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REVIEW

Plant Peroxisomes: Biogenesis and Function

Jianping Hu,a,b,1 Alison Baker,c Bonnie Bartel,d Nicole Linka,e Robert T. Mullen,f Sigrun Reumann,g

and Bethany K. Zolmanh

aMichigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan
48824
bDepartment of Plant Biology, Michigan State University, East Lansing, Michigan 48824
cCentre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
dDepartment of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
eDepartment of Plant Biochemistry, Heinrich Heine University 40225, Duesseldorf, Germany
f Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
gCentre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
hDepartment of Biology, University of Missouri, St. Louis, Missouri 63121

Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are
involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and
biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis,
revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have
begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic
pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal
proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained
from plant peroxisomal research will be instrumental to fully understanding the organelle’s dynamic behavior and defining
peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant
metabolism, biomass production, stress tolerance, and pathogen defense.

INTRODUCTION

Peroxisomes were one of the last major cellular organelles to
be discovered (De Duve and Baudhuin, 1966), and their impor-
tance in plant metabolism, particularly with respect to fatty acid
b-oxidation, the glyoxylate cycle, and photorespiration, was soon
realized (reviewed in Beevers, 1979; Huang et al., 1983). In recent
years, it has become clear that peroxisomes are highly dynamic
organelles, both morphologically and metabolically, and are in-
volved in a wide range of plant processes, including primary
carbon metabolism, secondary metabolism, development, abiotic
stress response, and pathogen defense. With this understanding,
the names of microbody, glyoxysome, peroxisome, and
gerontosome, which were used to define some specialized
peroxisome activities, are now subsumed within the general
name of peroxisome (Pracharoenwattana and Smith, 2008).
Here, we review recent advances in plant peroxisome research
and provide perspectives on the future research needed to fully
understand the dynamics and functions of these organelles.

PEROXISOME BIOGENESIS

The Role of the Endoplasmic Reticulum in
Peroxisome Biogenesis

A Historical Perspective

The biogenetic relationship between the endoplasmic reticulum
(ER) and peroxisomes has been highly contentious (reviewed in
Mullen and Trelease, 2006; Schlüter et al., 2006; Tabak et al.,
2006). Peroxisomes were initially thought to form exclusively by
vesiculation of specialized ER regions. Nascent soluble and
membrane-bound protein constituents were thought to be
synthesized cotranslationally on the ER before sequestration,
along with membrane lipids, into an expanding vesicle that
eventually buds off from a specific segment of the (smooth) ER
to produce a new functional peroxisome (Figure 1A). This ER
vesiculation model (Beevers, 1979) was supported by micros-
copy observations of peroxisomes commonly associated with
the ER in plants (Huang et al., 1983) and by pulse-chase studies
indicating that both peroxisomal proteins and phospholipids in
the peroxisomal membrane first passed through the ER (Moore,
1982; Lord and Roberts, 1983).
However, new techniques and reevaluation of older data

resulted in the ER vesiculation model losing favor to the growth
and division model (Trelease, 1984; Lazarow and Fujiki, 1985). In
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this model, peroxisomes, like chloroplasts and mitochondria, were
considered fully autonomous, increasing in size by posttransla-
tional import of protein constituents from the cytosol and forming
only from the division of preexisting organelles (Figure 1B). The ER
was thought to serve only as a source of membrane lipids for the
enlargement of preexisting peroxisomes (e.g., via phospholipid
transfer proteins and/or ER-peroxisome contact sites).
Studies in yeasts and Chinese hamster ovary cells (Kunau, 1998)

identified a set of peroxins encoded by PEX genes that are required
for peroxisome biogenesis. The growth and division paradigm was
challenged by demonstrations that mutant yeast and mammalian
cells lacking certain PEX genes, such as PEX3 and PEX19, were
devoid of any obvious peroxisomal structures, yet the organelles
appeared after reintroduction of the wild-type gene (South and
Gould, 1999; Hettema et al., 2000). Also conflicting with the idea
that peroxisomes are strictly autonomous were observations from
in vivo trafficking studies of peroxisomemembrane proteins (PMPs)
in yeasts, mammals, and plants, which demonstrated that at least
some PMPs sorted indirectly to peroxisomes by way of the ER
(reviewed in Titorenko and Rachubinski, 2009).
The current working model for peroxisome biogenesis incor-

porates aspects of both earlier models plus latest data and
considers peroxisomes to be semiautonomous, arising by two
distinct pathways: de novo biogenesis from specific regions of
the ER and by growth and fission of preexisting peroxisomes
(Figure 1C). This ER semiautonomous model for peroxisome
biogenesis includes at least one important new feature: the in-
volvement of ER-derived preperoxisomes (i.e., vesicles or
membrane fragments/lamellae) that deliver phospholipids and
some PMPs to preexisting peroxisomes and/or fuse together in
a controlled, step-wise fashion to form a new peroxisome
(Trelease and Lingard, 2006; Titorenko and Rachubinski, 2009).
There is a growing appreciation that the processes underlying

the de novo synthesis and growth and fission of peroxisomes
may not be controlled completely independently (Koch and
Brocard, 2011) and that these processes may vary considerably
depending on the species, cell type, or physiological status of
the organism. Hence, a unified model of peroxisome biogenesis
may not be easy to attain. For instance, in mammals and yeast,
both de novo synthesis from the ER and fission contribute to the
formation of new (daughter) peroxisomes, albeit to different

Figure 1. Models for the Biogenesis of Peroxisomes in Plants.

In the ER vesiculation model (A), all of the protein constituents of the
peroxisomal boundary membrane and matrix are considered to be syn-
thesized cotranslationally on the ER and then sequestered into a spe-
cialized region of the ER, where an expanding smooth membrane vesicle
eventually buds off to yield (de novo) a nascent, functional peroxisome.
By contrast, in the growth and division model (B), all PMPs and matrix

proteins are synthesized on free polyribosomes in the cytosol and sorted
posttranslationally to preexisting and new (daughter) peroxisomes, re-
sulting in their growth. Daughter peroxisomes arise from preexisting
peroxisomes by fission, and the ER somehow provides the membrane
lipids necessary for peroxisome growth (e.g., via ER-peroxisome contact
sites and/or lipid transfer proteins). In the ER semiautonomous model
(C), some PMPs (group I PMPs) are posttranslationally inserted either
directly into the pER subdomain or first into the general ER and then
routed to the pER. The subsequent transport of these group I PMPs (and
membrane lipids) from the pER to preexisting and daughter peroxisomes
involves the (de novo) formation (via vesiculation or fragmentation) of
putative preperoxisomal carriers that travel to, or from, an ERPIC. All
matrix proteins and group II PMPs are sorted posttranslationally from the
cytosol to daughter peroxisomes and preexisting peroxisomes, and
perhaps preperoxisomes at the ERPIC, the former of which arise by
fission (as depicted in more detail in Figure 2).
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extents (Nagotu et al., 2010), whereas in plants there is no direct
evidence for the de novo synthesis of peroxisomes from the ER.
Instead, the ER appears to serve as a platform from which se-
lected membrane components are derived and trafficked by an
unknown carrier to preexisting peroxisomes, which undergo
growth and division to produce new peroxisomes.

Membrane Protein Trafficking from the ER to Peroxisomes

The understanding of the ER-to-peroxisome pathway in plants is
based primarily on studies of two types of PMPs: (1) cottonseed
(Gossypium hirsutum) and pumpkin (Cucurbita maxima) ascor-
bate peroxidase (APX), a carboxy tail-anchored integral mem-
brane protein that plays a key role in protecting plant cells by
scavenging toxic reactive oxygen species (Yamaguchi et al.,
1995; Bunkelmann and Trelease, 1996); and (2) Arabidopsis
thaliana PEX16, an integral membrane peroxin (Karnik and
Trelease, 2005; Nito et al., 2007). Like most other PMPs that
traffic to peroxisomes via the ER (referred to as group I PMPs),
APX3 and PEX16 contain ER targeting elements that are dis-
tinct from typical signal peptide or signal anchor sequences
and overlap with or are adjacent to the elements responsible for
their subsequent targeting from the ER to peroxisomes (Mullen
and Trelease, 2000; Karnik and Trelease, 2007). While the pre-
cise nature of these ER targeting signals is not known, APX
relies on a posttranslational targeting process that involves ATP
and various chaperones (Mullen et al., 1999; Shen et al., 2010).
Whether PEX16 and any other plant PMPs that traffic to perox-
isomes via the ER use the same or a different posttranslational
pathway remains to be investigated.

Another important, but poorly characterized, aspect of the
ER-peroxisome relationship in plants is the nature of the per-
oxisomal ER (pER) subdomain, a region of the ER at which
preperoxisomes are proposed to be formed (Mullen et al., 1999;
Lisenbee et al., 2003). The PMPs APX3 and Arabidopsis PEX10
localize to subdomains of the rough ER (Lisenbee et al., 2003;
Flynn et al., 2005; Karnik and Trelease, 2005, 2007). However,
whether these regions are identical and how the intra-ER sorting
and segregation of APX and PEX10 (or any other PMP in the ER)
is accomplished has not been elucidated. By contrast, Arabi-
dopsis PEX16 localizes throughout the general ER and not to
a specific subdomain, as does PEX16 in mammals (Kim et al.,
2006) and certain yeasts (Titorenko and Rachubinski, 1998).
Arabidopsis PEX16 also exists in peroxisomes under steady
state conditions (Karnik and Trelease, 2005) and a pex16
knockdown mutant possesses fewer and enlarged peroxisomes
(Nito et al., 2007), suggesting that, as in mammals, plant PEX16
performs multiple roles depending on its subcellular location.
For instance, PEX16 may modulate peroxisome morphology
(Nito et al., 2007) via its potential role as peroxisomal membrane
receptor (Matsuzaki and Fujiki, 2008). At the ER, however,
PEX16 might regulate the early steps of peroxisome biogenesis,
including acting as a receptor for other PMPs and orchestrating
their subsequent sorting into the pER (Karnik and Trelease,
2005; Nito et al., 2007), although, to date, no experimental evi-
dence for such a role in plants has been presented. In addition,
PEX16 appears to participate in the biogenesis of other plant-
specific subcellular compartments, such as protein and oil
bodies, which also are derived from the ER (Lin et al., 1999).

