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Dissertation abstract: 

Tropical forests store  40% of terrestrial carbon, process six times as much carbon as is 

released through fossil fuel use, and are epicenters of biodiversity. Despite all that we 

know about tropical forests, there remains much to discover about variation in ecological 

strategies, differences in the way species acquire limited resources through dissimilarities 

in construction and allocation patterns. We also know little as to how this variation 

shapes the resilience of tropical tree communities to disturbance. These forests are 

increasingly threatened by global change stressors, such as anthropogenic land-use and 

climate change. Recent advances in ecological literature show that more insight into 

differences in ecological strategies among tropical forest species can be gained by going 

beyond species distributions to also examine functional trait variation. Functional traits 

are morphological and physiological traits that reflect allocation strategies thought to be 

important determinants of fitness. In the first two chapters of my dissertation, I quantified 

wood density and anatomical variation at multiple scales, and related this variation to 

ecological strategies of tropical forest tree species. The last two chapters examined 

effects of historical disturbance on the composition and temporal dynamics of tropical 

forest communities. In addition to wood density, other traits studied in these later 

chapters were maximum height and diameter. Across my dissertation, the scales spanned 

ranged from intra-individual, intra-specific, interspecific, community and temporal levels, 

across two tropical forests, the 50 ha CTFS plot in BCI, Panama, and the 5.2 ha long-term 

forest plots in Kibale National Park, Uganda. With the functional trait approach, my 

dissertation demonstrated several novel patterns, including 1) linear radial increases in 
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wood density are typical of fast-growth high mortality tropical tree species, while slow-

growth low mortality species show a range of radial changes in wood density including 

non-linear trends 2) greater variation in ecological strategies when wood density is 

decomposed into anatomical components, with functional consequences for species 

growth and mortality of saplings but not adult trees, 3) persistence of the effects of 

selective logging on the taxonomic and structural composition but not functional 

composition of a tropical forest 45 years after, and 4) inadequacy of classical 

successional models that assume recovery to pre-disturbance conditions for predicting the 

effects of selective logging on tropical forest dynamics.
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Abstract 

 Premise of the study: Wood specific gravity (WSG) mediates an interspecific 

tradeoff between growth and mortality and is a key measure for estimating carbon 

stocks. Most studies use species mean values to represent WSG, despite variation 

at different levels of biological organization. We examined sources of variation in 

WSG across four nested scales (segments within core, cores within trees, trees 

within species, and species), compared the pattern of radial variation in WSG 

among species differing in growth strategies, and investigated the effect of WSG 

radial variation on above-ground biomass estimates.  

 Methods: We took two perpendicular cores from six individuals each of 20 

tropical tree species representing a broad range of mean WSGs and growth-

mortality strategies in a lowland tropical moist forest in Panama. Cores were 

divided into 1-cm segments, and WSG was determined for each segment.  

 Key results: The bulk of the total variance in WSG was dominated by interspecies 

variation (88%) while variation due to measurement error, segments within cores 

and cores within trees (8%) was minimal. Radial variation in WSG, defined as 

change in WSG with increasing distance from the pith, was significant in 17 of 

the 20 species and included significant monotonic increases in six species and 

non-monotonic patterns in eleven species. Radial variation in WSG resulted in a 

small but significant bias in above-ground biomass estimates.  
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 Conclusions: Radial variation in WSG is related to a species’ growth strategy, and 

though minimal relative to interspecific variation in WSG, can cause a downward 

bias when not incorporated into above-ground biomass estimates.  

Keywords: above-ground biomass; growth-mortality trade off; Panama; wood density 

Introduction 

Trees in closed canopy forests exhibit a tradeoff between growth and mortality rates 

(Pacala et al. 1996; Gilbert et al. 2006; Poorter et al. 2008; Wright et al. 2010).  At one 

extreme, light-demanding species are characterized by rapid growth rates under favorable 

light conditions but high mortality rates when shaded. At the other extreme, shade 

tolerant species are characterized by slow growth and low mortality rates under all light 

conditions. Wood specific gravity (WSG), a unit-less ratio of wood density compared to 

the density of water (Williamson and Wiemann 2010b), is well correlated with this 

growth-mortality tradeoff (Wright et al., 2010). Low WSG reduces wood construction 

costs enabling rapid growth rates in light-demanding species, while high WSG increases 

physical strength and pest resistance enabling low mortality rates at the price of greater 

construction costs and slower growth rates in shade-tolerant species (van Gelder et al., 

2006; Chave et al., 2009).  

Wood specific gravity can vary radially from pith to bark within individual trees 

(Wiemann and Williamson 1988, 1989; Woodcock and Shier, 2002; Nock et al., 2009; 

Hietz et al., 2013). This radial variation may be understood by considering how trees 

grow. As cambial activity adds new wood towards the outer edge of the tree, wood 
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corresponding to younger, earlier ontogenetic stages remains closer to the pith. Radial 

variation may reflect changing environmental conditions as well as changing demands 

placed on wood as trees age and/or increase in size. Radial variation in WSG estimated as 

the slope of WSG regressed on distance from pith is typically strongly correlated with 

tree age and not tree size, suggesting ontogenetic control of radial variation in WSG 

(Rueda and Williamson 1992; De Castro et al. 1993; Nock et al. 2009; Williamson and 

Wiemann 2010a, 2011; Williamson et al. 2012).  

Radial variation in WSG may also be associated with the growth-mortality 

tradeoff (Woodcock and Shier, 2002). The growth-mortality tradeoff defines a species’ 

life style or growth strategy, and radial variation in WSG can facilitate growth strategies 

through flexible responses to changing conditions and demands through ontogeny. 

Particularly for species on the fast growth, high mortality end of the growth-mortality 

spectrum, radial variation in WSG allows faster growth at juvenile stages such that plants 

can capitalize on light gaps and then construct the denser wood needed to withstand wind 

and other stressors at later and taller stages. 

Four patterns of radial variation in WSG have been described in the literature. 

Radial increases from pith to bark result in a low-density core surrounded by a high-

density exterior (Panshin and De Zeeuw 1980; Wiemann and Williamson 2012). This 

maximizes strength by placing the strongest material on the outside (Niklas 1997). 

Strength is also gained via an increased cross sectional area. In contrast, radial decreases 

from pith to bark result in a high-density core surrounded by a low-density exterior 

(Panshin and De Zeeuw 1980). Strength is gained mainly by an increased cross sectional 
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area (Larjavaara and Muller-Landau, 2010). The two remaining patterns of radial 

variation in WSG are non-linear. One non-linear pattern may involve an initial high 

WSG, followed by a decline, and then a steady increase to a constant or slowly increasing 

WSG (Gartner 1995). The second non-linear pattern involves an initial low WSG near the 

pith, followed by an increase, and then a leveling off or decline in rate of increase in 

WSG (Gartner 1995). The strongest documented radial gradients in WSG are increases 

from pith to bark among light-demanding tree species of wet tropical forests (Wiemann 

and Williamson 1988, 1989; Woodcock and Shier 2002; Williamson and Wiemann 

2010a).   

In addition to the potential fitness benefits for individual plants, radial variation in 

WSG has ecosystem-level consequences. Wood specific gravity, together with stem size, 

determines the amount of carbon sequestered in woody tissue (Chave et al., 2009; 

Fearnside 1997). WSG varies from about 0.08 to 1.39 among tree species (Zanne et al. 

2009), meaning species differ seventeen fold in the amount of carbon they store at the 

same size. To accurately assess carbon pools and fluxes, it is important to understand the 

sources of WSG variation. This is especially pertinent for tropical forests because they 

harbor a huge diversity of tree species and are an important storehouse for carbon.   

Most studies of radial gradients in WSG have focused on commercially important 

species or fast-growing pioneer species (Lachenbruch et al. 2011), while maximizing 

sampling replication across and within species. Here, we selected 20 canopy tree species 

from a wet tropical forest on Barro Colarado Island (BCI), Panama, including 

representatives of the full spectrum of growth and mortality rates (fast-growth, high 
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mortality to slow-growth, low mortality species), as well as the full range of average 

WSG (low to high WSG species) for this site, and included replicate samples for each 

individuals. Our goal was to quantify variation in WSG and address the following 

questions:  

1. What is the contribution to overall variation in WSG of variation among segments 

within cores, among cores within individuals, among conspecific individuals and 

among species? 

2. What is the contribution to overall variation in radial gradients in WSG of 

variation among cores within individuals, among conspecific individuals and 

among species? 

3. What is the pattern of radial variation in WSG for each species?  

4. Does radial variation in WSG vary among species with different growth-mortality 

strategies and/or different initial WSG values?  

5. Does radial variation in WSG affect estimates of above-ground carbon storage? 

Materials and methods 

Study site—The Barro Colorado Nature Monument, Panama, supports 59 km
2
 of 

tropical moist forest in the Holdridge Life Zone System. Annual rainfall averages 2600 

mm with 10% falling during a four-month dry season, and annual temperature averages 

27
o
C (Leigh 1999).  



7 
 

Species positions on the growth-mortality tradeoff—Relative growth and 

mortality rates were determined for saplings (1 cm ≤ diameter at breast height (DBH) ≤ 5 

cm) in a previous study for six censuses between 1982 and 2005 of the 50-ha Forest 

Dynamics Plot located on Barro Colorado Island (BCI) (9° 09' 17" N, 79° 50' 53" W) in 

the Barro Colorado Nature Monument (Wright et al. 2010). Relative growth rates under 

favorable conditions equaled 95
th

 percentile relative growth rates (RGR95; see Table 1 for 

definition of acronyms). Mortality rates under unfavorable conditions equaled mortality 

rates of the 25% of individuals with the slowest relative growth rates in the previous 

census interval (MRT25). Using the function princomp in the stats package in R, we 

performed a principal components analysis on RGR95 and MRT25 and extracted species 

scores along the first component axis, to form the variable RGR.MRTSAP.  

Species regeneration in gaps— To further describe the species, we extracted the 

total number of recruits and the number located in low canopy sites or recent tree-fall 

gaps in the 50-ha plot for 15 of our 20 species from Wright et al. (2003). We used a 

Binomial Test to compare these numbers with the proportion of the 50-ha plot 

characterized by a low canopy (0.127) obtained from Welden et al. (1991).   

Wood specific gravity—We selected 20 species that were widely distributed 

across the RGR.MRTSAP axis. We collected two cores from six adult individuals 

(minimum DBH = 20.5 cm) of each of these species (240 total cores) from forests greater 

than 100 years old located on the Gigante (9
o 
07' 54" N, 79

o 
50' 28" W) and Buena Vista 

(9° 11' 12" N, 79° 50' 32" W) peninsulas in the Barro Colorado Nature Monument 

between July 14 and August 12, 2010. Diameter at breast height was determined for each 
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individual, and a 5 mm diameter increment borer was used to extract two horizontal cores 

perpendicular to one another and from pith to bark. Cores were sealed in plastic straws, 

transported on ice to the nearby laboratory on BCI, and divided into 1-cm segments. For 

each 1-cm segment, fresh volume was measured with the water displacement method and 

dry mass was determined after drying to constant mass at 100
o
C in a convection oven. 

WSG was calculated as dry mass divided by fresh volume divided by the density of water 

(ρWATER = 1 g/cm
3
; Williamson and Wiemann 2010b), and distance to pith was recorded 

for each segment. 

Analyses—Variance Components Analysis was used to evaluate the contribution 

of variation in WSG among segments within cores, cores within individuals, conspecific 

individuals and species to overall variation in WSG (Introduction: question 1). A random 

effects model with three nested levels of random effects (Species/Individuals/Cores) was 

used to estimate the proportion of variation in WSG associated with species, individuals 

and cores. The residual variation included variation associated with segments plus 

measurement error.  

We used two metrics to quantify radial variation in WSG for each core: 

1. Radial change (RO-I) equaled WSGO minus WSGI, where WSGI is mean WSG for the 

three 1-cm segments nearest to the pith (inner wood) and WSGO is mean WSG for the 

three 1-cm segments nearest to the bark (outer wood) following Wiemann and 

Williamson (1989). RO-I captures the difference between inner and outer wood.  
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2. Radial variance (RVAR) equaled the variance of WSG for 1-cm segments from each 

core.  RVAR quantifies variation in WSG along a core, but not radial gradients. 

A second variance components analysis evaluated the contributions of variation 

among cores within individuals, conspecific individuals within species and species to 

variation in RO-I and RVAR (Introduction: question 2). A random effects model with two 

nested levels of random effects (Species/Individuals) was used to estimate the proportion 

of variation in radial gradient metrics associated with species and individuals. The 

residual variation included variation associated with cores plus measurement error.  

We used linear mixed effects models to evaluate the pattern of radial variation in 

WSG for each species (Introduction: question 3). The fixed effect of radial position was 

quantified as distance to the pith (radial distance) for each segment. Because cores varied 

in length, radial distance was scaled to unit length by dividing each radial distance value 

by the length of the core to obtain proportional radial distance. The random effect 

incorporated the nested nature of the WSG data with segments nested within cores and 

cores nested within individuals for each species (random = ~1|Individual/Core). Linear 

mixed models are appropriate for nested data because they unambiguously model 

correlations among observations from the same unit (i.e., core and individual) by 

incorporating random effects in addition to the fixed effects (i.e., proportional radial 

distance) of interest. We evaluated mean, linear, and quadratic models, respectively, as 

follows:  

𝑊𝑆𝐺 ~ 𝛽0         (Eq. 1) 
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𝑊𝑆𝐺 ~𝛽0  +  𝛽1 · 𝑅𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                                       (Eq. 2) 

𝑊𝑆𝐺 ~ 𝛽0  +  𝛽1 · 𝑅𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +  𝛽2 · 𝑅𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2            (Eq. 3) 

where β0, β1, and β2 are fitted coefficients.  

We used Akaike’s Information Criterion, corrected for finite sample sizes (AICc), 

which penalizes models with additional parameters, to select the best fit model (Burnham 

and Anderson 2002). We followed the general rule of thumb that ∆AICc ≤ 2 indicates no 

significant difference between models, and so the simpler model with fewer parameters is 

preferred. Larger ∆AICc values indicate that the model with the minimum AICc value had 

the best fit, with ∆AICc >10 providing overwhelming evidence for the model with the 

minimum AICc value. We used the lme function in the nlme package in R to perform 

these analyses (Pineheiro et al. 2009) and the aictab function in the AICcmodavg package 

to obtain ∆AICc values (Mazerolle 2013). 

When the mean (Eq. 1) or the linear (Eq. 2) model provided the best fit for a 

species, the pattern of radial variation was unequivocal. When the quadratic model (Eq. 

3) provided the best fit, we next determined whether the inflection point at which the 

WSG-radial distance slope equals zero (critical radial distance) fell within the range of 

possible values of proportional radial distance (zero to one). Setting the derivative of Eq. 

3 equal to zero and rearranging,  

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
−𝛽1

2 · 𝛽2
⁄       (Eq. 4) 

  We then calculated a 95% confidence interval (CI) for critical radial 
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distance by parametric bootstrapping which generates a random sample from a known 

distribution that best approximates the data and calculates the test statistic of interest 

(critical radial distance). We used the rmvnorm function in the mvtnorm package in R 

(Genz et al. 2012), with inputs β1, β2, and their variances and covariance estimated by the 

quadratic regression model, to implement the parametric bootstrap. The lower and upper 

confidence limits were extracted at the 0.025 and 0.975 quantiles of the bootstrapped 

distribution of critical radial distance values. Finally, we compared observed critical 

radial distances and their 95% CIs with the range of possible proportional radial distance 

values, which is zero to one. We concluded that the radial gradient is curvilinear if the 

95% CI fell entirely within the observed range (CILOWER>0 and CIUPPER<1), 

monotonically increasing (β1>0) or decreasing (β1<0) if the 95% CI fell entirely outside 

the observed range (CIUPPER <0 or CILOWER >1), or uncertain if the 95% CI fell partially 

outside the observed range (CILOWER<0 or CIUPPER>1).  

To determine whether radial variation in WSG varies with species positions on 

the growth-mortality tradeoff (RGR.MRTSAP) or with initial, juvenile WSG (WSGI) 

(Introduction: question 4), we grouped the tree species into three categories based on the 

form of the WSG-radial distance relationships. We then carried out a linear discriminant 

analysis using the lda function in the MASS package in R (Venables and Ripley 2002). 

Linear discriminant analysis tests the extent to which a set of quantitative descriptors 

(predictors) can explain an independently pre-determined grouping that forms the 

qualitative response variable (Legendre and Legendre 2012). The response variable was 

the form of the WSG-radial distance relationship, while the quantitative descriptors were 
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WSGI and RGR.MRTSAP. To test for the overall significance of the linear discriminant 

model, we used Wilks’ lambda to compare differences in RGR.MRTSAP and WSGI 

among the predefined groups of WSG-radial distance relationship. Wilks’ lambda tests if 

groups differ significantly in the position of their centroids, producing values ranging 

from near 0 (maximum dispersion of group centroids) to 1 (no dispersion among groups) 

(Legendre and Legendre 2012).  

Lastly, we explored the effect of radial variation in WSG on above-ground 

biomass (Introduction: question 5). Above-ground biomass is estimated as the product of 

WSG and tree volume (Chave et al. 2005). For a fixed volume, relative values of WSG 

determine relative values of above-ground biomass. Thus, we compared mean WSG 

(WSGMEAN) calculated as the average WSG over all segments for a species with area 

weighted mean WSG (WSGA) calculated as follows: 

𝑊𝑆𝐺𝐴 =  
1

𝜋 × 𝐷𝑃𝑚𝑎𝑥
2 × ∫ 2 × 𝜋 × 𝐷𝑃 × 𝑊𝑆𝐺̂

1

𝐷𝑃=0
  (Eq. 5) 

where 𝑊𝑆𝐺̂ represents the best fit relationship between WSG and radial distance 

provided by equation 1, 2 or 3. Muller-Landau (2004) explains equation 5, and 

Williamson and Wiemann (2010b) apply it to linear radial gradients. A paired t-test was 

used to compare WSGMEAN and WSGA.  

All analyses were conducted in R version 2.15.1 (R Core Team, 2012).  
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Results 

We collected 240 cores from 120 individuals of 20 species, 19 genera and 12 

families (Table 2).  WSGMEAN varied 3.4 fold from 0.260 for Poulsenia armata to 0.883 

for Tabebuia guayacan. With the exception of Tabebuia guayacan, recruitment was 

significantly positively associated with recent tree-fall gaps for 14 of the 15 species for 

which data was available (Table 2). 

Variance partitioning of WSG (question 1)—Variation among species, among 

conspecific individuals and between cores within individuals accounted for 88%, 4% and 

1% of variation in WSG, respectively. Variation among segments within cores plus 

unknown measurement error accounted for the remaining 7% of variation in WSG.   

Variance partitioning of radial variation in WSG (question 2)—Interspecific 

variation accounted for 32% and 21% of variation in RO-I and RVAR, respectively. 

Variation among conspecific individuals accounted for 18% and 28%, respectively. 

Variation between cores within individuals plus unknown measurement error accounted 

for 50% and 51% of variation in RO-I and RVAR, respectively (species average values of 

RO-I and RVAR in Appendix S1; see Supplemental Data with the online version of this 

article).  

Radial trends (question 3)—The radial gradient in WSG was best fit by the linear 

regression model for five species, all of which showed significant linear increases (Figs. 

1B, C, F, G and N, Table 3, Appendix S2; see Supplemental Data with the online version 

of this article). The radial gradient in WSG was best fit by the quadratic regression model 
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for 12 species (Table 3, Appendix S2). Of these 12 species, eight were certainly non-

monotonic involving an initial decrease and then an increase in WSG as radial distance 

increased (U-shaped) (Figs. 1E, H, I, J, K, L, O and Q), one was certainly monotonically 

increasing (Fig. 1D) because the 95% CI for critical radial distance was entirely above 

the largest possible value of one, and three had uncertain radial gradients (Figs. 1A, M 

and S) because the 95% CI for critical radial distance extended beyond the range of 

possible values. The three uncertain radial gradients appeared to be increasing from a low 

asymptotic value of WSG near the pith (Fig. 1A) or towards a high asymptotic value near 

the bark (Figs. 1M and S). The final three species (Figs. 1P, R and T) had no significant 

relationship between WSG and distance to the pith (Table 3).  

Radial trends and the growth-mortality tradeoff (question 4) — Species’ 

positions on the growth-mortality tradeoff were defined by a linear combination of 

RGR95 and MRT25 using Principal Components Analyses for saplings. The two 

component axes had eigenvalues of 1.5 and 0.5. The first component axis explained a 

substantial (77%) proportion of interspecific variation in growth and mortality rates. We 

therefore, used this first component axis to summarize interspecific variation in the 

growth-mortality tradeoff. Species positions along this axis equaled their extracted factor 

scores (RGR.MRTSAP). 

We excluded the three species with uncertain radial gradients and grouped the 17 

remaining species into three categories based on the form of the WSG – radial distance 

relationship. Group I was composed of six species with monotonic increasing WSG-

radial distance relationships. Group II was composed of eight species with U-shaped 
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WSG-radial distance relationships. Group III was composed of three species with 

insignificant WSG-radial distance relationships. The linear discriminant analysis was 

significant (Wilks lambda = 0.221, P < 0.001) and produced two discriminant functions. 

The first discriminant function achieved 93.5% separation, and the second achieved 6.5% 

separation. Groups I (increasing WSG-radial distance relationship) and III (insignificant 

WSG-radial distance relationship) were clearly separated by the first discriminant 

function, while Group II (U-shaped WSG-radial distance relationship) occupied an 

intermediate position, overlapping with Groups I and III. The absolute values of the 

loadings on both discriminant functions were largest for WSGI (loadings on first and 

second linear discriminant function = 11.1 and -3.15, respectively) and smallest for 

RGR.MRTSAP (0.02 and -0.85, respectively). The first discriminant function represents a 

contrast between RGR.MRTSAP (r = -0.45; P = 0.069) and average WSGI (r = 0.99; P < 

0.001).  

Effect of radial variation in WSG on above-ground biomass estimates (question 

5)—WSGMEAN estimates were significantly lower than WSGA estimates (paired t = - 4.31, 

df = 19, P < 0.001; Table 4). 

Discussion 

In a hierarchical partitioning of variation in WSG performed for 20 moist tropical 

forest species chosen to include a wide range of growth and mortality rates, most 

variation (88%) occurred among species. The only other study to partition variation in 

WSG focused on intra- and interspecific sources of variation for 32 temperate Australian 
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woody species and it also reported substantial (57–82%) variation among species (Onoda 

et al. 2010). The contributions of different sources of variation in functional traits at 

nested ecological scales have also been determined for leaf traits and promoted as a basis 

for prioritizing research efforts (Messier et al. 2010; Auger and Shipley 2012). Most of 

the variation in WSG can be captured at the interspecific level when resources have to be 

prioritized.  

Radial variation in WSG is not necessarily uniform within a tree. A partitioning of 

variance showed that approximately 50% of the variance in two metrics of radial 

variation in WSG, RO-I and RVAR, occurred between cores within individuals (or was due 

to measurement error). Tree growth is frequently asymmetrical around the trunk, as trees 

exhibit different extents of eccentricity (Williamson and Wiemann 2011). Thus, 

differences in the pattern of radial variation between two cores within a tree implies that 

tree responses to local environmental conditions such as mechanical perturbations due to 

wind vary across the stem (Niklas 1992, Pruyn et al. 2000, West 2009).   

Radial trends—Although minimal relative to interspecific variation in WSG, 

variation among segments within cores was significantly related to the radial position or 

distance to the pith or center of the tree in 17 of the 20 study species (Fig. 1). From pith 

to bark, the significant radial gradients in WSG were monotonically increasing in six 

species with mean WSG ranging from low to intermediate (0.298 - 0.580), decreasing 

near the pith and then increasing closer to the bark (U-shaped) in eight species, and 

uncertain although non-linear in the final three species. This result corroborates reports 

from other studies on tropical forest trees, that radial increases are more common than 
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decreases, and that low WSG is not a mandatory requirement for radial increases to occur 

(Wiemann and Williamson 1989; Woodcock and Shier 2002; Heitz et al. 2013).  

The significant non-linear, U-shaped pattern of radial variation in WSG found for 

eight species suggests that non-linear radial gradients in WSG are quite common in 

tropical forest trees (Williamson et al. 2012).  Non-linear patterns of radial change in 

WSG have previously been described for many soft pines and softwoods of the 

Cupressaceae and some hardwoods e.g. Populus tremuloides (Zobel and van Buijtenen 

1989). Fujimoto and Koga (2010) use a mixed effects quadratic regression model to show 

that WSG changes as a function of increasing age in a non-linear pattern, similar to the 

U-shaped pattern in our study, in Japanese larch (Larix kaempferi). The first description 

of a non-linear radial gradient in WSG for a tropical tree was given by Williamson et al. 

(2012) for Schizolobium parahyba a Neotropical pioneer that starts out with low initial 

WSG (0.15 - 0.20) that increases at an increasing rate with distance from the pith. 

Nevertheless, since earlier studies did not evaluate the prevalence of non-linear gradients 

in WSG among tropical species, we do not know how widespread non-linear radial 

gradients in WSG might be in tropical forest trees.   

Ecological interpretation of radial changes in WSG —Woodcock and Shier 

(2002) assume that radial changes in WSG reflect shifts in resource allocation associated 

with changing structural requirements experienced by forest trees as they grow from the 

shaded understory into the  sunlit canopy. Woodcock and Shier (2002) hypothesize that 

species that require the high light levels found in forest gaps to regenerate produce light 

wood to enable rapid growth as saplings in gaps and then gradually switch to denser 
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wood as they reach the canopy and face the stresses imposed by wind and their increasing 

size. This is consistent with our six species that show continuous increases in WSG (Figs. 

1B, C, D, F, G and N). With the exception of Simarouba amara, these six species are 

among the most light-demanding species in the BCI forest. The first discriminant 

function returned by the linear discriminant analysis separated the six species with 

increasing radial gradients (Fig. 2). The high loading of WSGI (or WSG near the pith) on 

this first discriminant function confirms that species starting out with low WSG have a 

higher potential to gradually switch investment from wood of low to high construction 

cost through the course of their ontogeny. Thus, the strategy of radially increasing WSG 

may be important to tropical pioneers that invest in rapid height increase, but need 

structural reinforcement on reaching the canopy with greater wind exposure (Putz et 

al.1983; Woodcock and Shier, 2002).  

Woodcock and Shier (2002) also hypothesized that shade tolerant species produce 

dense wood initially to protect against pests and falling objects as saplings in the 

understory and then gradually switch to lighter wood as they reach the canopy. In this 

case, the switch to lighter wood increases strength by increasing cross sectional area 

(Woodcock and Shier, 2002; Larjavaara and Muller-Landau, 2010). Woodcock and Shier 

(2002) did not anticipate (but see Gartner 1995) the U-shaped pattern of radial variation 

in WSG that characterizes 40% of our study species (Fig. 1).  

These U-shaped patterns are difficult to reconcile with the framework provided by 

Woodcock and Shier (2002), which assumes that saplings produce light wood when 

exposed to high light levels and dense wood when exposed to low light levels. In a U-
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shaped pattern of radial variation, wood is relatively dense at the smallest and largest tree 

sizes and relatively light at intermediate tree sizes (Figs. 1E, H, I, J, K, L, O and Q). Most 

tree species have significantly greater numbers of recruits in gaps than expected by 

chance on BCI (Table 2; Welden et al., 1991; Wright et al. 2003). Yet, many of these 

same species produce relatively dense wood as saplings and lighter wood at intermediate 

sizes. 

For this reason, we believe the inverse relationships between light levels and 

sapling wood density assumed by Woodcock and Shier (2002) may not hold for some of 

these species. Other alternatives are equally plausible. Many species have recruitment 

biased to gaps but are unable to grow rapidly enough to reach the canopy before gap 

closure (Wright et al. 2003). These species may allocate the enhanced resources available 

while gap conditions prevail to build the high density wood necessary to survive the low 

light, understory conditions that will almost inevitably follow. After gap closure, these 

species may produce relatively low density wood simply because fewer resources are 

available. Additional analyses are necessary to evaluate how growth rates actually change 

ontogenetically to evaluate this and other equally plausible alternatives.      

