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ABSTRACT

This dissertation studies strategic capacity planning and resource acquisition de-

cisions, including the facility location problem and the technology choice problem.

These decisions are modeled in an integrative manner, and the main purpose of the

proposed models and numerical experiments is to examine the effects of economies of

scale, economies of scope, and the combined effects of scale and scope under uncertain

demand realizations using robust optimization. The type of capacities, or technology

alternatives, that a firm can acquire can be classified on two basic dimensions. The

first dimension relates to the effects of scale via distinction between labor-intensive

(less automated) technologies and capital-intensive (more automated) technologies.

The second dimension relates to the effects of scope via distinction between product-

dedicated and flexible technologies. Moreover, each of the product-dedicated and

flexible technologies can have different levels of labor or capital-intensiveness, leading

to the joint effects of economies of scale and economies of scope. Each of the technol-

ogy alternatives possesses certain cost structures. Labor-intensive technologies are

characterized by low fixed costs and high variable costs, whereas capital-intensive

technologies are characterized by just the opposite cost structure, i.e., high fixed

costs and low variable costs. Flexible technologies cost more than product-dedicated

technologies, both in terms of fixed and variable costs. Robust optimization method-

ology is used to investigate how different levels of robustness, and facility and tech-

nology costs affect the quantities, types and allocation of technologies to facilities.

Results show that specific technology choice patterns emerge depending on various

cost structures and different levels of model robustness specified to accommodate

uncertain demand realizations. The results obtained by the two-stage robust opti-

mization approach are compared to the results obtained by a non-robust approach

and a stochastic programming approach.
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Chapter 1

Introduction

1.1 Research Motivation

According to popular managerial publications, many industries such as automo-

tive, steel, and semiconductor, suffer from chronic or cyclical overcapacity that threat-

ens the profitability and even the survival of companies in these sectors. The reasons

for this overcapacity are complex, industry-specific, and related to overall global eco-

nomic trends. Yet what is common in all industries is that the capacity levels are

determined based on future demand forecasts, which are inherently uncertain. The

main motivating factor for our research is to provide insights and approaches to deal

with uncertain market conditions when making high-level, or strategic, infrastructure

investments.

Capacity investment decisions, as strategic level decisions, are characterized not

only by their long-term impact, high fixed costs, and irreversible consequences, but

also by their relatively high reliance on qualitative judgement-based approaches, as

opposed to data-driven approaches. Data-driven approaches for capacity investment

decisions are well suited for operational or tactical level decisions that can be modeled

using traditional stochastic programming methodology. Therefore, we believe, the
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application of robust optimization, which requires little distributional information, is

an appropriate tool for capacity planning and resource acquisition decisions. In this

case, the chosen methodology fits the subject matter – reliable quantitative results

can be obtained based on scarce historical data or very limited knowledge about

the potential future realizations of demand. Demand uncertainty is probably the

most recognized, but not the only source of uncertainty; for example, other sources

of uncertainty include supplier reliability, costs, productivity, and many others. We

intend to develop an approach that can be extended to address the uncertainty in

these other parameters. It can be noted that the uncertain parameters can be grouped

into three categories depending on their place in optimization models, i.e., they can

be either uncertain objective function vectors, uncertain right hand side vectors, or

uncertain left hand side matrices.

Optimization in a stochastic environment presents three challenges: first, the limi-

tations of computational capabilities in solving real-world large size problems, second,

the limited availability of efficient algorithms and solution procedures, and third, the

appropriateness of applying a particular approach in capturing the randomness of

data. While the first two of these issues are being addressed by the rapid advances

in information technology and operations research, the third issue to a large extent

depends on our understanding of uncertainty, which is one of the fundamental epis-

temological questions in general. Thus, it is our objective to contribute to the field

of robust optimization, which has the potential for both providing computationally

tractable problem formulations and incorporating random data with limited informa-

tion about the nature of uncertainty. Also, the direction of our work is consistent

with the increase in the number of research publications that explicitly incorporate

stochastic features in model formulations. We believe that our modeling approach has

a prototypic value and that it could be adapted to a variety of industry applications.

For example, although we specifically address demand uncertainty (“downstream ran-
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domness”), one could easily adopt this approach to supply uncertainty (“upstream

randomness”).

1.2 Research Questions

The unifying theme of this work is the issue of how a firm can position its strategic

resources considering the trade-off between capacity shortage and capacity excess un-

der uncertain demand conditions. However, the quantitative assessment of exogenous

demand uncertainty is not sufficient to establish the appropriate levels of capacity.

A firm must also decide to what extent it is willing to satisfy excessive demand real-

izations, i.e., how robust a firm’s overall capacity should be to accommodate demand

randomness. This dissertation provides answers to the following key questions:

1. How do different levels of robustness, facility, and technology costs affect the

quantities, types and allocation of technologies to facilities using robust opti-

mization?

2. How do robust optimization solutions differ from non-robust solutions, with

respect to the quantities, types and allocation of technologies to facilities for

varying levels of robustness?

3. How do robust optimization solutions differ from stochastic programming solu-

tions, with respect to total costs and quantities, types and allocation of tech-

nologies to facilities for varying levels of robustness.

All three questions are addressed by using two versions of the facility location, ca-

pacity acquisition, and technology choice model. The first version, the single product

model is a step towards a more general model, the multi-product model. While the

main purpose of the single product model is to examine the effects of economies of

scale, the main purpose of the multi-product model is to examine the combined effects
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of economies of scale and economies of scope.

1.3 Contributions

Our implementation of the integrated facility location, capacity acquisition, and

technology choice model in a two-stage robust optimization setting builds upon a

solid and extensive theoretical foundation that encompasses a rather broad range of

research areas. However, despite the variety of concepts utilized in our work, we have

maintained a clear focus and a distinct unifying theme throughout this research. A

firm, to be able to fully satisfy customer requirements and maintain or increase its

competitiveness, must wisely acquire means of production that include various re-

sources and capacities. These acquisition decisions include spatial aspects as well as

temporal aspects, which means that a firm must decide where to locate these pro-

duction capacities by taking into account the time lag between capacity investment

decisions (“here-and-now” decisions) and demand realizations (“wait-and-see” deci-

sions). We offer a novel view on the capacity planning process with the consideration

of these spatial and temporal aspects using the two-stage robust optimization method-

ology. In particular, we contribute to the literature on strategic capacity planning

and resource acquisition decisions as follows.

We propose a framework according to which a firm must find an optimal mix of

dedicated vs. flexible (capable of producing multiple product types) technologies on

one hand, and labor-intensive vs. capital-intensive technologies on the other hand.

For convenience we will refer to a technology with low fixed and high variable costs

as a “labor-intensive” one, whereas we refer to a technology with high fixed and

low variable costs as a “capital-intensive” one. In this case, “labor-intensive” does

not mean a manual low-productivity type of activity, it just means that this type of

technology (or process) possesses this particular cost structure. We show that there
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exist specific relationships between these four types of capacities (labor-intensive and

capital-intensive, and dedicated and flexible) that form the basis for the scale effects,

scope effects, and the joint scale and scope effects under uncertain demand condi-

tions. We also show that with the increase of uncertainty (or increase in robustness

level, using robust optimization terminology), these four technology types exhibit

characteristic trends.

Within the context of our robust models, we contribute to the understanding

of capacity optimization as a trade-off between the requirement for acquiring larger

amounts of capacity to increase the chances of meeting demand vs. additional cost for

unused capacity. The level of robustness in this setting means a weight assigned by

the decision-maker who determines an appropriate balance between the probability

that the model remains feasible under uncertain demand realizations by acquiring

larger amounts of capacity, and the degree of deterioration in the objective value

(“price of robustness”) associated with his additional capacity. We emphasize the

distinction between the largest (in unit terms) demand realizations vs. the costli-

est demand realizations. The robust optimization model ensures (within a specified

“budget of robustness”) that the solution remains feasible under uncertain demand

realizations in unit terms, and that the solution does not become suboptimal un-

der uncertain demand realizations in cost terms. This two-sided requirement leads

to a bilinear robust model formulation. We illustrate the bilinear nature of the ro-

bust recourse subproblem, and address the computational challenges of these types

of bilinear problems.

We compare the solutions obtained using the robust optimization methodology

to those obtained using a non-robust approach as well as to those obtained using

traditional stochastic programming. We argue that in order to compare robust opti-

mization to stochastic programming some implicit assumptions are required to make

the comparison of the “worst-case” approach of robust optimization and the “average”
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approach of stochastic programming possible. More specifically, we are interested in

comparing the performance of the first stage solutions, as these first stage decisions

(facility locations, capacity amounts, and technology types) constitute the prime focus

of our research.

1.4 Scope of Research

In Chapter 6 some of the future research directions are discussed. Here, however,

some comments are provided to delineate the scope of this dissertation. In the op-

erations management literature the concept of capacity is very broad and includes

several distinct sub-fields related to different contexts in which the terms capacity

and resources are used. In our work, capacity is understood as strategic capacity

that includes the major infrastructure components of a firm, such as plant facilities,

production lines, capital equipment, etc., that determine a certain level of potential

aggregate output to satisfy market demand. We have chosen to implement our models

as static (one period) as opposed to dynamic (multi-period) ones. This choice is sup-

ported by the background literature presented in Chapter 2 and can be explained by

the strategic nature of the problem and by computational considerations. We make

an assumption that strategic capacity investments are typically done in large chunks

over a long time horizon, and not in small increments over multiple “time buckets.”

Also, as noted in the literature, the multi-period models in a stochastic setting are

much more computationally demanding compared to single period models, yet pro-

vide relatively little additional insights. In this work it is assumed that only the

market demands are random, all other parameters have deterministic values. Like-

wise, only capacity investment costs have a concave non-decreasing cost structure; the

production and transportation costs are assumed to be linear in the amount produced

and the shipping distance. All of the above mentioned restrictions are recognized by
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taking into account the trade-off between maximum potential insight gained and the

computational burden. Finally, while recognizing that outsourcing is an important

consideration when making capacity decisions, these considerations are beyond the

scope of this work; here it is assumed that all capacity is acquired by a firm.

1.5 Organization of the Dissertation

The reminder of this dissertation is structured as follows. In Chapter 2 we present

a review of the literature that includes both background on the subject matter as well

as on methodological approaches for dealing with uncertainty, including robust op-

timization. We establish the foundation for our research by analyzing the relevant

issues in the capacity planning and resource acquisition literature, and identify the

opportunities for combining an integrative perspective with a stochastic environment.