Arabidopsis PEX10, which is reported to sort either indirectly
to peroxisomes via the ER in suspension cells (Flynn et al., 2005)
or directly to peroxisomes from the cytosol in leaves (Sparkes
et al., 2005), also appears to perform multiple functions, in-
cluding the biogenesis of ER-derived protein and oil bodies
(Schumann et al., 2003), the maintenance of ER morphology, the
formation of cuticular wax (Kamigaki et al., 2009), peroxisome
and chloroplast connections (Schumann et al., 2007), and, as
discussed further below, the import of matrix proteins (Nito
et al., 2007; Prestele et al., 2010). The relative distribution of
PEX10 in the ER and peroxisomes might exemplify how plant
peroxisome biogenesis varies depending on the species and/or
cell type. Likewise, Arabidopsis PEX3 is reported to target di-
rectly to peroxisomes from the cytosol (Hunt and Trelease,
2004), whereas its homologs in yeast and mammals sort to
peroxisomes via the ER (Hoepfner et al., 2005; Toro et al., 2009)
and participate in PMP import and the formation of preperox-
isomal membrane carriers (e.g., vesicles) (van der Zand et al.,
2010). Whether plant PEX3 functions independently of the ER is
still an open question, particularly if the protein sorts rapidly
through the ER as it does in other organisms (Hoepfner et al.,
2005; Agrawal et al., 2011), making transient intermediates dif-
ficult to detect.
No solid data exist on the preperoxisomal membrane carriers

that would originate from the pER and ultimately sort to preex-
isting or nascent (daughter) peroxisomes in plants, but factors
necessary for forming preperoxisomes are beginning to be
identified in other organisms, such as Sec20p, Sec39p, and
Dsl1p (Perry et al., 2009) as well as Sec16B (Yonekawa et al.,
2011). In plants, small preperoxisomal membrane vesicles may
bud from the ER and perhaps, prior to their fusion with pre-
existing peroxisomes, coalesce in a so-called ER-peroxisome
intermediate compartment (ERPIC) (Mullen and Trelease, 2006;
Trelease and Lingard, 2006), consistent with the proposed ER-
to-peroxisome vesicular transport pathways in certain yeasts
and mammalian cells (reviewed in Titorenko and Rachubinski,
2009). Alternatively or in addition, plant preperoxisomes may
exist as large pleomorphic structures of clustered peroxisomal
tubules, reminiscent of the lamellar extension that detaches en
block from the ER in mouse dendritic cells (Geuze et al., 2003).
Independent of their structural features, one important functional
attribute of the preperoxisomal membrane vesicles in plants
(and in other organisms) is that they are competent in importing
matrix proteins (Mullen et al., 1999) and group II PMPs that
bypass the ER (i.e., PMPs that sort directly to peroxisomes from
the cytosol, such as the Arabidopsis 22-kD PMP [PMP22])
(Murphy et al., 2003).
Another intriguing possibility is that plant peroxisomes might

remain physically attached to the ER, analogous to recent models
for oil body–ER connectivity (Chapman et al., 2012). Some sup-
port for this premise comes from live-cell imaging of peroxisome
tubular extensions (peroxules) in Arabidopsis (Sinclair et al., 2009).
The growth and retraction of peroxules appears to occur along
tracks defined by ER tubules (and perhaps driven by cytoskeleton
interactions) and at speeds (i.e., seconds) that argue against the
idea that these morphological changes in peroxules simply
result from the acquisition of (new) membranes from the ER
via preperoxisomal carriers (Mathur, 2009). However, because
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no ultrastructural studies have revealed any direct connections
between ER and peroxisome membranes in any organism,
peroxisome-ER connectivity has to be considered carefully. For
instance, the reported dynamic behavior of peroxules in plants
could be due to peroxisome-ER contact sites, akin to that pro-
posed in yeast (Raychaudhuri and Prinz, 2008).

Peroxisome Multiplication by Growth and Division

In addition to de novo formation from the ER, peroxisomes also
multiply through division, which occurs constitutively (i.e., in as-
sociation with the cell cycle) or inducibly (i.e., peroxisome pro-
liferation). Peroxisome division begins with organelle elongation/
tubulation and ends in fission, resulting in the formation of two
or more peroxisomes (reviewed in Koch and Brocard, 2011;
Schrader et al., 2011). Arabidopsis proteins that operate in
peroxisome division have been identified through sequence
similarity-based searches using yeast proteins, forward genetic
screens, and in silico analysis followed by cell biological vali-
dations (reviewed in Kaur and Hu, 2009; Aung et al., 2010). As
discussed below, plant peroxisome division machineries consist
of evolutionarily conserved and plant-specific factors. Moreover,
several plant peroxisomal division proteins are shared with mi-
tochondria and chloroplasts, a strategy that might enable plants
to coordinate divisions of these metabolically-linked organelles.

Peroxisome Elongation/Tubulation: PEROXIN11 Proteins
Serve as Key Factors

Saccharomyces cerevisiae Pex11p was the first peroxisome
division protein identified. Ectopic expression of Sc-PEX11
leads to the elongation/tubulation and/or increased numbers of
peroxisomes, whereas the yeast pex11 null mutants contain one
or two giant peroxisomes per cell (Erdmann and Blobel, 1995;
Marshall et al., 1995). PEROXIN11 (PEX11) homologs have been
identified as multigene families in various lineages (Hu, 2009;
Schrader et al., 2011). Arabidopsis has five PEX11 homologs
categorized into three subfamilies based on sequence (i.e.,
PEX11a, PEX11b, and PEX11c to e) (Figure 2A). These five
isoforms are integral PMPs capable of inducing peroxisome
elongation and/or number increase (Figure 2B) (Lingard and
Trelease, 2006; Nito et al., 2007; Orth et al., 2007; Lingard et al.,
2008). Heterologous expression of plant or mammalian PEX11
homologs complements the yeast mutant phenotype to various
degrees, demonstrating the conserved role of PEX11 across
kingdoms (Orth et al., 2007; Koch et al., 2010).

A recent study in Penicillium chrysogenum showed a role for
Pex11p (and possibly other PEX11 homologs) in membrane re-
modeling. The conserved N-terminal amphipathic helix of Pc-
Pex11p binds to liposomes that have membrane lipid content
resembling that of the peroxisome membrane and induces lipo-
some tubulation and membrane curvature, possibly through in-
sertion into the cytosolic leaflet of the phospholipid bilayer (Koch
and Brocard, 2011; Opali�nski et al., 2011). Despite sequence and
structural similarities, individual PEX11 family members may have
distinct functions (Koch and Brocard, 2011; Huber et al., 2012).
The differential roles played by Arabidopsis PEX11 proteins is
indicated by the findings that (1) PEX11a has a distinct membrane
topology from the other isoforms (Lingard and Trelease, 2006),

and (2) only members of the PEX11c-e subfamily complement the
yeast pex11 mutants (Orth et al., 2007; Koch et al., 2010).
Being a highly abundant component of the peroxisome mem-

brane and rate-limiting factor in early peroxisome division, PEX11
is regulated at both transcriptional and posttranslational levels in
yeast and mammals (Gurvitz and Rottensteiner, 2006; Michalik
et al., 2006; Knoblach and Rachubinski, 2010). In Arabidopsis
synchronized cell cultures, the expression of PEX11 and genes
encoding other key division proteins is regulated by the cell cycle,
which correlates with peroxisome duplication (Lingard et al.,
2008). A phytochrome A–mediated light signaling pathway in-
duces PEX11b expression during dark-to-light transitions, in
which the bZIP transcription factor HY5 HOMOLOG binds to the
PEX11b promoter (Figure 1A) (Desai and Hu, 2008). Salt stress,
abscisic acid, and jasmonic acid (JA) also regulate the expression
of Arabidopsis and/or rice (Oryza sativa) PEX11 genes (Nayidu
et al., 2008; Mitsuya et al., 2010). Whether plant PEX11 proteins
are subjected to posttranslational modifications is unclear.

Role of Dynamin-Related Proteins DRP3 and DRP5B and
FISSION1 in Fission

Following elongation/tubulation, peroxisome division proceeds
with membrane constriction and fission, a process mediated by
a protein complex consisting of the integral membrane-anchored
protein FISSION1 (FIS1), a dynamin-related protein (DRP), and
some lineage-specific cytosolic adaptor proteins (Benard and
Karbowski, 2009).
Dynamins and DRPs are mechano-chemical enzymes or sig-

naling GTPases that form oligomeric rings around membranes,
enforcing membrane fission or fusion through GTP hydrolysis
(Praefcke and McMahon, 2004. At least three of the 16 Arabi-
dopsis DRPs are involved in peroxisome fission. The closely re-
lated DRP3A and DRP3B proteins are dual localized and shared by
peroxisomal and mitochondrial divisions, with DRP3A playing
a major role in peroxisome fission (Mano et al., 2004; Fujimoto
et al., 2009; Zhang and Hu, 2009; Kaur and Hu, 2009 and refer-
ences therein) (Figure 2). Interestingly, DRP5B (ARC5), a DRP
distantly related to DRP3, targets to chloroplasts and peroxisomes
and facilitates the division of both organelles (Gao et al., 2003;
Zhang and Hu, 2010) (Figure 2). Besides having enlarged, dumb-
bell-shaped chloroplasts, drp5B mutants also contain aggregated
peroxisomes that are impaired in fission (Figure 2B) and are par-
tially compromised in peroxisomal functions (Zhang and Hu, 2010).
Whereas DRP3A and DRP3B are members of an ancient family of
DRPs involved in peroxisome and mitochondrial division, DRP5B
evolved more recently in the plant/algal lineage (Miyagishima et al.,
2008) to mediate chloroplast and peroxisome division.
Most eukaryotic DRPs lack a lipid binding or transmembrane

domain (TMD) and are only recruited to the division sites by
interacting directly or indirectly with a membrane-bound re-
ceptor (Praefcke and McMahon, 2004). A yeast DRP, Dnm1p, is
recruited to peroxisomes and mitochondria by Fis1p, which
is tethered to the organelles by its C terminus and extends its
N-terminal tetratricopeptide repeat domain into the cytosol
(Motley and Hettema, 2007). Both Arabidopsis FIS1 homologs,
FIS1A (BIGYIN) and FIS1B, are dual targeted to peroxisomes
and mitochondria and play rate-limiting roles in initiating
organelle fission (Scott et al., 2006; Lingard et al., 2008; Zhang
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and Hu, 2008, 2009) (Figure 2A). Whether At-FIS1 is required for
targeting DRP3A/3B to the organelles has not been verified. Given
that DRP5B has a Pleckstrin Homology domain, which presumably
binds to lipids (Praefcke and McMahon, 2004), it may not need
a receptor for peroxisome association. Physical interactions be-
tween FIS1 and PEX11 have been detected in mammals and plants
(Kobayashi et al., 2007; Lingard et al., 2008; Zhang and Hu, 2010),
indicating a possible, direct functional link between the peroxisome
elongation and fission machineries.
Possible kingdom-specific factors also exist in the FIS1-DRP

complex. Yeast Mdv1p and Caf4p are two homologous and
partially redundant proteins, each possessing a WD40 repeat
and a coiled-coil domain and acting as cytosolic adaptors for
DRP recruitment (Tieu et al., 2002; Griffin et al., 2005; Motley
et al., 2008). Functional orthologs of Mdv1p and Caf4p have not
been identified from mammals or plants.

Peroxisome Division Factors that Act Independently from
PEX11, FIS1, and/or DRPs

Mff (for Mitochondrial fission factor) is a mammalian-specific
coiled-coil protein, which is tethered to mitochondrial and per-
oxisome membranes and recruits Drp1 to the organelles in
a Fis1-independent manner (Gandre-Babbe and van der Bliek,
2008; Otera et al., 2010). In the yeast Yarrowia lipolytica, per-
oxisome division can be triggered when the b-oxidation enzyme
acyl-CoA oxidase binds to the PMP Pex16p, which sub-
sequently induces lipid biosynthesis in the membrane and the
formation of a division complex containing the DRP Vps1p (Guo
et al., 2003, 2007). Some Arabidopsis mutants defective in
b-oxidation or NAD+ transport contain larger but fewer perox-
isomes (Graham et al., 2002; Baker et al., 2006; Mano et al.,
2011), suggesting that accumulation of acyl-CoA or other mol-
ecules within the peroxisome may regulate division.
Arabidopsis PEROXISOMAL and MITOCHONDRIAL DIVISION

FACTOR1 (PMD1) is a plant-specific organelle division factor that
acts independently from PEX11 and the FIS1-DRP3 complex
(Aung and Hu, 2011) (Figure 2A). PMD1 is dual targeted to the
membranes of peroxisomes and mitochondria. Loss-of-function
pmd1 mutants contain enlarged peroxisomes and elongated mi-
tochondria, and ectopic expression of the gene leads to increased
numbers of the organelles, which are often aggregated (Figure

Figure 2. Proteins That Mediate Peroxisome Division in Arabidopsis.

