
University of Missouri, St. Louis
IRL @ UMSL

Dissertations UMSL Graduate Works

5-9-2016

Applications of nanoporous gold monoliths as
substrates for the capture and release of lectins and
glycoproteins
Allan Jonson Alla
University of Missouri-St. Louis, ajakd7@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in
Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Alla, Allan Jonson, "Applications of nanoporous gold monoliths as substrates for the capture and release of lectins and glycoproteins"
(2016). Dissertations. 114.
https://irl.umsl.edu/dissertation/114

https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/114?utm_source=irl.umsl.edu%2Fdissertation%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


Applications of nanoporous gold monoliths as substrates for the capture and 
release of lectins and glycoproteins 

 

by 

 

Allan J. Alla  

 

M.S. Chemistry - Graduate, University of Missouri-St. Louis, 2014 
B.S. Chemical Engineering - Undergraduate,  
University of the Philippines-Los Baños, 2007 

 

 

 

A Dissertation  

Submitted to the Graduate School of the 

University of Missouri-St. Louis 
in partial fulfillment of the requirements for the degree 

 
Doctor of Philosophy in Chemistry  

May 2016 

 
 
 
 
 

 

Advisory Committee 

Chair and Advisor: Keith J. Stine, Ph.D. 
Alexei V. Demchenko, Ph.D. 

Michael R. Nichols, Ph.D. 
Chung F. Wong, Ph.D. 

 



i 
 

ABSTRACT 

Applications of nanoporous gold monoliths as substrates for the capture and 

release of lectins and glycoproteins 

May 2016 

Allan J. Alla, MS, University of Missouri-St. Louis, MO, USA 

Chair and Advisor: Prof. Keith J. Stine 

 

Nanoporous gold (np-Au) monoliths are a free-standing nanostructured 

material with typical pore dimensions in the tens of nanometers range. The 

microstructure of np-Au resembles those of macroporous monolithic materials 

being used in chromatographic separations. The surfaces of np-Au monoliths were 

modified via flow methods with different ligands to develop affinity substrates for 

separations. A carbohydrate-modified np-Au monolith was prepared by 

immobilizing thiolated saccharides and further used to separate lectins. The np-Au 

monolith surface was also functionalized with self-assembled monolayers (SAMs) 

of α-lipoic acid (LA) followed by activation of carboxyl terminal groups to create 

amine reactive esters. Concanavalin A (Con A) was then covalently immobilized 

to develop a substrate for extraction of glycoprotein from a mixture. Likewise, 

aminophenylboronic acid was immobilized to develop a substrate that was tested 

for pH-dependent capture and release of cis-diol containing molecules. 

Preservation of SAMs and immobilized ligands were possibly due to the in situ 

surface modification of np-Au monoliths that limited the possible damage and 

degradation of molecules on the surface. 
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 Selectivity of the developed substrates was enhanced by capping the 

unreacted functional groups or by incorporation of protein resistant spacers to limit 

the non-specific adsorption of unwanted molecules. The loading and surface 

coverage of molecules on np-Au monolith surface were determined by 

thermogravimetric analysis (TGA) and by an in situ solution depletion method. TGA 

was able to quantify the amount of loading based from the mass loss after the 

pyrolysis of modified np-Au monoliths. The in situ solution depletion method 

estimates the amount of loading by the difference in the initial and final 

concentration of a circulating solution monitored by a UV detector.  

 This research aims to introduce np-Au monolith as an addition to the 

materials being used as substrates in chromatographic separation and extraction. 

The chemical stability, simple but reproducible preparation, high surface-to-volume 

ratio and availability of wide variety of Au surface functionalization are the features 

of np-Au monolith that could complement the limitations of the existing materials 

used in separations. The focus of this research is on the separation of lectins and 

glycoproteins, which is an important step towards an effective glycan analysis in 

glycomics. 
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CHAPTER I: INTRODUCTION 

1.1. Overview 

This research has the objective of studying the potential of surface-

modified nanoporous gold (np-Au) as affinity substrate in chromatographic 

separation and extraction of lectins and glycoproteins. To attain this goal, 

different methods were developed to characterize the loading of thiolated 

compounds to form self-assembled monolayers (SAMs) on np-Au surfaces, to 

activate and preserve the loaded SAMs, and subsequent loading of ligands to 

be used in capturing lectins, glycoproteins or glycopeptides, modification of the 

immobilized affinity ligands to reduce non-specific adsorption of proteins by 

capping the unreacted activated functional groups or by incorporating thiolated 

protein-resistant spacers, selective capture of target analytes to isolate, and the 

release of the captured analytes by elution. The surface-modified np-Au 

monolith is free-standing, has pore sizes within the IUPAC definition of 

macropore range and these pore sizes can be tuned by thermal annealing, can 

be cut into different sizes keeping its “one-piece” porous form, is thermally and 

chemically stable and has easy yet reproducible method of preparation. The 

np-Au substrate is developed to be an affinity substrate in separation of lectins 

and glycoproteins, which could be a significant preparative tool in glycomics.  

Chapter I is the introduction that discusses the properties and 

significance of np-Au among the other widely studied nanostructured materials, 

the importance of chromatographic separation in glycomics, why glycans are 

important, and interactions of glycans with lectins and boronic acid that are 

utilized in this study to develop np-Au affinity substrate. In Chapter II, the 
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materials and methods in this study are detailed. Chapter III describes the work 

in developing carbohydrate-modified np-Au monolith for separation of lectins. 

Works in developing lectin-modified np-Au monolith for selective capture of 

glycoproteins are presented in Chapter IV. In Chapter V, the works in using 

boronic acids as ligands in extracting glycopeptides from a trypsin digest 

glycoprotein are discussed. Lastly, in Chapter VI, an electroless method of 

deposition of a form of nanoporous gold is described. 

 

1.2. Nanoporous gold 

Gold is the most noble of all metals. Though it forms very stable aIloys 

with many other metals, it is chemically inert towards atoms or molecules at the 

interface with a gas or a liquid [1]. Np-Au is a nanostructured material produced 

by removing the less noble metal(s) from a low carat gold alloy. The removal 

could be done commonly by selective dissolution [2], wherein the alloy is 

immersed in concentrated nitric acid at room temperature. The procedure is 

also called dealloying or leaching. Therefore, the precursor alloy could be a 

binary or ternary gold alloy that has at least one less noble metal. Some 

examples of these alloys are Au-Ag [3], Au-Cu [4], and Au-Zn [5]. In research 

laboratories, different ways of making precursor gold alloys have been 

developed. Np-Au film was fabricated by electrodeposition of Au-Zn alloy at 

gold wires followed by subsequent electrochemical dealloying of Zn [5]. Np-Au 

electrodes have been prepared by electroplating Au-Ag alloy on a gold wire 

followed by dealloying in a HNO3 [6]. Np-Au leaf electrode film was prepared by 

attaching the white gold leaf onto a 1,6-hexanedithiol-modified gold support 
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followed by dealloying [7].   The most practical and inexpensive production of 

np-Au is by dealloying of commercially available ~100 nm thick white gold leaf 

(Au35Ag65, 50/50 by weight). Dealloying of this very fragile material can be done 

by floating it upon 70 vol % HNO3 at room temperature for 5 min [8]. Np-Au 

monoliths used in this study was prepared by dealloying commercially available 

0.25 mm and 0.50 mm thick 10 carat yellow gold sheets (41.7% Au, 20.3% Ag, 

and 38% Cu) [9]. Development of fabrication methods that can control the 

morphology, sizes and thickness of np-Au have been also reported. Preparation 

by substrate-conformal imprint lithography, dewetting and dealloying were used 

to produce a perfectly ordered 2-dimensional arrays of np-Au nanoparticles. 

This method was able to control the particle size, particle spacing, ligament size 

or pore size of the np-Au nanoparticles [10]. All the preparation methods of np-

Au mentioned above required a dealloying process. Recently last year, a 

method has been reported that did not require dealloying but formed a free-

standing nanoporous single crystal of gold by growing it from a liquid phase 

during self-forming eutectic decomposition. The method did not require cutting 

from the bulk piece and shape can be controlled by the original droplets wetting 

properties [11].  

The microstructure of np-Au has interconnected bicontinuous ligaments 

forming gaps that are called pore sizes in the range of 10-100 nm (Figure 1.1). 

It was in 1963 that the microstructures of dealloyed gold alloy (Au-Cu) was first 

observed using transmission electron microscopy (TEM). It was described as a 

localized pitting or tubular form initiated at grain boundaries and antiphase 

boundary junctions [12]. Different models and mechanisms were proposed to 

explain the corrosion observed during the dealloying of the gold alloy. An 
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ordering-reordering model used Au-Ag and Au-Cu alloys and suggested that 

the dealloying process starts with the formation of island nuclei that form 

growing gold layer. The island nuclei eventually try to merge and form 

connected structure, enclosing channels and pits [13]. The disordering process 

was observed to be dependent on the rate at which the Ag atoms are dissolved 

and so on the composition of the alloy, strength of the acid being used and time 

of exposure [14]. It was proposed that surface diffusion of gold during the 

process is important; such that in the dealloying of Au-Ag alloy, residual gold 

atoms reform into gold-rich islands after the dissolution of Ag exposing the inner 

Ag atoms to a corrosive environment in a layer-by-layer manner [15]. 

 

 

Figure 1.1. SEM image of the microstructure of np-Au monolith showing the 

interconnected ligaments with gaps of 50-200 nm. Scale bar is 0.2 µm. 

 

Nanoporosity of np-Au was explained by Erlebacher and coworkers in 

2001 in his model based on experiments and theoretical simulation of alloy 

dissolution using a kinetic Monte Carlo method (Figure 1.2). Three-dimensional 
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nanopores are suggested to form due to diffusive redistribution of components 

on a crystal lattice. Upon dealloying, a new gold cluster nucleates once a new 

pit with sufficient depth is formed. Small new pits with smaller surface area are 

formed from parent pores which continue through the inside of the bulk to 

increase their surface area. Formation of new clusters and pits repeats until a 

full three-dimensional nanoporous structure is formed [16]. It was proposed that 

the significant factors in np-Au formation are Au fractions, the chemical 

potentials for the acid ions and the vacancy concentrations [17]. In summary, 

the mechanism of dealloying process could be considered as diffusion and 

clustering of Au atoms and dissolving of less noble metals like Ag [18].  

 

 

Figure 1.2. Mechanism of np-Au formation by dealloying [19]. Dealloying 

process is diffusion and clustering of Au atoms while dissolving of less noble 

metals. 
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Nanostructured materials or those that have structural elements 

dimension between 1 to 100 nm range have been studied and developed in a 

wide variety of applications because of their enhanced chemistry, much higher 

surface area and better stability compared to their bulk counterparts [20]. For 

example, the high surface-to-volume ratios of transition metal nanoparticles 

have been utilized for catalysis. Surface atoms of these materials are so active 

that their properties could be changed by size and shape [21]. Specific 

examples are the gold nanoparticles (AuNPs) also called as gold colloids that 

are currently being used in catalysis and biology, and characterized as the most 

stable metal nanoparticles [22]. For example, AuNPs were modified by linking 

to mercaptoalkyloligonucleotide to perform a highly selective, colorimetric 

polynucleotide detection method. AuNPs have absorption across most of the 

visible region. In this study, detection was accomplished because of the 

interparticle distance-dependent color change i.e., turns red when the distance 

is greater than the average particle diameter otherwise turns blue [23]. Gold 

nanostructures reported are nanorods, nanospheres, nanoshells, and 

nanocages. The variation of shape and structure of these materials enable 

tuning of its surface plasmon resonance peaks from the visible to near infrared 

region and can be used in bioassay applications [24].  Nanostructured Au 

electrodes, due to their electrochemical characteristics, have been used as 

sensing devices. These materials can be either architecture or arrays patterned 

on the surface that creates conductive particles that could be porous, high 

surface-area electrodes [25]. In this study, the nanostructured gold material 

used is the np-Au. As described above, np-Au is a highly porous material and 

therefore of much higher surface area as compared to a non-porous form of Au. 
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Np-Au is being developed in different applications such as bio- and chemical 

detection, electrochemistry, catalysis, energy storage, and solid support 

synthesis. This study is focused on the application of np-Au in capture and 

release of proteins, specifically in chromatographic separation and extraction of 

lectins and glycoproteins. Np-Au could be in different forms such as np-Au wires 

[6] and np-Au thin film [26]. In this study, the monolithic form of np-Au is used. 

This np-Au material has microstructures similar to the macroporous monolithic 

polymers being used in chromatographic separations. 

 

1.3. Macroporous monolithic materials 

Under the International Union of Pure and Applied Chemistry (IUPAC) 

definition, ‘macropore’ range is typically 50 nm and greater [27]. Macroporous 

monolithic materials have large interconnected pores or channels that allow 

high flow rates at low pressure. Due to the continuous effort to improve methods 

for faster and more efficient separations, biocatalysis and related applications, 

monolithic materials being used in preparing chromatographic separation 

columns were invented and are being developed. Monolithic materials are 

considered as the new generation of column materials that are being used in 

designing efficient enzyme reactors and separation columns due to their 

continuous porous morphology and increases permeability with low back 

pressure that enhances the catalysis and separation processes. The story of 

developing these monolithic materials started with columns packed with 

uniformly sized porous particles that appear to have large interstitial spaces. 

These types of columns facilitate separation mainly based on diffusion of 
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solutes from a more concentrated mobile phase to the stagnant phase inside 

the pores. Fluid carrying the solute tends to flow through the void spaces not 

reaching most of the surface inside the pores. Reducing the sizes of these 

particles is an option to diminish the functionless voids; however, packing of 

smaller particles reduces the permeability of the column developing high back 

pressure during the separation. Finally, a sophisticated design of an integrated 

and continuous network of flow-through pores was introduced forming a “one-

piece” porous material currently called a “monolithic column” [28-30]. Monolithic 

columns are known to have these distinct and advantageous characteristics: 

(1) easy fabrication; (2) versatility for a variety of surface chemistries; and (3) 

good permeability that allows fast convective mass transfer with low 

backpressure even at high flow rates.  

 

1.4. Glycans and glycomics  

Glycans, also called as carbohydrates or as oligosaccharides, are 

structures of monosaccharides connected to each other in linear or branched 

arrangements. The synthesis of glycans does not follow a repetitive pattern of 

steps like that found for polypeptides and polynucleotides. Additionally, the 

compositions, configurations, and linkages vary from one glycan to another. For 

these reasons, glycan structures are known to be complex and heterogeneous 

and this allows for their widely diverse biological functions [31]. Glycans are 

usually exposed at the cell surface as part of the glycoconjugates such as 

glycoproteins, glycopeptides, proteoglycans, glycolipids and 

lipopolysaccharides, where they are covalently attached. Therefore, they serve 

as recognition armies of the cell and mediate as receptors to pathogens and 
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other cells. Glycans could also serve as biological process modulators, for 

example as on-off switches of the function of the protein to which it is attached. 

Attachment of glycans to proteins occurs during glycosylation, a post-

translational modification of proteins. The linkage is covalent and the most 

prevalent are either through N of asparagine (Asn) called N-glycosylation or 

through O of serine (Ser) or threonine (Thr) called O-glycosylation (Figure 1.3). 

N-linked glycans have a common core oligosaccharide Man3GlcNAc2. O-linked 

glycans, on the other hand, do not. The attached glycans influenced the 

biological functions and structure of the glycosylated proteins. Therefore 

aberrant glycosylation is correlated to several mammalian diseases such as 

cancer [32]. Aberrant glycosylation is usually caused by different factors in the 

cell environment that interfere the process such as changes in the expression 

levels of enzymes e.g., glycosyltransferases and glycosidases, and the 

availability of the precursor monosaccharides. An example is the observed 

increase in sialidase activity of plasma membrane-associated ganglioside 

sialidase (NEU3) in the serum patients with prostate cancer [33]. Sialidase has 

been known to catalyze the removal of sialic acid residues from the glycans of 

glycoconjugates. Other alterations in glycan structures that are correlated with 

diseases are increased glycan branching [34], incomplete glycosylation [35], 

and changes in the extent of fucosylation of glycans in specific glycosylation 

sites of glycoproteins [36].  
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Figure 1.3. N-linked and O-linked glycans covalently attached to N of Asn or to 

O of Ser/Thr, respectively. Linking of glycans to form glycoprotein occurs during 

glycosylation, a post-translational modification of proteins. 

 

One great importance of glycans, for example those in glycoproteins, are 

their use as disease biomarkers. As mentioned above, the enzymes 

responsible for the production and modification of glycans on glycoproteins are 

being upregulated or downregulated and cause aberrant glycosylation and 

alterations of glycan structure and lead to diseases. Due to these events, 

healthy cells are being converted to diseased cells and can progress within the 

tissue. Circulating blood and other fluids being exposed to these diseased 

tissues can carry these membrane-bound and secreted glycoproteins as 

potential biomarkers. For this reason, glycans of glycoproteins, the protein 

backbone that contains glycosylation sites and the glycoproteins as a whole 

become targets for detection for subsequent qualitative and quantitative 

analysis and identification strategies. Comparison of the analysis of the 

glycoproteins derived from healthy and diseased biological samples is the most 

common approach for the discovery of disease biomarkers that can be helpful 

in the diagnosis, monitoring and prognosis of several diseases [37]. In 1969, 

high molecular weight membrane glycoproteins were detected in virus-
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transformed mouse fibroblasts, which were absent in their normal counterparts 

[38]. Glycans have several advantages over proteins as disease markers since 

disease states can affect glycan synthesis more significantly than that of the 

protein synthesis itself, and then glycan quantification can be simpler because 

of its smaller size [39]. Characterization of these glycans, especially in 

glycoproteins, could be helpful in therapeutic development and in elucidation of 

biological processes. 

