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Abstract 

Synthesis of Cyclic Enolphosphonates and Enolphosphates as Inhibitors 

of Serine Hydrolases 

Benjamin P. Martin 

Doctor of Philosophy 

University of Missouri-St. Louis 

Prof. Christopher D. Spilling, Advisor 

 

Cyclophostin (1) is a potent naturally occurring inhibitor of acetylcholinesterase (AChE) 

with a novel bicyclic enolphosphate structure.  The cyclipostins (e.g. 2) are a family of 

potent hormone-sensitive lipase inhibitors (HSL) which share the same bicyclic 

enolphosphate core structure with cyclophostin which but differ primarily in that they are 

long-chain alkyl phosphate esters.  Due to the novelty of the inhibitor structure, potency, 

and ability to select between two serine hydrolase enzymes with a simple change in the 

ester substituent, the ongoing structure activity relationship investigation of this family of 

inhibitors was continued.   
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An α,α-difluorophosphonate monocyclic analog (3) was prepared to investigate the 

possibility of enhancing the potency of these inhibitors.  A monocyclic phosphate analog 

(4) was prepared in order to provide, in conjunction with a previously synthesized 

phosphonate analog, a first recorded direct comparison of α,α-difluorophosphonate esters, 

phosphate esters, and phosphonate esters as inhibitors of serine hydrolases.  The results 

indicated that phosphates are most active against AChE and that α,α-

difluorophosphonates show very little inhibition.  Methods of transesterification were 

investigated in order to prepare new analogs of the cyclipostins for testing against HSL.  

Direct comparison of compounds 5 and 6 and a phosphonate analog followed the same 

trend as was observed for AChE inhibition.  Lipase inhibitors synthesized for inhibition 

of HSL were submitted for activity against Mycobacterium tuberculosis (M. tb.).  

Inhibitor 6 was found to be active against the bacterium, but unable to inhibit growth in 

infected macrophages.  Finally, approaches to the synthesis of a fluorescent analog (7) of 

an existing phosphonate inhibitor were investigated in order to probe the mechanism by 

which these compounds inhibit the growth of M. tb. 
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Chapter 1 : Introduction 

 

I. Serine Hydrolases 

1.  Background 

The serine hydrolase superfamily is one of the largest and most diverse classes of 

enzymes and includes lipases, esterases, proteases, amidases, and peptidases.  While 

their roles in biology are extensive, the function of many is still unknown.  The 

active sites within this family may vary extensively with respect to amino acid 

sequence, but the morphology of the active site, described as an α/β hydrolase fold, 

and a catalytic triad, consisting of Ser, His, and Asp or Glu, is common to the family 

as a whole.1.1  Also adjacent to the catalytic serine is a binding domain called the 

oxyanion hole, composed of hydrogen-bonding residues oriented toward the binding 

site (Figure 1.1).  This domain stabilizes the tetrahedral intermediate enzyme-

substrate complex through hydrogen bonding to the oxyanion.   

 

Figure 1.1: Serine hydrolase active site 
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By reducing the energy of the intermediate, the activation energy of the hydrolysis 

reaction is reduced, accounting for the catalytic properties of these enzymes.  A full 

catalytic cycle is depicted in Scheme 1.1 of hydrolysis of an ester by Candida 

rugosa lipase.1.2 

  

Scheme 1.1 

 

 

Other aspects of enzyme sequence and morphology, particularly within the active 

site, are responsible for diversity of enzyme specificity toward esters, lipids, proteins, 
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etc., but also for selectivities within these classes.  Esterases catalytically hydrolyze 

ester bonds of solution-phase substrates, and the active site morphology influences 

the selectivity of an enzyme by having particular amino acid sequences which 

accommodate the moieties present in its natural substrate.  The stereomorphology of 

the active site largely influences any enzyme stereopreference.1.2  

Acetylcholinesterase (AChE), in particular, possesses a gorge lined with aromatic 

residues which is believed to interact with the quaternary ammonium moiety of 

acetylcholine through extensive π-cation interaction.1.3  Lipases differ from esterases 

in that they hydrolyze the ester bonds of water-insoluble substrates at an oil/water 

interface1.4 and possess a surface in the catalytic site composed of hydrophobic 

amino acid residues which accommodate longer alkyl substituents than the 

corresponding domains in esterases.1.5    Proteases catalyze the hydrolysis of amide 

bonds in peptide sequences and have active sites bearing residues which interact with 

the substrate’s peptide sequence.  

 

2. Enzyme Inhibition 

The central role of serine hydrolase enzymes in biological functions makes them key 

targets in the treatment of numerous physiological disorders such as Alzheimer’s 

disease,1.6 chronic obstructive pulmonary disease (COPD),1.7 tuberculosis,1.8,1.9 and 

other diseases.  Inhibition of hormone-sensitive lipase (HSL) reduces free fatty acid 

(FFA) plasma levels but also has been shown to reduce blood glucose levels, making 

it a desirable target for diabetes treatment.1.10  Because of the ubiquity of serine 
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hydrolase enzymes, it is important that any medicinal inhibitor be selective for the 

enzyme or enzymes targeted in order to achieve a useful therapeutic index.   

 

While there are known cases of inhibitors non-covalently binding to positions other 

than the catalytic site1.6 (e.g. allosteric and noncovalent competitive inhibition) the 

mode of inhibition which most typifies serine hydrolase research is covalent bond 

formation to the catalytic serine (covalent competitive inhibition).  This mode can be 

divided into two classes: reversible inhibition and irreversible inhibition.  Reversible 

inhibitors take advantage of the oxyanion stabilizing features of the enzyme by using 

moieties which form very stable, slow-hydrolyzing charged tetrahedral complexes 

with the catalytic serine.  Enzymes inhibited in this way can be reactivated by 

reducing the inhibitor concentration or by increasing substrate concentration.  

Irreversible inhibitors employ materials which alkylate, phosphorylate, or acylate the 

catalytic machinery such that the stable, uncharged complexes are not hydrolyzed 

readily, if at all (k-2 ≈ 0, Equation 1.1).1.11 

 

Equation 1.1 

 
E: Enzyme; I: Inhibitor; E.I.: noncovalent enzyme inhibitor binding; E-I: covalent binding1.11 
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II. Reversible Inhibitors 

1. α-Halomethylketones 

Activated carbonyl moieties such as trifluoromethyl ketones (TFKs) inhibit serine 

hydrolase enzymes reversibly by forming a tetrahedral adduct with the serine which 

is stabilized by the effect of adjacent electron withdrawing substituents (Figure 1.2).  

This strategy of inhibitor design is understandably diverse, reflective of the potential 

number of possible electron-withdrawing substituents. 

 

Figure 1.2: Reversible covalent serine hydrolase inhibition 

 

 

Patricelli, et al.1.12 discovered that 2-octyl-γ-bromoacetoacetate (1.1, Table 1.1), a 

naturally-occurring compound known to affect sleep, 1.13 is an inhibitor of fatty acid 

amide hydrolase (FAAH) with an IC50 value of 2.6 µM.  Previous studies led them to 

anticipate that the α-haloketone would be an irreversible inhibitor (see 1.III.4. α-

Halomethylketones).  However, inhibition kinetics suggested competitive 

inhibition, and enzyme activity could be restored by anion exchange chromatography 

purification, suggesting that the enzyme-inhibitor adduct is a stabilized tetrahedral 
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anion rather than a SN2 alkylation product. De Petrocellis compared the activity of a 

collection of inhibitors and found arachidonoyl-diazo-methyl-ketone (1.2, Table 1.1) 

to be a mildly potent inhibitor against anandamide amidohydrolase (later identified 

as FAAH) from RBL-1 and N18TG2 cells and porcine brain. 1.14 

 

Table 1.1: Inhibitors of fatty acid amide hydrolase 

 

 

Within this class of inhibitors, the TFKs are the most represented if not always the 

most potent.  Hammock, et al. found 1,1,1-trifluorotetradecan-2-one (1.3, Table 1.2) 

to be a potent (IC50 = 100 nM) inhibitor of crude juvenile hormone esterase (JHE).1.15  

10-Phenyl-1,1,1-trifluoro-2-decanone (1.4, Table 1.2) was found by Boger, et al.1.16 

to be the most potent (IC50 = 120 nM) of numerous TFKs screened against FAAH 

including those previously reported by Koutek, et al.1.17 and Patterson, et al.1.18  A 

series of seventeen 3-heteroarylthio-l,l,l-trifluoro-2-propanones (e.g. 1.5a–d, Table 

1.2) were tested against JHE, acetylcholinesterase (AChE), and yeast lipase (LP) by 

Szèkács, et al.1.19  Ring substitutions such that hydrogen bonding could stabilize the 
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serine adduct were found to be more potent inhibitors of AChE.  However, 3-

octylthio-1,1,1-trifluoro-2-propanone (1.6, Table 1.2) (as reported in a previous 

study1.20) was found to be superior to the aryl-substituted inhibitors against JHE and 

LP. 
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Table 1.2: Inhibitors of juvenile hormone esterase (JHE), fatty acid amide Hydrolase 

(FAAH), acetylcholinesterase (AChE), and yeast lipase (LP) 
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2. α-Ketocarbonyls 

Like α-haloketones, α-dicarbonyls form stable hemiketals with the reactive serine in 

hydrolase enzymes.  Patterson, et al. compared inhibiton of a number of inhibitors 

against oleamide hydrolase (later, this enzyme came to be identified as FAAH) and 

found very low Ki values associated with α-keto esters (1.7a–c, Table 1.3) and 

amides (1.7d and 1.7e, Table 1.3) which compare well with the analogous TFKs 

(1.7f–h, Table 1.3).1.18  Similar comparisons of peptidyl TFKs and α-keto esters as 

peptidase inhibitors had been performed in the past with comparable results.1.21     
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Table 1.3: Fatty acid amide hydrolase (FAAH) inhibitors tested by Patterson, et 

al.1.18 

 

 

Koutek, et al. found that trifluoromethyl ketones and α-ketoesters are effective 

inhibitors of anadamide amidase (also later identified as FAAH), particularly 1.8 and 
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1.9 (Figure 1.3).1.17  The arachidonyl ketonic structure of 1.8 demonstrates a 

common theme in rational inhibitor design in which potential inhibitors are 

functionalized to mimic the enzyme’s natural substrate. 

 

Figure 1.3: Fatty acid amide hydrolase inhibitors investigated by Koutek, et al.1.17 

 

 

3. α-Heterocyclic Ketones 

Advancing the concept explored by Szèkács, et al.,1.19 Edwards, et al. discovered that 

α-heterocyclic ketones can be equally effective moieties for the inhibition of serine 

proteases as TFKs.1.22  Benzoxazole 1.10 (Figure 1.4) was found to inhibit human 

leukocyte elastase (HLE) with the same order of magnitude as the analogous TFK.  

Crystallographic data of the inhibitor bound to porcine pancreatic elastase (PPE) 

demonstrated a hydrogen bonding interaction between the benzoxazole nitrogen and 

the catalytic histidine.  Comparing the activity of 1.10 with that of oxazoline 1.11 

(Figure 1.4) further demonstrated the inhibitory advantage of hydrogen bonding 

within the active site.  A benzoxazole substituent is more electron withdrawing than 

oxazoline, so if activation of the ketone toward the serine residue is considered 

alone, 1.10 should be more active toward the enzyme than 1.11.  Oxazoline 1.11 was 

found to be five times more active than benzoxazole 1.10, however.  Because 
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oxazolines are stronger hydrogen bond acceptors than benzoxazoles while being 

weaker electron withdrawing substituents in addition to the visible interaction in the 

X-ray crystallographic data, it was reasoned by Edwards, et al. that the hydrogen 

bonding interaction contributed significantly to the stability of the enzyme-inhibitor 

adduct.  

 

Figure 1.4: α-Heterocyclic ketone porcine pancreatic elastase inhibitors of Edwards, 

et al.1.22 

 

The role of a hydrogen bonding nitrogen atom was further demonstrated by 

Tsutsumi, et al. who found that the presence or absence of such a β-nitrogen makes a 

three orders of magnitude difference in IC50 in prolyl endopeptidase inhibition.1.23  In 

a subsequent study by Boger, et al. inhibitory activities were achieved with  

α-heterocyclic ketones (1.13–1.15, Table 1.4) superior to that of analogous oleyl 

TFK 1.12.1.24   
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Table 1.4: Low nanomolar inhibitors of fatty acid amide hydrolase (FAAH)1.24 
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Subnanomolar Ki values were ultimately achieved by substitution of a short aliphatic 

chain (1.16a–c), a short aliphatic chain terminating in a phenyl group (1.16d–h), or 

by introducing unsaturation at Δ9,10 (1.16i–k, Table 1.5). 
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Table 1.5: Subnanomolar inhibitors of fatty acid amide hydrolase (FAAH)1.24 
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Bisogno, et al.1.25 described the inhibitory effects of malhamensilipin A (1.17),1.26 

grenadadiene (1.18),1.27 arachidonylserotonin (1.19), and arachidonylethylene glycol 

(1.19, Table 1.6) toward FAAH.  Due to limited availability, the mechanisms of 

natural products 1.17 and 1.18 were not investigated.  Glycol ester 1.19 was found to 

be a competitive inhibitor which is slowly hydrolyzed to arachidonic acid by the 

enzyme.  Further study showed the possibility of reactivation of enzyme inhibited 

with inhibitor 1.19 by protein purification and that serotonin and arachidonic acid are 

not generated in the inhibition studies with 1.19, demonstrating that the inhibition by 

the amide is reversible.  Though not a ketone, the carbonyl of 1.19 may be activated 

toward inhibition by a nearby hydrogen bonding moiety. 

 



Martin, 17 

 

Table 1.6: Fatty acid amide hydrolase (FAAH) inhibitors investigated by Bisogno, et 

al.1.25 

 

 

III. Irreversible Inhibitors 

1. Fluorophosphates and -Phosphonates 

Irreversible inhibitors form a stable covalent complex with the catalytic serine which 

is not hydrolyzed under normal conditions.  Perhaps the most well-known class of 

irreversible inhibitors is the fluorophosphonates, which phosphorylate the catalytic 

serine, notoriously those of cholinesterases such as AChE.  They have been studied 
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since the discovery of diisopropyl fluorophosphate’s activity in 1942,1.28 and have 

since been found to be highly unselective inhibitors.1.29   Pan-proteomic enzyme 

inhibitors have found a niche in enzymology.  Activity-based protein profiling 

(ABPP) is a technique for the classification of enzyme sub-families by use of 

structurally-tuned, labeled inhibitors, but it also has uses in drug discovery. 1.30  If a 

promising inhibitor candidate is tested against a mixture of enzymes, treatment with 

a labeled unselective inhibitor can allow the detection of selectivity of the former 

inhibitor.1.31  Those enzymes which are completely inactivated by the first enzyme 

will be blocked from reaction with the second labeled one.  Testing against a suitable 

control experiment would give strong evidence of the investigated inhibitor’s 

selectivity.  Furthermore, the technique can be used to detect enzyme dysregulation 

during the progression of diseases such as cancer.1.32  By labeling every enzyme of a 

particular class with a labeled inhibitor, enzymes can be identified, quantified, or 

even discovered.  For such purposes, the fluorophosphonates have a primacy of 

place.  Liu, et al. synthesized the fluorescein labeled fluorophosphonate 1.21 (Figure 

1.5) for ABPP.1.33  Out of concern that it may exhibit bias toward hydrophobic 

enzymes, the PEG analog 1.22 (Figure 1.5) was prepared by Kidd, et al.1.34  More 

recently, the tetramethylrhodamine labeled fluorophosphonate 1.23 was synthesized 

(Figure 1.5).1.35 
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Figure 1.5: Fluorophosphonate inhibitors1.14,1.33–1.37 

 

 

In spite of their general nonspecificity, fluorophosphonates have been investigated as 

targeted inhibitors.  Methylarachidonylfluorophosphonate (1.24, Figure 1.5) had 

been demonstrated to be rather selective for FAAH over chymotrypsin, trypsin, 
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sheep cycloxygenase-1, porcine leukocyte-type 12-lipoxygenase, and rabbit 

reticulocyte 15-lipoxygenase.1.14,1.36  Martin, et al. tested 1.24 and variously saturated 

analogs such as 1.25 (Figure 1.5) in mice.1.37  While the resulting symptoms 

resemble the expected outcome of FAAH inhibition, the mode of action remained 

ambiguous.  Later study by Quistad, et al. demonstrated that inhibition of 

monoacylglycerol lipases by similar fluorophosphonates can lead to the same 

results.1.38  The peptidyl fluorophosphonate 1.26 (Figure 1.6) synthesized by 

Lamden and Bartlett, however, shows preference for chymotrypsin over PPE,1.39 and 

a peptidyl inhibitor is unlikely to show much reactivity with lipases or esterases. 

 

2. Aryl Phosphate and Phosphonate Esters 

Aryl phosphate and phosphonate esters have been investigated as more selective and 

water-stable alternatives to fluorophosphates and -phosphonates.  Hartley and Kilby 

used diethyl p-nitrophenyl phosphate (1.27, Figure 1.6) to inhibit chymotrypsin, 

finding inhibition to be irreversible by tracking the release of nitrophenol, providing 

early evidence that chymotrypsin has only one active site.1.40  Pentyl phosphonate 

1.28 (Figure 1.6) was shown by Nayak and Bender to inhibit PPE.1.41  Oleksyszyn 

and Powers synthesized peptidyl phosphonates such as 1.29 (Figure 1.6), which 

shows selectivity for chymotrypsin over porcine pancreatic elastase (PPE) and 

human leukocyte elastase (HLE).1.42  This strategy exploits both the selectivity of 

peptidyl inhibitors for peptidases over other enzymes, most notably AChE, observed 

by Lamden and Bartlett.1.39  In addition, the stability of arylphosphonates was 

observed by Nayak and Bender.1.41 
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Figure 1.6: Activated phosphonates for targeted enzyme inhibition1.39–1.42 

 

 

3. Fluorosulfonates 

A moiety similar to the fluorophosphonates is the fluorosulfonates which were first 

determined to inhibit serine hydrolases, cholinesterases in particular, by Myers and 

Kemp.1.43  While no large degree of specificity was observed, Lively and Powers 

reported that some small degree of selectivity between proteases could be achieved 

by incorporating a peptide sequence onto the inhibitor.1.44  Deutsch found that long 

chain sulfonyl fluorides are more potent inhibitors of FAAH than the previously 

investigated arachidonyltrifluoromethyl ketone (1.8, Figure 1.3).1.45,1.17  The  
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myristyl-, palmityl-, and stearylsulfonyl fluorides (1.30–1.32, Table 1.7) showed 

potent inhibition of the enzyme and 100–10,000-fold lower affinity to cannabinoid 

receptor CB1, an appreciable degree of selectivity for such reactive inhibitors. 