(A) A molecular model of peroxisome division in Arabidopsis. Peroxi-
some elongation is promoted by the PEX11 proteins, among which

PEX11b can be transcriptionally activated by light through a phyA-
mediated signal transduction pathway. The fission machineries of per-
oxisomes and mitochondria share at least five components: DRP3A,
DRP3B, FIS1A, FIS1B, and PMD1. DRP5B is a common fission factor for
peroxisomes and chloroplasts. PMD1 appears to function independently
from PEX11 and the FIS1-DRP3 complex by an unknown mechanism.
For mitochondrial and chloroplast division, only factors shared with
peroxisomes are depicted.
(B) Confocal micrographs of leaf mesophyll cells showing peroxisome
phenotypes in plants ectopically expressing PEX11a and loss-of-
function mutants of DRP3A and DRP5B. WT, the wild type. Bars =
10 µm. (Images reprinted from Orth et al. [2007], Figure 5; Zhang and
Hu [2009], Figure 2; Zhang and Hu [2010], Figure 1.)
(C) Transmission electron micrographs of leaf mesophyll cells showing
the organelle phenotype of plants overexpressing PMD1. Bars = 1 µm.
(Images reprinted from Aung and Hu [2011], Figure 4.)

Plant Peroxisomes 5 of 25



2C). Surprisingly, PMD1 fails to show physical or genetic in-
teraction with any of the known organelle division proteins, in-
dicating that it is not an Mff counterpart. Furthermore, the PMD1
homolog, PMD2, which can form complexes with PMD1, is lo-
calized only to mitochondria and exclusively involved in mito-
chondrial morphogenesis (Aung and Hu, 2011). The mechanism
by which PMD1 and PMD2 impact peroxisome and mitochondrial
division and morphogenesis remains to be elucidated.

Protein Import

Identification of Genes Required for Matrix Protein Import

With the exception of some PMPs that traffic to peroxisomes via
the ER (see above), nascent peroxisomal proteins are imported
from the cytosol. The plant peroxins that recognize and trans-
port peroxisomal proteins (Figure 3) have been identified by
a combination of forward and reverse genetic approaches.
Forward genetic strategies have taken advantage of the role of
peroxisomes in bioactivation of auxin precursors. Indole-3-
butyric acid (IBA) and 2,4-dichlorophenoxybutryic acid (2,4-DB)
undergo b-oxidation to form indole-3-acetic acid (IAA) and
2,4-D, respectively, resulting in the inhibition of root and hypo-
cotyl elongation. Therefore, IBA- or 2,4-DB–resistant mutants
that display an elongated phenotype but remain sensitive to the
product (IAA or 2,4-D) are readily identified (Hayashi et al., 1998;
Zolman et al., 2000; Strader et al., 2011). These screens have
identified mutants in both b-oxidation and PEX genes. As mu-
tants defective in b-oxidation are often dependent upon exog-
enous Suc for establishment, screens for sucrose-dependent
(sdp) mutants identified additional genes (Eastmond, 2006,
2007). Mislocalization of peroxisome-targeted fluorescent fusion
proteins has been used to isolate mutants defective in peroxi-
some protein import (Mano et al., 2006; Goto et al., 2011). Fi-
nally, putative peroxins have been identified in silico and
characterized through reverse genetic approaches (Baker et al.,
2010 and references therein).

The Matrix Protein Import Pathway

The majority of matrix proteins are synthesized with one of two
import signals: PTS1 (for peroxisomal targeting signal type 1),
a C-terminal tripeptide, or PTS2, an N-terminal nonapeptide.
PTS1 sequences typically conform to the consensus of [small]-
[basic]-[aliphatic], as exemplified by the sequence SKL. PTS2
sequences have the consensus R[L/I/Q] X5 HL (Lanyon-Hogg
et al., 2010 and references therein). Details on permissible PTS1
signals and their in silico prediction are described later.

Following translation, PTS1 proteins interact with their re-
ceptor PEX5 in the cytosol (Figure 3). PEX5 is highly conserved
and contains two functional domains: an N-terminal peroxisomal
docking domain and a C-terminal domain formed from two sets
of three tetratricopeptide repeats, which provide a binding
pocket for PTS1 (Lanyon-Hogg et al., 2010). Homology model-
ing of Arabidopsis PEX5 on a human PEX5-PTS1 protein
structure suggests that all the important interactions are con-
served (Lanyon-Hogg et al., 2010). These structural studies in-
dicate that the mechanism of PTS1 recognition by PEX5 is likely
to be conserved; however, targeting studies show some

species-specific differences that are likely to reflect subtle dif-
ferences in the geometry of the PTS1 binding pocket that remain
to be fully understood.
PTS2 proteins interact with their receptor PEX7 prior to per-

oxisome entry (Figure 3), but the molecular details of this in-
teraction are unclear. Unlike PEX5, PEX7 cannot mediate
interaction with the peroxisome membrane alone but requires
accessory proteins. Arabidopsis PEX5 acts as the coreceptor
for PEX7 (Nito et al., 2002). Downregulation of PEX5 by RNA
interference (RNAi) compromises both PTS1 and PTS2 import
(Hayashi et al., 2005), and mutation of a conserved Ser in the
pex5-1 mutant reduces PTS2 import, while PTS1 import re-
mains functional (Woodward and Bartel, 2005b). The Arabi-
dopsis pex5-10 mutant, which contains a large N-terminal
deletion, has both PTS1 and PTS2 import defects, but the
PTS2 import defect can be rescued by expression of a con-
struct comprising the N-terminal domain of PEX5 (Khan and
Zolman, 2010), confirming that the PEX5 N-terminal domain is
required for PEX7 interaction.

Figure 3. Schematic Diagram of Matrix Protein Import into Peroxisomes.

Cytosolic PEX5 and PEX7 recognize their cargo proteins (square and
round shapes) via binding of specific targeting sequences, PTS1 and
PTS2, respectively. Cargo-loaded PEX5 associates with the membrane
via interactions with PEX13 and PEX14 and probably also via interactions
with the lipid phase. PEX7 cannot dock to the membrane on its own and
depends on physical interaction with PEX5 for docking. PTS1- and
PTS2-bound cargo is released to the matrix, and the receptors are
recycled back into the cytosol via a mechanism that probably requires
ATP-dependent ubiquitination of PEX5 (represented by a star) by PEX4
and the RING complex comprised of PEX2, PEX10, and PEX12. The
ubiquitinated PEX5 is then removed from the membrane via the action of
the AAA ATPases PEX6 and PEX1, which are tethered by APEM9. The
route that PEX7 takes through the pathway, in particular whether it
accompanies PEX5 throughout the import cycle, is unknown.
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In mammalian PEX5, multiple WX3F/Y motifs within the N
terminus bind to the N-terminal domain of the PMP PEX14
(Neufeld et al., 2009). Arabidopsis PEX14 is an integral PMP
important for PTS1 and PTS2 import (Hayashi et al., 2000). The
topology of PEX14 is somewhat controversial (Oliveira et al.,
2002); therefore, it is unclear whether the critical interaction
between PEX5 and PEX14 takes place on the cytosolic side of
the membrane, within the membrane, or even within the matrix.
The latter possibility would suggest that PEX14 is not the initial
docking point for PEX5. In this context, it is interesting that yeast
and human PEX5 can spontaneously insert into lipid membranes
in vitro (Kerssen et al., 2006) and that residual protein import can
occur without PEX14 in Hansenula polymorpha (Salomons et al.,
2000) and Arabidopsis (Monroe-Augustus et al., 2011).

PEX5/7 docking at the peroxisome membrane also involves
PEX13 (Figure 3). At-PEX13 was identified from the aberrant
peroxisome morphology (apm) collection as a mutant showing
partial mislocalization of a green fluorescent protein (GFP)-PTS1
peroxisome marker to the cytosol (Mano et al., 2006). A null
pex13 allele was subsequently identified as abstinence by mu-
tual consent with defective male-female gametophyte recogni-
tion (Boisson-Dernier et al., 2008). PEX7 also binds to the N
terminus of PEX13 (Mano et al., 2006). There is still uncertainty
about the order, stoichiometry, and affinity of binding inter-
actions among PEX5, PEX7, their cargoes, PEX14, and PEX13;
however, the general consensus is that import is driven by
thermodynamically favorable binding interactions (for more de-
tailed discussion of this point, see Lanyon-Hogg et al., 2010).
The mechanism of protein translocation is also uncertain, but
yeast PEX5 and PEX14 appear to form a transient pore that can
open to a diameter of up to 9 nm (Meinecke et al., 2010).

After import into the matrix, cargo is unloaded and the
receptors are recycled. Again, there is a paucity of mechanistic
data and cargo unloading remains an obscure process. In yeast,
Pex5p reexport requires the three RING finger peroxins Pex2p,
Pex10p, and Pex12p, the ubiquitin-conjugating enzyme Pex4p
and its membrane anchor Pex22p, and the two AAA ATPases
Pex1p and Pex6p, which are tethered to the membrane by
Pex15p. The prevailing model (Figure 3) invokes Pex5p mono-
ubiquitination by Pex4p (E2) and Pex12p (E3) and ATP-
dependent dislocation of ubiquitinated Pex5p from the membrane
via Pex1p and Pex6p (Grou et al., 2009). Although there is no
direct evidence for PEX5 ubiquitination in plants, the machinery
is conserved. The finding that the very mild pex13-1 mutant
exacerbates the phenotypes of mutants in the early part of the
pathway but ameliorates the phenotypes of mutants in the re-
cycling limb of the pathway points to a need to balance receptor
import and export (Ratzel et al., 2011).

Knockout mutants of Arabidopsis PEX2, PEX10, and PEX12
are embryo lethal (Hu et al., 2002; Schumann et al., 2003;
Sparkes et al., 2003; Fan et al., 2005), and RNAi lines all show
PTS1 and PTS2 import defects and Suc dependence following
germination (Nito et al., 2007). In addition to these typical pex
defects, some of the RING finger peroxin mutants display
additional phenotypes, for example, an RNAi line with strong
PEX10 suppression also has variegated leaves, fused floral
organs, aberrant ER morphology, and a defect in cuticular wax
synthesis (Kamigaki et al., 2009). A transgenic Arabidopsis line

expressing a PEX10 with a mutated RING finger also shows
defects in photorespiration and interaction between chloroplasts
and peroxisomes (Schumann et al., 2007). A gain-of-function
mutant of PEX2 (TED3) suppresses the photomorphogenetic
defects of det1-1 (Hu et al., 2002). If indeed the RING finger
peroxins are E3 ligases, they could potentially target proteins
other than the import receptors.
The pex4 RNAi mutant has a PTS1 protein import defect (Nito

et al., 2007), and partial loss-of-function mutations in PEX4
and PEX22 confer mild defects that are enhanced in the double
mutant (Zolman et al., 2005), supporting the notion that PEX4
and PEX22 function in the same pathway. Indeed, Arabidopsis
PEX22 and PEX4 interact and together can complement the S.
cerevisiae pex4 or pex22 mutants (Zolman et al., 2005).
PEX1 and PEX6 RNAi lines have a PTS1 protein import defect

(Nito et al., 2007), and a missense allele of pex6 was isolated
as an IBA-resistant mutant (Zolman and Bartel, 2004). pex6
plants are small, pale, and have reduced seed set. At the cellular
level, peroxisomes are enlarged and PEX5 levels are reduced.
Recently, the membrane anchor for PEX1 and PEX6 has been
identified from the collection of apm mutants. APEM9 is an in-
tegral PMP that binds PEX6 and recruits the PEX1-PEX6 com-
plex to the peroxisome membrane (Goto et al., 2011).