Glycomics is the study of glycans’ structures and biological functions, 

whether free glycans or in glycoconjugates. The current approach in glycomics 

is the structural characterization of glycans and deglycosylated proteins that 

provide “marks” to locate the glycosylation sites. The challenge in current 

glycomics is the complex and heterogeneous structure of glycans. Complexity 

is due to the (1) variable composition, (2) branching, (3) isomeric forms, (4) 

multiple glycosylation sites, and (5) presence of terminal units such as sialic 

acids [40] (Figure 1.4). Another challenge in glycomics is the very low ratio of 

glycans and glycopeptides to other components in complex biological samples 

and glycan pools. These difficulties can be aided by the preparative methods 

that may include separation and isolation, digestion and glycan release, 

derivatization or permethylation of glycans and enrichment prior to MS analysis. 

Chromatographic separation is one very useful tool in preparative methods in 

glycomics. 
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Figure 1.4. The challenges in glycomics: complex and heterogeneous structure 

of glycans due to variable monosaccharide composition, branching, isomeric 

forms, multiple glycosylation sites of glycoconjugates and presence of sialic 

acids. 

 

 

1.5. Chromatographic separations of glycans 

A series of preparative and enrichment methods are usually necessary 

prior to MS analysis of glycans and glycopeptides. These methods may include 

but not limited to separation, extraction, and isolation from interferences in the 

sample such as non-glycosylated proteins, reagents, enzymes and cell lysate 

residues. These methods reduce the complexity of the sample, increase the 
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abundance of glycopeptides and glycans, and minimize ionization suppression, 

thus far considered as the limiting steps of successful glycan analysis. In the 

general workflow of glycomics these methods are incorporated prior to MS 

analysis (Figure 1.5). Along with classical methods in separation and isolation 

of glycoproteins such as sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), chromatographic separation methods such as 

liquid chromatography (LC) is the best choice in tandem with MS analysis [41]. 

In some cases, derivatization of glycans is necessary to resolve the limitation 

of sensitivity of MS detection. Labeling glycans with 2-aminobenzamide (2-AB) 

is an example of glycan derivatization [42]. 

 

Figure 1.5. General workflow of glycomics. Preparative methods such as 

separation, isolation, digestion, glycan release, derivatization/permethylation 

and enrichment are necessary to achieve an effective MS analysis of glycans 

from a limited and very complex biological sample. 

 



14 
 

Monolithic materials have been utilized in creating columns for 

chromatographic separation processes. Chromatographic separation is a 

method of isolating the wanted or unwanted components from a mixture in the 

mobile phase when being captured by the stationary phase. Separation in LC 

is due to the difference in the extent of interactions of the solutes in the mobile 

phase to the functionalized stationary phase. In glycomics, the functionalization 

of stationary phase could be done by immobilizing different ligands that the 

stationary solid support could capture the glycans rather than the other 

components in its mixture. The type of bound ligands dictates the mode of 

separation of glycans, which differ from each other by their interactions with the 

target glycans. The different modes of separation of glycans are (1) interactions 

between hydrophobic surface and hydrophobic labels of derivatized glycans, 

(2) H-bonding between the neutral polar surface and OH groups of glycans, (3) 

electrostatic interactions between charged (cationic) surface and negatively 

charged ionized glycans, anionic terminal sialic acids or labels of derivatized 

glycans, and (4) affinity between immobilized lectins and its complementary 

glycan structure or between boronic acids on the surface and cis-diols of 

glycans (Figure 1.6). The mobile phase should give an appropriate environment 

to the glycans by tuning its pH, ionic strength, and organic solvent content. 
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Figure 1.6. Different modes of separation based on the interactions of glycans 

in the mobile phase to the ligands immobilized in the stationary phase. The 

separation is due to the extent of hydrophobic, polar or electrostatic 

interactions; or via affinity of glycans to lectins and boronic acids. 

 

Reverse-phase separation (RP-LC) uses a hydrophobic stationary 

phase and a polar mobile phase to separate glycans by the differences in the 

extent of hydrophobic interactions. Underivatized glycans (neutral glycans) are 

retained very weakly on the commonly used C18 stationary phase. Therefore, 

use of small molecular tags such as 2-AB, 2-aminopyridine (2-AP), and 2-

aminobenzoic acid (2-AA) amongst many others to modify glycans yield 

enhanced separation or increase the signal for fluorescence detection [43]. A 

potential advantage of RP-LC is that the solvent used (water + organic solvent 

+ acid) is compatible with mass spectrometry analysis [44]. Polar mode or 

normal phase mode of separations involves H-bonding and dipole-dipole 
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interactions between polar stationary phase and OH groups of neutral glycans. 

In this method, the mobile phase is less polar than the stationary phase. 

Therefore, less polar glycans are eluted first and separation is achieved based 

on differences in glycan hydrophilicity. Polar stationary phase may contain 

amino-, cyano-, amido-, or diol- functional groups. A popular example of polar 

mode separation of glycans is the zwitterionic-hydrophilic interaction liquid 

chromatography (HILIC) [45]. The electrostatic mode of glycan separation is 

affected by the electrostatic attraction and repulsion between the glycan and 

the stationary phase. The pH of the mobile phase influences the separation as 

it can modify the charge of the glycan-containing glycoproteins based on their 

isoelectric point. Glycans are weak acids and are deprotonated at very high pH 

(>12) and become negatively charged. High-performance anion-exchange 

chromatographic separation of underivatized weakly acidic glycans used an 

amine-functionalized polymeric monolithic column at high pH [46]. Affinity mode 

of separation involves reversible interactions between matrix-bound ligands 

and specific sites of the glycans. The purified glycan is recovered from the 

matrix by rinsing with the competitive ligands of higher affinity or alteration of 

the elution buffer i.e., change in pH, ionic strength, or dwell time. The two most 

popular ligands used in affinity mode separation of glycans are lectins and 

boronic acids. In this study, the interactions of glycans or glycoproteins with 

lectins and boronic acids are used to develop np-Au substrate for isolation of 

glycoproteins.  
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1.6. Lectin-carbohydrate interactions 

Lectins are proteins that interact non-covalently with carbohydrates and 

have no catalytic activity like enzymes and are not produced by the immune 

response like antibodies [47]. They exist in almost all forms of life ranging from 

viruses through bacteria and plants to animals. Their interactions with 

carbohydrates is of high interest in research due to their role in cell-cell 

recognition and as useful tools in studying glycoforms in solution and on cell 

surfaces [48]. Lectins are polyvalent, thus they have at least two carbohydrate 

binding sites. In vitro studies show that due to polyvalency, lectins can cross-

link between cells resulting to cell-agglutination and subsequently to 

precipitation, and can be inhibited by the carbohydrate for which the lectin is 

specific [49]. Lectins are usually less expensive and can be better characterized 

with respect to binding specificity than monoclonal antibodies [50]. Lectins are 

also abundant in nature, and can be found in plant seeds and tissues. 

Lectins are classified by their sequence similarity and structural 

organization. Lis and Sharon came up with five groups according to the 

monosaccharide for which the lectin exhibits the highest affinity: (1) mannose, 

(2) galactose/N-acetylgalactosamine, (3) N-acetylglucosamine, (4) fucose, and 

(5) N-acetylneuraminic acid [51]. Current primary and 3D structures of lectins 

are stored in a database and accessible on the World Wide Web at 

http://lectin3d.cermav.cnrs.fr/. Lectins interact with carbohydrates at their 

binding sites. 3D structures confirm that members of each lectin group have 

conserved residues at the core of its carbohydrate binding site that provide H-

bonding to sugars and this core is flanked by two variable loops that provide 

additional van der Waals and H-bond interactions that determine specificity 
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[52]. Weis reviewed the structural basis for carbohydrate-lectin interactions and 

recognition [53]. Interactions are primarily due to cooperative H-bonding 

wherein a hydroxyl group acts simultaneously as H-bond donor and acceptor. 

Water molecules may also mediate H-bonds between sugar and proteins. Polar 

groups also provide electrostatic stabilization while sugars’ non-polar patches 

formed by aliphatic protons and carbons stack with tryptophan and 

phenylalanine residues of lectins creating non-polar interactions. Interactions of 

C-type lectins, or those that depend on divalent cation Ca2+, are through direct 

metal-coordination, wherein loss of metal ions results in local conformational 

changes i.e. cis-trans isomerization of peptide bonds that destroys the 

functionality of the carbohydrate binding site [52]. Legume lectins use the 

divalent cation Ca2+ together with transition metal cation Mn2+ to indirectly 

interact by stabilizing the binding site and fixing the positions of amino acids 

[53]. Unlike enzymes and transport proteins, lectins’ carbohydrate binding sites 

are shallow and at the surface of the protein and exposed to solvent. They bind 

to monosaccharide reversibly and have dissociation constants (Kd) in the 

millimolar range, and lower for oligosaccharides [51]. Lectin-carbohydrate 

binding sites are also small, and that makes them attractive for investigation 

due to their simplicity and they can be a general model in studying protein-

carbohydrate interactions. Due to their high specificity towards carbohydrates, 

it has been demonstrated and proven that lectins are useful tools in glycomics 

[54]. Lectins have been used in screening of biological samples to analyze the 

structures of different glycoforms. Lectins can induce agglutination in blood 

cells, and thus are useful tools in the study of blood group classification. And in 
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the developing trend of high-throughput technologies, lectin microarrays were 

invented for fast, easier and more efficient ways of glycomics analysis [55]. 

The most studied lectin is the Concanavalin A (Con A), which is a C-type 

lectin from Canavalia ensiformis (Jack bean) seeds. Con A binds to α-mannose 

and α-glucose sugar units of glycans [56]. Specifically, Con A has been 

reported to bind to high-mannose [57] and trimannoside cores of complex type 

N-linked glycans [58]. Con A exists as a homotetramer in solution at pH 7.0 and 

as a dimer at pH 5.0 [59]; each subunit is a single poypeptide chain of 231 

amino acids [60]. In a crystallography study, the location of the carbohydrate 

binding site of Con A is found to be in a deep cavity that is more than 20 Å from 

the Mn2+ and Ca2+ ions [61]. Peanut agglutinin (PNA) is another C-type lectin 

derived from a legume seed but the specificity is toward terminal β-D-galactosyl 

residues [62]. PNA has 236 amino acid residues in which the sequence is 

identical to Con A metal binding site and the hydrophobic pocket. Unlike with 

the Con A, the carbohydrate binding site of PNA was found to be more open 

cleft [63]. This variation in structure of the carbohydrate-binding domain could 

explain the difference in specificities of Con A and PNA (Figure 1.7).  

 



20 
 

 

Figure 1.7. Crystal structures of Con A-dimannose [64] and PNA- Galβ1-3Gal 

[65] complexes. Con A and PNA are both C-type lectins that binding to 

carbohydrates depend on Ca2+ through direct metal-coordination. Loss of metal 

ions results in local conformational changes i.e. cis-trans isomerization of 

peptide bonds that destroys the functionality of the carbohydrate binding site. 

 

The specificity and reversibility of lectin-carbohydrate interactions are 

reasons why both lectins and carbohydrates are being used as ligands in 

chromatographic separations to isolate carbohydrates and lectins, respectively. 

Lectins are the ligands in lectin affinity chromatography (LAC). LAC is the most 

useful and efficient mode of separation of glycoproteins [66]. Multi-lectin affinity 

columns were developed using different lectins for comprehensive capture of 

serum glycoproteins [67]. The weak binding between lectin and carbohydrate 

can be utilized to afford elution of the bound target lectins or glycoproteins using 

carbohydrate ligands. The release of captured molecules is due to the 

competition between the carbohydrates in solution and immobilized 

carbohydrate for the binding site of lectin. Elution of captured lectin can be done 
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using various elution techniques like using a much higher concentration of 

mannose [68], methyl mannopyranoside [69] or urea [70]. 

 

1.7. Boronic acid-carbohydrate interactions 

Lectin-affinity separation is a highly selective method but appears primarily 

limited to N- and O-linked glycoproteins [71]. C-mannosylation at tryptophan, 

more recently discovered, has been found not to be recognized by mannose-

binding lectins [72]. Another approach that is getting huge attention recently is 

the affinity separation using boronic acids. Boronic acids form stronger covalent 

bonds rather than non-covalent interactions with cis-diol-containing molecules 

such as RNA, nucleosides, glycans, glycoproteins and glycopeptides. The 

binding is reversible and pH-dependent, i.e., it forms five or six-membered 

cyclic esters in basic conditions and dissociates when the conditions are 

switched to acidic (Figure 1.8). Acids such as formic acid and acetic acid are 

commonly used as the eluting mobile phase. Boronic acids as ligands are found 

in applications such as sensing, separation and self-assembly. The use of 

boronate functionalized monolithic stationary phases in separation of cis-diol 

containing molecules has been reviewed [73,74]. Boronate affinity will not be 

specific to glycans or glycoproteins and will bind other cis-diol containing 

molecules in a sample. If a boronate affinity column has hydrophobic character, 

then reversed phase non-specific interactions can degrade the performance 

[75]. Standard boronate affinity methods usually require the use of pH > 8–9 for 

capture (above the pKa of the boronic acid), and this may degrade certain 

targets. However, sialic acids are known to bind strongly to boronic acid at pH 
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< pKa of the boronic acid. Recent efforts have focused on lowering the pH 

required for glycan capture using modified boronic acids and different binding 

modes [76]. 

 

 

Figure 1.8. Binding of boronic acid to cis-diols of carbohydrates. The binding 

is covalent forming five or six-membered cyclic esters in basic conditions but 

reversible and dissociates in acidic conditions. 

 

1.8. Self-assembled monolayers on gold surface 

Surface of substrates such as metals, mica, glass and silicon wafers can 

be modified by forming self-assembled monolayers (SAMs) through 

spontaneous adsorption of surfactant from a liquid or vapor phase. Surfactants 

such as thiols, disulfides, sulfides, silanes, alkynes and alkenes have a head 

group at one end that has specific affinity to the substrate and a functional group 

on the other end that can be used to immobilize or resist biomolecules [77]. 

Therefore, SAM formation can be defined as a method of functionalization of 

the substrate wherein the surface is modified in order to present functional 

groups, which are supported by well-defined and organized organic 

assemblies. The most common way of preparing SAMs on substrates like gold 

is by incubating the clean substrate in a dilute (1-10 mM) ethanolic solution of 
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thiols for  12-18 h at room temperature [78] (Figure 1.9). Choice of solvent, 

immersion time, temperature, concentration of adsorbate and chain length can 

affect the structure and rate of formation of SAMs onto the substrate. 

Composition of the surface can be made more defined by mixing molecular 

structures to form mixed SAMs. One example is co-adsorption from solutions 

containing mixtures of thiols (RSH + R’SH). Another method of modifying the 

preformed SAMs is the use of activators for further immobilization of 

biomolecules. 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride 

(EDC or EDAC) and N-hydroxysuccinimide (NHS), for example, can be used to 

activate the carboxylic acid functional group to a reactive ester for subsequent 

amide bond formation with amino groups of protein residues such as lysines 

[79]. 

 

 

Figure 1.9.  Preparation of self-assembled monolayers of thiolated compound 

on Au surface. The procedure is usually done by incubating the substrate on  

1-10 mM dilute ethanol solution of thiolated compound at room temperature. 

 

 The significance of nanostructured gold materials such as AuNP, Au 

films, Au nanostructure including np-Au in various applications such as affinity 
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biosensors [80], biocatalysis [81], and affinity separation [82] is due to their 

frequently reported use as substrates for SAM formation.  In one study, gold 

particles (3.5 µm) coated with octadecanethiol were used as stationary phase 

in reversed-phase separation of polyaromatic hydrocarbons [83]. In another 

study, gold foils modified with SAM of dithiobis-(succinimidylpropionate) were 

used to immobilize Con A to create a lectin probe to concentrate carbohydrate-

containing samples that were analyzed at low levels [84,85]. In yet another 

study, monolithic surface coated with 20 nm gold nanoparticles assembled 3,3’-

dithiodipropionic acid di(N-hydroxysuccinimide ester) (DTSP) were used to 

immobilize Erythrinacristagalli lectin (ECL) for extraction of galactose-specific 

proteins [86]. In this study, thiolated carbohydrates such as αMan-C12-SH and 

βGal-C12-SH were used. Protein resistant thiolated spacer CH3-PEG4-SH was 

incorporated to form mixed SAMs that reduced the non-specific adsorption of 

protein to the np-Au surface (Figure 1.10A). To immobilize covalently the ligand 

lectin, lipoic acid (LA) was used. LA is a yellow, sulfurous fatty acid compound 

with its head group consisting of two sulfur atoms connected by a disulfide bond 

in its oxidized form [87]. This carboxylic acid terminal functional group tends to 

be exposed when sulfur atoms selectively bind to gold surface through SAM 

formation. The procedure of SAM formation of LA to functionalize gold surfaces 

has already been established [88,89]. To facilitate immobilization of lectin, 

further activation of the carboxylic acids of LA via esterification with 4-(4,6-

dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) is 

needed (Figure 1.10B). DMTMM is a water-soluble, white-powdery coupling 

reagent of carboxylic acids and amines [90,91]. 
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Figure 1.10. Schematic representation of modification of self-assembled 

monolayer (SAM) on np-Au surface. (A) Making a mixed SAM by incorporating 

protein-resistant thiolated polyethylene glycol (PEG). (B) Activation of 

carboxylic acid functional group of lipoic acid to form reactive ester for protein 

covalent immobilization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

CHAPTER II: MATERIALS AND METHODS 

2.1. Reagents 

Ten carat yellow gold plates were purchased from Hoover and Strong, 

Richmond, Virginia, USA. Trace metal grade nitric acid was purchased from 

Fisher Scientific, Pittsburgh, Philadelphia, USA. Lyophilized powder of 

unconjugated and FITC conjugate Concanavalin A from Canavalia ensiformis 

(Jack Bean) of ≥95.0% purity, albumin from chicken egg white (ovalbumin) of 

≥98% purity, lectin from Arachis hypogaea (peanut), peroxidase from 

horseradish, bovine serum albumin of ≥98% purity, trypsin from bovine 

pancreas, HPLC grade ethanol, α-lipoic acid, 4-(4,6-dimethoxy-1,3,5-triazin-2-

yl)-4-methylmorpholinium chloride, tris(hydroxymethyl)aminomethane 

(Trizma® base and Trizma® hydrochloride), 2-aminophenylboronic acid, 

adenosine, 2’-deoxyadenosine monohydrate, sodium chloride (NaCl), calcium 

chloride dihydrate (CaCl2•2H2O), manganese(II) chloride tetrahydrate 

(MnCl2•4H2O), potassium phosphate dibasic (K2HPO4), potassium dihydrogen 

phosphate (KH2PO4),  α-methyl mannopyranoside, D-mannose, urea, sodium 

hydroxide (NaOH), glycine, HPLC grade methanol, potassium dicyanoaurate(I) 

(KAu(CN)2, potassium dicyanoargentate, sodium borohydride (NaBH4), and 

potassium hydroxide (KOH) were all purchased from Sigma Aldrich, St. Louis, 

Missouri, USA. Ether terminated methyl-PEG4-thiol (MT(PEG)4), sulfuric acid 

(H2SO4) , 30% hydrogen peroxide (H2O2), pre-mixed Laemmli sample buffer, 2-

mercaptoethanol, trace metal grade acetic acid, and Page Ruler Plus 

prestained protein ladders were all purchased from Thermo Scientific, Illinois, 

USA. Soybean agglutinin (SBA) was purchased from Vector Laboratories, 

Burlingame, Californina, USA. One hundred percent ethanol was purchased 
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from Decon Laboratories, Inc., Pennsylvania, USA. Sodium dodecyl sulfate 

(SDS) and Coomassie Brilliant Blue R250 were purchased from Bio-Rad 

Laboratories, Inc., Richmond, California, USA. Milli-Q water (18.2 MΩ.cm at 25 

°C) was prepared using a Simplicity UV system from Millipore Corporation, 

Boston, USA. All chemicals, reagents and proteins were used as received. 