In Chapter 3 the deterministic (or nominal) models are presented, including the sin-

gle product version and the multi-product version. This distinction between single

product and multi-product settings is maintained throughout this work as this dis-

tinction allows study of the effects of economies of scale and the economies of scope

under uncertain demand conditions. Chapter 4 is dedicated to a detailed presentation

of robust optimization methodology, including reformulation of the nominal models,

and solution algorithm for the two-stage robust counterpart problem. In Chapter 5

extensive numerical studies are presented, including the comparative analysis of ro-

bust optimization and stochastic programming based results. Finally, in Chapter 6

we present conclusions and discuss areas of future research. In addition, complete

sets of experimental outputs are included in the Appendix.
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Chapter 2

Review of the Relevant Literature

The review of literature is structured taking into consideration the various aspects

of capacity acquisition as a strategic level decision. First, we discuss the character-

istics of strategic level decisions, and distinguish them from tactical and operational

level decisions, Second, we review capacity acquisition issues in conjunction with two

other common strategic level decisions, namely facility location and technology choice

decisions, and emphasize the integrative nature of these. Finally, we address decision

making in a stochastic environment in general, as well as in the context of production

and distribution network design, and supply chain management. The unifying theme,

thus, for the review of relevant literature is the integration of strategic level decisions,

including capacity acquisition, in a setting characterized by uncertain parameter re-

alizations.

2.1 Strategic Decision Level

The distinction between the strategic, tactical and operational decision-making

levels is widely recognized in the logistics and operations management literature, al-

though the specific contents of these levels as well as the basis of classification may

differ among researchers. A comprehensive classification and analysis of the three

8



decision levels, along with a literature review, is provided in Schmidt and Wilhelm

(2000) [48]. According to [48], the strategic level decisions are concerned with pre-

scribing facility locations, production technologies and plant capacities, whereas the

tactical level decisions are concerned with the material flow management policy, in-

cluding production levels at all plants, assembly policy, inventory levels and lot sizes.

The operational level decisions include schedule coordination and customer service

objectives. Higher decision levels establish the constraints for lower decision levels,

and each decision level “addresses a particular time frame.” In Schmidt and Wilhelm

(2000), the modeling issues are discussed, and prototypic formulations are presented

for each of the decision levels. In Santoso et al. (2005) [47], a strategic level supply

chain network design problem is presented, where the strategic components include

the number, location, capacity, and technology of the facilities. The tactical level

planning, according to [47], includes deciding the aggregate quantities and material

flows for purchasing, processing, and distribution of products, and the efficiency of

the tactical operations relies heavily on the supply chain configuration at the strategic

level. The importance of strategic level decisions are characterized by their long-term

impact and substantial capital requirements (Baron et al., 2011 [4]). In addition,

strategic decisions, such as capital investment, are usually deemed irreversible (Van

Mieghem, 2003 [53]).

Martinez-Costa et al. (2014) [40] provide a literature survey along with a con-

ceptual framework for strategic capacity planning in manufacturing, and explain the

essential difference between strategic and tactical decision levels. In their opinion, this

difference should not be primarily based on the time horizon, as sometimes suggested

in the literature, but on the consideration of assets that are the object of decisions.

Tactical decisions, according to Martinez-Costa et al. (2014), involve production and

inventory decisions, i.e., what is usually referred to as aggregate planning, and can

include the modification of workforce size or work hours, but not the decisions that
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involve facilities or equipment. The other factor that potentially diminishes the im-

portance of the temporal factors in the classification of decision levels is the pace of

changes in technology and demand in various industries; for example, in the semicon-

ductor industry the time horizon for strategic decisions may be less than a year.

Another aspect of the strategic decisions (especially from a modeling perspective),

in addition to their long-term impact, high capital expenditures, and irreversibility,

is the level of uncertainty about the future states of the world. Snyder (2006) [50],

for example, make a distinction between the strategic phase and the tactical phase

based on the two-stage nature of decision-making under uncertainty. In the two-stage

framework, a common approach to modeling decision-making in stochastic environ-

ments, the strategic phase involves making capital investments under uncertainty,

whereas the tactical phase involves actions after the uncertainty is resolved. In tacti-

cal (and operational) level models, it is assumed that the strategic level decisions are

fixed (see, for example, [4], [48]).

2.2 Capacity Planning Issues

Capacity planning encompasses several distinct fields of study, including capac-

ity expansion, plant location, technology management, new product development,

production or aggregate planning, inventory and supply chain management (Van

Mieghem, 2003 [53]). Van Mieghem defines capacity as follows:

Capacity is a measure of processing abilities and limitations that stem from the

scarcity of various processing resources and is represented as a vector of stocks

of various processing resources. . . . While capacity refers to stocks of various

resources, investment refers to the change of that stock over time. Investment

thus involves the monetary flow . . . .
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Martinez-Costa et al. (2014) [40] write that capacity is not the total volume of

output in a given period, as sometimes understood, but, because the production

output depends on a product mix, what defines capacity is not generally the volume

of outputs that the system can generate in a given time, but the availability of various

types of productive resources. In Martinez-Costa et al. the terms resource and

capacity type have the same meaning and can refer to, for example, a machine, a

process, or an assembly line.

Many of the dynamic (multi-period) capacity planning, or capacity expansion is-

sues and problems are discussed and analyzed in the seminal work by Luss (1982) [38].

According to Luss (1982), capacity expansion planning consists primarily of deter-

mining future expansion times, sizes, and locations, as well as the types of production

facilities. Single period (static) capacity planning is not addressed in [38] – the major

reasons for the exclusion of the static models from this capacity planning survey is

the author’s view that they do not adequately capture the issues of economies of scale

and the time value of money. Furthermore, Luss states that comparing facility loca-

tion problems to capacity expansion problems, it appears that most of the location

literature is devoted to static problems. Regardless of the appropriateness of static

vs. dynamic approaches for a specific research goal, Luss (1982) identifies several im-

portant research questions related to capacity planning in general. The capacity size

decisions are by necessity linked with the facility location decisions, as the transporta-

tion costs of the products to the demand locations can not be neglected, and thus

the location issue becomes an important part of the capacity planning process. Luss

(1982) also recognizes that capacities of different types, i.e., different technologies,

represent alternative cost structures, and can greatly influence the optimal invest-

ment policies. Capacity expansion costs are usually concave, exhibiting economies of

scale. The most popular capacity cost functions are either the power cost function,

or the fixed charge cost function.
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Most of the literature that deals with capacity planning or capacity acquisition

clearly identifies this problem as a dynamic one, in line with the earlier works analyzed

in Luss (1982) [38]. Verter and Dincer (1992) [56] state that the capacity expansion

problem can be formulated over either an infinite time period, or a discrete period

finite time horizon, and provide a summary of sub-categories of problems within the

capacity expansion problem, listing the following: planning horizon and discount rate,

the set of feasible expansion sizes, demand pattern, capacity acquisition costs and

other cost factors, number of facilities, and number of products involved. They also

note that, with some exceptions, the capacity expansion models are one-directional,

i.e., they do not allow for capacity contractions. Li and Tirupati (1994) [34] offer a

heuristic algorithm for a dynamic capacity expansion problem. The problem formula-

tion is similar to the ones presented in previous works, but with some generalizations

with regards to demand patterns and cost functions, and a special focus on the multi-

product aspect of the problem. Aghezzaf (2005) [1] also considers a multi-period

capacity planning environment, but with some extensions compared to the previous

literature. He considers the plant capacity planning decisions and warehouse location

decisions as some of the most important strategic decisions a firm can make, and

offers a model formulation where these two problems are solved jointly. In Aghez-

zaf’s model the traditional capacity expansion model is embedded into a two-echelon

supply chain model, with a warehouse stage between plants and customer markets.

Olhager et al. (2001) [45] provide a conceptual model that combines two perspec-

tives in manufacturing strategy: a perspective that deals with long-term decisions

involving capacity levels, facilities, production processes, and vertical integration,

and a second perspective the deals with such decisions as sales and operations plan-

ning (S&OP). The aggregate capacity levels are based on long term sales forecasts;

however, capacity typically can be added (or reduced) only in large discrete steps, ne-

cessitating a firm to select an appropriate manufacturing strategy that includes either

12



lag, lead, or tracking options. From the S&OP perspective there are three options

– level, chase, and mix. Thus, while the focus from the strategic perspective is on

the timing of capacity changes, the focus from the S&OP perspective is the rate of

production relative to sales. According to the Olhager et al. (2001) conceptual frame-

work, while the lead capacity strategy is compatible with the chase S&OP approach,

allowing for resource availability and flexibility, the lag capacity strategy is compat-

ible with the level S&OP approach, allowing for maximum resource utilization. The

combination of lead capacity strategy with the level S&OP is neither conflicting, nor

supportive; however, the combination of lag capacity strategy with the chase S&OP

can lead to negative consequences.

Van Mieghem (2003) [53] describes general capacity investment issues, as well as

the optimal capacity investment policies for three settings: stationary, dynamic, and

risk-averse. In optimization models, capacity is often the upper bounds on some pro-

cessing resources. The tactical level models assume the capacity to be fixed, and the

outcomes of these models depend, in part, on the amount of available capacity. In

a stochastic setting, i.e., in recourse problems, the capacity investment decisions can

be based on the newsvendor principle, where capacity shortages or excesses can be

dealt with by tactical countermeasures. Another important capacity planning issue,

according to Van Miegham is the nature of “capacity adjustment costs.” Typically,

the changes in capacity levels are not gradual or incremental – investments in capacity

are usually “lumpy” because of either indivisibility of capital assets, non-linear ca-

pacity investment costs (i.e., economies of scale), or the fact that capacity investment

decisions are often irreversible. Van Mieghem suggests that many capacity models

simply ignore tactical flows, and discusses the appropriateness of such an approach,

citing the need to strike a balance between complexity and realism. The justification

for the separation of strategic capacity decisions and tactical decisions can be based

on the “time-scale separation”, which means that capacity changes are infrequent
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relative to tactical decisions, and therefore in tactical flow models the capacity levels

are taken as fixed.

Even though the capacity planning literature is dominated by multi-period models,

some authors argue that in some instances the capacity investment decisions can be

reduced to single period models. Van Mieghem (2003) discusses the theoretical results

that indicate that under independent and identically distributed random variable

structure, stationary environment, and independent periods, a multi-period capacity

planning problem can be reduced to a single period one. The author suggests that

while being reformulated as static, these models, while losing their time dimension,

become less complex and are able therefore to include more details regarding the

problem specifics, and better express the nature of uncertainty.

Ahmed and Garcia (2003) [2] specifically consider a two stage stochastic capac-

ity planning model, and argue that although the model considers multiple discrete

periods over a long time horizon, the capacity expansion decisions are strategic in

nature and should be made at the beginning of the planning period in stage one.

The operational, or recourse, decisions can be made when more information becomes

available. Ahmed and Garcia (2003) state that the multi-period (two-stage) capacity

decisions could be in principle converted into a multi-stage stochastic integer program;

however, at a disadvantage of becoming computationally almost impossible to solve.