 

Table 1.7: Sulfonyl fluoride inhibitors of fatty acid amide hydrolase (FAAH)1.45 

 

 

4. α-Halomethylketones 

Chloro- and bromomethyl ketones have been shown to alkylate serine hydrolase 

enzymes with some degree of selectivity.   L-l-tosylamido-2-phenylethyl 

chloromethyl ketone (1.33, Figure 1.7) and its analogous bromomethyl ketone 1.34 

(Figure 1.7) were shown to inhibit chymotrypsin by alkylation of the catalytic 

histidine, which was lost according to amino acid analysis of the acid hydrolyzed 

inhibited enzyme, giving some early evidence for histidine’s presence at the catalytic 

site.1.46   
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Figure 1.7: Schoellman and Shaw’s chloro- and bromomethyl ketone inhibitors1.46 

 

 

This style of inhibitor has demonstrated a degree of selectivity by exploiting mimicry 

of the target protease’s natural substrate, for instance, Ala-Phe-ArgCH2Cl and Pro-

Phe-ArgCH2Cl (1.35a and 135b, Figure 1.8) both showed nanomolar (IC50 = 20 nM) 

inhibition of kallikrein, a serine protease, with the loss of two or more orders of 

magnitude inhibition against similar proteases plasmin, factor Xa, thrombin, and 

urokinase.1.47  Likewise, Ac-Pro-Ala-CH2Cl, Ac-Ala-Pro-Ala-CH2Cl, and Ac-Pro-

Ala-Pro-Ala-CH2Cl (1.36a–c, Figure 1.8) were shown to inhibit elastase more 

rapidly with increasing peptide length.1.48   
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Figure 1.8: Peptidyl chloromethyl ketone protease inhibitors1.47,1.48 

 

 

5.  Carbamates 

Wilson, et al. demonstrated that the same reactivation kinetics are observed for 

AChE inactivated with dimethylcarbamoyl choline as are observed when it is 

inactivated with dimethylcarbamoyl fluoride.  This suggests that both form the same 

carbamyl serine complex and demonstrates that carbamate inhibitors react 

irreversibly with the catalytic serine.1.49  Irreversible carbamate inhibitors, then, form 

a carbamate with the catalytic serine of the target enzyme which is stable to 

hydrolysis, freeing a usually-activated alcohol (often, a phenol).  Inhibitors 1.37 and 
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1.38 (Table 1.8), among numerous similar inhibitors tested by Kathuria, et al. and 

Alexander and Cravatt, were shown to be active toward FAAH. 1.50,1.51  

 

Table 1.8: Carbamate fatty acid amide hydrolase inhibitors (FAAH)1.50 

 

 

Carbamate 1.39 (Figure 1.9) is a potent (IC50 = 8 nM) inhibitor of MAGL and is 

selective in vivo,1.52 and Rivastigmine (1.40, Figure 1.9) is an irreversible carbamate 

AChE inhibitor and an approved drug for Alzheimer’s and Parkinson’s related 

dementia marketed as Exelon.1.53  Cholinesterase enzymes show very slow 

reactivation (e.g. >10% after 48 hours for AChE) after inhibiton with 1.40,1.53 so it 

has been classified in this work as irreversible. 
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Figure 1.9: In vivo Carbamate inhibitors1.52,1.53 

 

 

Tetrazole 1.41 (Figure 1.10) was found to be a potent, albeit unselective, inhibitor of 

FAAH which carbamylates the enzyme’s catalytic serine.1.54  Pursuit of the emerging 

concept of heterocyclic ureas as carbamylating inhibitors led to triazole 1.42 (Figure 

1.10), a potent inhibitor of acylaminoacyl-peptide hydrolase (APEH) (IC50 = 5 nM), 

which is both active and selective in vivo.1.55  Likewise, Lowe, et al. found urea 1.43 

(Figure 1.10), known as BAY, to be a potent inhibitor of HSL with very slow 

reactivation kinetics.1.56,1.10  Carbazates were investigated by de Jong, et al., and 

carbazate 1.44 (Figure 1.10) was found to inhibit HSL with an IC50 value of 1 

nM.1.57 
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Figure 1.10: Other carbamylating or carbazylating inhibitors1.54–1.57 

 

 

 

6.  Enzyme-activated Inhibitors 

Bechet, et al. found that halomethylcoumarins such as 1.45–1.46 and benzoxazin-4-

one 1.47 (Figure 1.11) effectively inactivate proteases at neutral pH with low 

specificity and suggested that the inhibition is due to alkylation of the catalytic 

histidine.1.58  The cyclic ester acts as a substrate for the enzyme, and the histidine 

residue is alkylated when the inhibitor occupies the active site.   
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Figure 1.11: Coumarin and benzoxazin-4-one inhibitors tested by Bechet, et al.1.58 

 

 

An analogous style of inhibitor was devised by White, et al. in which the hydrolysis 

of the nitrosolactam 1.48 forms the carbenium 1.51 (Scheme 1.2) which can then 

alkylate nearby basic residues.  Inhibitors which form reactive species upon 

hydrolysis by the enzyme have come to be known as suicide reagents,1.59 

mechanism-based inhibitors, or enzyme-activated inhibitors. 
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Scheme 1.2 

 

 

Chakravarty, et al. found haloenol lactones 1.52 and 1.53 (Figure 1.12) to be 

irreversible inhibitors of α-chymotrypsin and noted the importance of having the 

electrophile tethered to the ester.  Acyclic ester 1.54 (Figure 1.12) was found to be 

an ineffective inhibitor.1.60a  Further study determined that six-membered lactones 

are superior inhibitors and that a naphthyl substituent is superior to a phenyl group.  

Haloenol lactone 1.55 (Figure 1.12) was found to inhibit α-chymotrypsin with a Ki 

value of 0.339 µM, a 100-fold improvement over 1.53.1.60b  
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Figure 1.12: Haloenol lactone inhibitors of α-chymotrypsin1.60 

 

Chloropyrones were investigated by Westkaemper and Abeles as mechanism-based 

inhibitors of α-chymotrypsin, and pyrone 1.56 was found to form acid chloride 1.57 

upon reaction with the enzyme (Scheme 1.3).1.61 

 

Scheme 1.3 

 

 

Harper, et al. employed this concept with chloroisocoumarin 1.58 (Figure 1.13) 

which was found to be a general protease inhibitor with low micromolar activity 

against HLE and PPE.1.62a  Inhibition of proteases was found to be effective using 3-

alkoxy isocoumarins, particularly those with an amino or guanidyl group at the 7-

position (e.g. 1.59 and 1.60, Figure 1.13).1.62b,c  
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Figure 1.13: Isocoumarin inhibitors1.62 

 

 

Because of their general activity toward serine proteases, biotinylated isocoumarins 

such as 1.61 and 1.62 (Figure 1.14) have been investigated as a means of detecting 

serine proteases in mixtures by ABPP.1.63 
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Figure 1.14: Biotinylated 4-chloro-3-alkoxy isocoumarins1.63 

 

7. β-Lactones and β-Lactams 

Esterastin (1.63, Figure 1.15) is a natural product isolated from fermentation of 

Streptomyces levendulae species MD4-C1 which was found to strongly inhibit hog 

pancreatic lipase (HPL, IC50 = 0.4 nM).1.64 Later study found that esterastin (1.63) is 

a rather selective inhibitor of acid lipase, showing nearly tenfold greater inhibition 

than against pancreatic lipase.1.65  A similar pair of compounds, ebelactone A and B 

(1.64 and 1.65, Figure 1.15), were isolated from Streptomyces aburaviensis related 

strain MG7-G1 which showed similar activity against HPL and superior inhibition of 

pig liver esterase (PLE, IC50 = 17 and 0.99 nM vs. 9.9 µM).1.66  Lipstatin (1.66, 

Figure 1.15), isolated from Streptomyces toxytricini, is highly structurally related to 

esterastin (1.63) and is also a potent inhibitor of pancreatic lipase, along with the 

analogous tetrahydrolipstatin (1.67, Figure 1.15) which showed only a moderate 

decrease in inhibition from the parent lipstatin (1.66).1.67  Lipstatin (1.66) was found 

to effectively reduce triolein absorption in mice without effecting the oleic acid 
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absorption, demonstrating the effective inhibition of hydrolytic lipid digestion.  The 

saturated tetrahydrolipstatin (1.67), under the name Orlistat, has been found to be 

safe for use as an antiobesity medication1.68 and is marketed under the names Xenical 

and Alli.  

 

Figure 1.15: β-Lactone lipase inhibitors1.64–1.68 
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β-Lacatams are a very common motif among antibiotics (e.g. 1.68-1.71, Figure 1.16) 

and are known to bind the reactive serine of penicillin binding proteins (PBPs) 

irreversibly, disrupting bacterial cell wall synthesis.1.69   

 

Figure 1.16: β-Lactam bactericidal inhibitors1.69,1.70 

 

 

Multiple drug resistant infections, particularly Mycobacterium tuberculosis (TB), are 

the result of the presence of bacterial β-lactamase enzymes.  β-Lactamases have a 

water molecule conserved in the active site of the enzyme which can hydrolyze an 

acylserine complex when formed by a β-lactam antibiotic.  Clavulanic acid (1.72, 

Figure 1.16) has been found to be a potent inhibitor of β-lactamase and is FDA 
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approved for use in conjunction with traditional antibiotics.1.9,1.70  Augmentin, for 

example, is a combination of Amoxicillin (1.71) and clavulanic acid (1.72). 

 

8. Cyclic Enolphosphates and -Phosphonates 

Kurokawa, et al. isolated cyclophostin (1.73, Table 1.9), a low-nanomolar inhibitor 

of insect AChE, from Streptomyces lavendulae strain NK901093.1.71  A series of 

natural products were later isolated from Streptomyces species DSM 13381, called 

the cyclipostins (e.g. 1.74a–l, Table 1.9), which exhibited low-nanomolar inhibition 

of HSL.1.72   
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Table 1.9: Cyclophostin and cyclipostins1.71,1.72 

 

 

 

These natural products, sharing a novel bicyclic phosphate core structure, 

demonstrate absolute tunability from AChE to HSL by the simple substitution of a 

long alkyl ester for a methyl ester, while already displaying the potency of inhibition 

of some of the most reactive and unstable inhibitors.  This new class of inhibitor was 
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investigated by the Spilling group for the sake of this potential.  Racemic 

cyclophostin (1.73) and cyclipostin P (1.74h) were synthesized, and synthetic 1.73 

proved to be a low-nanomolar inhibitor of human AChE.1.73  Additionally, various 

phosphonate analogs were prepared for structure activity relationship (SAR) 

comparison, demonstrating that while phosphonates are weaker inhibitors of AChE, 

the lactone ring-opened phosphonate analogs showed inhibition within the same 

order of magnitude as the bicyclic phosphonate analog (Table 1.10).1.11,1.73,1.74  Also 

important for inhibition is the E geometry of the enolphosphate moiety and the 

conjugated ester. 
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Table 1.10: Analogs of cyclophostin as inhibitors of acetylcholinesterase1.11,1.73,1.74 

 

 

A series of phosphonate analogs of the cyclipostins (1.75-1.81, Figure 1.17) were 

found to be inhibitors of microbial lipases cutinase, Rv0183, and LipY, the latter two 

being associated with the persistence of Mycobacterium tuberculosis, and inactive 

toward mammalian digestive enzymes dog gastric lipase (DGL), human pancreatic 

lipase (HPL), and guinea pig pancreatic lipase related protein 2 (GPLRP2), 

suggesting a particular preference for microbial enzymes.1.8   
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Figure 1.17: Microbial lipase inhibitors1.8 

 

 

Rv0183 was chosen as a target because it is a monoacylglycerol lipase implicated in 

the degradation of host cell lipids and could play a key role in the life cycle of M. 

tuberculosis.1.75  LipY is a triacylglycerol lipase which may be key to the bacterium’s 

survival during dormancy.1.11,1.76  Lipase inhibitors selective for these enzymes could 

therefore be effective drug targets which act through a new bactericidal mechanism, 

representing a new approach to battling drug-resistant M. tuberculosis infections.  

 

IV. Conclusion 

Cyclic enolphosphates and -phosphonates are novel and potent inhibitors which 

already display tunable selectivity toward serine lipase enzymes after SAR study, 

and the structural motifs which govern inhibition have been investigated to an 
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extent.1.8,1.73,1.74  In this thesis, further SAR has been performed to determine other 

ways the potency and selectivity of these inhibitors might be improved or directed. 
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Chapter 2 :  α,α-Difluorophosphonate Analogs of Cyclophostin and 

Analogs of Cyclipostins 

 

I. Introduction 

1. Background 

Cyclophostin (2.1, Table 2.1) is a natural bicyclic enolphosphate inhibitor of 

acetylcholinesterase (AChE) isolated from Streptomyces levendulae.2.1    Racemates of the 

novel natural inhibitors and analogs were synthesized by the Spilling lab to probe the 

structure activity relationship (SAR) toward AChE.2.2  The non-natural diastereomer 2.2 was 

found to have similar inhibition to natural cis diastereomer 2.1.  Phosphonate analogs 2.3 

and 2.4 are 100- and 1000-fold less potent, respectively, with a preference for the trans 

isomer.  Monocyclic phosphonate analog 2.5 is only marginally less potent than the trans 

bicyclic phosphonate 2.4, and the ring opened synthetic precursors to 2.3 and 2.4, 2.6 and 

2.7, show insignificant loss of activity as well but with preference for the cis diastereomer.  

Six-membered monocycle 2.8 shows comparable inhibition to the seven-membered 2.5, 

though it was determined that the inhibitor had slower initial binding to AChE and a faster 

covalent bond forming reaction.  Greater inhibition of 2.10 than 2.9 demonstrates the 

importance of E-geometry, and the loss of activity upon reduction of the ester of 2.5 to an 

alcohol (2.11) shows the importance of the conjugated ester moiety in activating the 

enolphosphonate toward phosphorylation. 
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Table 2.1: Structure activity relationship comparison of Cyclophostin and analogs as 

inhibitors of acetylcholinesterase2.2a,b,c 

 

 

The cyclipostins (2.12, Table 2.2) are natural inhibitors of hormone-sensitive lipase (HSL) 

which share the core bicyclic phosphate structure of cyclophostin (2.1), and were isolated 

from Streptomyces species DSM 13381.2.3  Cyclipostin P, 2.12h,2.2a and a number of 

phosphonate analogs of the cyclipostins2.4 have been synthesized and submitted for testing 

for HSL inibition (Table 2.3) by tritiated triolein assay.2.5  Cyclophostin (2.1, 2.2) and the 

phosphonate analog thereof (2.3) are largely inactive (IC50 ≥ 100 µM), while the natural 

HSL inhibitor cyclipostin P (2.12h) is very active with a seventeen-fold preference for the 

trans diastereomer.  The monocyclic phosphonates 2.13–2.17, which have long alkyl 
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substituents attached to the ring rather than the phosphonate ester, were weak to very weak 

inhibitors with IC50 values ranging from ~10 to 100 µM. 

 

Table 2.2: Cyclipostins2.3 
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Table 2.3: Hormone-sensitive lipase inhibition results2.5a,b,c 

 

 

2. Rationale for Synthesis of New HSL Inhibitors 

The most immediate work to be done was to complete the readily accessible cyclipostin 

analogs which could be synthesized through the existing synthetic routes.  Compounds 2.18 

and 2.19 (Figure 2.1) could be prepared through transesterification of cyclophostin analogs 

2.3 – 2.5, so a method for this transformation had to be developed.  Comparison of their 

activities would determine the significance of the lactone in enzyme inhibition and 

comparison of 2.19 to the natural product 2.12h would establish the importance of the 
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phosphate oxygen.  The natural product cyclipostin R (2.12j) could also be synthesized from 

2.1/2.2 by transesterification. 

 

Figure 2.1: Phosphonate analogs of cyclipostin P and cyclipostin R 

 

 

3. α,α-Difluorophosphonate analogs 

Blackburn and McKenna predicted that α-fluorophosphonates would be better analogs of 

phosphates than unfunctionalized phosphonate analogs,2.6 and numerous examples of α-

fluorophosphonate inhibitors have been discovered to have greater potency than their 

phosphonate analogs.2.7  2.20b, for example is a potent inhibitor of purine nucleoside 

phosphorylase with Ki values 10- to nearly 100-fold more potent than its phosphonate 

analog 2.20a (Figure 2.2).2.8  Likewise, α,α-difluorophosphonate 2.21b inhibits PTP 1B 

reversibly with an IC50 value of 100 nM, 1000-fold more potent than the phosphonate analog 

2.21b (Figure 2.2).2.9 
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Figure 2.2: α,α-Difluorophosphonate inhibitors2.8,2.9 

 

 

Not represented in the literature, however, was an α-fluorophosphonate diester inhibitor, 

particularly as an inhibitor of a serine hydrolase enzyme.  An α,α-difluorophosphonate 

analog was chosen as the first synthetic target rather than a monofluorinated analog because 

it maximizes the electron-withdrawing effects and hydrogen bonding potential without 

introducing a new chiral center.  α,α-difluorophosphonate cyclophostin analog 2.22 (Figure 

2.3) could not only improve upon the AChE inhibition of phosphonate analogs 2.3 and 2.4, 

but could also pioneer an new class of phosphorylating inhibitors. 
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Figure 2.3: Proposed α,α-difluorophosphonate analogs of cyclophostin, its diastereomer, 

and cyclipostin P 

 

 

Transesterification of the cyclophostin analogs would then be performed in order to 

synthesize α,α-difluorophosphonate analogs of cyclipostin P 2.23a and 2.23b (Figure 2.3) 

for testing against HSL. 