Thiolated mannoside (αMan-C12-SH) and thiolated galactoside (βGal-C12-SH) 

were synthesized in the GlycoWorld (Prof. Alexei V. Demchenko laboratory) 

and were used as received.  

 
 

2.2. Apparatus 

The flow cell system consisted of a home-made flow tube or Teflon flow 

cell, C-FLEX or PTFE tubing (Masterflex, Cole-Parmer Instrument Company, 

Illinois, USA), peristaltic pump (Model 77390-00, Cole-Parmer Instrument 

Company, Illinois, USA), UV–visible spectrophotometer (Model SPD-10A, 

SHIMADZU Scientific Instruments, Inc., Columbia, Maryland, USA) and data 

logger (Model USB 1608-G, Measurement Computing, Norton, Maryland, 

USA). Scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS) was done using JEOL JSM-6320F field emission SEM 

(JEOL USA, Inc., California, USA). Surface area and pore size analysis were 

done using a Beckman Coulter SA-3100 Gas Adsorption Surface Area and 

Pore Size Analyzer (Beckman Coulter, Inc. California, USA), with stated 

resolution of >0.01 m2 g-1. A standard BET sample holder (3cc RapiTube, model 

number 7215 006B, Beckman Coulter, Inc. California, USA) was used to hold 

the np-Au samples. Thermogravimetric analysis was done using a Q500 

Thermogravimetric Analyzer (TA Instruments, Delaware, USA). UV–vis scans 
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and absorbance readings were done using a Varian Cary 50 UV–vis 

spectrometer (Varian Australia Pty Ltd., Victoria, Australia) and Suprasil quartz 

spectrophotometer cuvette with ten millimeter light path and volume capacity of 

three milliliters (model number 14-385-902C, Fischer Scientific, Pittsburgh, 

Pennsylvania, USA). Mini-PROTEAN pre-casted 4-20% polyacrylamide gel 

was used for SDS-PAGE in a Mini-PROTEAN Tetra Cell (Bio-Rad Laboratories, 

Inc., Richmond, California, USA). Electroless deposition used 10 mm dia glass 

coverslips (Ted Pella, Inc., Redding, California, USA) sputtered with Au using 

Hummer VI sputter coater (Anatech Ltd, Battle Creek, Michigan, USA). 

 

 
2.3. Preparation of np-Au monoliths 

Commercially available 0.25 mm and 0.50 mm thick ten carat yellow gold 

plates (41.7% Au, 20.3% Ag, and 38.0% Cu) were cut into the desired 

dimensions – 6.0 mm × 6.0 mm × 0.25 mm for thermogravimetric 

characterization, 2.5 mm × 2.5 mm × 0.50 mm (Chapter III and V) or 8.0 mm × 

8.0 mm × 0.50 mm (Chapter IV) for solution depletion with UV detection 

experiments  and 2.0 mm × 2.0 mm × 0.25 mm and 4.0 mm × 4.0 mm × 0.50 

mm for BET surface area analysis. The cut pieces were then dealloyed by 

placing them in a concentrated nitric acid (HNO3) bath for 48 h and replenishing 

the acid solution after 24 h. (CAUTION!!! HNO3 is a very strong acid, extra 

careful handling is advised) A glass holder was used in dealloying to ensure 

that all the surface of Au alloy plates were exposed to acid. Dealloyed monoliths 

were then rinsed thoroughly with Milli-Q water to neutral pH followed by rinsing 
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with ethanol. Np-Au monoliths were dried with N2 gas and weighed. Np-Au 

monoliths were kept inside a vacuum desiccator until used. 

  

2.4. Characterization of np-Au monolith 

The exterior nanostructure of np-Au monoliths was characterized using 

SEM. The np-Au monolith was also broken into smaller pieces and the side of 

a cleaved fragment was imaged using SEM to characterize the interior 

nanostructure and confirm its nanoporosity. The elemental analysis was done 

using energy dispersive X-ray spectroscopy (EDS) at 15 kV. The specific 

surface area (SBET) was determined using the Brunauer–Emmett–Teller (BET) 

method [9]. Sample size was a minimum of 1 g of np-Au monoliths as required 

by the instrument for sample with expected specific surface area of 3.0-9.9 m2 

g-1. The pore volume versus diameter distribution was calculated by analyzing 

the adsorption branch of the isotherm using the Barrett-Joyner–Halenda (BJH) 

method [9]. 

 
 
2.5. Preparation of solutions 

2.5.1. Preparation of solution of thiolated compounds 

 All thiolated compound used to form SAMs in this study were dissolved 

in HPLC grade ethanol. For Chapter III, 5 mM total of mixed αMan-C12-SH 

(0.10 mole fraction) with CH3-PEG4-SH or 5 mM total of mixed βGal-C12-SH 

(0.10 mole fraction) with CH3-PEG4-SH was used to prepare mannose-PEG 

SAM (ManPEG SAM)- or galactose-PEG SAM (GalPEG SAM)-modified np-Au 
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monoliths, respectively. For Chapter IV and V, 1 mM of LA was used to prepare 

LA SAM-modified np-Au monolith.  

 

2.5.2. Preparation of protein solutions 

 Lyophilized powder of proteins (lectins: Con A, PNA, SBA; glycoproteins: 

Ova, HRP; and BSA) were dissolved in binding buffer (10 mM Tris, 0.10 M 

NaCl, 1 mM CaCl2, 1 mM MnCl2 adjusted to pH 7.4). Concentrations of protein 

solutions were determined using the Beer-Lamberts equation A280 = ε280 × C × 

l, where A280 is the absorbance at 280 nm using in UV-vis spectrophotomer 

(Simple Reads), C is the concentration at µM, l is the 1 cm path length and ε280 

is the extinction coefficient of the protein at 280. ε280 values of proteins were 

calculated as the weighted sum of the ε280 values of Trp, Tyr and Cys using the 

proposed equation: ε280 (M-1 cm-1) = no. of Tryptophan × 5500 + no. of Tyrosine 

× 1490 + no. of Cysteines ×125 [92]. The values were as follows: ε280 (Con A) 

= 0.129720 µM-1 cm-1 [92], ε280 (PNA) = 0.129720 µM-1 cm-1, ε280 (SBA) = 

0.153600 µM-1 cm-1, ε280 (Ova) = 0.031525 µM-1 cm-1  [92]; and ε280 (BSA) = 

0.042925 µM-1 cm-1 [92]. The protein solutions were immediately used after 

preparation. 

 

2.5.3. Preparation of boronic acid solutions  

 3-aminophenylboronic acid (APBA) was dissolved in 60% (v/v) 

acetonitrile aqueous solution.  
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2.6. Surface modification of np-Au by flow method 

 Surface modification of np-Au was done by flow through method at 0.5 

mL min-1. Np-Au monoliths were placed inside the flow tube or flow cell 

perpendicular to the flow sandwiched by Teflon spacers. The sequence of 

solutions circulated through the SAM-modified np-Au monoliths are discussed 

below. The working volume was 1.5 mL using flow tube (Chapter III and V) or 

3.0 mL using flow cell (Chapter IV). For flow through process that require 

detection, UV detector was set to the desired wavelength, zeroed using the 

reading for the solvent, and then tubing was emptied first and blown through 

with air to dry prior to circulation of solutions. Circulation of solutions were 

stopped when there was no increase or decrease observed in the absorbance 

reading.  

 

2.6.1. Preparation of carbohydrate-modified np-Au monoliths  

 To prepare carbohydrate-modified np-Au monoliths, surface 

modification was done by flowing through these solutions in this sequence: 

ethanol wash (10 min)  circulation of 5 mM of mixed SAM solution (thiolated 

carbohydrate and PEG) (6 h)  ethanol wash (10 min)  Milli-Q water wash 

(10 min)  loading buffer wash (10 min). 

 

2.6.2. Preparation of Con A-modified np-Au monoliths  

 To prepare Con A-modified np-Au monoliths, surface modification was 

done by flowing through these solutions in this sequence:  ethanol wash (10 
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min)  circulation of 1 mM LA solution (3 h)  ethanol wash (10 min)  Milli-

Q water wash (10 min)  circulation of 10 mM of DMTMM solution (30 min)  

Milli-Q water wash (10 min)  circulation of 1 % (v/v) ethanolamine solution (30 

min)  loading buffer wash (10 min)  circulation of 6 µM Con A solution (2 h) 

 loading buffer wash (10 min). 

 

2.6.3. Preparation of boronic acid-modified np-Au monoliths  

 To prepare boronic acid-modified np-Au monoliths, surface modification 

was done by flowing through these solutions in this sequence: ethanol wash 

(10 min)  circulation of 1 mM LA solution (3 h)  ethanol wash (10 min)  

Milli-Q water wash (10 min)  circulation of 10 mM of DMTMM solution (30 

min)  Milli-Q water wash (10 min)  circulation of 1 % (v/v) ethanolamine 

solution (30 min)  60% (v/v) acetonitrile wash (10 min)  circulation of 10 

mM APBA solution (3 h)  loading buffer wash (10 min). 

 

2.7. Characterization of loading and surface coverage by thermogravimetric 

analysis 

 Modified np-Au monoliths were air-dried then placed in a platinum 

weighing pan and heated inside the thermogravimetric analyzer from room 

temperature to 600 °C at a ramping rate of 20 °C min-1. The carrier gas used 

was nitrogen, which was held at a flow rate of 40 mL min-1. Prior to initiating the 

temperature ramp, N2 gas was allowed to flow through the sample for 5–10 min. 

Initial mass, mass losses and weight change percent were obtained from the 

analysis. Surface coverage of the molecules on np-Au monolith surface was 
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calculated based on the net mass loss that was normalized to BET surface 

areas. 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 % =  
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 − 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠
𝑥100 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚2 𝑛𝑝 𝐴𝑢
) =

𝑚𝑔 𝑙𝑜𝑠𝑠 𝑥 6.02 𝑥 1023

 𝑀𝑊 × 1000

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑝 𝐴𝑢 𝑚𝑎𝑠𝑠 ×  𝐵𝐸𝑇 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
 

 

In Chapter IV, powdered samples were also analyzed with TGA using the same 

condition but with scanning up to 1050 °C. Ash residues left in the pan after 

pyrolysis of proteins were sent to Atlantic Microlab, Inc. (Norcross, Georgia, 

USA) for CHN analysis. 

 

 
2.8. Estimation of theoretical surface coverage of molecules on np-Au surface 

 Theoretical surface coverage of molecules was estimated by calculating 

the minimum and maximum expected numbers of molecules per m2 of np-Au 

monolith. Minimum and maximum surface area of molecule was based on the 

smallest and largest area obtained using the dimensions of the unit cell based 

on the crystal structure reported of the molecule. For example, the reported 

crystal structure unit cell dimensions of LA are: a = 11.744 Å, b = 9.895 Å, c = 

9.246 Å, where there were four LA molecules per unit cell [93]. Therefore, the 

three possible surface area of one LA molecule are 0.91, 1.09, and 1.16 nm2 

and the a complete and ordered coverage of LA molecules on Au surface would 

be in the range of 3.45 × 1018 – 4.40 × 1018 molecules m-2. Similarly for Con A 
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molecule, the maximum possible surface coverage is estimated as 1.29 × 1016 

– 1.82 × 1016 molecules m-2 assuming that Con A molecules lay flat and that 

they pack side-by-side. This is based on the unit cell dimensions of tetrameric 

Con A (PDB ID: 3CNA) a = 63.15 Å, b = 86.91 Å, c = 89.25 Å [60] and assuming 

three possible surface areas per molecule of 54.8, 56.4 and 77.6 nm2. 

 

2.9. Characterization of loading by in situ solution depletion method 

 The amount of molecules loaded on np-Au monoliths were estimated by 

determining the difference between the final and initial concentration (ΔC) of 

the circulating solution monitored by UV detector. UV detector absorbance 

readings were acquired and recorded at the frequency of 1 Hz (1 reading per 

second). Data logger readings were converted to concentrations by using a 

factor obtained from the slope of the linear regression of calibration curve 

(analytical concentrations vs. absorbance plot). The factors are: LA (λmax=330 

nm) = 0.0502 mM-1, Con A (λmax=280 nm) = 0.0329, APBA (λmax=300 nm) = 

0.217 mM-1, adenosine (λmax=260 nm) = 2.980 mM-1, and deoxyadenosine 

(λmax=260 nm) = 2.850. 

 

  Loading was estimated by: 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚2 𝑛𝑝 𝐴𝑢
=

𝛥𝐶 ×  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒 ×  (6.02 ×  1023)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑝 𝐴𝑢 ×  𝐵𝐸𝑇 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
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2.10. Separation of Con A from its mixture with SBA  

 A 1.5 mL mixture of 10 µM Con A and 10 µM SBA was circulated through 

ManPEG SAM-modified np-Au monoliths until saturation was observed as 

monitored by a UV detector at 280 nm. UV-vis scans of the Con A-SBA solution 

before and after the circulation were obtained using a UV-vis 

spectrophotometer.  Afterwards, the np-Au monoliths were washed for 10 min. 

A 2 mL of elution buffer (0.10 M α-methyl mannopyranoside dissolved in loading 

buffer) was flowed through while monitoring at 495 nm followed by washing 

again with the loading buffer. 

 

2.11. Elution of captured Ova 

Capture and elution was characterized by flowing through np-Au 

monoliths at 0.5 mL min-1 a series of solution: loading buffer  2 mL of Ova 

solution  loading buffer  2 mL elution buffer  loading buffer. Elution buffer 

is 0.1 M α-methyl mannopyranoside dissolved in loading buffer. The A280 of the 

solution flowing through was recorded at 1 Hz.  

 

2.12. Trypsin digestion of protein 

 Digestion of Ova, HRP and BSA was done by mixing equal volume of 2 

mg mL-1 protein and 80 µg mL-1 trypsin, each dissolved in 50 mM ammonium 

bicarbonate followed by incubation at 37 °C for 16 h. 
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2.13. SDS-PAGE analysis 

 SDS-PAGE analysis was done using a precast 4-20% polyacrylamide 

gel. The sample to be analyzed and sample buffer (20:1 Laemmli:β-

mercaptoethanol) were mixed in 1:1 volume ratio. The mixture was heated 

using a hot water bath at 97 °C for 5 minutes and cooled down afterwards. 15 

µL of each sample mixture and molecular weight ladder were loaded into the 

wells of the polyacrylamide gel placed in a cassette. The cassette was then 

placed inside the Biorad Mini-Protean Tetra Cell and run with a running buffer 

(25 mM Tris, 192 mM Glycine, 0.1% SDS adjusted to pH 8.3) at 120 V. The 

electrophoresis was stopped when the sample reached approximately 1 cm 

from the bottom of the gel. The gel was taken out of the cassette and washed 

with Milli-Q water and placed in a staining container. The gel was immersed in 

a staining solution (250 mg per 100 mL of Brilliant Blue R250 dissolved in 

aqueous solution of 40% methanol, 7% acetic acid) overnight. The gel was de-

stained using de-staining solution (aqueous solution of 40% methanol, 7% 

acetic acid). The gel were finally rinsed with Milli-Q water, placed in between of 

two transparent films, and scanned using a desktop scanner. 

 

2.13.1. Extraction of Ova from a mixture using Con A-modified np-Au 

monoliths 

 A batch of 8 pieces of Con A-modified np-Au monoliths was prepared. 

At the end of each 30 min cycle of circulation of 5 μM Ova and 15 μM BSA 

mixture, an aliquot was taken and kept. Two monoliths were initially used and 
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after each cycle, the number of substrates was increased by adding two more 

monoliths. The aliquots of protein mixture were analyzed through SDS-PAGE. 