Two of the three species that lacked significant radial gradients provide an 

interesting exception to the strong trend for significant radial gradients. Luehea seemannii 

(Fig. 1P) and Platypodium elegans (Fig. 1R) are the two most strongly buttressed species 

in our sample and are among the most strongly buttressed trees in central Panama. This 

suggests that buttresses might replace radial changes in WSG to facilitate tree responses 

to environmental and ontogenetic variation.  
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Radial variation in WSG and above-ground biomass estimates— Radial 

variation in WSG can cause discrepancies in estimates of carbon sequestration. Our 

simple comparison of WSGMEAN and WSGA showed that WSGMEAN values were 

significantly lower than WSGA values which account for radial variation in WSG. 

Although these discrepancies in WSG estimates were modest, varying from 0.02 to 

5.75% among species, they were consistent in direction for 17 of 20 species, and largest 

for species with significant radial increases (Group I species) (Table 3). Failing to 

account for radial gradients will bias above-ground biomass estimates downwards 

(Nogueira et al. 2007; Nock et al. 2009; Williamson and Wiemann 2010a).  

Conclusion— Radial variation in WSG is related to a species’ growth strategy. 

Light-wooded, fast-growing, high-mortality species are characterized by radial increases 

in WSG, whereas slow-growing, low-mortality species show a range of radial patterns. 

Non-linear, U-shaped radial changes in WSG characterized 40 % of our study species. 

Additional studies of ontogenetic changes in light availability and radial growth rates are 

needed to understand the ecological causes of these unexpected U-shaped radial gradients 

in WSG in tropical trees. Additionally, radial variation in WSG is not necessarily uniform 

within a tree, which suggests that it is also involved in responses to extrinsic forces that 

vary across the growing stem. Finally, radial variation in WSG is also small compared 

with interspecific variation in WSG; however, the omission of radial variation in WSG 

from estimates of above-ground biomass is likely to bias those estimates downward 

modestly.   

 



21 
 

Acknowledgement 

O. L. O. thanks Whitney Harris World Ecology Center for providing research funds; Ivan 

Jiménez for contributions to the statistical analysis; Helene Muller-Landau for providing 

the integral solution for area weighted mean estimates of wood specific gravity; 

Nosayaba Osazuwa-Peters, Sebastian Bernal, Omar Hernandez and Rufino Gonzalez for 

providing invaluable field and technical assistance; and Jon Aibueku for financial and 

David Kenfack for logistic support. M. C. Wiemann and three anonymous reviewers 

provided valuable comments on the manuscript. 

 

 

 

 

 

 

 

 

 

 



22 
 

Tables 

Table 1. Acronyms referred to in main text and their meanings. 

Acronym Meaning 

∆AICc Difference in Akaike’s Information Criterion corrected for finite sample 

sizes 

BCI Barro Colorado Island 

CI                                                                   95% confidence interval                                                                                             

DBH Diameter at breast height 

RGR95                                               95
th

 percentile of the relative growth rate of saplings                                                                              

MRT25 Mortality rate of the 25% of saplings with the lowest relative growth rates 

in the previous census interval                                                                                                                                                                                                                                            

RGR.MRTSAP Linear combination of RGR95 and MRT25 for saplings, obtained as 

extracted scores from the first axis of a principal component analysis. 

RO-I                                       Radial change, defined as WSGO minus WSGI                                                                                                          

RVAR Radial variance, defined as the variance of WSG for 1-cm segments from 

each core 

WSG                                                                       Wood specific gravity     

WSGA Area weighted average WSG 

WSGI    Average WSG for the three 1 cm segments near the pith           

WSGMEAN Average WSG over all segments for a species 

WSGO Average WSG for the three 1 cm segments near the bark. 
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Table 2. Description of the 20 tropical forest canopy species including family, diameter at breast height (DBH) of sampled 

trees, and for 15 species, the proportion of recruits located in tree fall gaps. These proportions were significantly greater than 

the proportion of the forest in recent treefall gaps (0.127) for 14 of the 15 species (P-values).  

Species Family DBH mean (range) (cm)  Proportion of recruits in gaps  (P)* 

 

Apeiba membranacea Malvaceae 42.3 (34.3 – 51.1)   

Astronium graveolens Anacardaceae 28.0 (21.5 – 34.2)  0.381 (<0.01) 

Calophyllum longifolium Clusiaceae 37.9 (21.0 – 58.0)  0.271 (<0.01) 

Cordia bicolor Boraginaceae 29.6 (26.0 – 37.1)   

Guazuma ulmifolia Malvaceae 31.2 (23.0 – 44.8)  0.714 (<0.01) 

Inga marginata Fabaceae 40.2 (25.6 – 52.2)  0.389 (<0.01) 

Jacaranda copaia Bignoniaceae 35.3 (24.5 – 41.6)  0.879 (<0.01) 

Lacmellea panamensis Apocynaceae 33.1 (28.5 – 37.0)   

Luehea seemannii Malvaceae 49.6 (34.8 – 68.0)  0.745 (<0.01) 

Platypodium elegans Fabaceae 28.9 (21.0 – 37.1)  0.542 (<0.01) 

Poulsenia armata Moraceae 29.4 (21.0 – 46.4)  0.208 (<0.01) 

Prioria copaifera Fabaceae 37.1 (25.0 – 58.8)  0.207 (<0.01) 
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Simarouba amara Simaroubaceae 33.8 (25.0 – 43.2)  0.291 (<0.01) 

Spondias radlkoferi Anacardiaceae 34.1 (28.8 – 40.2)  0.507 (<0.01) 

Tabebuia guayacan Bignoniaceae 23.8 (20.5 – 29.0)  0.286 (>0.05) 

Tabebuia rosea Bignoniaceae 32.9 (29.2 – 48.5)  0.262 (<0.01) 

Tachigali versicolor Fabaceae 29.6 (23.0 – 37.7)  0.218 (<0.01) 

Triplaris cumingiana Polygonaceae 28.2 (25.2 – 31.0)   

Virola sebifera Myristicaceae 30.1 (27.3 – 33.7)   

Zanthoxylum ekmanii Rutaceae 28.8 (23.0 – 34.9)  0.726 (<0.01) 

* From Wright et al. (2003).  
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Table 3: Analyses of radial variation in wood specific gravity (WSG). The best fit model, (M=Mean, L=Linear, Q=Quadratic), 

parameter estimates for the best fit model, the critical radial distance or inflection point for species with best fit quadratic 

models, and the form of the WSG – radial distance relationship (I = increasing, N= no radial change, U = U-shaped, and O = 

uncertain nonlinear pattern). The mixed effects models included random effects for individual and core and were fit using 

Restricted Maximum Likelihood (REML). The fixed effect, radial distance, was scaled to unit length by dividing by the length 

of the core.  

Species Best fit 

model 

β0 (95% CI) β1 (95% CI) β2 (95% CI) Critical radial 

distance (95% 

CI) 

WSG-radial 

distance                      

relationship 

A. membranacea L 0.27 (0.21, 0.33) 0.06 (0.03, 0.08)   I 

A. graveolens Q 0.83 (0.79, 0.86) 0.19 (0.06, 0.32) -0.14 (-0.27, -0.02) 0.66(0.53, 1.12) O 

C. longifolium Q 0.53 (0.49, 0.58) -0.09 (-0.15, -0.03) 0.12 (0.06, 0.17) 0.38(0.20, 0.45) U 

C. bicolor L 0.36 (0.34, 0.39) 0.15 (0.14, 0.17)   I 

G. ulmifolia Q 0.53 (0.49, 0.58) -0.13 (-0.23, -0.03) 0.12 (0.03, 0.21) 0.57(0.45, 0.73) U 

I. marginata Q 0.69 (0.66, 0.71) -0.11 (-0.18, -0.04) 0.18 (0.12, 0.25) 0.29(0.16, 0.37) U 

J. copaia Q 0.41 (0.37, 0.45) -0.08 (-0.14, -0.02) 0.14 (0.09, 0.19) 0.28(0.11, 0.36) U 
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L. panamensis Q 0.51 (0.48, 0.54) -0.08 (-0.13, -0.03) 0.16 (0.11, 0.20) 0.25(0.14, 0.32) U 

L. seemannii M 0.66 (0.65, 0.67)    N 

P. elegans M 0.75 (0.71, 0.79)    N 

P. armata Q 0.26 (0.22, 0.29) -0.09 (-0.19, 0.02) 0.11 (0.02, 0.20) 0.38 (-0.10, .49) O 

P. copaifera Q 0.55 (0.52, 0.59) -0.19 (-0.27, -0.11) 0.18 (0.11, 0.25) 0.52(0.32, 0.81) U 

S. amara L 0.41 (0.39, 0.42) 0.04 (0.03, 0.05)   I 

S. radlkoferi L 0.28 (0.27, 0.30) 0.17 (0.15, 0.18)   I 

T. guayacan M 0.89 (0.87, 0.90)    N 

T. rosea Q 0.52 (0.46, 0.58) 0.15 (0.07, 0.23) -0.09 (-0.16, -0.02) 0.86(0.69, 1.65) O 

T. versicolor Q 0.60 (0.56, 0.64) -0.12 (-0.23, -0.02) 0.14 (0.05, 0.24) 0.43(0.14, 0.52) U 

T. cumingiana L 0.50 (0.45, 0.54) 0.17 (0.14, 0.20)   I 

V. sebifera Q 0.48 (0.46, 0.50) -0.11 (-0.18, -0.04) 0.15 (0.08, 0.21) 0.37(0.25, 0.44) U 

Z. ekmanii Q 0.27 (0.24, 0.31) 0.29 (0.20, 0.37) -0.09 (-0.17, -0.01) 1.57(1.07, 5.22) I 
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Table 4. Comparison of mean WSG (WSGMEAN) calculated as the average WSG over all 

segments for a species, with area weighted mean WSG (WSGA) and the percentage 

difference between the two estimates. WSGMEAN and WSGA are significantly different 

(paired t = - 4.31, df = 19, P < 0.001). 

Species WSGMEAN WSGA Difference (%) 

A. membranacea 0.298 0.310 3.92 

A. graveolens 0.876 0.881 0.53 

C. longifolium 0.524 0.534 1.78 

C. bicolor 0.443 0.465 4.70 

G. ulmifolia 0.494 0.502 1.53 

I. marginata 0.698 0.706 1.19 

J. copaia 0.418 0.426 1.92 

L. panamensis 0.524 0.535 2.05 

L. seemannii 0.660 0.660 0.02 

P. elegans 0.750 0.746 -0.47 

P. armata 0.260 0.256 -1.64 

P. copaifera 0.520 0.518 -0.43 

S. amara 0.433 0.437 0.98 

S. radlkoferi 0.372 0.395 5.75 

T. guayacan 0.883 0.885 0.17 

T. rosea 0.565 0.575 1.79 

T. versicolor 0.583 0.590 1.15 

T. cumingiana 0.580 0.607 4.51 

V. sebifera 0.474 0.479 1.10 

Z. ekmanii 0.396 0.419 5.50 
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Figures 

 

Fig. 1. Line-plots of wood specific gravity (WSG) on distance from pith scaled by core 

length (proportional radial distance) for twenty tree species from the Barro Colorado 

Nature Monument, Panama. Panels are ordered from smallest to largest by average 

species WSG. Each line connects WSG for contiguous 1-cm segments from a single core. 

Thick black lines represent best fit linear or quadratic regression models. From pith to 

bark, WSG increased monotonically for six species (panels B, C, D, F, G, N), decreased 

initially but subsequently increased for eight species (U-shaped; panels E, H, I, J, K, L, 

O, Q), and was uncertain for three species (panels A, M, and S). The relationship between 

WSG and proportional radial distance was insignificant for the three remaining species 

(panels P, R and T).  
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Fig. 2. Histograms of the first linear discriminant function values for three groups of 

species (n = 17) based on the form of WSG – radial distance relationship. This first 

discriminant function explained 93.5% of the differences among the three groups of 

species and was driven by a negative contrast between the linear combination of relative 

growth rates and mortality rates for saplings (RGR.MRTSAP) and the average WSG near 

the pith (WSGI). Species with “increasing WSG-radial distance relationship” are, with 

one exception, on the negative side of the first linear discriminant function, with large 

RGR.MRTSAP and low WSGI. Species with “insignificant WSG-radial distance 

relationship” are exclusively on the positive side of the axis, with small RGR.MRTSAP 

and large WSGI. And, species with “U-shaped WSG-radial distance relationship” are 

clustered around zero values with intermediate RGR.MRTSAP and WSGI. 

 

 

 

 



30 
 

References 

AUGER, S. AND SHIPLEY, B. (2012). Interspecific and intraspecific trait variation along short 

environmental gradients in an old-growth temperate forest. Journal of Vegetation Science 

24: 419–428. 

BURNHAM, K. P., AND ANDERSON D. R. (2002). Model selection and multi-model inference: a 

practical information-theoretic approach. New York, NY: Springer-Verlag. 

CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., 

et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in 

tropical forests. Oecologia 145: 87-99. 

CHAVE, J., COOMES, D., JANSEN, S., LEWIS, S.L., SWENSON, N.G. AND ZANNE, A.E. (2009). 

Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366. 

DE CASTRO, F., WILLIAMSON, G. B., AND MORAES DE JESUS, R. (1993). Radial variation in the 

wood specific gravity of Joannesia princeps: The role of age and diameter. Biotropica 

25: 176 – 182. 

FEARNSIDE, P. M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. 

Forest Ecology and Management 90: 59 – 87.  

FUJIMOTO, T. AND KOGA, S. (2010). An application of mixed-effects model to evaluate the 

effects of initial spacing on radial variation in wood density in Japanese larch (Larix 

kaempferi). Journal of Wood Science 56: 7 – 14. 

GARTNER, B. L. (1995). Patterns of xylem variation within a tree and their hydraulic and 

mechanical consequences. In Gartner, B. L [ed.], Plant Stems: Physiological and 

Functional Morphology , 125 – 149. Academic Press, San Diego, California, USA. 



31 
 

VAN GELDER, H.A., POORTER, L. AND STERCK, F.J. (2006). Wood mechanics, allometry, and 

life‐history variation in a tropical rain forest tree community. New Phytologist 171: 367-

378. 

GENZ, A., TETSUHISA, F. B., XUEFEI MI, M., LEISCH, F., SCHEIPL, F., AND HOTHORN, T. 

(2012). mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9994. 

URL http://CRAN.R-project.org/package=mvtnorm. 

GILBERT, B., WRIGHT, S.J., MULLER-LANDAU, H.C., KITAJIMA, K. and HERNÁNDÈZ, A. 

(2006). Life history trade-offs in tropical trees and lianas. Ecology 87: 1281-1288. 

HACKE, U. G., SPERRY, J. S., POCKMAN, W. T., DAVIS, S. D., AND McCULLOH K. A. (2001). 

Trends in wood density and structure are linked to prevention of xylem implosion by 

negative pressure. Oecologia 126: 457 – 461. 

HIETZ, P., VALENCIA, R. AND WRIGHT, S. J. (2013). Strong radial variation in wood density 

follows a uniform pattern in two Neotropical rainforests. Functional Ecology 27: 684–

692. 

LACHENBRUCH, B., MOORE, J.R. AND EVANS, R. (2011). Radial variation in wood structure 

and function in woody plants, and hypotheses for its occurrence. In MEINZER, F.C., 

LACHENBRUCH, B. AND DAWSON, T.E [eds.], Size- and Age-Related Changes in Tree 

Structure and Function, 121–164. Springer Netherlands. 

LARJAVAARA, M. AND MULLER‐LANDAU, H.C. (2010). Rethinking the value of high wood 

density. Functional Ecology 24: 701-705. 

LEGENDRE, P. AND LEGENDRE, L. (2012). Numerical ecology. 3
rd

 Edition. Elsevier, The 

Netherlands. 



32 
 

LEIGH, E. G. (1999). Tropical forest ecology, a view from Barro Colorado Island. Oxford 

University Press, New York. 

MAZEROLLE, M. J. (2013). AICcmodavg: Model selection and multimodel inference based on 

(Q)AIC(c). R package version 1.32. URL http://CRAN.R-

project.org/package=AICcmodavg.  

MESSIER, J., MCGILL, B. J., AND LECHOWICZ, M. J. (2010). How do traits vary across 

ecological scales? A case for trait-based ecology. Ecology Letters 13: 838–848. 

MULLER-LANDAU, H. C. (2004). Interspecific and inter-site variation in wood specific gravity 

of tropical trees. Biotropica 36: 20 – 32.  

NIKLAS, K.J. (1992). Plant biomechanics: an engineering approach to plant form and function. 

University of Chicago Press. 

NIKLAS, K. J. (1997). Mechanical properties of black locust (Robinia pseudoacacia L.) wood. 

size- and age-dependent variations in sap and heartwood. Annals of Botany 79: 265 – 

272. 

NOCK, C.A., GEIHOFER, D., GRABNER, M., BAKER, P.J., BUNYAVEJCHEWIN, S. AND HIETZ, P. 

(2009). Wood density and its radial variation in six canopy tree species differing in 

shade-tolerance in western Thailand. Annals of Botany 104: 297-306. 

NOGUEIRA, E., FEARNSIDE, P., NELSON, B. AND FRANCA, M. (2007). Wood density in forests 

of Brazil’s “arc of deforestation”: Implications for biomass and flux of carbon from land-

use change in Amazonia. Forest Ecology and Management 248: 119-135. 

ONODA, Y., RICHARDS, A. E., AND WESTOBY, M. (2010). The relationship between stem 

biomechanics and wood density is modified by rainfall in 32 Australian woody plant 

species. New Phytologist 185: 493 – 501. 

http://cran.r-project.org/package=AICcmodavg
http://cran.r-project.org/package=AICcmodavg


33 
 

PACALA, S. W., C. D. CANHAM, J. SAPONARA, J. A. SILANDER, R. K. KOBE, AND RIBBENS E. 

(1996). Forest models defined by field measurements: estimation, error analysis and 

dynamics. Ecological Monographs 66: 1–43. 

PANSHIN, A. J., AND DE ZEEUW, C. (1980). Textbook of wood technology. McGraw-Hill Inc., 

US.  

PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D., AND the R DEVELOPMENT CORE TEAM 

(2009). Nlme: Linear and Nonlinear Mixed Effects Models. R package version 2.9.1. 

POORTER, L., WRIGHT, S. J., PAZ, H., ACKERLY, D. D., CONDIT, R., IBARRA-MANRIQUEZ, G., 

HARMS, K. E., ET AL. (2008). Are functional traits good predictors of demographic rates? 

Evidence from Neotropical forests. Ecology 89: 1908 – 1920. 

PRUYN, M.L., EWERS III, B.J. AND TELEWSKI, F.W. (2000). Thigmomorphogenesis: changes in 

the morphology and mechanical properties of two Populus hybrids in response to 

mechanical perturbation. Tree Physiology 20: 535-540. 

R CORE TEAM (2012). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org/. 

RUEDA, R. AND WILLIAMSON, G.B. (1992). Radial and vertical wood specific gravity in 

Ochroma pyramidale (Cav. ex Lam.) Urb. (Bombacaceae). Biotropica 24: 512 – 518. 

VENABLES, W. N. AND RIPLEY, B. D. (2002) Modern Applied Statistics with S. Fourth 

Edition. Springer, New York. ISBN 0-387-95457-0. 

WELDEN, C. W., HEWETT, S. W., HUBBELL, S. P., AND FOSTER, R. B. (1991). Sapling survival, 

growth, and recruitment: relationship to canopy height in a neotropical forest. Ecology 

72: 35–50. 

http://www.r-project.org/
http://www.r-project.org/


34 
 

WEST, P.W. (2009). Tree and Forest Measurement. 2
nd

 Edition, Springer.  

WIEMANN, M. C., AND WILLIAMSON, G. B. (1988). Extreme radial changes in wood specific 

gravity in some tropical pioneers. Wood and Fiber Science 20: 344 – 349. 

WIEMANN, M.C. AND WILLIAMSON, G.B. (1989). Wood specific gravity gradients in tropical 

dry and montane rain forest trees. American  Journal of Botany 76: 924-928. 

WIEMANN, M.C. AND WILLIAMSON, G. B. (2012). Testing a novel method to approximate 

wood specific gravity of trees. Forest Science 58: 577 – 591. 

WILLIAMSON, G. B. AND WIEMANN, M. C. (2010a). Age‐dependent radial increases in wood 

specific gravity of tropical pioneers in Costa Rica. Biotropica 42: 590-597. 

WILLIAMSON, G. B. AND WIEMANN, M. C. (2010b). Measuring wood specific 

gravity…correctly.  American Journal of Botany 97: 519 -524. 

WILLIAMSON, G. B. AND WIEMANN, M. C. (2011). Age versus size determination of radial 

variation in wood specific gravity: lessons from eccentrics. Trees 25: 585 – 591. 

WILLIAMSON, B. G., WIEMANN, M. C., AND GEAGHAN, J. P. (2012). Radial wood allocation in 

Schizolobium parahyba. American Journal of Botany 99: 1010 – 1019. 

WOODCOCK, D.W. AND SHIER, A.D. (2002). Wood specific gravity and its radial variations: 

the many ways to make a tree. Trees 16: 437 - 443. 

WRIGHT, S. J, MULLER-LANDAU, H. C., CONDIT, R. AND HUBBELL, S. P.  (2003). Gap-

dependent recruitment, realized vital rates, and size distributions of tropical trees. 

Ecology 84: 3174-3185. 

WRIGHT, S.J., KITAJIMA, K., KRAFT, N.J.B., REICH, P.B., WRIGHT, I.J., BUNKER, D.E., 

CONDIT, R. et al. (2010). Functional traits and the growth-mortality trade-off in tropical 

trees. Ecology 91: 3664-3674.   



35 
 

ZANNE A. E., LOPEZ-GONZALEZ, G., COOMES, D. A., ILIC, J., JANSEN, S., LEWIS, S. L., MILLER, 

R. B., SWENSON, N. G., WIEMANN, M.C., AND CHAVE, J. (2009) Data from: Towards a 

worldwide wood economics spectrum. Dryad Digital Repository. doi:10.5061/dryad.234 

ZOBEL, B. H., AND VAN BUIJTENEN, J. P. (1989). Variation among and within trees. In ZOBEL, 

B. H., AND VAN BUIJTENEN, J. P., Wood Variation: Its Causes and Control, pp. 72 -131. 

Springer - Verlag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Supplementary material for chapter 1 

APPENDIX S1: Species average values for the two metrics of radial variation in wood 

specific gravity (WSG).  RO-I = difference between average WSG for outer wood (WSGO) 

and inner wood (WSGI), and RVAR = variance of WSG for 1-cm segments from a single 

core. 

Species  Average RO-I Average RVAR 

A. membranacea 0.0599 0.0032 

A. graveolens 0.0343 0.0035 

C. longifolium 0.0153 0.0011 

C. bicolor 0.1160 0.0031 

G. ulmifolia -0.0085 0.0019 

I. marginata 0.0770 0.0027 

J. copaia 0.0744 0.0015 

L. panamensis 0.0722 0.0014 

L. seemannii 0.0087 0.0013 

P. elegans 0.0035 0.0019 

P. armata 0.0297 0.0022 

P. copaifera -0.0015 0.0020 

S. amara 0.0253 0.0006 

S. radlkoferi 0.1341 0.0031 

T. guayacan -0.0138 0.0024 

T. rosea 0.0446 0.0017 

T. versicolor 0.0299 0.0021 

T. cumingiana 0.1392 0.0064 

V. sebifera 0.0408 0.0013 

Z. ekmanii 0.1407 0.0047 
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Appendix S2: Differences in Akaike information criterion (∆AICc) for mean, linear, and 

quadratic models (see text equations 1, 2, and 3 respectively). ∆AICc is the difference 

between the model with the minimum AICc value and the AICc of the other candidate 

models. The model with the fewest parameters had best fit when ∆AICc ≤ 2.  

Species Mean Linear  

model 

Quadratic 

ommodel 
A. membranacea 17.2 0 1.70 

A. graveolens 6.19 3.35 0 

C. longifolium 33.7 15.1 0 

 C. bicolor 167 0 2.11 

G. ulmifolia 2.68 4.47 0 

I. marginata 97.8 26.4 0 

J. copaia 95.3 23.1 0 

L. panamensis 164 40.9 0 

L. seemannii 0.46 0.08 0 

P. elegans 0 2.1 3.1 

P. armata 9.62 3.74 0 

P. copaifera 19.9 21.9 0 

S. amara 52.5 1.02 0 

S. radlkoferi 267 1.69 0 

T. guayacan 1.70 0 0.75 

T. rosea 34.5 3.53 0 

T. versicolor 10.4 6.28 0 

T. cumingiana 85.2 0 1.50 

V. sebifera 43.0 17.7 0 

Z. ekmanii 183.8 3.31 0 
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Abstract 

1. Wood density is a key functional trait related to plant performance, and ecological 

strategy ─ the way that species acquire limited resources through dissimilarities in 

construction and allocation patterns. The same wood density value however can be 

achieved through different combinations of underlying anatomical components, 

suggesting that wood density’s composite nature masks variation in ecological strategies 

among coexisting species. The functional basis of variation in wood density and its 

anatomical underpinnings can be investigated by examining ontogenetic changes within a 

tree since understorey juveniles and canopy-level adults experience different access to 

resources and environments.  

2. We examined ontogenetic differences in wood trait variation and coordination, major 

anatomical drivers of wood density, and relationships between wood traits and species 

performance for 20 tree species from Barro Colorado Island, Panama. From species that 

varied widely along the growth-mortality tradeoff axis, we obtained wood segments from 

near the pith (juvenile wood) and from near the bark (adult wood) for three adults (≥ 20 

cm diameter) per species. We quantified wood density, and two types of anatomical 

traits; 1) cell morphology (vessel diameter, vessel density, fiber wall thickness, and fiber 

lumen area), and 2) tissue fractions (vessel, parenchyma, fiber wall, and fiber lumen 

fractions). Species performance was measured (relative growth and mortality rates) for 

both juveniles and adults.  

3. Overall, ontogeny accounted for considerable amounts of variation (36 – 67%) in 

vessel and parenchyma traits, but much less variation in fiber traits and wood density (17 
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– 26%). Anatomical traits showed strong coordination, with one axis capturing a contrast 

between fiber lumen fraction, fiber lumen area, and vessel diameter versus vessel density, 

fiber wall fraction and fiber wall thickness, while a second axis captured a contrast 

between vessel and parenchyma fraction. These coordination axes did not differ between 

juvenile and adult wood. Fiber wall and lumen were the most important anatomical traits 

underpinning wood density variation in both juvenile and adult wood. Finally, plant 

performance was strongly associated with vessel and fiber traits (but not wood density) in 

juveniles but not adults.  

4. In sum, wood density does mask variation in ecological strategies, and juvenile wood 

holds the desired information on the functional consequences of a tree’s anatomical 

configuration.  

Key-words: trait co-variation, fiber, vessel, axial parenchyma, ray parenchyma, 

juveniles, adults, ecological strategy, species performance  

Introduction 

Wood density (dry mass/fresh volume) is a key functional trait related to several major 

aspects of a plant’s ecology including biomechanical support, hydraulic transport, 

storage, defense, and successional status (Chave et al. 2009). To date, wood density has 

been found to be a significant but not particularly strong predictor of tree growth and 

mortality, measures of species performance. Wood density has at best explained between 

29 - 41% of interspecific variation in growth and mortality rates of saplings of coexisting 

tree species (Chave et al. 2009; Poorter et al. 2010; Russo et al. 2010; Wright et al. 2010; 

Fan et al. 2012). It has been hypothesized that wood density’s limited predictive ability 
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may be due to its links to multiple functional roles, so that it is unable to strongly predict 

any one function (Zieminska et al. 2013).  

Wood density’s link to multiple ecological functions results from its composite nature; it 

is derived from a combination of physical, chemical, and anatomical properties of cells 

(Chave et al. 2009). Prevailing understanding considers similar wood densities of species 

as indicative of similar ecological strategies ─ differences in the ways that species 

acquire limited resources through dissimilarities in construction and allocation patterns 

(Westoby et al. 2002; Chave et al. 2009; Wright et al. 2010). Low wood density species 

are considered to have a resource acquisitive strategy characterized by fast growth, high 

mortality and low stress tolerance, while high wood density species tend to the reverse. 