 

II. Synthesis 

1. Retrosynthesis of Cyclipostin Analogs 

The synthesis of cyclipostin analogs follows the synthesis of cyclophostin analogs with the 

addition of a final transesterification step.  The methyl phosphonate ester substituent must be 

removed to form a phosphonate anion without opening the cyclic enol phosphonate or 

disturbing the methyl ester or lactone, and an electrophilic alkyl cation synthon must be 

supplied for nucleophilic attack (Scheme 2.1).  The more reactive methods such as 

trimethylsilyl bromide or strong acids were therefore ruled out, particularly because they 
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favor complete dealkylation rather than removal of one methyl group.  Amines have been 

used for these purposes2.10 but were judged too reactive for the sensitive cyclic enol 

phosphonate moiety which has proven to be unstable in basic solution.  Sodium iodide was 

chosen because of the unlikelihood of reaction with other substituents and because of its 

extensive use in previous works,2.11 particularly from the Spilling laboratory.2.2,2.4  

 

Scheme 2.1 

 

Because this technique requires the formation of a phosphonate anion (2.25a–b, Scheme 

2.1), stereochemistry at phosphorus is scrambled, so diastereomers of general structures 

2.24a and 2.24b must be separated regardless of the diastereopurity of any starting material.   
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2. Synthesis of Cyclipostin Analogs 

Initial studies of the synthesis of cyclipostin analogs began with the attempt to synthesize 

general structure 2.24c.  Compound 2.5 was synthesized according to the published route 

(Scheme 2.2).2.2c   

 

Scheme 2.2 

 

 

A technique was devised by which the methyl substituent of the cyclic enol phosphonate 2.5 

was removed by treatment with sodium iodide in refluxing acetone, as demonstrated in the 

conversion of 2.28 to 2.29 and likewise treated with sulfonic acid resin.  Treating the 

resulting phosphonic acid with potassium carbonate, octadecyl triflate, and phase-transfer 

catalyst gave phosphonate ester 2.18 in 49% yield (Scheme 2.3).2.4 
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Scheme 2.3 

 

 

A more efficient method was developed by another graduate student, Raj Malla, allowing 

for one-pot transesterification and higher yields.  By treating 2.5 with five mole percent 

tetra-n-butylammonium iodide and five equivalents of hexadecyl bromide, cyclipostin 

analog 2.30 was synthesized in 86% yield (Scheme 2.4).2.4   

 

Scheme 2.4 

 

 

It is believed that the anion 2.25c is formed with a tetra-n-butylammonium counter cation 

which is alkylated by the bromide, releasing the halide which carries forward further 
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reaction.2.2a  The technique had also been employed to synthesize cyclipostin P (2.12h) and 

its diastereomer 2.31 (Scheme 2.4).2.2a
   

 

Scheme 2.5 

 

 

Using this technique, cyclipostin R (2.12j) and its diastereomer 2.32 were synthesized in 

67% yield (Scheme 2.5) after completion of the synthesis of cyclophostin (2.1) following 

the reported procedure (Scheme 2.6).2.2a 
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Scheme 2.6 

 

 

Synthesis of compounds of the general structure 2.24a began with the published synthesis of 

cyclophostin phosphonate analogs 2.3 and 2.4 (Scheme 2.7).2.2b 
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Scheme 2.7 

 

 

It was found that phosphonates react sluggishly in the established transesterification 

conditions, so compounds 2.3 and/or 2.4 were treated with 10 mole percent of tetra-n-

butylammonium iodide and 10 equivalents of hexadecyl or pentadecyl bromide to give 

cyclipostin P phosphonate analogs 2.19a and 2.19b in 75% yield and cyclipostin R analogs 

2.43a and 2.43b in 75% yield as well (Scheme 2.8). 
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Scheme 2.8 

 

3. Retrosynthesis of α,α-difluorophosphonates 

The simplest route to the α,α-difluorophosphonate analog of cyclophostin (2.22a) is to 

substitute a leaving group onto the hydroxymethyl lactone 2.33, which began the 

cyclophostin synthesis (Scheme 2.9),2.2a and install a diethyl difluoromethylphosphonate 

group by substitution.  Diethyl bromodifluoromethylphosphonate 2.47 is commercially 

available and the corresponding lithiate has been utilized for SN2 chemistry.2.12  The iodide 

2.48 is a convenient electrophile because it is stable and known in the literature.2.13  

Berkowitz, et al. noted, however, that the lithiate does not readily undergo substitution with 

halides, so the triflate 2.49 may be necessary. 2.12,2.14  
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Scheme 2.9 

 

 

Another approach beginning from a more established addition of the difluorophosphonate 

moiety to allyl bromide is depicted in Scheme 2.10.  This route was to be employed should 

addition to 2.48 or 2.49 fail. 
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Scheme 2.10 

 

Allyldifluorophosphonate 2.55 has been synthesized from bromodimethylphosphonate 2.47 

by preparation of a zinc cuprate or by insertion of cadmium into the carbon-bromine bond 

followed by treatment with allyl bromide, chloride, or iodide.2.15  Cross metathesis with 

methyl acrylate followed by conjugate addition of a cuprate prepared from stannane 2.54 

could give 2.52.  Acetylation following the preparation of 2.35 (Scheme 2.6)2.2a would give 

β-ketoester 2.51 which is a difluorophosphonate analog of synthetic intermediate 2.41 

(Scheme 2.7)2.2b and could be cyclized likewise. 
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Scheme 2.11 

 

 

Should the conjugate addition fail, the unsaturated ester could be hydrogenated to aliphatic 

ester 2.58.  Acetylation to form β-ketoester 2.57 (Scheme 2.11) could be performed 

according to the conditions2.2a used to prepare 2.35 (Scheme 2.6), and cyclized to 

monocyclic cyclophostin analog 2.56 (Scheme 2.11) using the conditions2.2b by which 

phosphonate analog precursors 2.6 and 2.7 were prepared (Scheme 2.7). 

 

4. Synthesis of α,α-Difluorophosphonates 

The lithiate 2.59 formed from treatment of bromodifluorophosphonate 2.47 with nBuLi was 

found to be unreactive toward the iodide 2.48 (Scheme 2.12).  This was found to be true of 

the zincate 2.60 and cuprate 2.61, as well.   
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Scheme 2.12 

 

 

Following the suggestion of Berkowitz et al.,2.12 the triflate 2.49 was prepared from 

hydroxymethyl lactone 2.33 and treated with the lithiate 2.59 prepared from 2.47, but no 

product was generated (Scheme 2.13).  The route depicted in Scheme 2.9 was therefore 

abandoned. 

 

Scheme 2.13 

 

 

Due to cadmium’s toxicity, allyldifluorophosphonate 2.55 was prepared from the zinc 

cuprate of 2.47 with modest improvement of the reported yields,2.15 likely due to the choice 
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of DMF as a solvent.  Unsaturated ester 2.53 was then synthesized in good yield by cross 

metathesis using Hoveyda-Grubbs II catalyst (Scheme 2.14). 

 

Scheme 2.14 

 

 

Attempts to perform conjugate addition with model cuprates such as those prepared from 

dodecylmagnesium bromide and nBuLi were unsuccessful.  Even at room temperature in the 

presence of catalytic cuprous bromide, the Grignard reagent was unreactive toward 

unsaturated ester 2.53 as a nucleophile (Scheme 2.15).  As the temperature of the reaction 

mixtures approached room temperature, however, detectable quantities of 

dehydrohalogenation product 2.63 was generated, but the material could not be separated 

from the starting material 2.53.  The synthetic route depicted in Scheme 2.10 was 

abandoned. 
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Scheme 2.15 

 

Conditions: dodecylmagnesium bromide, CuBr, -78 oC – rt; dodecylmagnesium bromide, 10 mol % CuBr, rt; 

nBuLi, CuBr, THF-Me2S (2:1), -78 oC – rt  

 

Hydrogenation of the unsaturated ester 2.53 to saturated ester 2.58 was clean and complete 

if halted at 30 minutes to prevent hydrogenolysis of the carbon-fluorine bond (Scheme 

2.16).  Acetylation following the procedure to prepare cyclophostin synthetic intermediate 

2.35 (Scheme 2.6)2.2a resulted in overacetylation, so treatment of the product mixture with 

DMAP in methanol gave β-ketoester 2.57 in modest yield.  Cleavage of the ethyl 

phosphonate ester with sodium iodide in refluxing acetonitrile was successful, but coupling 

of the phosphonic acid, formed by treatment of the sodium salt with acid resin, was 

unsuccessful with conventional coupling reagents DCC and EDC.  There is precedence for 

the use of MSNT (2.64) in the coupling of an α,α-difluorophosphonate salt to an 

intramolecular alcohol in pyridine at 90 °C.2.16  These conditions were found to be sufficient 

at room temperature to cyclize the sodium salt with complete conversion in one hour, 

however the marked instability of monocycle 2.56 resulted in low to modest yields upon 

isolation.  
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Scheme 2.16 

 

Attempts to exchange the ethyl phosphonate ester for a methyl ester were unsuccessful, so 

the effect of the ethyl group in SAR must be investigated by preparation of another analog.  

Monocyclic analog 2.5 was chosen as the most rational candidate for transesterification due 

to its greater relative stability and the fact that the resulting ethyl phosphonate ester 2.65 

would share all the structural features of difluorophosphonate analog 2.56 with the exception 

of the fluorine substituents.  By treating monocyclic methyl ester 2.5 with ten mole percent 

tetra-n-butylammonium iodide in neat refluxing ethyl iodide, ethyl ester 2.65 was prepared 

in fair yield (Scheme 2.17). 
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Scheme 2.17 

 

 

Transesterification to the monocyclic cyclipostin analog 2.66 was effective using the 

established conditions, but in low isolated yield due to instability during reaction and 

isolation (Scheme 2.18). 

 

Scheme 2.18 

 

 

III. Conclusion 

An effective method for transesterification of phosphate and phosphonate esters was found, 

and it was utilized in the synthesis of natural cyclipostins and analogs thereof.  Though 

synthesis of the α,α-difluorophosphonate analog of cyclophostin was unsuccessful, a 

monocyclic analog was completed which could contribute to ongoing SAR investigation.  

The enzyme assay results will be reported in Chapter 4. 
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IV. Experimental Section 

General Experimental.  All reactions were carried out in oven dried glassware (150 °C) 

under an atmosphere of argon unless otherwise noted.  Dry THF was distilled from sodium 

and benzophenone.  Dry CH2Cl2 and CH3CN were distilled from CaH2.  Dry MeOH was 

distilled from magnesium.  Dry 1,4-dioxane was distilled freshly from sodium metal.  Dry 

pyridine was distilled freshly from KOH.  All chemicals and reagents were purchased from 

commercial suppliers unless otherwise noted.  1H, 13C and 31P NMR spectra were recorded 

at 300, 75 and 121 MHz, respectively. 1H NMR spectra are referenced to CDCl3 (7.27 ppm), 

13C NMR spectra are referenced to CDCl3 (77.23 ppm), and 31P NMR spectra are referenced 

to external H3PO4. 

 

Cyclipostin R (2.12j) and its diastereomer (2.32).  To a solution cyclophostin 

diastereomer 2.2 (28.5 mg, 0.122 mmol) and n-bromopentadecane (350 µL, 1.21 mmol) in 

dry 1,4-dioxane (0.5 mL) was added n-Bu4NI (2 mg, 0.005 mmol) at room temperature. The 

flask was immersed in a, oil bath preheated at 110 °C until the reaction was complete (TLC 

and 31P NMR analysis).  The solvent was removed under vacuum and the crude product was 

purified by column chromatography (SiO2, EtOAc/ hexanes) giving cyclipostin R (2.12j) 

(16.6 mg) and its unnatural diastereomer (2.32) (9.5 mg) as white solids (67% overall). 
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Cyclipostin R.  (±)-(3R(S),8aR(S))-5-Methyl-3-(pentadecyloxy)-8,8a-dihydrofuro[3,4-

e][1,3,2]dioxaphosphepin-6(1H)-one 3-oxide (2.12j).  IR (neat, ATR): 2916, 2850, 1749, 

1671 cm-1;  1H NMR (300 MHz, CDCl3): δ 4.45 (1H, m), 4.35 (1H, td, JHH = 10.8 Hz, JHP = 

6.2 Hz), 4.24 (2H, dt, JHP = JHH = 6.8 Hz), 4.15 (1H, ddd, JHP = 25.6 Hz, JHH = 11.2, 3.5 

Hz), 3.80 (2H, m), 2.47 (3H, d, JHP = 1.9 Hz), 1.72 (2H, p, JHH = 6.8), 1.39 (2H, m), 1.26 

(22H, br s), 0.88 (3H, t, JHH = 6.7 Hz);  13C NMR (75.4 MHz, CDCl3): δ 169.1, 161.8 (d, JCP 

= 7.7 Hz), 112.1 (d, JCP = 3.2 Hz), 70.4 (d, JCP = 6.3 Hz), 67.6 (d JCP =, 5.7 Hz), 64.4, 39.9, 

32.1, 30.3 (d, JCP = 6.6 Hz), 29.90, 29.88, 29.85, 29.76, 29.68, 29.58, 29.26, 25.5, 22.9, 18.4 

(d, JCP = 4.7 Hz), 14.3; 31P NMR (121.4 MHz, CDCl3): δ -8.55; HRMS (FAB, NBA, MH+) 

calcd for C22H40O6P: 431.2563, found: 431.2563 

 

 

(±)-(3R(S),8aS(R))-5-Methyl-3-(pentadecyloxy)-8,8a-dihydrofuro[3,4-

e][1,3,2]dioxaphosphepin-6(1H)-one 3-oxide (2.32).   IR (neat, ATR): 2914, 2847, 1745, 

1666 cm-1;  1H NMR (300 MHz, CDCl3): δ 4.46 (1H, t, JHH = 9.3 Hz), 4.29 (1H, m), 4.18 

(2H, m), 4.04 (2H, m), 3.79 (1H, dd, JHH = 9.6, 5.7 HZ), 2.44 (3H, d, JHP = 1.8 Hz), 1.73 

(2H, p, JHH = 6.7 Hz), 1.26 (24H, br s), 0.89 (3H, t, JHH = 6.6 Hz);  13C NMR (75.4 MHz, 

CDCl3): δ 169.2, 161.6 (d, JCP = 10.5 Hz), 111.0 (d, JCP = 2.6 Hz), 69.9 (d, JCP = 6.3 Hz), 
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69.5 (d, JCP = 7.6 Hz), 64.7, 38.6, 32.1, 30.4 (d, JCP = 6.5 Hz), 29.90, 29.88, 29.84, 29.76, 

29.67, 29.58, 29.3, 25.5, 18.1 (d, JCP = 5.9 Hz), 14.3.  31P NMR (121.4 MHz, CDCl3): δ -

12.4;  HRMS (FAB, NBA, MH+) calcd for C22H40O6P: 431.2563, found: 431.2570 

 

Phosphonate analog of cyclipostin R and its diastereomer (2.43).  To a solution of 

phosphonate analogs 2.3 and 2.4 (17.8 mg, 0.077 mmol) and n-bromopentadecane (220 µL, 

0.76 mmol) in dry 1,4-dioxane (390 µL) was added n-Bu4NI (3 mg, 0.008 mmol).  The flask 

was immersed in an oil bath preheated to 110 °C until the reaction was complete (TLC, 31P 

NMR analysis).  The solvent was removed under vacuum and the crude product was purified 

by column chromatography (SiO2, EtOAc/ hexanes) giving the phosphonate analog of 

cyclipostin R (2.43a) (13.4 mg) and its diastereomer (2.43b) (8.9 mg) as a white solid and 

white semisolid, respectively (75% overall). 

 

 

(±)-(3R(S),5aR(S))-1-Methyl-3-(pentadecyloxy)-4,5,5a,6-tetrahydrofuro[3,4-

e][1,2]oxaphosphepin-8(3H)-one 3-oxide (2.43a).  IR (neat, ATR): 2915, 2849, 1742, 1662 

cm-1;  1H NMR (300 MHz, CDCl3): δ 4.50 (1H, t, JHH = 9.3 Hz), 4.19 (2H, m), 3.85 (1H, dd, 

JHH = 9.2, 6.6 Hz),  3.32 (1H, m), 2.45 (3H, s), 2.32 (1H, m), 1.89–2.13 (3H, m), 1.72 (2H, 

p, JHH = 6.9), 1.26 (24H, br s), 0.88 (3H, t, JHH = 6.6 Hz);  13C NMR (75.4 MHz, CDCl3): δ 

170.1 (d, JCP = 1.6 Hz), 161.0 (d, JCP = 7.2 Hz), 114.5 (d, JCP = 3.8), 69.9, 66.8 (d, JCP = 7.3 
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Hz), 39.1 (d, JCP = 1.0 Hz), 32.1, 30.5 (d, JCP = 6.1 Hz), 29.89, 29.88, 29.86, 29.85, 29.83, 

29.75, 29.7, 29.6, 29.3, 26.8 (d, JCP = 136.4 Hz), 26.6 (d, JCP = 6.9 Hz), 25.6, 22.9, 19.0 (d, 

JCP = 2.3 Hz), 14.3;  31P NMR (121.4 MHz, CDCl3): δ 23.4;  HRMS (FAB, NBA, MH+) 

calcd for C23H42O5P: 429.2770, found: 429.2777 

 

 

(±)-(3R(S),5aS(R))-1-Methyl-3-(pentadecyloxy)-4,5,5a,6-tetrahydrofuro[3,4-

e][1,2]oxaphosphepin-8(3H)-one 3-oxide (2.43b).  IR (neat, ATR): 2915, 2848, 1742, 1672 

cm-1;  1H NMR (300 MHz, CDCl3): δ 4.50 (1H, t, JHH = 9.3 Hz), 4.24 (1H, ddt, JHH = 8.3 

Hz, JHP = JHH = 7.7 Hz), 4.06 (1H, ddt, JHH = 9.9 Hz, JHP = JHH = 6.9 Hz), 3.84 (1H, dd, JHH 

= 9.2, 6.5 Hz), 3.40 (1H, m), 2.43 (3H, d, JHP = 1.7 Hz), 1.80–2.40 (4H, m), 1.70 (2H, p, JHH 

= 6.9 Hz), 1.26 (24H, br s), 0.88 (3H, t, JHH = 6.7 Hz);  13C NMR (75.4 MHz, CDCl3): δ 

170.3, 160.5 (d, JCP = 9.6 Hz), 113.8 (d, JCP = 3.0 Hz), 69.9, 67.0 (d, JCP = 7.0 Hz), 38.6 (d, 

JCP = 2.0 Hz), 32.1, 29.89, 29.87, 29.83, 29.76, 29.68, 29.57, 29.3, 27.0 (d, JCP = 7.5 Hz), 

26.6 (d, JCP = 134.5 Hz), 25.6, 22.9, 18.7 (d, JCP = 3.5 Hz), 14.3;  31P NMR (121.4 MHz, 

CDCl3): δ 19.9.  HRMS (FAB, NBA, MNa+) calcd for C23H41O5PNa: 451.2589, found: 

451.2601 

 

Phosphonate analog of cyclipostin P and its diastereomer (2.19).  To a solution of 

phosphonate analog 2.4 (10.7 mg, 0.046 mmol) and n-bromohexadecane (140 µL, 0.46 
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mmol) in dry 1,4-dioxane (230 µL) was added n-Bu4NI (1.7 mg, 0.0046 mmol).  The flask 

was immersed in an oil bath preheated to 110 °C until the reaction was complete (TLC, 31P 

NMR analysis).  The solvent was removed under vacuum and the crude product was purified 

by column chromatography (SiO2, EtOAc/hexanes) giving the phosphonate analog of 

cyclipostin P (2.19a) (7.8 mg) and its diastereomer (2.19b) (5.5 mg) as a white solid and 

white semisolid, respectively (75% overall). 