 

2.13.2. Characterization of glycopeptide extraction using boronic acid-modified 

np-Au monoliths 

 A batch of boronic acid-modified np-Au monoliths was prepared. Trypsin 

digested Ova in phosphate buffer pH 8.5 was circulated through these 

monoliths until saturation monitored by a UV detector at 280 nm. The monoliths 

were washed for 10 min prior to circulation of acetate buffer pH 2.7. Aliquots of 

the digested solution before and after circulation and of the elution buffer were 

run and analyzed by SDS-PAGE. 

  

2.14. Preparation of borohydride baths 

 The recipe of borohydride baths was based from the reported literature 

[94]. The KAu(CN)2 and/or KAg(CN)2 were dissolved separately from 

NaCN+KOH+NaBH4 solution. The solvent used was Milli-Q water. The 

solutions were mixed together and stored in a dark bottle.  

 

2.15. Electroless deposition of Au and Au-Ag alloy 

 The substrate 1 cm diameter glass coverslips were cleaned with piranha 

solution (3:1 mixture of concentrated H2SO4:30% H2O2; CAUTION!!! Piranha 

solution is highly corrosive and an extremely powerful oxidizer, extra careful 

handling is advised) and rinsed with Milli-Q water followed by ethanol. Cleaned 

glass plates were incubated in 5 mM APTES solution in ethanol overnight 
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followed by washing with ethanol. The substrates were then dried inside the 

oven for 30 mins at 70 °C. The APTES-modified glass plates were gold-

sputtered for 50 s at 10 mA, 60 millitorr. The sputtered glass plates were then 

electrolessly deposited with Au or Au-Ag alloy. 

 Electroless deposition was done using 500 µL of borohydride bath. The 

bath was placed in 5 mL beaker and then put in a hot water bath pre-heated at 

desired temperature. The gold-sputtered glass plate was immersed in the 

borohydride bath to start the plating. The temperature was kept during plating 

and monitored using the attached thermometer. After the desired plating time, 

the plated glass plate was removed from the bath and washed with Milli-Q water 

and ethanol. The washed plated substrates were dried inside a vacuum 

desiccator. The microstructure and elemental analysis of the plated Au or Au-

Ag film was characterized using SEM and EDS spectroscopy, respectively. 

 

2.16. Data analysis 

 All data calculations and graphing were done using Sigma Plot 12.0. 

Analysis of protein gel band sizes and intensities was done using ImageJ 

(imagej.nih.gov/ij/). Calculation of area under the curve (AUC) was done using 

GraphPad Prism 6.07. 
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CHAPTER III. Carbohydrate-modified nanoporous gold monolith as 

affinity support material for the separation of lectins 

 

3.1. Introduction 

 
Lectins are proteins derived from plants or animals that contain 

carbohydrate-binding domains that can selectively recognize specific 

carbohydrate structures. Procedures and tools to capture, screen and separate 

lectins are important in the on-going development of glycomics. Also known as 

glycans, these carbohydrates are attached to proteins, lipids or to other 

carbohydrates to form glycoconjugates. Glycoproteins, the most studied 

glycoconjugate, have glycans being covalently attached during glycosylation. 

As mentioned above that during this process, some glycan structures and 

composition could be altered and were found related to mammalian diseases 

such as cancer. Therefore, glycomics has a true importance in medical 

research, and one of the most utilized tools in this field are lectins [95].  

Purification of low abundant proteins are significant steps in proteomics 

[96]. The whole protein purification process consist of series of separation and 

detection methods. In purification of proteins extracted from plants, the process 

usually commences with the precipitation and chromatography techniques, 

which are actually the limiting steps [97]. Purification of lectins is important prior 

to investigating its specificity and possible use in screening carbohydrates. 

Purified lectins are useful in glycoassays such as lectin microarrays [98]. The 

main challenge in purification of proteins is its relatively low abundance in a 

very complex environment. Complexity is due to the variation in sizes and 

charges of the components in the sample. In addition to this is the requirement 
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of retaining the biochemical and biological activity of the protein after the 

purification method. 

Along with the development of novel separation methods of proteins is 

the invention and innovation of materials that could be used as column 

materials, extraction media or stationary phases in chromatographic 

separations. These materials are expected to have high retention, selectivity 

and stability to be useful in a separation process. Generally, a good substrate 

should have minimal non-specific interactions with proteins, and be 

mechanically and chemically stable to conditions used during capture and 

elution of  the analyte, have fairly uniform accessible area for the entry and exit 

of large macromolecules, and be rigid [99]. The conventional materials being 

used in separation of proteins are porous particulate media that could be placed 

inside a column. Then monolithic materials have been discovered and showed 

faster and more efficient separations due to their porosity, highly permeable 

“no-discontinuity” surface and ease, economical and reproducible preparation 

[100]. These separation materials are usually made of organic polymers and 

inorganic silica. Recently, different inorganic materials have been reported 

[101]. Chromatographic macroporous monoliths are best characterized by large 

pores for convection and a connected network of shorter, smaller pores for 

diffusion [102]. Macroporous materials are suitable chromatographic substrates 

in applications employing liquid flow-through immobilization of ligands and 

subsequent binding of biomolecules [103]. Monolithic form of np-Au has three-

dimensional, connective macroporous structure, pores ranging from 10 to 100 

nanometers and therefore suitable for liquid flow-through and also leave 

adequate space for immobilization of ligands and subsequent binding of 
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biomolecules [104]. In addition, biocompatibility of np-Au monolith makes it 

suitable in protein separations [105].  

 

 

3.2. Results and discussion 

 

3.2.1. Characterization of np-Au monoliths 

Our lab previously reported the preparation of np-Au monoliths by 

selective dissolution of commercially available gold alloy plates in nitric acid 

[106], and these were then surface modified with C18-SH [9]. Scanning electron 

microscope (SEM) images of the dealloyed 8 mm × 8 mm × 0.5 mm np-Au 

monoliths revealed interconnected ligaments and pores both in the exterior and 

interior of the monolith (Figure 3.1A). Pore size distribution using Barrett–

Joyner–Halenda (BJH) analysis of the adsorption branch resulted in a pore 

diameter range of predominantly 80–120 nm (Figure 3.1B) and thus the 

material would be considered as macroporous by the IUPAC definition (> 50 

nm). Through analysis using the Brunauer–Emmett–Teller (BET) method, the 

specific surface area of the monoliths was determined to be 6.9 ± 0.5 m2 g−1 (n 

= 3). Dealloying of the alloy plate with a calculated geometric surface area of 

1.44 × 10−4 m2, increased the surface area by 8,403× producing a np-Au 

monolith with a mass of 175 mg and a surface area of 1.21 m2. Elemental 

analysis of the np-Au monolith using EDS showed a composition of almost 99% 

gold after the dealloying process (Figure 3.1C). Characterization of cleaved np-

Au monoliths modified with proteins via flow method using tapping mode atomic 

force microscopy (AFM) revealed immobilization of significant amount of 

proteins in the interior of the monolith [106]. The average pore size of these np-
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Au monoliths was controllable by thermal annealing, i.e., the porosity of all free 

standing np-Au structures decreases as the heat treatment temperature 

increases [9]. Our lab also developed an electrochemical method of annealing 

np-Au by potential cycling in the paper “Electrochemical annealing of 

nanoporous gold by application of cyclic potential sweeps” published in 2015 in 

Nanotechnology [107]. 

 

 

Figure 3.1. Preparation and characterization of np-Au monolith. (A) Dealloying 

of precursor alloy plate (42% Au, 20% Ag, 38% Cu) in nitric acid at room 

temperature to produce np-Au monolith. SEM images of the top and side views 

of the exterior and the interior portion of an 8 mm × 8 mm × 0.50 mm np-Au 

monolith. All scale bars are 0.5 µm except for the side view (left image) which 
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is 500 µm. (B) Pore size distribution obtained by Barrett–Joyner–Halenda (BJH) 

analysis of the adsorption branch of the isotherm. (C) EDS spectra of np-Au 

monolith (at 15 kV).  

 

3.2.2. Lectin-carbohydrate interactions on np-Au monolith characterized by 

thermogravimetric analysis 

 Our lab reported in 2013 in New Journal of Chemistry on “Lectin-

carbohydrate interactions on nanoporous gold monoliths” [108]. In this reported 

study, we used thermogravimetric analysis (TGA) in determining the amount of 

loading of thiolated carbohydrate molecules on np-Au monolith. Subsequent 

loadings of lectin bound to the immobilized carbohydrate ligand were also 

assessed using TGA. TGA is a destructive analytical method, which allows for 

quantitative measurement of the change or rate of change in the weight of a 

material as a function of temperature or time. TGA has been used to quantify 

the loading of dodecanethiol monolayers formed on gold nanoparticles [109]. 

TGA has also been used to determine the temperature stability of the 

octadecylamine monolayer coating gold nanoparticles [110]. Our lab has 

previously reported the use of TGA to analyze the one-step decomposition of 

octadecanethiol on np-Au [9]. Key results this reported study that motivated the 

current study are: 

 Np-Au monoliths were successfully modified by flow-through method 

confirmed by the mass losses obtained from TGA analysis, therefore 

quantification of molecules loaded into the monoliths was possible to 

determine. 
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 Loading kinetics of 8-mercaptooctyl α-D-mannopyranoside (α-Man-C8-

SH) on np-Au monoliths characterized by TGA showed two stages: (1) 

a very fast chemisorption step and (2) a slower assembly step. Using 

flow-through method, saturation of loading was first observed after 6 h 

modification. 

 Modification of np-Au monolith surface with mixed SAMs of 8-

mercaptooctyl α-Man-C8-SH and 8-mercapto-3, 6-dioxaoctanol (HO-

PEG2-SH) showed minimal non-specific binding of Con A, i.e., reduced 

the possible binding of Con A onto bare np-Au surface. Using mixed 

SAMs of α-Man-C8-SH with octadecanethiol (C18-SH) showed significant 

non-specific adsorption of Con A. 

 Mannose-presenting SAMs in np-Au retained selectivity for Con A, 

evidenced by the greater mass loss due to subsequent loading of Con A 

as compared with PNA or IgG. 

 Comparing different mole fractions of α-Man-C8-SH in the mixed SAMs 

solutions of α-Man-C8-SH and HO-PEG2-SH showed 0.10 mole fraction 

as the greatest Con A loading possibly due to a surface density of 

mannose created on the np-Au surface that is more conducive to 

polyvalent interactions and enhanced lectin binding. 

 Flowing a solution of methyl α-D-mannopyranoside through the np-Au 

monolith eluted the captured Con A molecules by mannose ligands in 

the SAM. 

The study proposed that monitoring the capture and elution of lectins using 

a UV detector at 280 nm could provide an in situ characterization of the loading 

of the lectin to and release from carbohydrate-modified np-Au monoliths. The 
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absorbance at 280 nm (A280) of proteins was due to the tryptophan (Trp) and 

tyrosine (Tyr) residues and to the disulphide bonds formed between cysteine 

residues of the peptides to form cystine residues (Cys). Tetrameric Con A has 

16 tryptophan (Trp) and 28 tryrosine (Tyr) residues [111].  

 

3.2.3. Preliminary assessment of flow system in determining loading and 

surface coverage of molecules on np-Au monoliths by in situ solution depletion 

method 

The flow cell system used in this study consisted of a flow tube connected 

in series with peristaltic pump and UV–visible spectrophotometer (UV-vis 

detector) by polytetrafluoroethylene (PTFE) tubing (Figure 3.2). The UV-vis 

detector was connected to a data logger with a USB port terminal cable readily 

available to be attached to a laptop. The flow tube is made of a 1.5 in 3 mm ID 

long PTFE tubing with customized Teflon spacers arranged inside 

perpendicularly to the flow. The 2.5 mm × 2.5 mm × 0.50 mm3 np-Au monoliths 

were placed in between of the spacers to provide steady and full-surface 

access to the flowing through solution (Figure 3.2).  
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Figure 3.2. Flow system set-up consists of pump, UV detector-data logger 

system, and flow tube connected in series. Np-Au monoliths were placed in 

between of spacers and perpendicular to the flow. The working volume is 1.5 

mL at 0.5 mL min-1. UV reading acquisition is at 1 Hz. 

 

To evaluate the method of monitoring the absorbance of circulating solution, 

a thiolated compound that has observable maximum absorbance was used. By 

doing a UV-vis scan of lipoic acid (LA) solution in ethanol, a maximum 

absorbance at 330 nm (λmax) were observed (Figure 3.3A). This should be due 

to the strained five-membered cyclic disulfide structure of LA [112]. Different 

analytical concentrations of LA solution was plotted versus their respective 

absorbance at 330 (A330) (Figure 3.3B). Concentration and A330 of LA solution 

have good linear correlation for the range of concentration up to 4 mM. From 
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this plot, an experimental extinction coefficient (ε330) was determined from the 

slope of the linear regression fit to the plot, and the value was 0.1617 mM-1 cm-

1. A 2 mL volume of 1 mM LA solution was flowed through a 70 mg np-Au until 

saturation was observed (Figure 3.3C). Saturation means there is no longer 

any change in the UV detector reading of the circulating solution. UV readings 

were multiplied by a numerical factor 0.0502 obtained from the calibration 

curve, i.e., the slope of the linear regression fit to the plot of different analytical 

concentration of LA solutions versus UV detector readings at 330 nm (Figure 

3.3D). The loading of LA molecules on this np-Au was assessed by the 

difference of the final from the initial concentration of the circulating 1.5 mL LA 

solution and was determined to be 5.11 × 1017 molecules LA. Surface coverage 

of LA molecules on this np-Au monolith (see Section 2.10) was determined to 

be 1.06 × 1018 molecules m-2 np-Au. Based on theoretical estimates (see 

Section 2.8), a 70 mg np-Au could have maximum surface coverage within the 

range of 1.78 × 1018 -2.28 × 1018 molecules m-2 np-Au. The observed surface 

coverage suggests that the LA molecules assembled in a disorderly fashion on 

np-Au monolith surface with possible incompleteness of coverage. Reported 

surface coverages of LA on flat gold surfaces are 3.00 × 10−10 mol cm−2 (1.81 × 

1018 molecules m−2) [113], 3.50 × 10−10 mol cm−2 (2.11 × 1018 molecules m−2) 

[114] and 2.42 × 10−10 mol cm−2 (1.46 × 1018 molecules m−2) [6].  
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Figure 3.3. Loading of lipoic acid molecules on np-Au monolith surface by flow 

through method monitored by a UV detector. (A) UV-vis scan of 1 mM LA 

solution in ethanol showing a maximum absorbance at 330 nm. (B) 

Experimental determination of ε330 of LA solution that is equal to 0.1617 mM-1 

cm-1, which is the slope of the linear regression of analytical concentration 

versus absorbance plot. (C) Loading curve of LA on np-Au monolith as recorded 

by a UV detector at 330 nm. (D) Calibration curve of analytical concentration 

versus UV detector-data logger reading to obtain a factor of 0.0502 mM-1 to 

convert data logger reading to concentration. 

 

3.2.4. Preparation of carbohydrate-modified np-Au monoliths 

 Two different carbohydrate-modified np-Au monolith were prepared for 

this study. One is modified with mannose-containing thiolated compound αMan-

C12-SH (refer to as ManPEG SAM) and the other is with galactose-containing 
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thiolated compound βGal-C12-SH (refer to as GalPEG SAM) (Figure 3.5A). 

These compounds were mixed with thiolated methyl terminated polyethylene 

glycol CH3-PEG4-SH. The solution of mixed SAMs was composed of 0.10 mole 

fraction of carbohydrate-containing component. TGA analysis of the 1:3 molar 

ratio of ManPEG SAM and GalPEG SAM gave a loading of 0.18 mg and 0.19 

mg, respectively (Figure 3.5B). From these, surface coverages could be 

approximated to be 0.846 × 1018 molecules m-2 for ManPEG SAM and 0.897 × 

1018 molecules m-2 for GalPEG SAM. The exact distribution of thiolated 

mannose and PEG molecules in this surface coverage was not determined. 

The relatively lower surface coverage of these molecules compared to 

alkanethiols on flat gold surface could be attributed to the bulk size of 

carbohydrate moieties that may create spacing between immobilized molecules 

and hinder the access of other molecules to the np-Au surface. The TGA 

thermogram also showed that the pyrolysis of the SAM on np-Au monolith is a 

one-decomposition completed at 600 °C. 

 

 

Figure 3.4. (A) Thiolated compounds (12-mercaptododecyl α-D-

mannopyranoside (αMan-C12-SH), 12-mercaptododecyl β-D-
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galactopyranoside (βGal-C12-SH), and thiolated methyl-polyethylene glycol 

MT(PEG)4) used in preparing carbohydrate-modified np-Au monoliths. (B) TGA 

thermograms for determination of loading of carbohydrate SAMs on np-Au 

monolith. The temperature was ramped at 20 °C min-1. 