Degradation of the PTS1 Receptor PEX5

As discussed above, PEX5 monoubiquitination is required for
PEX5 recycling in yeast and mammals, and the conservation of
the responsible ubiquitin-conjugating enzyme (PEX4), ubiquitin
protein ligases (PEX2, PEX10, and PEX12), and AAA ATPases
(PEX1 and PEX6) in plants suggests that the PEX5 recycling
mechanism also occurs in plants (Figure 3). Intriguingly, these
receptor-recycling peroxins resemble proteins needed during
ER-associated protein degradation (ERAD), the process of
ubiquitination, retrotranslocation, and proteasomal degradation
of misfolded ER proteins (Schlüter et al., 2006). Further sup-
porting an ERAD analogy are the observations that yeast and
mammalian PEX5 are polyubiquitinated and degraded by the
proteasome when not efficiently recycled (Platta et al., 2004) in
a process termed RADAR (for receptor accumulation and deg-
radation in the absence of recycling) (Léon et al., 2006). Al-
though plant PEX5 ubiquitination has not been directly
demonstrated, the Cys residue that is ubiquitinated in other
eukaryotes (Carvalho et al., 2007; Williams et al., 2007) is con-
served in Arabidopsis PEX5. In addition, the Arabidopsis pex6-1
missense allele has reduced PEX5 levels, and overexpressing
PEX5 partially restores peroxisome function in pex6-1 (Zolman
and Bartel, 2004), suggesting that a RADAR mechanism also
operates in plants. Reducing PEX4 function (Zolman et al., 2005)
in the pex6-1 background restores PEX5 levels while exacer-
bating pex6-1 physiological and molecular defects (Ratzel et al.,
2011), suggesting that PEX4 is needed for both the ubiquitina-
tion that promotes PEX5 recycling and the ubiquitination that
triggers RADAR. The apparent conservation of RADAR pro-
cesses suggests that this degradation prevents a deleterious
buildup of PEX5 in the peroxisomal membrane.
In addition to low PEX5 levels observed in pex6-1 mutants

(Zolman et al., 2005; Ratzel et al., 2011), PEX5 levels are
reduced in light-grown pex7 mutants (Ramón and Bartel, 2010),
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suggesting that the dependence of PEX7 on PEX5 for cargo
delivery in plants (Hayashi et al., 2005; Woodward and Bartel,
2005a) is mirrored by a dependence of PEX5 on PEX7 for sta-
bility. Whether the apparent PEX5 instability in pex7 mutants
reflects inefficient recycling leading to RADAR or instability in the
cytosol remains to be determined.

Peroxisomal Proteases and Matrix Protein Degradation

Two peroxisomal proteases are implicated in peroxisome bio-
genesis. Originally purified from watermelon (Citrullis vulgaris)
cotyledons, DEG15 is a trypsin-like Ser protease that cleaves
PTS2 proteins to remove the N-terminal region both in vitro and
in vivo (Helm et al., 2007; Schuhmann et al., 2008). Beyond
a slight resistance to the inhibitory effects of IBA (Lingard and
Bartel, 2009) and 2,4-DB (Schuhmann et al., 2008), the Arabi-
dopsis deg15 null mutant does not display growth or germina-
tion defects that would ascribe a physiological benefit to
removing the PTS2 sequence following peroxisome entry. In-
deed, yeasts lack a peroxisomal DEG15 ortholog and do not
remove PTS2 sequences upon import (Helm et al., 2007). The
evolutionary advantage that has conserved the PTS2 removal
process in plants and mammals remains to be identified.

LON proteases are members of the AAA ATPase family orig-
inally discovered in bacteria, where they degrade both aberrant
and regulatory proteins (reviewed in Van Melderen and Aertsen,
2009). In plants, LON isoforms are found in chloroplasts, mito-
chondria, and peroxisomes (Ostersetzer et al., 2007); LON2 is
the peroxisomal LON isoform. In Arabidopsis lon2 mutants,
matrix proteins correctly localize in 4-d-old cotyledon cells but
mislocalize to the cytosol in older seedlings; similarly, a PTS2-
GFP reporter sorts to peroxisomes in lon2 root tip cells but is
largely cytosolic in mature root cells (Lingard and Bartel, 2009).
The delayed onset of matrix protein sorting defects in lon2
mutants suggests that LON2 facilitates continued matrix protein
import in mature peroxisomes and is a previously unrecognized
peroxin. It will be interesting to discover the LON2 substrate(s)
that hinders matrix protein import if not efficiently degraded. The
increasing severity of lon2 import defects with age contrasts
with several other pex mutants; for example, the severe matrix
protein import defects of young pex14 seedlings lessen as
seedlings mature (Hayashi et al., 2000; Monroe-Augustus et al.,
2011), and pex5-10 mutants recover normal pigmentation upon
maturation (Khan and Zolman, 2010).

Although we are beginning to understand how proteins are
delivered to the peroxisome matrix, little is known about how
excess plant peroxisomes or peroxisomal proteins are de-
graded. A specialized form of autophagy, pexophagy, is im-
portant in removing excess peroxisomes in yeast and mammals
(reviewed in Manjithaya et al., 2010), but pexophagy has not
been reported in plants. Peroxisomal sequestration likely pro-
tects the cytosol from hydrogen peroxide (H2O2) produced by
various peroxisomal oxidases. Although peroxisomes house cat-
alase and other enzymes that decompose this H2O2, the pro-
tective capacity of the peroxisome can be exceeded (Eastmond,
2007). Moreover, certain matrix proteins, such as the glyoxylate
cycle enzymes isocitrate lyase (ICL) and malate synthase
(MLS; see below), are susceptible to oxidative damage both in
vitro and in vivo (Yanik and Donaldson, 2005; Eastmond, 2007;

Anand et al., 2009), which may necessitate a degradation path-
way that responds to oxidative damage. In addition, obsolete
proteins are removed during developmental peroxisomal re-
modeling. For example, ICL and MLS are degraded when seed-
lings transition from fatty acid b-oxidation to photosynthesis
(Nishimura et al., 1996). This degradation is accelerated in a cat-
alase mutant (Lingard et al., 2009), suggesting that oxidative
damage by H2O2 promotes peroxisome-associated protein deg-
radation. Furthermore, ICL and MLS must enter peroxisomes to
be efficiently degraded (Lingard et al., 2009), suggesting that
degradation is triggered following import or that the responsible
protease is peroxisomal. However, insertion alleles disrupted in
any of the five predicted peroxisomal proteases (DEG15/
At1g28320, LON2/At5g47040, PXM16/At2g41790, At2g18080,
and At2g35615) display normal ICL and MLS degradation
(Lingard and Bartel, 2009), indicating that if ICL and MLS deg-
radation is accomplished by a peroxisomal protease, it acts re-
dundantly or remains to be identified. Interestingly, one of the
receptor-recycling peroxins, PEX4, facilitates ICL and MLS deg-
radation (Lingard et al., 2009), consistent with the alternative
possibility that damaged and obsolete proteins actively exit per-
oxisomes for cytosolic proteasomal degradation, perhaps using
the same ERAD-resembling machinery that is used to recycle (or
destroy) PEX5. It will be interesting to learn whether PEX5, which is
essential for the entry of peroxisomal matrix proteins, also assists
in the exit of these proteins when they are damaged or obsolete.

PEROXISOMAL FUNCTIONS

Plant peroxisomes mediate a multitude of processes crucial to
development. Peroxisomes are the sole site of fatty acid b-oxidation
in plant cells and are involved in generating two phytohormones:
IAA and JA. They play an important role in photorespiration in
conjunction with mitochondria and chloroplasts. In addition to these
processes, plant peroxisomes also participate or are implicated in
a plethora of other metabolic and signaling pathways, such as the
glyoxylate cycle, detoxification, generation of signaling molecules,
biosynthesis of salicylic acid, and the metabolism of urate, poly-
amines, sulfite, and branched-chain amino acids (reviewed in Kaur
et al., 2009). Recent studies have also revealed roles for perox-
isomes in plant immune response (Lipka et al., 2005; Coca and San
Segundo, 2010; Rojas et al., 2012) and the biosynthesis of biotin
(Tanabe et al., 2011), S-allantoin (Lamberto et al., 2010), phyl-
loquinone (Widhalm et al., 2012), and isoprenoids (Sapir-Mir et al.,
2008; Tholl and Lee, 2011).

Peroxisomal b-Oxidation

Fatty Acid b-Oxidation

Fatty acid oxidation is an essential process in the mobilization
of seed oil reserves, which are laid down during seed de-
velopment predominantly as triacylglycerol (TAG) and mobi-
lized to support postgerminative growth prior to the seedling
developing photosynthetic competence (Graham, 2008). Oil
body–associated TAG lipases SUGAR DEPENDENT1 (SDP1)
(Eastmond, 2006) and SUGAR DEPENDENT1 LIKE release free
fatty acids and together account for 95% of TAG lipase activity
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(Kelly et al., 2011). Fatty acids (and other substrates of b-oxidation)
are transported into peroxisomes by the peroxisomal ATP
binding cassette (ABC) transporter protein CTS/PXA1/PED3 (see
details below). Mutants deficient in fatty acid degradation lack
the energy or metabolites necessary for seedling establishment
into a photosynthetic plant and thus produce short hypocotyls
when grown in the dark, a phenotype that can be rescued by
Suc. A severe b-oxidation block results in strongly reduced
germination (Baker et al., 2006). In addition to roles in early
seedling development, fatty acid b-oxidation also has important
roles in remobilization of reserves during senescence and in
survival in extended periods of darkness (Dong et al., 2009; Kunz
et al., 2009; Slocombe et al., 2009).

Following peroxisomal import, straight-chain saturated fatty
acyl-CoAs undergo a cycle of oxidation, hydration, oxidation,
and thiolysis, leading to release of acetyl-CoA and an acyl-CoA
molecule that has been shortened by two carbons (Figure 4;
Graham, 2008). The first step is catalyzed by a family of acyl-
CoA oxidases, ACX1-5 in Arabidopsis, with differing but partially
overlapping chain length specificities (Graham, 2008 and refer-
ences therein; Khan et al., 2012). These enzymes are flavin ad-
enine dinucleotide linked, and the electrons are passed to
molecular oxygen to produce H2O2. The resulting 2-trans-enoyl
CoA is the substrate for the multifunctional protein, which
contains both hydratase and dehydrogenase domains.