Moreover, they argue that the two-stage approach is a good enough approximation of

the multi-stage problem. Santoso et al. (2005) [47] present a single period two-stage

stochastic supply chain model, and discuss the computational challenges associated

with modeling the joint realization of uncertainties even for a relatively small problem

instance.
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2.3 Capacity Acquisition and Other Strategic Level

Decisions

Although strategic capacity decisions are typically made in conjunction with sev-

eral other major decisions, two of them – facility location and technology choice – have

received more consideration in the literature on strategic capacity planning in com-

parison to other related decisions. For example, Vidal and Goetschalckx (1997) [58]

mention supplier selection and transportation mode choice as additional strategic de-

cisions within the scope of a firm’s global supply chain design, while the decisions

concerning location, capacity, and type of manufacturing plants are placed on the

top on the list of strategic decisions. Similarly, Verter and Dincer (1992) [56] include

product mix, time-phasing of investments, and financial planning as the components

of overall manufacturing strategy, yet location, capacity, and technology decisions are

of paramount importance within the context of developing effective global manufac-

turing strategies.

2.3.1 Facility Location

Facility location problems have been extensively studied in the literature, and

there exist various typologies for these problems that depend on the underlying mod-

eling assumptions, solution approaches, and other factors. The most notable distinc-

tion is between the continuous and discrete models. The continuous facility location

models are less utilized in practice. However, they can offer intuitive and insightful

solutions, compared to solutions obtained by means of discrete mathematical progam-

ming models. The latter are good at incorporating many details and specifics, but,

according to Dasci and Laporte (2005) [18] fail to explain why an optimal solution is

what it is. Regardless of the relative scarcity of continuous location models, they can

be particularly useful in addressing strategic level problems. For example, Dasci and
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Verter (2001) [19], in addition to the fixed facility and transportation costs, include

capacity acquisition and operating costs (fixed and variable, linear as well as non-

linear) that incorporate the effects of scale economies. Dasci and Laporte (2005) [18]

extend the traditional market area model by assuming that the demand is uncertain,

and show that the optimal solution depends not only on the trade-off between the

fixed facility and transportation costs, but also on the ratio of unit variable capacity

costs to unit shortage costs, taking into account probability distribution.

The body of literature devoted to discrete facility location problems is very exten-

sive. Owen and Daskin (1998) [46] review facility location problems that explicitly ad-

dress the strategic nature of the problem, by considering either dynamic, or stochastic

characteristics, as opposed to the static and deterministic models. According to [46],

facility location is a critical aspect of strategic planning, and the extension of facility

location models to dynamic or stochastic settings can better capture the real-world

complexities and uncertainties. Thus, the incorporation of temporal and stochastic

aspects proactively make the models more reliable, as opposed to the analyses of

solution sensitivity in a reactive manner.

Klose and Drexl (2005) [33] view facility location problems as a core component

of a firm’s distribution system design, itself being a strategic issue. Klose and Drexl

provide a classification of facility location models that range from simple determin-

istic single-period, single-product models to non-linear and probabilistic models, and

discuss the common solution approaches for various classes of location models. There

exist hierarchical relationships between facility location models for distribution system

design, and the multi-product, multi-period, or multi-echelon models are essentially

the extensions of either uncapacitated or capacitated facility location problems (UFLP

or CFLP), which themselves are NP-hard. While addressing dynamic location mod-

els, Klose and Drexl (2005) question the practical relevance of the multi-period models

for several reasons, including the issues of selecting the appropriate time horizon, the
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amount and accuracy of data requirements, and the solution difficulties associated

with increased complexity.

Snyder (2006) [50] provides a comprehensive review and analysis of facility location

problems under uncertainty. Snyder mentions that facility location decisions share

the characteristics of strategic decisions, namely that they are costly, have a long-term

impact, and are difficult to reverse. It is reiterated that traditionally facility location

problems under uncertainty have been modeled in a two stage framework – capital

investments are made during the first, strategic phase, followed by the tactical phase,

after uncertainties are resolved. The basis for Snyder’s classification is the distinction

between three decision-making environments – certainty, risk, and uncertainty – and

the facility location models are grouped into three broad categories that correspond

to the three environments – deterministic, stochastic, and robust, respectively.

Melo et al. (2009) [43] provide a review of facility location models in the context of

supply chain management, and more specifically, the role of these models in the supply

chain network design. It is suggested that facility location models should be extended

to include four features to be useful for supply chain models – multiple echelons,

multiple commodities, multiple periods, and stochastic parameters. When considering

the types of decisions modeled, in addition to location-allocation decisions, capacity

planning, inventory management, and production decisions are the most common,

based on the reviewed literature. The capacity planning literature often considers also

the choice of technology. It is suggested that, in fact, the technology determines the

capacity, not vice versa. Melo et al. (2009) conclude that as the supply chain modeling

efforts should seek increased integration between strategic and tactical/operational

levels to avoid sub-optimality, the facility location models, being part of supply chain

network design, should avoid simplifications and include more features relevant to

real-life supply chain management problems.
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2.3.2 Technology Choice, and Economies of Scale and Scope

It has been recognized in the early literature that industrial facilities exhibit

economies of scale. Some of these works are referenced in Verter and Dincer (1995) [57].

Verter and Dincer present an integrated approach for the simultaneous optimization

of facility location and capacity acquisition decisions. It is assumed that the capacity

cost function is a monotone increasing concave function, i.e., power function in this

case, and a linear approximation technique is used to solve the problem. Although

in [57] the resulting piecewise linear segments are not explicitly associated with a

particular capacity type, in a later work (Verter, 2002 [54]) the different monotone

increasing cost functions (power, or piecewise linear) are clearly identified as technol-

ogy alternatives. A view that each segment, or range of the piecewise concave cost

function represents a single technology is also shared by other researchers, e.g., Luss

(1982) [38], Li and Tirupati (1994) [34], Ahmed and Sahinidis (2008) [3].

Verter and Dincer (1992) [56] argue that the integrated facility location, capacity

acquisition, and technology selection decisions are the building blocks for a firm’s

global production and distribution network. They note that the technology selection

problem can be traced to the historical trend of labor-intensive processes being re-

placed by capital-intensive production processes, where the labor-intensive processes

are characterized by low fixed and high variable costs, and the capital-intensive pro-

cesses are characterized by high fixed and low variable cost structures. Summarizing

the results from the literature survey, Verter and Dincer (1992) state that the benefits

of automated capital-intensive technologies go beyond the effects of scale economies,

however, and include improved quality, higher responsiveness to market needs, and

increased productivity. In addition, optimal technology selection decisions would

be those that choose to invest in more capital-intensive technologies with ever non-

increasing per unit production costs.

Another dimension in capacity typology, in addition to the level of capital in-
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tensity, is the distinction between the dedicated and flexible technologies. While

the concept of capital intensity is usually presented as a single product issue in the

context of scale economies, the notion of flexibility of capacity is treated as a multi-

product (often two product) issue in the context of scope economies. The conceptual

links between dedicated technologies and economies of scale, and between flexible

technologies and economies of scope were established with the emergence of modern

manufacturing capabilities. Goldhar and Jelinek (1983) [26], and Goldhar and Jelinek

(1985) [27] address the need to shift the strategic management approaches from the

traditional scale perspective, which “means unlearning a host of familiar scale-based

assumptions”, to an economies of scope perspective that is characterized by product

variety, customization, and responsiveness.

Although the concept of flexibility is rather broad and can encompass various

meanings, in the literature it is most often associated with an ability to produce

more than one kind of product, i.e., product flexibility. The concepts, approaches,

and results by Fine and Freund (1990) [22] have motivated and influenced a steady

stream of literature devoted to the issue of optimal amounts of dedicated vs. flexible

technology that a firm must acquire to maximize profits. Fine and Freund present a

two-stage stochastic model, where in the first stage the dedicated capacity and flexible

capacity investment decisions are made, and in the second stage, after uncertain

demand is observed, production decisions are made. Capacity investment costs are

linear, and flexible capacity costs are higher than those for any type of dedicated

technology. Production costs are also linear, and an assumption is made that they are

technology independent, i.e., they are the same for dedicated and flexible technologies.

In a multi-product setting the effects of demand correlation have substantial impact

on the optimal combination of dedicated and flexible capacities. Fine and Freund

showed that with the increased uncertainty in demand, flexible capacity becomes

more valuable in the case of negatively correlated demand, and has no value in the
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case of perfectly positively correlated demands. Van Mieghem (1998) [52] showed that

flexible technology can be valuable even in the case of perfectly positively correlated

demands, as the company has the ability to exploit price differentials, and produce

more profitable products using flexible technology at the expense of less profitable

products. Extensive research follows the works by Fine and Freund (1990) and Van

Mieghem (1998) to analyze the intricate dynamics between product-flexible capacities

and optimal profitability conditions though responsive pricing (price postponement)

approaches, and product substitutability (cross-price) effects (see, for example, Bish

and Wang (2004) [14], Chod and Rudi (2005) [16], Biller et al. (2006) [12], Lus and

Muriel (2009) [37], Goyal and Netessine (2011) [28]).

According to Li and Tirupati (1994) [34], an optimal capacity strategy typically

includes certain proportions of dedicated and flexible capacities that depend on such

factors as the demand patterns, the relative investment costs of flexible technology,

and economies of scale. Investments in flexible technologies are economically justified,

even at higher investment costs. Moreover, Li and Tirupati (1994) suggest, based on

experimental results, that there is no inherent incompatibility between economies of

scale and economies of scope. The results in Chen et al. (2002) [15] indicate that flex-

ibility is more useful in the case of individual demand variability, in comparison with

total demand variability, and that the optimal amount of flexible capacity depends on

a particular problem, not on a general rule of thumb. Ahmed and Sahinidis (2008) [3]

present a solution approach for a multi-product and multi-period capacity planning

problem, while suggesting that the dynamic demand environment and short prod-

uct life cycles have placed the technology adoption decisions among the key strategic

decisions for a firm.

In their review of the strategic supply chain network design literature, Melo et

al. (2009) [43] indicate that capacity decisions are dominated by the choice of equip-

ment and/or technology decisions. In turn, the primary consideration related to the
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choice of technology, according to Verter (2002) [54] is their acquisition and operation

cost structures, and economies of scale, which depend on the level of automation or

productivity.

Graves and Tomlin (2003) [30] develop a quantifiable flexibility measure using

the concept of product-plant links that is “based on the excess capacity available

to any subset of products, relative to an equal-share allocation of the capacity.”

Graves and Tomlin also emphasize the importance of configuration of the product-

plant links, not just the number of these links. In particular, they note that “closed”

configurations outperform configurations that consist of numerous distinct product-

plant based chains. Furthermore, Graves and Tomlin (2003) examine the impact

of random demand realizations on different capacity flexibility policies, and extend

the flexibility measure to multi-stage supply chains. In [30] the analytically derived

flexibility measure is validated experimentally using simulation.

2.4 Integrative Approach to Strategic Decisions

In his survey of capacity related literature, Luss (1982) [38] writes that in the early

literature (e.g., Manne, 1967 [39]) capacity expansion decisions are explicitly consid-

ered in connection with the optimal location decisions. Similarly, the assumption of

different capacity types, or production facility types, with different cost structures

means that they can be considered alternative technologies. The integrative nature

of these strategic problems has manifested itself through numerous works, both of

theoretical as well as practical orientation.