The same wood density value, however, can be achieved through different combinations 

of cell properties, suggesting that species with similar wood densities could in fact vary 

in ecological strategies if varying properties of cells impact whole plant functioning 

(Preston, Cornwell & DeNoyer 2006; Zanne et al. 2010; Russo et al. 2010; Zieminska et 

al. 2013; Lachenbruch & McCulloh 2014). If the composite nature of wood density 

masks variation in ecological strategies among coexisting species, better insight into 

wood structure and function may be found by examining the underlying anatomical 

components of wood density.  

Key anatomical components of wood are vessels, fibers, and parenchyma, and these cell 

types can be directly related to specific ecological functions. In angiosperm wood, vessels 

are relatively large diameter conduits (5 - 400 m) that are dead on maturity and have an 

open lumen for longitudinal water transport (Carlquist 2001; Sperry, Meinzer & 

McCulloh 2008; Cornwell et al. 2009; Zanne et al. 2010). Thus, vessel traits including 
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vessel area fraction, size and frequency, represent an axis of variation that appears to be 

decoupled from wood density (Martinez-Cabrera et al. 2009; Zanne et al. 2010), although 

moderate or weak relationships with wood density have also been reported (Preston et al. 

2006; Poorter et al. 2010; Russo et al. 2010). The matrix outside of the vessel lumen area 

has strong influences on wood density, implicating fiber and parenchyma traits in wood 

density variation (Carlquist 2001; Jacobsen et al. 2007; Zanne et al. 2010; Zheng & 

Martínez-Cabrera 2013; Zieminska et al. 2013). Fibers function mainly in mechanical 

support and water storage (Carlquist 2001; Evert 2006); they have secondary walls of 

relatively constant density (Hacke et al. 2001) and are also dead at maturity (Pratt et al. 

2007; Cornwell et al. 2009; Zanne et al. 2010). Axial and ray parenchyma are the living 

cells in sapwood that store nutrients and water, as well as allow for short distance 

transport (Carlquist 2001; Evert 2006), but die during heartwood formation (Taylor, 

Gartner & Morrell 2002).  

Variation in wood density can be achieved anatomically by either altering cell 

morphology (cell wall thickness and lumen areas) or altering relative tissue proportions 

(area fraction in vessels, fiber wall, fiber lumen, and parenchyma) (Martinez-Cabrera et 

al. 2009; Lachenbruch & McCulloh 2014). Since lumens essentially have zero density, 

cell wall have positive density, and parenchyma being living cells have relatively less 

positive density (Zieminska et al. 2013), wood density should increase with increasing 

wall thickness, decreasing lumen area, and decreasing parenchyma fractions. However, 

the relative importance of these two mechanisms (cell morphology versus tissue 

fractions) for achieving intra- and inter-individual and interspecific variation in wood 

density has yet to be evaluated.  
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Insight into the anatomical influences on wood density can be hypothesized based on 

known variation and coordination (or co-variation) among anatomical traits. Coordination 

among anatomical traits may result from a physically enforced tradeoff or because such 

coordination is favored by available niches (Westoby et al. 2002), thus reflecting 

different resource allocation patterns (Chave et al. 2009). Hence, coordination among 

anatomical traits may be associated with variation in the composite trait wood density. 

Three major relationships between anatomical traits have been observed in past studies. 

1) A negative relationship between vessel area and vessel density reflecting constant 

allocation to total vessel area with variation in vessel composition ranging from few large 

vessels to many small vessels (Zanne et al. 2010). 2) A negative relationship between 

fiber wall thickness and fiber lumen size (Roque & Tomazelo-Filho 2007), reflecting a 

tradeoff between mechanical support and water storage. 3) A negative relationship 

between fiber area fraction and parenchyma area fraction reflecting a tradeoff between 

mechanical support and nutrient storage (Pratt et al. 2007; Poorter et al. 2010; Fortunel et 

al. 2014).  

Wood density and vessel anatomy are typically measured on adult wood. However, 

juvenile trees growing in the understorey experience different access to resources and 

different environments than their canopy level adults (Cavender-Bares & Bazzaz 2000; 

Thomas & Winner 2002). Investigations of wood density and anatomy variation within 

an individual at different ontogenetic stages can provide new insight into the functional 

consequences of these wood traits. Unlike animals that replace their cellular structure 

throughout their lives, trees retain their original wood structure, which largely remains 

unchanged with the exception of chemical deposition during heartwood formation 
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(Taylor et al. 2002; Lachenbruch, Moore & Evans 2011). Thus,  ontogenetic changes in 

wood anatomy can be inferred from differences in wood properties between wood nearest 

the pith (produced as a juvenile) and wood nearest the bark of adult trees (Lachenbruch et 

al. 2011). Published evidence of ontogenetic shifts comes from only a few commercial 

softwoods (Lachenbruch et al. 2011). These data suggest that juvenile wood will have 

traits associated with lower specific conductivity and lower risk of embolism (e.g. smaller 

vessel fractions and smaller vessels) (Lachenbruch et al. 2011). However, the degree to 

which relationships among anatomical traits and between anatomical traits and wood 

density hold across ontogeny remains a largely unanswered question.  

Due to the clear functional consequences of variation in anatomical properties, anatomy 

may show stronger ties to plant performance than has wood density. Growth rates are 

expected to increase with vessel area fraction and vessel size, which are associated with 

hydraulic conductivity, due to increased photosynthesis and carbon gain rates (Brodribb 

& Feild 2000; Chave et al. 2009) and to decrease with fiber wall thickness, due to 

increased stem construction costs (Poorter et al. 2010). In contrast, mortality rates should 

decrease with increasing fiber wall thickness due to increased mechanical strength and 

damage resistance, and with increasing parenchyma area fraction due to higher carbon 

and water storage potential (Poorter et al. 2010). The few studies that have investigated 

relationships between species’ anatomical traits and growth and mortality rates have 

focused on vessel traits, showing a positive correlation between vessel diameter and 

growth rate (Poorter et al. 2010; Russo et al. 2010; Fan et al. 2012) 

We have previously shown that wood density varies more among species, with much less 

variation among and within individuals of the same species (Osazuwa-Peters, Wright & 
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Zanne 2014).  Here, we explore the ontogenetic, inter-individual and interspecific 

variation in anatomical traits underpinning wood density. We examined coordination 

among these anatomical traits and how these traits influence performance for 20 

coexisting lowland rainforest species that were selected to represent the breadth of the 

growth-mortality tradeoff. We ask the following questions:  

1. Wood traits ─ variation across taxonomic levels: How do anatomical traits vary 

ontogenetically within individuals, among conspecific individuals and among species? As 

with patterns of variation for wood density at different taxonomic levels (Osazuwa-Peters 

et al., 2014), we expect interspecific variation to account for the bulk of variation in 

anatomical traits but that important variation will occur ontogenetically due to different 

environments experienced by plants as juveniles and as adults. 

2. Anatomical trait coordination: a. Is there coordination among anatomical traits? b. 

Does this coordination differ with ontogeny? We anticipate negative relationships 

between vessel size and vessel density, fiber wall thickness and fiber lumen size, and 

fiber area fraction and parenchyma fraction. We have no a priori expectation that these 

patterns of coordination between traits should be different between juvenile and adult 

wood. 

 3. Anatomical underpinnings of wood density: a. What is the relative contribution to 

variation in wood density of i. cell morphology ii. tissue fractions and iii. anatomical 

traits overall?                       b. Does this relative contribution differ with ontogeny? c. 

Which anatomical traits are the best predictors of wood density? Given that past studies 

have found interspecific variation in wood density is largely independent of vessel and 
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parenchyma tissue fractions, but driven by the relative proportion of wall and lumen in 

the non-vessel lumen matrix (Zanne et al., 2010; Zieminska et al., 2013), we predict that 

wood density variation will be best explained by alterations of fiber cell morphology and 

the relative proportions in fiber wall and fiber lumen. We have no a priori expectation 

that this pattern should be different between juvenile and adult wood. 

4. Wood traits and performance: a. Are particular anatomical traits more strongly 

associated with species performance than wood density? b. Does this pattern vary with 

ontogeny both in the performance traits and in the wood traits? Due to the composite 

nature of wood density and the relationship between anatomical traits and specific 

functions, anatomical traits will be better predictors of species performance than wood 

density. Based on the association of growth rate with hydraulic conductance, and with 

stem construction costs, we expect growth rates to increase with vessel fraction and 

diameter, and fiber lumen size, but decrease with fiber wall thickness. Mortality rates are 

expected to increase with fiber lumen size, fiber lumen fraction, and vessel lumen area, 

but to decrease with fiber wall thickness, fiber wall and parenchyma fractions, survival 

being greater with higher stem material strength and carbon storage potential. The 

direction of these associations between anatomical traits and species performance should 

be similar across ontogeny, albeit stronger in magnitude for juveniles. Stronger 

associations between anatomical traits and species performance is more likely for 

juvenile wood since understorey juveniles experience greater heterogeneity in 

environments than do sun-exposed, canopy adults (Webb & Peart 2000; Woodcock & 

Shier 2002). Thus, juvenile wood may exhibit greater interspecific variation in 
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performance and likely show greater interspecific variation in wood traits, resulting in 

stronger associations.  

Materials and Methods 

Samples for this study were collected from the Barro Colorado Nature Monument, 

Panama. In an earlier investigation on radial variation in wood density, 20 tropical tree 

species (Figs 1 and 2) that were widely distributed across the growth-mortality tradeoff 

and wood density spectra were selected (Osazuwa-Peters et al. 2014).  For each of these 

species, two cores extending from bark to pith were extracted from 6 individuals > 20 cm 

diameter at breast height of each species (Osazuwa-Peters et al. 2014). For the present 

study, we selected from this pool of 240 cores one core from three individuals per 

species, resulting in 60 cores. From each core, two 1 cm wood segments were obtained; 

one segment within the first 3 cm near the pith (juvenile wood), and one segment within 

the last 3 cm near the bark (adult wood).     

Data collection 

Wood density 

Wood density values for all 120 segments were obtained from Osazuwa-Peters et al. 

(2014). In that study, wood density was calculated as dry mass divided by fresh volume 

divided by the density of water (a.k.a. wood specific gravity in forestry literature; 

Williamson & Wiemann 2010). The fresh volume of each 1 cm segment was measured 

with the water-displacement method, and dry mass determined after drying to constant 

mass at 100
o
C in a convection oven (Osazuwa-Peters, Zanne & PrometheusWiki 

contributors 2011).  



48 
 

Species performance 

For all twenty species, relative growth and mortality rates were obtained from Wright et 

al., (2010). Relative growth rates under favorable conditions equaled 95
th

 percentile 

relative growth rates (RGR95). Mortality rates under unfavorable conditions equaled 

mortality rates of the 25% of individuals with the slowest relative growth rates in the 

previous census interval (MRT25). These rates were separately available for juveniles 

(RGR95SAP, MRT25SAP) and adult trees (RGR95TRE, MRT25TRE). Using the function 

princomp in the stats package in R (R Core Team 2014), RGR95 and MRT25 for saplings 

and large trees were linearly combined in a principal components analysis, and species 

scores along the first component axis were extracted to form the variables RGR.MRTSAP, 

and RGR.MRTTRE. 

Anatomy 

Thin anatomical wood sections, 15 – 40 m thick, were taken from each 1 cm segment 

using a GSL 1 microtome (Gärtner, Lucchinetti & Schweingruber 2014). Sections were 

stained with cresyl violet acetate, a metachromatic dye (Keating 2014), to increase 

contrast. Images of stained sections were acquired with a Nikon Coolscope Digital 

Microscope at the Plant Anatomy Lab of the Missouri Botanical Garden, St. Louis, MO, 

USA. For each section, three images were captured at a coarse (4x) magnification to 

quantify vessel traits and three images were captured at a finer (20x) magnification to 

quantify fiber and parenchyma traits. The difference in image magnification for vessel 

traits vs. fiber and parenchyma traits was to avoid a bias of tissue area fractions towards 

vessels, particularly for species with large sized vessels that can dominate a 20x image. 
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Areas of cell types in each image were color coded in GIMP (version 2.8.0) using a 

Bamboo graphic tablet (Wacom Co. Ltd., Japan). Anatomical trait values for each 1 cm 

segment were obtained by averaging across the three images at a given magnification.  

Due to intergradation among cell types, particularly between dimorphic fibers and thick-

walled parenchyma, longitudinal sections were prepared for four species to aid in 

identifying cell types (Carlquist 2014). In extreme cases of ambiguity between cell types, 

expert anatomists were consulted to confirm the identification of cell types. Eight images 

for which this ambiguity was unresolved were excluded from processing, and averages 

adjusted accordingly. Further analyses were conducted in ImageJ 

(http://imagej.nih.gov/ij/).  

Vessel traits: to quantify vessel traits (vessel area fraction, vessel diameter (m), and 

vessel density (#/m
2
)), the count, and diameter of whole and partial vessels (including 

vessel wall) within the entire image area were determined. Images that exhibited the edge 

effect in which one or more vessels were only partial in the image presented a challenge 

that was resolved by applying rules from the field of stereology (MBF BIOSCIENCE 

2015). This involved defining a central image area surrounded by a buffer zone with a 

width slightly larger than the radius of the largest vessel for that species. All vessels with 

their centroids within the central image area were used in determining vessel count and 

vessel diameter so that only whole vessels were included. However, total area of vessels 

was based on all vessels whether entirely or partially within the total image area.  Vessel 

area fraction at 4x was estimated as the total area of vessels divided by the total image 

area. Vessel density was estimated as the number of vessels divided by the total image 

area or the central image area for images that exhibited the edge effect. 

http://imagej.nih.gov/ij/
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Fiber traits: within each 20x image, fiber area was defined as area occupied by fiber cells. 

Also, the lumen area of an average of 133 (range: 25 - 347) individual fibers were used to 

estimate average fiber lumen area (m
2
) per image. Similarly, the double wall thickness 

for on average 60 (range: 30 – 73) pairs of fibers was determined by drawing lines that 

covered the length of the double wall of adjacent fibers; length was determined in 

ImageJ. Fiber double wall thickness was divided by 2 to obtain fiber wall thickness (m). 

Parenchyma traits: within each 20x image, parenchyma area was defined as the combined 

area occupied by axial and ray parenchyma. 

Tissue fractions: were quantified as the fraction of a tissue per image area.  Fractions 

determined at magnifications of 20x (fibers and parenchyma) were expressed as 

proportions of the image area at 4x. We multiplied the fraction of non-vessel area at 4x 

(i.e. 1 – vessel area fraction at 4x) by fiber fraction at 20x to get fiber fraction at 4x. 

Similarly, fraction of non-vessel area at 4x was multiplied by parenchyma fraction at 20x 

to get parenchyma fraction at 4x.  

We further decomposed fiber fraction into fractions of fiber wall and fiber lumen area. To 

do this, we assumed, due to the absence of intercellular spaces, that fibers consist of a 

rectangular fiber wall layer surrounding a hollow fiber lumen. For each image, using 

average fiber cell measures of lumen area, lumen ‘length’ (measured as Feret’s diameter 

in ImageJ), and wall thickness, we determined the fraction of a fiber cell area that is wall 

and lumen (see appendix 1 for details). Each of these fractions at the fiber cell level was 

multiplied by the total fiber fraction at the tissue level to obtain fiber wall fraction and 

fiber lumen fraction (See appendix 1 for details).  
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Data analysis 

Distribution of data was examined for species performance, and separately for anatomical 

traits of juvenile and adult wood, using histogram plots. All variables were approximately 

normally distributed with the exception of RGR95SAP, RGR95TRE, and fiber lumen area for 

both juvenile and adult wood. Variables with non-normal distributions were natural log-

transformed. Due to the constant-sum constraint exhibited by tissue fractions 

(parenchyma, vessel, fiber wall, and fiber lumen fractions) in our data-set (i.e. tissue 

fractions sum to 1), centered log ratio transformations of tissue fractions were used as 

input in the multivariate analyses (Aitchison 1983).  Aitchison’s centered log ratio 

transformation has been shown to successfully overcome the constant-sum constraint 

associated with compositional data, while using all fractions and without compromising 

interpretability (Aitchison 1983). Aitchison’s centered log ratio transformation for 

compositional data was done with the clr function of the Hotelling package in R (Curran 

2013). 

1. Wood traits ─ variation across taxonomic levels: We performed a variance 

component analysis to assess the contributions to variation in wood traits (wood density 

and anatomical traits) from ontogenetic variation within an individual, intraspecific 

variation, and interspecific variation. This involved using a random-effects model with 

two nested levels of random effects (random=~1|Species/Individual) to estimate the 

proportion of variation in wood traits associated with species and individuals. The 

residual variation included variation associated with ontogeny plus measurement error.  
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2. Anatomical trait coordination: We performed principal components analyses (PCA) 

to evaluate relationships among anatomical traits separately for juvenile and adult wood, 

after scaling and centering the variables.  We evaluated bivariate associations between 

wood anatomical traits separately for juvenile and adult wood with Pearson correlation 

tests. We evaluated differences between juvenile and adult wood for the strength and 

direction of correlations between vessel density and vessel diameter, fiber wall thickness 

and fiber lumen area, parenchyma fraction and fiber lumen fraction, and parenchyma 

fraction and fiber wall fraction. These bivariate correlations were dependent non-

overlapping because sample pairs (i.e. juvenile and adult wood samples) were obtained 

from the same individual but none of the correlated variables were shared by juvenile and 

adult wood (e.g. different vessel density and diameter for juvenile and adult wood). 

Comparison of dependent non-overlapping correlation coefficients was done with the 

cocor function of the cocor package, which implements Fisher’s r-to-z-transformation for 

testing the significance of the difference between two correlations (Diedenhofen & 

Diedenhofen 2015).  

3. Anatomical underpinnings of wood density: We evaluated the relative contribution to 

variation in wood density of cell morphology and tissue fractions by partitioning the 

variation uniquely ([a] and [c] in Fig. 3) and jointly ([b] in Fig. 3) explained by cell 

morphology and tissue fractions in separate multiple regressions for juvenile and adult 

wood. This procedure termed ‘variation partitioning’ consists of six conceptual steps as 

described in Borcard, Gillet & Legendre (2011). First, multiple regression and forward 

selection is used to select explanatory variables separately for relationships between 

wood density and cell morphology and between wood density and tissue fractions. 
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Second, a redundancy analysis (RDA) is performed for one subset of the data (in this case 

cell morphology) to yield fraction [a+b] (see Fig. 3). Third, an RDA is performed for the 

other subset of the data (in this case tissue fractions) to yield [b+c]. Fourth, an RDA is 

performed for both subsets of the data together, yielding fraction [a+b+c]. Fifth, the 

adjusted R
2
 of the three RDAs above is computed. Finally, estimates of the fractions of 

adjusted (adj) variation are computed by subtraction (e.g. fraction [a]adj = [a+b+c]adj –

[b+c]adj). To implement these steps with our dataset, three matrices were defined for each 

ontogenetic stage; 1) the response variable (wood density), 2) cell morphological traits 

(fiber lumen area, fiber wall thickness, vessel density, and vessel diameter), and 3) tissue 

fractions (parenchyma fraction, vessel fraction, fiber wall fraction, fiber lumen fraction).  

The purpose of the forward selection procedure in step 1 was to determine a 

parsimonious set of predictor variables in order to avoid multi-colinearity. However, 

forward selection assesses the contributions of predictor variables as they are introduced 

into a regression model and depends largely on the order in which predictors are 

introduced into the model ((Ray-Mukherjee et al. 2014). Hence, we instead used a 

commonality analysis to identify the most parsimonious combination of wood traits for 

each matrix that best predicts the response variable. Commonality analysis is a multiple 

regression based method that explicitly addresses the multi-colinearity problem by 

partitioning the total variance (R
2
) explained in the response variable into unique and 

common contributions that each predictor makes to the total explained variance (Kraha et 

al. 2012; Ray-Mukherjee et al. 2014). Unique effects indicate the amount of variance in 

the response variable that is uniquely accounted for by a predictor, while common effects 

indicate the amount of variance due to two or more variables (Nimon 2010). Hence, 
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unique and common effects for each predictor variable are produced as coefficients in a 

commonality analysis. We used the commonality coefficients to select the most 

parsimonious combination of traits that best predict the response variable wood density, 

for the cell morphology matrix, and the tissue fraction matrix. For example, for juvenile 

wood, the simplest combination of cell morphological traits that predicted juvenile wood 

density was identified using the regr function of the yhat package in R (Nimon, Oswald 

& Roberts 2013). Each parsimonious set of traits for each matrix was then used as input 

in a variation partitioning analysis using the varpart function of the vegan package in R 

(Oksanen et al. 2015), which then estimates the unique and joint variances explained by 

each matrix (Borcard et al. 2011). Also, using a permutation method with the anova.cca 

function of the vegan package in R (Oksanen et al. 2015), the significance of the unique 

variances explained by each matrix was obtained. However, the significance of the joint 

variances cannot be determined using this method (Borcard et al. 2011). Lastly, we ran 

separate multiple regressions for wood density regressed on the parsimonious, and on the 

full combination of traits for cell morphology and for tissue fractions,  in order  to obtain 

R
2 

and standardized regression coefficients (β) that quantify how much change in wood 

density results from a one-unit change in the predictor variables. 

4. Wood traits and performance: We used Pearson correlation tests to evaluate the 

association between relative growth and mortality rates and wood density and anatomical 

traits, separately for juvenile and adult wood. 

All statistical tests were implemented in R version 3.1.2 (R Core Team 2014), and 

ggplot2 (Wickham & Chang 2014), gridExtra (Auguie 2012), and corrplot (Wei 2013) 

for graphics.    
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Results 

Wood traits varied substantially across the 20 co-occurring tropical tree species (Figs 1 

and 2) with similar patterns of variation irrespective of ontogenetic stage (Table 1). Fiber 

lumen area showed the largest variation among species, followed by fiber lumen fraction, 

vessel density and parenchyma fractions, respectively. The remaining traits, including 

wood density, had < 5-fold variation among species (Table 1).  

1. Wood traits ─ variation across taxonomic levels: Interspecific variation explained the 

bulk of variation for most traits (Figs 4 and 5). However, ontogeny explained 

considerable variation in vessel traits (36 – 67%) and parenchyma fraction (39%), but 

smaller amounts of variation in fiber traits and wood density (17 – 26%; Fig. 4). Inter-

individual variation was negligible for all traits (< 0.1%). 

2. Anatomical trait coordination: To evaluate relationships among wood traits at 

different ontogenetic stages, data were analyzed separately for juvenile and adult wood 

using PCA (Fig. 6; Table 2). For juvenile wood, 47.0% and 22.1% of the variance was 

accounted for by the first and second PCA axes, respectively.  The first PCA axis showed 

moderate negative loadings for fiber lumen area, vessel diameter, and fiber lumen 

fraction, and moderate positive loadings for vessel density, fiber wall fraction and fiber 

wall thickness. The second axis showed strong negative loadings for parenchyma 

fraction, and moderate positive loadings for vessel fraction, vessel density, and fiber 

lumen fraction. Patterns were generally similar for adult wood, with 45.8%, and 19.1% of 

variance explained by the first and second PCA axes, respectively. In adult wood, the 

same set of traits loaded modestly on the first axis as in juvenile wood, while the second 
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axis had strong negative loadings for parenchyma fraction and moderate positive loadings 

for vessel fraction and vessel density only.  

In general, bivariate correlations between pairs of wood traits were similar across 

ontogeny. Fiber traits were strongly correlated with one another. Parenchyma fraction 

was strongly negatively associated with fiber lumen fraction. Vessel fraction was only 

weakly positively associated with vessel density; however, vessel density and vessel 

diameter were weakly to moderately associated with some fiber traits, and as expected, 

vessel density was strongly negatively associated with vessel diameter (Fig. 7). Bivariate 

correlation coefficients did not differ significantly between juvenile and adult wood for 

vessel density and diameter (z = -1.41, P = 0.92), fiber wall thickness and fiber lumen 

area (z = -0.63, P = 0.73), parenchyma fraction and fiber wall fraction (z = -0.76, P = 

0.78), and parenchyma fraction and fiber lumen fraction (z = -1.06, P = 0.85).  

3. Anatomical underpinnings of wood density: Of the four cell morphology traits 

considered, fiber lumen area accounted for the largest percentage of wood density 

variation (> 70%) for both juvenile and adult wood. This was followed by small but 

significant contributions from fiber wall thickness. For tissue fractions, fiber wall fraction 

was the most important trait for explaining both juvenile and adult wood density 

variation, followed by very small but significant contributions from fiber lumen fraction 

(Table 3). Similar amounts of variance in wood density were explained by the 

parsimonious and the full combination of traits (Table 3). Wood density decreased with 

increasing fiber lumen area and fraction, but increased with increasing fiber wall 

thickness and fraction (Table 3). The amount of variation in wood density uniquely 

explained by cell morphology was small and insignificant, while variance explained by 
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tissue fraction was also small but significant (Table 4). Together, cell morphology and 

tissue fractions jointly explained large amounts of variation in wood density for both 

juvenile and adult wood (Table 4).   

4. Wood traits and performance: Whether measured for either saplings or large trees, 

growth (RGR95) and mortality (MRT25) rates as well as the linear combination 

(RGR.MRT) of these two rates were not significantly associated with either juvenile or 

adult wood density (Fig. 8). In contrast, when considering anatomical traits in juvenile 

wood, a number of moderate patterns were apparent. RGR95SAP was moderately 

associated with juvenile wood fiber traits, negatively with fiber wall fraction and 

positively with fiber lumen area. Similarly, MRT25SAP was moderately negatively 

associated with fiber wall fraction and vessel density, but positively associated with 

vessel diameter of juvenile wood (Fig. 8). Also, RGR.MRTSAP was negatively correlated 

with fiber wall fraction and positively correlated with vessel diameter of juvenile wood. 

In contrast for adult wood, there was only a marginally positive correlation between 

vessel diameter and MRTTRE, and RGR.MRTTRE (Fig. 8). 

Discussion 

Variation in wood density, a key functional trait, can have consequences for whole-plant 

function, community dynamics, and ecosystem processes. However, the composite nature 

of wood density may mask variation in ecological strategies among co-occurring species 

with similar wood densities. Further, anatomical components of wood density may vary 

with ontogeny, as juvenile and adult trees experience different resource availability and 

environments. Here, we decompose wood density into its underlying anatomical 
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components, to explicitly test for ontogenetic differences in wood traits, coordination 

among wood traits, major anatomical drivers of wood density, and associations between 

wood traits and species performance. First, we found greater ontogenetic variation in 

vessel traits and parenchyma compared to fiber traits and wood density. Second, 

anatomical trait coordination did not differ with ontogeny. Third, variation in wood 

density was best explained by variation in fiber cell morphology and tissue fractions. 

Fourth, anatomical traits were more strongly associated with measures of species 

performance than with wood density. However, there was ontogenetic variation in the 

strength of these associations. Below, we discuss these results in detail.  

Ontogenetic differences: Similar to wood density, most of the variation in anatomical 

traits can be captured at the interspecific level (Osazuwa-Peters et al. 2014). However, 

ontogeny explained between 17 and 67% of variation in individual wood traits. 

Developmental changes in response to different mechanical and hydraulic constraints 

experienced by saplings and adults may explain ontogenetic variation in wood traits. For 

example, juvenile trees have greater embolism resistance due to less developed root 

systems and lower capacity for water storage, while large trees have a higher specific 

conductivity due to greater resistance to water transport resulting from longer path 

lengths (Sperry et al. 2008; Lachenbruch et al. 2011). Similarly, resource availability and 

demands for maintaining structural integrity differ for juveniles because adult trees enjoy 

high light environment up in the canopy but have to deal with increased forces associated 

with self-weight and wind load (Read & Stokes 2006; Lachenbruch et al. 2011). Further, 

among species in our study, vessel and parenchyma traits had the largest variances 

attributable to ontogeny. This anatomical shift suggests that saplings are under selective 
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pressure to respond to non-trivial changes in hydraulic and storage demands by altering 

their wood anatomical properties as they grow. This ontogenetic plasticity in anatomical 

traits did not translate to differences in trait coordination or the identity of major drivers 

of wood density between juvenile and adult wood. But association between wood traits 

and whole-plant function varied with ontogeny.   