There are two peroxisomal multifunctional proteins in Arabi-
dopsis: MFP2 (Rylott et al., 2006) and AIM1 (Richmond and
Bleecker, 1999). MFP2 is the major seedling form; its mutant
shows a typical b-oxidation deficiency phenotype (Rylott et al.,
2006). The mfp2 mutant is not resistant to pro-auxins, whereas
the aim1mutant is. Consistent with this resistance, AIM1 prefers
short-chain substrates (Richmond and Bleecker, 1999; Arent
et al., 2010). MFP2’s hydratase activity prefers longer chains
(Rylott et al., 2006) but shows little activity on acyl-CoAs above
14 carbons in length (Arent et al., 2010), suggesting that there is
a yet undiscovered long-chain hydratase.

The final step of core b-oxidation is the thiolytic cleavage of
3-ketoacyl CoA by thiolase to produce acetyl-CoA and a short-
ened acyl-CoA. Of the three peroxisomal thiolases, PED1/KAT2
is the major seedling form (Hayashi et al., 1998; Germain et al.,
2001). The ped1/kat2 mutant has a more severe b-oxidation
deficient phenotype than themfp2mutant, but interestingly both
mfp2 (Rylott et al., 2006) and kat2 (Germain et al., 2001) have
enlarged peroxisomes, suggesting that intraperoxisomal accu-
mulation of acyl-CoAs could result in peroxisomal expansion or
inhibition of division (Graham et al., 2002).

The core b-oxidation machinery metabolizes straight-chain
saturated fatty acids. However, peroxisomes also metabolize
unsaturated fatty acids with double bonds at both odd and even
positions, which requires accessory enzymes to convert these
molecules into suitable substrates (Goepfert and Poirier, 2007;
Graham, 2008). For the degradation of fatty acids with double
bonds at the odd position (e.g., C18:D9cis [oleic acid]), the
peroxisomal D3,5D2,4 dienoyl CoA isomerase encoded by At-DCI
is essential (Goepfert et al., 2005). For even double bonds, an
epimerase activity that is part of the multifunctional protein or
a separate enoyl-CoA hydratase (ECH) is required (Goepfert
et al., 2006).

The acyl-CoA oxidase reaction produces H2O2, which is
metabolized by catalase. However, under conditions of high
H2O2 production, such as during TAG mobilization in early
seedling growth, a membrane-bound system comprising
ascorbate peroxidase and monodehydroascorbate reductase
acts as a second line of defense to prevent H2O2 leakage into
the cytosol. A mutant in monodehydroascorbate reductase
(sdp2) has compromised b-oxidation due to excess H2O2

that causes oxidative inactivation of the TAG lipase SDP1
(Eastmond, 2007).
The product of b-oxidation, acetyl-CoA, can be respired by

mitochondria (Kunze et al., 2006) or can enter the glyoxylate cycle,
where citrate synthase (CSY), ICL, and MLS convert it to succi-
nate and malate used for gluconeogenesis (Pracharoenwattana
and Smith, 2008). Arabidopsis CSY2 and CSY3 convert acetyl-
CoA to citrate for export to mitochondria; the double mutant is
unable to germinate without Suc, and physical removal of the
seed coat fails to degrade its oil bodies and is resistant to
2,4-DB (Pracharoenwattana et al., 2005). The icl1 mutant ger-
minates and degrades oil bodies, presumably respiring the
acetyl-CoA, but has reduced survival in periods of extended
darkness (Eastmond et al., 2000). mls mutants have mild phe-
notypes, suggesting MLS is partially dispensable for gluco-
neogenesis and lipid metabolism (Cornah et al., 2004)
The hydroxyacyl-CoA dehydrogenase activity of MFP pro-

duces NADH. Reoxidation of NADH and, therefore, continued
b-oxidation depends on a malate-oxaloacetate shuttle that in-
volves peroxisomal and cytosolic isoforms of malate de-
hydrogenase (MDH). Double mutants defective in the two
peroxisomal MDH genes, PMDH1 and PMDH2, germinate but
are Suc dependent for establishment, are resistant to 2,4-DB,
and mobilize TAGs slowly (Pracharoenwattana et al., 2007).

JA Production

The major functions of jasmonates, phytohormones regulat-
ing development and stress response, include wounding and
pathogen responses, stamen development, and pollen release.
This hormone family is comprised of several related lipid-derived
compounds: JA, its precursor 12-oxo-phytodienoic acid (OPDA),
and JA derivatives, including the methyl ester and the Ile conju-
gated forms (reviewed in Acosta and Farmer, 2010). Production
of active jasmonates occurs sequentially in three locations:
chloroplasts, peroxisomes, and the cytosol.
Chloroplast-localized reactions convert polyunsaturated fatty

acids to OPDA, which is released via an unknown mechanism
(Acosta and Farmer, 2010). Following peroxisomal import, the
OPDA reductase OPR3 converts OPDA to OPC8:0 (3-oxo-2-
(29-[Z]-penenyl) cycopentane-1-octanoic acid). OPR3 has re-
ductase activity in vitro (Costa et al., 2000; Schaller et al., 2000),
and opr3 was found as a male-sterile mutant rescued specifi-
cally by JA application (Stintzi and Browse, 2000).
Three rounds of peroxisomal b-oxidation convert OPC8:0→

OPC6:0→OPC4:0→JA. OPCL1 activates OPC8:0, and ACX1
and ACX5, AIM1, and PED1/KAT2 are implicated in the core
b-oxidation of JA precursors. These isozyme assignments were
inferred from three observations: (1) OPCL1, ACX1, and KAT2
mRNAs strongly and rapidly accumulate in response to JA, as
part of a positive feedback mechanism (Cruz Castillo et al.,
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2004; Koo et al., 2006); (2) OPCL1 (Koo et al., 2006; Kienow
et al., 2008) and ACX1 (Li et al., 2005) are biochemically active
on JA intermediates; and (3) RNAi lines and opcl1, acx1, aim1,
and ped1/kat2 mutants have decreased JA biosynthesis (Cruz
Castillo et al., 2004; Afitlhile et al., 2005; Pinfield-Wells et al.,

2005; Koo et al., 2006; Delker et al., 2007). Moreover, dis-
ruptions of ACX1 or PED1/KAT2 delay systemic responses
(Cruz Castillo et al., 2004), and a tomato (Solanum lycopersicum)
acx1 mutant has reduced defense against chewing insects (Li
et al., 2005).

Figure 4. Proteins Acting in Peroxisomal b-Oxidation.

(A) Mutants disrupting peroxisomal function frequently have IBA response and Suc-dependent phenotypes. Left, wild-type seedlings grown with
applied IBA have shorter primary roots and abundant secondary roots, whereas peroxisome-defective mutants (e.g., pxa1 mutant shown) do not
respond to IBA application because of their inability to b-oxidize IBA to IAA. Right, wild-type seedlings germinate and grow normally without an external
carbon source, but peroxisome-defective mutants have disruptions in seedling establishment, ranging from failed to delayed development. Bar = 2 mm.
(Images reprinted from Zolman et al. [2001], cover photo, and Adham et al. [2005], Figure 8.)
(B) Major metabolic pathways in peroxisomes use a core set of enzymes. Fatty acid b-oxidation (center) in developing seeds involves conversion of
very-long-chain fatty acids (VLCFA) stored as TAG through long-chain fatty acid (LCFA), medium-chain fatty acid (MCFA), and short-chain fatty acid
(SCFA) intermediates. Each round of b-oxidation releases two carbons as acetyl-CoA. IBA (left) and OPDA (right) are metabolized in parallel pathways
that use an overlapping but distinct set of enzymes; OPDA is produced from polyunsaturated fatty acids (PUFAs) in a multistep pathway in chloroplasts.
*, CTS/PXA1/PED3 may import unmodified substrates or CoA derivatives. For all pathways, substrate activation by acyl-CoA synthetases is shown in
purple, the initial oxidation enzymes are in red, the hydration/oxidation intermediate steps (frequently performed by a multifunctional enzyme) are shown
in blue, and the thiolysis step is shown in green; if known, specific isozymes catalyzing the reaction are indicated. Peroxisomal acetyl-CoA is a central
intermediate in various branches of cellular metabolism, including (1) the conversion to succinate via the glyoxylate cycle, which enters gluconeogenic
pathways to produce Glc; (2) the production of malate, necessary for the malate-oxaloacetate shuttle to reoxidize NADH produced by MFP2/AIM1; and
(3) the conversion to citrate, which enters the tricarboxylic acid (TCA) cycle.
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The modification of JA to JA-Ile, the active component in JA
signaling, occurs in the cytoplasm (reviewed in Acosta and
Farmer, 2010). OPDA, JA, and JA-Ile have unique roles in plant
cells. The transition between organelles may regulate the ratio
of jasmonates and thereby affect the types or intensity of
responses.

OPDA regulates seed germination. Whereas mutants blocked
in b-oxidation can be rescued for establishment by Suc sup-
plementation, indicating an insufficient supply of carbon and
energy from fatty acid metabolism, severe mutants in core
b-oxidation functions cannot germinate unless the testa
is manually ruptured (Russell et al., 2000; Pinfield-Wells et al.,
2005; Footitt et al., 2006). Peroxisomal transport or activity
mutants, including cts/pxa1/ped3, ped1/kat2, and acx1 acx2
double mutants, accumulate OPDA and, paradoxically, JA, in
seeds. However, a pxa1 opr3 double mutant, which accumu-
lates high OPDA but lacks JA, maintains the germination defect,
indicating that peroxisomal import and metabolism of OPDA is
important for germination (Dave et al., 2011). Moreover, OPDA
and ABA act synergistically to increase levels of the transcription
factor ABI5 (Dave et al., 2011). ABI5 is also upregulated in the
ped3 allele, which in turn leads to higher levels of poly-
galacturonase-inhibiting proteins; removal of pectin using
exogenous polygalacturonase can overcome the germination
block in ped3 (Kanai et al., 2010).

The JA biosynthetic pathway was proposed in the 1980s (Vick
and Zimmerman, 1983). Although great strides have been made
identifying the peroxisomal components, several questions re-
main. An unknown thioesterase presumably is required to cleave
the jasmonoyl-CoA to release JA. The transporter facilitating JA
export also remains unknown. In addition, there is a high degree
of redundancy in JA transport and biosynthesis, and residual JA
still accumulates in single mutants. For instance, opr3 accu-
mulates JA in certain conditions (Chehab et al., 2011), and opcl1
accumulates JA to ;60% of wild-type levels, allowing many
expression targets to still be induced (Koo et al., 2006). Simi-
larly, only in the acx1 acx5 double mutant is fertility and
wound-induced JA biosynthesis lost (Schilmiller et al., 2007). In
addition, different tissues may regulate JA synthesis differently.
For instance, Dave et al. (2011) reported high JA levels in cts-2
seeds, but studies on the same allele showed almost no JA in
leaves (Theodoulou et al., 2005). Similarly, acx1 acx5 makes no
JA in wounded leaves but produces JA in flowers and following
fungal infections (Schilmiller et al., 2007). Further studies, in-
cluding analysis of additional mutant combinations, could define
the full complement of proteins involved in JA biosynthesis, but
mutant analysis will require examination in multiple conditions
for a complete understanding.