 

 

(±)-(3R(S),5aR(S))-3-(Hexadecyloxy)-1-methyl-4,5,5a,6-tetrahydrofuro[3,4-

e][1,2]oxaphosphepin-8(3H)-one 3-oxide (2.19a).  IR (neat, ATR): 2918, 2852, 1742, 1661 

cm-1;  1H NMR (300 MHz, CDCl3): δ 4.50 (1H, t, JHH = 9.3 Hz), 4.20 (2H, m), 3.86 (1H, dd, 

JHH = 9.2, 6.6 Hz), 3.34 (1H, m), 2.46 (3H, s), 2.26–2.38 (1H, m), 1.89–2.13 (3H, m), 1.72 

(2H, p, JHH = 6.9 Hz), 1.26 (26H, br s), 0.88 (3H, t, JHH = 6.7 Hz);  13C NMR (75.4 MHz, 

CDCl3): δ 170.1, 161.0 (d, JCP = 7.0 Hz), 114.5 (d, JCP = 4.0 Hz), 69.9, 66.8 (d, JCP = 7.1 

Hz), 39.1, 32.1, 30.5, 29.89, 29.87, 29.84, 29.77, 29.70, 29.6, 29.3, 26.8 (d, JCP = 136.0 Hz), 

26.6 (d, JCP = 7.0 Hz), 25.6, 22.9, 19.0 (d, JCP = 2.6 Hz), 14.3;  31P NMR (121.4 MHz, 

CDCl3): δ 23.4;  HRMS (FAB, NBA, MH+) calcd for C24H44O5P: 443.2926, found: 

443.2935 
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(±)-(3R(S),5aS(R))-3-(Hexadecyloxy)-1-methyl-4,5,5a,6-tetrahydrofuro[3,4-

e][1,2]oxaphosphepin-8(3H)-one 3-oxide (2.19b).  IR (neat, ATR): 2916, 2848, 1749, 1669 

cm-1;  1H NMR (300 MHz, CDCl3): δ 4.51 (1H, t, JHH = 9.1 Hz), 4.24 (1H, ddt, JHH = 9.8 

Hz, JHH = JHP = 7.2 Hz), 4.06 (1H, ddt, JHH = 10.0 Hz, JHH = JHP = 7.0 Hz), 3.84 (1H, dd, 

JHH = 9.1, 6.4 Hz), 3.41 (1H, m), 2.43 (3H, s), 1.80–2.49 (4H, m), 1.70 (2H, p, JHH = 6.8 

Hz), 1.32 (2H, m), 1.26 (24H, br s), 0.88 (3H, t, JHH = 6.6 Hz);  13C NMR (75.4 MHz, 

CDCl3): δ 170.3, 160.5 (d, JCP = 9.8 Hz), 113.8 (d, JCP = 3.0 Hz), 70.0, 67.1 (d, JCP = 7.1 

Hz), 38.6 (d, JCP = 2.2 Hz), 32.1, 30.6 (d, JCP = 5.9 Hz), 29.92, 29.90, 29.88, 29.87, 29.84, 

29.76, 29.68, 29.58, 29.3, 27.0 (d, JCP = 7.9 Hz), 26.6 (d, JCP = 134.7 Hz), 25.6, 22.9, 18.7 

(d, JCP = 3.2 Hz), 14.3;  31P NMR (121.4 MHz, CDCl3): δ 20.0;  HRMS (FAB, NBA, MH+) 

calcd for C24H44O5P: 443.2926, found: 443.2919 

 

 

(±)-Methyl 7-methyl-2-(octadecyloxy)-2,3,4,5-tetrahydro-1,2-oxaphosphepine-6-

carboxylate 2-oxide (2.18) . The monocyclic phosphonate 2.5 (0.064 g, 0.26 mmol) was 

dissolved in dry acetone (0.5 mL) and NaI (0.044 g, 0.29 mmol) was added. The yellow 

solution was heated at reflux overnight. After completion of the reaction (31P NMR analysis) 

the solvent was removed under reduced pressure. The dark orange residue was dissolved in 
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dry methanol (10 mL) and pre-rinsed Amberlite IR-120H resin (0.320 g) was added. The 

mixture was shaken on an orbit shaker for 45 min, filtered and concentrated under reduced 

pressure to yield a light orange oil. The oil was dissolved in dry CH2Cl2 (0.20 mL) and then 

potassium carbonate (0.040 g, 0.29 mmol) and 18-crown-6 (0.002 g, 0.08 mmol) were 

added, followed by the addition of n-octadecyl triflate (0.149 g, 0.369 mmol) 40 in dry 

CH2Cl2 (0.30 mL) dropwise. After 48 h, the reaction was quenched with deionized water 

and extracted three times with CH2Cl2. The combined organic extracts was dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by 

column chromatography (SiO2, 7–15% EtOAc in hexanes) to give 2.18 (0.061 g, 49%) as a 

white waxy solid. IR (neat, ATR):  1712, 1646 cm-1; 1H NMR (CDCl3) δ 4.13 (2H, m), 3.72 

(3H, s), 2.65 (1H, m), 2.47 (1H, m), 2.30 (3H, s), 2.20 – 1.83 (4H, m), 1.67 (2H, p, JHH = 6.8 

Hz), 1.30 – 1.16 (28H, br s), 0.85 (3H, t, JHH = 6.6 Hz); 13C NMR (CDCl3) δ 168.19, 

159.414 (d, JCP = 7.8 Hz), 119.18 (d, JCP = 4.6 Hz), 66.22 (d, JCP = 7.2 Hz), 51.98, 32.07, 

30.56 (d, JCP = 6.2), 29.84, 29.81, 29.78, 29.70, 29.65, 29.51, 29.28, 26.78 (d, JCP = 134.3 

Hz), 26.39 (d, JCP = 2.7 Hz), 25.61, 22.84, 21.33, 21.12, 14.27; 31P NMR (CDCl3) δ 23.7; 

HRMS (FAB, NBA, MH+) calcd. For C26H49O5P: 473.3396, found 473.3385. 

 

 

Diethyl (1,1-difluorobut-3-en-1-yl)phosphonate (2.55).  Activated Zn powder (1.22 g, 

18.7 mmol) was weighed into an oven dried Schlenk flask equipped with a Teflon-coated 

stir bar.   The system was flame dried under vacuum and flushed with Ar.  After cooling to 

room temperature, dry DMF (9.3 mL) was added by syringe followed by slow dropwise 
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addition of diethyl (bromodifluoromethyl)phosphonate (2.47, 3.3 mL, 18.6 mmol).  After 

stirring 3 h at room temperature, CuBr (2.66 g, 18.5 mmol) was added in one part followed 

by allyl bromide (1.6 mL, 18.9 mmol) by slow dropwise addition.  After stirring 40 h, the 

mixture was partitioned between CH2Cl2 and 10% aqueous NH4Cl.  The aqueous phase was 

extracted four times with CH2Cl2.  The combined organic phases were dried over anhydrous 

Na2SO4 and concentrated by rotary evaporation.  The residue was purified by column 

chromatography (SiO2, 16–18% EtOAc in hexanes) to give 2.55 (2.80 g, 66%) as a pale 

yellow oil. 1H NMR (300 MHz, CDCl3): δ 5.74 – 5.88 (1H, m), 5.26 (1H, s), 5.21 (1H, m), 

4.23 (4H, dq JHH = JHP = 7.3 Hz), 2.80 (2H, m), 1.34 (6H, t, JHH = 7.1 Hz). 

 

 

(E)-Methyl 5-(diethoxyphosphoryl)-5,5-difluoropent-2-enoate (2.53).  To a solution of 

diethyl 1,1-difluoro-3-butenephosphonate (2.55, 108 mg, 0.473 mmol) in CH2Cl2, 250 µL, 

was added methyl acrylate (86 µL, 0.95 mmol) followed by Hoveyda-Grubbs II catalyst (15 

mg, 0.024 mmol).  The green solution was heated in an oil bath at 40 °C for 1 h.  The 

solution was cooled to room temperature and concentrated by rotary evaporation.  The 

resulting residue was purified by column chromatography (20% EtOAc in hexanes) to give 

2.53 (96 mg, 71%) as a yellow oil.  IR (neat, NaCl) 2986, 2950, 2910, 1727 cm-1, 1663 cm-1; 

1H NMR (300 MHz, CDCl3): δ 6.93 (1H, dt, JHH = 15.7, 7.5 Hz), 6.02 (1H, dt, JHH = 15.7, 

1.35 Hz), 4.28 (4H, dq, JHP = JHH = 7.3 Hz), 3.75 (3H, s), 2.98 (2H, m), 1.38 (6H, t, JHH = 

7.1 Hz);  13C NMR (75.4 MHz, CDCl3): δ 166.1, 137.0 (dt, JCF = JCP = 5.7), 126.9, 119.0, 

(td, JC F = 261.7 Hz, JCP = 216.6 Hz), 64.9 (d, JCP = 6.6 Hz), 51.9, 37.3 (td, JCF = 21.8 Hz, 
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JCP = 15.6 Hz), 16.5 (d, JCP = 5.0 Hz);  31P NMR (121.4 MHz, CDCl3): δ 6.14 (t, JPF = 105.4 

Hz);  19F NMR (282.2 MHz, CDCl3): δ -110.9 (d, JFP = 105.7 Hz); HRMS (FAB, NBA, 

MH+) calcd for C10H18F2O5P: 287.0860, found: 287.0866. 

 

 

Methyl 5-(diethoxyphosphoryl)-5,5-difluoropentanoate (2.58).  To a solution of 

phosphonate 2.53 (101 mg, 0.353 mmol) in MeOH, 900 µL, was added 10% Pd on carbon 

(38 mg, 0.036 mmol).  The mixture was stirred under H2 for 30 min, flushed with argon, and 

filtered through a pad of Celite with ethanol to give 2.58 (100 mg, 99%) as a pale yellow oil.  

IR (neat, NaCl) 2986, 2955, 2910, 1740 cm-1;  1H NMR (300 MHz, CDCl3) δ 4.23 (4H, dq, 

JHP = JHH = 7.3 Hz), 3.63 (3H, s), 2.36 (2H, t, JHH = 7.3 Hz), 1.97 – 2.17 (2H, m), 1.83 – 

1.93 (2H, m), 1.34 (6H, t, JHH = 7.1 Hz); 13C NMR (75.4 MHz, CDCl3) δ 173.2, 120.6 (td, 

JCF = 259.6 Hz, JCP = 215.7 Hz), 64.6 (d, JCP = 6.8 Hz), 51.7, 33.3, 33.1 (td, JCF = 20.9 Hz, 

JCP = 14.7 Hz), 16.5 (d, JCP = 5.5 Hz), 16.5 (JCF = JCP = 5.4 Hz);  31P NMR (121.4 MHz, 

CDCl3) δ 7.05 (t, JPF = 108.3 Hz).  19F NMR (282.2 MHz, CDCl3) δ -112.1 (d, JF,H = 108.3 

Hz). HRMS (FAB, NBA, MH+) calcd for C10H20F2O5P: 289.1016, found 289.1017. 
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(±)-Methyl 2-acetyl-5-(diethoxyphosphoryl)-5,5-difluoropentanoate (2.57). A solution of 

phosphonate 2.58 (454 mg, 1.58 mmol) in dry THF, 9.5mL, was cooled to –78 °C in a dry 

ice acetone bath.  1 M solution of NaHMDS (3.2 mL) in THF was added dropwise.  After 10 

min, Ac2O (450 µL, 4.76 mmol) was added dropwise.  After 3 h, the solution was diluted 

with CH2Cl2 and treated with 10% aq. NH4Cl.  The mixture was extracted three times with 

CH2Cl2, and the organic phases were combined, dried over anhydrous Na2SO4, and 

concentrated in vacuo.  The residue was dissolved in 16 mL dry MeOH.  DMAP (39 mg, 

0.32 mmol) was added, and the solution was stirred overnight.  The solution was 

concentrated by rotary evaporation, partitioned between CH2Cl2 and 0.25 N aq. HCl, and 

extracted three times with CH2Cl2.  The combined organic extracts were dried over 

anhydrous Na2SO4 and concentrated by rotary evaporation.  The residue was purified by 

silica gel chromatography (30% EtOAc in hexanes) to give 2.57 (278 mg, 53%) as a yellow 

oil.  IR (neat, NaCl) 2988, 2957, 1739, 1717 cm-1;  1H NMR (300 MHz, CDCl3) δ 4.27 (4H, 

dq, JHH = JHP = 7.3 Hz), 3.76 (3H, s), 3.55 (1H, t, JHH = 6.9 Hz), 2.26 (3H, s), 1.95 – 2.19 

(4H, m), 1.38 (6H, t, JHH = 7.1 Hz);  13C NMR (75.4 MHz, CDCl3) δ 202.2, 169.7, 120.5 (td, 

JCF = 260.1 Hz, JCP = 215.6 Hz), 64.7 (d, JCP = 7.1 Hz), 58.5, 52.74, 31.6 (dt, JCF = 21.0 Hz, 

JCP = 15.3 Hz), 29.3, 19.6 (q, JCF = JCP = 5.4 Hz), 16.5 (d, JCP = 5.1 Hz);  31P NMR (121.4 

MHz, CDCl3): δ 6.72 (t, JPF = 107.5 Hz);  19F NMR (282.2 MHz, CDCl3): δ -112.6 (d, JFP = 

107.6 Hz);  HRMS (FAB, NBA, MH+) calcd for C12H22F2O6P: 331.1122, found 331.1126. 
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(±)-Methyl 2-ethoxy-3,3-difluoro-7-methyl-2,3,4,5-tetrahydro-1,2-oxaphosphepine-6-

carboxylate 2-oxide (2.56).  To a solution of phosphonate 2.57 (381 mg, 1.15 mmol) in dry 

CH3CN, 0.2 mL, was added NaI (190 mg, 1.27 mmol).  The mixture was heated at reflux for 

4 h and concentrated in vacuo.  The residue was dissolved in dry distilled pyridine, 5.8 mL.  

To the resulting solution was added 1-mesitylene-sulfonyl-3-nitrotriazole (682 mg, 2.34 

mmol).  After 1 h, the mixture was partitioned between 5 % aqueous NH4Cl and CH2Cl2.  

The aqueous layer was extracted three times with CH2Cl2, and the combined organic phase 

was dried over anhydrous Na2SO4 and concentrated in vacuo.  The crude material was 

purified by C18 reverse phase silica gel chromatography (60% CH3OH) to give 2.56 (131 

mg, 40%) as a yellow oil.  IR (neat, NaCl) 2988, 2956, 2925, 1719, 1655 cm-1;  1H MHz, 

NMR (300 MHz, CDCl3) δ 4.43 (2H, dq, JHP = 8.4 Hz, JHF = 7.1 Hz), 3.78 (3H, s), 2.65–

2.77 (1H, m), 2.46–2.58 (1H, m), 2.40 (3H, s), 2.14–2.42 (2H, m), 1.45 (3H, t, JHH = 7.1 

Hz);  13C NMR (75.4 MHz, CDCl3) δ 167.3 (d, JCP = 2.0 Hz), 159.2 (d, JCP = 8.0 Hz), 120.3 

(td, JCF = 261.4 Hz, JCP = 205.0 Hz), 120.2 (d, JCP = 6.0 Hz), 65.9 (d, JCP = 7.1 Hz), 52.3, 

35.3 (td, JCF = 20.6 Hz, JCP = 11.6 Hz), 21.4, 20.1 (dd, JCF = 8.8 Hz, 3.8 Hz), 16.5 (d, JCP = 

5.5 Hz);  31P NMR (121.4 MHz, CDCl3) δ 1.4 (dd, JPF1 = 111.4 Hz, JPF2 = 100.9 Hz).  19F 

NMR (282.2 MHz, CDCl3) δ -109.6 (dd, JFF = 290.5 Hz, JFP = 100.8 Hz), -106.3 (dd, JFF = 

290.5 Hz, JFP = 111.5 Hz);  HRMS (FAB, NBA, MH+) calcd for C10H15F2O5P: 285.0703, 

found 285.0708. 
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(±)-Methyl 3,3-difluoro-2-(hexadecyloxy)-7-methyl-2,3,4,5-tetrahydro-1,2-

oxaphosphepine-6-carboxylate 2-oxide (2.66).   To a solution of cyclic phosphonate 2.56 

(26 mg, 0.091 mmol) in dry 1,4-dioxane (0.45 mL) was added n-bromohexadecane (280 µL, 

0.92 mmol) and tetra-n-butylammonium iodide (1.7 mg, 0.0046 mmol).  The mixture was 

heated to reflux.  After 30 min, tetra-n-butylammonium iodide (1.7 mg, 0.0046 mmol) was 

added.  After 4 h, the mixture was cooled to room temperature and concentrated in vacuo.  