 

3.2.5. Characterization of capture of Con A using ManPEG SAM-modified np-

Au monolith 

 The loading of Con A molecules into SAM-modified np-Au monolith, was 

characterized by the in situ solution depletion method. The change in 

concentration of the circulating Con A solution was observed at λmax = 280 nm 

(Figure 3.6A); the absorbance was due to the tryptophan (Trp) and tyrosine 

(Tyr) residues and to the disulphide bonds formed between cysteine residues 

of the peptides to form cystine residues (Cys). Tetrameric Con A has 16 

tryptophan (Trp) and 28 tryrosine (Tyr) residues [111]. All the data logger 

readings were converted to concentrations by multiplying by a factor 0.0329 

µM-1 obtained from the calibration curve (Figure 3.6B). A 1 µM Con A solution 

in binding buffer was circulated through flow tube without np-Au monolith as 

negative control and those containing bare np-Au, PEG SAM-modified np-Au 

monolith (no carbohydrate), GalPEG SAM-modified np-Au mono ManPEG 

SAM-modified np-Au monolith (Figure 3.6C). The mass of one-piece np-Au 

monoliths used was in the range of 34 to 40 mg per piece. The observed surface 

coverages are summarized in Table 3.1. The low binding of Con A towards 

PEG SAM-modified np-Au monolith showed the capability of these PEG 

molecules to resist protein adsorption and therefore being suitable for use as 
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spacers to reduce non-specific adsorption. The lower loading of Con A to 

GalPEG SAM-modified than ManPEG SAM-modified np-Au monolith suggest 

specificity of Con A towards mannose ligands on np-Au surface. However, the 

relatively higher than desirable amount of Con A loading on GalPEG SAM 

should be further investigated. A higher mass of np-Au monolith (2-3× more) or 

a higher concentration of Con A solution (up to 6 µM) could be used to create 

a more pronounced depletion of the solution concentration. The decrease in 

loading of Con A when the np-Au surface was modified with ManPEG SAM 

(reduced by half compared to bare np-Au) showed specific binding of Con A to 

the formed SAM.   

 

Figure 3.5. Loading of Con A molecules on bare and SAM-modified np-Au 

monolith surface by flow through method monitored by a UV detector. (A) UV-

vis scan of 1 µM Con A solution in loading buffer (Tris-NaCl pH 7.4) showing a 

maximum absorbance at 280 nm. (B) Calibration curve of analytical 
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concentration versus UV detector-data logger reading to obtain a factor of 

0.0329 µM-1 to convert data logger reading to concentration. (C) Loading curves 

of Con A on bare and SAM-modified np-Au monoliths as recorded by a UV 

detector at 280 nm.  

 

Table 3.1. Surface coverages of Con A on bare and SAM-modified np-Au 

monoliths. 

 Surface coverage  
(molecules Con A m-2 np-Au) 

Bare np-Au 1.34 × 1015 

PEG SAM-modified np-Au 2.18 × 1014 

ManPEG SAM-modified np-Au 6.17 × 1014 

GalPEG SAM-modified np-Au 4.67 × 1014 

 

All surface modification of np-Au monoliths were done by flow-through 

method for at least 6 h for SAMs and until saturation for Con A. It is also worth 

reporting the observation that during the preliminary study where np-Au 

monolith was modified by incubation into solutions instead of flow-through 

method, and then transferred to the flow tube for further use as substrate, there 

were less or almost no Con A loading observed. In situ modification of np-Au 

monolith from SAM formation to immobilizing ligand could preserve the SAM 

on the np-Au monolith and limit the possible damage or degradation of SAM 

molecules on np-Au surface. 

 

3.2.6. Elution of captured Con A by ManPEG SAM-modified np-Au monolith 
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 Thermogravimetric analysis was done to characterize the release of 

captured Con A from the substrate modified by 1:3 molar ratio of αMan-C12-

SH:CH3-PEG4-SH. Con A is a lectin that has specificity to α-mannose and α-

glucose sugar units of glycans. Therefore, the binding can be reversed by 

exposure to a high concentration of mannose [115] and α-methyl 

mannopyranoside [69] monosaccharides being used as components of an 

eluting solution. Urea has also demonstrated a very effective elution capability 

with the consequence of denaturing the protein analyte [70]. In our previous 

study it was determined that 0.10 M α-methyl mannopyranoside solution was 

able to elute ~80% of the captured Con A (Figure 3.6A). Further in this study, 

0.50 M mannose solution and 0.80 M urea solution were able to elute ~51% 

and 90% of the bound Con A, respectively (Figure 3.6B and C).  
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Figure 3.6. TGA thermograms showing the capture and elution of Con A using 

ManPEG SAM-modified np-Au monoliths by using (A) 0.010 M α-methyl 

mannopyranoside [108], (B) 0.50 M mannose, and (C) 0.80 M urea. The 

temperature was ramped at 20 °C min-1. 
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3.2.7. Capture and elution of Con A using ManPEG SAM-modified np-Au 

monoliths 

 A simultaneous capture and elution of Con A was carried out using in 

situ prepared ManPEG SAM-modified np-Au monoliths. The change in 

concentration of the circulating solution was monitored and recorded until no 

change was observed. The concentration of Con A solution was depleted by 

0.271 µM for a circulation of almost 3 h. The depletion was fast for the first 30 

m and gradually decreasing in rate until saturation was reached. The substrate 

was washed by buffer for 10 min and the elution buffer containing 0.10 M α-

methyl mannopyranoside was circulated. The elution solution attained a final 

concentration of 0.255 µM. The working volume for both loading and elution 

was 1.5 mL. Therefore, this run eluted almost 94% of the captured Con A. The 

elution procedure took 1.5 h to reach saturation. In situ monitoring using a UV 

detector allowed optimized capture and elution of analyte to separate (Figure 

3.7). Increasing the flow rate in elution process could enhance the turn-out at 

shorter period of time. 
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Figure 3.7. In situ monitoring of capture and elution of Con A using ManPEG 

SAM-modified np-Au monolith substrate. The A280 readings were acquired at 

1 Hz. The circulation of Con A solution was stopped when there were no more 

decrease or increase in A280 reading. 

 

3.2.8. Separation of Con A from its mixture with SBA 

 To test these developed carbohydrate-modified np-Au monoliths in 

separation of lectins, ManPEG SAM-modified monoliths were used to 

specifically capture Con A from its mixture with soybean agglutinin (SBA). SBA, 

like Con A, is a homotetramer lectin with molecular weight of 120 kDa [116].  

Immunochemical studies of SBA determined its specificity to terminal α-linked 

2-acetamido-2-deoxy-D-galactopyranosyl or to α- or β-D-galactopyranosyl 

residues [117]. The monosaccharide inhibitor of binding are acetyl-n-

galactosamine and to a lesser extent by D-galactose. Unfolding studies of SBA 

and Con A showed higher conformational stability of SBA than Con A and was 

determined to be largely due to the substantial differences in their degrees of 

subunit interactions [118]. To characterize the separation, we used fluorescein 

isothiocyanate (FITC)-conjugated Con A that has two prominent maximum 

absorbance at 280 nm (A280) and 495 nm (A495) (Figure 3.8A). SBA, on the 

other hand, only showed maximum absorbance A280. A 10 µM equimolar 

solution of FITC-Con A and SBA were circulated through the ManPEG SAM-

modified np-Au monoliths until saturation monitored at 280 nm. The UV-vis 

scan of the solution after the circulation was obtained and there was a decrease 

in both A280 and A495 of the solution (Figure 3.8B). After washing, the flow tube 
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was placed before the detector, and monitored the A495 of flowing through 

solution. The sequence of the solution being flowed through was: loading buffer 

 2 mL 0.10 M α-methyl mannopyranoside in loading buffer  loading buffer. 

Chromatogram showed initial peak obtained due to the detected non-

specifically adsorbed Con A being washed off from the substrate. The next 

peaks obtained were due to the eluted Con A captured by the mannose-

modified np-Au monolith substrate (Figure 3.8C).  

 

 

Figure 3.8. Separation of Con A from SBA using ManPEG SAM-modified np-

Au monolith. (A) UV-vis scan of Con A-FITC and SBA alone and their equimolar 

mixture. (B) UV-vis scan of the Con A-FITC – SBA mixture before and after 

circulation through ManPEG SAM-modified np-Au monoliths. (C) 

Chromatogram of washing and elution of captured Con A using 2 mL 0.10 M α-
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methyl mannopyranoside detected by UV spectrophotometer at 280 nm at 1 

Hz. 

 

3.3. Conclusion 

There is a need in glycomics for an efficient and effective methods of 

characterizing new discovered lectins. This is because lectins are very useful 

tool in glycobiology and glycomics. Lectins are used in enzyme-linked 

immunosorbent assay (ELISA) measurements of glycan determinants, cell 

agglutination (blood typing), cell sorting and in glycoconjugate purification. 

Characterization of lectins involved extraction and purification of lectins, 

hemagglutination and inhibition assays to determine lectin activity and 

specificity,  determination of the molecular weight and the effect of pH and 

temperature on protein stability, amino acid analysis, and ligand binding study 

[119]. Purification steps are considered the limiting steps of the whole process. 

One of the main focus in developing purification procedures is the materials 

used in designing separation columns.  

The latest development in designing separation columns is the use of 

monolithic materials. Monolithic materials are single-porous materials that have 

an interconnected ligament structure that limits the void volume inside the 

column, thus increasing the efficiency without sacrificing the permeability. The 

popular materials being used are silica and organic polymers. Innovation of 

these materials are by modifying the porous monoliths with gold nanoparticles 

(GNPs) to provide formation of SAMs of functional group-terminated 

alkanethiols that could be more versatile in separations. For example, 

separation of short peptides by capillary electrochromatography (CEC) used 
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GNP-modified porous polymer monoliths that has exchangeable chemistries 

i.e., varying functionalities such as carboxylic acid, hydroxyl, or amine of the 

alkanethiols [120].  Replacing inorganic coated columns with inorganic 

monolithic columns offers greater surface coverage of the inorganic material 

while maintaining good mass transfer and flow-through properties.  

Np-Au monoliths described in this study have “macropores” that can 

facilitate SAM formation and entry and exit of lectins for the separation. This 

study extend our previous work in using TGA in the characterization of loading 

of molecules on the interior and exterior surface of np-Au monolith. The 

detected significant amount of SAM and lectin molecules loaded into the np-Au 

monoliths provide the evidence that the inner surfaces were reached using flow-

through method of the surface modification. Flow through system that utilizes 

UV detection facilitates in situ monitoring of loading and could be possibly used 

in studying the kinetics of lectin binding to carbohydrates immobilized on np-Au 

surface. Moreover, this method could also maximize the substrate’s affinity 

ligands during loading and can assure maximum recovery of the captured 

analyte. The methods developed in this study were optimized based on the 

properties of the substrate and analyte. For example, the wide difference in 

melting temperature of Au and molecules such as thiolated compounds and 

proteins enable the use of TGA. The suggested dilute effective concentration 

of thiolated compounds to form SAMs on Au surface allowed the in situ 

characterization of loading of these molecules using even a small piece of 

substrate down to 34 mg. SAM preservation could also be achieved by doing 

in situ surface modifications. Np-Au monoliths has versatility to be modified with 

thiolated compounds that can carry the necessary ligands for separation. In this 
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case, synthesized thiolated saccharides with a 12-carbon spacer chain length 

was utilized for lectin capture and release. Specificity was attained due to the 

known lectin-carbohydrate interactions and optimized compositions of the 

mixed SAMs. This study exemplifies the use of developed carbohydrate-

modified np-Au monoliths in separations.  
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CHAPTER IV. Selective capture of glycoproteins using lectin-modified 

nanoporous gold monolith 

 

4.1. Introduction 

Glycoproteins have attached oligosaccharide units called glycans, and 

belong to the collective group known as glycoconjugates. Glycans are 

synthesized to attach proteins to form glycoprotein in the process of 

glycosylation. The significance of glycoproteins are related  to the aberrant 

glycosylation, i.e., changes in oligosaccharide structure upon biosynthesis can 

be related to diseases such as cancer [32]; therefore, glycoproteins are now 

used as cancer biomarkers [121,122]. As discussed above, the structures of 

glycans are complex, heterogeneous and isobaric. This poses a challenge in 

glycomics where elucidation and identification of glycan structure and the 

glycosylation sites of glycopeptides are required in determining their respective 

biological functions [123]. Various methods are used in glycan analysis such as 

mass spectrometry (MS) [124-126], nuclear magnetic resonance (NMR) [127], 

electrochemistry [128], UV detection of derivatized glycans [129] and 

fluorescence imaging [130]. Comprehensive glycan analysis using microarrays 

of lectins [131] and antibodies [132] has also been developed. Prior to analysis, 

several preparative methods are usually needed that may include separation, 

isolation and enrichment in order to increase the abundance of glycoproteins, 

glycopeptides and glycans in complex samples such as serum, plant and cell 

tissue extracts and cultured cells. Preparative methods in glycomics include 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [133], 

capillary electrophoresis (CE) [134] and chromatographic separation methods 
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such as liquid chromatography (LC) [135] and capillary electrochromatography 

(CEC) [136]. 

One major factor that determines the success and efficiency of 

chromatographic separation is the optimization of the stationary phases in 

which different ligands are attached to a matrix or substrate that can selectively 

capture and isolate target analytes. In separation of intact glycoproteins, a 

popular and widely used method is lectin affinity chromatography (LAC). Due 

to the high selectivity of lectins to specific glycan structures, lectins are now 

used as binding ligands of affinity matrices in purification of glycoproteins and 

glycopeptides and also in cell separations. To create the stationary phase, 

lectins are commonly covalently immobilized to the surface [137]. Due to the 

selectivity of lectins and improved immobilization techniques, LAC is the most 

useful and efficient mode of separation of glycans and glycoproteins. For 

example, multi-lectin affinity columns were developed using different lectins for 

comprehensive capture of serum glycoproteins [138,139]. 

As discussed above, the current approach in glycomics is the 

development of more sensitive, efficient, and faster methods of glycan 

separation and analysis. One specific strategy is the development of new 

materials to be used in designing separation columns and extraction media. 

The conventional packed columns with uniform size porous particles have been 

traditionally used in these chromatographic separations. A new generation of 

separation media called monolithic materials has become an interesting option 

due to their design that allows faster, more efficient and versatile separations 

of glycans, glycopeptides and glycoproteins [140]. Monolithic columns are 

usually prepared in situ fused with silica capillary tubes by co-polymerization of 
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cross-linking and functional monomers together with porogens and initiators. 

Other monoliths are silica-based and prepared via sol–gel synthesis. The 

applications of these monoliths are exclusive depending on their morphology 

and structure. They also have respective disadvantages; for example, organic 

polymer-based monoliths swell in organic solvents whereas silica-based 

monoliths are limited by their effective pH ranges. Therefore, rather than 

choosing the material to use in designing chromatographic separation and 

extraction media, it is important to optimize the nature of ligands bound to the 

substrate for an efficient, stable and selective capture of target analytes. 

Recently, a number of efforts to modify porous polymer monoliths with 

gold nanoparticles (GNPs) have appeared. The GNPs are either formed in situ 

or by flowing a GNP dispersion through the monolith whose surface presents 

amine or thiol groups for binding the GNPs. Porous polymer monoliths modified 

with GNPs were used for the capture and separation of cysteine containing 

peptides [141]. These monoliths were then modified with carboxylic acid, 

hydroxyl, or amine terminated alkanethiols and applied to separate short 

peptides by capillary electrochromatography [142]. The surface chemistries 

were shown to be exchangeable by removal using an excess of 2-

mercaptoethanol. The monoliths were also shown to separate a mixture of three 

proteins by nano-HPLC in either reverse phase or ion exchange mode. GNP 

immobilization onto amine-terminated grafted polymer chains was shown to 

provide a dense and homogenous coverage [143]. A polymer monolith was 

decorated with 20 nm gold nanoparticles onto which 3,3’-dithiodipropionic acid 

di(N-hydroxysuccinimide ester) (DTSP) was assembled and used to immobilize 

Erythrina cristagalli lectin (ECL) for extraction of glycoproteins with terminal 
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galactose units on their glycans [86]. GNP modified polymer monoliths modified 

with cysteine were used to separate a mixture of nucleosides in hydrophilic 

interaction chromatography (HILIC) mode and their modification with 

polyethyleneimine was used to separate a mixture of di- and tripeptides [144]. 

GNP decorated monoliths were found most effective for a particle size of 15, 

20, or 30 nm when modified with octanethiol or octadecanethiol and used in 

reverse phase separation of a mixture of three proteins [145]. Strategies using 

photomasking have been used to create monolith columns with specific 

segments being GNP modified [146,147]. Application of GNP decorated 

polymer monoliths for mixed modes of separation by modifying the GNPs with 

mixture of alkanethiols, ω-mercaptoalkanoic acids, and amine-terminated 

alkanethiols was demonstrated for a three-protein mixture in reverse phase, 

cation exchange, anion exchange and mixed modes of separation [148]. GNP 

decorated polymer monoliths have also been applied in Au driven catalysis 

[149] and to create a lipase flow through reactor [150]. 

 In this work, monolithic np-Au plates referred to as np-Au monoliths that 

underwent surface chemical modifications to develop Concanavalin A (Con A)–

modified np-Au monolith were prepared and its potential to selectively capture 

glycoprotein are shown. Np-Au as a material can add to and complement the 

possibilities described using GNP decorated monoliths, and np-Au is relatively 

easy to prepare. The surface coverage of SAM and protein molecules prepared 

by a flow method onto the np-Au monolith was characterized using 

thermogravimetric analysis (TGA) and an in situ solution depletion method 

monitored by UV detection. The demonstrated selectivity of the developed Con 

A-modified np-Au monoliths to the high mannose-containing glycoprotein 
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ovalbumin (Ova) shows its potential to be further developed as a material for 

chromatographic extraction of glycoproteins, which is a significant part of 

glycomics. This work has been published in Journal of Chromatography A in 

2015 [151]. 