Peroxisomal Conversion of IBA to IAA

IAA is the principal form of auxin, a phytohormone regulating
many aspects of development by influencing cell division and
elongation. IBA is structurally similar to IAA but has a butyl in-
stead of acetyl side chain; IBA is known for efficacy in root in-
duction and is applied to cuttings or seedlings to ensure strong
root development (reviewed in Woodward and Bartel, 2005b).
Feeding studies have shown that IAA can be converted to IBA;
IBA formation is hypothesized to relieve high IAA levels. IBA is

also converted back to IAA, increasing free (active) IAA to match
plant needs. Conversion of IBA to IAA removes the two extra
side-chain carbons in a b-oxidation–like pathway (Fawcett et al.,
1960). Because of the structural differences, IBA can be con-
sidered a protoauxin, which is transported (reviewed in Strader
and Bartel, 2011) or stored (reviewed in Simon and Petrášek,
2011) without auxin activity.
Our understanding of IBA activity is based on forward genetic

screens, which revealed IBA metabolism to be a peroxisomal
process. The predicted pathway for IBA metabolism parallels
fatty acid b-oxidation: IBA is imported into peroxisomes,
activated by CoA, and converted to IAA-CoA via the core
b-oxidation steps (Figure 4). Mutants defective in AIM1 and
PED1/KAT2 show pleiotropic phenotypes, including fatty acid
and JA defects (described above) and resistance to 2,4-DB
(Hayashi et al., 1998; Richmond and Bleecker, 1999; Hayashi
et al., 2002) and IBA (Zolman et al., 2000, 2001), indicating IBA-
to-IAA conversion is disrupted. Therefore, AIM1 could catalyze
the middle two steps of IBA metabolism, similar to fatty acid
metabolism. PED1/KAT2 could act as a thiolase to release
two side-chain carbons, producing IAA-CoA and acetyl-CoA
(Hayashi et al., 1998; Zolman et al., 2000).
Alternatively, ibr1, ibr3, ibr10, and ech2 only show IBA re-

sponse phenotypes, suggesting that the corresponding
enzymes may act specifically on IBA intermediates. IBR3 enc-
odes an acyl-CoA dehydrogenase/oxidase, which could convert
IBA-CoA to the a,b-unsaturated thioester (Zolman et al., 2007).
Two enoyl-CoA hydratases are implicated in IBA responsiveness:
IBR10 (Zolman et al., 2008) and ECH2 (Strader et al., 2011).
Although ECH2 and IBR10 have similar domain structures,
complementation experiments indicate that they are not re-
dundant (Strader et al., 2011). In addition to hydratase activity,
ECH2 also has a hot dog domain common in thioesterases
and therefore may be acting at the last step to convert IAA-
CoA to IAA (Strader et al., 2011). Finally, IBR1, also identified
as SDRa (Wiszniewski et al., 2009), encodes a short-chain
dehydrogenase/reductase (Zolman et al., 2008), which may
catalyze the fourth step of IBA b-oxidation. AIM1-IBR1 re-
dundancy at the dehydrogenase/reductase step could explain
why the ibr1 defects are less severe than those of other mu-
tants (Strader et al., 2011).
Strader et al. (2010) demonstrated reduced IAA production

from labeled IBA in pex6, pxa1, and the ibr1 ibr3 ibr10 triple
mutant, confirming roles for peroxisomes and these enzymes in
IAA production. However, the precise enzymatic assignments
require biochemical confirmation; in particular, IBR10 and ECH2
placement and potential redundancy between AIM1 and IBR1
will require activity assays for resolution.
ACX activity on IBA-CoA also remains questionable. acx

mutant analysis revealed that all five ACX enzymes promote IBA
responsiveness (Adham et al., 2005) and acx1 acx2 double
mutants have decreased IBA-to-IAA conversion (Strader et al.,
2010). IBR3 and multiple ACX enzymes may catalyze this
reaction in an overlapping manner or based on expression.
However, ACX enzymes show substrate chain length specific-
ities (see above) that seemingly contradict the idea that all five
act directly on IBA. Alternatively, IBR3 may act directly on IBA
substrates while ACX activity affects IBA oxidation indirectly,
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perhaps based on limiting peroxisomal CoA pools (Adham et al.,
2005). Furthermore, two steps remain unresolved. The aae18
synthetase mutant is 2,4-DB resistant but responds normally to
IBA (Wiszniewski et al., 2009); whether a different protein acti-
vates IBA (perhaps redundantly) remains to be determined. IAA
export to the cytosol has not been defined either.

Finally, we do not know how the conversion of IBA to IAA is
regulated or triggered, although one hypothesis is that low IAA
levels stimulate IBA metabolism. IBA response mutants have
reduced lateral root systems, smaller root meristems, defective
cotyledon expansion, shorter root hairs, and reduced hypocotyl
and stamen elongation (reviewed in Strader and Bartel, 2011),
demonstrating the importance of this conversion in multiple
aspects of plant growth and development.

Photorespiration

The Classical Pathway

The most prominent role of peroxisomes in photosynthetic tis-
sues is their participation in photorespiration. The oxidative C2

cycle is a salvage pathway for phosphoglycolate produced by the
oxygenase activity of ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco) to the Calvin cycle intermediate phos-
phoglycerate. This pathway is one of the most sophisticated
examples of subcellular compartmentalization and spatial and
temporal coordination, as it combines enzymatic reactions
in, and intermediate and cofactor exchange between, chlor-
oplasts, peroxisomes, mitochondria and, as recently shown,
the cytosol (Timm et al., 2008). Peroxisome-localized photo-
respiratory enzymes include glycolate oxidase (GOX), catalase,
two aminotransferases, hydroxypyruvate reductase (HPR), and
MDH, placing leaf peroxisomes at a central position in pho-
torespiration (Figure 5).

Downstream of Rubisco, the photorespiratory reactions
continue in the chloroplast stroma with phosphoglycolate phos-
phatase, which dephosphorylates 2-phosphoglycolate (Schwarte
and Bauwe, 2007). Glycolate diffuses into the matrix of perox-
isomes, where it is oxidized to glyoxylate by GOX concomitant
with H2O2 production. Glyoxylate is transaminated by two per-
oxisomal aminotransferases, Ser-glyoxylate and Glu-glyoxylate
aminotransferase, which ideally cooperate at a 1:1 stoichiometry
(Liepman and Olsen, 2001, 2003; Igarashi et al., 2003, 2006).
Mitochondrial Gly decarboxylase decomposes Gly to CO2, NH3,
and NADH and transfers a C1 unit to 5,10-methylene tetrahy-
drofolate. Ser hydroxymethyl transferase attaches this methylene
unit to the second Gly molecule to produce Ser. Ser diffuses
back to leaf peroxisomes for transamination by Ser-glyoxylate to
yield hydroxypyruvate, which is reduced by HPR and NADH
provided by peroxisomal MDH to form glycerate. Finally, stromal
glycerate kinase (GLYK) produces the Calvin cycle intermediate
3-phosphoglycerate (Figure 25) (Reumann and Weber, 2006;
Maurino and Peterhansel, 2010).

Molecular Identification of All Key
Photorespiration Enzymes

Photorespiration is an essential process in land plants, as evi-
dent from the conditionally lethal phenotype of mutants deficient

in the participating enzymes or transporters. However, the
photorespiratory pathway of C3 plants is inefficient in terms of
energy, carbon, and nitrogen usage (see below). To fill in the
knowledge gaps about photorespiratory enzymes and increase
plant biomass production, photorespiration research has been
revitalized recently, with major activities led by groups such as
the German research consortium PROMICS (www.promics.uni-
rostock.de). Major fundamental and applied biotechnological
knowledge has been gained in the past few years, as described
by several recent reviews (Foyer et al., 2009; Bauwe, 2010;
Maurino and Peterhansel, 2010).
Molecular identification of the core photorespiration enzymes

has been completed only recently. Using a candidate gene ap-
proach, the gene encoding phosphoglycolate phosphatase was
revealed based on the characteristic photorespiratory pheno-
type of the knockout mutant (i.e., nonviability in normal air but
normal growth under elevated CO2 concentrations) (Schwarte
and Bauwe, 2007). Contrary to the other core photorespiratory
enzymes, deletion of peroxisomal HPR1 does not lead to
ambient air sensitivity but does increase the stoichiometry of
photorespiratory CO2 release (Cousins et al., 2011). Identifica-
tion of a second HPR (HPR2) suggests the existence of an
efficient NADPH-dependent cytosolic bypass (Timm et al.,
2008). A recent study identified a third, chloroplast-localized
HPR with high specificity for glyoxylate; the triple mutant of
the three HPR genes shows increased growth retardation,
decreased photochemical efficiency, and reduced oxygen-
dependent gas exchange compared with the hpr1 hpr2 double
mutant (Timm et al., 2011).
The gene encoding the last missing enzyme of the C3 plant

photorespiratory cycle, GLYK, was identified from Arabidopsis;
its knockout mutant is unviable in normal air but able to grow
under elevated CO2 (Boldt et al., 2005). Contrary to that in C3

plants, maize (Zea mays) GLYK is redox regulated by an addi-
tional, C-terminal autoinhibitory domain, which forms a disulfide
bridge at night, inhibiting enzyme activity and rendering the
oxidized enzyme inactive (Bartsch et al., 2008).

Photorespiration as a Prime Target for Crop Improvement

Despite being a valuable salvage pathway, the photorespiratory
C2 cycle remains inefficient because it renders (1) suboptimal
conversion of fixed carbon in the form of phosphoglycolate into
phosphoglycerate (maximum of three of four C atoms [i.e.,
75%]), (2) loss of fixed N, and (3) loss of energy during glycolate
oxidation by the production of H2O2 rather than NAD(P)H.
Hence, the photorespiratory pathway, at least theoretically,
bears a high optimization potential in C3 plants, making it a
prime target for crop improvement for increased yield and bio-
mass production.
A bacterial glycolate oxidation pathway was introduced into

Arabidopsis chloroplasts for alternative conversion of glycolate
into glycerate, thereby shifting CO2 release from the mitochon-
drion to the chloroplast to increase CO2 concentration in the
vicinity of Rubisco and reduce its oxygenase activity. Indeed,
the transgenic lines showed enhanced growth (Kebeish et al.,
2007). To conserve the glycolate carbon in malate, transgenic
Arabidopsis plants overexpressing chloroplast-targeted GOX
and MLS were generated. The transgenic lines developed
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Figure 5. The Central Role of Leaf Peroxisomes in Photorespiration.

