cloning sites located on either sides of the intron. Similar 

cloning strategies have been used before with convincing results (8, 72).  Gene 

fragments containing the hairpin RNA cassettes, including the promoter and 

terminator regions were digested using the restriction enzyme AscI and sub-cloned 

into the binary vectors AKK-1420 and pCambia2300 and used for transformation. 

4.3 Transient assay of CBSV-Derived Gene Constructs in N. benthamiana 

Since natural resistance against CBSV gives inadequate control of the disease 

and cassava breeding takes a long time, it is imperative that alternative 

approaches be used to deal with the problem.  The improvement of 

Agrobacterium-mediated transient expression system is an important tool to test 

expression of constructs before generation of transgenic plants, which is difficult 

for many plant species and notably cassava (73).  In this study, gene constructs for 

CBSV resistance developed as discussed above were tested in N. benthamiana 

using the Agrobacterium-mediated transient transformation system.  The GFP 

gene was used as a sensitive internal control to visualize transient expression in 

transformed tissues.  The plasmids pILTAB715, pILTAB716, pILTAB717, and 

pILTAB721 were introduced into A. tumefaciens strain GV3103 by direct 

transformation.  When suspensions of the recombinant A. tumefaciens was 

infiltrated into leaves of N. benthamiana and check for GFP silencing 3-4 days 

later, plants infiltrated with either GFP control construct or hpRNA constructs 

showed clear GFP silencing compared to non-infiltrated plants.  Similar GFP 

silencing results were reported by Wydro et al (2006) (73).  

When the transiently transformed plants were challenged with the virus three days 

after infiltration with recombinant Agrobacterium harboring CBSV-derived hpRNA 

constructs, over 70% of plants showed no symptoms of CBSD.  Plants infiltrated 

with GFP control construct or non-infiltrated plants challenged with the virus were 

almost always totally infected.  There was no significant difference in levels of 

protection offered by the four CBSV-derived constructs.  These results suggest 
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that the plants were protected against CBSV.  However, these constructs need to 

be tested with different isolates and/or strains of CBSV to check whether they can 

confer protection against the isolates/strains.  Thus far, the four constructs are 

potentially good for developing transgenic cassava for further evaluation for 

protection against CBSD.  

4.4 Conclusion 

In this study a non-vector based method of CBSV transmission to N. benthamiana, 

a laboratory host plant for many plant viruses has been optimized.  Besides, a 

transient assay protocol that effectively works to test transgenes targeting CBSV 

resistance in the host plant N. benthamiana has been developed.  It is hoped that 

the optimization of the techniques reported here could stimulate focused research 

to better understand and manage CBSV.  In addition, CBSV-derived constructs 

have been generated and tested using these techniques with exciting results.  The 

four constructs designed to target mRNA of CBSV provided high levels of 

protection against CBSV and are therefore highly recommended for further 

evaluation and eventually for use to improve farmer preferred cassava landraces.  

The constructs may be stably transformed in to cassava tissues through 

Agrobacterium-mediated gene transfer system.  Hopefully, this may translate into 

development of CBSV immune or resistant transgenic lines of farmer preferred 

cassava landraces which succumbed to CBSD and lead to improved food security 

and economic status of the rural communities that majorly rely on cassava. 
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