Verter and Dincer (1992) [56] provide a literature review specifically dedicated

to an integrative evaluation of facility location, capacity acquisition, and technology

selection. They identify these three factors as the building blocks for a firm’s global

manufacturing strategies, and claim this integration is even more important than for
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domestic production-distribution strategies. Verter and Dincer conclude that each of

the three factors – location, capacity, and technology – is a complex area of research

by itself, and that there exist potential for a theoretical synthesis of these areas.

Verter (2002) [54], and Verter and Dasci (2002) [55] present formal models that

build upon the conceptual considerations in Verter and Dincer (1992), and explicitly

include in an integrated manner the facility location, capacity acquisition, and tech-

nology choice variables with the purpose of studying the effects between these three

decisions. Both models are static, deterministic, mixed integer non-linear optimiza-

tion problems, solved using a piecewise approximation algorithm. The non-linearity

in these models is caused by the capacity acquisition and operating costs modeled

as a power function, or more generally, as any monotone increasing concave function

(fixed charge linear, and piecewise linear functions belong to this category, and they

are also used in [54] and [55]). In Verter (2002) [54], a single product model is offered

that includes alternative technologies, which represent economies of scale that affect

the number and size of facilities. In Verter and Dasci (2002) [55], the facility location,

capacity acquisition, and technology selection model is extended to include multiple

products, additional capacity types, and dedicated and flexible technologies to capture

the economies of scope in facility location and sizing decisions. The authors suggest

that a firm’s manufacturing strategy can be designed as being positioned between the

market-focus and product-focus ends of the spectrum. Under a pure market-focus

strategy, a firm would manufacture all the products needed for the particular mar-

kets in a plant assigned to these markets. Under a pure product-focus strategy, a

firm would concentrate the production in plants with dedicated technologies to take

advantage on the scale economies. An optimal solution of the model would prescribe

a hybrid strategy along the market/product focus spectrum.

Lim and Kim (1999) [35] propose a deterministic multi-period integrated plant

location and capacity acquisition (or disposal) problem, where the types of capacities
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include dedicated and flexible facilities (i.e., technologies). In [35], a slightly differ-

ent terminology is used – plant in this case means a collection of facilities that are

capable of producing different types of products. Integrating location, capacity, and

technology decisions in a dynamic setting is especially hard to solve, and a heuris-

tic algorithm based on Lagrangian relaxation, decomposition, and a cut-and-branch

procedure is presented along with computational experiments. Lim and Kim (1999)

attempt to incorporate many simultaneous decisions related to plant opening, ac-

quisition of dedicated and flexible capacities, and capacity allocation to operations.

The model also incorporates the investment budget over the planning horizon and

the discount rate for costs. The Lim and Kim model allows for multiple types of

flexible technologies, which makes the model more realistic, yet also more complex.

The authors suggest that their approach may be well suited for global manufactur-

ing companies in industries that are characterized by rapid changes in capacity and

product requirements, for example, in automotive or electronics industries where the

strategic level decisions have to be made on a more frequent basis.

From a more practical perspective, Eppen et al. (1989) [20] present an integrated

multi-product, multi-period, multi-plant capacity planning model under risk. A ma-

jor decision management needs to make is the right trade-off between profit and risk

when considering capacity investments. Eppen et al. state that the fundamental issue

is to “determine the appropriate type and level of production capacity at each of sev-

eral locations.” The problem is presented in the context of the automotive industry,

and some of the top managerial concerns are addressed, such as chronic excess capac-

ity. Although the Eppen et al. model was developed for General Motors, the concepts

and the dynamics between various strategic planning factors can be extended to other

industries and other settings. For example, the product mix, plant allocation, and

capacity flexibility options are relevant for any complex production system. Karabuk

and Wu (2003) [31] provide another example from the semi-conductor industry where
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the decisions about capacity levels and the decisions about the technology mix are

inseparable as strategic capacity planning is an iterative process with the two main

components – capacity expansion and capacity configuration. Another applied strate-

gic capacity planning case from the automotive industry is presented in Fleischmann

et al. (2006) [23]. As one would expect, in a more applied planning environment, the

number of factors that have to be considered in the model increases. Fleischmann et

al. model the BMW global production network as a strategic problem that includes

decisions to allocate multiple products to multiple plants in a multi-year dynamic

environment taking into account the potential uncertainty in demand and corporate

policies on capacity reserves. In addition to these considerations, the model has to

account for real-world restrictions such as the maximum number of sites a product

can be allocated to, local content requirements, and taxation systems of different

countries. In the BMW case, the global production and capacity planning is done in

conjunction with the investment and cash flow planning. It appears from the above

mentioned examples that the more integrative approaches dominate in practical in-

dustry cases, and are primarily driven by the necessity to accommodate the needs of

real-world strategic planning efforts.

2.5 Decisions Under Uncertainty

Discussion and classification of the different types of uncertainty in a business

environment is provided by Klibi et al. (2010) [32]. Some authors have adopted a

distinction between certainty, risk, and uncertainty. However, as noted by Klibi et

al. (2010), this classification of uncertainty is not shared by other authors, who asso-

ciate the concept of risk not only with the probability of an occurrence of an event,

but also with the magnitude of the value lost or gained. An uncertain event, accord-

ing to this view, is value-neutral, and the decisions are made under certainty when
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perfect information exists, or under uncertainty when only partial information is avail-

able. A probabilistic interpretation of uncertainty is the prevailing interpretation of

randomness in management science, although it is not the only way to formalize un-

certainty. These alternative formalisms include, for example, the set-based approach,

which constitutes the methodological foundation of the uncertainty set based robust

optimization.

When classifying the issues of the strategic capacity planning problem, Martinez-

Costa et al. (2014) [40] make a distinction between the decisions addressed in the

problem (e.g., capacity size, capacity location, allocation, capacity configuration and

technology selection) and the external factors included in the problem statement,

such as uncertainty. Martinez-Costa et al. (2014) offer a taxonomy of capacity mod-

els, based on three criteria: the nature of the problem (deterministic or stochastic),

the type of capacity decision, and the number of locations involved in the capacity

decisions (single-site or multi-site). Regardless of the model classification schemes

proposed by different authors, the stochastic vs. deterministic approach is often

clearly identified (e.g., Vidal and Goetschalckx (1997) [58], Melo et al. (2009) [43],

Farahani et al. (2014) [21]).

The deterministic approach has been the dominant approach for many decades

in the production, distribution, and supply chain design models, as reviewed and

classified, for example, in Meixell and Gargeya (2005) [41]. The majority of the

proposed models do not explicitly consider the impact of uncertainty on the optimal

solution. In the Melo et al. (2009) [43] review, the deterministic models dominate

as well, especially in the multi-product category. In addition, there is a scarcity of

models that consider stochasticity beyond one or two echelons in the supply chain

network.

Demand (individual product and product mix) uncertainty is probably the most

recognized type of uncertainty. But it is not the only source of uncertainty; for ex-
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ample, other sources of uncertainty include supplier reliability, costs, productivity,

and many others. Other factors in addition to uncertainty complicate the capacity

planning and resource acquisition decisions: constant changes in technologies and

short product life cycles force companies not only to determine the right amount of

capacity, but also to ensure that the capacity is flexible and adaptable to the new tech-

nologies and new products. The difficulties associated with modeling of uncertainty

and incorporating uncertainty into capacity planning models are recognized by many

researchers. Uncertainty can be modeled in a variety of ways. However, regardless

of the approach, the addition of uncertainty to the underlying already difficult-to-

solve deterministic models can make the resulting models intractable. Addressing

specifically the existing literature on production planning, Graves (2008) writes [29]:

This literature is largely oblivious to uncertainty. Much like research on

the economic-order-quantity (EOQ) model, the contention is that the value

of these models is in optimizing critical cost tradeoffs, often in the context of

tight constraints. The research perspective is that dealing with uncertainty is

of secondary importance to getting the tradeoffs right; furthermore, there is the

assumption that the uncertainties can be handled by other measures, which are

independent of the determination of the production plan. Nevertheless, there

is also the recognition that the deterministic assumptions are a shortcoming of

this research, but were necessary in order to keep the models tractable.

It appears that the general trend in modeling production-distribution networks is

increasing attention to explicitly incorporate uncertainty in model formulation. For

example, in a more recent survey, Farahani et al. (2014) [21], the share of models with

stochastic features is quite substantial, although the majority of models addressed

still consider demand uncertainty as the sole source of randomness.
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2.6 Summary of Literature Review and Research

Implications

Each of the topics, discussed in the previous sections – facility location, capacity

acquisition, and technology choice – is a vast field of research by itself. Our intent is

not so much to provide an exhaustive review of each of them as to show that these top-

ics are naturally linked as a part of complete production-distribution, or supply chain

networks. Indeed, some of the earlier works, mentioned in our review, have explicitly

recognized that a firm’s decision to locate a facility cannot be separated from the

decision about its capacity and the type of this capacity. In this dissertation we ex-

amine an integrated model that considers simultaneously all three decisions, and our

approach is to some extent a response to researchers’ suggestions for more integrated

and holistic view on these strategic level decisions. One of the purposes of our review

is to show that an integrative view is a logical extension of the previous research, and

at the same time to establish a theoretical foundation for our modeling approach.

Another purpose of this literature review is to examine the extent of application of

methodologies that deal with uncertainty to the facility location, capacity acquisi-

tion, and technology choice models. Although historically deterministic models have

been dominant in the logistics and supply chain management literature, a more recent

trend indicate that a growing number of publications consider modeling of stochastic

parameters an essential part of state-of-the-art research. The recognition of the inher-

ent uncertainty in the logistics and supply chain models is similar to the recognition

of the integrative nature of these models in that in both instances the complexity

of these models not only prove to be computationally challenging, but also present

difficulties in deriving general insights from specific problem instances. Our work is

dedicated to the application of robust optimization methodology to the facility loca-

tion, capacity acquisition, and technology choice model, i.e, we believe that this way

we can simultaneously address both the integrative nature of the strategic decision-
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making process, and the stochastic environment in which these decisions are made.

We have identified a number of publications related to the application of robust opti-

mization methodology to the field of logistics and supply chain management. At the

same time these robust optimization applications appear to be “disconnected”: they

don’t exhibit the same methodological unity and standardization that deterministic

optimization or stochastic programming applications do. With these considerations

we believe that there exist research directions that would address some of the gaps in

the literature, and more specifically, the application of robust optimization approach

to an integrated capacity planning and resource acquisition problem.
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Chapter 3

Nominal Model Formulations

3.1 Problem Description

In Chapter 3, the nominal base models are described, including the single product

model and the multi-product model, presented in Sections 3.2 and 3.3, respectively.