 

4.2. Results and discussion 

4.2.1. Preparation of Con A-modified np-Au monoliths 

The preparation of Con A-modified np-Au monoliths was done under flow 

conditions, wherein solutions of desired molecules were circulated through the 

flow cell containing np-Au monoliths. The flow cell system used in this study 

consisted of a home-made Teflon flow cell, C-FLEX tubing, peristaltic pump, 

UV–vis spectrophotometer and data logger (Figure 3.1A). Unlike the flow tube, 

this flow cell system has a working volume of 3 mL. Surface modification started 

with the formation of α-lipoic acid (LA) SAM in order to functionalize the np-Au 

monolith surface with carboxylic acid functional groups. The procedure of SAM 

formation of LA to functionalize gold surfaces has already been established 

[88,89]. To facilitate immobilization of lectin Con A, we further activated the 

carboxylic acid groups of LA via their esterification with 4-(4,6-dimethoxy-1,3,5-

triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). DMTMM is a water-

soluble coupling reagent for activating carboxylic acids for reaction with amines 

to form amide bonds [90,91]. Con A molecules were immobilized through the 

replacement of the activated esters on np-Au monolith surface via amide bond 

formation. Con A, as mentioned above, is a C-type lectin from Canavalia 

ensiformis (Jack bean) seeds that belongs to a general group of lectins which 

requires Ca2+ and/or Mn2+ ions for full activation that binds to α-mannose and 
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α-glucose sugar units of glycans of glycoproteins [152]. Specifically, Con A has 

been reported to bind to high-mannose [153] and trimannoside cores of 

complex type N-linked glycans [154] (Figure 3.1B).  

 A main advantage that we want to showcase in this study is the 

straightforward and reproducible preparation of the np-Au monoliths introduced 

here as a new material in chromatographic extraction of glycoproteins. The 

simple one-step preparation of np-Au monolith via selective dealloying in nitric 

acid overcomes the multi-step preparation of the reported AuNP-modified 

monolithic materials to achieve greater surface area [142,155,156]. The rigidity 

of the np-Au as a material in bioaffinity separations may resolve the issues of 

swelling in organic solvents of organic polymer materials [157]. The chemical 

stability of np-Au monolith and its applicability in a wide range of buffers can 

complement the limitation of silica based materials at high pH [158]. Moreover, 

the high melting point of np-Au monolith could be promising in beneficial high 

temperature separation of intact proteins [159]. Preparation of a bimodal np-Au 

monolith has been reported using a nanocasting method, and such a structure 

could provide large pores for high permeability and smaller pores to create a 

higher surface area [160]. Since, annealing was achieved to tune the pore size 

and morphology of the developed np-Au monolithic plate [9], an np-Au material 

with highly permeable structure and high loading capacity similar to the reported 

monolithic columns [161] used in chromatographic analysis and separations 

could be achieved. 
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Figure 4.1. (A) Schematic diagram of flow system set-up consists of pump, 

UV detector-data logger system, and flow cell connected in series. Np-Au 

monoliths were placed in between of spacers and perpendicular to the flow. 

The working volume is 3 mL at 0.5 mL min-1. UV reading acquisition is at 1 

Hz. (B) Schematic representation of preparation of Con A-modified np-Au 

monolith done by in situ flow method surface modification. 
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4.2.2. Determination of surface coverage of LA and Con A molecules on np-

Au monoliths using thermogravimetric analysis 

 

We used thermogravimetric analysis (TGA) to characterize the loading 

of molecules onto the np-Au monoliths. We quantified the amount of molecules 

loaded onto the np-Au monolith using TGA allowing us to determine the surface 

coverage of the molecules being immobilized taking into account the specific 

surface area of the np-Au. We subjected the air-dried modified np-Au monoliths 

to pyrolitic decomposition in an inert environment while scanning up to 600 °C. 

At this temperature, both LA and DMTMM molecules were expected to be 

completely decomposed. Pyrolysis of the LA and DMTMM powders resulted in 

complete decomposition before the temperature reached 600 °C (Figure 4.2). 

In contrast, proteins were not completely decomposed and left some solid ash 

residue on the pan after scanning up to 1050 °C (Figure 4.2). CHN analysis of 

the residue resulted in 70% C, 2.5% H, 11.8% N with a C:H:N ratio of 35:1:5.5. 

The result was little changed by holding the temperature at 600 °C for two hours, 

with the CHN analysis then being 69% C, 2.6% H, and 11.0% N. The lyophilized 

powder of the protein has a theoretical composition of 46% C, 8% H and 14% 

N by mass with C:H:N of 5.75:1:1.75  (Table 4.1). Clearly, the residue after the 

pyrolysis was mostly composed of carbon. Having these results, the mass 

losses due to proteins were multiplied by factors of 1.20 to determine the total 

protein mass being loaded into np-Au monolith. TGA was capable of resolving 

mass losses to 0.1 µg and therefore suited to report loading of micrograms of 

molecules onto a single np-Au monolith. 
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Figure 4.2. TGA thermograms of LA, DMTMM and protein powder. LA and 

DMTMM were completely decomposed at 400 °C. Proteins, on the other hand, 

were not completely decomposed even until 1050 °C. Ash residue were left on 

the weighing pan after the pyrolysis. The temperature was ramped at 20 °C min-

1. 

 

Table 4.1. CHN analysis of the ash obtained after the pyrolysis of lyophilized 

Con A powder up to 1050 °C. 

 % C % H % N C:H:N 

Theoretical 46.0 8.0 14.0 5.75 : 1.00 : 1.75   

Experimental     

       TGA analysis up to 1050 °C 70.0 2.5 11.8 28  :1.00 : 4.72 

       TGA analysis up to 600 °C,      
             then hold up for 2 h 

69.0 2.6 11.0 26.5 : 1.00 : 4.23  

 

 
The np-Au monolith modified by 1 h of circulation of a 1 mM LA solution 

in ethanol and referred to here as “SAM-modified np-Au monolith” was 

subjected to TGA and found to lose 0.30% of its mass during the temperature 

scan (Figure 4.3). This mass loss corresponded to 0.4485 mg m-2 of LA self-

assembled onto the np-Au monolith surface giving a corresponding surface 
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coverage of 1.31 × 1018 molecules m−2 (Table 4.2). The theoretical estimates of 

a complete and ordered coverage of LA molecules on a gold surface would 

have resulted in 3.45 × 1018 – 4.40 × 1018 molecules m−2. An additional TGA 

mass loss of 0.1311 mg m−2.  Np-Au was found during the temperature scan of 

SAM-modified np-Au subjected to DMTMM activation of carboxylic acids to 

esters and increased the weight change percent to 0.39% (Figure 4.3). We 

tested the stability of the SAM formed on the np-Au monolith by washing it with 

binding buffer for another 7 h; the TGA mass loss was 0.41% which was an 

insignificant change when compared to that for the one washed for only 30 min 

(0.39%) (Figure 4.3). 

 

Figure 4.3. TGA thermograms for determination of LA loading and 

stability on np-Au monolith. The temperature was ramped at 20 °C min-1. 
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Table 4.2. TGA analysis data from pyrolysis of SAM- and activated SAM-

modified np-Au monoliths. 

 

 

 

The SAM-modified and activated np-Au monolith was further modified 

by 3 h circulation of a 10 µM Con A solution in buffer and referred to here as 

“Con A-modified np-Au monolith” was also subjected to TGA and found to lose 

0.47% of its mass corresponding to an additional 0.3135 mg m−2 during the 

temperature scan (Figure 4.4). This mass loss was calculated by subtracting 

the mass loss of the SAM-modified np-Au monolith from the mass loss found 

for the Con A-modified np-Au monolith and then multiplying by the factor of 1.2. 

Therefore, only the mass of Con A molecules being immobilized was accounted 

for and this resulted in a surface coverage of 1.85 × 1015 molecules m−2 (Table 

4.3). The maximum possible surface coverage for Con A is estimated as 1.29 

× 1016–1.82 × 1016 molecules m−2 based on the unit cell dimensions of 

tetrameric Con A (PDB ID: 3CNA) a = 63.15 Å, b = 86.91 Å, c = 89.25 Å [162] 

and assuming three possible surface areas per molecule of 54.8 nm2, 56.4 nm2 

and 77.6 nm2 calculated assuming that the Con A molecules lay flat and that 

they pack side-by side. The surface coverage of LA and Con A molecules 

 Wt. Change (%) Mass loss 
(mg  m-2) 

SAM-modified np-Au 0.30 0.4485 ± 0.0366 

SAM-modified  np-Au, 
activated 

0.39 0.5796 ± 0.0474 

SAM-modified np-Au, 
activated, (extended 
washing 7h) 

0.41 0.6117 ± 0.0500 

Molecules LA 
immobilized per m2 np-Au 

1.31 × 1018 
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obtained by TGA suggests partial but extensive surface coverage of Con A 

molecules on SAM-modified np-Au monoliths. We also tested the stability of 

immobilized Con A molecules by additional washing with buffer for another 3 h 

after the immobilization. An insignificant change in mass loss (0.46%) was seen 

after longer washing of 4 h when compared to the Con A-modified np-Au 

monolith washed for only 30 min (0.47%) (Figure 4.4).The observed 

insignificant mass loss suggests that the covalently immobilized Con A 

remained bound to the surface for at least another 3 h under flow conditions. 

 

 

Figure 4.4. TGA thermograms for determination of Con A loading and stability 

on SAM-modified np-Au monolith. The temperature was ramped at 20 °C min-

1. 

 

Table 4.3. TGA analysis data from pyrolysis of Con A-modified np-Au. 

 

 Wt. Change (%) Mass loss 
(mg  m-2) 

SAM-modified np-Au 0.30 0.4485 ± 0.0366 

Con A-modified  np-Au, activated 0.47 0.7098 ± 0.0580 

Con A-modified np-Au, activated, 
(extended washing 4h) 

0.46 0.6920 ± 0.0565 

Molecules Con AA immobilized per 
m2 np-Au 

1.85 × 1015 



73 
 

4.2.3. In situ solution depletion method using UV detection in determining 

surface coverage of molecules on np-Au monolith 

 

Surface coverage of LA and Con A were also characterized by the 

developed in situ solution depletion method. Using this non-destructive method, 

the substrate could possibly be regenerated. Circulation of 3 mL of 1 mM LA 

solution through 175 mg np-Au monolith resulted in a change of concentration 

of 0.663 mM; this corresponded to 1.20 × 1018 LA molecules lost from the 3 mL 

solution (Figure 4.5A). Normalizing this amount of molecules to the calculated 

1.21 m2 surface area of the np-Au monolith resulted in a surface coverage of 

0.989 × 1018 molecules m−2. The volume of the circulating solution was based 

on the surface coverage estimated by TGA, assuring that there were enough 

molecules available in the solution for the np-Au monolith being used. For 

example, a 175 mg np-Au monolith with surface area of 1.21 m2 would have 

contained 1.66 × 1018 LA molecules on the basis of 1.37 × 1018 molecules m−2 

surface coverage. The 3 mL solution of 1 mM LA contains 1.81 × 1018 LA 

molecules. Circulation of 3 mL of 6 µM Con A solution on SAM-modified np-Au 

monolith resulted in a change in concentration of 0.891 µM (Figure 4.5B). This 

corresponded to 1.61 × 1015 Con A molecules lost from a 3 mL solution. 

Normalizing to 1.21 m2 resulted in coverage of 1.32 × 1015 molecules m−2. 

Likewise, 3 mL of 6 µM Con A solution contained 1.08 × 1016 Con A molecules 

and was sufficient based on the amount of Con A molecules (2.24 × 1015) using 

the surface coverage of Con A molecules characterized by TGA. The 

concentration of 10 µM used in TGA was decreased to 6 µM in this method so 

the A280 readings would not exceed 1.0 and diluted enough to obey the linearity 
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of absorbance with concentration according to the Beer–Lambert Law. The 

method using the UV detector was developed to provide a procedure that can 

determine when to stop the circulation with the assurance that there were no 

longer available sites on the surface of np-Au available for the immobilization 

of molecules. The surface coverages found by the thermogravimetric analysis 

approach are generally larger both for LA and for Con A. TGA quantifies the 

molecules on the np-Au monolith after washing steps and drying. The solution 

depletion method, on the other hand, quantifies the molecules by a two-point 

absorbance difference for a continuously flowing solution. It is possible that 

additional molecules that are not bound to the surface become trapped inside 

the monolith when it is removed and subjected to TGA. The possible positive 

baseline drift of UV detection method could also be responsible for the lower 

estimation of surface coverage found using this method [163]. 
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Figure 4.5. Loading curve of (A) LA on np-Au monolith and (B) Con A on SAM-

modified np-Au monolith as recorded by a UV detector at 330 and 280 nm, 

respectively. 

 

4.2.4. Characterization of selective capture of Ova using Con A-modified np-

Au monoliths 

 

Our chosen model glycoprotein is chicken egg white ovalbumin (Ova) 

with a molecular weight of 44.3 kDa. Ova is glycosylated mainly with high-

mannose and hybrid structures [164], therefore it binds to Con A with high 

specificity. We used bovine serum albumin (BSA), a 66.4 kDa non-glycosylated 
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protein, as a negative control. The three estimated areas per molecule occupied 

by Ova provided that we assume adsorption of the solid state conformation on 

the surface oriented on a face of the unit cell are 45 nm2, 53 nm2 and 61 nm2 

based on the reported unit cell dimensions (PDB ID: 1 Ova) a = 53.27 Å, b = 

44.97 Å, c = 60.56 Å [165]. On the other hand, there are four BSA molecules 

per unit cell with reported unit cell dimensions (PDB ID: 4F5S) of a = 217.80 Å, 

b = 44.99 Å, c = 143.06 Å [166]. The possible footprints of Ova and BSA 

molecules adsorbed onto modified np-Au surfaces will be affected by the 

conformational changes the proteins undergo in solution. Changes in proteins 

structure in solution are dependent on pH, ionic strength and temperature 

[167,168]. For example, in solution below pH 4, BSA has been described as a 

prolate ellipsoid (E-form) with dimensions of 4.0 nm × 4.0 nm × 14.0 nm; 

however, it adopts the N-form of dimensions 3.0 nm × 8.0 nm × 8.0 nm between 

pH 4.5 – 8.0 [169] and therefore in our experiments it is most likely the N-form 

that becomes surface bound. BSA dimensions on the surface are therefore 

likely to be those of the N-form however the orientation is not certain. The 

footprint of BSA on the surface could be estimated to range from as low as 24 

nm2 to as much as 64 nm2. BSA is monomeric in solution but Ova has been 

reported to form dimers with a radius of gyration of 2.7 nm [170]. Moreover, 

proteins undergo conformational changes upon adsorption on solid surfaces 

[171,172]. These uncertainties in protein sizes in solution make it difficult to 

assign a size factor based on a clearly known difference in area occupied per 

adsorbed protein molecule; however, it appears plausible that the areas 

occupied by each of these proteins on the surface do not differ by more than a 

factor of two and could be closer. 
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We circulated 10 µM Ova solution in buffer for 1 h through a Con A-

modified np-Au monolith. A mass loss of 0.64% accounted for an additional 

mass of 0.3098 mg m−2 to the mass loss from Con A-modified np-Au monolith 

due to the captured Ova molecules (Figure 4.6). This resulted in a surface 

coverage of 4.21 × 1015 Ova molecules m−2 and Ova:Con A ratio of 2.3 (Table 

4.4). On the other hand, circulation of the 10 µM BSA solution for 1 h through 

the Con A-modified np-Au resulted in an additional mass loss of 0.2899 mg m−2 

and a weight change of 0.63% that corresponded to a surface coverage of 2.63 

× 1015 BSA molecules m−2 on np-Au and BSA:Con A ratio of 1.4 (Table 4.4). 

The greater surface coverage of Ova than BSA to Con A-modified np-Au 

monolith suggests some selectivity of the substrate for the Ova molecules. The 

high BSA:Con A ratio and the partial coverage of Con A to the SAM-modified 

np-Au monolith led us to suspect that there could be some non-specific 

adsorption of BSA molecules onto the “unused” activated esters still available 

for protein immobilization.  

 

Figure 4.6. TGA thermograms showing the capture of Ova and BSA using Con 

A-modified np-Au monolith without the capping procedure. The temperature 

was ramped at 20 °C min-1. 
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Table 4.4. TGA analysis data from pyrolysis of Con A-modified np-Au 

monoliths with captured Ova or BSA without capping procedure. 

 
 

To minimize this non-specific adsorption caused by “free” activated 

esters, we circulated a 1% (v/v) ethanolamine solution prior to the capture of 

Ova or BSA to “cap” the “unused” reactive esters and convert them to hydroxyls 

that were not capable of covalently immobilizing proteins. We initially tested the 

effectivity of the capping procedure by circulating ethanolamine solution over 

the activated SAM prior to Con A circulation. TGA showed an insignificant 

amount of Con A added to the mass loss of SAM-modified np-Au monolith 

capped and suggests that immobilization by non-specific adsorption was 

restricted (Figure 4.7A). Employing the capping procedure to the Con A 

modified monolith prior to the capture of Ova gave a weight change of 0.59% 

or a surface coverage of 3.51 × 1015 molecules m−2 np-Au and Ova:Con A ratio 

of 2.19 (Table 4.5). The capping procedure allowed only a weight change of 

0.48% for BSA or a surface coverage of 0.533 × 1015 molecules m−2 np-Au and 

BSA:Con A ratio of 0.33 (Figure 4.7B). Therefore, the capping procedure 

 Wt. Change (%) Mass loss 
(mg  m-2) 

Con A-modified np-Au 0.47 0.7098 ± 0.0580 

Con A-modified  np-Au, 
captured  Ova 

0.64 0.9680 ± 0.0791 

Con A-modified np-Au, 
captured BSA 

0.63 0.9514 ± 0.0777 

Molecules  Ova  captured 
per m2 np-Au 

4.21 × 1015 

Ova :Con A 2.3 

Molecules BSA captured 
per m2 np-Au 

2.63 × 1015 

BSA:Con A 1.4 
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enhanced selectivity by greatly reducing the non-specific adsorption of BSA. 