Anatomical trait coordination: The first PCA axis (Fig. 6 & Table 2), defined by 

variation in fiber and vessel traits, separated species along the wood density spectrum (R 

= 0.88, P < 0.0001). On this axis, high wood density species had positive scores 

associated with higher fiber wall thickness and fraction and vessel density, while low 

wood density species had negative scores associated with higher fiber lumen area and 

fraction and vessel diameter. The second PCA axis captured variation in vessel and 

parenchyma fractions; species with positive scores on this axis had larger vessel fraction 

while species with negative scores on this axis had larger parenchyma fraction. 

Interestingly, from this second axis (Fig. 6) we determined that species differing in the 

traits captured on the first axis did not necessarily differ in position on the second axis, 

i.e. both species on the negative (low wood density) and positive (high wood density) 

sides of PCA axis 1 had high parenchyma fractions (negative side of PCA axis 2) and 

high vessel fractions (positive side of PCA axis 2). Hence, relatively high parenchyma 

fractions or to a lesser extent high vessel fractions (notice shortness of vessel fraction 

arrow in PCA biplots; Fig. 6) were not restricted to high or low wood density species. For 

example, both the slow growing, high wood density Tabebuia guayacan and the fast 

growing, low wood density, pioneer Cordia bicolor were close together on PCA axis 2 

indicating similar parenchyma fractions. Consequently, parenchyma and vessel fractions 



60 
 

were largely decoupled from wood density variation in this study (Table 3) as in previous 

reports (Martinez-Cabrera et al. 2009; Martínez-Cabrera et al. 2011; Zieminska et al. 

2013). This lends support to the notion that the integrative nature of wood density masks 

variation in ecological strategies among coexisting tropical trees. Thus, trees may have 

similar average wood density, but differ in hydraulic architecture and capacity for 

storage. Conversely, species may differ in ecological strategies as defined by wood 

density (e.g. fast-growth pioneer species vs. slow-growth late successional species), but 

exhibit similar hydraulic architecture and storage capacity.     

As expected (see Introduction), there were strong tradeoffs between vessel diameter and 

vessel density, parenchyma and fiber lumen fractions, and fiber wall and lumen traits 

(Fig. 7). Overall, these negative correlations were similar in direction and strength to 

previous reports (Preston et al. 2006; Martinez-Cabrera et al. 2009; Poorter et al. 2010; 

Zanne et al. 2010; Martínez-Cabrera et al. 2011; Fortunel et al. 2014). However, our 

results contribute additional insight for trunk wood of tropical rainforest trees, because 

the only other study of such trees measured fiber fractions only and not traits related to 

fiber morphology i.e. wall thickness and lumen area (Poorter et al. 2010). Here, we show 

that trunk wood of tropical rainforest trees exhibited a similar coordination between 

morphology and fractions of fiber wall and lumen to that reported in shrubs (Martinez-

Cabrera et al. 2009). However, there were moderate positive correlations between vessel 

morphological traits and fiber traits, parenchyma and fiber wall thickness, and strong 

positive correlations among fiber traits (Fig. 7). Positive correlations between vessel 

density and fiber wall fraction and thickness may be because fibers strengthen the matrix 

around vessels, thus helping to resist embolism (Jacobsen et al. 2005; Lachenbruch et al. 



61 
 

2011). Also, positive correlations between vessel diameter and fiber lumen may be 

attributed to the presumed roles of larger fiber and vessel lumens in water storage 

resulting in higher capacitance, so mitigating the need to invest in features that enhance 

resistance to embolism (Pratt et al. 2007; Sperry et al. 2008; Zanne et al. 2010). On the 

other hand, vessel fraction showed little coordination with other anatomical traits in 

juvenile wood, but moderate negative correlations with fiber lumen area and fraction in 

adult wood. This observation for adult wood indicates modest tradeoffs between 

hydraulic transport and mechanical support for adult trees but not for saplings, since 

small changes in vessel fraction can provide large increases in hydraulic conductivity 

with minimal effects on mechanical support (Zanne et al. 2010).  

Fiber traits drive wood density variation: Fiber lumen area and fiber wall fraction were 

the major drivers of wood density variation, with smaller contributions from fiber wall 

thickness and fiber lumen fraction. This result is similar to several previous reports that 

have consistently identified fiber traits as strongly correlated with wood density including 

in shrubs  (Jacobsen et al. 2007; Pratt et al. 2007; Martinez-Cabrera et al. 2009; 

Zieminska et al. 2013), branches and roots of Amazonian trees (Fortunel et al. 2014), and 

trunks of tropical cloud and dry forest trees (Aguilar-Rodríguez, Abundiz-Bonilla & 

Barajas-Morales 2001). However, we go beyond bivariate correlations between wood 

density and anatomical traits and use multiple regression analysis to show that fiber traits 

overall best predict variation in wood density. Fiber traits explained up to 82% of the 

variation in juvenile and adult wood density (Table 3).  Fiber cells are the load-bearing 

cells in wood and their huge contribution to wood density variation implies that 

differential response to biomechanical pressures is the major factor determining wood 
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density variation. Fortunel et al. (2014) reached a similar conclusion that biophysical 

constraints must drive variation in wood density amongst the 113 Amazonian tropical 

tree species they examined; fiber traits mirrored variation in branch and root wood 

density across three environmentally contrasting habitats.  

Also, fiber tissue fractions explained slightly more variation than fiber cell morphology, 

but the proportion of variance uniquely explained by each trait was quite small. More 

than 75% of the variance in wood density was jointly explained by tissue fractions and 

cell morphology. Tissue fractions relate to changes in the overall volume of cells, while 

cell morphology relates to changes in particular features of the cell such as lumen 

diameter or wall thickness (Lachenbruch & McCulloh 2014). Thus, changes in tissue 

fractions can occur along with changes in cell morphology, such that a change in fiber 

cell morphology may also cause a change in fraction or area occupied (e.g., thickening of 

fiber wall will result in greater fiber wall fraction). This corroborates the conclusion that 

cell morphological traits can provide more insightful understanding of wood density 

when combined with tissue fraction information (Zieminska et al. 2013).  

Species performance: Perhaps the most compelling of our results are the correlations 

between measures of species performance and several anatomical traits and the absence 

of correlations between species performance and wood density (Fig. 8). We found these 

correlations because we paired relative growth and mortality rates for saplings with 

juvenile wood traits, and relative growth and mortality rates for large trees with adult 

wood traits. Our results advance what is known about anatomical traits and tree 

performance because previous studies focused on vessel traits and obtained anatomical 

trait measures from adult wood (Poorter et al. 2010; Russo et al. 2010; Fan et al. 2012). 
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In this study, whereas the integrative trait wood density was unrelated to species 

performance, sapling relative growth rates decreased with fiber wall fraction and 

increased with fiber lumen area. In contrast, mortality rates decreased with fiber wall 

fraction and vessel density, but increased with vessel diameter. In contrast, only the 

correlation between mortality rates and vessel diameter was marginally significant for 

adult wood (Fig. 8). Hence, these results suggest that the juvenile stage is more 

susceptible to the myriad hydraulic and mechanical stresses operating in the forest, and 

the quest to understand the functional significance of the anatomical basis of wood 

density should be focused on juvenile rather than adult wood.    

The decoupling of wood density and measures of species performance for both saplings 

and adults corroborates the view that the same wood density can be achieved by different 

combinations of anatomical traits (Russo et al. 2010; Zieminska et al. 2013). The 

integrative nature of wood density masks the functional consequences of the different 

wood cell types for growth and mortality.  However, when wood density is decomposed 

into its anatomical underpinnings, interesting associations with growth and mortality 

emerge. By prioritizing hydraulic efficiency, saplings of species that invest in large 

diameter vessels and low fiber wall fractions attain rapid growth, likely conferring a 

competitive advantage in light-limited environments. Such a strategy characterized by 

high transport efficiency and low structural costs is considered advantageous in highly 

productive, wet tropical environments (Choat et al. 2012). However, these species also 

suffered higher mortality as shown by the negative association between mortality rates 

and fiber wall fraction and positive association between mortality rates and fiber lumen 

fraction.  Species that invest less in fiber wall may be more prone to mechanical damage 
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from wind and storms leading to higher mortality rates (Putz et al. 1983). On the other 

hand, hydraulic architecture, defined by the negative relationship between vessel density 

and diameter, was strongly associated with sapling mortality rates, so that species that 

prioritized hydraulic safety survived better. Adult trees exhibited a similar trend of 

hydraulic architecture translating to higher survival, albeit marginally. This result is 

relevant to the growth-hydraulic hypothesis that explains higher mortality rates of forest 

trees in resource-rich environments as a function of investments in efficient hydraulic 

architectures (Stephenson et al. 2011). A plant’s hydraulic architecture largely determines 

its ability to resist embolism that block xylem conduits, reducing xylem pressure and 

water transport; for example, large vessels are conductively more efficient but potentially 

less resistant to drought-induced embolisms (Sperry et al. 2008). A continuous decline in 

xylem pressure and hydraulic capacity leads to hydraulic failure, causing tissue damage 

and plant death (Choat et al. 2012). Thus, hydraulic failure may have been an important 

mechanism in driving directional changes in species composition towards drought 

tolerant species that have been reported on Barro Colorado Island as a consequence of 

several unusual droughts and variation in rainfall patterns over the last six decades 

(Condit, Hubbell & Foster 1995; Feeley et al. 2011).  

Conclusion 

There has been much conjecture on the potential for the integrative functional trait wood 

density to mask variation in ecological strategies among coexisting tree species. Here, we 

approached this issue by examining ontogenetic differences in patterns of wood trait 

variation, coordination among wood traits, major drivers of wood density, and 

relationships with species performance. The key message from our study is that variation 
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in juvenile wood, and not adult wood, holds the desired information on the functional 

consequences of a tree’s anatomical configuration. Multiple lines of evidence from this 

study (Fig. 4, 6 & 8) corroborate the notion that wood density masks variation in 

ecological strategies. There was variation in parenchyma and vessel fraction among 

species of similar wood densities and the association of species performance with 

hydraulic and mechanical wood traits but not with wood density. Lastly, biomechanical 

stresses in the environment of coexisting species must play a major role in wood density 

variation because fiber wall and lumen traits were the most important wood traits 

underpinning wood density variation. Future work should examine on a larger scale and 

across tropical forests the generality of the association between juvenile anatomical 

architecture and performance. Our results lead to the conclusion that wet tropical forests 

dominated by species that prioritize hydraulic efficiency will be susceptible to 

compositional changes driven by changing patterns in precipitation and mechanical 

stressors (e.g. wind storms).  
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Tables 

Table 1: Summary characteristics of wood traits for juvenile and adult wood of 20 tropical tree species. Values are species 

mean minima (low), maxima (high), and their ratio (n-fold variation = maxima/minima). 

Trait Unit Juvenile Adult 

  Low High n-fold variation Low High n-fold variation 

Wood density g/cm
3
 0.21 0.87 4.14 0.30 0.90 3.00 

Tissue fractions 

Parenchyma fraction  0.09 0.50 5.56 0.08 0.32 4.00 

Vessel fraction  0.03 0.08 2.67 0.04 0.13 3.25 

Fiber wall fraction  0.16 0.63 3.94 0.24 0.75 3.12 

Fiber lumen fraction  0.03 0.59 19.67 0.01 0.41 41.00 

Cell morphology 

Vessel diameter m 69.04 199.11 2.88 83.41 229.56 2.75 

Vessel density vessels/m
2
 1.86 x 10

-6
 1.72 x 10

-5
 9.26 1.42 x 10

-6
 1.94 x 10

-5
 13.72 

Fiber lumen area m
2
 4.63 641.93 138.65 1.74 443.18 254.7 

Fiber wall thickness m 1.60 4.37 2.73 2.28 4.63 2.03 
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Table 2: Trait loadings on first and second axis of PCA for juvenile and adult wood. Absolute values of loadings ≥ 0.30 are 

considered moderate and ≥ 0.60 are considered strong, and these are indicated in bold. PC axis 1 captures a contrast between 

fiber and vessel traits, while PC axis 2 represents a contrast between parenchyma fraction and vessel traits.   

Traits PC axis 1 (Fiber vessel contrast) PC axis 2 (Parenchyma vessel contrast) 

 Juvenile Adult Juvenile Adult 

Fiber lumen area -0.41 -0.38 -0.05 -0.02 

Vessel diameter -0.35 -0.33 -0.29 -0.14 

Vessel density 0.35 0.32 0.37 0.43 

Fiber wall thickness 0.43 0.43 -0.24 -0.23 

Parenchyma fraction 0.11 0.13 -0.68 -0.65 

Vessel fraction 0.02 0.17 0.36 0.54 

Fiber wall fraction 0.46 0.45 0.12 -0.04 

Fiber lumen fraction -0.42 -0.46 0.33 0.17 
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Table 3: Most parsimonious combination of cell morphology or tissue fraction traits that best predict the response variable, 

wood density, identified with a commonality analysis. Commonality analysis explicitly identifies multi-colinearity by 

quantifying the unique and common contributions that each predictor makes to the total variance explained in the response 

variable (Kraha et al. 2012; Ray-Mukherjee et al. 2014). Unique = proportion of variance in response variable uniquely 

explained by the predictor. Common = proportion of variance in response variable explained by the predictor that is also 

explained by one or more other predictors. Wood density regressed on the full set of traits to obtain adjusted R
2
, and on the 

parsimonious set of traits to obtain adjusted R
2
 and β. Predictor variables in parsimonious model are in bold.  

  Commonality coefficients    Adjusted R2 

  

Trait 

 

Unique 

 

Common 

 

Total 

 

β 

Parsimonious model Full  model 

Juvenile wood density 

Cell morphology Fiber lumen area## 0.25 0.51 0.76 -0.12*** 0.78  

 

 

0.79 

Fiber wall thickness 0.01 0.45 0.46 0.04* 

Vessel diameter 0.01 0.26 0.27   

Vessel density 0.0001 0.24 0.24   

Tissue fractions Fiber wall fraction# 0 0.80 0.80 0.29*** 0.83  
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Fiber lumen fraction# 0 0.52 0.52 -0.07**  

0.83 Vessel fraction# 0 0.001 0.001   

Parenchyma fraction# 0 0.001 0.001   

Adult wood density 

Cell morphology Fiber lumen area## 0.27 0.46 0.73 -0.08*** 0.78  

 

 

0.78 

Fiber wall thickness 0.03 0.48 0.51  0.05*** 

Vessel diameter 0.01 0.18 0.19   

Vessel density 0.01 0.09 0.10   

Tissue fractions Fiber wall fraction# 0 0.81 0.81 0.25*** 0.83  

 

0.83 

Fiber lumen fraction# 0 0.56 0.56 -0.05** 

Vessel fraction# 0 0.02 0.02   

Parenchyma fraction# 0 0.02 0.02   

Asterisks indicate level of significance (* = 0.05; ** = 0.01; *** = 0.001).  

Natural log transformed variables are indicated by the superscript 
##

.  

Center log ratio transformed variables are indicated by the superscript 
#
. 
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Table 4: Joint and unique variances for cell morphological traits and tissue fractions as drivers of variation in wood density 

derived from a variation partitioning analysis based on a multiple regression of the most parsimonious combination of traits 

that best predicts wood density (see Table 3).  

 Traits R
2
 

Juvenile wood density 

Unique variances  Cell morphology 0.003  

 Tissue fractions 0.057*** 

Joined variances  0.772 

Unexplained variance  0.168 

Adult wood density   

Unique variances  Cell morphology 0.010 ̇ 

 Tissue fractions 0.064*** 

Joined variances  0.767 

Unexplained variance  0.159 

Asterisks indicate level of significance ( ̇ = 0.1,  * = 0.05; ** = 0.01; *** = 0.001). 
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Figures

Figure 1: Images of transverse sections from wood of the twenty species examined (4x). Species arranged in order of 

increasing average wood density, left to right, top to bottom. 
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Figure 2: Images of transverse sections from wood of the twenty species examined (20x). Species arranged in order of 

increasing average wood density, left to right, top to bottom. 
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Figure 3: Venn diagram showing variation partitioning of a response variable between two sets of explanatory variables, cell 

morphology and tissue fractions. The rectangle represents the variation in the response variable, wood density. Fraction [a] and 

[c] are the unique variances explained by cell morphology and tissue fractions respectively, while [b] is the joined variance or 

the intersection of the amounts of variation explained by linear models for cell morphology and tissue fractions. Adapted from 

(Legendre 2008). 

 

 

 

[a] [c] [b] 

Unexplained variation = [d] 

Variation explained 

by tissue fractions  

Variation explained 

by cell morphology  

Total variation in wood density  
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Figure 4: Proportion of variance explained by ontogeny, intraspecific, and interspecific levels of organization for eight 

anatomical traits and wood density.  
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Figure 5: Ontogenetic differences in tissue fractions between juvenile and adult wood for each species. Species arranged in 

order of increasing average wood density, left to right, top to bottom. Each panel is labeled with a six letter acronym 

representing the first four letters of the genus and first two letters of the species binomial. See Fig. 1 or 2 for full binomial 

corresponding to each species acronym. 
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Figure 6: Principal component analyses showing relationships among wood traits for 

juvenile and adult wood. 
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Adult wood 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Bivariate correlations between pairs of anatomical traits. Centered log ratio 

transformation indicated by #, and natural log transformation indicated by ## in trait 

name. Presence of circle around correlation coefficient indicates correlation is significant 

at P < 0.05, and size of circle proportional to strength of correlation.  

Juvenile wood 
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Figure 8: Associations between relative growth and mortality rates for saplings and 

juvenile wood density and anatomical traits, as well as between vital rates for large trees 

and adult wood density and anatomical traits. RGR95 = relative growth rates, MRT25 = 

mortality rates, RGR.MRT = linear combination of relative growth and mortality rates, 

SAP = saplings, and TRE = large trees. Centered log ratio transformation indicated by #, 

while natural log transformation indicated by ## in variable name. Presence of circle 

around correlation coefficient indicates correlation is significant, and size of circle 

proportional to strength of correlation. Juvenile wood correlations are significant at P < 

0.05 while adult wood correlations are marginally significant at P < 0.06. 

Adult wood 
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Supporting information for chapter 2 

Appendix 1: Decomposing fiber fraction at tissue level to fiber wall fraction and fiber 

lumen fraction. 

Assumption: Fiber cells are rectangular in shape to satisfy the observation that fiber cells 

lack intercellular spaces. 

 

Appendix Figure 1: Conceptual representation of assumption and variables for 

decomposing fiber fraction at tissue level into fiber wall and fiber lumen fractions. See 

text below for meaning of acronyms.  

Measured variables: At the level of a fiber cell, measures available included fiber lumen 

area (FLA), fiber lumen length (FLl), and cell wall thickness (FWt).  

Variables estimated at cell level: 
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 FWt 

Tissue level 

 

Cell level 

 FLw 

Image (20x) of cross-section of 

Zanthoxyllum ekmanii; notice absence of 

intercellular spaces among fibers 
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Fiber lumen width (FLw) was estimated as FLA divided by FLl.  

𝐹𝐿𝑤 =
𝐹𝐿𝐴

𝐹𝐿𝑙
          Eq. 1 

 

Fiber wall area (FWA) was then computed using the equation: 

𝐹𝑊𝐴 = (4 ∗ 𝐹𝑊𝑡2 + 2 ∗ (𝐹𝐿𝑤 + 𝐹𝐿𝑙) ∗ 𝐹𝑊𝑡     Eq. 2 

Fiber wall fraction equaled the ratio of FWA to total fiber area (sum of FWA and FLA). 

𝐹𝑖𝑏𝑒𝑟 𝑤𝑎𝑙𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐹𝑊𝐴

𝐹𝑊𝐴+𝐹𝐿𝐴
       Eq. 3 

Similarly fiber lumen fraction equaled the ratio of FLA to total fiber area.  

𝐹𝑖𝑏𝑒𝑟 𝑙𝑢𝑚𝑒𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐹𝐿𝐴

𝐹𝑊𝐴+𝐹𝐿𝐴
       Eq. 4 

 

At the tissue level, total fraction of fiber was decomposed into fraction of fiber wall and 

fraction of fiber lumen by multiplying each fraction (i.e. fiber wall fraction, and fiber 

lumen fraction at the level of a fiber cell) by the independent measure of fiber fraction at 

the tissue level.     
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Abstract 

Selective logging of tropical forests is increasing in extent and intensity. The duration 

over which impacts of selective logging persist however remains an unresolved question 

particularly for African forests. Here, we investigate the extent to which a past selective 

logging event continues to leave its imprint on different components of an East African 

forest 45 years later. We inventoried 2358 stems ≥ 10 cm diameter in 26 plots (200 x 10 

m) within a 5.2 ha area in Kibale National Park (KNP), Uganda, in logged and unlogged 

forest. In these surveys, we characterized the forest light environment, taxonomic 

composition, functional trait composition using three traits ─ wood density, maximum 

height, and maximum diameter, and forest structure based on three measures ─ stem 

density, total basal area, and total aboveground (AGB) biomass. Selectively logged forest 

plots in KNP on average had higher light levels, different structure characterized by 

lower stem density, lower total basal area, and lower aboveground biomass, as well as a 

distinct taxonomic composition driven primarily by changes in species’ relative 

abundance, than unlogged forests. Conversely, selectively logged forest plots were like 

unlogged plots in functional composition having similar community weighted mean 

values for wood density, maximum height and maximum diameter. This similarity in 

functional composition irrespective of logging history may be due to functional recovery 

of logged forest or background changes in functional attributes of unlogged forest. 

Despite the passage of 45 years, the legacy of selective logging on the tree community in 

KNP is still evident as indicated by distinct taxonomic and structural composition, and 

reduced carbon storage in logged, as compared to unlogged forests. The effects of 
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selective logging are exerted via influences on tree demography rather than functional 

trait composition.    

Key words: Functional traits; historical logging event; Kibale National Park; light 

intensity; wood density 

Introduction 

Selective logging, the targeted harvesting of commercially valuable timber species in a 

single cutting cycle, is an increasingly important component of the human footprint on 

tropical forests; its extent and intensity are on the rise (Asner et al., 2009; Gibson et al., 

2011). According to recent estimates, at least 390 million ha of tropical humid forests 

were selectively logged as of 2009 (Asner et al., 2009), an area slightly larger than the 

size of India. These estimates are likely to be conservative because clandestine selective 

logging operations are extensive and largely undocumented. For example, more than half 

of the timber harvested from five major timber producing countries (Brazil, Cameroon, 

Ghana, Indonesia, and Malaysia) was illegally extracted in 2009 (Rands et al., 2010). 

Selective logging is likely expanding due to rising global demands for timber products, 

providing large revenues for developing economies (Gibson et al., 2011; Putz et al., 

2012).  

The current prevalence and potential for continued expansion of selective logging has led 

to a call to better understand its impacts on tropical forests, particularly in terms of 

biodiversity conservation and carbon sequestration (Picard et al., 2012). Several recent 

studies argue that its impacts are relatively benign in comparison to other uses of forests 

and selectively logged tropical forests have a high conservation value second only to 
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pristine tropical forests (Gibson et al., 2011; Putz et al., 2012; Ramage et al., 2013). 

However, selective logging has known immediate impacts on the taxonomic, structural, 

and functional aspects of tropical forests. Taxonomically, selective logging can shift the 

composition and relative abundance of species (Baraloto et al., 2012) including reducing 

species richness (Clark and Covey, 2012) and shifting the dominance of particular 

lineages (Berry et al., 2010; Okuda et al., 2003). Structural effects of selective logging 

include homogenizing canopy structure (Okuda et al., 2003), reducing stem density 

(Cannon et al., 1998; Slik et al., 2002; Hall et al., 2003) and total basal area (Bonnell et 

al., 2011), and losing large trees with a shift towards medium sized trees (Okuda et al., 

2003; Bonnell et al., 2011), consequently reducing aboveground biomass  (Lasco et al., 

2006; Blanc et al., 2009; Berry et al., 2010; Lindner and Sattler, 2012). Lastly, the effect 

of selective logging on the capacity of tropical forests to maintain ecosystem function has 

been examined through characterizing shifts in dominance of pre-defined functional 

groups centered on plant attributes such as shade tolerance (Hall et al., 2003), 

successional status (Bonnell et al., 2011), or wood strength (Verburg and van Eijk-Bos, 

2003). A handful of studies have used a more explicit continuous trait-based approach to 

demonstrate that tree communities respond to disturbance from selective logging by 

shifts in the range of functional trait values found in the community  (Baraloto et al., 

2012; Carreño-Rocabado et al., 2012; Mayfield et al., 2010; Mouillot et al., 2013)  

Less clear than the immediate impacts of selective logging on tropical forests is the 

duration over which these impacts persist, given that trees are long lived and most studies 

are conducted within the first two decades after logging (Gibson et al., 2011; Kormos and 

Zimmerman, 2014). Gibson et al. (2011) also highlight a regional bias in the tropical 
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land-use change literature, most of which focuses on Southeast Asian and Neotropical 

forests, with  few studies in Africa. Yet, African forests differ from other tropical forests 

in several ways including having older soils (Richards, 1996), a smaller regional species 

pool (Richards, 1996; Chapman et al., 1999), and historically fewer and smaller 

disturbances (Chapman et al., 1999). The degree of logging damage in Africa is relatively 

lower than Southeast Asia and higher than the Neotropics (Picard et al., 2012). To 

develop a comprehensive understanding of the long-term impacts of selective logging on 

the conservation value of tropical forests, we need more empirical studies exploring long-

term effects on selectively logged African forests.    

Here, we investigate the extent to which impacts of selective logging performed 45 years 

ago persist in an East African forest. We hypothesize that recovery from disturbance will 

be slow, such that imprints of selective logging will still be evident on the taxonomic, 

structural and functional components after almost half a century. We consider effects on 

understory light availability and community structural, taxonomic and functional 

composition. Understory light is strongly influenced by forest canopy structure-, and 

typically differs between old-growth and disturbed forests because their canopies are 

open to varying extents (Nicotra et al., 1999).  These different light conditions tend to 

favor different combinations of functional traits or ecological strategies, such that 

disturbed forests may be dominated by species with resource-acquisitive or disturbance-

adapted strategies, leading additionally to taxonomic and structural differences. To 

capture such differences in functional composition between species in logged and 

unlogged plots, we focused on three traits. Wood density (WD; g/cm
3
), a measure of a 

tree’s dry carbon investment per unit volume, is a key indicator of the wood economic 
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spectrum due to its strong connection with several aspects of a plant’s ecology including 

growth rate, carbon allocation, structural stability, hydraulic conductivity, and disease or 

pest resistance (Chave et al., 2009). The other two traits, plant maximum height (HMAX; 

m) and maximum diameter at breast height (DBHMAX; cm), are crucial components of a 

species’ light competitive ability and carbon gain strategy (King et al., 2006; Wright et 

al., 2007; Moles et al., 2009).  Both WD and adult stature vary with species’ light 

requirements and along a successional continuum (Chave et al., 2009; Falster and 

Westoby, 2005).    

We predict logged forest will have a (I) more open canopy and higher light levels (II) 

greater stem density, but less total basal area and aboveground biomass  because higher 

light conditions will favor recruitment of more stems per unit area and unlogged forest 

will have more large trees (III) distinct tree size distribution with a relatively high 

frequency of mid-sized trees compared to the typical ‘reverse J-shaped’ tree size 

distributions for old-growth unlogged forest (Denslow, 1995) (IV) distinct taxonomic and 

functional composition since it is at an earlier stage of succession and dominated by 

species with a resource acquisitive strategy, whereas unlogged forests will be dominated 

by species with a resource conservative strategy. Prediction IV implies that logged forests 

will have lower community-weighted mean values for WD, HMAX, and DBHMAX 

compared to unlogged forest.  
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Materials and methods 

Study site  

This study was conducted in Kibale National Park (KNP; 795 km
2
) in south-western 

Uganda (Chapman et al., 2010a). It is composed predominantly of mature moist semi-

deciduous and evergreen forest, but includes a variety of other habitats including 

grassland, woodland, lakes and wetlands, colonizing forest, and regrowth in areas 

previously planted with exotic trees (Chapman and Lambert, 2000). KNP receives an 

average of 1643 mm rainfall annually (1990 – 2013; Chapman and Chapman unpublished 

data collected at Makerere University Biological Field Station) with two rainy seasons 

from March to May and September to November (Chapman et al., 2010a). Temperature 

ranges between a mean daily minimum of 15.5
o
C and maximum of 23.7

o
C. KNP is 

divided into compartments which were subjected to varying degrees of logging and have 

experienced different restoration efforts (Struhsaker, 1997; Chapman et al., 2010a). Our 

study involved three compartments within KNP; i. K-30 (282 ha) is relatively disturbance 

free in recorded history, at least from humans, and is typically considered a mature old-

growth forest, ii. K-14 (405 ha) was selectively logged between May and December 

1969, but in a spatially heterogeneous manner, so that some areas (Mikana) experienced 

heavy logging with the removal and damage of up to 25% of all trees, while other areas 

were largely untouched (lightly logged areas), and iii. K-15 (347 ha) experienced high 

intensity selective logging between September 1968 and April 1969 resulting in removal 

and damage of up to 50% of all trees. All of these compartments have been classified as 

Parinari forest (Osmaston, 1959), are located closely together (within 1500 m), and prior 
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to logging exhibited high levels of structural similarity in cumulative basal area, canopy 

cover, and stem density (Kingston, 1967; Bonnell et al., 2011). 