In this initial Section 3.1, however, some common features are discussed. The indi-

vidual components of the proposed models can be found in previous works, described

in Chapter 2, and they reflect common modeling approaches. The strategic level

production-distribution network design models can be either cost minimization, or

profit maximization models. In some instances, the objective function can include

multiple objectives that can lead to a goal programming approach. We have chosen

to use the cost minimization objective, in part because in non-deterministic settings,

variable price and variable demand lead to non-linear objective functions. Some of

the model features include such common characteristics as the selection of facility

locations, and capacity types (technology alternatives) and sizes, as well as the deter-

mination of production quantities and the optimal allocation of products to customer

zones. All the costs, except capacity investment costs, are either fixed charge or lin-

ear. Capacity investment costs have a fixed charge piecewise linear structure. The
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closest to our formulation of the nominal models are the models in Verter (2002) [54]

and Verter and Dasci (2002) [55]. However, their approach is strictly deterministic,

and their focus, besides demonstrating the integrative nature of strategic decisions,

is algorithmic development. Among other models that share similarities with our

approach is the model described in Baron et al. (2011) [4] in the context of robust

optimization, even though they do not make a distinction between capacity types,

which is one of the essential features of the models presented here.

Both the single and multi-product versions of our models are static (one period),

two-tier (production facilities and customer zones) models, and there are no upper

or lower limits placed on facility capacities. These characteristics indicate that the

proposed models are closely related to the uncapacitated facility location problems

(UFLP). However, the concave capacity investment cost structure makes the tech-

nology choice decisions and facility location decisions interdependent, and, thus, our

formulations, just as the ones presented in Verter (2002) [54] and Verter and Dasci

(2002) [55], cannot be reduced to UFLP. Similarly, in the multi-product setting, the

dedicated and flexible capacity investment decisions and facility locations decisions

are interdependent. In Chapter 4 this mutual dependency is explored under the

conditions of demand uncertainty.

The nominal1 formulation presented in this chapter makes no distinction between

decision stages. Therefore, the deterministic facility opening, technology selection,

capacity investment level, production, and transportation decisions are optimized as

a single monolithic problem2. To maintain the integrity of the piecewise linear struc-

ture of capacity investment costs, a restriction is placed on the number of capacity

types, or technologies, that can be established at a site, i.e., at most one. This re-

1To follow a terminological convention in robust optimization we use term nominal instead of
deterministic to distinguish a deterministic problem from its robust counterpart, which is also a
deterministic problem.

2The two-stage equivalents of both the single and multiple models will be introduced in Chap-
ter 4.
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striction applies to both single and multi-product models (see constraints (3.6) and

(3.15)–(3.16)). There is no such restriction, however, enforced on simultaneous place-

ment of dedicated and flexible technologies at the same site, or two different dedicated

technologies for two products at the same site. We are implementing our models with

minimum restrictions related to simultaneous placement of different types of tech-

nologies at a single site to be able to observe more “natural” unconstrained outcomes

resulting from interdependencies between model components. We could, in addition

to the above mentioned restrictions (3.6) and (3.15)–(3.16), include various other

logical constraints. For example, we could restrict the production plants to either

dedicated, or flexible technologies only, or enforce other restrictions. However, to

gain maximum insight from our numerical studies, we prefer to use limited number of

artificially imposed conditions, although such conditions may be of great importance

in practical industrial applications.

3.2 Single Product Model

In this section, the notation and a formal problem description is presented for the

single product model.

3.2.1 Notation and Assumptions for the Single Product Model

Table 3.1 provides a detailed description of sets, parameters, and variables used

in the single product model formulation.

Parameters

i ∈ I set of production sites

j ∈ J set of customer zones

l ∈ L set of technologies

fi fixed production facility investment cost at site i
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eil fixed capacity investment cost for technology l at site i

gil unit capacity investment cost for technology l at site i

cijl unit production cost using technology l at site i, including transportation

cost to customer zone j

dj demand of customer zone j

Variables

zil units of capacity established using technology l at site i

xijl units produced using technology l at site i and transported to customer

zone j

yi 1 if production facility at site i opened, 0 otherwise

vil 1 if capacity using technology l at site i established, 0 otherwise

Table 3.1: Notation for the nominal single product model.

The single product model includes two sets of binary variables – yi and vil, and

two sets of continuous variables – zil and xijl.

3.2.2 Single Product Model Formulation

The nominal single product model is formulated as a mixed integer program:

min
y,v,z,x

∑
i

fiyi +
∑
i

∑
l

eilvil +
∑
i

∑
l

gilzil +
∑
i

∑
j

∑
l

cijlxijl (3.1)

s.t.
∑
i

∑
l

xijl ≥ dj, ∀j (3.2)

∑
j

xijl ≤ zil, ∀i, l (3.3)

zil ≤ Mvil, ∀i, l (3.4)

vil ≤ yi, ∀i, l (3.5)∑
l

vil ≤ 1, ∀i (3.6)

yi, vil ∈ {0, 1}; zil, xijl ≥ 0, ∀i, j, l,
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where M is a sufficiently large constant, representing the bounds on the zil variables,

for example, M =
∑

j dj. The objective function (3.1) minimizes the sum of fixed

production facility investment costs, the sum of fixed capacity investment costs for

all technologies, the sum of unit capacity investment costs for all technologies, and

the sum of production and transportation costs. Constraint (3.2) stipulates that

the demands must be satisfied for each customer zone j. Constraint (3.3) states

that the total number of units produced using technology l at site i and transported

to customer zone j cannot exceed the number units of capacity established using

technology l at site i. Constraint (3.4) states that no amount of capacity is established

without corresponding fixed charges. Constraint (3.5) states that capacity using any

technology l is established only at an open production site i. Constraint (3.6) allows

at most one type of technology l per production site i.

3.3 Multi-product Model

In this section, the notation and a formal problem description is presented for the

multi-product model.

3.3.1 Notation and Assumptions for the Multi-product Model

Table 3.2 provides a detailed description of sets, parameters, and variables used

in the multi-product model formulation.

Parameters

i ∈ I set of production sites

j ∈ J set of customer zones

k ∈ K set of products

l ∈ L set of technologies

fi fixed production facility investment cost at site i
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eDikl fixed capacity investment cost for dedicated technology l for product k at

site i

eFil fixed capacity investment cost for flexible technology l at site i

gDikl unit capacity investment cost for dedicated technology l for product k at

site i

gFil unit capacity investment cost for flexible technology l at site i

hikl units of capacity of flexible technology l required to produce one unit of

product k at site i

cDijkl unit production cost for product k using dedicated technology l at site i,

including transportation cost to customer zone j

cFijkl unit production cost for product k using flexible technology l at site i, in-

cluding transportation cost to customer zone j

djk demand of customer zone j for product k

Variables

zDikl units of capacity established using dedicated technology l for product k at

site i

zFil units of capacity established using flexible technology l at site i

xDijkl units of product k produced using dedicated technology l at site i and trans-

ported to customer zone j

xFijkl units of product k produced using flexible technology l at site i and trans-

ported to customer zone j

yi 1 if production facility at site i opened, 0 otherwise

vDikl 1 if capacity using dedicated technology l for product k at site i established,

0 otherwise

vFil 1 if capacity using flexible technology l at site i established, 0 otherwise

Table 3.2: Notation for the nominal multi-product model.

The multi product model includes three sets of binary variables – yi, v
D
ikl, and vFil ,

and four sets of continuous variables – zDikl, z
F
il , x

D
ijkl, and xF

ijkl.
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3.3.2 Multi-product Model Formulation

The nominal multi-product model is formulated as a mixed integer program:

min
y,v,z,x

∑
i

fiyi +
∑
i

∑
l

(∑
k

eDiklv
D
ikl + eFilv

F
il

)
+
∑
i

∑
l

(∑
k

gDiklz
D
ikl + gFil z

F
il

)
+

∑
i

∑
j

∑
k

∑
l

(
cDijklx

D
ijkl + cFijklx

F
ijkl

)
(3.7)

s.t.
∑
i

∑
l

(
xD
ijkl + xF

ijkl

)
≥ djk, ∀j, k (3.8)

∑
j

xD
ijkl ≤ zDikl, ∀i, k, l (3.9)

∑
j

∑
k

hiklx
F
ijkl ≤ zFil , ∀i, l (3.10)

zDikl ≤ MvDikl, ∀i, k, l (3.11)

zFil ≤ MvFil , ∀i, l (3.12)

vDikl ≤ yi, ∀i, k, l (3.13)

vFil ≤ yi, ∀i, l (3.14)∑
l

vDikl ≤ 1, ∀i, k (3.15)

∑
l

vFil ≤ 1, ∀i (3.16)

yi, vDikl, vFil ∈ {0, 1}; zDikl, zFil , xD
ijkl, xF

ijkl ≥ 0, ∀i, j, k, l,

where M is a sufficiently large constant, representing the bounds on the zDikl and zFil

variables. The objective function (3.7) minimizes the sum of fixed production facility

investment costs, the sum of fixed capacity investment costs for all dedicated and

flexible technologies, the sum of unit capacity investment costs for all dedicated and

flexible technologies, and the sum of production and transportation costs. Constraint

(3.8) stipulates that the demands must be satisfied for each customer zone j for prod-

uct k, produced using either a dedicated or flexible technology l. Constraints (3.9)
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and (3.10) state, for dedicated and flexible technologies, respectively, that the total

number of units of product k produced using technology l at site i and transported

to customer zone j cannot exceed the number units of capacity established using

technology l at site i. Constraints (3.11) and (3.12) state, for dedicated and flexible

technologies, respectively, that no amount of capacity is established without corre-

sponding fixed charges. Constraints (3.13) and (3.14) state, for dedicated and flexible

technologies, respectively, that capacity using any technology l is established only at

an open production site i. Constraints (3.15) and (3.16) allow, for dedicated and

flexible technologies, respectively, at most one type of technology l per production

site i.
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Chapter 4

Robust Reformulations and Solution

Methods

4.1 Overview of the Robust Optimization Paradigm

In a general sense, robust optimization is a collection of different approaches that

allow the decision-maker to pro-actively consider the impact of random parameters

on the optimal solution. The unifying aspect of these different approaches is that the

uncertainty is analyzed from the worst-case perspective, as opposed to the expected

value perspective. Gabrel et al. (2014) [25] provide an overview of the theoretical

results and applications in robust optimization, and emphasize that the main ques-

tion within the robust optimization paradigm is the issue of conservatism, i.e., it is

the question of the right trade-off between the performance of the model and the

level of protection, or immunization, against the adverse effects of randomness. The

issue of conservativeness is related to the choice of appropriate requirements for the

worst-case solution that the decision-maker can specify in advance. There lies an im-

portant distinction between robust optimization and stochastic programming. Within

the stochastic programming framework, the random behavior of data is independent
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from the decision-making process, even when we have incomplete or poor informa-

tion about the probability distribution. When we make assumptions or guesses about

probability distributions, our desire is to describe the behavior of data “as close to

reality as possible”, i.e., this behavior, more or less accurately captured, is exogenous

to our preferences. On the contrary, within the robust optimization paradigm our

preferences as a decision-maker are incorporated in the model solution by making the

solution insensitive to the randomness of the outside reality. Moreover, it is possible

to numerically specify the desired level of robustness. Ben-Tal et al. (2009) [5] com-

pare this situation to engineering design process when safety-related parameters are

increased by a factor to account for material quality, environmental hazards, etc.