The disordered structure of the lipoic acid SAMs and their likely incomplete 

coverage of the Au surface may allow for a degree of non-specific adsorption 

onto the np-Au monolith, and thus optimization of the SAM structure and 

coverage could be a strategy for improving the selectivity. A possible strategy 

for improving the selectivity would be to introduce a spacer chain onto the LA 

based on oligo (ethylene glycol) that is terminated in a carboxylic acid group, 

as such a LA derivative would better resist non-specific protein adsorption to 

regions of the SAM that are between immobilized Con A proteins. 

 

Figure 4.7. TGA thermograms showing the (A) effect of adding the capping 

procedure, i.e., immobilization of Con A to the esters of SAM-modified np-Au 

monolith was restricted by the capping procedure, (B) capture of Ova and BSA 
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using Con A-modified np-Au monolith with capping procedure. The temperature 

was ramped at 20 °C min-1. 

 

Table 4.5. TGA analysis data from pyrolysis of Con A-modified np-Au 

monoliths with captured Ova or BSA with capping procedure. 

 
  

4.2.5. Extraction of Ova from a mixture using Con A-modified np-Au monolith 

To demonstrate the application of Con A-modified np-Au monolith in 

extracting and isolating Ova from a mixture, we prepared a mixture of 5 µM Ova 

and 15 µM BSA, circulated it through the Con A-modified np-Au monoliths and 

observed how the concentrations of these proteins depleted over time. We 

initially prepared a batch of Con A-modified np-Au monoliths. The 1:3 Ova:BSA 

mixtures were circulated for 30 min per cycle, and at the start of each cycle a 

new set of Con A-modified np-Au monoliths were added and an aliquot of the 

circulating solution was obtained at the end of each cycle and kept (Figure 

4.8A). Ova and BSA, having molar masses of 66.4 kDa and 44.3 kDa, 

 Wt. Change (%) Mass loss 
(mg  m-2) 

SAM-modified np-Au capped 0.43 0.6401 ± 0.0523 

SAM-modified np-Au capped + 
Con A 

0.43 0.6501 ± 0.0531 

Con A-modified np-Au capped 0.45 0.6745 ± 0.0551 

Con A-modified np-Au capped, 
captured  Ova 

0.59 0.8895 ± 0.0727 

Con A-modified np-Au capped, 
captured BSA 

0.48 0.7235 ± 0.0591 

Molecules  Ova  captured per 
m2 np-Au 

3.51 × 1015 

Ova :Con A 2.19 

Molecules BSA captured per 
m2 np-Au 

0.533 × 1015 

BSA:Con A 0.33 
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respectively, appeared at different positions on 4–20% polyacrylamide gel run 

through SDS-PAGE and stained by Coomassie blue (Figure 4.8B). The size 

and intensity of protein bands in the gel were analyzed using ImageJ (Figure 

4.8B). The size and intensity of the band of BSA aliquot 4 (after the cycles) was 

74.58% of aliquot 0 (before the cycles). The initial 2 mL 15 µM BSA solution 

contained 1.81 × 1016 molecules. Therefore, after the cycles, it could be 

estimated that 1.35 × 1016 BSA molecules were remaining in the solution and 

that 4.56 × 1015 molecules have been depleted. On the other hand, the size and 

intensity of the band of Ova aliquot 4 was 11.74% of the initial solution. The 

initial 2 mL of 5 µM Ova solution contained 6.02 × 1015 molecules. There were 

thus approximately 0.707 × 1015 molecules left in the solution and 5.31 × 1015 

molecules were depleted. Thus, the Con A-modified np-Au monoliths were able 

to capture a significant amount of Ova molecules in the presence of an excess 

of BSA. The captured BSA molecules could be washed off after the cycles, and 

so the captured Ova could be isolated. This demonstrated the affinity of the Con 

A-modified np-Au monoliths for Ova, and thus these glycoproteins can be 

extracted from a mixture using the developed substrates. 
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Figure 4.8. Characterization of extraction of Ova from a mixture with BSA using 

Con A-modified np-Au monoliths. (A) Schematic diagram of the procedure, (B) 

SDS-PAGE of 20 µM BSA (66.4 kDa) and 20 µM Ova (44.3 kDa) and of the 

aliquots obtained at the end of each 30 min cycle of circulation of 1:3 molar 

mixture of Ova and BSA through an increasing number of Con A-modified np-

Au monoliths. 

 

4.2.6. Elution of captured Ova 

The captured Ova molecules by Con A-modified np-Au monoliths were 

eluted using a solution of a high concentration of ligand α-methyl 

mannopyranoside in buffer. Lectin–carbohydrate interactions are reversible 

and therefore the binding would be able to be undone by a competitive ligand. 

We established a chromatogram using a UV detector by recording the A280 at 1 

Hz. Flowing 1 µM Ova into the flow cell without the Con A-modified np-Au 
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monolith established a peak with AUC of 1.898 ± 0.073 (n = 3) (Figure 4.9A). 

This represented the amount of Ova molecules in a 2 mL 1 µM solution, which 

was 1.20 × 1015 molecules. When this solution flowed through the developed 

substrate, the AUC decreased to 1.330 (Figure 4.9B). The difference of 0.568 

represented the amount of Ova (approximately 0.36 × 1015 molecules) being 

captured by the Con A-modified monolith. When free ligand AMMP solution was 

flowed through the substrate after the washing, a peak was established with 

AUC of 0.4696 (Figure 4.9B). This represented the amount of Ova being eluted. 

The eluted amount was 83% of the amount of captured Ova. 

 

 

Figure 4.9. Chromatogram generated by flowing 2 mL 1 µM Ova solution 

through the flow cell monitored at 280 nm (A) without np-Au monolith and (B) 

with Con A-modified np-Au monolith followed by elution using 2 mL 0.1 M α-

methyl mannopyranoside (AMMP). 

 

4.3. Conclusion 

In this work, np-Au monolith surface modified with affinity ligands Con A 

were developed to create a stationary phase used in chromatographic 

separation and extraction of intact glycoproteins. Np-Au can be prepared by a 

fairly straightforward acid dealloying step followed by proceeding directly to 
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surface modification. The capture of target glycoproteins in the mobile phase 

was due to the reversible affinity of the carbohydrate residues of glycoproteins 

to the carbohydrate-binding domain of the immobilized lectins. TGA and a UV-

detected in situ solution depletion method were used to determine the surface 

coverage of LA molecules forming SAMs. These SAMs were further utilized in 

covalent immobilization of Con A molecules that were found to have partial 

surface coverage. The function of the immobilized Con A was preserved as 

shown by the demonstrated selectivity of the substrate to high mannose-

containing Ova versus non-glycosylated BSA. The selectivity was enhanced by 

reducing non-specific adsorption of proteins to the unutilized activated 

functional esters on the surface after Con A immobilization by using a capping 

reaction. The high surface area-to-volume ratio, robustness, chemical stability 

and biocompatibility of np-Au monoliths in addition to the wide range of 

available surface modification are the potential advantages of this developed 

lectin-modified np-Au monoliths for separation of intact glycoproteins and 

glycopeptides. The results of this work can be used as framework for further 

developments that may focus on optimizing monolayer structure to limit non-

specific adsorption, tuning of experimental parameters, and use of other lectins 

and possibly other ligands in chromatographic separations of biomolecules by 

a variety of interaction modes. 
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CHAPTER V. Boronic acid-modified nanoporous gold monolith for 

extraction of glycopeptides from trypsin-digested glycoprotein 

 

5.1 Introduction 

Glycoproteins, due to their relative low efficiency of ionization and 

fragmentation like all other proteins, usually need to be digested into smaller 

peptides prior to MS analysis. Furthermore, release of glycans from digested 

peptides is also necessary if glycosylation sites are sought in the analysis. 

Peptide digestion is mostly done by enzymatic digestion using proteases like 

trypsin. For procedures in proteomics aimed at identification of protein, 

deglycosylation prior to trypsin digestion can increase the confidence of protein 

identification, and increase MS signal intensities. However in glycoproteomics, 

deglycosylation prior to protease digestion can improve the quality of proteome 

analysis [173]. Release of glycans from peptides uses endoglycosidases such 

as peptide N-glycosidase F (PNGase F). PNGase F hydrolyzes and cleaves 

the linkage between asparagines and N-acetylglucosamine liberating  

N-glycans from the peptides and resulting in conversion of the asparagine to 

aspartic acid by deamidation [174]. PNGase F will not remove glycans 

containing a (1-3)-linked core fucose [175]. The conventional enzymatic in-

solution digestion and deglycosylation takes several hours or even overnight to 

complete the process. This is because a low concentration of trypsin should be 

maintained to avoid autolysis that produces digests of the enzymes that affect 

the purity of the sample, and so the efficiency of the process. An efficient and 

alternative method is to immobilize trypsin on a solid support to create flow-
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through reactors that can speed up the process. In addition to flow-through 

reactors, it is also possible for flow of protein solution to be paused in a reactor 

to allow for digestion with the flow then resumed [176,177]. Autolysis is 

minimized when the enzymes are immobilized in enzyme reactors [178]. High 

density enzyme immobilized to these reactors increases the enzyme-to-

substrate ratio, therefore capable even with samples of low concentration [179-

181]. Moreover, enzymes like PNGase F are very expensive such that the use 

of solid support could be relatively economical. Immobilization of trypsin into 

beads and channels of microfluidic devices [182] and capillaries [183] were 

reported. Monolithic enzyme reactors can be coupled to MS and separation 

columns, an opportunity for automated, on-line multidimensional systems. 

Monolithic enzyme reactors that showed enhanced enzyme activity, i.e., faster, 

higher loading density of enzymes and economical were showcased in recent 

research works (Table 4.1). Reactors that showed poor performance due to 

slow enzymatic reactions and low density of immobilized enzymes were aided 

by optimized immobilization conditions and addition of organic solvent, e.g., 

acetonitrile (ACN) in buffer to prevent non-specific adsorption. Enzyme 

immobilization is greatly influenced by the protein dynamics and substrate 

accessibility. Digestion efficiency, which is maximized when trypsin acts on all 

of the available cleavage sites, can be enhanced by denaturation of the target 

protein by use of aqueous-organic solvent systems containing methanol, 

isopropanol or ACN. Such enhanced digestion efficiency can improve 

sequence coverage [183,184]. 
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Table 5.1. Monolithic enzyme reactor columns used in digestion and 

deglycosylation of glycoproteins and glycopeptides. 

* Amount of enzyme used as mentioned in methods of the cited literature (concentration of enzyme is that 

of the prepared enzyme solution to which the monolith was exposed during preparation; volume of 

enzyme is that of the prepared enzyme solution used with a certain activity. ** Not specified. *** Enzyme 

was also immobilized in monolithic reactor but not in an oriented manner as described. 

 

The importance of glycoproteins in biological process poses the need of 

the analysis of their glyco-structures and concentration levels. Recently, the 

use of boronic acids as affinity ligands in separation, detection and 

immobilization of glycoproteins and glycopeptides has been increasing (Table 

Column Application Amount of Enzyme 

Used * 

Reaction Time and 

Temperature 

Sta-

bility 

In-

solution 

Monolithic 

reactor 

In-

solution 

Monolithic 

reactor 

Trypsin 

reactor 

[185] 

 

LysC 

reactor 

[185] 

Digestion of hIgG 

 

 

Digestion of hIgG 

Substrate

-to-

enzyme 

ratio of 

50:1 

(w/w) 

with 1.25 

mg/mL 

protein  

2.5 

mg/mL 

 

 

 

0.5 

mg/mL 

24 h;  

37 °C 

 

 

24 h;  

37 °C 

4 min;  

22 °C 

 

 

6.2 min;  

22 °C 

6 

mos 

PNGase F 

reactor 

[186] 

Deglycosy-lation of hIgG 

integrated on-line with HILIC 

mode separation and ESI-MS 

0.5 µL 0.1 

µL/min 

for 2.5 h 

24 h;  

37 °C 

5.5 min; 

room 

tempe-

rature 

(RT) 

2 

mos 

PNGase F 

reactor 

[187] 

Simultaneous on-line release 

and analysis of acidic and neutral 

N-glycans from 0.1 µL human 

serum 

NS ** NS ** Over-

night; 

37 °C 

few min; 

RT 

NS 

** 

PNGase F 

micro-

reactor 

[188] 

Small scale deglycosylation of N-

linked glycoproteins  

5 µL of  

1 mg/mL 

1 µL of  

1 

mg/mL  

10 h; 37 

°C 

3.5 min; 

21–23 

°C 

8 

wks 

PNGase F 

reactor  

[189] 

More efficient deglycosylation of 

hIgG 

1 mg/mL 

*** 

1 

mg/mL 

2 h;  

37 °C *** 

15 s; RT 5 

mos 
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5.2). Boronic acids recognize cis-diol moieties by covalently binding and form 

five- or six-membered cyclic esters. The recognition of boronic acids to glycans 

of glycoproteins may not be as selective as lectins, but it could capture all 

glycans due to its unique pH-dependent chemistry with cis-diols i.e., it binds in 

an alkaline aqueous solutions and dissociate when the medium is changed into 

acidic pH. Boronate-functionalized polymer monoliths can be prepared by 

copolymerization or post-polymerization synthesis and were determined to 

have good peak capacity [190].  

 

Table 5.2. Summary of research works that use monolithic materials modified 

with boronic acids used in separation, enrichment and analysis of glycans, 

glycoproteins and glycopeptides. 

Capture and 

Release 

Conditions 

Applications Year 

& 

Ref. 

pH 8.5  pH 2.7 

 

pH 8.5  pH 2.7 

Specific capture of Ova from fresh egg white 

 

Selective capture of glycoproteins Ovotransferrin and Ova from 

fresh egg white sample 

2011 

[191] 

pH 8.5 pH 2.7 Capture of glycoproteins HRP and lactoferrin from a mixture with 

non-glycosylated proteins BSA, lactoglobulin, myoglobulin, and 

cythchrome C 

2009 

[192] 

pH 10.0 pH 7.4 

 

 

 

pH 10.0 pH 7.4 

Extraction of sialylated glycoprotein EPO from a mixture with non-

sialylated glycoprotein HRP and non-glycoprotein BSA 

 

Extraction of spiked sialylated glycoprotein EPO from a human 

serum mixture with non-sialylated glycoprotein RNase B 

2013 

[193] 

pH 8.0pH 3.6 Selective capture of glycoproteins HRP, Ova from a mixture with 

non-glycoproteins BSA, bovine hemoglobin, cyt C, lysozyme and 

myoglobin 

 

Selective capture of glycoproteins OVT and Ova from fresh egg 

white sample 

2011 

[194] 

pH 7.2 1% TFA Identification of glycoproteins Ova, OVT and Ovomucoid 2013 

[195] 
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pH 7.4pH 2.7 

 

 

 

pH 7.4pH 2.7 

Selective capture of cis-diol containing glycoprotein RNase B and 

Ova from a mixture with non cis-diol containing glycoprotein 

RNase A at neutral pH 

 

2D separation of HRP and 2D separation of lactoferrin (showed 2 

peaks) 

2011 

[196] 

pH 8.5pH 2.7 Separation of glycoproteins HRP, RNase B and lactoferrin from a 

mixture with non-glycoproteins myoglobin and BSA 

2013 

[197] 

pH 7.0pH 2.7 Specific capture of glycoproteins RNase B, HRP, anti-AFP 

monoclonal antibody, anti-CEA polyclonal antibody, anti-PSA 

monoclonal antibody, from a mixture with RNase A, cyt C and β-

lactoglobin (possible capture at pH 5.0 was suggested) 

2012 

[198] 

pH 9.2  pH 3.6 Enrichment of glycopeptides in trypsin digest of HRP  

 

Extraction of HRP from a mixture with non-glycosylated bovine 

serum albumin (BSA) via polymer monolith microextraction 

(PMME) 

2009 

[199] 

pH 8.50.2 M HAc Selective capture of glycoproteins HRP and transferrin from a 

mixture with non-glycoproteins BSA and cyt C 

2011 

[200] 

pH 8.6pH 3.6 Selective extraction of HRP and enrichment of human serum that 

contains human serum albumin, IgG, transferrin and spiked HRP 

2013 

[201] 

pH 7.00.2 M HAc Selective capture of glycoproteins Ova and OVT from fresh egg 

white 

2013 

[202] 

pH 7.0  pH 2.7 Rapid selection of HRP-binding DNA aptamers  2013 

[203] 

pH 7.0  pH 2.7 Potential alternative to Protein A in affinity chromatography of 

glycan-containing antibodies  

2012 

[204] 

pH 7.2  pH2.3 Rapid separation of hIgG in human serum 2002 

[205] 

(1a) isoc. elu. 

GlcNAc  

 

(1b) isoc. elu. 

Methyl-α-D-

mannopyranoside 

 

(2) isoc. elu. 75% 

ACN with small 

amount of modifiers 

β-CD 

(1a) Capture of glycoproteins AGP and k-Casein  

 

 

(1b) Capture of glycoproteins Ova and transferrin 

 

 

 

(2) Polar (CN-OH) based separation of N-glycans derived from 

AGP and Ova 

2009 

[206] 

grad. elu.  

Increasing ACN 

content (20-40 %) 

in mobile phase 

with counter-ion 

Separation of iron-binding glycoprotein transferrin from a mixture 

with non-glycoproteins cyt C and myoglobin 

2013 

 

 

[207] 
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(trifluoroacetate 

anions, TFA) 

 

In this chapter, np-Au monoliths were used to display boronic acid 

groups on the surface by covalent immobilization and characterized its 

capability to capture compounds that contain cis-diol moiety e.g., adenosine.  

The developing substrate was tested to extract glycopeptides form trypsin 

digested Ovalbumin.  The vision is to create a relatively simple method of    

trypsin digestion of glycoproteins followed by extraction of the glycopeptides by 

just incubating the one-piece substrate from the solutions containing the 

analytes. This study has the goal to demonstrate the advantage of easy 

handling of np-Au monoliths i.e., can be transferred from one place to another 

by using tweezers. 