The residue was purified by C18 reverse phase silica gel chromatography (95% CH3OH) to 

give 2.66 (12 mg, 27%) as a white solid.  IR (Neat, ATR) 2963, 2917, 2850, 1717, 1661 cm-

1;  1H NMR (300 MHz, CDCl3) δ 4.34 (2H, dt, JHH = JHP = 7.0 Hz), 3.79 (3H, s), 2.65–2.79 

(1H, m), 2.45–2.59 (1H, m), 2.40 (3H, s), 2.17–2.39 (2H, m), 1.78 (2H, p, JHH = 6.9 Hz), 

1.26 (26H, br s), 0.89 (3H, t, JHH = 6.8 Hz);  13C NMR (75.4 MHz, CDCl3): δ 167.4, 159.2 

(d, JCP = 8.1 Hz), 120.4 (td, JCF = 261.7 Hz, JCP = 205.1 Hz), 120.1 (d, JCP = 5.6 Hz), 69.9 

(d, JCP = 7.0 Hz), 52.3, 35.3 (td, JCF = 20.5 Hz, JCP = 11.4 Hz), 32.152, 30.6 (d, JCP = 5.6 

Hz), 29.9 (br s), 29.7, 29.7, 29.6, 25.4, 22.9, 21.4, 20.2 (dd, JCF = 9.1 Hz, 3.5 Hz), 14.3;  31P 

NMR (121.4 MHz, CDCl3) δ 1.4 (dd, JPF = 111.2 Hz, 100.6 Hz);  19F NMR (282.2 MHz, 

CDCl3) δ -109.2 (dd, JFF = 290.1 Hz, JFP = 111.2 Hz), -106.1 (dd, JFF = 290.1 Hz, JFP = 

100.3 Hz);  HRMS (FAB, NBA, MH+) calcd for C24H44F2O5P: 481.2894, found 481.2900. 
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(±)-Methyl 2-ethoxy-7-methyl-2,3,4,5-tetrahydro-1,2-oxaphosphepine-6-carboxylate 2-

oxide (2.65):  Methyl phosphonate ester 2.5 (31 mg, 0.13 mmol) was dissolved in 

iodoethane (210 µL, 2.6 mmol), and to the resulting solution was added tetra-n-

butylammonium iodide (5.0 mg, 0.014 mmol).  The yellow solution was heated to reflux 

until completion of the reaction, monitoring by 31P NMR.  The crude mixture was 

concentrated in vacuo and purified by flash chromatography on silica gel (15% 

EtOAc/hexanes) giving 2.65 (21 mg, 64%) as a yellow oil.  IR (neat, NaCl) 2985, 2955, 

2927, 2866, 1717, 1653 cm-1;  1H NMR (300 MHz, CDCl3) δ 4.23 (2H, m), 3.76 (3H, s), 

2.68 (1H, m), 2.50 (1H, m), 2.34 (s, 3H), 1.85-2.34 (4H, m), 1.38 (3H, t, JHH = 7.1 Hz).  13C 

NMR (75.4 MHz, CDCl3) δ 168.3, 159.4 (d, JCP = 7.7 Hz), 119.3, 62.3 (d, JCP = 6.8 Hz), 

52.1, 26.9 (d, JCP = 134 Hz), 26.5, 21.3 (d, JCP = 7.5 Hz), 21.2, 16.6 (d, JCP = 5.9 Hz);  31P 

NMR (121.4 MHz, CDCl3) δ 23.15;  HRMS (FAB, NBA, MH+) calcd for C10H18O5P: 

249.0892, found: 249.0896 
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Chapter 3 : Monocyclic Phosphate Analogs of Cyclophostin and 

Cyclipostins 

 

I. Introduction 

1. Background 

In previous work, the Spilling group synthesized cyclophostin (3.1, Figure 3.1), 3.1 a low-

nanomolar inhibitor of acetylcholinesterase (AChE) isolated from broths of Streptomyces 

levindulae,3.2 and Cyclipostin P (3.2),3.1 a low-nanomolar inhibitor of hormone-sensitive 

lipase (HSL) isolated from Streptomyces species DSM 13381.3.3  In other work, the 

phosphonate analog 3.33.4 and monocyclic phosphonate analog 3.43.5 were synthesized for 

structure activity relationship (SAR) comparison with natural cyclophostin 3.1.  The goal of 

this work is to continue the SAR investigation of this novel class of inhibitors. 

 

In the previous chapter, the syntheses of cyclipostin R (3.5), phosphonate analogs of 

cyclipostins P and R (3.6 and 3.7), and octadecyl monocyclic phosphonate ester 3.8 were 

described.  The prominence of fluorine in medicinal chemistry and the absence of any 

reported α,α-difluorophosphonate ester inhibitors in the literature prompted the unsuccessful 

attempt to synthesize cyclophostin analog 3.9.  The syntheses of monocyclic analogs 3.10 and 

3.11 (Figure 3.1) were completed, but ethyl phosphonate ester 3.10 could not be effectively 

converted into the corresponding methyl phosphonate ester.  This matter was resolved by 
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preparing ethyl phosphonate 3.12, which provided a means of comparing the SAR of methyl 

and ethyl phosphonate esters.  Likewise, comparison of monocyclic α,α-difluorophosphonate 

3.10 to cyclophostin (3.1), the only synthesized phosphate inhibitor of AChE, requires one to 

account for the missing lactone moiety, potentially by way of comparing the relative 

inhibitions of phosphonate 3.3, and monocyclic phosphonate 3.4.   The integrity of this study 

would be greatly served, however, by the synthesis of monocyclic phosphate inhibitors. 

 

Figure 3.1: Cyclophostin, cyclipostins P and R, and analogs 

 

 



Martin, 89 

 

2. Retrosynthesis of Monocyclic Phosphates 

Phosphate monocycle 3.13 (Scheme 3.1) is a simple structure, but the retrosynthesis poses a 

number of challenges.  Unprotected alcohol 3.14 is the first most rational synthetic precursor 

to 3.13, as it could be cyclized by coupling after demethylation of the phosphate moiety.  An 

unprotected alcohol in the presence of such a methyl ester would certainly form lactone 3.15 

spontaneously, however. 

 

Scheme 3.1 

 

 

This concept was employed in the synthesis of cyclophostin phosphonate analog 3.3 (Scheme 

3.2).3.4  By removing the benzyl protecting group of compound 3.16 in hydrogenolysis 

conditions, phosphonate analog 3.3 was formed spontaneously upon formation of the 

intermediate unprotected alcohol. 

 

Scheme 3.2 
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Another potential approach is to cyclize from phosphate 3.17 onto the enol oxygen (Scheme 

3.3).  Compound 3.17 would be formed by carboacetylation of ester 3.18 by way of an enolate 

intermediate. 

 

Scheme 3.3 

 

 

Such enolates have been determined to form cyclopropanes.  During the investigation toward 

the synthesis of cyclophostin 3.1, ester 3.19 formed cyclopropane 3.20 as the only isolable 

product (Scheme 3.4).3.1 

 

Scheme 3.4 

 

 

Acetylation of lactone 3.21 was successful,3.1 however, though this is likely attributable to the 

unfavorable sterics and strain associated with forming a fused lactone cyclopropane (Scheme 
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3.5).  Regardless, the final synthetic intermediate 3.23 could not be cyclized onto the enol 

oxygen upon treatment with a carbodiimide reagent, and tosyl chloride generated trace 

amounts of product 3.1.3.1  Because of these problems, the sequence depicted in Scheme 3.3 

was not pursued. 

 

Scheme 3.5 

 

 

The sequence in Scheme 3.6 circumvents the problems delineated above.  The final product 

could be generated from t-butyl ester 3.24 by trifluoroacetic acid (TFA) hydrolysis of the t-

butyl group followed by methyl ester formation.  This is the weakest step in the proposed 

synthesis because harsh acidic conditions may hydrolyze the potentially sensitive 

enolphosphate moiety.  Cyclization to 3.24 from alcohol 3.25 should not be complicated by 

formation of lactone 3.15 (Scheme 3.6) because the steric bulk of the t-butyl ester retards this 

reaction. 
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Scheme 3.6 

 

 

Deprotection of 3.26 (Scheme 3.6) is analogous to a high yielding step from the synthesis of 

cyclophostin 3.1.  Phosphorylation of β-ketoester 3.27 follows directly from the natural 

product synthesis, as well.3.1  Addition of methyl acetoacetate to analogous benzyl protected 

iodide 3.29 (Scheme 3.7) was demonstrated by Mulholland, et al. to be a very high yielding 

reaction,3.6 so the sequence depicted in Scheme 3.6 appears to be the most viable. 

 

Scheme 3.73.6 
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Transesterification of cyclophostin analog 3.14 to monocyclic cyclipostin analog 3.31 

(Scheme 3.8) can be accomplished using the conditions established in the synthesis of 

cyclipostin P (3.2),3.1 employed in the transesterification of analogous phosphonates,3.7 and in 

the preceding chapter of this work. 

 

Scheme 3.8 

 

 

II. Synthesis of Monocyclic Phosphates 

1. β-Ketoester Synthesis 

Reaction of ethylene glycol with p-methoxybenzyl chloride followed the conditions used by 

Chehade, et al. to give alcohol 3.32 (Scheme 3.9), improving significantly on the reported 

isolated yield by purifying by silica gel chromatography rather than distillation. 3.8  

Iodination to 3.28 followed standard triphenylphosphine and iodine conditions.   

 

Scheme 3.9 
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Following the procedure of Mulholland, et al.,3.6 addition of t-butyl acetoacetate to iodide 

3.32 was effective, but gave β-ketoester 3.27 in modest yield (Scheme 3.10).  Their reaction 

of methyl acetoacetate with iodide 3.29 formed β-ketoester 3.30 in 99% yield (Scheme 3.7).  

The hindrance of the reaction may be attributable to the steric effects of the t-butyl 

substituent. 

 

Scheme 3.10 

 

2.  Phosphorylation 

Phosphorylation of β-ketoester 3.27 (Scheme 3.10) was attempted following the conditions 

used in the synthesis of cyclophostin (3.1),3.1 but product 3.26 was not generated.  One 

approach to solving such a problem would be to employ a stronger base, forming a more 

nucleophilic formal anion.  The pKa of protonated Hünig’s base (3.32, Figure 3.2) is 10.53.9 

whereas that of model β-ketoester 3.33 is 12.7.3.10  If mixed in a 1:1 ratio, deprotonation of 

β-ketoester 3.33 by Hünig’s base would only be approximately 8%. 
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Figure 3.2: Literature pKa values 

 

 

If the rate of the reaction is dependent on the concentration of enolate anion, the reaction 

could be accelerated by a stronger base.  Unfortunately, stronger bases often employ a metal 

counter cation which would form the wrong geometric isomer via chelating effects.  This 

principle was employed for a previous SAR study of geometric isomers.  β-ketolactone 3.34 

was phosphorylated using NaH to give Z-enolphosphate 3.35, while Hünig’s base was used 

to prepare E-enolphosphate 3.36 (Scheme 3.11).3.5  The E-isomer was found to be more than 

fourteen-fold more potent an inhibitor than the Z-isomer.3.5  Furthermore, for the preparation 

of cyclic phosphates such as the target 3.14, E geometry is crucial for the success of the 

cyclization step. 

 

Scheme 3.113.5 
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The alternative is to use a more reactive electrophile.  A method often employed when 

phosphorylation with P(V) reagents is ineffective is to use an analogous P(III) reagent.  

Meek, et al. used dimethylchlorophosphite followed by oxidation with hydrogen peroxide to 

install dimethyl phosphate moieties onto various congested adjacent alcohols of inositol 3.37 

(Scheme 3.12).3.11   

 

Scheme 3.123.11 

 

 

Hendrickson and Hendrickson developed an alternate P(III) to P(V) in situ oxidation 

technique for the preparation of hexadecyl phosphate 3.40 employing elemental iodine and 

hexadecanol (Scheme 3.13).3.12   

 

Scheme 3.133.12 
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Dialkylchlorophosphites have been used to phosphorylate β-diketones,3.13 and 

dimethylchlorophosphite, though not available commercially, can be readily prepared from 

phosphorus trichloride and dimethylphosphite.3.14   

Phosphorylation with dimethylchlorophosphite and subsequent oxidation with iodine and 

methanol was effective, giving phosphate 3.26 in modest yield (Scheme 3.14).  The 

conversion of the initial phosphonylation reaction appears complete by crude 1H and 31P 

NMR, but hydrolysis of the unstable enolphosphite moiety occurs during the oxidation step.  

Starting ketoester 3.27 is recoverable. 

 

Scheme 3.14 

 

 

 

3. Cyclization and Transesterification 

Cleavage of the PMB ether (3.26) under standard oxidative conditions gave free alcohol 

3.25 in very good yield (Scheme 3.15).  Gratifyingly, the t-butyl ester is stable at room 

temperature to lactonization.  Demethylation with sodium iodide followed by cyclization of 

the resulting sodium salt with MSNT (3.41) gave cyclic phosphate 3.24 in moderate yield. 
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Scheme 3.15 

 

 

Treatment of t-butyl ester 3.24 with trifluoroacetic acid under anhydrous Schlenk conditions 

cleanly and effectively hydrolyzed the ester leaving the cyclic phosphate intact.  Treatment 

of the resulting carboxylic acid with trimethylsilyldiazomethane gave methyl ester 3.14 in 

quantitative yield (Scheme 3.15).  Transesterification using the established conditions3.1,3.7 

gave cyclipostin analog 3.31 in good yield. 

 

III. Conclusion 

A monocyclic phosphate analog of cyclophostin and cyclipostin P was synthesized in order 

to give a complete SAR comparison of phosphates, phosphonates, and α,α-

difluorophosphonates as inhibitors of serine hydrolases AChE and HSL.  The compounds 



Martin, 99 

 

synthesized in this chapter and Chapter 2 were submitted to collaborators in the laboratory 

of Prof. Cynthia Dupureur for assay against AChE and HSL.  The results of that study are 

reported in the following chapter. 

 

IV. Experimental Section 

General Experimental.  All reactions were carried out in oven dried glassware (150 °C) 

under an atmosphere of argon unless otherwise noted.  Dry THF was distilled from sodium 

and benzophenone.  Dry CH2Cl2 and CH3CN were distilled from CaH2.  Dry MeOH was 

distilled from magnesium. Dry pyridine was distilled from KOH.  All chemicals and 

reagents were purchased from commercial suppliers unless otherwise noted.  1H, 13C and 31P 

NMR spectra were recorded at 300, 75 and 121 MHz, respectively. 1H NMR spectra are 

referenced to CDCl3 (7.27 ppm), 13C NMR spectra are referenced to CDCl3 (77.23 ppm), 

and 31P NMR spectra are referenced to external H3PO4. 

 

 

2-((4-Methoxybenzyl)oxy)ethanol (3.32): Following published procuedures,3.8 potassium 

hydroxide (85%, 1.46 g, 22.1 mmol) was dissolved in ethylene glycol (12.3 mL) and heated 

at 130 °C for 4 h.  The solution was cooled to rt, and PMBCl (3 mL, 22.1 mmol) was added.  

The solution was stirred at 30 °C for 14 h.  The mixture was diluted with water and extracted 

three times with Et2O.  The Et2O layers were dried over MgSO4 and concentrated in vacuo.   

The crude mixture was purified by silica gel chromatography (40-50% EtOAc/hexanes) to 

give 3.32 (3.99 g, 99%) as a colorless oil.  1H NMR (300 MHz, CDCl3) δ 7.30 (2H, d, JHH = 
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8.1 Hz), 6.92 (2H, d, JHH = 8.7 Hz), 4.53 (2H, s), 3.84 (3H, s), 3.78 (2H, t, JHH = 4.5 Hz), 

3.61 (2H, t, JHH = 4.7 Hz). 

 

 

1-((2-Iodoethoxy)methyl)-4-methoxybenzene (3.28): Triphenyl phosphine (1.48 g, 5.64 

mmol) and I2 (1.43 g, 5.63 mmol) were combined in dry THF, 5 mL, and stirred 10 min.  

The mixture was cooled to 0 °C, and solution of 3.32 (1.02 g, 5.60 mmol) and imidazole 

(762 mg, 11.19 mmol) in dry THF, 2 mL, was added by cannula, rinsing further with dry 

THF, 3 mL.  The ice bath was removed, and the mixture was stirred 1 h.  The red-brown 

solution was poured onto silica gel and concentrated in vacuo.  The mixture purified by 

silica gel chromatography (30% EtOAc/hexanes) to give 3.28 (1.515 g, 93%) as a colorless 

oil.  1H NMR (300 MHz, CDCl3) δ 7.29 (2H, d, JHH = 8.7 Hz), 6.90 (2H, d, JHH = 8.7 Hz), 

4.52 (2H, s), 3.82 (3H, s), 3.72 (2H, t, JHH = 6.8 Hz), 3.27 (2H, t, JHH = 6.9 Hz). 

 

 

tert-Butyl 2-acetyl-4-((4-methoxybenzyl)oxy)butanoate (3.27):  To a solution of 3.28 

(1.51 g, 5.17 mmol) in dry acetone, 26 mL, was added tert-butyl acetoacetate (1.3 mL, 7.8 

mmol) followed by K2CO3 (1.8 g, 13 mmol).  The mixture was heated to reflux 36 h, 

partitioned between water and Et2O, and extracted three times with Et2O.  The organic 

extracts were dried over Na2SO4 and concentrated in vacuo.  The crude mixture was purified 
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by silica gel chromatography (5-10% EtOAc/hexanes) to give 3.27 (927 mg, 56%) as a pale 

yellow oil.  IR (neat, NaCl) 2976, 2935, 2856, 1736, 1714 cm-1;  1H NMR (300 MHz, 

CDCl3) δ 7.22 (2H, d, JHH = 8.5 Hz), 6.86 (2H, d, JHH = 8.4 Hz), 4.37 (2H, s), 3.78 (3H, s), 

3.58 (1H, t, JHH = 7.2 Hz), 3.43 (2H, t, JHH = 6.0 Hz), 2.20 (3H, s), 2.11 (2H, m), 1.42 (9H, 

s);  13C NMR (75.4 MHz, CDCl3) δ 203.3, 168.9, 159.4, 130.5, 129.4, 114.0, 81.9, 72.7, 

67.4, 57.8, 55.4, 29.2, 28.3, 28.0;  HRMS (FAB, NBA, MNa+) calcd for C18H26O5Na: 

345.16779, found: 345.1673. 

 

 

(E)-tert-Butyl 3-((dimethoxyphosphoryl)oxy)-2-(2-((4-methoxybenzyl)oxy)ethyl)but-2-

enoate (3.26):  Solution of  acetoacetate 3.27 (206 mg, 0.639 mmol) and Hünig’s base (560 

µL, 3.20 mmol) in dry CH2Cl2, 650 µL, was cooled to -30 °C.  (CH3O)2PCl (82%, 137 µL, 

0.96 mmol) was added dropwise, and the solution was allowed to warm to room temperature 

after stirring 10 min.  After 1 h, the solution was concentrated in vacuo and dissolved in dry 

CH2Cl2.  Pyridine (257 µL, 3.19 mmol) was added followed by I2 (89 mg, 0.70 mmol).  