Another traditional methodology, in addition to stochastic programming, for deal-

ing with uncertain data is sensitivity analysis. It is a “local” post-optimization tool,

when by changing parameters within ranges that represent the potential random real-

izations of these parameters, the impact on the objective value is observed. However,

with sensitivity analysis usually there is no systematic way in which the source of

the greatest impact on the objective is determined. One can vary different parame-

ters one (or several) at a time, but there are no guarantees that the chosen changes

have the greatest impact, or are the most sensitive, to the solution value. Mulvey et

al. (1995) [44] refer to sensitivity analysis as a reactive approach. With the robust

optimization methodology the process of finding a model solution that is “insensi-

tive” to random data realizations is proactive: it is part of the optimization process

when the greatest possible deterioration of the objective (i.e., the “worst-case”) is

found. The robust solution guaranties that no other parameter change, or multiple

parameter changes, will give a “worse” solution value; of course, provided that the

allowable ranges within which a parameter can change, as well as the overall level of

allowable simultaneous changes are specified.

Robust optimization is a deterministic (Bertsimas et al., 2011 [9]) optimization
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method, although its purpose is to address random data perturbations. In robust

optimization data are not “modeled” in the stochastic programming sense. Instead,

the robust problems are constructed in a way that will ensure that the model will

remain feasible (and not sub-optimal) in a random environment. To avoid termi-

nological confusion, in the robust optimization literature the deterministic “version”

of a robust problem is called the nominal problem, and the robust “version” of a

deterministic problem is called the robust counterpart problem.

Within set-induced robust optimization, the uncertainty sets play an important

role. There exist various approaches to specify uncertainty sets: they can be specified

as a convex hull of a finite set of scenarios, defined as a vector norm, or constructed

in some other way. It appears that there is no unified axiomatic interpretation of the

uncertainty sets. We follow a vector norm based interpretation of uncertainty sets,

with its underlying assumptions; this interpretation can be considered the dominant

one in the robust optimization literature, although alternative approaches exist.

There are two issues related to the construction of the norm-related uncertainty

sets: the magnitude of parameter deviation from a central value (the deviation in-

terval), and the overall limit of joint parameter deviation (the robustness budget).

To combine the requirements for maximum allowed individual deviations with the

requirement for maximum allowed joint deviations, the robust uncertainty sets are

constructed as intersections of primitive sets. Thus, two commonly used uncertainty

sets can be obtained: the ellipsoidal uncertainty set and the polyhedral uncertainty

set, both constructed as intersections with the box uncertainty set. The role of the

box (L∞ norm) is to control the individual deviations, and the role of the ellipsoid

(L2 norm), or the polyhedron (L1 norm) is to control the joint deviations. In the

n-dimensional case, the ratio of “sizes” between the ellipsoid and the box, or the

polyhedron and the box is termed the robustness parameter. This parameter of ro-

bustness, or “budget of uncertainty”, as it is often referred to in the robust optimiza-
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tion literature, is a parameter that allows control of the trade-off between the system

performance and robustness (i.e., insensitivity) against random data perturbations.

Considering a robust optimization problem, a distinction is made between the

constraint-wise uncertainty that is associated with the overly conservative box un-

certainty set, and the row-wise uncertainty that leads to less conservative solutions

based on ellipsoidal or polyhedral uncertainty sets. Another important topic related

to the choice of uncertainty sets is the problem of computational tractability. Exten-

sive description and analysis of the different uncertainty sets in robust optimization

is given, for example, in Ben-Tal and Nemirovski (1998 and 1999) [7] [8], Bertsimas

and Sim (2004) [11], Bertsimas et al. (2011) [9].

The solution of the robust counterpart can be neither sub-optimal, nor infeasible

for any realizations of the random data within the specified set. The issue of the

trade-off between optimality and feasibility is formalized in Mulvey et al. (1995) [44]

using a robust optimization approach that combines the scenario based approach of

stochastic programming with a goal programming approach that includes a weight

parameter, which controls the trade-off between “solution robustness” (robustness

with respect to the objective value) and “model robustness” (robustness with respect

to feasibility of the model under uncertain data realizations). This weight param-

eter can be viewed as an analog to the robustness parameters for the uncertainty

set-based approach. The Mulvey et al. (1995) model allows for “soft” constraints and

is, therefore, inconsistent with the robust counterpart approach (in the uncertainty

set-based robust optimization, the constraints are assumed to be “hard”). Ben-Tal

and Nemirovski (1998) [7] note that if these constraints are made “obligatory”, the

Mulvey et al. (1995) approach would be a particular case of robust optimization ap-

proach, where the uncertainty set is constructed as a convex hull of scenarios. Mulvey

et al. (1995), although published several years before the emergence of the widely ac-

cepted set-based robust optimization, can help shed light on the intuitive meaning

40



of the commonly used robustness parameters (i.e., Ω and Γ) in the context of goal

programming, where the decision-maker sets the desired trade-off between conflicting

goals; that is, in this case between the protection level against random parameter

realizations, and the acceptable level of deterioration in the objective function. Bert-

simas and Sim (2004) [11] quantify this trade-off by theoretically deriving probability

bounds of constraint violation, and show that by allowing a relatively small dete-

rioration in the objective value (“price of robustness”), the robust solution remains

feasible with high probability. In [11], several versions of the probability bounds are

derived. An important characteristic of these bounds is that they are independent of

problem solution, and they are the functions of just the robustness parameter and the

dimensionality of the uncertainty set. Bertsimas and Sim (2004) provide simulation

results for robust solutions under different robustness parameters and illustrate that

these results are consistent with theoretically derived probabilistic guarantees.

4.2 Uncertainty Sets

The uncertainty set based approach has become common in robust optimization.

The concept of interval/box uncertainty goes back to Soyster (1973) [51], who termed

his approach as “inexact linear programming.” The information available on the un-

certain vector d is that each jth element of d, dj is a symmetric and bounded random

variable and takes values in the interval [d̄j − d̂j, d̄j + d̂j], where d̄j is the nominal

value of dj, and d̂j is its maximum deviation. The scaled deviation of parameter dj

from its nominal value is defined as wj = (dj − d̄j)/d̂j, which takes values in [−1, 1].

Although the simplest of the uncertainty sets, the box, based on simple interval

uncertainty, does not present by itself much interest from a practical perspective

because of its ultra-conservative results, it is used to create more advanced uncertainty

sets, namely ellipsoidal and polyhedral ones, constructed as their intersections with

41



the box uncertainty set. The polyhedral uncertainty set here has the same meaning as

the “budgeted”, or “cardinality constrained” uncertainty set, as sometimes referred to

in the literature. The following are the definitions of these sets for the scaled deviation

variable, using the robustness parameters Ω and Γ that control the trade-off between

robustness and optimality:

Box: Ubox :=
{
w

∣∣∣ |wj| ≤ 1, ∀j
}

(4.1)

Ellipsoidal: UΩ :=
{
w

∣∣∣ √∑
j

w2
j ≤ Ω; |wj| ≤ 1, ∀j

}
(4.2)

Polyhedral: UΓ :=
{
w

∣∣∣ ∑
j

|wj| ≤ Γ; |wj| ≤ 1, ∀j
}
, (4.3)

where wj is the jth element of w. With appropriately selected robustness parame-

ters Ω and Γ, UΓ is a linear approximation of UΩ (see Figure 4.1), and as such, yield

more conservative solutions. However, the polyhedral uncertainty set possesses a very

valuable feature – its robust counterpart is a linear optimization program. Bertsimas

and Sim (2004) [11] and Ben-Tal et al. (2009) [5] provide the analysis and discussion

regarding the relative degree of conservativeness of the solutions depending on the

choice of uncertainty sets. Also, the fundamental relationship between the robust-

ness parameters Ω = Γ/
√

card(J) allows comparison of the robust objective values

resulting from using either ellipsoidal or polyhedral uncertainty sets. The budget of

robustness Γ for the polyhedral uncertainty set can take the values in the interval

Γ ∈ [
0, card(J)

]
. Assuming the absolute worst-case robustness level (equaling the

box uncertainty), gives Γ = card(J) and Ω =
√

card(J). When Γ = 0, and Ω = 0,

the problem reduces to the nominal one.

The definition for the demand uncertainty set that can be readily included in the
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Figure 4.1: Unit box, ellipsoidal, and polyhedral uncertainty sets: Ω = 1 and Γ =
√
2.

reformulated robust model (single product version) is

D(j) :=
{
d
∣∣∣ dj = d̄j + d̂jwj, ∀j; w ∈ U

}
. (4.4)

Uncertainty sets for the multi-product case (in terms of scaled deviation) are defined

as follows1:

Box: Ubox :=
{
w

∣∣∣ |wjk| ≤ 1, ∀j, k
}

(4.5)

Ellipsoidal: UΩ :=
{
w

∣∣∣ √∑
j

∑
k

w2
jk ≤ Ω; |wjk| ≤ 1, ∀j, k

}
(4.6)

Polyhedral: UΓ :=
{
w

∣∣∣ ∑
j

∑
k

|wjk| ≤ Γ; |wjk| ≤ 1, ∀j, k
}
. (4.7)

The budget of robustness Γ for the polyhedral uncertainty set (multi-product case)

can take the values in the interval Γ ∈ [
0, card(J)×card(K)

]
. This implies that,

considering the relationship between Γ and Ω, the corresponding budget of robust-

ness for the ellipsoidal uncertainty set Ω = Γ/
√

card(J)×card(K)). The demand

1In the multi-product case, the uncertainty set can be developed applying vectorization operator
to the location/product demand matrix: vec(D) = [d11, . . . , dj1, d12, . . . , dj2, . . . , d1k, . . . , djk]

�.
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uncertainty set for the multi-product case is as follows:

D(jk) :=
{
d
∣∣∣ djk = d̄jk + d̂jkwjk, ∀j, k; w ∈ U

}
. (4.8)

The maximum demand deviation d̂ does not have to be the same specific percentage

of d̄ for all locations and/or products. However, in the literature a constant ratio δ =

d̂/d̄ between the values of maximum deviations and the values of nominal demands is

sometimes assumed (see, for example, Ben-Tal et al., 2005 [6], Baron et al., 2011 [4]).

4.3 Two-stage Decision Framework

The two-stage optimization approach has been widely implemented within the

stochastic programming context since its inception. A comprehensive theoretical

treatment of this subject can be found in, for example, Birge and Louveaux (2011) [13].

This approach has been extended to robust optimization implementations. Zeng and

Zhao (2013) [59] propose a column-and-constraint generation (or primal cut) algo-

rithm to solve the two-stage robust optimization problem, and demonstrate its supe-

rior performance compared to more generic cutting plane algorithms. They formulate

the two-stage robust model as a minimax problem with uncertain right hand side pa-

rameters (i.e., demands). A similar model, but using dual cutting plane solution

approach, is proposed in Gabrel et al. (2014) [24].