 

5.2. Results and discussion 

5.2.1. Preparation of boronic acid-modified np-Au monoliths 

 The preparation of the substrate was done by continuous flow method 

with this series of steps: surface modification by LA, activation of the carboxylic 

acid functional group into an ester, immobilization of aminophenyboronic acid 

(APBA), and capping with ethanolamine (Figure 5.1). This method was based 

on the procedure that gave favorable amount of Con A covalently immobilized 

on np-Au monolith (Chapter 4). Variation in size i.e., Con A is a large and APBA 

is small molecule and the accessibility of the amino groups may require different 

experimental modification to optimize immobilization.  
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Figure 5.1. Schematic representation of the preparation of boronic acid-

modified np-Au monolith. 

 

The loading of APBA was monitored by the in situ solution depletion 

method described in the previous chapters. The time required for complete 

immobilization of APBA was determined by monitoring the A300 during the 

circulation. UV-vis scan showed APBA solution has maximum absorbance at 

300 nm (Figure 5.2A). Loading APBA on LA SAM-modified np-Au monolith 

achieved a loading of 1.52 × 1015 molecules based on the change in 

concentration of 0.169 mM upon saturation (Figure 5.2B). The loading capacity 

of 70 mg np-Au is 3.15 × 1017 molecules APBA m-2 np-Au. This surface 

coverage is lower than what could be expected by looking at the loading curve 

of APBA on bare np-Au (Figure 5.2B). These data showed the presence of SAM 

on the np-Au surface to where the APBA specifically bind. The non-specific 

binding is another work to investigate. 
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Figure 5.2. Characterization of loading of APBA on SAM-modified np-Au 

monolith using in situ solution depletion method. (A) UV-vis scan of 1 mM APBA 

in 60% acetonitrile solvent. (B) Loading curve of APBA on LA SAM-modified 

np-Au monolith monitored as recorded by a UV detector at 300 nm. 

 

5.2.2. Characterization of pH-dependent capture and release by boronic acid-

modified np-Au monolith of cis-diol containing compound 

 The structure of np-Au monolith as a free-standing one-piece 

macroporous substrate could have an advantage to design a simpler method 

of extracting target analytes from a mixture. A batch of boronic acid-modified 

np-Au monoliths were prepared. Afterwards, the prepared substrates were 

taken out from the flow tube and incubated in a 100 µL adenosine and another 

in a 100 µL deoxyadenosine for 1 h. Both used phosphate buffer pH 8.5 as 

solvent. Then substrates were placed back inside a flow tube, washed with 

phosphate buffer 8.5. Acetate buffer pH 2.7 was circulated through and the 

change in A260 was monitored. Both adenosine and deoxyadenosine have 

maximum absorbance at 260 nm (Figure 5.3A). More released amount of 

adenosine was observed than those of deoxyadenosine based on the increase 



93 
 

of the concentration of the circulating elution buffer (Figure 5.3B). This showed 

the capability of a “small” piece of in situ prepared boronic acid-modified np-Au 

monolith to preferentially capture cis-diol containing molecule from a little 

volume (100 µL) of sample. The amount of non-specifically adsorbed 

deoxyadenosine could be reduced by optimizing the SAM composition. 

 

 

Figure 5.3. In situ characterization of release in acidic condition of captured 

adenosine and deoxyadenosine. (A) UV-vis scan of adenosine and 

deoxyadenosine in phosphate buffer 8.5. (B) Elution curve of adenosine and 

deoxyadenosine from boronic acid-modified np-Au monolith as recorded by a 

UV detector at 260 nm. 

 

5.2.3. SDS-PAGE gel profile of trypsin digested Ova and characterization of its 

glycopeptide extraction using boronic acid modified np-Au monoliths 

 The selection of glycoprotein to use in this study was based on the SDS-

PAGE gel band profile of Ova and HRP, two of the most commonly used 

glycoproteins in studying separation of glycoproteins. Band profiles of digested 

Ova produced more separated and distinct bands after digestion as compared 

to that of HRP even using twice the amount of trypsin (Figure 5.4A). Therefore, 
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Ova is used as the model glycoprotein in this experiment. The bands might 

represent the glycopeptides of Ova that can be observed the depletion after 

being circulated through boronic acid-modified np-Au monolith. Ova has 385 

amino acids and a molar mass of 44,300 [208]. Based on a study of Ova  

glycopeptides obtained by proteolytic digestion, Ova  contains only one 

oligosaccharide unit per molecule, linked to aspartic acid via N-

acetylglucosamine, and this unit contains only the two sugars mannose and N-

acetylglucosamine, i.e., high mannose [(Man)5(GlcNAc)2 and (Man)6 (GlcNAc)2] 

hybrid and bi- to penta-antennary structures [209]. Glycopeptides obtained from 

ovalbumin differ in the ratio of their mannose and hexosamine contents [210]. 

Comparing the band profiles of trypsin-digested Ova before and after circulation 

through boronic acid-modified np-Au monoliths, there was an observed 

decrease in intensity of the separated bands. This could represent the 

glycopeptides being captured by the substrate during the circulation.  Eluted 

peptides, however, failed to show bands possibly due to very dilute 

concentration of the eluted peptides in a 1.5 mL circulating acetate buffer pH 

2.7 (Figure 5.4B). This experiments could be further improved by sending the 

eluted sample for MALDI-MS analysis for identification of the captured and 

eluted glycopeptides. 
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Figure 5.4. SDS-PAGE of (A) intact 1 mg mL-1 Ova and HRP and digested 

with 40  and 80 µg mL-1 trypsin, (B) trypsin digested Ova before and after 

circulation through boronic acid modified np-Au monoliths and elution buffer 

acetate buffer 2.7. 

 

5.3. Conclusion 

This study was motivated by the increasing reported use of boronic acid 

as ligands in capture of glycoproteins and glycopeptides. The pH-dependent 

reversible but covalent binding of boronic acid to cis-diols make this ligand 

applicable to all kinds of glycans. The preparation method presented in this 

chapter showed significant amount of boronic acid immobilized on lipoic acid 

SAM-modified np-Au monolith. However, further optimization is necessary due 

to the non-specific adsorption of non cis-diol containing compound. The 

observed higher non-specific adsorption in this boronic acid-carbohydrate 

system compared to lectin-carbohydrate could be due to the conditions 

employed in capture and release. Changing the pH of the environment from 
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alkaline to acidic condition could have an effect not only to the dissociation 

process but also to protonation of some functional groups that may have 

contributed to electrostatic attraction or repulsion that favors immobilization 

during the loading step or dissociation during the elution step.  

This study aimed to use np-Au monolith as a one-piece material that can 

be easily handled and transferred from one container to another. This allow the 

use of a small piece of a substrate that could extract analyte from a little amount 

of sample. Extracting an analyte from a limited amount of biological sample is 

one of the challenges in glycomics as described above. The dense porosity of 

np-Au monolith could be a tool in response to this challenge. Furthermore, the 

study of np-Au monolith in capturing trypsin has already been started in our lab. 

A simple kinetic study of immobilized trypsin either by physical adsorption or 

covalent immobilization was compared. Immobilized trypsin was used for 

cleavage of substrate Nα-Benzoyl-L-arginine ethyl ester hydrochloride (BAEE) 

to produce the product Nα-Benzoyl-L-arginine. The accumulation of the product 

was observed my measuring A253 through time. Preliminary results showed the 

capability of immobilized trypsin to do its function, and repeated use of the 

material showed significant production of the product. Though, the less activity 

of the immobilized trypsin was observed compared to the in-solution trypsin 

digestion, it should be noted that the amount of trypsin used to prepare trypsin-

modified np-Au monoliths are much less than  what was consumed in the in-

solution method. These results combined with the presented results in this 

chapter could lead to a procedure of combined digestion of glycoproteins and 

extraction of glycopeptides using pieces of modified np-Au monoliths that can 
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be handled and transferred easily by tweezers into desired container of 

analytes, washing and eluting solutions. 
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CHAPTER VI. Methods in electroless deposition of Au and Au-Ag alloy  

 

6.1. Introduction 

SAM of alkanethiols that are very useful in biological assays can be 

formed on thin films of metal supported on silicon wafers, glass, mica, or plastic 

substrates. These thin films can be prepared by physical vapor deposition 

methods, e.g. thermal or electron beam evaporation, electrodeposition or 

electroless deposition. The last is the simplest and most economical method, 

wherein the rate of deposition and the structure of the plated metal depends on 

the deposition time and temperature [211].  The deposition of metal is due to 

the chemical reduction of metal salts to metals at the surfaces. Electroless 

deposition method has the following advantages [212]: 

• Simplicity of the operation and no elaborate equipment, does not require 

an external electrical potential 

•  More cohesive particles with smaller particle size distributions than 

conventional top-down metal deposition, such as evaporation or 

sputtering  that has weak bonding between metal film and structures  

•  Strong attachment of the gold to the substrate upon extreme thermal, 

solvent and electromagnetic exposure 

The limitations of the electroless method are the following [213]: 

• Plating rates are low 

• Necessary to control plating conditions carefully  
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• Plating baths tend to have relatively short lives  

• Baths contain free cyanide 

 

A recipe for depositing gold electrolessly onto a metal substrate has 

been proposed [94]. There are three suggested mechanisms of non-electrolytic 

process of deposition of metals and alloys: (1) galvanic displacement plating 

(also called immersion plating), (2) substrate-catalyzed plating, and (3) 

autocatalytic plating. Galvanic displacement method differs from the latter two 

by not requiring a reducing agent for the redox reaction to occur. Spontaneous 

redox reaction occurs due to the electrochemical potential difference between 

the elemental metal substrate and solution of cationic metal precursors leading 

to coating the metal substrate surface [214]. While galvanic displacement is 

deposition on the more active metals, substrate-catalyzed plating is onto the 

surface of more noble metals. This requires a chemical reducing agent that is 

present in the bath and serves as the electron donor and the process is 

catalyzed by the deposited noble metal. This method becomes autocatalytic if 

the substrate is of the same metal of the metal cation in the plating solution; 

thus, it is plating of gold on gold [94]. 

The suggested autocatalytic over-all plating reduction-oxidation reaction 

is: 

6[𝐴𝑢(𝐶𝑁)2]− +  𝐵𝐻3𝑂𝐻− +  6𝑂𝐻− → 6𝐴𝑢 + 𝐵𝑂2
− +  12𝐶𝑁− +  5𝐻2𝑂 

Electroless deposition is advantageous in the way that it can deposit thin films 

on nanostructures such as colloids and nanopores that have internal surfaces 

by just immersing them into the plating solution [215]. The deposited gold on 
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glass substrates through electroless deposition has greater roughness than that 

prepared by thermal evaporation [211]. 

 

6.2. Results and discussion 

 

6.2.1. Electroless deposition of Au  

 

The autocatalytic electroless deposition that has successfully been done 

in the lab was based on the recipe of Okinaka using KAu(CN)2 as gold 

precursor, NaBH4 as the reducing agent, NaOH to make the plating solution 

highly basic and NaCN to improve ductility of the deposit [94] (Table 6.1). These 

ingredients were mixed together in a proper order using water as a solvent. The 

plating was done using the set-up we built that enabled us to heat the solution 

while plating onto the immersed glass substrate, and has a thermometer to 

monitor the desired plating temperature (Figure 6.1A). The glass substrates 

were cleaned first with piranha solution and rinsed thoroughly with water then 

with ethanol. Then, sputtering of gold was done to create a gold surface that 

autocatalyzed the subsequent plating through electroless deposition (Figure 

6.1B).  

Table 6.1. Recipe in preparing borohydride bath for electroless deposition of Au 

[94]. 

 

 Concentration (M) Function 

KAu(CN)
2
 0.003 Gold precursor 

NaCN 0.01 Improve the ductility of the deposit 
KOH 0.20 M Required high pH condition (10-14) 

NaBH4 0.20 M Reducing agent 



101 
 

 

 

Figure 6.1. (A) Electroless plating set-up. (B) Schematic representation of the 

preparation of gold sputtered substrate for autocatalytic electroless deposition. 

 

The conditions first varied was the plating temperature. It was observed 

in SEM images that the gold plated on the glass substrate at 97 °C for 5 minutes 

was already porous with a continuous ligament structure. Porosity was 

developed as the plating temperature was raised to 97 °C, pore size was not 

usual in the structure at 60 °C and 80 °C (Figure 6.2). It has been previously 

observed and reported that the deposit formed though autocatalytic electroless 

plating using dilute KAu(CN)2 without agitation was porous [216]. 
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Figure 6.2. SEM images of electrolessly plated Au with different plating 

temperature. Scale bars are 5 µm, 0.5 µm and 0.2 µm in the first, second and 

last column panels, respectively. 

 The plating time at 80 °C was also varied from 5 min and 10 min. It was 

observed that plating at 97 °C longer than 5 min using the borohydride bath 

described above started to peel out from the substrate. At 80 °C, prolonging 

the deposition time created a thicker film (Figure 6.3).  
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Figure 6.3. SEM images of electrolessly plated Au with different plating time at 

80 °C. Scale bars are 5 µm, 0.5 µm and 0.2 µm in the first, second and last 

column panels, respectively. 

 It was next decided to investigate the effect of reducing the ratio of each 

component from the others in the deposited structure. Reducing the KOH in the 

borohydride bath composition resulted to a decrease in porosity of those plate 

at 97 80 °C for 5 min (Figure 6.4). At lower pH, the acid-catalyzed hydrolysis 

reaction proceed more rapidly. Therefore, the rate of electroless deposition of 

gold increases with decreasing KOH concentration. But it should be noted that 

the KOH concentration must be above 0.1 M to avoid spontaneous 

decomposition.  
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Figure 6.4. SEM images of electrolessly plated gold at 97 °C for 5 min with 

reduced KOH concentration. Scale bars are 5 µm, 0.5 µm and 0.2 µm in the 

first, second and last row panels, respectively. 

 

 Next was to reduce the reducing agent concentration from 0.2 M to 0.02 

M. The plating at lower reducing agent concentration was not successful and 

no plating was observed. The stability of the plated film in solvents such as 

PBS, ethanol and acetonitrile was tested by incubating the plated gold film for 

24 h. There were no peeling out from the substrate was observed and confirmed 

the stability of the plated film. 
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6.2.2. Electroless deposition of Au-Ag alloy  

The electroless formation of np-Au could be achieved by depositing a 

Au-Ag alloy followed by dealloying. A recipe was also suggested to make Au-

Ag alloy deposit [94] (Table 6.2). A silver complex, KAg(CN)2 is much more 

readily reducible than the gold complex, KAu(CN)2. (E°Ag
+ = +0.80; E°Au

3+ = 

+1.40). The deposition was done at 80 °C for 5 min.  A collection of islands 

structures of different size were observed on the electrolessly deposited Au-Ag 

(Figure 6.5).  

 

Table 6.2. Recipe in preparing borohydride bath for electroless deposition of 

Au-Ag alloy [94]. 

 

 

 

 

Compositiont Concentration (M) 

KAu(CN)
2
 0.026 M 

KAg(CN)
2
 0.007 M 

NaCN 0.01 M 

KOH 0.2 M 

NaBH
4
 0.2 M 
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Figure 6.5. SEM images of electrolessly plated Au-Ag alloy at 80 °C for 5 min. 

Scale bars are 5 µm, 0.5 µm and 0.2 µm in the first, second and last row 

panels, respectively. 

 

 The ratio of Au and Ag in borohydride bath was varied and variation of 

sizes of structures were observed and not homogeneous (Figure 6.6). The 

elemental composition of the plated Au-Ag film was estimated by EDS 

spectroscopy (Figure 6.6). The ratio of the composition of Au-Ag in the plated 
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structure showed unmatched from the composition of the borohydride bath 

used except for the 30:70 ratio. 

 

Figure 6.6. SEM images and EDS spectra (insets) of electrolessly plated Au-

Ag alloy with varying Au:Ag composition ratio at 80 °C for 5 min. Scale bars 

are in 1 µm. 
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Homogeneous Au-Ag alloys of any composition can be plated using the 

same bath composition as above with continuous addition of KAg(CN)2 and 

excess free cyanide [217].. Another approach that could be done is through 

galvanic displacement, a one step process that utilizes the differences in the 

standard electrode potentials of various metals that causes deposition of the 

more noble element and dissolution of the less noble component. The galvanic 

displacement method for depositing metal onto surface has the potential to 

produce a hollow or porous deposit [218]. 

 

6.3. Conclusion 

 The data presented in this chapter could serve as preliminary results for 

optimization procedures in attaining the desirable electrolessly formed np-Au 

structures. In fact, electroless deposition method describe herein are now being 

used in our lab to attempt making a np-Au structure with multimodal pore size 

distribution  using np-Au monolith as the  catalytic substrate.  The different pore 

sizes of porous noble metals have different functions i.e., larger sized pores 

could increase permeability therefore useful in microfluidic flow control, while 

very small pores enhanced the surface area that are useful for sensor 

applications [219]. In these porous materials, larger pore size is at 100s of nm, 

smaller pore size on the other hand is at 10s of nm. In one study, np-Au 

architecture with two pore sizes was achieved by thermal annealing of an np-

Au gold leaf. The annealed pores were filled with silver followed by dealloying 

to create a porous membrane with large pores, but highly porous channel walls 

[219]. In another study, a np-Au ribbons was fabricated that has large-sized 
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channels with highly porous channel walls. The structure of the large-sized 

channels were controlled by the alloy composition. The structure of small 

ligaments/channels were controlled by changing the dealloying solution [220]. 

Thermal annealing of np-Au monolith within 200 to 300 °C for 30 to 120 min 

[221] produced large channels that is currently being used in electroless 

deposition of Au-Ag alloy in an attempt to create multimodal microstructure.  
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