Photorespiration is compartmentalized among chloroplasts, leaf peroxisomes, mitochondria, and the cytosol. Eleven enzymes are directly involved:
Rubisco, phosphoglycolate phosphatases (PGP), GOX, catalase (CAT), Glu:glyoxylate aminotransferase (GGT), Ser:glyoxylate aminotransferase (SGT),
Gly decarboxylase (GDC), Ser hydroxymethyl transferase (SHMT), HPR, peroxisomal MDH (pMDH), and GLYK. Four enzymes (i.e., Glu synthase [GS],
Glu:oxoglutarate aminotransferase [GOGAT], and mitochondrial/chloroplast malate dehydrogenase [mMDH/cMDH]) are indirectly involved. For the
transport of photorespiratory intermediates, different translocators and a porin-like channel have been characterized biochemically (translocators,
green; porin-like channel, blue) or cloned (translocator, black). Photorespiratory metabolites are abbreviated as follows: RuBP, ribulose-bisphosphate;
3-PGA, 3-phosphoglycerate; and THF, tetrahydrofolate. (Adapted and reprinted from Reumann and Weber [2006], Figure 1.)
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oxidative stress lesions under photorespiratory conditions, most
likely due to enhanced H2O2 production in chloroplasts, but
showed enhanced growth under nonphotorespiratory con-
ditions (Fahnenstich et al., 2008; Maurino and Flügge, 2009). To
bypass the peroxisomal aminotransferases and Gly-dependent
ammonia production, transgenic tobacco (Nicotiana tabacum)
plants overexpressing bacterial glyoxylate carboligase and hy-
droxypyruvate isomerase were generated. However, only the
first enzyme was highly expressed in the transgenic plants,
which exhibited stress symptoms when exposed to air,
suggesting that some glyoxylate was directed into a deleterious
short circuit of the photorespiratory nitrogen cycle (de F.C.
Carvalho et al., 2011). These first attempts to optimize photo-
respiration are promising. However, because the photorespiratory
pathway is more tightly integrated into the whole plant primary
and secondary metabolism than previously hypothesized,
these manipulations also uncover technical challenges and
unexpected negative side effects and reveal the need for further
studies.

Although high CO2 levels reduce photorespiration, they often
lead to a decline in the plant’s nitrogen status. Indeed, atmo-
spheric CO2 enrichment reduced the efficiency of nitrogen use
(Rachmilevitch et al., 2004). This inhibition of nitrate assimilation
into organic nitrogen compounds may be largely responsible
for CO2 acclimation (i.e., the decrease in photosynthesis and
growth of plants conducting C3 carbon fixation after long
exposures to CO2 enrichment) (Bloom et al., 2010). Hence,
ammonium and nitrate availability will become increasingly
important in determining plant productivity as CO2 levels rise.

PEROXISOMAL TRANSPORTERS FOR METABOLITES
AND COFACTORS

Several peroxisomal metabolic pathways require an interplay
with other cellular compartments, including plastids, mitochon-
dria, and the cytosol. Consequently, a considerable number
of substrates, intermediates, end products, and cofactors must
be exchanged between peroxisomes and other cell compart-
ments. Their membrane passage is mediated by transport
proteins (Linka and Esser, 2012).

An ABC Transporter Importing the Substrates
for b-Oxidation

Fatty acids and other b-oxidation substrates are imported by the
peroxisomal ABC transporter protein CTS/PXA1/PED3 (Zolman
et al., 2001; Footitt et al., 2002; Hayashi et al., 2002); similar
transporters also exist in fungi and mammals (Theodoulou et al.,
2006). CTS/PXA1/PED3 was independently isolated from
several forward genetic screens (hence, its multiple names),
underlining its pleotropic role in growth and development (re-
viewed in Theodoulou et al., 2006). This transporter plays a
crucial role in (1) storage oil mobilization in seedlings and
probably pollen (Zolman et al., 2001; Footitt et al., 2002, 2007;
Hayashi et al., 2002), (2) turnover of membrane lipids, especially
under carbon and energy starvation (Kunz et al., 2009; Slocombe
et al., 2009), (3) JA biosynthesis (Theodoulou et al., 2005), (4) auxin

biosynthesis (Zolman et al., 2001; Hayashi et al., 2002; Strader
et al., 2010), (5) seed coat rupture during seed germination (Kanai
et al., 2010), and (6) efficient fertilization in female reproductive
tissue (Footitt et al., 2007).
CTS/PXA1/PED3 is a full ABC transporter that comprises two

nucleotide binding domains (NBDs) providing the driving force
for transport and two TMDs involved in substrate recognition
and translocation. The transport cycle requires intramolecular
communication between NBDs and TMDs, and modeling of
CTS/PXA1/PED3 suggests that an interaction between NBD1
and TMD2 is critical for protein function. Mutation analysis
shows distinct roles of the two NBDs in vivo (Dietrich et al.,
2009).
A point of debate is whether CTS/PXA1/PED3 transports free

fatty acid or CoA esterified substrates. Free fatty acids are
activated to acyl-CoAs by acyl-CoA synthetases present in
multiple compartments and transporter mutants accumulate
long-chain acyl-CoAs (Footitt et al., 2002). The two peroxisomal
long-chain acyl-CoA synthetases, LACS6 and LACS7, are es-
sential for fatty acid mobilization and seedling development
(Fulda et al., 2004). The S. cerevisiae equivalent transporter
Pxa1p/Pxa2p transports acyl-CoAs (Verleur et al., 1997). The
Arabidopsis CTS/PXA1/PED3 protein can complement the yeast
pxa1 pxa2 double mutant and support the metabolism of a wide
range of fatty acid substrates that differ in chain length and
degree of unsaturation (Nyathi et al., 2010). Furthermore, the
ATPase activity of CTS/PXA1/PED3 is stimulated by acyl-CoAs
but not appreciably by free fatty acids, which also supports the
notion of acyl-CoAs as substrates (Nyathi et al., 2010). As pro-
posed by Fulda et al. (2004), one possible explanation of this
discrepancy is that acyl-CoAs are the substrate, but the CoA is
removed during transport and acyl-CoA is resynthesized in the
peroxisome by LACS6 and/or LACS7. Resolution of this issue
will require in vitro transport studies using reconstituted CTS/
PXA1/PED3 protein; however, this technically challenging task
has not yet been achieved.

An ATP Transporter Supplying Peroxisomes with ATP

Arabidopsis PNC1 and PNC2 are members of the mitochondrial
carrier family (Palmieri et al., 2011) and function as peroxisomal
adenine nucleotide carriers by importing cytosolic ATP into
peroxisomes to drive energy-consuming reactions, such as the
activation of b-oxidation substrates. Repression of both PNC
genes by RNAi severely impairs b-oxidation during seed storage
oil mobilization (Arai et al., 2008a; Linka et al., 2008), indicating
that the PNC-mediated transport pathway is the primary source
for peroxisomal ATP and that another major ATP-generating
system, such as substrate-level phosphorylation, may not exist
in peroxisomes.
Recombinant PNC proteins function as antiporters that ex-

change ATP for ADP or AMP (Linka et al., 2008). In b-oxidation,
PNCs import ATP in exchange for AMP released by acyl-CoA
synthetases in the matrix. The influx of ATP against ADP is re-
quired, for instance, to support the activities of kinases, which
have been detected by recent proteomic analysis (Reumann
et al., 2007, 2009). One future task will be to elucidate other roles
of the PNC proteins in supplying ATP-dependent reactions
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beyond b-oxidation. Moreover, it is unknown how peroxisomes
compensate their net transfer of negative charges (ATP(4-)/
AMP(2-) or ATP(4-)/ADP(3-)) across the membrane and how the
nucleotide pool in plant peroxisomes is loaded in the first place.

PXN Serves as a Peroxisomal NAD+ Transporter

The peroxisomal NAD+ transporter PXN is an abundant protein
of the peroxisomal membrane identified as PMP38 by in-
dependent proteomic approaches (Fukao et al., 2001; Reumann
et al., 2007, 2009; Eubel et al., 2008) and from a screen for
mutants with abnormal peroxisome morphology (Mano et al.,
2011). This protein exhibits high sequence similarity to the
PNCs; however, recombinant Arabidopsis PXN transports NAD+

in vitro in exchange for NADH, AMP, or ADP (Bernhardt et al.,
2012). Considering that NAD+ is synthesized de novo in the
cytosol (Noctor et al., 2006; Hashida et al., 2009) and that the
free cytosolic NAD+ concentration is estimated to be 0.6 mM
(Igamberdiev and Gardeström, 2003), the physiological function
of PXN presumably is to mediate an NAD+

(in)/AMP(out) antiport,
like the plastidic and mitochondrial NAD+ transporters (Palmieri
et al., 2009). A net NAD+ influx can be achieved either by an
unknown adenylate uniporter reimporting cytosolic AMP or
a peroxisomal reaction generating AMP to refill the peroxisomal
AMP pool. Thus, PXN might provide the cofactor NAD+ to nu-
merous peroxisomal redox enzymes.

Surprisingly, Arabidopsis pxn loss-of-function mutants do not
show severe growth defects but exhibit a subtle metabolic
phenotype; fatty acid degradation is slowed down in the mutant
seedlings (Bernhardt et al., 2012). It is possible that an alterna-
tive NAD+ import system exists in the peroxisomal membrane.
Alternatively, plant peroxisomes may already contain sufficient
NAD+ when preperoxisomal vesicles bud from the ER, or NAD+

may be taken up with NAD+-dependent enzymes from the cy-
tosol via protein import.

Diffusion of Carboxylic Acids Facilitated by a Peroxisomal
Pore-Forming Channel

Based on enzyme latency analyses and electrophysiological
experiments using membranes isolated from plant, mammalian,
and yeast peroxisomes, peroxisomal pore-forming channels
(porins) have been postulated for the passive diffusion of a
broad spectrum of small solutes (Labarca et al., 1986; Lemmens
et al., 1989; Reumann et al., 1995, 1997, 1998; Antonenkov
et al., 2005, 2009; Grunau et al., 2009). The peroxisomal porin-
like channel in spinach (Spinacia oleracea) leaves and germi-
nating castor beans (Ricinus communis) is anion selective and
facilitates the diffusion of small carboxylic acids, such as inter-
mediates in photorespiration (e.g., glycolate, malate, Glu, and
glycerate), b-oxidation, and the glyoxylate cycle (succinate and
Asp) (Reumann et al., 1995, 1996, 1997, 1998). The current
challenge is to assign genes that encode this observed channel
activity.

Two different transporter protein classes might be considered
as prime candidates for the plant peroxisomal porin channel: (1)
the voltage-dependent anion-selective channel (VDAC) family,
and (2) the PMP22 family. VDACs are large nonspecific diffusion

pores with sieve properties in the outer mitochondrial membrane
that are involved in metabolite transport (Colombini, 2004).
Unexpectedly, proteomic approaches revealed VDAC homologs
in cucumber (Cucumis sativus) and soybean (Glycine max)
peroxisomes, and their localization was confirmed by im-
munogold labeling and fluorescence microscopy using GFP
fusion proteins (Corpas et al., 2000; Arai et al., 2008b). The
mouse PMP22 homolog forms a channel for small organic acids
when heterologously expressed in insect cells (Rokka et al.,
2009). Arabidopsis PMP22 is present in peroxisomal mem-
branes (Tugal et al., 1999; Murphy et al., 2003), yet its bio-
chemical function remains unknown. Electrophysiological
experiments with the respective recombinant proteins may
elucidate whether peroxisomal VDAC homologs and/or Arabi-
dopsis PMP22 exhibit channel activities and mediate the
transfer of metabolites across the peroxisomal membrane.

UNRAVELING THE COMPLETE ARRAY OF PLANT
PEROXISOME FUNCTIONS

Without comprehensive knowledge of all metabolic reactions
of plant peroxisomes, biochemical pathway manipulations
have a high probability of failure due to overlapping roles of
individual enzymes and shared segments of pathways. The role
of b-oxidation in the production of IAA and JA is a case in point.
In addition to genetic screens described earlier, proteomics is
another powerful tool to catalog new functions for peroxisomes
and help to provide a more rational basis for the future redesign
of peroxisome metabolism.