Vegetation plots 

Twenty-six permanent vegetation plots were randomly established within the existing 

trail system in KNP in December 1989. Each plot is 200 x 10 m, with a trail running 

down the middle of its length. The locations of the 26 plots were unevenly distributed 

across the three compartments: 11 plots were located in K-30, six  were in the lightly 

logged areas and four  were in the heavily logged (Mikana) parts of K-14, and five were 

in K-15. In this study, we assigned the 17 plots in K-30 and the lightly logged areas of K-

14 to the unlogged plot category, while the 9 plots in the Mikana part of K-14 and in K-

15 were assigned the logged category. The addition of plots in the lightly logged areas of 

K-14 to the unlogged plot category is informed by earlier works that established that the 

lightly logged forest suffered little damage from the logging event based on stump and 

gap enumeration (Kasenene, 1987; Chapman and Chapman, 1997; Bonnell et al., 2011).  

Data collection 

a. Forest light intensity conditions 

For 10 focal plots (five randomly selected from the 17 unlogged and five randomly 

selected from the 9 logged plots), light was measured from June – August 2011 between 

9 a.m. and 2 p.m. Light intensity was measured on both sides of each plot extending from 

the dividing trail in the middle. Measures were taken at 10 m intervals underneath the 

forest canopy at 2 m above ground level as photo-synthetically active radiation (PAR) 

using a LI250 light meter and an LI-190SA quantum sensor (Licor, Lincoln, NE). This 
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photosynthetically active radiation was expressed relative to open light conditions, which 

were concurrently measured in the open at the Makerere University Biological Field 

Station using a HOBO light intensity data logger. This resulted in 42 light intensity 

measures per plot.  

b. Forest composition and structure 

All 26 plots were surveyed between March and May 2013. Surveys of each plot involved 

recording the DBH for all tree stems with DBH ≥10 cm (Chapman et al., 2010a). Trees 

were identified using recognized taxonomic keys (Polhill, 1952; Hamilton, 1991; 

Katende et al., 1995; Lwanga, 1996), and species names were updated using The Plant 

List (http://www.theplantlist.org/).  Voucher specimens for all trees were given to 

Makerere University Biological Field Station and new specimens are currently being 

collected for the field stations’ new herbarium. The resulting dataset contains information 

on stem number, species composition, and species relative abundances for each plot. 

c. Species’ functional traits 

For the same 10 plots used for forest light intensity conditions, we measured WD and 

height for all species between June and August 2011. While many species found in the 10 

focal plots were also found in the remaining 16 plots, this trait dataset excluded rare 

species which although present in one or more of the 26 vegetation plots did not occur in 

the focal plots. Field measured WD was available for only 60 species, height data for 58 

species, and DBH for all 86 species in the 2013 census.  

Diameter at breast height:  tree trunk diameter was measured at 1.3 m above ground level 

for all stems ≥ 10 cm in the 26 plots during the 2013 census of vegetation plots. Species 
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DBHMAX was the largest DBH value recorded of all individuals of a species in these 26 

plots.  

Wood density: wood samples were extracted at 1.3 m above ground level with a 12 ̋ 

increment borer from up to 5 (or fewer when not available) upright adult individuals per 

species within each of the 10 focal plots (for a total of 687 trees). Extracted wood cores 

ranged from 4 – 8 cm in length, and each core was broken into 2 cm segments with the 

number of segments dependent on the length of the core. For each segment, fresh volume 

was determined using the water displacement method, and dry mass was determined after 

oven drying to constant mass at 105
o
C (Osazuwa-Peters et al., 2011). Wood density for 

each segment was computed as dry mass divided by fresh volume, and averaged over all 

segments that made up a core to determine a mean WD per tree. Species mean WD was 

then calculated as the average WD value of all individuals of a species pooled across the 

focal 10 plots. To obtain estimates for the remaining 26 unmeasured species found in the 

16 non-focal plots, we obtained species-, genus-, or family-level (depending on 

availability) WD averages from the Global Wood Density database subset to African 

region only (Zanne et al., 2009). This African-region subset of the Global Wood Density 

Database contained wood density values for 6 of the missing species, as well as genus-

level wood density values for 9 species and family-level wood density values for the 

remaining 11 species.   

Tree height: Height was measured as the distance between the base and top of a tree for ≥ 

5 (or fewer when unavailable) healthy adult individuals per species within each focal plot 

using a vertex hypsometer (Vertex IV, Haglöf Sweden). Height values were obtained for 

892 trees in the ten plots. A species’ maximum height was then determined as the greatest 



100 
 

 
 

height recorded across all individuals of a species (King et al., 2006) from the pool of the 

10 plots. DBH measures were available for 622 of the 892 stems with height data. Height 

was regressed on DBH for this subset to obtain a forest-wide regression that was then 

used to interpolate height for species with DBH but missing height values.  The 

regression (R
2
 = 0.31, P < 0.01) relationship was as follows:  

𝐻𝑀𝐴𝑋̂ =  9.753326 +  (0.052898 ∗ 𝐷𝐵𝐻𝑀𝐴𝑋)     Eq. (1) 

This relationship was used to predict HMAX from species DBHMAX for the 28 species with 

missing maximum height data.   

Data analysis 

Any variables demonstrating log-normal distributions were natural log transformed (see 

below).  

a. Light environment 

The 42 light intensity measures per plot were averaged to give a mean estimate of light 

conditions underneath the forest canopy within each plot. We used a two-sample t-test to 

compare mean light intensity between logged and unlogged plots.  

b. Taxonomic composition 

To describe the taxonomic composition of logged and unlogged plots, we used non-

metric multidimensional scaling (NMDS) on a site by species abundance matrix; NMDS 

is a numerical ordination technique that maximizes the rank-order correlation between 

distance measures and distance in ordination space (Holland, 2008).  The stress value for 

an NMDS indicates how well the ordination summarizes the observed distances among 
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samples (Holland 2008), with values < 0.2 generally considered a good fit. Species 

composition for each plot was characterized by its position in ordination space, 

represented by the scores on the first and second axes of the NMDS. These scores for 

logged and unlogged plots were then compared using a two-sample t-test. We further 

compared species composition between logged and unlogged plots by using an indicator 

species analysis to identify species whose patterns of abundance were strongly associated 

with a particular logging status. The indicator species analysis is appropriate because it 

relates species abundance values from a set of sampled sites to the classification of the 

sites into independently predetermined groups (logged/unlogged; (De Cáceres, 2013). 

The indicator species value is computed for each species independent of other species in 

the community and estimated as the product of a measure of its sensitivity and fidelity to 

each logging status category (Legendre and Legendre, 1998). Importance values for each 

species were estimated as the sum of percentage relative density and relative basal area in 

all logged plots pooled together and all unlogged plots pooled together. From the 

importance values, we determined the identity of the ten species that make the most 

substantial contributions to the density and basal area of the logged and unlogged forest 

plots, respectively.  

c. Structural composition 

To compare structural differences between logged and unlogged plots, we calculated  

i. plot stem density as number of stems per plot area (200 x 10 m)  

ii. basal area as the sum of basal area for all trees in each plot, computed as 

πr
2
 where r is the radius of the tree, estimated as r = DBH/2. 
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iii. the coefficient of skewness (g1) to characterize the symmetry of tree size 

distributions in each plot (Bendel et al., 1989; Wright et al., 2003). When 

a plot is dominated by an abundance of small trees and a long tail of rare 

large trees g1 is positive, and when the plot is dominated by an abundance 

of large trees and a long tail of rare small trees g1 is negative (Wright et 

al., 2003). g1 is computed as 

g1 =
𝑛 ∑ (𝑥𝑖 − 𝑥̅)3

𝑖

(𝑛−1)(𝑛−2)𝑠3          Eq. (2) 

where n is the number of individuals in a plot, xi is the logarithm of the DBH for 

individual i,  x̅i is the mean of xi, and s is the standard deviation of xi  (Bendel et al., 1989; 

Wright et al., 2003).  

iv. aboveground biomass for each stem using the predictive allometric 

equations for estimating AGB in moist forest stands provided in Chave et 

al., (2005). For each tree in a plot, AGB was computed twice, using an 

equation requiring (Eq. 3), and one not requiring (Eq. 4), height values. 

𝐴𝐺𝐵𝑑ℎ
̂  = 0.0509 × 𝑊𝐷 × 𝐷2  × 𝐻       Eq. (3) 

 

𝐴𝐺𝐵𝑑̂  =

𝑊𝐷 × exp(−1.499 + 2.1481 ∗ ln(𝐷) + 0.207 ∗ (ln(𝐷))2 − 0.0281 (ln(𝐷))3)  Eq. (4) 

where 𝐴𝐺𝐵𝑑ℎ
̂  is the estimated AGB based on a given stem’s height and DBH, while  

𝐴𝐺𝐵𝑑̂  is the estimated AGB based on the stem’s DBH. WD (kg/m
3
) is the species 



103 
 

 
 

average wood density, D is the stem DBH (m), and H (m) is the stem height. For each 

stem, H was estimated by interpolating from the stem’s DBH, based on the KNP forest-

wide regression equation predicting height as a function of DBH that is described above 

in the species functional trait section. The total estimated AGB in a plot is obtained by 

summing 𝐴𝐺𝐵 ̂for all stems within the plot. Both 𝐴𝐺𝐵̂ estimates were natural log 

transformed for normality. 

d. Functional composition 

The functional composition of logged and unlogged plots was calculated for each trait 

(DBHMAX, HMAX, and WD) as the community weighted mean (CWM) using different 

weightings: I. relative basal area (BA) and II. relative abundance (ABD). The two 

weightings provide complementary perspectives on how the forests differ in community 

attributes by emphasizing contributions from different structural components of the 

forest, either individuals with large basal area or abundant small stems, respectively 

(Carreño-Rocabado et al., 2012). Each set of CWM values for each trait was then 

compared between logged and unlogged plots using a two-sample t-test.  

Because logging happened in a spatially structured way, logged plots occur in more 

northerly latitudes than unlogged plots. This distribution results in the problem of simple 

pseudoreplication, in which ‘replicate’ plots within the two logging categories are not 

spatially interspersed across logging categories (Hurlbert, 1984). Consequently, spatial 

processes could influence forest structure and composition independent of logging effects 

(Lindenmayer and Laurance, 2012; Ramage et al., 2013). To determine whether 

geographical space substantially explains some of the variation in forest structure and 
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composition that is attributed to logging history, we included latitudinal coordinates of 

each vegetation plot as a covariate in an ANCOVA. This provides a more conservative 

test for the effect of logging status (environmental predictor) in the presence of latitude, a 

proxy for spatial predictors, reducing the risk of a Type 1 error (Peres-Neto and 

Legendre, 2010).  However, because latitude was never a significant predictor of any of 

the community attributes considered when included as a covariate in an ANCOVA (Table 

A1), we only report the results for t-test comparisons of logged and unlogged plots.  

All statistical tests were implemented in R version 2.15.1 (R Core Team, 2012), using the 

packages vegan (Oksanen et al., 2012), FD (Laliberté and Legendre, 2010), and 

indicspecies (Cáceres and Legendre, 2009). 

Results 

Light environment (Prediction I): As predicted, logged forest plots had significantly 

higher light levels than unlogged plots (Fig. 1). However, light levels were not uniformly 

high within logged plots, as a large proportion of measured areas in logged plots was 

under shade (e.g. 77% of measured areas within logged plots had less than 5% open light 

intensity). Higher average light levels in logged plots resulted from light hotspots, i.e. 

extremely high values of % open light conditions recorded within logged plots (solid 

black circles in Fig. 1). 

Structural composition (Predictions II and III): In total, 2358 stems ≥ 10 cm in DBH were 

inventoried in all 26 plots. Logged plots had significantly lower stem density contrary to 

our expectation of higher stem density (prediction II); however, we did find support for 
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lower total basal area and lower AGB (Table 1) in logged as compared to unlogged 

forest. 

Tree size distributions in logged plots (Fig. 2) had less positive g1 values than unlogged 

plots (Table 1), indicating that logged plots were to a lesser extent dominated by an 

abundance of small trees and had a shorter tail of rare large trees, relative to unlogged 

plots. These different levels of asymmetry in tree size distributions of logged and 

unlogged plots were in accordance with prediction III.  

Taxonomic composition (Prediction IV): A total of 86 tree species in 39 families were 

found across all 26 plots. The NMDS recovered two axes (Fig. 3), NMDS1 and NMDS2 

with a stress value of 0.19, meaning it had a good fit. Logging status was best separated 

along the first axis of the NMDS (NMDS1; Fig. 3), with logged plots having higher 

scores than unlogged plots. Taxonomic turnover between logged and unlogged plots was 

within 2 units on the first NMDS axis.  

Only nine species were indicator species showing strong associations with logging status; 

four were strongly associated with unlogged and five with logged plots (Table 2). Logged 

and unlogged plots shared six of the ten species with the highest importance values, but 

in different orders of importance (Table 3).   

Functional composition (Prediction IV): Logged and unlogged plots did not differ 

significantly in functional composition, contrary to our prediction, as both plot types were 

similar in their community weighted means for all three functional traits when weighted 

by abundance. On the other hand, basal-area weighted community mean WD was 
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significantly lower in logged compared to unlogged plots but the difference was small 

(Table 1).  

Discussion 

Selective logging is a land-use practice that is increasing in extent and intensity and can 

alter the conservation value of tropical forests (Asner et al., 2009). Previous 

investigations on the effects of selective logging on KNP’s forests have focused mainly 

on demographic rates and structural attributes of the forest (Chapman and Chapman, 

1997; Chapman and Chapman, 2004; Bonnell et al., 2011).  Here, we advance the 

investigation of the effects of selective logging on KNP’s forests by focusing on 

understory light availability, and structural, taxonomic and functional attributes of the 

forest 45 years after the selective logging event occurred. We found that on average light 

levels were higher in logged forest, but with lower stem density, smaller total basal area 

and AGB, and a dissimilar species composition to unlogged forest. Nevertheless, 

differences in taxonomic and structural composition of logged forests were not paralleled 

by differences in community-weighted average trait values; logged plots were 

functionally analogous to unlogged plots except when community mean WD was basal-

area weighted.  

Logged forest: higher light environment 

Some tropical forests achieve canopy closure after a few decades (Asner et al., 2004). For 

example, (Nicotra et al., 1999) reported no differences in average light levels between 

logged and unlogged forest in Costa Rica 15 – 20 years after selective logging. However, 

this pattern appears to be less true for African forests. Even after 45 years, logged plots 
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on average had almost double the light intensity of unlogged plots (Fig. 1) likely due to 

canopy gaps failing to close.   

The distribution however of light levels within each plot (Fig. 1) suggests a 

preponderance of shaded light conditions in both logged and unlogged plots, with a few 

extreme light hotspots driving average light levels higher in logged forest. The primary 

source of shade in unlogged plots at 2 m is the closely connected tree canopy, but in 

logged plots dense herbaceous or shrubby growth overtakes canopy gaps and is a large 

contributor to the shade at 2 m (Fig. A1 – picture of quantum sensor in shade from 

shrubby growth). As these shrubs (often Acanthus pubescens) are both clonal and 

browse-tolerant, they are more successful than trees in large canopy gaps, such as was 

created during the logging event and now maintained by large mammal herbivory in KNP 

(Struhsaker, 1997; Paul et al., 2004; Royo and Carson, 2006; Lawes and Chapman, 2006; 

Young and Peffer, 2010).  

Logged forest: distinct structural composition 

In typical disturbed forests, most stems are in small size classes at high stem densities 

with few large trees (Denslow, 1995). In KNP, distributions for both logged and 

unlogged forest approximated the ‘reverse J shape’ or negative exponential distribution 

(Richards, 1996), which implies an uneven aged structure, with an abundance of small 

relative to large-size tree classes (Fig. 2). However, logged plots had less positively 

skewed distributions than unlogged plots. The less positive skew derived from both an 

absence of large and a low proportion of small sized stems in logged forest (Fig. 2). This 

result is consistent with previous reports from KNP that logged plots experienced reduced 
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recruitment but similar mortality rates of adult trees (≥ 10 cm dbh) to unlogged plots in 

the first 31 years after logging (Bonnell et al., 2011).  

KNP logged plots also had fewer total stems per unit area and on average held 44% less 

AGB than unlogged plots (Table 1). The lower AGB likely resulted from both the low 

stem density and scarcity of larger trees in logged plots, as large trees make 

disproportionate contributions to AGB and carbon storage (Lindner and Sattler, 2012).  

The absence of large trees in logged plots implies that insufficient time has passed for 

recovery of biomass, especially through the growth of remnant trees into large size 

classes. The low number of small trees in logged plots suggests reduced recruitment, 

which may have resulted from a number of factors. Unfavorable environmental 

conditions associated with tree damage and canopy loss may have limited recruitment 

(Chazdon, 2003; Hall et al., 2003). Given that all but a few tree species in KNP perform 

poorly in large gap conditions (Chapman et al., 1999), sudden crown exposure may have 

caused physiological stress limiting tree regeneration (Hall et al., 2003). Moreover, tree 

growth and recruitment may have been slowed by early competition from the rapid 

establishment of dense herbaceous and shrubby vegetation (Donato et al., 2012) and 

increased elephant activity. Elephants are known to forage extensively on these shrubs 

(Duclos et al., 2013; Paul et al., 2004; Lawes and Chapman, 2006; Omeja et al., 2014).  

Based on the measured structural attributes and continued dominance of herb and shrub 

vegetation, our study supports previous findings that logged forest in KNP is in an 

arrested state of succession (Chapman and Chapman, 1997, 2004; Bonnell et al., 2011).  
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The persistence over several decades of the effect of selective-logging on forest structure 

is not unique to KNP among African forests. For example, Plumptre, (1996) report that 

50 years after, logged compartments in Budongo Forest Reserve, East Africa, had not 

recovered to pre-logging levels in measures of forest structure including mean basal area 

and crown height. Similarly, Hall et al. (2003) report markedly lower basal area and 

significantly lower stem densities 18 years after logging in a Central African forest. 

However, in contrast to KNP, another Central African forest showed rapid recovery in 

AGB within 20 years after logging (Gourlet-Fleury et al., 2013). Reports seem to vary 

across studies depending on the measure of forest structure and also due to differences in 

site-specific factors such as selective logging intensity and presence of large mammal 

herbivory.  

Logged forest: divergent taxonomic but analogous functional composition 

Taxonomic composition of plots differed depending on logging history (Fig. 3), although 

the nature of these differences was surprising. We found considerable overlap in 

important species between logged and unlogged plots; however the order of importance 

for these overlapping species differed (Table 3). Also, the five species that were closely 

associated with logged plots (Table 2) were occasional to rare (< 20 stems in total) 

occurring almost exclusively in logged plots. These results suggest that while the 

selectively logged environment may have favored the establishment of a few rare 

disturbance-adapted species, the bulk of the taxonomic differences associated with 

logging have to do with changes in relative abundances of species.  
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While we did not find strong taxonomic differences between logged and unlogged forest, 

these differences may be apparent when contrasting the relative abundances of tree 

species that were commercially exploited during the logging event. In examining these 

patterns, however, no obvious differences between 1989 and 2013 can be seen for 11 

species commercially harvested in Kibale (Figure 4). While two species (Celtis africana 

and Strombosia scheffleri) increased in relative abundance, only S. scheffleri had higher 

relative abundance in unlogged plots. The other commercially exploited species, 

including the iconic Parinari excelsa, maintained a consistent trend of low relative 

abundances (< 0.025) across logged and unlogged plots (Figure 4). It is unclear whether 

the lack of recovery for majority of these commercial species is related to regeneration or 

recruitment, particularly because the two species with increasing abundances represent 

contrasting ecological strategies. Celtis africana is a disturbance-tolerant small-statured 

generalist with very small seeds and low leaf toughness, while S. scheffleri is a shade-

loving understory species with larger seeds and high leaf toughness (Chapman et al., 

2008; Neuschulz et al., 2013). Moreover, Chapman & Chapman (2004) reported forest-

wide fruiting declines for Parinari excelsa and Aningeria altissima (another 

commercially exploited species showing poor recovery), which they linked to climate 

change. Taken together these results suggest that observed taxonomic patterns are 

generated by multiple perturbations including forest-wide disturbances unrelated to 

selective logging. 

Differences in functional composition between sites with varying logging histories have 

been found in other studies (Baraloto et al., 2012; Carreño-Rocabado et al., 2012) . In 

contrast, we do not see a difference in CWM values for WD, HMAX, and DBHMAX 
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between logged and unlogged plots, except for when WD was basal-area weighted, 

although this difference was modest (0.03 g/cm
3
; Table 1), suggesting that selective 

logging may have favored the increased growth of species with slightly lower WD.  

There are several plausible explanations for this pattern of functionally analogous 

communities in logged and unlogged forests. First, KNP forest has a small species pool 

of 86 tree species within 5.2 ha; this is consistent with the general trend of less diversity 

in African forests relative to tropical forests in other regions (Kreft and Jetz, 2007). A 

poor species pool can limit trait variation within communities (Mayfield et al., 2010). 

Moreover, KNP’s poor species pool lacks aggressive colonizing tree species (Chapman et 

al., 1999), which tend to have lower WD and smaller HMAX. When comparing KNP to 

other tropical locations, KNP appears to resemble the species pool for Africa more 

generally in having a greater incidence of intermediate WD species and an absence of 

species with extreme WD values (Fig. A2). Even naturally occurring tree fall gaps in 

KNP are characterized by similar community composition to the forest interior (Zanne 

and Chapman, 2005), rather than being dominated by pioneer species. Furthermore, 

Chapman and Chapman (2004) observed a decline in the abundance of the few pioneer 

species in logged forests in KNP e.g. Trema orientalis.  In our study, the five species that 

showed tight associations with the logged forest were small sized and soft wooded, but 

their modest additions to relative stem density and basal area meant that they had little 

influence on average community-weighted values. Second, both logged and unlogged 

forests may be undergoing change triggered by disturbance events independent of the 

logging event 45 years ago. Such events have recently been reported for KNP, including 
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changing climates (i.e., longer drought events since the mid-1990s (Hartter et al., 2012) 

and increased elephant abundance and activity (Omeja et al., 2014).  

Caveat 

As is common in logging-impact studies, in this study logging history is confounded with 

geographic space; the logging treatment was implemented as a forestry practice and not 

for scientific research (Lindenmayer and Laurance, 2012; Ramage et al., 2013). Previous 

studies of KNP have assumed that compartments within which vegetation plots are 

located were structurally similar prior to logging, based on historical ground surveys  that 

predate the logging event (Kingston, 1967; Chapman and Chapman, 1997; Bonnell et al., 

2011). Here, in addition to the assumption of pre-logging structural similarity of plots, we 

applied a simple approach to account for pseudoreplication by including latitudinal 

geographic coordinates for each observation as a covariate in ANCOVA tests. This 

covariate was not significant for any measure of forest composition and structure (Table 

A1), increasing our confidence that results we found were due to logging history. 

However, we are unable to more explicitly test for the effects of spatial processes, and 

our results should be interpreted with this caveat in mind. 

Conclusion 

Selective logging is a land-use practice that is becoming increasingly widespread in the 

tropics, although the extent to which it impacts the taxonomic, structural and functional 

composition of forests remains unclear. If we assume that unlogged forest is less 

disturbed than logged forest, from our work, we conclude that 45 years is not enough 

time for selectively logged forests in KNP to recover in species composition and 
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structural complexity, but enough time for community-weighted traits to  resemble 

unlogged forest. This functional similarity can be understood in the context of the 

ecology of Africa generally and KNP more specifically, including a lack of aggressive 

colonizing trees, a relatively small species pool, concentrated elephant activities, and 

potential background changes in both forest types unrelated to the selective logging 

event.  Despite the functional similarity in community average WD and adult stature, the 

dearth of large trees and small stem density reduced the logged forest’s capacity for 

carbon storage, as evidenced by significantly less AGB in logged plots. Likely, the effect 

of selective logging that has persisted in KNP forest results in part from poor tree 

recruitment and high mortality of existing trees in the logged plots soon after the logging 

event.  

Consequently, from a conservation standpoint, our results suggest caution should be 

taken when considering the conservation value of selectively logged forests (Putz et al., 

2012; Edwards and Laurance, 2013; Michalski and Peres, 2013; Kormos and 

Zimmerman, 2014). Surely, given its similar functional trait and not overly distinct 

taxonomic composition compared to unlogged forest, logged forest in KNP holds greater 

conservation value than surrounding areas subjected to farming and plantation forestry 

(Okiror et al., 2012).  On the other hand, some argue that for selectively logged forests to 

have high conservation value they must display rapid recovery following the logging 

event (Michalski and Peres, 2013). We show in this study that a tropical forest may 

remain with the imprint of logging for many decades. Furthermore, persistent effects of 

selective logging have exerted cascading effects on other trophic levels, particularly 

affecting the population dynamics of primates (Chapman et al., 2010b; Bonnell et al., 
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2011) and movements of elephants (Omeja et al., 2014). Interestingly, logging extraction 

levels in KNP ranged from 14 – 17 m
3
/ha (Struhsaker, 1997), comparably less than 32.5 

m
3
/ha reported by Blanc et al., (2009) for a selectively logged forest in French Guiana 

that rapidly recovered AGB within 40 years. Whether this difference in recovery 

represents a general contrast between the vulnerabilities to anthropogenic disturbances of 

mid-elevation and lowland forests or is more due to site-specific differences (e.g. 

concentrated elephant activities in KNP) remains to be seen. Until we have better 

answers, strategies for sustainably managing and conserving tropical forests should be 

informed by local forest dynamics and vulnerabilities to disturbance, rather than blanket 

‘one size fit all’ conclusions on the conservation value of logged forests (Corlett and 

Primack, 2006).  
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Tables 

Table 1. Mean (± 1 SD) light availability, structural attributes and functional traits for 

logged (N = 9) and unlogged plots (N = 17), and results from a two-sample t-test, 

including the test statistic (t) and degrees of freedom (df). Significant tests are in bold (** 

P < 0.01, * P < 0.05). Acronyms are defined as follows: CWM = community weighted 

mean, WD = wood density, HMAX = maximum height, DBHMAX = maximum diameter, 

ABD= abundance weighted, AGB = aboveground biomass, BA = basal area weighted, 

and g1 = coefficient of skewness 

Community attribute Mean ± 1 SD 

for logged 

plots 

Mean ± 1 SD for 

unlogged plots 

t df 

Structural composition     

Total basal area (cm
2
) 49265 ± 22021 89210  ± 33182 -3.67** 23 

Stem density (#/m
2
) 0.03  ±  0.01 0.05  ± 0.01 -3.63** 16 

AGB (with height; kg) 2262  ±  1139 5091  ±  2876  -3.56** 23 

AGB (without height; kg) 930  ± 426 1840 ± 727  -4.02** 24 

g1 0.58 ± 0.38 1.20 ± 0.53 -3.46** 22 

Functional composition     

CWM WDABD (g/cm
3
) 0.57 ± 0.04 0.59 ± 0.02 -1.65 12 

CWM WDBA (g/cm
3
) 0.56 ± 0.03 0.59 ± 0.04 -2.17* 20 

CWM HMAX.ABD (m) 26.9 ± 3.8  27.9 ± 1.9 -0.72 10 

CWM HMAX.BA (m) 29.7 ± 5.3    32.2 ± 4.0 -1.25 13 

CWM DBHMAX.ABD (cm) 76.3  ± 8.7 76.7  ± 9.3 -0.12 17 

CWM DBHMAX.BA (cm) 95.6  ± 23.0 125.8 ± 53.1 -2.01
 

23 
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Table 2. Species (Family) with significant logging status associations, species’ indicator 

values, and the probability (P) of obtaining as great an indicator value as observed over 

999 iterations  

Indicator species Logging status Indicator value P 

Vepris nobilis (Rutaceae) Unlogged 0.847    0.006 

Trilepisium madagascariense (Moraceae) Unlogged 0.825    0.016 

Leptonychia mildbraedii (Malvaceae) Unlogged 0.811    0.006 

Mimusops bagshawei (Sapotaceae) Unlogged 0.686    0.024 

Rothmannia urcelliformis (Rubiaceae) Logged 0.758    0.004 

Ehretia cymosa (Boraginaceae) Logged 0.722    0.011 

Euadenia eminens (Capparaceae) Logged 0.719    0.010 

Fagaropsis angolensis (Rutaceae) Logged 0.711    0.046 

Kigelia africana (Bignogniaceae) Logged 0.584    0.039 
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Table 3. Species (Family) with the ten highest important values (IV) in logged and 

unlogged plots, and their importance values*  

Logged plots Unlogged plots 

Important species IV Important species IV 

Celtis durandii
#
 (Cannabaceae) 25.0 Celtis durandii (Cannabaceae) 21.7 

Diospyros abyssinica (Ebenaceae) 24.8 Funtumia africana (Apocynaceae) 18.5 

Funtumia africana (Apocynaceae) 18.6 Trilepisium madagascariense 

(Moraceae) 

18.0 

Markhamia lutea
#
 (Bignoniaceae) 17.4 Uvariopsis congensis

#
 (Annonaceae) 14.5 

Celtis africana** (Cannabaceae) 11.6 Diospyros abyssinica (Ebenaceae) 13.4 

Premna angolensis (Lamiaceae) 10.9 Markhamia lutea (Bignoniaceae) 10.9 

Strombosia scheffleri** (Olacaceae) 6.1 Strombosia scheffleri (Olacaceae) 9.6 

Millettia dura (Leguminosae) 6.0 Aningeria altissima** (Sapotaceae) 8.9 

Trilepisium madagascariense 

(Moraceae) 

5.6 Vepris nobilis
#
 (Rutaceae) 6.3 

Cordia africana (Bignoniaceae) 5.0 Pseudospondias microcarpa 

(Anacardiaceae) 

6.0 

*Distribution of species importance values was similar for logged and unlogged plots; 

average (± 1 SD) importance values were 2.38 % (± 4.42) for species in logged and 2.38 

% (± 4.82) for species in unlogged forest plots. 

