The Synthesis of Deuterated Isohumulones for Use as Internal Standards in LC-MS Stable Isotope Dilution Assays

Patrick Gleason
pmgytc@umsystem.edu

Bruce Hamper Dr.
University of Missouri - St. Louis

Follow this and additional works at: https://irl.umsl.edu/urs

Recommended Citation
Gleason, Patrick and Hamper, Bruce Dr., "The Synthesis of Deuterated Isohumulones for Use as Internal Standards in LC-MS Stable Isotope Dilution Assays" (2022). Undergraduate Research Symposium. 103. Available at: https://irl.umsl.edu/urs/103
The Synthesis of Deuterated Isohumulones for Use as Internal Standards in LC-MS Stable Isotope Dilution Assays

Patrick M. Gleason, Bruce C. Hamper
University of Missouri, Department of Chemistry & Biochemistry, St. Louis, MO, 63121, USA

Introduction
Humulones are compounds that are prevalent in the hop flowers (Humulus Lupulus) used in beer brewing. These compounds undergo isomerization during the brewing process, and the resulting isohumulones are considered to be the primary contributors to the bitter flavors present in beer. As such, quantifying their presence, and the relative presence of their homologs (n-α-, ad-α-, and β-α-) is of great importance in the characterization of beer. In this effort, one of the homologs of humulone (co) was isolated before being subsequently isomerized and deuterated for the purpose of analyzing beer by stable isotope dilution assay mass spectrometry (SIDA-MS). The addition of this stable isotopically substituted isohumulone as an internal standard can potentially allow the comparative quantification of humulones, isohumulones, and oxidized humulinones present in a beer sample.

Methods
• Cohumulone was initially separated from a mixture of α-acids (present as a PDA salt) using C18 reverse-phase chromatography.
• Isomerization of cohumulone was carried out by acyloin rearrangement in the presence of NaOD in deuterated solvent using MgSO4 as a catalyst.
• NMR analysis was performed on the cohumulone and isochohumulone samples using a Bruker Avance 300 MHz Spectrometer (1H, 13C), while 2D NMR was carried out using a Bruker Avance 700 MHz spectrometer.
• The cis-trans isomers were separated through crystallization with β-cyclohextrin, and separation was confirmed using an Agilent 1200 Infinity Series HPLC.

Results

Figure 3. The chromatogram for the separation of cohumulone from PDA salt mixture of α-acids.

Table 1. The assignments of the 2-D NMR resonances to structure of coisochohumulone.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>1H NMR Chemical Shift (ppm)</th>
<th>13C Correlation (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.16</td>
<td>17</td>
</tr>
<tr>
<td>2, 3</td>
<td>3.70</td>
<td>10.35</td>
</tr>
<tr>
<td>4</td>
<td>3.89</td>
<td>18.1</td>
</tr>
<tr>
<td>5</td>
<td>3.70</td>
<td>28.0</td>
</tr>
<tr>
<td>6</td>
<td>5.00</td>
<td>33.0</td>
</tr>
<tr>
<td>7</td>
<td>5.30</td>
<td>164.9</td>
</tr>
</tbody>
</table>

Conclusion
• Selective purification of different homologs as source material for the deuterated standard may be achieved with higher degree of purity.
• The process employed for deuteration and isomerization may be successfully carried out with a high yield.
• Separation of cis-trans isomers may be done with a high degree of purity.

Future Work
• Analyze deuterated species by 2-D NMR to determine exact placement of deuterium in compound.
• Develop response factors and calibration curves for the [3,3H]coisochohumulone.
• Assessing the standard using beer as the matrix.

References
2. B. Hamper, N. Viriyasiri, A. Boland. Comparison of Hop Derived Humulone Constituents in Beer Using UV-VIS, HPLC, and LC-MS, Undergraduate Research Symposium, University of Missouri-St. Louis, St. Louis, MO, 2019.