After stirring 5 min, dry MeOH, 6.4 mL, was added, and saturated solution of I2 in CH2Cl2 

was added dropwise until color persisted.  The solution was washed with 10% aqueous 

Na2S2O3, extracting 3 times with CH2Cl2.  The organic extracts were dried over Na2SO4 and 

concentrated in vacuo.  The crude material was purified by silica gel chromatography (40% 

EtOAc/hexanes) to give 3.26 (156 mg, 57%) as a pale yellow oil.  IR (neat, NaCl) 2959, 

2857, 1709, 1514 cm-1;  1H NMR (300 MHz, CDCl3) δ 7.20 (2H, d, JHH = 8.4 Hz), 6.81 (2H, 
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d, JHH = 8.6 Hz), 4.39 (2H, s), 3.81 (6H, d, JHP = 11.4 Hz), 3.80 (3H, s), 3.50 (2H, t, JHH = 

7.4 Hz), 2.68 (2H, t, JHH = 7.3 Hz), 2.39 (3H, s), 1.46 (9H, s);  13C NMR (75.4 MHz, CDCl3) 

δ 167.0, 159.3, 154.8 (d, JCP = 7.0 Hz), 130.8, 129.3, 118.3 (d, JCP = 9.0 Hz),  113.8, 81.1, 

72.4, 68.5, 55.3, 54.7 (d, JCP = 6.0 Hz), 28.2, 30.0, 19.0;  31P NMR (121.4 MHz, CDCl3) δ -

5.25;  HRMS (FAB, NBA, MH+) calcd for C20H32O8P: 431.18347, found: 431.1834. 

 

 

(E)-tert-Butyl 3-((dimethoxyphosphoryl)oxy)-2-(2-hydroxyethyl)but-2-enoate (3.25):  

Solution of phosphate 3.26 (93.4 mg, 0.217 mmol) in CH2Cl2, 4 mL, containing 4 drops H2O 

was cooled to 0 °C, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (74 mg, 0.33 mmol) 

was added.  The solution was stirred 2 h and partitioned between CH2Cl2 and 10% aqueous 

Na2SO3, adding saturated aqueous NaHCO3 to complete dissolution and extracting three 

times with CH2Cl2.  The organic extracts were dried over Na2SO4 and concentrated in 

vacuo.  The crude material was purified by silica gel chromatography (60% EtOAc/hexanes) 

to give 3.25 (57 mg, 85%) as a pale yellow oil.  IR (neat, NaCl) 3439, 2976, 2880, 1709, 

1647 cm-1;  1H NMR (300 MHz, CDCl3) δ 3.86 (6H, d, JHP = 11.5 Hz), 3.73 (2H, t, JHH = 

6.2 Hz), 2.64 (2H, t, JHH = 6.2 Hz), 2.38 (3H, s), 1.51 (9H, s);  13C NMR (75.4 MHz, CDCl3) 

δ 167.6, 154.9 (d, JCP = 7.6 Hz), 119.4 (d, JCP = 8.6 Hz), 81.8, 61.7, 55.1 (d, JCP = 6.1 Hz), 

31.1, 28.3, 19.4;  31P NMR (121.4 MHz, CDCl3) δ -4.83;  HRMS (FAB, NBA, MH+) calcd 

for C12H24O7P: 311.12598, found: 311.1253. 
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tert-butyl 2-Methoxy-4-methyl-6,7-dihydro-1,3,2-dioxaphosphepine-5-carboxylate 2-

oxide (3.24):  To phosphate 3.25 (57 mg, 0.18 mmol) in dry CH3CN, 100 µL, was added 

NaI (30 mg, 0.20 mmol), and the mixture was heated to reflux 30 min and concentrated in 

vacuo.  The sodium salt was dissolved in dry distilled pyridine, 900 µL, and treated with 1-

mesitylene-sulfonyl-3-nitrotriazole (107 mg, 0.36 mmol).  After stirring 1.5 h, the mixture 

was partitioned between H2O and EtOAc, extracting four times with EtOAc.  The organic 

extracts were dried over Na2SO4 and concentrated in vacuo.  The crude material was 

purified by C18 reverse phase silica gel chromatography (60% MeOH) to give 3.24 (36 mg, 

71%) as a pale yellow oil.  IR (neat, NaCl) 2977, 2930, 2853, 1711, 1653 cm-1;  1H NMR 

(300 MHz, CDCl3) δ 4.36 (1H, m), 4.16 (1H, m), 3.87 (3H, JHP = 11.5 Hz), 2.93 (1H, ddd, 

JHH = 15.8, 8.8, 3.7 Hz), 2.77 (1H, ddd, JHH = 15.8, 6.3, 3.3 Hz), 2.32 (3H, s), 1.50 (9H, s);  

13C NMR (75.4 MHz, CDCl3) δ 166.1 (d, JCP = 2.0 Hz), 159.2 (d, JCP = 9.5 Hz), 117.3 (d, 

JCP = 4.0 Hz), 82.1, 68.5 (d, JCP = 6.6 Hz), 55.1 (d, JCP = 6.0 Hz), 28.7, 28.4, 20.3 (d, JCP = 

3.5 Hz);  31P NMR (121.4 MHz, CDCl3) δ -9.70;  HRMS (FAB, NBA, MH+) calcd for 

C11H20O6P: 279.0998, found 279.0997. 
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Methyl 2-methoxy-4-methyl-6,7-dihydro-1,3,2-dioxaphosphepine-5-carboxylate 2-oxide 

(3.13):  To a Schlenk flask containing a solution phosphate 3.24 (93 mg, 0.13 mmol) in dry 

CH2Cl2, 3.3 mL, was added TFA, 1.1 mL, dropwise.  After 1 h, the solution was 

concentrated to dryness.  The carboxylic acid was dissolved in CH2Cl2, 3.3 mL, and MeOH, 

3.3 mL, and TMSCHN2 solution (2 M in hexane) was added dropwise until bubbling ceased 

and yellow color persisted.  The solution was concentrated in vacuo, and the crude material 

was filtered in EtOAc through a pad of Celite to give 3.13 (78 mg, 99%) as a pale yellow 

oil.  IR (neat, NaCl) 2997, 2954, 2911, 2852, 1717, 1652 cm-1;  1H NMR (300 MHz, CDCl3) 

δ 4.39 (1H, m), 4.18 (1H, m), 3.88 (3H, d, JHP = 11.5 Hz), 3.78 (3H, s),  3.00 (1H, ddd, JHH 

= 15.7, 9.4, 3.7 Hz), 2.85 (1H, ddd, JHH = 15.8, 6.4, 3.4 Hz);  13C NMR (75.4 MHz, CDCl3): 

δ 167.2 (d, JCP = 2.0 Hz), 161.0 (d, JCP = 9.6 Hz), 115.7 (d, JCP = 3.5 Hz), 68.5 (d, JCP = 6.6 

Hz), 55.1 (d, JCP = 5.5 Hz), 52.2, 28.4, 20.4 (d, JCP = 4.1 Hz);  31P NMR (121.4 MHz, 

CDCl3) δ -9.94;  HRMS (FAB, NBA, MH+) calcd for C8H14O6P: 237.0528, found 237.0528. 

 

 

Methyl 2-(hexadecyloxy)-4-methyl-6,7-dihydro-1,3,2-dioxaphosphepine-5-carboxylate 

2-oxide (3.31):   To a solution of phosphate 3.13 (11 mg, 0.047 mmol) and 1-

bromohexadecane (175 µL, 0.473 mmol) in dry 1,4-dioxane, 235 µL, was added n-Bu4NI (1 

mg, 0.003 mmol).  The flask was immersed at 110 °C in an oil bath until reaction was 



Martin, 105 

 

complete (TLC, 31P NMR analysis).  The solvent was removed under vacuum, and the crude 

product was purified by silica gel chromatography (10–20% EtOAc/ hexanes) giving 3.31 

(18 mg, 85%) as a colorless oil.  IR (neat, NaCl) 2924, 2854, 1723, 1645 cm-1;  1H NMR 

(300 MHz, CDCl3) δ 4.37 (1H, m), 4.17 (3H, m), 3.77 (3H, s), 3.00 (1H, ddd, JHH = 15.5, 

8.8, 3.2 Hz), 2.84 (1H, ddd, JHH = 15.6, 5.9, 3.6 Hz), 1.71 (2H, p, JHH = 6.7 Hz), 1.26 (26H, 

br s), 0.88 (3H, t, JHH = 6.7 Hz);  13C NMR (75.4 MHz, CDCl3) δ 167.3 (d, JCP = 2.0 Hz), 

161.1 (d, JCP = 9.6 Hz), 115.6 (d, JCP = 4.1 Hz), 69.3 (d, JCP = 6.6 Hz), 68.3 (d, JCP = 6.6 

Hz), 52.2, 32.1, 30.5 (d, JCP = 6.6 Hz), 29.90, 29.87, 29.84, 29.76, 29.69, 29.55, 29.3, 28.5, 

25.6, 22.9, 20.5 (d, JCP = 4.0 Hz), 14.3;  31P NMR (121.4 MHz, CDCl3) δ -10.8;  HRMS 

(FAB, NBA, MH+) calcd for C23H44O6P: 447.2876, found 447.2864. 
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Chapter 4 :  AChE and HSL Inhibition Results 

 

I. Introduction 

The materials synthesized in Chapters 2 and 3 were submitted to the laboratory of Prof. 

Cynthia Dupureur for assay against acetylcholinesterase (AChE) and hormone-sensitive 

lipase (HSL).  The assay for AChE inhibition is a modified Ellman assay,4.1,4.2 and the assay 

for HSL inhibition is a tritiated triolein assay.4.3 

 

II. AChE Inhibition Results and Discussion 

1. Background 

SAR studies in previous works found that the diastereomers of cyclophostin (4.1a and 4.1b, 

Table 4.1) are both nanomolar inhibitors of human AChE and that corresponding 

phosphonates are 100- to 1000-fold less potent.4.2  Cyclophostin analogs 4.2a and 4.2b show 

a tenfold preference for the trans diastereomer (4.2a), whereas the preference for synthetic 

ring-opened intermediates 4.4a and 4.4b favors the cis isomer (4.4b).  For consistency 

between mono- and bicyclic inhibitors, cis is reasoned as being the relationship between the 

methyl phosphonate ester and the hydrogen at the chiral carbon. 
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Table 4.1: Results from previous studies for acetylcholinesterase inhibition 

 

 

Monocyclic analog 4.3 showed inhibition of the same order of magnitude as the more active 

phosphonate diastereomers 4.2a and 4.4b, which suggested that the lactone ring was 

unimportant (Table 4.1).  Z (4.5) and E (4.6) ring opened phosphates showed clear 

preference for the Z isomer (4.5), but the high IC50 demonstrates that cyclic phosphates are 

preferred inhibitors.  The reduced phosphonate (4.7), is likewise a poor inhibitor, probably 

as a result of the loss of charge dissociation of the acetoacetate moiety which forms upon 

binding the catalytic serine residue. 
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2. AChE Inhibiton of Synthesized Inhibitors 

The compounds reported in this work were submitted to Elena Vasilieva in the laboratory of 

Cynthia M. Dupureur for enzymatic assay.  The α,α-difluorophosphonate 4.8 showed no 

significant inhibition of AChE (Table 4.2).4.3a  Ethyl phosphonate ester 4.9 shows little 

difference in activity from the analogous methyl ester 4.3 (Table 4.1), so the loss of activity is 

not attributable to the ethyl ester. 4.3a  31P NMR analysis of difluorophosphonate 4.8 in 0.1 M 

phosphate pH 8 buffered aqueous solution showed significant hydrolysis (24% hydrolysis in 1 

h), indicating that the inhibitor was unstable in the assay conditions (Table 4.3).  A similar study 

of difluorophosphonate 4.8 in 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) pH = 6 

buffered aqueous solution showed reasonable stability (4% hydrolysis in 1 h, Table 4.3), so the 

enzyme inhibition assay was repeated at a lower pH.4.3a  AchE retains some of its activity at this 

pH.4.4  Difluorophosphonate 4.8 showed no improvement in activity, confirming that the fluorine 

substituents are responsible for the negligible inhibition.  Phosphate monocycle 4.10 (Table 4.2) 

was a high-nanomolar inhibitor, showing a 15-fold loss of activity from bicyclic trans 

cyclophostin 4.1b (Table 4.1).  This loss of activity is enigmatic in light of the comparable 

inhibition of monocyclic phosphonate 4.3 and the bicyclic phosphonate 4.2a (Table 4.1).  
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Monocycle 4.10 was tenfold more active than analogous t-butyl ester 4.11, indicating a steric 

influence at the ester position (Table 4.2). 

 

Table 4.2: Acetylcholinesterase inhibition by compounds reported in this work4.3a 
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Table 4.3: Stability of inhibitors in aqueous media as a function of pH 

 

III. HSL Inhibition Results and Discussion 

1. Background 

Previously synthesized inhibitors 4.12–4.16,4.5 4.1,4.2a 4.17,4.2a 4.2,4.2b and 4.184.5 were tested 

for inhibition of HSL by Supratik Dutta and Elena Vasilieva in the laboratory of Cynthia M. 

Dupureur (Table 4.4).4.3  C-alkylated phosphonates 4.12–4.16 were found to be rather poor 

inhibitors with varying preference for relative stereochemistry. 4.3a  Optimal activity occurs 

at the C16 chain length (4.16). 4.3  Cyclophostin (4.1) and its phosphonate analog (4.2b) were 

found to be ineffective inhibitors, likely for lack of a lipophilic substituent. 4.3b  Cyclipostin 

P (4.17) is a nanomolar inhibitor with a nearly 17-fold preference for trans diastereomer 

4.17b. 4.3a  Monocyclic phosphonate 4.18 was found to be a rather good inhibitor. 4.3a  The 

activity of phosphonate inhibitors was found to be sensitive to the ratio of PC and PI in the 

assay conditions,4. 3a so the lowest observed IC50 are be cited for the purposes of comparison. 
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Table 4.4: Inhibition of hormone-sensitive lipase by inhibitors from previous work4.3a,b,c 

 

 

2. HSL Inhibition of Synthesized Inhibitors 

The cyclipostin analogs completed in this work were submitted for HSL inhibition assay to 

Elena Vasilieva in Cynthia M. Dupureur’s laboratory.  Cyclipostin R (4.19) was found to be 

a nanomolar inhibitor of HSL with 12-fold preference for the cis diastereomer (4.19a, Table 

4.5), displaying a shift in diastereoselectivity resulting from a change in chain length of only 
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one methylene (compare cyclipostin P, 4.17, Table 4.4).  High nanomolar inhibition was 

observed for the phosphonate analogs 4.20 and 4.21, indicating that phosphates are more 

effective inhibitors but by a smaller margin than is observed for AChE.   

 

Table 4.5: Hormone-sensitive lipase inhibition by compounds reported in this work4.3a 
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The analog of cyclipostin P 4.20 showed an appreciable preference for the trans 

diastereomer (4.20b), while cyclipostin R analog 4.21 showed no significant 

distereoselectivity at all (Table 4.5).  These values, when compared to the activity of 

monocyclic analog 4.18, would suggest little influence by the lactone moiety.  

Difluorophosphonate 4.22 showed no appreciable inhibition, and monocyclic phosphate 

4.23 was a low nanomolar inhibitor on the order of the bicyclic natural products 4.17 and 

4.19.  The latter result confirms the negligible influence by the lactone in which was 

observed for mono- and bicyclic phosphonates. 

 

IV. Conclusion 

α,α-Difluorophosphonates show little detectable activity as inhibitors of AChE and HSL.  

Fluorination of cyclic phosphonates clearly activates the phosphorus atom by increasing its 

electrophilicity (Table 4.3).  Difluorophosphonate 4.8 is significantly less stable to 

hydrolysis in aqueous solution than analogous phosphate 4.10 and phosphonate 4.3.  The 

loss of activity must be explained as a reduced affinity of the inhibitor toward the enzyme, 

likely due to steric effects or, more probably, the unusual hydrogen bonding characteristics 

of fluorine.  While the importance of diastereoisomerism is enigmatic, the superiority of 

phosphates to phosphonates as inhibitors of both HSL and AChE is ubiquitous. 

 

V. Experimental Section 

General NMR Stability Experimental:  Inhibitor (~0.01 mmol) was dissolved in 

isopropanol, 25 µL.  The solution was diluted with D2O, 35 µL, followed by 0.1 M buffer 
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solution (phosphate, pH 8 and 7.5; 2-morpholinoethanesulfonic acid, pH 6.5 and 6), 700 µL.  

The solution was analyzed by 31P NMR (600 MHz, inverse-gated proton decoupled, D1 = 5 

s) at time points 0 minutes, 30 minutes, 1 hour, and 24 hours. 
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Chapter 5 :  Bactericidal Lipase Inhibitors and Fluorescent Analog 

 

I. Introduction 

1. Background 

Mycobacterium tuberculosis is a notoriously drug resistant disease.  The bacterium is 

resistant to traditional antibiotics due to its production of β-lactamase enzymes5.1 and its 

ability to lie dormant in the host’s macrophages indefinitely, reactivating once the immune 

system is weakened.  Research has shown that the bacterium may be dependent on fatty 

acids for survival during its inactive state.5.2  For this reason, microbial lipases have been the 

target of recent research as targets for future M. tuberculosis treatment.  In particular, 

Rv0183, a monoacylglycerol (MAG) lipase, is believed to play a role in host cell lipid 

degradation,5.3,5.4 and LipY, a triacylglycerol (TAG) lipase, is believed to be a key enzyme 

for the bacterium’s survival during dormancy.5.4,5.5 

 

2. Previous Work 

A series of lipase inhibitor analogs of cyclipostins (5.1-5.9, Table 5.1) were submitted to the 

laboratory of Jean-François Cavalier at the laboratory of Enzymology at Interfaces and 

Physiology of Lipolysis (EIPL UMR7282 CNRS - Marseille, France) for testing against 

three microbial lipases and three mammalian lipases.4.6  Cutinase, a microbial enzyme with a 

diverse array of substrates, Rv0183, and LipY were the microbial lipases chosen, and dog 
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gastric lipase (DGL), human pancreatic lipase (HPL), and guinea pig pancreatic lipase 

related protein 2 (GPLRP2) were chosen as a diverse representative sample of mammalian 

lipases.  Activity was assayed using a pH-stat technique which employs surfactants in the 

pre-incubation stage to compensate for the insolubility of the substrate and enzymes.  

Because the assay does not take place in a solution phase, IC50 cannot be employed, and the 

results were reported as the inhibitor molar excess resulting in inhibition of 50% enzyme 

activity (xI50). 