**Species extracted for timber during the selective logging event (Struhsaker, 1997); 

(Bonnell et al., 2011). 

#
Species that may have suffered incidental damage during the selective logging event 

(Struhsaker, 1997). 
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Figures 

 

Fig. 1. Percent open light intensity for logged (L1 – L5) and unlogged plots (U1 – U5) in 

KNP. Each vegetation plot has 42 light intensity measures. Each boxplot shows the 

median (black horizontal line), the upper quartile (space above black line), the lower 

quartile (space below black line), minimum (lower whisker) and maximum (upper 

whisker) values, and extreme values or outliers (solid black circles).  Mean percent open 

light intensity was significantly higher in logged plots (t = 2.92, P < 0.05). 
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Fig. 2. Diameter distributions for logged and unlogged plots in KNP. Lines show the 

relative frequencies of stem densities (y-axis) in each log-transformed DBH size class (x- 

axis).  Logged plots (N = 9) are represented by the black line, and unlogged plots (N = 

17) by the grey line.  
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Fig. 3. Ordination of taxonomic composition of logged (N=9) and unlogged (N=17) plots 

in Kibale National Park, Uganda. The Non-metric Multidimensional Scaling produced 

two axes (NMDS1 and NMDS2). Logged plots (open triangles) differed significantly 

from unlogged plots (solid black triangles) in species composition along the first axis (t = 

4. 26, P<0.01) based on a two sample t-test, with most logged plots loading positively on 

axis 1.  
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Fig. 4. Trends in relative abundances of 11 tree species commercially logged in Kibale 

National Park, based on their relative abundances in 1989 and 2013 in logged and 

unlogged plots. Each species is represented by a different symbol, while lines connect 

symbols to show trends between relative abundance in 1989 and 2013 for each species.  
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Supporting information for chapter 3 

Table A1. Effect of logging status on all community attributes in the presence of a spatial 

covariate (latitude) with the F statistic for main effects of logging status and latitude 

reported for Analysis of Covariance (ANCOVA) tests run for each community attribute. 

Significant tests are in bold (** P < 0.01, * P < 0.05). Acronyms are defined as follows: 

CWM = community weighted mean, WD = wood density, HMAX = maximum height, 

DBHMAX = maximum diameter, ABD = abundance weighted, AGB = aboveground 

biomass BA = basal area weighted, and g1 = coefficient of skewness. 

Community attribute Logging status Latitude 

 F F 

Structural composition   

Light intensity (% open light intensity) 11.333* 3.655 

Total basal area (cm
2
) 10.261** 0.492 

Stem density (#/m
2
) 13.21** 0.420 

Relative gap phase 0.034 0.074 

g1 9.842** 1.294 

AGB (with height; kg) 14.142** 0.131 

AGB (without height; kg) 17.136*** 0.019 

Species composition   

NMDS1 19.028*** 0.522 

NMDS2 0.000 1.234 

Functional composition   

CWM WDABD (g/cm
3
) 3.44 0.020 

CWM WDBA (g/cm
3
) 3.906 0.108 

CWM HMAX.ABD (m) 0.724 0.004 

CWM HMAX.BA (m) 1.823 0.475 

CWM DBHMAX.ABD (cm) 0.015 2.746 

CWM DBHMAX.BA (cm) 2.523 0.247 

 

 



129 
 

 
 

 

Fig A1. Photo of a quantum sensor at 2 m above ground level underneath shade exerted 

by dense herbaceous growth in logged plot in Kibale National Park, Uganda.                               

Source: Oyomoare Osazuwa-Peters 
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Fig. A2. Map of relative frequencies of wood density values of species in KNP forest for 

only field measured data (N = 60), and with field measured and compiled data from a 

subset of the Global Wood Density Database for African region included (N=86), as well 

as for the Global Wood Density Database subset for tropical Africa (N = 2482), tropical 

South America (N = 4191), tropical Asia (N=3648), tropical Central America (N=420), 

and tropical Australia/Papau New guinea (PNG) (N=1560). Color scheme ranges from 

zero frequency (white) to the highest frequency (black). 
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Abstract 

Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is 

globally rising in extent and intensity. Short-term impacts of selective logging on tropical 

forests have been widely investigated, but long-term effects on temporal dynamics of 

forest structure and composition are largely unknown. Understanding these long-term 

dynamics will help determine whether tropical forests are resilient to selective logging 

and inform choices between competing demands of anthropogenic use versus 

conservation of tropical forests. Forest dynamics can be studied within the framework of 

succession theory, which predicts that temporal turnover rates should decline with time 

since disturbance. Here, we investigated the temporal dynamics of a tropical forest in 

Kibale National Park, Uganda over 45 years following selective logging. We estimated 

turnover rates in demography, species composition, and functional traits (wood density, 

maximum height and diameter), using observations from four censuses in 1989, 1999, 

2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 x 10 m 

vegetation plots. We used null models to account for interdependencies among turnover 

rates in demography, species composition, and functional traits. We tested predictions 

that turnover rates should be higher and decrease with increasing time since the selective 

logging event in logged forest, but should be less temporally variable in unlogged forest. 

Overall, we found higher turnover rates in logged forest for all three attributes, but 

turnover rates did not decline through time in logged forest and was not less temporally 

variable in unlogged forest. These results indicate that successional models that assume 

recovery to pre-disturbance conditions are inadequate for predicting the effects of 

selective logging on the dynamics of the tropical forest in Kibale during this interval. 
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Selective logging resulted in persistently higher turnover rates, which may compromise 

the carbon storage capacity of Kibale’s forest. Selective logging effects may also interact 

with effects from other global trends, potentially causing major long-term shifts in the 

dynamics of tropical forests. Similar studies in tropical forests elsewhere will help 

determine the generality of these conclusions. Ultimately, the view that selective logging 

is a benign approach to the management of tropical forests should be reconsidered in the 

light of studies of the effects of this practice on long-term forest dynamics. 

Keywords: Beta-diversity, disturbance, functional traits, Kibale National Park, null 

model, succession, temporal dynamics, tropical forest, turnover rate.  

Introduction 

Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is 

rising in extent and intensity on a global scale likely due to its increasing importance as a 

source of revenue for developing economies (Asner et al. 2009). Conservative estimates 

that do not account for clandestine (but presumably prevalent) logging operations 

indicate that at least 390 million hectares of tropical humid forests were selectively 

logged as of 2009 (Asner et al. 2009). In 2011, 403 million hectares of tropical forest 

were officially reserved for timber production (Putz et al. 2012). These figures have 

prompted the question of whether selective logging has transitioned from a relatively 

benign land-use practice to a significant threat to the conservation value of tropical 

forests (Asner et al. 2009). Consequently, there is growing interest in understanding the 

impacts of selective logging on tropical forests, including not only immediate 
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consequences for forest structure and composition, but also effects on long-term 

compositional and structural dynamics (Sist et al. 2015; Anderson-Teixeira et al. 2013).  

While the short-term impacts of selective logging on the state of tropical forests have 

been widely investigated (Cannon et al. 1998; Bonnell et al. 2011; Gibson et al. 2011; 

Baraloto et al. 2012; Putz et al. 2012), the long-term effects of selective logging on 

temporal dynamics of forest structure and composition are largely unknown. These 

dynamics can be studied within the framework of succession, the temporal change in 

structure or composition of a group of species co-occurring at a site (Pickett et al. 2011; 

Prach & Walker 2011). A key feature of successional trajectories, central to our 

understanding of the dynamics of species assemblages, is variation in the rates of 

temporal change in structure and composition. These rates often referred to as  

“temporal turnover rates” describe temporal changes in demography, species composition 

or functional traits. Functional traits are morphological and physiological traits that 

reflect allocation strategies thought to be important determinants of fitness across 

environments (Violle et al. 2007). Turnover rates are expected to decrease as succession 

ensues (Drury & Nisbet 1973; Whittaker 1975; Grime 1979; Bornkamm 1981; Anderson 

2007), presumably due to replacement of pioneers at early stages of succession by longer-

lived, self-replacing, late-successional species, and a higher resistance to invasion 

resulting in fewer species being added at later stages of succession (Facelli & D’Angela 

1990; Myster & Pickett 1994; Anderson 2007; Walker & del Moral 2008). Declining 

rates of temporal turnover as succession occurs have been consistently documented 

across a wide range of species assemblages, including phytoplankton communities 

(Jassby & Goldman 1974), herbaceous and shrub plant communities (Bornkamm 1981; 



135 
 

 
 

Prach et al. 1993; Myster & Pickett 1994; Anderson 2007; Matthews & Endress 2010), 

forest tree communities (Anderson 2007), and aquatic communities including 

zooplankton, benthic macroinvertebrates, and fish (Korhonen, Soininen & Hillebrand 

2010).  

However, because long-term data on temporal change of tree communities are difficult to 

obtain, only a few studies have used temporal data to investigate the effect of selective 

logging on the successional trajectories of tropical forests. While it has been shown using 

chronosequence approaches that stem turnover rates decline with successional stage in a 

tropical forest (Sheil et al. 2000), no study has used long-term data to test the expectation 

that turnover rates decrease as succession proceeds following selective logging. Most 

long-term studies of selective logging effects have focused on temporal variation in 

demography, i.e. recruitment and mortality rates (Sheil et al. 2000; Chapman & Chapman 

2004; Bonnell et al. 2011) and forest structure in terms of stem density (Verburg & van 

Eijk-Bos 2003), and aboveground biomass and carbon stocks (Blanc et al. 2009; Gourlet-

Fleury et al. 2013). Studies focused on species composition have mainly used ordination 

methods to establish the direction of temporal change and determine whether selectively 

logged forests converge on a steady-state through time (Verburg & van Eijk-Bos 2003). 

For functional traits, Sheil et al. (2000) used taxon analysis to test whether the proportion 

of shade tolerant trees changes as succession progresses after selective logging, while 

Carreño-Rocabado et al. (2012) evaluated changes in the functional diversity of tropical 

tree communities from 12 traits and the underlying role of demographic processes, over 

two time points that spanned 8 years following selective logging.   
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To the best of our knowledge, there are no studies that simultaneously examine the effect 

of selective logging on temporal turnover rates in demography (mortality and 

recruitment), species composition and functional traits. Yet, doing so is important for at 

least two reasons. One is that predictions of succession theory might be supported for 

only some of these three kinds of turnover rates. Temporal turnover rates in demography 

and functional traits are expected to show systematic trends as succession proceeds, due 

to replacement of pioneers with longer-lived species (Walker & del Moral 2008), and 

because environmental filters are thought to act on traits that determine dispersal, 

survival, and reproduction in different environments (Shipley 2010). However, temporal 

turnover rates in species composition might not show systematic trends if several species 

have similar functional traits and species occurrences are historically contingent on 

stochastic factors, such as which species arrive first at a site (Fukami et al. 2005; Shipley 

2010). Thus, temporal turnover rates in demography and functional attributes during 

forest succession might be more predictable than temporal turnover rates in species 

composition (Guariguata & Ostertag 2001; Chazdon et al. 2007). It follows that support 

for the prediction of decreasing turnover rates as succession proceeds may depend on 

whether turnover rate is measured in terms of demography, species composition, or 

functional traits (Anderson 2007).  

A second reason to simultaneously study turnover rates in demography, species 

composition, and functional traits is that it allows controlling for dependencies between 

these three kinds of turnover rate and, thus, understanding the extent to which each kind 

of turnover rate behaves independently as predicted by succession theory. Turnover rates 

in species composition and functional traits depend at least in part on turnover rate in 
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demography (Swenson et al. 2012). At one extreme, if the demographic turnover rate is 

zero, and stems neither die nor recruit, then turnover rate in species composition and 

functional traits are bound to be zero as well. As turnover rate in demography increases it 

is possible for turnover in species composition and functional traits to increase, but only 

within the limits imposed by turnover rate in demography. For example, the number of 

new species entering a site during a given time interval cannot possibly exceed the 

number of individuals recruited in that site. Likewise, the number of species lost from a 

site during a given time interval cannot possibly exceed the number of individuals dying 

in that site. In analogous fashion, turnover rate in species composition limits turnover rate 

in functional traits (Swenson et al. 2012). Thus, when testing if turnover rate in species 

composition decreases in a decelerating manner while succession occurs, as predicted by 

succession theory, it is desirable to control for turnover rate in demography. Likewise, 

when testing if turnover rate in functional traits decreases in a decelerating manner as 

succession proceeds, it is useful to control for turnover rate in demography and species 

composition. We are unaware of studies of the effect of selective logging on temporal 

turnover rates that implement these kinds of controls. 

Here, we investigate the temporal dynamics of a tropical forest in Kibale National Park, 

Uganda during 45 years following selective logging. Given the predictions of succession 

theory, we test the working hypothesis that turnover rates in demography, species 

composition and functional traits are declining in selectively logged forest and compare 

changes in turnover rates to those documented in unlogged forest where we expected 

little or no change in turnover rates through time. This working hypothesis is reasonable 

because declining turnover rates characterize successional trajectories in many other 
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systems (see above). In particular, we examined three predictions about turnover rates 

derived from the working hypothesis (Fig. 1). First, during the first several years after a 

selective logging event, turnover rates should be higher in logged forest than in unlogged 

forest. This first prediction follows from the idea that the selectively logged forests are 

reset to a relatively earlier stage of succession due to the removal and damage of biomass. 

The time interval to which this prediction applies depends on the rate of replacement of 

early successional species by late successional species. In tropical forests, this 

replacement may take decades (Guariguata & Ostertag 2001; Lebrija-Trejos et al. 2010). 

Second, turnover rates in selectively logged forests should decrease with increasing time 

since the selective logging event, which indicates that forest stability is increasing as 

succession ensues. Third, turnover rates in unlogged forest should be less temporally 

variable than in selectively logged forests. Beyond testing these predictions with raw 

observed turnover rates in demography, species composition and functional traits, we 

also conducted tests based on null models that account for dependencies among these 

three kinds of turnover rates. Specifically, we used null models based on random 

sampling from a regional species pool (Gotelli & McGill 2006) to account for (i) the 

turnover rate in species composition expected by chance from the observed turnover rate 

in demography, (ii) the turnover rate in functional traits expected by chance from the 

observed turnover rate in demography, and (iii) the turnover rate in functional traits 

expected by chance from the observed turnover rate in species composition. 
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Materials and methods 

STUDY SITE  

This study was conducted in Kibale National Park (here-after Kibale), South-western 

Uganda, which covers 795 km
2 

in area (Chapman et al. 2010). It is predominantly mature 

moist semi-deciduous and ever-green forest, but includes a variety of other habitats 

including grassland, woodland, lakes and wetlands, secondary forest, and regrowth in 

areas previously planted with exotic trees (Chapman & Lambert 2000). Kibale receives 

an average rainfall of 1643 mm annually (1990 – 2013; Chapman and Chapman 

unpublished data collected at Makerere University Biological Field Station) with two 

peak rainy seasons from March to May and September to November (Chapman et al. 

2010). Temperature ranges between an average daily minimum of 15.5
o
C and daily 

maximum of 23.7
o
C. Kibale is divided into compartments which were subjected to 

varying degrees of logging, and have experienced different restoration efforts (Struhsaker 

1997; Chapman et al. 2010). Our study involved three compartments within Kibale. The 

first, K-30 (282 ha), has a recent history that is relatively free of human disturbance, and 

is typically considered a mature old-growth forest. The second, K-14 (405 ha), was 

selectively logged between May and December 1969 in a spatially heterogeneous 

manner, so that some areas (Mikana) experienced heavy logging with the removal and 

damage of up to 25% of all trees, while other areas were largely untouched. The third, K-

15 (347 ha), experienced high intensity selective logging between September 1968 and 

April 1969 resulting in removal and damage of up to 50% of all trees.  

VEGETATION PLOTS 
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Twenty six permanent vegetation plots were randomly established within the existing 

trail system in Kibale in December 1989. Each plot is 200 x 10 m with the shorter plot 

dimension bisected by a trail. These plots were originally established with the purpose of 

long-term monitoring of tree phenology (Chapman et al. 2010). The locations of the 26 

plots were unevenly distributed across the three compartments; 11 plots were located in 

K-30, six were in the lightly logged, and four in the heavily logged (Mikana) parts of K-

14, and five were in K-15. We assigned each vegetation plot to one of two categories 

according to disturbance history: unlogged or selectively logged. We placed the 17 plots 

in K-30 and the lightly logged areas of K-14 in the unlogged category, and the 9 plots in 

the Mikana part of K-14 and in K-15 in the selectively logged category. The assignment 

of plots in the largely untouched areas of K-14 to the unlogged category was informed by 

earlier work showing that these areas suffered little if any damage from the logging event 

based on stump and gap enumeration (Kasenene 1987; Chapman & Chapman 1997; 

Bonnell et al. 2011).   

DATA COLLECTION 

a. Forest composition and structure 

The 26 plots have been censused between March and May at four time points: 1989, 

1999, 2006, and 2013. Hereafter we refer to these censuses as C1, C2, C3 and C4 

respectively. Censuses of each plot involved following the fate of all trees with diameter 

at breast height (DBH) ≥ 10 cm, including recruitment of new stems and mortality of 

existing stems (Chapman et al. 2010). Trees were determined to species using taxonomic 

keys (Polhill 1952; Hamilton 1991; Katende et al. 1995; Lwanga 1996), and species 
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names updated using The Plant List (http://www.theplantlist.org/).  The census dataset 

provides information on stem number, species composition, and species abundances for 

each plot at four time points.  

b. Functional traits  

We focus on three functional traits thought to be important in successional forest 

dynamics. First, wood density (WD; g/cm
3
), a measure of a tree’s dry carbon investment 

per unit volume, is considered a key indicator of the wood economic spectrum due to its 

strong connection with several aspects of a plant’s ecology including growth rate, carbon 

allocation strategy, structural stability, hydraulic conductivity, and disease or pest 

resistance (Chave et al. 2009). The other two traits, plant maximum height (HMAX; m) 

and maximum diameter at breast height (DBHMAX; cm) are measures of adult stature, 

which is a crucial component of a species light competitive ability and carbon gain 

strategy (King et al. 2006; Wright et al. 2007; Moles et al. 2009).  Both WD and adult 

stature are thought to vary with species’ light requirements and forest successional stage 

(Falster & Westoby 2005; Chave et al. 2009).  To estimate DBHMAX we measured 

diameter at breast height (DBH) as the circumference of a tree trunk at 1.2 m height for 

all stems in the 26 plots during C1, C2, C3, and C4. Species DBHMAX was considered the 

largest DBH value recorded for all individuals of a species from all 26 plots across all 

four censuses. DBH data was available for all 91 species that occurred in the plots across 

all censuses.  

From within ten randomly selected plots, five of which were in the unlogged category 

and five in the selectively logged category, we used increment borers to extract wood 

http://www.theplantlist.org/
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cores from 687 upright adult trees. Details of sampling and method for wood density 

determination are described in Osazuwa-Peters et al. (2015). However, we could estimate 

species mean WD for 61 species out of the 91 species across all censuses; the remaining 

30 species had missing mean WD values, but we obtained species, genus, or family level 

WD means from the Global Wood Density Database subset for African region (Zanne et 

al. 2009) with as fine a taxonomic resolution as was available in the database. There were 

WD values for 7 of the missing species, genus-level wood density values for 11 species, 

and family-level wood density values for the remaining 12 species.  Consequently, we 

had two wood density datasets for Kibale’s species; one incomplete dataset composed of 

wood density values measured directly and a second complete dataset that included data 

compiled from the Global Wood Density Database. These two datasets were used to 

perform two alternative versions of all analyses involving functional traits. However, we 

only discuss the results based on the incomplete dataset when they differ from those 

based on the complete dataset. 

Tree height was obtained for 892 trees in the ten randomly selected plots mentioned 

above, and details can be found in Osazuwa-Peters et al. (2015). A species’ maximum 

height was determined as the greatest height recorded across all measured individuals of 

a species (King et al. 2006). This resulted in HMAX estimates for 60 species out of the 91 

species that occurred in the plots across all censuses. To obtain estimates of HMAX for all 

species we used DBH measures that were available for 622 of the 892 stems with height 

data. In particular, stem height was regressed on stem DBH using this subset of the data 

to obtain a forest-wide relationship that was then used to interpolate height values for 
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species with missing height data. The regression relationship (R
2
 = 0.31, P < 0.01, N = 

622) was as follows:  

𝐻𝑀𝐴𝑋̂ =  9.753326 +  (0.052898 ∗ 𝐷𝐵𝐻𝑀𝐴𝑋)    Eq. (1). 

This relationship was used to predict HMAX from species DBHMAX for the 31 species with 

missing HMAX values. Consequently, we had two HMAX datasets for Kibale’s species; one 

incomplete dataset composed of HMAX values based on tree height measured directly and 

a second complete dataset that also included values based on the forest-wide relationship 

represented by equation 1. These two datasets were used in alternative versions of all 

analyses involving functional traits. However, we only discuss the results based on the 

incomplete dataset when they differ from those based on the complete dataset. 

FOREST TURNOVER RATES 

We quantified turnover rates in demography (mortality and recruitment), species 

composition, and functional traits. Due to bias associated with census interval variation 

(the length of the first census interval is 10 years, but 7 years for the second and third 

intervals), we applied the  correction developed by (Lewis et al. 2004b) to all estimates of 

turnover. This correction involves standardizing turnover rate estimates to a common 

census length using λcorr = λ × t
0.08

, where λ is the turnover rate and t is time between 

censuses in years.   

a. Demographic turnover rate 

Turnover rate in stem number (TSN) in a given plot was defined as the average of the 

number of stems gained (recruited) and lost (dead, missing, or broken) between two 
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consecutive censuses, weighted by the average number of stems in the two censuses and 

the time interval (t) between the two censuses (Anderson 2007): 

𝑇𝑆𝑁 =

1
2

(
𝐷+𝑅 

𝑡
)

1

2
[𝑆𝑁𝐶𝑗 +  𝑆𝑁𝐶𝑗+1]       Eq. (2), 

where D is number of dead, missing, or broken stems in a plot between two consecutive 

censuses; R is number of recruited stems between two consecutive censuses; SNCj is total 

number of stems counted in the census Cj; and j takes the values 1 – 3 (see above section 

on forest structure and composition). 

b. Species composition turnover rate 

Rate of turnover in species composition (TSC) was defined as the change in species 

composition in a plot between two consecutive censuses (t), weighted by the time interval 

between the two censuses. We measured this rate using raw metrics of dissimilarity in 

species composition, as well as metrics based on a null model that accounted for stem 

turnover rate.  

We used two raw metrics of dissimilarity in species composition. The first was Bray-

Curtis index (Bray & Curtis 1957):  

𝑇𝑆𝐶𝐵𝑅𝐴𝑌𝐶𝑗,𝐶𝑗+1
=

∑ |𝑥𝑖𝐶𝑗+1 − 𝑥𝑖𝐶𝑗|𝑖

∑ |𝑥𝑖𝐶𝑗 + 𝑥𝑖𝐶𝑗+1|𝑖
⁄

𝑡
                Eq. (3), 

where xiCj is abundance of species i in a given plot at census Cj. The second raw metric 

was the β component of the Rao’s index for taxonomic diversity (De Bello et al. 2010): 

𝑇𝑆𝐶𝑅𝐴𝑂𝐶𝑗,𝐶𝑗+1
=

100 ∗ (𝛾 𝑅𝑎𝑜− 𝛼 ̅𝑅𝑎𝑜)/𝛾 𝑅𝑎𝑜

𝑡
                Eq. (4), 
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where γ Rao is total diversity obtained by pooling data from two consecutive censuses of 

a plot (Cj and Cj+1), and  Rao is the average of two α Rao values, each representing 

diversity during one of two consecutive censuses of a plot. Both γ Rao and  Rao are 

sums of the products of the relative abundances of all possible pairs of species. However, 

the relative abundance of each species is calculated as an average across two consecutive 

censuses in the case of γ Rao, while in the case of  Rao only data from a single census is 

considered (De Bello et al. 2010). 

Raw metrics of turnover rate in species composition, such as TSC.BRAY and TSC.RAO, depend 

at least in part on turnover rates in demography (see Introduction). It follows that 

differences between logged and unlogged forests in raw metrics of turnover rates in 

species composition may be due partially or entirely to stem turnover rates. Thus, we 

tested the predictions about turnover rates in species composition using a null model that 

accounts for the effect of observed stem turnover rate on species composition turnover 

rate, assuming random sampling from a regional species pool (Gotelli & McGill 2006). 

This null model preserved observed mortality and recruitment rates, as well as observed 

number of stems in each plot at each census. However, the individual stems that died in a 

plot during any given time interval, were randomly chosen from the stems found in the 

plot at the beginning of the time interval. Recruitment was simulated by randomly 

sampling individuals from a regional species abundance distribution. This distribution 

included all species found in the 26 plots during all censuses, with abundances equal to 

the average abundance over the four censuses (following Gotelli et al. 2010). We 

performed 1,000 iterations of the null model for each plot at each census interval (C1 – 

C2, C2 – C3, and C3 – C4), thus generating 1,000 null turnover values per plot and census 
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interval. Using this null model we computed turnover rate in species composition as the 

standardized effect size (SES): the difference between observed turnover and expected 

turnover under the null model (i.e., the mean of 1,000 turnover values generated by the 

null model), divided by the standard deviation of turnover values generated by the null 

model. We estimated two SES metrics of turnover rate in species composition, based on 

the two raw metrics: Bray-Curtis (TSCBRAY.SES1) and Rao’s index (TSCRAO.SES1). 

c. Functional trait turnover rate 

Rate of turnover in functional traits (TFC) was defined as the change in functional trait 

composition within a plot between two consecutive censuses, weighted by the time 

interval (t) between the two censuses (t). We measured rate of turnover in functional 

traits using raw metrics of dissimilarity in functional traits as well as metrics based on 

null models that accounted for turnover rates in stem number and species composition.  