Applying the two-stage principles to the nominal model formulations in Chapter 3,

a two-stage robust counterpart formulation is obtained. The first stage decisions in-

clude facility location decisions y, and capacity investment decisions v and z; the

second stage decision variables, or recourse variables, are production and transporta-
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tion quantities x:

min
y,v,z

f�y + e�v + g�z+ max
d∈D

min
x

c�x (4.9)

s.t. x ≥ d (λ) (4.10)

x ≤ z (π) (4.11)

z ≤ Mv (4.12)

v ≤ y (4.13)

y, v ∈ {0, 1}; z, x ≥ 0,

where λ and π denote the dual variables for constraints (4.10) and (4.11), respec-

tively. Formulation (4.9)–(4.13) represents in a general form the robust reformulation

of (3.1)–(3.6) and (3.7)–(3.16) for the single product and multi-product models, re-

spectively. In this reformulation, d is a random variable that belongs to the above

defined uncertainty set D, and the problem has a min-max-min structure. To obtain

the second stage recourse problem, the inner min{x} is converted to max{λ,π} and

combined with max{d∈D}, yielding the following subproblem for a fixed z∗:

Q(z∗) = max
d∈D,λ,π

Q(z∗,d) = max
d∈D,λ,π

d�λ− z∗�π (4.14)

s.t. λ− π ≤ c (4.15)

λ, π ≥ 0.

The relaxed master problem for the two-stage robust formulation is described on

page 50 as a part of a minimax decomposition algorithm.
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4.4 Robust Recourse Problems

The following four formulations are obtained by combining the definitions of un-

certainty sets (4.4) and (4.8) with the dual of the subproblem (4.14)–(4.15).

Single product, ellipsoidal uncertainty set:

max
w,λ,π

∑
j

(
d̄j + d̂jwj

)
λj −

∑
i

∑
l

z∗ilπil (4.16)

s.t. λj − πil ≤ cijl, ∀i, j, l (4.17)√∑
j

w2
j ≤ Ω (4.18)

wj ≤ 1, ∀j (4.19)

wj, λj , πil ≥ 0, ∀i, j, l.

Single product, polyhedral uncertainty set:

max
w,λ,π

∑
j

(
d̄j + d̂jwj

)
λj −

∑
i

∑
l

z∗ilπil (4.20)

s.t. λj − πil ≤ cijl, ∀i, j, l (4.21)∑
j

wj ≤ Γ (4.22)

wj ≤ 1, ∀j (4.23)

wj, λj , πil ≥ 0, ∀i, j, l.

Multi-product, ellipsoidal uncertainty set:

max
w,λ,π

∑
j

∑
k

(
d̄jk + d̂jkwjk

)
λjk −

∑
i

∑
l

(∑
k

z∗Dikl π
D
ikl + z∗Fil πF

il

)
(4.24)
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s.t. λjk − πD
ikl ≤ cDijkl, ∀i, j, k, l (4.25)

λjk − hiklπ
F
il ≤ cFijkl, ∀i, j, k, l (4.26)√∑

j

∑
k

w2
jk ≤ Ω (4.27)

wjk ≤ 1, ∀j, k (4.28)

wjk, λjk, πD
ikl, πF

il ≥ 0, ∀i, j, k, l.

Multi-product, polyhedral uncertainty set:

max
w,λ,π

∑
j

∑
k

(
d̄jk + d̂jkwjk

)
λjk −

∑
i

∑
l

(∑
k

z∗Dikl π
D
ikl + z∗Fil πF

il

)
(4.29)

s.t. λjk − πD
ikl ≤ cDijkl, ∀i, j, k, l (4.30)

λjk − hiklπ
F
il ≤ cFijkl, ∀i, j, k, l (4.31)∑

j

∑
k

wjk ≤ Γ (4.32)

wjk ≤ 1, ∀j, k (4.33)

wjk, λjk, πD
ikl, πF

il ≥ 0, ∀i, j, k, l.

The above formulations are for the optimality subproblems. To obtain the feasibility

subproblems, the following modifications are introduced: cijl, or c
D
ijkl and cFijkl are set

to 0, and the normalization constraints λj ≤ 1 and πil ≤ 1 are added to the single

product subproblems, or λjk ≤ 1, πD
ikl ≤ 1, and πF

il ≤ 1 are added to the multi-product

subproblems.

Problems (4.16)–(4.19), (4.20)–(4.23), (4.24)–(4.28), and (4.29)–(4.33) are difficult

to solve bilinear optimization problems because of the product wλ. While it is possi-

ble to apply the standard linearization techniques to (4.20)–(4.23) and (4.29)–(4.33),

i.e., to the formulations for the polyhedral uncertainty set, and solve as mixed integer
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programs, efficient solution procedures for (4.16)–(4.19) and (4.24)–(4.28) appear to

be elusive. Therefore, the formulations involving ellipsoidal uncertainty sets can be

solved for only small sizes, using global solvers for non-linear non-convex problems2.

Bilinear subproblems for the polyhedral uncertainty sets (4.20)–(4.23) and (4.29)–

(4.33) can be converted to mixed integer linear problems as, for example, in Gabrel et

al. (2014) [24], where the continuous w ∈ [0, 1] is replaced by a binary variable, and

the product wλ replaced by variable λ′. However, this conversion places restrictions

on Γ values, i.e., they can only be integers. This outcome is contrary to the original

meaning of Γ, as explained in Bertsimas and Sim (2004) [11], where the robustness

parameter Γ, not necessarily integer, can take values in the interval
[
0, card(J)

]
. To

address the issue, we introduce fractional deviations d̂′ = d̂
(
Γ − �Γ	), and propose

a modified formulation that converts the bilinear problem to a mixed integer linear

problem, and at the same time preserves the original meaning of Γ. For expositional

clarity, only the single product model is presented:

max
w,λ,λ′,λ′′,π

∑
j

d̄jλj +
∑
j

d̂jλ
′
j +

∑
j

d̂′jλ
′′
j −

∑
i

∑
l

z∗ilπil (4.34)

s.t. λj − πil ≤ cijl, ∀i, j, l (4.35)∑
j

wj ≤ Γ (4.36)

λ′
j ≤ λj , ∀j (4.37)

λ′
j ≤ Mwj , ∀j (4.38)∑
j

w′
j ≤ 1 (4.39)

wj + w′
j ≤ 1, ∀j (4.40)

λ′′
j ≤ λj , ∀j (4.41)

λ′′
j ≤ Mw′

j , ∀j (4.42)

2For example, LINDO Global, or BARON, available through GAMS IDE (integrated develop-
ment environment).
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wj, w′
j ∈ {0, 1}; λj, λ′

j , λ′′
j , πil ≥ 0, ∀i, j, l,

where λ′′ = λw′, just as λ′ = λw. Parameter M is a sufficiently large constant,

representing the bounds on the λ and λ′′ variables. The extended formulation (4.34)–

(4.42), for the first time proposed in this dissertation, can be beneficial for uncertainty

sets with fewer elements, e.g., fewer than 20, or in situations when fractional Γ values

are needed to achieve greater precision for analysis and comparative purposes.

4.5 Solution Algorithm

The solution approach used here to solve robust optimization problems is adapted

from Zeng and Zhao (2013) [59]. They make a distinction between a type of a

Benders-dual cutting plane algorithm and the primal cut algorithm, also termed the

column-and-constraint generation (C&CG) procedure. Under Benders-dual method,

the objective value is gradually constructed using the (dual) cut coefficients, obtained

from solving the second stage recourse problem. However, under the primal cut, or

C&CG, approach, the dual information is not used to generate cuts. Instead, the

primal cut procedure generates constraints along with the copies of primal recourse

decision variables, using the information from the worst-case solution of the second

stage. Thus, at each iteration a new column of primary recourse variables as well as

a set of “scenarios” for the uncertain demand, i.e., constraints, are created.

In the two-stage robust optimization setting, the primal cut algorithm exhibits

superior performance in terms of both the number of iterations and solution time.

For example, Zeng and Zhao (2013) show that the number of iterations is at least an

order of magnitude fewer using the primal cut approach, compared to Benders-dual

approach. Although the dimensionality of the primal recourse variables increases at

each iteration, thus increasing the computational complexity, this increased complex-
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ity is more than offset by stronger cuts generated by the primal cut algorithm.

In addition, the primal cut algorithm provides a unified approach to the optimal-

ity and feasibility, i.e., there are no two separate sets of cut coefficients – one for

optimality cuts and one for feasibility cuts, as in Benders-dual approach.

Primal Cut Algorithm

1. Set LB = −∞, UB = +∞, the iteration counter t = 1, and the optimality cut-set

O = ∅; select convergence tolerance parameter ε.

2. Solve the restricted master problem:

min
y,v,z,η,x

f�y+ e�v + g�z+ η (4.43)

s.t. η ≥ c�xs, ∀s ∈ O (4.44)

xs ≥ ds, ∀s ≤ t− 1 (4.45)

xs ≤ z, ∀s ≤ t− 1 (4.46)

z ≤ Mv (4.47)

v ≤ y (4.48)

y, v ∈ {0, 1}; z, η, xs ≥ 0.

Obtain optimal solution (y∗,v∗, z∗, η∗,xs∗) and update LB = f�y∗+e�v∗+g�z∗+η∗.

3. Solve subproblem Q(z∗).

(a) If Q(z∗) < +∞, solve

Q(z∗) = max
w∈U ,λ≥0,π≥0

{(
d̄+ d̂w

)�
λ− z∗�π s.t. λ− π ≤ c

}
,

and update UB = min
(
UB, f�y∗ + e�v∗ + g�z∗ +Q(z∗)

)
.

(b) If UB − LB < ε, stop; otherwise assign cut parameter dt = d̄ + d̂w∗, create

variables xt, and add constraints η ≥ c�xt, xt ≥ dt, and xt ≤ z to the master

problem. Update t = t+ 1, O = O ∪ {t}, and go to Step 2.
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(c) If Q(z∗) = +∞, solve

Q(z∗) = max
w∈U ,λ≥0,π≥0

{(
d̄+ d̂w

)�
λ− z∗�π s.t. λ− π ≤ 0, λ ≤ 1, π ≤ 1

}
.

Assign cut parameter dt = d̄ + d̂w∗, create variables xt, and add constraints

xt ≥ dt, and xt ≤ z to the master problem. Update t = t+1, and go to Step 2.

The general structure of the primal cut algorithm is as follows. The first step is to

initialize the lower and upper bounds, to set the iteration counter, and to select a

convergence tolerance parameter. The second step is to solve the restricted master

problem and to update the lower bound. The third step is to solve the subproblem:

if the subproblem is not unbounded, the optimality subproblem is solved and the

upper bound is updated; if the subproblem is unbounded, the feasibility subproblem

is solved. When the difference between the upper and lower bounds is less than the

tolerance parameter, the algorithm converges. At each iteration either optimality

or feasibility cuts are added, and a new dimension of primary recourse variables is

created. According to the primal cut algorithm, the set of feasibility cuts is a subset

of optimality cuts, i.e, when the optimality subproblem is solved, cuts (4.44), (4.45),

and (4.46) are added to the master problem, and when the feasibility subproblem is

solved, only cuts (4.45) and (4.46) are added to the master problem.