 

Table 5.1: Inhibition of microbial lipases by phosphonate analogs of cyclipostin5.6 

 

 



Martin, 120 

 

None of the inhibitors displayed any inhibition of the mammalian lipases, which in 

conjunction with their being weak to very weak inhibitors of hormone-sensitive lipase 

(HSL) as described in Chapter 4, is a potential sign of inactivity toward human lipases.  The 

C-alkylated phosphonate analogs of cyclipostins (5.1-5.5, Table 5.1) were found to be good 

inhibitors of cutinase, with diastereopreference for the cis isomers.  This trend carried to 

their Rv0183 results, with an inverted preference for trans C12 5.3b over cis 5.3a, however.  

Inhibition of LipY was greatest with cis isomers 5.4a and 5.5a.  The increased potency of 

inhibitors with increasing chain length comports with LipY being a TAG lipase favoring 

lipophilic substrates.  While cyclophostin (5.6) was shown to be a good inhibitor of cutinase, 

it was a less potent inhibitor of Rv0183, and a very weak inhibitor of LipY, as would be 

suspected given its lack of long aliphatic substituents.  The phosphonate analog 5.7 was 

significantly less potent in all respects.  Long-chain phosphonate esters 5.8 and 5.9 were 

very potent inhibitors of cutinase and LipY, but showed no inhibition of Rv0183. 

 

3. Activity against Live Cultures 

A number of the inhibitors were chosen for antibacterial evaluation.  Collaborators evaluated 

the activities of inhibitors 5.1b, 5.2(a,b), and 5.3(a,b) against the green fluorescent protein 

expressing strain M. tb H37Rv-GFP and against infected murine macrophage cells.5.7  The 

results were reported as concentration of compound resulting in 50% reduction of growth 

rate (IC50) and compound concentration resulting in 50% macrophage toxicity (CC50).  The 

compounds tested displayed IC50s against intracellular Mycobacterium tuberculosis 

comparable to reported5.8 values for first-line medications isoniazid, ethionamide, and 

rifampin (Table 5.2).  Of additional interest are the low cell toxicities.  These preliminary 
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results suggest the potential of these analogs as drug candidates, especially C10 phosphonate 

5.2(a,b). 

 

Table 5.2: Antibiotic activities on Mycobacterium tuberculosis5.7 

 

a Referenced results5.8 
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II. Microbial Lipase Inhibition of Additional Analogs 

1. Background 

In order to further the structure activity relationship (SAR) investigation, compounds 

reported in this work were submitted for similar analysis.  Furthermore, because of the 

marked activity of C-alkyl monocycles 5.1-5.5, as well as the long chain phosphonate esters 

5.8 and 5.9, an additional analog bearing two long alkyl chains was synthesized by 

transesterification of 5.2 and submitted for assay.   

 

2. Synthesis of New Analog 

Monocyclic cyclipostin analog 5.2 was synthesized following the published procedure 

(Scheme 5.1).5.6  The synthesis employs cross metathesis of carbonate 5.10 and Pd π-allyl 

coupling of the resulting carbonate 5.11 with methylacetoacetate, techniques extensively 

developed and employed by the Spilling research group.5.9  Hydrogenation and ultimate 

cyclization gave phosphonate 5.2 as a mixture of diastereomers. 
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Scheme 5.15.6 

 

 

Transesterification of 5.2 (Scheme 5.2) was performed by the established technique,5.10,5.6 

giving phosphonate 5.14 in 80% yield as a mixture of diastereomers. 

 

Scheme 5.2 

 

 

3. Biological Activities of Synthesized Materials 

Cyclipostin P (5.15) and the compounds completed in this work were submitted for 

evaluation by collaborators in the laboratory of Jean-François Cavalier at the laboratory of 

Enzymology at Interfaces and Physiology of Lipolysis (EIPL UMR7282 CNRS - Marseille, 

France).  Cyclipostin P (5.15) was found to be a very potent inhibitor of both cutinase and 
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LipY with xI50s approaching 0.50, the lowest obtainable value (Table 5.3).5.7  The cis 

lipophilic phosphonate 5.14a was found to inhibit cutinase nearly as potently as the parent 

cis methyl ester (5.2a) while the trans isomer (5.14b) showed tenfold improvement 

compared to trans methyl ester 5.2b.5.7  cis Isomer 5.14a displayed only a subtle gain of 

activity against LipY while the trans isomer 5.14b displayed nearly a twofold loss.5.7   α,α-

Difluorophosphonate ethyl ester 5.16 was a good inhibitor of cutinase and a very poor 

inhibitor of LipY.5.7  The corresponding hexadecyl ester (5.17) showed a very low xI50 

against cutinase and moderate inhibition of LipY.5.7  Phosphate methyl ester 5.18 was a 

strong inhibitor of both enzymes, and the hexadecyl phosphate ester (5.19) was a 

stoichiometric inhibitor.5.7  All of the phosphates in Table 5.3 displayed >90% inhibition 

when lipases were treated with four molar equivalents, but the phosphonates and 

difluorophosphonates only achieved 60–75% inhibition at one hundredfold excess.5.7 
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Table 5.3: Lipase inhibition by cylipostin P and compounds reported in this work5.7 

 

 

Collaborators then evaluated these compounds’ activities against Mycobacterium 

tuberculosis and infected macrophages in the manner previously described.  Cyclipostin P 

(5.15) and long-chain phosphate 5.19 alone showed activity against the bacterium (Table 

5.4).5.7  The cis diastereomer 5.15a and monocyclic 5.19 in particular were potent, with low 

micromolar and high nanomolar IC50s, respectively.5.7  In spite of some of the excellent 
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enzymatic inhibitions, none of this set of compounds showed activity against 

Mycobacterium tuberculosis in infected macrophages, however.5.7 

 

 

Table 5.4: Activity of cyclipostin P and synthesized compounds against Mycobacterium 

tuberculosis5.7 
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III. Fluorescent Analog 

1. Introduction 

Compounds 5.1–5.3 (Table 5.1, Table 5.2) were potent inhibitors of Mycobacterium 

tuberculosis lipases Rv0183 and LipY and were active against the bacterium inside infected 

macrophages.  In order confirm the proposed mechanism of action, a fluorescently labeled 

analog of the inhibitor 5.2 was chosen for synthesis labeled with nitrobenzo-2-oxa-1,3-

diazole (NBD).  Inhibited enzymes in a complex mixture can then be identified by their 

fluorescence in gel electrophoresis.5.11  By placing the fluorophore at the end of the alkyl 

chain, synthesis of the analog would closely follow Scheme 5.1. 

 

2. Retrosynthesis 

The initial approach to synthesize fluorescent analog 5.20 is described in Scheme 5.3.  

Dimethyl phosphonate 5.21 could be cyclized to 5.20 in the same way as described in 

Scheme 5.1.  Hydrogenation of 5.22 may require special conditions such as potassium 

azodicarboxylate rather than palladium on carbon conditions due to possible reaction at the 

NBD moiety.  Methyl acetoacetate addition to a Pd π-allyl formed from 5.23 could give 

5.22, and 5.23 could be formed from cross metathesis between NBD-functionalized 

undecenamine 5.24 and carbonate 5.10 (Scheme 5.1).  Cross-metathesis with 5.245.12 and 

synthesis of undecenamine 5.245.13 are preceded in the literature. 
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Scheme 5.3 

 

 

3. Synthesis 

Undecenamine 5.25 was synthesized in two steps (Scheme 5.4).  Commercially available 

10-undecenoic acid (5.26) was converted to 10-undecenamide (5.27) by reaction with 

thionyl chloride followed by concentrated aqueous ammonium hydroxide.  The reduction of 

amide 5.27 to amine 5.25 followed the procedure of Cheng and Landry.5.13a   
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Scheme 5.4 

 

 

SNAr reaction of amine 5.25 with NBDCl (5.28) followed literature precedent,5.13b and 

cross-metathesis of fluorescent 5.24 employed procedures established for reaction with 

phosphonoallylic carbonate 5.105.9a,5.14 gave carbonate 5.23 in low yield (Scheme 5.5).  The 

subsequent Pd π-allyl reaction with methyl acetoacetate, however, generated no product. 

 

Scheme 5.5 

 

 

Lewis basic nitrogen moieties have been known to interfere with Pd(0) catalyzed 

reactions,5.15 so the secondary aniline (5.23) was protected with a t-butyloxy-carbonyl (Boc) 
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group, giving 5.29 in 65% yield (Scheme 5.6).  However, Pd π-allyl reaction product 5.30 

was not generated.  This result suggests that the NBD moiety may be incompatible with the 

reaction conditions, and must be installed at a later step. 

 

 

Scheme 5.6 

 

 

Amine 5.25 was protected as carbonate 5.31 and introduced crude to cross metathesis 

reaction with phosphonate 5.10 giving carbonate 5.32 in fair yield (Scheme 5.7).  

Surprisingly, the Boc-protected amine (5.32) was found to be unreactive to the Pd π-allyl 

reaction conditions, as well. 
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Scheme 5.7 

 

 

Amine 5.25 was protected by refluxing in toluene with phthalic anhydride, giving 

phthalimide 5.34 in good yield (Scheme 5.8).  Cross-metathesis with phosphonate 5.10 

generated carbonate 5.35 in only moderate yield, but subsequent Pd π-allyl reaction with 

methyl acetoacetate successfully gave β-ketoester 5.36 in good yield. 

 

Scheme 5.8 

 



Martin, 132 

 

 

Hydrogenation of the olefin to aliphatic phosphonate 5.37 was effective, but a side product 

(5.38) was generated due to reduction of the phthalimide (Scheme 5.9).  The mixture was 

carried forward and cyclized using the techniques detailed in Scheme 5.1, but the yield was 

low.  Cyclization with HBTU (5.39) after demethylation with sodium iodide gave cyclic 

phosphonate 5.40 in 64% yield over three steps. 

 

Scheme 5.9 

 

Conditions A: a.) Amberlite IR-120H, MeOH  b.) EDC, HOBt, iPr2NEt, CH2Cl2 

Conditions B: HBTU, DMF, iPr2NEt 
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Attempted phthalimide removal using hydrazine generated a complex mixture of products 

(Scheme 5.10).  Reaction is suspected to have occurred at the methyl ester and the methyl 

phosphonate ester in addition to removal of the protecting group. 

 

Scheme 5.10 

 

 

A milder alternative to hydrazine deprotection is reduction of phthalimide with sodium 

borohydride.  The technique was developed by Ganem, et al. and is exemplified in their 

work depicted in Scheme 5.11.5.16  Phthalimide protected glutamic acid (5.42) was 

deprotected by reduction of the phthalimide to amide 5.45 which was cyclized by addition of 

a large excess of acetic acid and heating to give glutamic acid (5.43) in excellent yield and 

phthalide (5.46, Scheme 5.11). 
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Scheme 5.115.16 

 

 

The reaction of phthalimide protected cyclic phosphonate 5.40 with sodium borohydride is 

effective, but has to be halted before reduction is complete due to the instability of the enol 

phosphonate to aqueous base (Scheme 5.12).  The resulting mixture of amide (5.47) and 

amidol (5.48) was treated with a large excess acetic acid and heated to 80 °C.  Phthalide 

(5.46) was visible in the crude 1H NMR spectrum and the phosphonate ring was intact 

according to crude 31P NMR, suggesting successful reaction.  However, free amine 5.41 was 

unstable upon concentration of the crude mixture after basic extraction. 
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Scheme 5.12 

 

 

Attempting to concentrate the acidic mixture in order to isolate the acetic acid salt of 5.41 

also resulted in decomposition.  DMF was added to the crude solution of amine 5.41 and the 

remaining isopropanol was evaporated.  The solution was added to a cold basic solution of 

NBD-Cl (5.28), and trace quantities of target product 5.20 were isolated (Scheme 5.13). 

 

Scheme 5.13 
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IV. Conclusion 

1. Inhibitors 

The inhibitors synthesized in Chapters 2 and 3 displayed impressive inhibition against the 

lipases cutinase and LipY, excepting the low activity of α,α-diflurophosphonates 5.16 and 

5.17 toward the latter.  Cyclipostin P (5.15) and monocyclic phosphate 5.19 were both 

impressive inhibitors of LipY (Table 5.3), but neither was as effective against M. 

tuberculosis inside human macrophages (Table 5.4) as phosphonate monocycle 5.2 (Table 

5.2).  This is a strong indicator from a SAR perspective of the importance of the C-alkyl 

substituents of compounds 5.1–5.5.  Transesterification of C-alkylated phosphonate 5.2 with 

hexadecyl bromide to compound 5.14 (Scheme 5.2) was expected to increase inhibition of 

triacyglycerol lipase LipY.  A mild improvement in inhibition was observed comparing the 

cis isomers 5.2a and 5.14a (Table 5.2 and Table 5.3), but the low inhibition of trans isomer 

5.2b was worsened rather than improved by the substitution.  Furthermore, the methyl 

phosphonate esters (e.g. 5.2) are active against M. tuberculosis inside human macrophages 

(Table 5.2), but analogous hexadecyl phosphonate ester 5.14 is not (Table 5.4).  From a 

SAR perspective, this casts doubt on the utility of long alkyl phosphonate ester substituents 

for the purposes of this project. 

 

2. Fluorescent Analog 

Crude NMR gives reasonable confidence that free amine 5.41 (Scheme 5.12) has been 

successfully synthesized, but SNAr chemistry with the crude material has thus far been 

largely unsuccessful (Scheme 5.13).  Use of a more traditional solvent such as methanol has 
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yet to be investigated.  Methanol, however, having a lower boiling point than isopropanol, 

would not provide the opportunity to remove the solvent from the previous step without 

concentrating the mixture to dryness.  This means the SNAr chemistry would have to be 

performed in a mixture of isopropanol and methanol in order to avoid the decomposition of 

the unisolable amine (5.41).  Another option might be to use a more easily installed 

fluorescent moiety such as a dansyl group or NBD-glycine activated for coupling to a free 

amine.   

 

V. Experimental Section 

General Experimental.  All reactions were carried out in oven dried glassware (150 °C) 

under an atmosphere of argon unless otherwise noted.  Dry THF was distilled from sodium 

and benzophenone.  Dry CH2Cl2 and CH3CN were distilled from CaH2.  Dry MeOH and i-

PrOH were distilled from magnesium.  All chemicals and reagents were purchased from 

commercial suppliers unless otherwise noted.  1H, 13C and 31P NMR spectra were recorded 

at 300, 75 and 121 MHz, respectively. 1H NMR spectra are referenced to CDCl3 (7.27 ppm), 

13C NMR spectra are referenced to CDCl3 (77.23 ppm), and 31P NMR spectra are referenced 

to external H3PO4. 

 

Preparative HPLC Specifications and Conditions:  Manual Preparative injector: 

Rheodyne 1700 (3725i-119) with 20 mL loop; Solvent A – MeOH; Solvent B – H2O;  

Varian ProStar Model 210 pumps equipped with 25 mL/min Rainin/Gilson type pump 

heads.  Kromasil 100-10C18-2025 column; 10 um particle diameter; 250 mm x 20 mm i.d.  
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Spectra-Physics Spectra 100 UV detector with prep cell.  LKB 2211 Superac fraction 

collector.  50% MeOH/50% H2O to 100% MeOH from 12 min to 60 min at a flow rate of 10 

mL/min. 

 

 

Undec-10-enamide (5.27):  Undec-10-enoic acid (20.25 g, 109.9 mmol) was dissolved in 

thionyl chloride, 136 mL.  The solution was heated at reflux 1 h, and thionyl chloride was 

distilled away.  The resulting oil was dissolved in CH2Cl2 and added dropwise to 

concentrated aqueous NH4OH at 0 °C.  The mixture was diluted with water and CH2Cl2 until 

two clear layers formed.  The organic phase was washed with 1 N HCl (aq.), and brine was 

added to aid separation.  The organic phase was dried over anhydrous Na2SO4 and 

concentrated in vacuo giving 5.27 (19.91 g, 99%) as a pale pink solid.  1H NMR (CDCl3, 

300 MHz) δ 5.82 (1H, ddt, JHH = 17.1, 10.2, 6.8 Hz), 5.38 (2H, br s), 4.98 (2H, m), 2.23 

(2H, t, JHH = 7.5 Hz), 2.04 (2H, q, JHH = 6.9 Hz), 1.64 (2H, p, JHH = 7.5 Hz), 1.31 (m, 12H). 

 

 

Undec-10-en-1-amine (5.25):  Following the procedure of Cheng and Landry,5.13a THF, 50 

mL, was charged to a 250 mL RBF.  LiAlH4 (2.3 g, 60.6 mmol) was weighed and slowly 

added to the flask in two parts.  The suspension was heated at reflux for 30 min.  The 

mixture was cooled to room temperature, and a solution of 5.27 (5.0 g, 27.3 mmol) in THF, 

100 mL, was added dropwise.  The mixture was refluxed for 24 h.  EtOAc, 20 mL, was 
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added dropwise, and the mixture was cooled to 0 °C in an ice water bath.  Saturated aqueous 

Na2SO4, 40 mL, was added slowly, and the resulting white suspension was filtered, rinsing 5 

times with EtOAc, 20 mL each.  The organic phase was separated, dried, and concentrated 

in vacuo.  The resulting oil was distilled by kugelrohr, giving 5.25 (3.12 g, 68%) as a green 

oil. 1H NMR (CDCl3, 300 MHz) δ 5.82 (1H, ddt, JHH = 17.1, 10.2, 6.8 Hz), 4.97 (2H, m), 

2.69 (2H, t, JHH = 6.8 Hz), 2.05 (2H, q, JHH = 7.0 Hz), 1.29 (14H, m). 