We used two raw metrics of turnover in functional traits. The first was absolute 

difference in community weighted mean between two consecutive censuses:  

𝑇|∆ 𝐶𝑊𝑀|𝑡𝑟𝑎𝑖𝑡𝐶𝑗,𝐶𝑗+1
=

|𝐶𝑊𝑀𝐶𝑗+1−𝐶𝑊𝑀𝐶𝑗| 

𝑡
           Eq.  (5), 

where, CWMCj is the inter-specific mean of a trait value, weighted by the relative 

abundance of each species at census Cj. We calculated this metric to measure turnover 

rate in each of the three functional traits WD, HMAX, or DBHMAX, and refer to the 

respective measures as T|∆CWM|WD, T|∆CWM|HMAX, and T|∆CWM|DBHMAX.                                               
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The second raw metric of turnover in functional traits was the β component of Rao’s 

index for functional diversity (TFCRAO) in the Euclidean space defined by the three 

functional traits (WD, HMAX, or DBHMAX): 

𝑇𝐹𝐶𝑅𝐴𝑂𝐶𝑗,𝐶𝑗+1
=

100 ∗ (𝛾𝐹𝐷𝑅𝑎𝑜−  𝛼̅𝐹𝐷𝑅𝑎𝑜)/𝛾𝐹𝐷𝑅𝑎𝑜

𝑡
               Eq. (6), 

where γFD Rao is functional diversity obtained by pooling data from two consecutive 

censuses of a plot (Cj and Cj+1), and  FD Rao is the average of two αFD Rao values, each 

representing functional diversity during one of two consecutive censuses of a plot. Both 

γFD Rao and FD Rao are sums of the Euclidian distances between all possible pairs of 

species in space defined by the three functional traits, weighted by the product of the 

relative abundances of the respective species pairs. However, the relative abundance of 

each species is calculated as an average across two consecutive censuses in the case of 

γFD Rao, while in the case of FD Rao only data from a single census is considered. 

Raw metrics of turnover rate in functional traits depend at least partly on turnover rates in 

demography and species composition (see Introduction). Therefore, we used two null 

models to account for the effect of turnover rates in demography and species composition 

on turnover rate in functional traits. The first null model, hereafter null model 1, is 

identical to the null model described in the section on species composition turnover rates 

(above). It accounts for the effect of turnover rates in demography on turnover rate in 

functional traits, assuming sampling from a regional species pool. The second null model, 

hereafter null model 2, randomized trait values among species at each census interval, 

while maintaining the observed species abundance, species richness, and species turnover 

through time. Thus, null model 2 yielded expected values of turnover rate in functional 
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traits for observed values of species turnover in a plot, assuming trait values were 

randomly sampled from the set of observed trait values among all species found in the 26 

plots during all censuses. Combinations of values for the three functional traits we 

studied (WD, HMAX, and DBHMAX) were not altered, but kept fixed so as to preserve 

observed inter-specific correlations among traits (Schleicher et al. 2011). We conducted 

1,000 iterations of each null model for each plot and census interval, and calculated 

standardized effect sizes (SES, described above) for each of the raw metrics of turnover 

rates in functional traits. Extending the abbreviations for these raw metrics, we refer to 

SES values obtained from null model 1 as T|∆CWM|WD.SES1, T|∆CWM|HMAX.SES1, 

T|∆CWM|DBHMAX.SES1, and TFCRAO.SES1. Likewise, we refer to SES values obtained from 

null model 2 as T|∆CWM|WD.SES2, T|∆CWM|HMAX.SES2, T|∆CWM|DBHMAX.SES2, and 

TFCRAO.SES2.    

STATISTICAL TESTS OF PREDICTIONS  

We evaluated the three predictions described in the introduction for 17 turnover rate 

metrics (defined above): TSN, TSCBRAY, TSCRAO, T|∆CWM|WD, T|∆CWM|HMAX, 

T|∆CWM|DBHMAX, TFCRAO, TSCBRAY.SES1, TSCRAO.SES1, T|∆CWM|WD.SES1, 

T|∆CWM|HMAX.SES1, T|∆CWM|DBHMAX.SES1, TFCRAO.SES1, T|∆CWM|WD.SES2, 

T|∆CWM|HMAX.SES2, T|∆CWM|DBHMAX.SES2, and TFCRAO.SES2. To gauge empirical support 

for these predictions we used linear mixed effects models (lme) with restricted maximum 

likelihood ratio method (Bolker et al. 2009). These lme models allowed us to express the 

three predictions of interest in terms of fixed effects, while simultaneously modeling the 

variance among plots as a random effect. The general structure for the lme models we 

used was as follows:    
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       
jjjj iCiCiiCiiiiC TimeLoTimeULoUTR   3,221,00 Eq. (7), 

where TRiCj is turnover rate (as estimated by any of the 17 metrics above) in plot i (i = 

1,..., 26) measured at census Cj (j = 2, 3, or 4), Loi is a dummy variable denoting whether 

plot i belongs to the unlogged (Loi = 0) or logged (Loi = 1) category, and TimeiCj is the 

number of years elapsed since the selective logging event when turnover was measured in 

plot i at census Cj (TimeiCj = 31, 38 or 45 years). TimeiCj was rescaled by subtracting the 

length of time that had elapsed since the logging event at census C2 (31 years). Given this 

rescaling, the model intercept equals the first turnover rate that we measured. In 

particular, the first coefficient in equation 7, β0, represents the average intercept for plots 

in the unlogged category. In other words, β0 is the average (across plots in the unlogged 

category) annualized turnover rate during the first census interval 31 years after the 

selective logging event. Coefficient β1 is the difference in average intercept between plots 

in the logged and unlogged categories. The sum of the first two terms in equation 7, β0 + 

U0,i, is the intercept for plot i in the unlogged category. Likewise, the sum of the first 

three terms, β0 +U0,i + β1, is the intercept for plot i in the logged category. So U0,i is the 

extent to which the intercept of plot i deviates from the average intercept for the 

respective category (unlogged or logged). Coefficient β2 is the average slope relating 

turnover rate to time since the selective logging event for plots in the unlogged category. 

Coefficient β3 is the difference in this slope between the logged and unlogged categories.  

The value of U2,i is the extent to which the slope of plot i deviates from the average slope 

for the respective category (unlogged or logged). Finally, iCj represents the difference 

between predicted and observed turnover rate in plot i at census Cj. Terms U0,i, U2,I, and 
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iCj are random effects, while all other coefficients in equation 7 are fixed effects. Further 

details of model specification are described in Appendix 1.  

Now we can express the three predictions described in the introduction in terms of 

coefficients in the general model represented in equation 7. From here on, these 

coefficients are indicated with carets to denote that they are sample-based estimates of 

population parameters. The first prediction is that during several years after a selective 

logging event, turnover rate should be higher in selectively logged forest than in 

unlogged forest. Based on previous studies (see Introduction and Methods sections on 

forest composition and structure) we assumed that this prediction still applies 31 years 

after the selective logging event. Thus, in terms of equation 7 the first prediction can be 

expressed as: 1̂ > 0 (Fig. 1). The second prediction is that turnover rate in selectively 

logged forest should decrease with increasing time since the selective logging event. In 

terms of equation 7 this prediction can be expressed as: 2̂  + 3̂ < 0 (Fig. 1; Appendix 2a 

for details). The last prediction is that turnover rate in unlogged forest should be less 

temporally variable than in selectively logged forest. In terms of equation 7 this 

prediction can be expressed as: | 2̂ | < | 2̂  + 3̂ | (Fig. 1). To determine empirical support 

for this last prediction it is necessary to consider the signs of 2̂  and 3̂ . If 3̂ and 2̂  

have the same sign, and 3̂ is statistically significant (i.e. it is different from zero), then 

the third prediction is supported. On the other hand, if 3̂  and 2̂  have different signs, 

the prediction is supported only if | 3̂ | - 2* | 2̂ | > 0 (see Appendix 2b for details).  
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Because logging happened in a spatially structured way across the study area in Kibale, 

plots in the logged category occurred in more northerly latitudes than those in the 

unlogged category (Fig. 2). Consequently, spatial processes could influence forest 

turnover rates independent of the effects of selective logging (Lindenmayer & Laurance 

2012; Ramage et al. 2013). To control for the potential effects of unmeasured factors that 

co-vary linearly with space, we added latitude of each plot as a variable in lme models. 

The lme models that included latitude had an additional coefficient, β4, representing the 

average slope (across plots) of the relationship between turnover rate and latitude. Using 

spatial variables (e.g., latitude) in this fashion reduces Type I error (Peres-Neto & 

Legendre 2010) and provides a more conservative test of the predictions of interest. We 

compared models that included latitude with those that did not using Akaike’s 

Information Criterion corrected for finite sample sizes (AICc, Burnham and Anderson 

2002). We followed the general rule of thumb that ∆AICc ≤ 2 indicates similar empirical 

support (Appendix 3). In all cases when multiple models had similar empirical support, 

there were no differences in the results of the test of the predictions. Thus, we present 

only one model for each metric of turnover rate even when multiple models have similar 

empirical support.   

All statistical tests were implemented in R version 2.15.1 (R Core Team 2012). Packages 

used included vegan (Oksanen et al. 2012) for Bray-Curtis index, package FD (Laliberté 

& Legendre 2010); (Laliberte & Shipley 2011) for community weighted means, and 

packages cluster (Maechler et al. 2012), ade4 (Dray & Dufour 2007) and a sourced script 

(rao_script.R) (De Bello et al. 2010) for Rao’s index. The lme models were performed 

with the nlme package (Pinheiro et al. 2007), caterpillar plots obtained with lme4 
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package (Bates et al. 2013), and ∆AICc and AICc weights obtained with the AICcmodavg 

package (Mazerolle 2013).  

Results 

a. Demographic turnover rate 

In accord with the first prediction (Fig. 1), plots in the logged category had a higher 

intercept for stem turnover rate than plots in the unlogged category ( 1̂  > 0, Table 1), 

indicating that stem turnover rate was higher in logged than unlogged forest 31 years 

after the selective logging event (Fig. 3A). However, contrary to the second prediction 

(Fig. 1), stem turnover rate for plots in the logged category did not change with time (

32
ˆˆ    = 0, Table 1, Fig. 3A). Moreover, the third prediction (Fig. 1) was not supported 

because stem turnover rate was not less temporally variable for plots in the unlogged than 

in the logged category ( 3̂  < 2* 2̂ , Table 1, Fig. 3A).  

b. Species composition turnover rate 

Estimates of turnover rate in species composition only partially supported the first 

prediction of higher intercept for plots in the logged than unlogged category. When 

measured with raw metrics of species turnover rate, plots in the logged category had 

higher intercepts than plots in the unlogged category ( 1̂  > 0 if critical p-value = 0.1, 

Table 1, Fig. 3B and D). These results seemed to reflect the influence of demographic 

turnover rate on species composition turnover rate (see introduction). In particular, 

metrics of species composition turnover rate based on null models that control for stem 

turnover rate revealed either no difference in intercept between plots in the logged and 
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unlogged categories, or lower intercept for plots in the logged category ( 1̂  ≤ 0, Table 1, 

Fig. 3C and E). 

Estimates of turnover rate in species composition for plots in the logged category did not 

decrease through time ( 32
ˆˆ    ≥ 0, Table 1, Fig. 3B−E) and, thus, did not support the 

second prediction. Indeed, as measured by two raw metrics, turnover rate in the species 

composition of plots in the logged category tended to increase through time, albeit for 

one of these metrics the increase was not significant (Table 1). This trend of temporal 

increase in turnover rates did not seem to result from the effect of demographic turnover 

rate on species composition turnover rate, because it persisted when species composition 

turnover rate was measured by metrics based on null models that control for stem 

turnover rate (Table 1). 

The third prediction (Fig. 1) was only partially supported by estimates of turnover rate in 

species composition. Raw metrics of turnover rate in species composition provided no 

support for this prediction, because turnover rate was not less temporally variable for 

plots in the unlogged than in the logged category (| 2̂ | ≥ | 32
ˆˆ   |, Table 1, Fig. 3B and 

D). However, as measured by one of the metrics that accounts for demographic turnover 

rate (TSBRAY.SES1), turnover rate in species composition for plots in the unlogged 

category was marginally less temporally variable than that for plots in the logged 

category (| 2̂ | < | 32
ˆˆ   |, if critical p-value = 0.1, Table 1, Fig. 3C).    

c. Functional trait turnover rate 
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One out of twelve metrics of turnover rate in functional traits (TFCRAO) supported the 

first prediction of higher intercept for logged than unlogged category ( 1̂  > 0, Table 1). 

However, this result seemed driven by the effect of demographic turnover rate on 

functional trait turnover rate. The metric controlling for such an effect (TFCRAO.SES1) did 

not support the first prediction ( 1̂  ≤ 0, Table 1). None of the other metrics of turnover 

rate in functional traits provided support for the first prediction (in all cases 1̂  ≤ 0, Table 

1, Fig. 3F−G).  

We found no support for the second prediction, as none of the metrics of turnover rate in 

functional traits decreased through time for plots in the logged category (in all cases 

32
ˆˆ    ≥ 0, Table 1, Fig. 3F−G). Similarly, we found no support for the third prediction, 

according to which turnover rate should be less temporally variable in unlogged than 

selectively logged forest (Fig. 1). As estimated by all twelve metrics, turnover rate in 

functional traits was not less temporally variable for plots in the unlogged than for plots 

in the logged category (in all cases      | 2̂ | ≥ | 32
ˆˆ   |, Table 1, Fig. 3F and G). 

When the analyses were based on the incomplete functional trait dataset, there was no 

support for any of the three predictions, except in a single case, for prediction III; the 

unlogged forest was temporally less variable in T|∆CWM|WD, observed turnover rates for 

wood density (See Appendix 4).  

Discussion 

Tropical forests store at least 40% of terrestrial carbon, process six times as much carbon 

as is released through fossil fuel use, and are epicenters of biodiversity (Lewis et al. 
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2004a). These forests are increasingly being modified by selective logging, but the extent 

to which this practice causes shifts in temporal dynamics of tropical forest communities 

remains unclear (Sist et al. 2014). Understanding the effects of selective logging on the 

temporal dynamics of tropical forest will help determine the extent to which tropical 

forests are resilient to selective logging. It will also be useful to balance the competing 

demands of sustainable management and conservation of tropical forests, since resilience 

offers insurance against loss of valued functions (Thrush et al. 2009). Succession theory 

offers a starting point to examine the resilience of tropical forests to selective logging. 

Based on this theory, we hypothesized that a tropical forest in East Africa had been 

undergoing recovery to pre-disturbance conditions during 45 years after a selective 

logging event. We tested three predictions derived from this working hypothesis, 

focusing on turnover rates of three forest attributes: demography, species composition, 

and functional traits. Overall, we found higher turnover rates in logged forest than in 

unlogged forest for all three attributes, lending support to prediction I. However, turnover 

rates did not decline through time in logged forest, indicating no support for prediction II. 

Moreover, the unlogged forest was not less temporally variable in turnover rates than the 

logged forest, indicating no support for prediction III.  Below we highlight some caveats 

before discussing the implication of these results. 

Caveats 

As is typical of many logging-impact studies (Lindenmayer & Laurance 2012; Ramage et 

al. 2013), the logging history of vegetation study plots within Kibale is confounded with 

geographic space, with logged plots occupying more northerly locations than unlogged 

plots (Fig 2). Previous studies on Kibale have assumed structural similarity among plots 
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prior to logging, based on historical ground surveys that predate the logging event. These 

historical surveys show that the vegetation plots in this study are all located within the 

central block of Kibale’s forests (Kingston 1967; Bonnell et al. 2011). Nevertheless, 

spatial structure could create spurious relationships between forest turnover rates and 

selective logging, due to the effects of unmeasured space-related factors (Legendre & 

Fortin 1989). The presence of spatial structure in ecological data potentially violates the 

assumption of independent observations, and thus may inflate degrees of freedom of 

classical statistical models, increasing type I error (Peres-Neto & Legendre 2010). Here 

we applied a simple approach to account for this potential issue, by including the 

latitudinal geographic coordinates for each observation as a covariate in linear mixed 

effects models. This covariate was significant only for turnover rates in species 

composition (Appendix 5). We emphasize that our approach to control for spatial non-

independence of plots assumes a linear relationship between unmeasured spatial factors 

and the spatial proxy, latitude. Consequently, our approach may not account for complex 

non-linear spatial processes that may influence forest turnover rates independent of 

selective logging. This poses a potential problem for empirical tests of predictions I and 

III, which are based on the assumption that the logged and unlogged plot categories do 

not consistently differ in ways other than in logging history. If unmeasured processes act 

in a non-linear, spatially structured way, then an assumption needed to test predictions I 

and III would be violated.  However, even in that case, the test of prediction II would 

remain valid. The assumption in question is not required for testing prediction II because 

each logged plot is compared to itself in a temporal series.     
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There are two other potentially important limitations of this study. First, we only 

considered stems ≥ 10 cm DBH, and therefore did not study the dynamics of small stems. 

Small stems are typically more numerous in most forests, and have higher turnover rates 

than large trees (Stephenson & van Mantgem 2005). Also, small stem dynamics may bear 

the imprint of selective logging for longer than larger trees because small-sized trees are 

more susceptible to fine scale variations in environmental conditions and represent the 

regeneration potential of the forest (Decocq et al. 2014). Second, because our first census 

(C1) occurred 20 years after the selective logging event, it may be argued that most 

successional dynamics took place before observations began. However, at C1, plots in the 

logged category had lower basal area and stem density (Kingston 1967; Chapman & 

Chapman 1997, 2004) and a higher abundance of early- to mid-successional species 

(Bonnell et al. 2011) than those in the unlogged category, substantiating the assumption 

of successional differences between plot categories. These observations in our study site 

are consistent with the idea that successional dynamics in tropical forests may take 

decades (Guariguata & Ostertag 2001; Lebrija-Trejos et al. 2010).  

a. Prediction I: higher turnover rates in logged forest 

Our results largely supported the prediction of higher turnover rates in selectively logged 

forests relative to unlogged forests for the three community attributes we studied. 

However, for functional traits, higher turnover rates in logged forest were apparent only 

when the three traits were combined into a single metric, indicating greater turnover rates 

in biomass for selectively logged forests. For species composition and the multivariate 

trait combination, this pattern of higher turnover rates in logged forest disappeared when 

dependencies on stem turnover were accounted for with null models (Figs. 3 B – E, H & 
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I). This lack of support for prediction I after accounting for stem turnover diverges from 

theoretical predictions based on the fit of organisms to their abiotic environment 

(Swenson et al. 2012). When observed stem and/or species turnover is accounted for, 

functional turnover is expected to be higher due to rapid changes in the abiotic 

environment following an acute disturbance, and lower when the environment is 

relatively constant (Swenson et al. 2012). Contrary to our observations, due to more 

recent disturbance, higher turnover rates in logged plots should have persisted after 

accounting for observed stem and species turnover. Nevertheless, our results indicate that 

the effect of selective logging on turnover rates is largely driven by stem recruitment and 

mortality, consistent with the idea that succession is essentially a demographic process 

(Horn 1974). Successional change following disturbance is considered the aggregated 

outcome of differential demographic responses of constituent species that results from 

interspecific variation in life history traits (van Breugel et al. 2006). Finegan (1996) 

described successional change as emerging from individualistic temporal patterns of 

growth and mortality that result in different species populations approaching maturity and 

decline at different points in succession. In the context of abandoned cornfields, van 

Breugel et al. (2006) demonstrate the demographic basis of succession for tropical 

rainforest sites in Mexico, based on higher rates of recruitment and mortality during the 

early stages of succession. Correspondingly, our results suggest that higher turnover rates 

in species composition and functional traits in logged plots were largely driven by higher 

rates of stem recruitment and mortality compared to unlogged plots.   

b. Prediction II: declining turnover rates in logged forest 
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Our results did not support the prediction that turnover rates decline temporally in 

selectively logged forests. According to this prediction, a negative slope should 

characterize the relationship between time since the selective logging event and turnover 

rates (Fig. 1), because the logged forest would be recovering from disturbance and 

increasing in stability as succession ensues (Horn 1974). The absence of a decline in 

turnover rates through time for all three community attributes in Kibale’s logged forests 

suggests that successional models that assume recovery to pre-disturbance structure and 

composition do not accurately describe the effects of selective logging on tropical forest 

dynamics at our site.  

In contrast to prediction II, demographic and functional trait turnover rates were largely 

constant through time, or increased only marginally with time, while species composition 

turnover rates increased through time (Table 1, Fig. 3). The increasing temporal turnover 

rates in species composition were not a simple consequence of stochastic processes of 

recruitment and mortality, because this increasing trend persisted after the effect of stem 

turnover was accounted for with null models (Table 1; Fig 3 C & E). Thus, opposite to 

prediction II, logged forest seemed to be increasingly unstable in terms of species 

composition, despite temporally unchanging turnover rates in demography and functional 

traits. The absence of parallel trends in turnover rates of species composition and 

functional traits may be explained by functional redundancy (Fukami et al. 2005; Shipley 

2010), which would imply that species’ that replaced each other over the census intervals 

in logged plots were functionally similar. The tree species pool of Kibale is characterized 

by a high frequency of species with intermediate wood density values (0.5 – 0.75 g/cm
3
), 

as well as poor representation of species with very low wood density (< 0.2 g/cm
3
) that 
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might often be colonizing pioneers, and of species with very high wood density (> 0.8 

g/cm
3
) (Chapman et al. 1999; Osazuwa-Peters et al. 2015). The high incidence of 

intermediate wood density species suggests that temporal change in species abundances 

in logged plots is not necessarily paralleled by change in functional strategies of species, 

resulting in relatively constant temporal turnover rates in functional traits. This scenario 

is illustrated in Fig 4, which shows the relatively static distribution of wood density for 

all stems in the 26 vegetation plots, despite change in species abundances, as highlighted 

for four species with wood density of 0.7 g/cm
3
. 

c. Prediction III: temporally less variable turnover rates in unlogged forest 

Perhaps the most surprising of our results, was the limited support for the prediction that 

turnover rates in unlogged forest were temporally less variable than in logged forests. The 

unlogged forest was expected to be temporally less variable for all three community 

attributes because it is considered an old-growth forest, free from human disturbance in 

the recent past and thought to be characterized by late-successional forest dynamics 

(Chapman et al. 2010). Consequently, temporal patterns of turnover rates in unlogged 

forest would represent background or reference levels, and succession theory predicts 

they should be less variable than turnover rates in selectively logged forest. Only for null-

model based turnover rates in species composition were the unlogged forest plots less 

temporally variable, providing evidence that successional changes in the taxonomic 

composition of selectively logged forest were in excess of background turnover rates 

expected from demographic processes. Temporal changes in Kibale’s unlogged forest 

may well be part of long-term successional dynamics related to large-scale disturbance in 

the distant past (Chapman et al. 2010). But even if that is the case, it would seem 
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surprising that recently (i.e. 45 years ago) logged forest was not more overtly variable 

than unlogged forest. An alternative explanation is that there are multiple forest-wide 

perturbations simultaneously operating on the vegetation in Kibale independent of the 

selective logging event 45 years ago. Three main sources of forest-wide disturbance in 

Kibale have been reported including changing rainfall patterns (Hartter et al. 2012), 

concentrated elephant abundance and activities (Omeja et al. 2014), and intense 

competition from non-tree vegetation (Duclos et al. 2013). Synergistic interactions 

among multiple perturbations are thought to result in long-term changes in fundamental 

aspects of the structure and function of biological communities (Paine et al. 1998). Such 

long-term changes are suggested by global trends in turnover of species composition for a 

wide range of taxa and biomes during the last 40 years (Dornelas et al. 2014).  

Conclusion 

Much of the focus on the effects of selective logging on tropical forests has been on the 

state of tropical forests at a single point in time and, to a lesser extent, on the temporal 

dynamics of demography or species composition. Here, we simultaneously investigated 

the effect of selective logging on tropical forest dynamics in demography, species and 

functional trait composition, while accounting for interdependencies among these three 

kinds of community dynamics using null models. The main take home message from our 

study is that classical successional models that assume recovery to pre-disturbance 

conditions seem inadequate for predicting the effects of selective logging on the 

dynamics of the tropical forest in Kibale. We found no empirical support for decline in 

turnover rates through time following selective logging. Demographic and functional 

turnover rates in logged forest plots did not show significant temporal trends, in contrast 
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to turnover rates in species composition that increased linearly with time since logging.  

Lastly, many of the temporal turnover rate patterns were driven primarily by 

demographic turnover rate, with the exception of temporal increases in species 

composition turnover rates, which remained after accounting for the effect of stem 

turnover.  

Future work may be aimed at determining the generality or uniqueness of our results 

from Kibale, based on similar studies in tropical forests elsewhere, avoiding when 

possible confounding spatial location and logging history. Succession is thought to be 

driven by short-term local drivers (e.g. plant life cycles, nutrient fluxes, and herbivory), 

but constrained by long-term regional processes such as species pool dynamics (Walker 

& Wardle 2014). Consequently, results in this study may be shaped by Kibale’s specific 

ecology and constrained by the history of African tropical forests including a relatively 

small regional species pool and historically few and small disturbances as compared to 

other tropical regions (Richards, 1996; Chapman et al., 1999). 

Nevertheless, our results lead to the conclusion that tropical forests are not as resilient to 

selective logging effects as widely thought (Putz et al. 2012; Edwards & Laurance 2013). 

Selective logging resulted in persistently higher turnover rates in Kibale’s forest, which 

may compromise the carbon storage capacity of these forests. Selective logging effects 

may also interact with effects from other global change trends, particularly climate 

change. The synergistic effects of multiple perturbations could potentially cause major 

long-term shifts in the dynamics of tropical forests. Ultimately, the view that selective 

logging is a benign approach to the management of tropical forests should be 
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reconsidered in the light of the studies on the effects of this practice on long-term forest 

dynamics.     
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Table 

Table 1: Empirical support for the three predictions derived from the working hypothesis that logged forest has undergone 

declining rates of turnover (Fig. 1). The two columns under prediction III correspond to the following two cases: when 2̂  and 

3̂  have the same sign, prediction III is supported if 3̂ ≠ 0; and when 2̂  and 3̂ have different signs, prediction III is 

supported if | 3̂ | - 2 *| 2̂ | > 0. “NA” under any of these columns means the respective case does not apply. Values in bold 

indicate support for predictions. Significant difference from zero is indicated by superscripts, and critical level of significance 

indicated as ** = 0.01, * = 0.05, and ̇ = 0.1. Acronyms defined as follows: T = turnover, SN = stem number, SC = species 

composition, FC = functional composition, LAT = latitude, BRAY = Bray-Curtis index, RAO = Rao’s index, |∆CWM| = absolute 

difference in community weighted mean, WD = wood density, HMAX = maximum height, DBHMAX = maximum diameter at 

breast height, SES1 = standardized effect size from Null model 1, and SES2 = standardized effect size from Null model 2.  