Experimental Proteomics

The proteome of plant peroxisomes varies between plant tissues,
developmental stages, and environmental conditions. To define the
complete proteome, researchers have focused on soluble matrix
proteins from Arabidopsis, soybean, and spinach (Fukao et al.,
2002, 2003; Reumann et al., 2007, 2009; Arai et al., 2008a, 2008b;
Eubel et al., 2008; Babujee et al., 2010). More than 100 putatively
novel peroxisomal proteins, including many low-abundance and
regulatory proteins, were identified. Because plant peroxisomes
are difficult to separate from mitochondria and plastids, valida-
tion of peroxisome targeting using methods such as transient
expression of the candidate proteins tagged by a GFP variant
generally is required. Many new Arabidopsis proteins have been
established in the past few years by the peroxisome community,
with major contributions from the Arabidopsis Peroxisome 2010
project (www.peroxisome.msu.edu; reviewed in Kaur et al., 2009;
Kaur and Hu, 2011; Reumann, 2011).
Protein identification by experimental proteomics is only the

first step toward characterizing protein functions and the func-
tional diversity of plant peroxisomes. Computational tools,
including protein annotations deduced from sequence homol-
ogy to known proteins, identification of conserved domains and
motifs, microarray-based expression data analysis, and phylo-
genetic analysis, give valuable hints to the physiological function
of the novel proteins. The physiological functions of a number of
enzymes and metabolic pathways indicated by proteomic data
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have been verified. Examples include the oxidative pentose
phosphate pathway (Meyer et al., 2011), betaine aldehyde
dehydrogenase (Missihoun et al., 2011), SDRa (Wiszniewski
et al., 2009), and the bifunctional transthyretin-like protein involved
in purine catabolism and S-allantoin biosynthesis (Lamberto et al.,
2010), which have significantly broadened our knowledge of per-
oxisome metabolism.

Despite this success, experimental peroxisomal proteome
studies are limited to major plant tissues and organs and by
technological sensitivity and peroxisome purity. Additionally,
only a few plant species are suitable for peroxisome isolation.
The success of future experimental proteome research of plant
peroxisomes relies on sensitive quantitative mass spectrometry
technology to efficiently subtract contaminants from peroxi-
some fractions, isotope tagging methodologies, such as the
LOPIT method (Dunkley et al., 2004), and efficient enrichment
strategies to affinity purify peroxisomes or peroxisome vesicles
by tagging of selected membrane proteins (Reumann, 2011).

The Prediction of Matrix Proteins from Genome Sequences

The prediction of plant peroxisomal matrix proteins from
genome sequences combined with in vivo targeting validations
is an alternative, large-scale approach that complements ex-
perimental proteome research (Reumann, 2011). Prediction
methods, such as PeroxiP and the PTS1 predictor, and data-
bases, such as PeroxisomeDB, were developed to predict and
assemble PTS1 proteins from primarily metazoan genomic
sequences (see references in Lingner et al., 2011). However,
high-accuracy prediction tools have long been lacking for plants.
Because ;80% of matrix proteins enter plant peroxisomes by
the PTS1 import pathway (Reumann, 2004), prediction algorithms
for PTS1 proteins are expected to significantly contribute to
defining the plant peroxisomal proteome.

PTS1 proteins carry either a canonical (major) or noncanonical
PTS1 tripeptide. Proteins with major PTS1s, such as SKL> and
ARL> (> indicates the C-terminal end of the protein), often can
be predicted to be peroxisomal based solely on the PTS1 tri-
peptide (Reumann, 2004) because major PTS1s are generally
sufficient for peroxisome targeting, provided that the PTS1
tripeptide is surface exposed and not overruled by targeting
signals for other compartments. Simple tripeptide-based pre-
dictions of Arabidopsis PTS1 proteins thus are relatively
straightforward, and candidate proteins have been assembled in
the database AraPerox (www3.uis.no/araperoxv1; Reumann,
2004; Reumann et al., 2004). The challenge is the prediction of
proteins with noncanonical PTS1 tripeptides, such as ASL>,
SLM>, and SRY>, because (1) their PTS1 tripeptide identities are
insufficiently known and are more diverse than previously
thought, and (2) noncanonical PTS1 tripeptides generally are
weak and require auxiliary targeting-enhancing patterns located
immediately upstream for function. Such enhancer patterns
have been poorly defined for plants. Hence, among many pro-
teins with the same noncanonical PTS1 tripeptide, only a few are
indeed peroxisome targeted, and correct computational pre-
dictions are difficult. For instance, prediction tools developed for
metazoa generally fail to correctly predict plant peroxisomal
proteins with noncanonical PTS1 tripeptides (Lingner et al.,

2011). The accuracy of prediction algorithms relies on the size,
quality, and diversity of the underlying data set of example se-
quences that is used for model training and limited preexisting
prediction algorithms (Emanuelsson et al., 2003; Bodén and
Hawkins, 2005; Hawkins et al., 2007).
To develop prediction models specifically for plants, 60

known Arabidopsis PTS1 proteins, including low-abundance
proteins with noncanonical PTS1s identified by proteome anal-
yses, were used to generate a data set of more than 2500 ho-
mologous plant sequences, primarily from EST databases. Two
prediction methods were developed, both of which showed high
accuracy on example sequences. Due to the omission of a PTS1
tripeptide filter, the models were able to correctly infer novel
PTS1 tripeptides and even include novel residues. In combina-
tion with in vivo subcellular targeting analyses, 23 newly pre-
dicted PTS1 tripeptides were established for plants and several
previously unknown Arabidopsis PTS1 proteins identified. This
prediction method (i.e., the position weight matrices model)
predicts 389 Arabidopsis gene models to encode peroxisomal
PTS1 protein variants; ;70% of them are not known to be
peroxisomal. Some confirmed peroxisomal PTS1 proteins are
located in a gray zone below the prediction threshold, indicating
that the number of Arabidopsis peroxisomal proteins might
exceed 400 to 500 (Lingner et al., 2011).
Despite good accuracy, prediction algorithms can be improved

by increasing the representation of noncanonical PTS1 protein
sequences in the underlying data set. By iterative experimental
validation of newly predicted Arabidopsis proteins, identification
of homologous ESTs, data set expansion with the addition
of positive sequences, and improvement of the discriminative
machine learning methods, the prediction accuracy can be further
increased. Finally, we need to develop prediction algorithms for
plant PTS2 proteins, which are more challenging due to the
smaller number of example sequences and the variable positions
of the PTS2 nonapeptide in the N-terminal domain.

PERSPECTIVES

Recent years have witnessed tremendous progress in under-
standing the complexity of plant peroxisomes in their dynamic
biogenesis and function. However, many questions about per-
oxisomes remain unanswered, and new strategies and technol-
ogies are needed to address these issues.
A major challenge is to elucidate whether de novo synthesis

of peroxisomes actually occurs at the ER in plants and, if so,
how this process compares to those in other kingdoms. Nota-
bly, these types of questions may begin to be addressed by
studies of viruses that specifically exploit peroxisomes during
their infection cycle (reviewed in Mullen and Gidda, 2009;
Lazarow, 2011). Certain plant RNA tombusviruses, for instance,
appear to engage a pER-destined retrograde vesicle sorting
pathway (McCartney et al., 2005). While the functional signifi-
cance of this pathway and its existence in noninfected plant
cells have not been determined, speculation that it represents
an additional level of connectivity between peroxisomes and the
ER is intriguing. Likewise, the sharing of division factors for
peroxisomes, mitochondria, and chloroplasts suggests that
these functionally connected organelles may also coordinate
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the remodeling of their abundance as another mechanism
for interorganellar communication. Further characterization of
dual-localized proteins may shed light on these processes.
Additional pathways that control peroxisome abundance, such
as those regulated by the dual-targeted PMD1 or by the ac-
cumulation of acyl-CoAs and other molecules, need to be in-
vestigated further.

Many null mutants of peroxins appear to be gametophytic or
embryo lethal. Alternative approaches, such as chemical ge-
netics, can be valuable in the dissection of essential processes
(Hicks and Raikhel, 2009). A group of benzimidazole compounds
have been identified to differentially disrupt PTS1 protein import
at nanomolar concentrations, whereas PTS2 import inhibition is
only seen after long incubation at micromolar concentrations
(Brown et al., 2011). Protein import in general is poorly un-
derstood at the mechanistic level, and kinetic and quantitative
data on protein interactions within the import pathway would
help in building and testing models.

Additional studies of the enzymes acting in peroxisomal
processes are required to understand the complexity of the
pathways. b-Oxidation pathways for straight-chain fatty acids
and other diverse substrates have been defined, although spe-
cific isozyme assignments remain in progress, and questions
of regulation must be addressed. JA and IAA are generated in
peroxisomal reactions, but knowledge on key biosynthetic en-
zymes and how these hormones are exported to the cytosol is
missing. In addition to pathways discussed in this review, re-
cently uncovered pathways, including terpene (isoprenoid) and
biotin biosynthesis pathways, must be further explored to
identify the extent of peroxisomal involvement. For example, the
mevalonic acid pathway that generates isoprenoid precursors of
terpenes was long placed in the cytosol/ER, but recent work has
localized at least four biosynthetic enzymes to peroxisomes
(Reumann et al., 2007; Sapir-Mir et al., 2008; Simkin et al., 2011;
Thabet et al., 2011). The relative contributions of this pathway to
the terpene pool and the regulation of intermediate transport
between the cytosol, peroxisomes, and the ER can now be in-
vestigated. The complex subcellular distribution of many of
these pathways leads to further questions. For example, when
and why did specific pathway steps shift to peroxisomes? How
are peroxisomal pools of hormones, coenzymes, and cofactors
regulating metabolic activities within peroxisomes or the cell as
a whole? A complete description of the pathways and knowl-
edge of all the enzymes will facilitate our understanding of the
roles of peroxisomes within a cell.

To uncover the full array of peroxisomal functions and the
dynamics of the peroxisomal proteome, technologies need to be
improved to identify low-abundance and membrane proteins
and peroxisomal proteins present in specific tissue or cell types
and under certain environmental conditions. Although vali-
dations are required, the prediction that the number of plant
peroxisomal proteins may exceed 400 suggests there are many
additional roles of peroxisomes yet to be realized. The necessity
for plants to cope with numerous abiotic and biotic stresses
appears to have been a major driving force in the evolution of
adaptation mechanisms in peroxisomes. Plant peroxisomes
thereby emerge as a new model even for fungi and mammals in
understanding and exploring stress adaptation functions.

In this postgenomic era, systems approaches using tran-
scriptomics, genomics, proteomics, metabolomics, and com-
putational biology will assist us in establishing a complete map of
peroxisomal pathways and their regulatory networks. In addition
to efforts aimed at engineering plants for improved biomass
production by manipulating photorespiration and lipid metabo-
lism, it is also time to translate peroxisomal research from refer-
ence plants to agronomically important crops. The extensive
conservation of the peroxisomal proteome of Arabidopsis and the
predicted rice peroxisomal proteome (Kaur and Hu, 2011) sug-
gests that knowledge gained from model plants can aid in the
study of peroxisomes in other prominent cereal crops.
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