 

 

7-Nitro-N-(undec-10-en-1-yl)benzo[c][1,2,5]oxadiazol-4-amine (5.24):  Following the 

procedure of Bhabak, et al.,4.13b  NBDCl (1.08 g, 5.43 mmol) and Hünig’s base (4.7 mL, 27 

mmol) were dissolved in MeOH, 55 mL, and cooled to 0 °C.  A solution of 5.25 in MeOH, 

55 mL, was added dropwise, and the mixture was stirred 15 h at rt.  The mixture was 

concentrated in vacuo, and purified by silica gel chromatography (10% EtOAc/hexanes), 

giving 5.24 (68%) as a red solid.  1H NMR (CDCl3, 300 MHz) δ 8.52 (1H, d, JHH = 8.6 Hz), 

6.19 (2H, m), 5.82 (1H, ddt, JHH = 17.0, 10.3, 6.7 Hz), 4.98 (2H, m), 3.49 (2H, q, JHH = 6.7 

Hz), 2.05 (2H, q, JHH = 7.0 Hz), 1.82 (2H, p, JHH = 7.3 Hz), 1.32 (12H, m). 
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(±)-(E)-1-(Dimethoxyphosphoryl)-12-((7-nitrobenzo[c][1,2,5]oxadiazol-4-

yl)amino)dodec-2-en-1-yl methyl carbonate (5.23):  4.24 (111 mg, 0.334 mmol) and 4.10 

(75 mg, 0.33) were dissolved in CH2Cl2, 1.2 mL, and CuI (3 mg, 0.02 mmol) was added 

followed by Grubbs 2nd generation catalyst (14 mg, 0.017 mmol).  The mixture was stirred 

in a 40 °C oil bath overnight.  The mixture was concentrated in vacuo and purified by silica 

gel chromatography (60–75% EtOAc/hexanes) giving 5.23 (69 mg, 39%) as a red sticky oil.  

IR (neat, NaCl) 3236, 3072, 2927, 2854, 1753, 1618 cm-1;  1H NMR (300 MHz, CDCl3) δ 

8.46 (1H, d, JHH = 8.7 Hz), 6.89 (1H, br s), 6.16 (1H, d, JHH = 8.8 Hz), 5.93 (1H, m), 5.49 

(2H, m), 3.80 (9H, m), 3.50 (2H, m), 2.06 (2H, m), 1.80 (2H, p, JHH = 7.3 Hz), 1.25 (12H, 

m); 13C NMR (75.4 MHz, CDCl3) δ 155.0 (d, JCP = 10.0 Hz), 144.4 (d, JCP = 5.5 Hz), 144.2, 

139.0 (d, JCP = 12.6 Hz), 136.7, 123.7, 120.5, 98.7, 72.3 (d, JCP = 171.2 Hz), 55.4, 54.0 (d, 

JCP = 7.1 Hz), 53.8 (d, JCP = 6.6 Hz), 44.3, 32.4, 29.4, 29.2, 28.7, 28.6, 27.0; 31P NMR 

(121.4 MHz, CDCl3) δ 20.0, 19.7 (Z:E = 1:14); HRMS (FAB, NBA, MNa+) calcd for 

C22H36N4O9PNa: 551.1883, found 551.1879. 
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(±)-(E)-tert-Butyl (12-(dimethoxyphosphoryl)-12-((methoxycarbonyl)oxy)dodec-10-en-

1-yl)(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)carbamate (5.29):  To a stirred solution of NaH 

(60% w/w, 5 mg, 0.13 mmol) in dry DMF, 0.5 mL, was added a solution of 5.23 (44 mg, 

0.083 mmol) in dry DMF, 0.5 mL, followed by Boc2O (27 mg, 0.12 mmol).  The mixture 

was stirred overnight and partitioned between water and EtOAc.  The organic phase was 

extracted twice more with water, dried over Na2SO4, and concentrated in vacuo.  The crude 

mixture was purified by silica gel chromatography (70–100% EtOAc/hexanes) giving 5.29 

(32 mg, 65%) as a red sticky oil.  IR (neat, NaCl) 3096, 2929, 2855, 1752, 1719, 1632 cm-1; 

1H NMR (300 MHz, CDCl3) δ 8.51 (1H, d, JHH = 8.1 Hz), 7.46 (1H, d, JHH = 8.1 Hz), 5.95 

(1H, m), 5.49 (2H, m), 4.01 (2H, 7, JHH = 7.5 Hz), 3.80 (9H, m), 2.07 (2H, m), 1.60 (2H, p, 

JHH = 7.0 Hz), 1.46 (9H, s), 1.25 (12H, m); 13C NMR (75.4 MHz, CDCl3) δ 154.9 (d, JCP = 

9.6 Hz), 153.1, 147.8, 143.8, 139.5, 138.9 (d, JCP = 12.1 Hz), 133.4. 131.6, 123.2, 120.5 (d, 

JCP = 4.0 Hz), 83.2, 73.3 (d, JCP = 170.8 Hz), 55.4, 54.0 (d, JCP = 7.1 Hz), 53.8 (d, JCP = 6.6 

Hz), 50.4, 32.5, 29.5, 29.4, 29.1, 28.7 (d, JCP = 2.5 Hz), 28.2, 27.6, 26.8; 31P NMR (121.4 

MHz, CDCl3) δ 20.1, 19.8 (Z:E = 1:14). 
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(±)-(E)-tert-Butyl (12-(dimethoxyphosphoryl)-12-((methoxycarbonyl)oxy)dodec-10-en-

1-yl)carbamate (5.31):  To a solution of 5.25 (200 mg, 1.18 mmol) in dry CH2Cl2, 3 mL, 

was added di-tert-butyl dicarbonate (258 mg, 1.18 mmol), and the resulting solution was 

stirred overnight at room temperature.  The mixture was extracted with saturated aqueous 

NaHCO3, and the aqueous layer was extracted twice with CH2Cl2.  The organic phases were 

dried over Na2SO4 and concentrated in vacuo.  The crude material was filtered through silica 

gel (10% EtOAc/hexanes).  To a solution of the resulting crude carbamate and 5.10 in dry 

CH2Cl2, 1 mL, was added CuI (4 mg, 0.02 mmol) and Grubbs 2nd generation catalyst (16 

mg, 0.019 mmol).  The mixture was stirred in a 40 °C oil bath overnight.  The mixture was 

concentrated in vacuo and purified by repeated silica gel chromatography (60–75% 

EtOAc/hexanes) giving 5.31 (86 mg, 16% over two steps) as a pale yellow oil.  IR (neat, 

NaCl) 3342, 3003, 2930, 2856, 1753, 1699 cm-1; 1H NMR (300 MHz, CDCl3) δ 5.92 (1H, 

m), 5.47 (2H, m), 3.78 (9H, m), 3.07 (2H, q, JHH = 6.5 Hz), 2.06 (2H, m), 1.41 (13H, m), 

1.23 (10H, br s); 13C NMR (75.4 MHz, CDCl3) δ 156.2, 155.0 (d, JCP = 9.6 Hz), 139.0 (d, 

JCP = 12.1 Hz), 120.5 (d, JCP = 3.5 Hz), 79.1, 73.3 (d, JCP = 171.2 Hz), 55.4, 53.9 (d, JCP = 

10.5 Hz), 53.8 (d, JCP = 10.0 Hz), 40.9, 32.5, 30.2, 29.6, 29.43, 29.38, 29.2, 28.7, 28.7, 28.6, 

26.9; 31P NMR (121.4 MHz, CDCl3) δ 20.2, 19.8 (Z:E = 1:12.4); HRMS (FAB, NBA, MH+) 

calcd for C21H41NO8P: 466.2570, found 466.2581. 
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2-(Undec-10-en-1-yl)isoindoline-1,3-dione (5.34):  To a solution of 5.25 (333 mg, 1.97 

mmol) in toluene, 5 mL, was added phthalic anhydride (291 mg, 1.96 mmol), and the 

solution was heated at reflux for 16 h.  The mixture was concentrated in vacuo, and the 

crude material was purified by silica gel chromatography (5% EtOAc/ hexane), giving 5.34 

(464 mg, 79%) as a white solid.  1H NMR (300 MHz, CDCl3) δ 7.83 (2H, m), 7.70 (2H, m), 

5.79 (1H, ddt, JHH = 17.0, 10.2, 6.7 Hz), 4.95 (2H, m), 3.67 (2H, t, JHH = 7.3 Hz), 2.02 (2H, 

q, JHH = 7.0 Hz), 1.66 (2H, p, JHH = 7.2 Hz), 1.30 (12H, m). 

 

 

(±)-(E)-1-(Dimethoxyphosphoryl)-12-(1,3-dioxoisoindolin-2-yl)dodec-2-en-1-yl methyl 

carbonate (5.35):  To a solution of 5.34 (2.06 g, 6.88 mmol) and 5.10 (2.00 g, 8.92 mmol) 

in CH2Cl2, 17.2 mL, was added CuI (66 mg, 0.35 mmol) and Grubbs 2nd generation catalyst 

(292 mg, 0.344 mmol).  The mixture was heated to reflux for 4 h and concentrated in vacuo.  

The crude material was eluted through silica gel (30–50% EtOAc/hexanes) to remove 

nonpolar impurities and purified by preparative HPLC to give 5.35 (2.75 g, 81%) as a 

yellow oil.  IR (neat, NaCl) 3006, 2928, 2855, 1755, 1713, 1615 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 7.76 (2H, m), 7.65 (2H, m), 5.88 (1H, m), 5.44 (2H, m), 3.75 (9H, m), 3.60 (2H, t, 

t, JHH = 7.3), 2.01 (2H, m), 1.60 (2H, p, JHH = 7.0 Hz), 1.24 (12H, m); 13C NMR (75.4 MHz, 
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CDCl3) δ 168.4, 155.9 (d, JCP = 9.6 Hz), 138.9 (d, JCP = 12.6 Hz), 133.9, 132.3, 123.15, 

120.4 (d, JCP = 3.5 Hz), 73.2 (d, JCP = 171.2 Hz), 55.3, 53.8 (d, JCP = 10.6 Hz), 53.7 (d, JCP = 

9.5 Hz), 38.0, 32.4, 29.4, 29.3, 29.2, 29.1, 29.0, 28.6, 26.9; 31P NMR (121.4 MHz, CDCl3) δ 

20.1, 19.8 (Z:E = 1:11); HRMS (FAB, NBA, MH+) calcd for C24H35NO8P: 496.2100, found 

496.2117. 

 

 

(±)-(E)-Methyl 2-acetyl-3-(2-(dimethoxyphosphoryl)vinyl)-12-(1,3-dioxoisoindolin-2-

yl)dodecanoate (5.36):  Solution of Pd2(dba)3 (11 mg, 0.012 mmol) and dppe (12 mg, 0.030 

mmol) in dry THF, 500 µL, was transferred by cannula to a solution of 5.35 (300 mg, 0.605 

mmol) and methyl acetoacetate (200 µL, 1.8 mmol) in dry THF, 750 µL, rinsing with dry 

THF, 250 µL.  The resulting green solution was heated in a 40 °C oil bath for 2 h and 

concentrated in vacuo.  The crude mixture was purified by silica gel chromatography (70–

85% EtOAc/ hexane), giving 5.36 (229 mg, 71%) in a 1:1 mixture of diastereomers as a pale 

yellow oil.  IR (neat, NaCl) 2930, 2855, 1772, 1713, 1633 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 7.76 (2H, m), 7.65 (2H, m), 1H NMR (300 MHz, CDCl3) δ 7.79 (2H, m), 7.68 

(2H, m), 6.49 (1H, m), 5.64 (1H, m), 3.66 (11H, m), 3.51 (1H, m), 2.93 (1H, m), 2.21 (1.5H, 

s), 2.15 (1.5H, s) 1.62 (2H, p, JHH = 6.7 Hz), 1.25 (14H, m); 13C NMR (75.4 MHz, CDCl3) δ 

201.3, 168.6, 153.3, 134.0, 132.3, 123.2, 118.8 (118.6) (d, JCP = 185.7 Hz), 63.8 (63.7), 52.7 

(52.5), 52.4 (d, JCP = 5.6 Hz), 44.2 (43.9), 38.1, 31.8 (31.7), 30.2, 30.0, 29.8, 29.5, 29.4, 
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29.3, 29.2, 28.7, 27.2, 27.0, 26.9; 31P NMR (121.4 MHz, CDCl3) δ 20.0, 19.9; HRMS (FAB, 

NBA, MH+) calcd for C27H39NO8P: 536.24133, found 536.2428. 

 

Hydrogenation of 5.36:  To a solution of 5.36 (1.65 g, 3.08 mmol) in MeOH, 7.7 mL, was 

added palladium on carbon (10%, 328 mg), and the mixture was stirred under hydrogen 

atmosphere, filtered, and concentrated in vacuo to give 5.37 and 5.38 (1.65 g, 100%) in a 

7.8:1 mixture as a colorless oil.  The components were separated by preparative HPLC for 

characterization. 

 

 

(±)-Methyl 2-acetyl-3-(2-(dimethoxyphosphoryl)ethyl)-12-(1,3-dioxoisoindolin-2-

yl)dodecanoate (5.37):  1:1 mixture of diastereomers.  IR (neat, NaCl) 2929, 2855, 1772, 

1713 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.79 (2H, m), 7.67 (2H, m), 3.68 (9H, m), 3.62 

(2H, t, JHH = 7.3 Hz), 3.42 (1H, d, JHH = 8.3 Hz), 2.18 (4H, m), 1.62 (6H, m), 1.23 (14H, m); 

13C NMR (75.4 MHz, CDCl3) δ 202.90 (202.87), 169.62 (169.60), 168.5, 134.0, 132.2, 

123.2, 63.0, 52.5 (d, JCP = 5.7 Hz), 38.1, 37.9, 30.5 (30.4), 29.8 (29.7), 29.6, 29.5, 29.2, 

28.7, 26.9 (26.3), 23.5 (23.4) (d, JCP = 5.9 Hz), 21.7 (21.5) (d, JCP = 141.2 Hz); 31P NMR 

(121.4 MHz, CDCl3) δ 34.4, 34.2; HRMS (FAB, NBA, MNa+) calcd for C27H40NO8PNa: 

560.2389, found 560.2394. 
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(±)-Methyl 2-acetyl-3-(2-(dimethoxyphosphoryl)ethyl)-12-(1-oxoisoindolin-2-

yl)dodecanoate (5.38):  1:1 mixture of diastereomers.  IR (neat, NaCl) 2928, 2854, 1712, 

1678 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.85 (1H, m), 7.49 (3H, m), 4.38 (2H, s), 3.73 

(9H, m), 3.61 (2H, t, JHH = 7.3 Hz), 3.46 (1H, d, 8.2 Hz), 2.23 (4H, m), 1.62 (6H, m), 1.29 

(14H, m); 13C NMR (75.4 MHz, CDCl3) δ 203.03 (203.01), 169.74 (169.71), 168.6, 141.3, 

133.3, 131.3, 128.2, 123.8, 122.8, 63.14 (63.11), 52.62, 52.58, 52.5, 50.1, 42.6, 38.2 (38.0), 

30.6 (30.5), 29.9 (29.8), 29.7, 29.6, 29.5, 28.7, 27.0, 26.5, 23.62 (23.55), 21.8 (21.7) (d, JCP 

= 141.4 Hz), 9.8; 31P NMR (121.4 MHz, CDCl3) δ 34.4, 34.2; HRMS (FAB, NBA, MH+) 

calcd for C27H43NO7P: 524.2777, found 524.2786. 

 

 

(±)-Methyl 5-(9-(1,3-dioxoisoindolin-2-yl)nonyl)-2-methoxy-7-methyl-2,3,4,5-

tetrahydro-1,2-oxaphosphepine-6-carboxylate 2-oxide (5.40a & 5.40b):  To a solution of 

5.37 and 5.38 (7.8:1, 528 mg, 0.98 mmol) in dry CH3CN, 500 µL, was added NaI (162 mg, 

1.08 mmol).  The solution was heated to reflux and stirred until completion of reaction (31P 

NMR).  The mixture was concentrated in vacuo.  The resulting solid was dissolved in dry 

DMF, 4 mL, and Hünig’s base (260 µL, 1.5 mmol) was added followed by HBTU (559 mg, 
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1.47 mmol).  After 2 h, the red solution was partitioned between 1 N HCl and CH2Cl2, 

extracted twice more with CH2Cl2.  The organic layers were extracted with saturated 

aqueous NaHCO3 followed by brine and concentrated in vacuo.  The crude material was 

purified by preparative HPLC, giving 5.40 (310 mg, 62%) in a 1:1.8 mixture of 

diastereomers as a yellow oil.  Further chromatographic separation of the diastereomers gave 

5.40a as a yellow oil.  IR (neat, NaCl) 2928, 2855, 1773, 1718 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 7.77 (2H, m), 7.66 (2H, m), 3.77 (3H, d, JHP = 11.2 Hz), 3.69 (3H, s), 3.61 (2H, t, 

JHH = 7.3 Hz), 2.92 (1H, m), 2.17 (3H, d, JHP = 1.6 Hz), 2.15–1.78 (4H, m), 1.58 (3H, m), 

1.40 (1H, m), 1.57 (12H, m); 13C NMR (75.4 MHz, CDCl3) δ 169.0 (d, JCP = 1.7 Hz), 168.5, 

155.7 (d, JCP = 7.3 Hz), 133.9, 132.2 123.2, 123.1, 52.1 (d, JCP = 7.1 Hz), 38.1, 37.2 (d, JCP 

= 1.5 Hz), 30.7, 29.6, 29.4, 29.2, 28.6, 27.7, 26.9, 24.9 (d, JCP = 6.9 Hz), 21.9 (d, JCP = 135.1 

Hz), 21.4 (d, JCP = 1.2 Hz); 31P NMR (121.4 MHz, CDCl3) δ 26.1; HRMS (FAB, NBA, 

MNa+) calcd for C26H36NO7P: 528.2128, found 528.2139.  

Also isolated was 5.40b as a yellow oil.  IR (neat, NaCl) 2928, 2855, 1771, 1712 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 7.73 (1H, m), 7.62 (3H, m), 3.73 (3H, d, JHP = 11.0 Hz), 3.65 

(3H, s), 3.56 (2H, t, JHH = 7.3 Hz), 2.78 (1H, m), 2.13–1.76 (4H, m), 2.08 (3H, d, JHP = 0.8 

Hz), 1.56 (3H, m), 1.40 (1H, m), 1.17 (12H, m); 13C NMR (75.4 MHz, CDCl3) δ 169.0 (d, 

JCP = 1.6 Hz), 168.3, 154.8 (d, JCP = 9.4 Hz), 133.8, 132.1, 123.1, 123.0, 52.5 (d, JCP = 6.8 

Hz), 51.9, 37.9, 37.0, 30.8, 29.4, 29.3, 29.1, 28.5, 27.5, 26.8, 25.1 (d, JCP = 7.9 Hz), 25.1 (d, 

JCP = 134.0 Hz), 21.0 (d, JCP = 2.0 Hz); 31P NMR (121.4 MHz, CDCl3) δ 23.4; HRMS 

(FAB, NBA, MNa+) calcd for C26H36NO7P: 528.2128, found 528.2126. 
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