 

Turnover rate Metric Predictions 

  I 

1̂ > 0 

II 

2̂  + 3̂ < 0 

III 

3̂ ≠ 0 | 3 | - 2*| 2 | > 0 

Demographic TSN  0.007* 0.00008 NA -0.00072 

Species composition TSCBRAY 0.005 ̇ 0.00043** NA -0.00087* 

Species composition TSCBRAY.SES1_LAT -1.669* 0.132** 0.107 ̇ NA 

Species composition TSCRAO 
#
 0.705 ̇ 0.031 0.00331 NA 

Species composition TSCRAO.SES1 -0.575 0.104* NA 0.087 

Functional trait T|∆CWM|WD 0.00026 0.00001 0.000002 NA 

Functional trait T|∆CWM|WD.SES1 -0.249** 0.016 ̇ NA 0.011 

Functional trait T|∆CWM|WD.SES2 -0.290 0.005 NA -0.009 

Functional trait T|∆CWM|HMAX 
§
 0.078 -0.003 NA -0.002 

Functional trait T|∆CWM|HMAX.SES1 -0.096 0.005 0.00267 NA 

Functional trait T|∆CWM|HMAX.SES2 0.149 -0.032 NA 0.021 

Functional trait T|∆CWM|DBHMAX 
§
 0.242 -0.014 NA 0.005 

Functional trait T|∆CWM|DBHMAX.SES1 -0.015 -0.00052 -0.00042 NA 

Functional trait T|∆CWM|DBHMAX.SES2 0.173 -0.039 -0.02907 NA 

Functional trait TFCRAO
#
 1.086** 0.005 NA -0.028 
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Functional trait TFCRAO.SES1 1.526 0.426  ̇ NA 0.392 

Functional trait TFCRAO.SES2 3.971 0.090 NA 0.075 
# 

Turnover rate natural-log transformed to normalize residuals 
§
 Turnover rate square root transformed to normalize residuals 
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Figures 

 

Figure 1: Conceptual figure illustrating predictions based on succession theory. Predictions are expressed in a linear regression 

framework, focusing on the intercepts and slopes. 0̂  is the intercept (i.e. turnover rate when time since selective logging 

event equals zero) for unlogged plots, 1̂  is the difference in intercepts between unlogged and logged plots, such that the 

intercept for logged plots equals 0̂  + 1̂ . 2̂   is the slope for the effect of time on turnover rates in unlogged plots. 3̂ is the 

difference in slopes between logged and unlogged plots, such that the slope for logged plots equals 2̂  + 3̂ . Prediction 1: 

higher turnover rates in logged plots, implies 1̂  > 0. Prediction 2: declining temporal turnover rates in logged plots, implies 

2̂  + 3̂ < 0. Prediction 3: less temporally variable turnover rates in unlogged plots, implies    | 2̂ | < | 1̂  + 2̂ |.  
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Slope unlogged =  

Slope logged =  +  

0̂ + 1̂  

β1 

Predictions 

I. 1̂  > 0 

II. 2̂  + 3̂ < 0 

III. | 2̂ | < | 2̂  + 3̂ | 
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Figure 2: Location of study site in Kibale National Park (Kibale), southwest Uganda, East Africa. Left panel shows the 

location of 26 vegetation plots, northwest of Kibale. Right panel shows the detailed spatial arrangement of logged (N = 9) and 

unlogged (N= 17) vegetation plots within Kibale.  
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Figure 3: Turnover rates in logged and unlogged plots at three time points since the 

logging event; A. Turnover rates in stem number. B. Turnover rates in species 

composition estimated with Bray-Curtis index (TSCBRAY). C. Standardized effect size 

(SES) for turnover rates in species composition estimated with Bray-Curtis index from 

Null model 1 (SES1 TSCBRAY). D. Turnover rates in species composition estimated with 
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Rao’s index (TSCRAO). E. SES for turnover rates in species composition estimated with 

Rao’s index from Null model 1 (SES1 TSCRAO). F. Turnover rates in wood density (WD). 

G. SES for turnover rates in WD from Null model 1 (WD SES1). H. Turnover rates in the 

multivariate trait combination of three traits (TFCRAO), WD, HMAX and DBHMAX I. SES for 

turnover rates in TFCRAO from Null model 1 (SES1 TFCRAO).  First census interval was 

from 1989 – 1999, the next census interval was from 1999 – 2006, and the last census 

interval was from 2006 – 2013, representing 31, 38 and 45 years since the selective 

logging event, respectively. 
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Figure 4: Kernel density estimation showing the distribution of wood density values in Kibale at each census (1989, 1999, 

2006 and 2013), where each individual in all 26 vegetation plots was assigned mean wood density values of their species. 

Wood density distribution remains similar across four censuses despite change in the abundance of species. As an example, 

notice temporal change in the abundances of the four species (top right corner of graph) with 0.7 g/cm
3
 wood density (broken 

red line). 
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Supplementary information for chapter 4 

Appendix 1a: Specification of three models varying in the structure of random effects, to determine the optimal random 

structure for the linear mixed model for each estimate of turnover. 

 

As in the main text, i denotes the plot (i = 1,.,., 26), and j the time point of measurement on that plot. β0 represents the intercept 

or the estimated average turnover rate for the reference group (unlogged plots) when the predictors equal zero.   β1 is the 

difference between β0 and estimated average turnover rate for the comparison group (logged plots). β2 is the slope for the fixed 

effect of time on turnover rates for the reference group. β3 is the slope for the interaction effect of logging status and time, 

which implies the difference between the slope for the effect of time on turnover rates for unlogged plots and the slope for 

logged plots.  ij represents the within plot error which captures the difference between turnover rates on time point  j in plot i 

and the predicted average turnover rates for the i-th plot. ij is generally assumed to be normally distributed with variance 

equals 
2
, which captures within plot variation.  𝑈0i is the between-plot random effects, capturing the difference between the 

intercept of the i-th plot and the average intercept.   𝑈0i is assumed to belong to a normal distribution N, with mean zero and a 

Model Level-2 

equations 

Assumptions made for 

the random effects 

Composite equation 

A: random 

intercept 
𝛽0𝑖  =  𝛽0  +  𝑈0𝑖 

𝛽2𝑖  =  𝛽2 
 

𝑈0𝑖 ~ 𝑁 (0, 𝜏0
2) 

 

Turnover𝑖𝑗  =  (𝛽0 +  𝑈0𝑖) +  𝛽1 ∙  𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖 + 𝛽2

∙ 𝑇𝑖𝑚𝑒𝑖𝑗  +  𝛽3  ∙ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗  

+ 𝜀𝑖𝑗 

 

B: random 

slope 
𝛽0𝑖  =  𝛽0 

𝛽2𝑖  =  𝛽2 + 𝑈2𝑖 
 

𝑈2𝑖 ~ 𝑁 (0, 𝜏2
2) Turnover𝑖𝑗  =  𝛽0  +  𝛽1 ∙ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖 +  (𝛽2 +  𝑈2𝑖)

∙ 𝑇𝑖𝑚𝑒𝑖𝑗   + 𝛽3  ∙ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠
𝑖

∗ 𝑇𝑖𝑚𝑒𝑖𝑗  

+ 𝜀𝑖𝑗 

 

C: random 

intercept 

and 

random 

slope 

𝛽0𝑖  =  𝛽0  +  𝑈0𝑖 

𝛽2𝑖  =  𝛽2 + 𝑈2𝑖 
 

[
𝑈0𝑖

𝑈2𝑖
] ~ 𝑁 ([

0

0
] , [

𝜏0
2

𝜏02

𝜏02

𝜏2
2 ]) 

Turnover𝑖𝑗  =  (𝛽0 + 𝑈0𝑖 )  +  𝛽1 ∙ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖

+  (𝛽2 +  𝑈2𝑖) ∙ 𝑇𝑖𝑚𝑒𝑖𝑗 +  𝛽3 ∙ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑢𝑠𝑖

∗ 𝑇𝑖𝑚𝑒𝑖𝑗 + 𝜀𝑖𝑗 
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variance 0 which captures the between individual variation. Similarly, 𝑈2i is a random term that captures the difference 

between the slope for time of the i-th plot and the average slope for time. It is also assumed to be normally distributed with 

mean zero and a variance 2. The term 02 is the covariance or joint variability between 𝑈0 and 𝑈2. 
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Appendix 1b: AICc values for models A, B, and C as described in appendix 1a above for each estimate of turnover rate. The 

optimal random structure for the lme model for each estimate of turnover rate was determined by comparing a random 

intercept (model A), a random slope (model B), and a random intercept and slope model (model C), and selecting the model 

with the lowest AICc value. Additionally, for each estimate of turnover rate, we examined caterpillar plots of plot level 

residuals (level 2 residuals) to confirm whether random intercepts and or random coefficients were necessary in the lme model.   

We conducted model diagnostics on the level-1 residuals to check the validity of model assumptions for lme models. Bold 

AICc values indicate selected model based on lowest AICc value, or when there is a tie in AICc values, model with the simplest 

random structure or significant difference from the previous model based on log likelihood ratio test. Acronyms defined as 

follows: T = turnover, SN = stem number, SC = species composition, FC= functional composition, LAT=latitude, BRAY= Bray 

Curtis Dissimilarity, RAO= Rao’s index, |∆CWM|= absolute difference in community weighted mean, WD = wood density, HMAX= 

maximum height, DBHMAX = maximum diameter at breast height, SES1 = standardized effect size from Null model 1, SES2 = 

standardized effect size from Null model 2. The optimal random structure for the lme models for each estimate of turnover 

varied; random intercept (Model A) was optimal in 5 cases, a random slope (Model B) in 6 cases, and a random intercept and a 

random slope (Model C) in 6 cases. 

I. Based on dataset for all 91 species including compiled and interpolated data. 

 Model A: 1|Plot Model B: 0+ cTime|Plot Model C: 1+cTime|Plot 

TSN -522.18 -520.44 -518.77 

TSCBRAY -568 -555.58 -564.16 

TSCBRAY.SES1 285.27 285.13
*
 288.26 

TSCRAO 56.85 62.85 39.42* 

TSCRAO.SES1 345.72 345.72 341.54* 

T|∆CWM|WD -875.77 -869.38 -871.77* 

T|∆CWM| WD.SES1 -2.04 -6.91* -4.17 

T|∆CWM| WD.SES2 221.38 221.18* 224.79 

T|∆ CWM|HMAX -113.57 -113.57 -124.42* 

T|∆CWM|HMAX.SES1 -28.17 -28.17* -24.16 

T|∆CWM|HMAX.SES2 235.05 235.05* 236.87 

T|∆CWM|DBHMAX 75.78 75.78 63.64* 

T|∆CWM|DBHMAX.SES1 -71.45 -71.45* -69.24 

T|∆CWM|DBHMAX.SES2 136.39 136.39 137.21 
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TFCRAO -203.64 -198.26 -199.77 

TFCRAO.SES1 579.53 534.29* 494.66* 

TFCRAO.SES2 414.03 547.3 348.42* 

*Significantly different (P < 0.05) from previous model based on log likelihood ratio test. 

 

II. Based on dataset for only the 60 species that had field-measured functional trait data; the optimal random structure for the 

lme models for each estimate of turnover varied; random intercept (Model A) was optimal in 5 cases, a random slope (Model 

B) in 4 cases, and a random intercept and a random slope (Model C) in 5 cases.  Bold AICc values indicate selected model 

based on lowest AICc value, or when there is a tie in AICc values, model with the simplest random structure or significant 

difference from the previous model based on log likelihood ratio test. 

 Model A: 1|Plot Model B: 0+ cTime|Plot Model C: 1+cTime|Plot 

TSCRAO -86.894 -82.488 -90.506* 

TSCRAO.SES1 276.96 274.99* 278.50 

T|∆CWM|WD -881.11 -889.88* -886.87 

T|∆CWM| WD.SES1 15.047 11.684* 14.977 

T|∆CWM| WD.SES2 215.95 214.35 215.80 

T|∆ CWM|HMAX -171.20 -171.20 -167.21 

T|∆CWM|HMAX.SES1 -18.915 -18.915 -14.915 

T|∆CWM|HMAX.SES2 233.35 233.35 237.35 

T|∆CWM|DBHMAX 70.501 73.542 64.830* 

T|∆CWM|DBHMAX.SES1 -46.077 -45.155 -42.183 

T|∆CWM|DBHMAX.SES2 197.80 200.00 192.26* 

TFCRAO -251.59 -241.06 -247.59* 

TFCRAO.SES1 510.37 488.54* 436.81* 

TFCRAO.SES2 369.27 510.11 333.17* 

 

 

 



183 
 

 
 

Appendix 2: Methods for testing significance of predictions II and III.  

2a. Statistical significance for Prediction II, expressed as 2̂  + 3̂ < 0, was tested by estimating the confidence intervals (CIs) 

for the sum of these coefficients. To estimate CIs, the coefficients, 2̂  and 3̂ , their variances, and covariance were extracted 

from the output of the linear mixed effects models. The variance for the sum of the coefficients 2̂  + 3̂ < 0 was calculated by 

applying the variance rule:  

Variance (X+Y) = Variance (X) + Variance (Y) + 2 * Covariance (X, Y) 

The standard error for 2̂  + 3̂  was estimated as the square root of the variance for the sum of the coefficients. Standard error 

was then used to estimate CI values at the 90%, 95% and 99% levels by multiplying the standard error by 1.64, 1.96, and 2.58 

respectively. The resulting CI values were then used to set the upper and lower bounds of the CIs by adding the CI value to and 

subtracting the CI value from the sum of the coefficients. The sum of the coefficients, 2̂  + 3̂ , was deemed to be significantly 

different from zero at any level when the CIs did not overlap zero.  

2b. Statistical significance for Prediction III, expressed as | 3̂ | - 2 *| 2̂ | > 0, was tested by estimating the confidence intervals 

(CIs) for the difference between coefficients using a similar procedure as in 2a. However, variance for the difference between 

coefficients | 3̂ | - 2 *| 2̂ | was calculated by applying another variance rule:  

Variance (a*X – b*Y) = (a^2) * Variance (X) + (b^2) * Variance (Y) – 2 * a * b * Covariance (X, Y) 

Standard error for | 3̂ | - 2 *| 2̂ |, and CIs at 90%, 95%, and 99% were estimated similarly as described in 2a above. And | 3̂ | - 

2 *| 2̂ | was deemed significantly different from zero when CIs did not overlap zero. 
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Appendix 3: Delta AICc and AICc weights for linear mixed effects models with and without latitude testing the effects of 

logging status and time on different estimates of turnover.  Acronyms same as in appendix 1b.  

3a. Based on dataset for all 91 species including compiled and interpolated data. 

 

Response variable 

Model without Latitude Model with Latitude  

∆AICc AICc weight ∆AICc AICc weight 

TSN 0.64 0.42 0 0.58 

TSCBRAY 0 0.73 1.94 0.27 

TSCBRAY.SES1 4.53 0.09 0 0.91 

TSCRAO 0 0.74 2.07 0.26 

TSCRAO.SES1 0 0.74 2.11 0.26 

T|∆CWM|WD 0 0.74 2.04 0.26 

T|∆CWM|WD.SES1 0.08 0.49 0 0.51 

T|∆CWM|WD.SES2 0 0.69 1.62 0.31 

T|∆CWM|HMAX 0 0.68 1.51 0.32 

T|∆CWM|HMAX.SES1 0 0.77 2.39 0.23 

T|∆CWM|HMAX.SES2 0 0.76 2.33 0.24 

T|∆CWM|DBHMAX 0 0.74 2.06 0.26 

T|∆CWM|DBHMAX.SES1 0 0.71 1.82 0.29 

T|∆CWM|DBHMAX.SES2 0 0.76 2.30 0.24 

TFCRAO 0 0.74 2.10 0.26 

TFCRAO.SES1 0 0.77 2.39 0.23 

TFCRAO.SES2 0 0.78 2.50 0.22 
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3b. Based on dataset for only 60 species that had field-measured functional trait data. 

 

Response variable 

Model without Latitude Model with Latitude  

∆AICc AICc weight ∆AICc AICc weight 

TSCRAO 0 0.76 2.28 0.24 

TSCRAO.SES1 0 0.75 2.19 0.25 

T|∆CWM|WD 0 0.69 1.6 0.31 

T|∆CWM|WD.SES1 0 0.51 0.06 0.49 

T|∆CWM|WD.SES2 0 0.77 2.37 0.23 

T|∆CWM|HMAX 0 0.65 1.27 0.35 

T|∆CWM|HMAX.SES1 0 0.76 2.28 0.24 

T|∆CWM|HMAX.SES2 0 0.77 2.42 0.23 

T|∆CWM|DBHMAX 0 0.74 2.14 0.26 

T|∆CWM|DBHMAX.SES1 0 0.65 1.25 0.35 

T|∆CWM|DBHMAX.SES2 0 0.69 1.57 0.31 

TFCRAO 0 0.71 1.84 0.29 

TFCRAO.SES1 0 0.75 2.22 0.25 

TFCRAO.SES2 0 0.79 2.63 0.21 
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Appendix 4a: Similar to table 1 in main text, but for 14 metrics based on dataset for only 60 species that had field-measured 

functional trait data. Values in bold indicate support for predictions. 

Turnover rate Metric Predictions 

  I 

1̂  > 0 

II 

2̂  + 3̂  < 0 

III 

3̂ ≠ 0 | 3 | - 2*| 2 | > 0 

Species composition TSCRAO 
#
 0.464 0.043* 0.01677 NA 

Species composition TSCRAO.SES1 -1.205 0.117** NA 0.094 

Functional trait T|∆CWM|WD -0.00021* 0.00008** 0.00007* NA 

Functional trait T|∆CWM|WD.SES1 -0.284** 0.023** NA 0.019 

Functional trait T|∆CWM|WD.SES2 -0.489 0.055 ̇ NA 0.046 

Functional trait T|∆CWM|HMAX 
§
 -0.025 0.006 0.004 NA 

Functional trait T|∆CWM|HMAX.SES1 -0.179* 0.012 ̇ 0.011 NA 

Functional trait T|∆CWM|HMAX.SES2 -0.474 0.025 NA 0.018 

Functional trait T|∆CWM|DBHMAX 
§
 0.074 -0.003 NA -0.006 

Functional trait T|∆CWM|DBHMAX.SES1 -0.059 0.002 NA 0.002 

Functional trait T|∆CWM|DBHMAX.SES2 -0.180 -0.011 -0.002 NA 

Functional trait TFCRAO
#
 0.521 0.053* 0.032 NA 

Functional trait TFCRAO.SES1 0.572 0.416* NA 0.383 

Functional trait TFCRAO.SES2 3.003 0.112* NA 0.096 
# 

Turnover rate natural-log transformed to normalize residuals 
§
 Turnover rate square root transformed to normalize residuals 

 

 

 

 



187 
 

 
 

Appendix 4b: Similar to Fig. 3 in main text, but showing only six metrics of turnover rates based on dataset for only 60 species 

that had field measured functional trait data. 
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Appendix 5. Results for mixed effect model analysis, testing for the fixed effects of logging, time, the interaction between 

logging and time, and latitude. Acronyms as in Appendix 1b. For each response variable, there are two models, one with 

latitude and the other without latitude. Appendix 4 above gives more details on comparisons of models with and without 

latitude. Estimates in bold have a P-value  0.05.  

5a. Based on dataset for all 91 species including compiled and interpolated data. 

Model Unlogged P-value Logged P-value Time P-value Logging 

status: Time 

P-value Latitude P-value 

TSN  0.0175 0.0000 0.0068 0.0439 0.0006 0.0008 -0.0006 0.0740   

TSN_LAT 0.1703 0.0577 0.0125 0.0110 0.0006 0.0009 -0.0006 0.0759 -0.2744 0.0946 

TSCBRAY 0.0122 0.0000 0.0052 0.0573 0.0004 0.0006 0.0000 0.9731   

TSCBRAY_LAT 0.0689 0.4208 0.0073 0.0877 0.0004 0.0006 0.0000 0.9733 -0.1018 0.5110 

TSCBRAY.SES1 -0.2000 0.5165 -0.4053 0.4437 0.0256 0.4713 0.1068 0.0807   

TSCBRAY.SES1_LAT -33.9588 0.0104 -1.6697 0.0260 0.0256 0.4513 0.1068 0.0682 60.6070 0.0144 

TSCRAO
# 

-2.3104 0.0000 0.7048 0.0657 0.0274 0.0781 0.0033 0.8985   

TSCRAO_LAT
# 

4.3234 0.6566 0.9532 0.0768 0.0274 0.0804 0.0033 0.8993 -11.9097 0.4992 

TSCRAO.SES1 0.1717 0.5765 -0.5749 0.2791 -0.0171 0.6303 0.1208 0.0498   

TSCRAO.SES1_LAT -7.3153 0.5914 -0.8553 0.2535 -0.0171 0.6311 0.1208 0.0503 13.4414 0.5856 

T|∆CWM|WD 0.0008 0.0004 0.0003 0.4579 0.0000 0.6450 0.0000 0.9591   

T|∆CWM|WD_LAT -0.0054 0.6053 0.0000 0.9586 0.0000 0.6472 0.0000 0.9593 0.0110 0.5584 

T|∆CWM|WD.SES1 -1.1933 0.0000 -0.2485 0.0042 -0.0049 0.4621 0.0204 0.0723   

T|∆CWM|WD.SES1_LAT -5.0619 0.0394 -0.3934 0.0033 -0.0049 0.4475 0.0204 0.0636 6.9452 0.1195 

T|∆CWM|WD.SES2 0.0524 0.8000 -0.2903 0.4145 -0.0139 0.5561 0.0192 0.6309   

T|∆CWM|WD.SES2_LAT -8.2449 0.3525 -0.6011 0.2287 -0.0139 0.5547 0.0192 0.6296 14.8960 0.3546 

T|∆CWM|HMAX
§ 

0.2715 0.0000 0.0781 0.2170 0.0041 0.2936 -0.0067 0.3149   

T|∆CWM|HMAX_LAT
§ 

1.4113 0.2250 0.1208 0.1241 0.0041 0.2971 -0.0067 0.3184 -2.0461 0.3312 

 T|∆CWM|HMAX.SES1 -1.1668 0.0000 -0.0963 0.2069 0.0026 0.5947 0.0027 0.7467   

 T|∆CWM|HMAX.SES1_LAT -1.4735 0.4265 -0.1078 0.2997 0.0026 0.5971 0.0027 0.7483 0.5505 0.8689 

 T|∆CWM|HMAX.SES2 0.3192 0.1639 0.1488 0.7019 0.0103 0.6853 -0.0419 0.3328   

T|∆CWM|HMAX.SES2_LAT 3.0052 0.7553 0.2494 0.6411 0.0103 0.6871 -0.0419 0.3356 -4.8221 0.7819 

T|∆CWM|DBHMAX
§ 

0.5537 0.0000 0.2420 0.1486 0.0088 0.3259 -0.0224 0.1412   
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Model Unlogged P-value Logged P-value Time P-value Logging 

status: Time 

P-value Latitude P-value 

T|∆CWM|DBHMAX _LAT
§ 

2.2400 0.3990 0.3052 0.1241 0.0088 0.3292 -0.0224 0.1439 -3.0276 0.5279 

T|∆CWM|DBHMAX.SES1 -1.1672 0.0000 -0.0148 0.8165 -0.0001 0.9798 -0.0004 0.9529   

T|∆CWM|DBHMAX.SES1_LAT -2.3299 0.1411 -0.0584 0.5049 -0.0001 0.9799 -0.0004 0.9531 2.0874 0.4630 

T|∆CWM|DBHMAX.SES2 -0.0049 0.9851 0.1732 0.7010 -0.0101 0.6714 -0.0291 0.4748   

T|∆CWM|DBHMAX.SES2_LAT -3.2492 0.6741 0.0517 0.9235 -0.0101 0.6732 -0.0291 0.4772 5.8244 0.6765 

TFCRAO
# 

-5.1495 0.0000 1.0863 0.0101 0.0223 0.2138 -0.0170 0.5742   

TFCRAO_LAT
# 

-12.1023 0.3448 0.8259 0.1922 0.0223 0.2169 -0.0170 0.5768 12.4822 0.5890 

TFCRAO.SES1 0.3991 0.6681 1.5261 0.3415 -0.0338 0.8477 0.4599 0.1284   

TFCRAO.SES1_LAT -4.9097 0.9001 1.3273 0.5426 -0.0338 0.8489 0.4599 0.1314 9.5308 0.8926 

TFCRAO.SES2 0.2845 0.8613 3.9714 0.1620 -0.0154 0.7785 0.1058 0.2569   

TFCRAO.SES2_LAT -16.4092 0.7598 3.3462 0.3350 -0.0154 0.7801 0.1058 0.2603 29.9701 0.7572 
# 

Natural-log transformed to normalize residuals 
§
 Square root transformed to normalize residuals 
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5b. Based on dataset for only 60 species that had functional trait data. 

Model Unlogged P-value Logged P-value Time P-value Logging 

status: Time 

P-value Latitude P-value 

TSCRAO
# -2.3421 0.0000 0.4635 0.1536 0.0260 0.0797 0.0168 0.4997   

TSCRAO_LAT
# 2.3917 0.7919 0.6408 0.1782 0.0260 0.0818 0.0168 0.5027 -8.4986 0.6045 

TSCRAO.SES1 0.1396 0.6136 -1.2055 0.0163 -0.0225 0.5085 0.1395 0.0189   

TSCRAO.SES1_LAT -6.1748 0.6373 -1.4420 0.0449 -0.0225 0.5087 11.3362 0.6321 0.1395 0.0189 

T|∆CWM|WD 0.0007 0.0000 -0.0002 0.4069 0.0000 0.5653 0.0001 0.0501   

T|∆CWM|WD_LAT 0.0076 0.3210 0.0001 0.8923 0.0000 0.5705 0.0001 0.0531 -0.0124 0.3747 

T|∆CWM|WD.SES1 -1.1963 0.0000 -0.2841 0.0018 -0.0040 0.5410 0.0267 0.0196   

T|∆CWM|WD.SES1_LAT -5.0164 0.0429 -0.4272 0.0020 -0.0040 0.5286 0.0267 0.0163 6.8583 0.1272 

T|∆CWM|WD.SES2 -0.0199 0.9161 -0.4886 0.1385 -0.0091 0.6928 0.0643 0.1036   

T|∆CWM|WD.SES2_LAT 1.9693 0.8251 -0.4141 0.3779 -0.0091 0.6954 0.0643 0.1067 -3.5712 0.8244 

T|∆CWM|HMAX
§ 0.2808 0.0000 -0.0251 0.5854 0.0025 0.4082 0.0036 0.4767   

T|∆CWM|HMAX_LAT
§ 1.4388 0.2017 0.0183 0.7686 0.0025 0.4080 0.0036 0.4764 -2.0791 0.3084 

T|∆CWM|HMAX.SES1 -1.1510 0.0000 -0.1795 0.0279 0.0007 0.8961 0.0111 0.1958   

T|∆CWM|HMAX.SES1_LAT -1.8185 0.3416 -0.2045 0.0633 0.0007 0.8967 0.0111 0.1984 1.1984 0.7276 

T|∆CWM|HMAX.SES2 0.2745 0.2328 -0.4738 0.2320 -0.0079 0.7539 0.0334 0.4384   

T|∆CWM|HMAX.SES2_LAT 0.2948 0.9755 -0.4730 0.3799 -0.0079 0.7555 0.0334 0.4415 -0.0364 0.9983 

T|∆CWM|DBHMAX
§ 0.5562 0.0000 0.0738 0.5963 0.0084 0.2640 -0.0110 0.3860   

T|∆CWM|DBHMAX _LAT
§ -1.1824 0.6679 0.0087 0.9599 0.0084 0.2673 -0.0110 0.3892 3.1214 0.5318 

T|∆CWM|DBHMAX.SES1 -1.1663 0.0000 -0.0598 0.3709 -0.0001 0.9757 0.0025 0.7159   

T|∆CWM|DBHMAX.SES1_LAT -2.9989 0.0897 -0.1284 0.1763 -0.0001 0.9758 0.0025 0.7177 3.2901 0.3011 

T|∆CWM|DBHMAX.SES2 -0.0329 0.8932 -0.1801 0.6675 -0.0093 0.6644 -0.0021 0.9531   

T|∆CWM|DBHMAX.SES2_LAT -7.7259 0.3374 -0.4682 0.3669 -0.0093 0.6665 -0.0021 0.9534 13.8112 0.3446 

TFCRAO
# -5.0997 0.0000 0.5207 0.1630 0.0213 0.2046 0.0318 0.2661   

TFCRAO_LAT
# -13.7884 0.2447 0.1953 0.7343 0.0213 0.2077 0.0318 0.2693 15.5988 0.4656 

TFCRAO.SES1 0.5405 0.5721 0.5720 0.7264 -0.0334 0.8093 0.4497 0.0602   

TFCRAO.SES1_LAT 7.8330 0.8587 0.8451 0.7186 -0.0334 0.8100 0.4497 0.0612 -13.0921 0.8691 

TFCRAO.SES2 0.0326 0.9824 3.0031 0.2408 -0.0165 0.6298 0.1287 0.0305   



191 
 

 
 

Model Unlogged P-value Logged P-value Time P-value Logging 

status: Time 

P-value Latitude P-value 

TFCRAO.SES2_LAT -5.4035 0.9299 2.7995 0.4179 -0.0165 0.6326 0.1287 0.0318 9.7594 0.9299 

  

# 
Natural-log transformed to normalize residuals 

§
 Square root transformed to normalize residuals 
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