Robust Optimization Problem: An Illustrative Example

The following example illustrates the bilinear formulation of the subproblem that

leads to a robust solution, which ensures that a sufficient amount of capacity is ac-

quired to meet the largest (in unit terms) demand deviations within the specified

uncertainty set, and that the objective value represents the costliest demand devia-

tions within the specified uncertainty set. We also provide a numerical interpretation

of the primal cut algorithm, using the single product model and the polyhedral un-
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certainty set. To simplify our exposition, we assume only one technology type and

no fixed capacity investment costs.

The objective function of the subproblem

max
w,λ,π

(
d̄+ d̂w

)�
λ− z∗�π

is the same for both optimality and feasibility sub-problems. By solving the optimality

subproblem, the costliest realizations of the uncertain demand
(
d̄ + d̂w∗)�λ within

a specified set are obtained. By solving the feasibility subproblem, the largest (in

unit terms) realizations of the uncertain demand d̄ + d̂w∗ within a specified set are

obtained (as λ∗ = 1, due to the normalization constraints λ ≤ 1 and π ≤ 1).

The data set for the sample problem is chosen as follows:

• f1 = 50, f2 = 55, g1 = 1, g2 = 1

• c11 = 2, c12 = 3, c21 = 1, c22 = 6

• d̄1 = 60, d̄2 = 30, d̂1 = 30, d̂2 = 15, Γ = 1.

Using the primal cut algorithm presented on page 50, this small problem converges in

four iterations, which are described below in detail (the integrality and non-negativity

constraints are omitted for more concise description).

Iteration 1 Solve the master problem (the sets of cuts are empty and there are

no primal recourse variables x created yet)

τ = min
y,z,η

50y1 + 55y2 + 1z1 + 1z2 + η

s.t. z1 ≤ My1, z2 ≤ My2,

which gives a solution of τ∗ = 0, y∗1 = 0, y∗2 = 0, z∗1 = 0, z∗2 = 0. Update LB = 0.

Because the subproblem is unbounded, solve the modified feasibility subproblem

θ = max
w,λ,π

(60 + 30w1)λ1 + (30 + 15w2)λ2 − 0π1 − 0π2

s.t. λ1 − π1 ≤ 0, λ1 − π2 ≤ 0, λ2 − π1 ≤ 0, λ2 − π2 ≤ 0
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w1 + w2 ≤ 1

w1 ≤ 1, w2 ≤ 1

λ1 ≤ 1, λ2 ≤ 1

π1 ≤ 1, π2 ≤ 1,

which gives a solution of w∗
1 = 1, w∗

2 = 0. The upper bound remains UB = +∞.

Create new variables x1
11, x1

12, x1
21, x1

22, and add the following cuts to the master

problem:

x1
11 + x1

21 ≥ 90, x1
12 + x1

22 ≥ 30

x1
11 + x1

12 ≤ z1, x1
21 + x1

22 ≤ z2.

Iteration 2 Solve the master problem

τ = min
y,z,η,x

50y1 + 55y2 + 1z1 + 1z2 + η

s.t. x1
11 + x1

21 ≥ 90, x1
12 + x1

22 ≥ 30

x1
11 + x1

12 ≤ z1, x1
21 + x1

22 ≤ z2

z1 ≤ My1, z2 ≤ My2,

which gives a solution3 of τ∗ = 170, y∗1 = 1, y∗2 = 0, z∗1 = 120, z∗2 = 0. Update

LB = 170. Solve the subproblem

θ = max
w,λ,π

(60 + 30w1)λ1 + (30 + 15w2)λ2 − 120π1 − 0π2

s.t. λ1 − π1 ≤ 2, λ1 − π2 ≤ 3, λ2 − π1 ≤ 1, λ2 − π2 ≤ 6

w1 + w2 ≤ 1

w1 ≤ 1, w2 ≤ 1,

which gives a solution of θ∗ = 270, w∗
1 = 1, w∗

2 = 0. Update UB = min(UB, 50 +

120 + 270) = 440. Create new variables x2
11, x

2
12, x

2
21, x

2
22, and add the following cuts

to the master problem:

η ≥ 2x2
11 + 3x2

12 + 1x2
21 + 6x2

22

x2
11 + x2

21 ≥ 90, x2
12 + x2

22 ≥ 30

x2
11 + x2

12 ≤ z1, x2
21 + x2

22 ≤ z2.

3Solutions for x’s and η are omitted from the description.
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Iteration 3 Solve the master problem

τ = min
y,z,η,x

50y1 + 55y2 + 1z1 + 1z2 + η

s.t. η ≥ 2x2
11 + 3x2

12 + 1x2
21 + 6x2

22

x1
11 + x1

21 ≥ 90, x1
12 + x1

22 ≥ 30

x2
11 + x2

21 ≥ 90, x2
12 + x2

22 ≥ 30

x1
11 + x1

12 ≤ z1, x1
21 + x1

22 ≤ z2

x2
11 + x2

12 ≤ z1, x2
21 + x2

22 ≤ z2

z1 ≤ My1, z2 ≤ My2,

which gives a solution of τ∗ = 405, y∗1 = 1, y∗2 = 1, z∗1 = 30, z∗2 = 90. Update

LB = 405. Solve the subproblem

θ = max
w,λ,π

(60 + 30w1)λ1 + (30 + 15w2)λ2 − 30π1 − 90π2

s.t. λ1 − π1 ≤ 2, λ1 − π2 ≤ 3, λ2 − π1 ≤ 1, λ2 − π2 ≤ 6

w1 + w2 ≤ 1

w1 ≤ 1, w2 ≤ 1,

which gives a solution of θ∗ = 240, w∗
1 = 0, w∗

2 = 1. Update UB = min(UB, 105 +

120 + 240) = 440. Create new variables x3
11, x

3
12, x

3
21, x

3
22, and add the following cuts

to the master problem:

η ≥ 2x3
11 + 3x3

12 + 1x3
21 + 6x3

22

x3
11 + x3

21 ≥ 60, x3
12 + x3

22 ≥ 45

x3
11 + x3

12 ≤ z1, x3
21 + x3

22 ≤ z2.

Iteration 4 Solve the master problem

τ = min
y,z,η,x

50y1 + 55y2 + 1z1 + 1z2 + η

s.t. η ≥ 2x2
11 + 3x2

12 + 1x2
21 + 6x2

22

η ≥ 2x3
11 + 3x3

12 + 1x3
21 + 6x3

22

x1
11 + x1

21 ≥ 90, x1
12 + x1

22 ≥ 30

x2
11 + x2

21 ≥ 90, x2
12 + x2

22 ≥ 30

x3
11 + x3

21 ≥ 60, x3
12 + x3

22 ≥ 45
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x1
11 + x1

12 ≤ z1, x1
21 + x1

22 ≤ z2

x2
11 + x2

12 ≤ z1, x2
21 + x2

22 ≤ z2

x3
11 + x3

12 ≤ z1, x3
21 + x3

22 ≤ z2

z1 ≤ My1, z2 ≤ My2,

which gives a solution of τ∗ = 420, y∗1 = 1, y∗2 = 1, z∗1 = 45, z∗2 = 75. Update

LB = 420. Solve the subproblem

θ = max
w,λ,π

(60 + 30w1)λ1 + (30 + 15w2)λ2 − 45π1 − 75π2

s.t. λ1 − π1 ≤ 2, λ1 − π2 ≤ 3, λ2 − π1 ≤ 1, λ2 − π2 ≤ 6

w1 + w2 ≤ 1

w1 ≤ 1, w2 ≤ 1,

which gives a solution of θ∗ = 195, w∗
1 = 0, w∗

2 = 1. Update UB = min(UB, 105 +

120 + 195) = 420, which is equal to LB.

According to the solution, the first stage costs are 225 and the second stage costs

are 195. Figure 4.2 shows the solution of the sample problem from two perspectives

– from the capacity perspective and from the cost perspective. The solution must be

feasible for any one out of two deviations, either w1 = 1 and w2 = 0, or w1 = 0 and

w2 = 1. This is why a total of 120 units of capacity (z∗1 = 45 and z∗2 = 75) is needed
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Figure 4.2: Total demand for a robust solution.
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to ensure feasibility, but it happens in this instance that only a total of 105 units of

demand (d1 = 60+ 30w∗
1 = 60 and d2 = 30+15w∗

2 = 45) has to be satisfied to ensure

optimality. A slack of 15 units is created by the robust solution to make the solution

less sensitive to random demand realizations. As a matter of managerial interest, in

this case the safety capacity is optimally distributed between the two facilities, while

to total amount of this safety capacity is set according to a pre-specified robustness

level. This example, as well our numerical experiments in Chapter 5 indicate that

under uncertain demand realizations the capacity may not be fully utilized. This

insight is consistent with analytical results of Van Mieghem (2003) [53], who states

that a key feature of this safety capacity is that it is unbalanced, meaning that

regardless how the uncertain demand is realized one will typically not utilize all

capacities.
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Chapter 5

Numerical Studies

The overall goals of the numerical studies are three-fold. First, the proposed ro-

bust optimization models are implemented and solved to provide insights related to

finding optimal capacity types and quantities under different facility and technol-

ogy costs, and for varying levels of robustness (Section 5.2.1). Second, the solutions

obtained by robust optimization are compared to non-robust model solutions (Sec-

tion 5.2.2). Third, the performance of robust optimization solutions is compared

to that of stochastic programming solutions, including the effects of demand corre-

lations (Section 5.2.3). All experiments are conducted for both the single product

and multi-product model versions, corresponding to their formulations in Chapters 3

and 4.

Computational experiments are designed and implemented using recognized prac-

tices from the literature. For example, Baron et al. (2011) [4] offer a multi-period

facility location model under demand uncertainty. They use robust optimization

methodology in conjunction with simulation to show that the topology of the solu-

tion, the optimal facility sizes, and operational profits depend on the decision-maker’s

assumptions about the nature of uncertainty. This work is related to our study in that

it uses a joint capacity location and capacity sizing model using uncertainty set-based

robust optimization. However, the Baron et al. model considers only a single product
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and a single capacity type with linear unit capacity acquisition costs (as opposed to

concave piecewise linear costs in our work). The other characteristics that differen-

tiate their work from ours is that we formulate our models as two-stage models with

recourse, and solve them for a whole spectrum of different robustness parameter Ω

and Γ values. Regardless of the differences between the two studies, we adapt from

Baron et al. (2011) [4] the idea to generate samples of location coordinates and cus-

tomer demands, and to solve samples of problem instances using robust optimization,

albeit in a different setting. Another example of a computational study relevant to

our experiments, an application of stochastic programming approach to supply chain

design, is Santoso et al. (2005) [47]. As our intent is to use stochastic programming

only for benchmarking purposes, our adaptation of the Sample Average Approxima-

tion scheme, a stochastic programming method, from Santoso et al. (2005) [47] and

related works, is straightforward.

5.1 Experimental Design

The general experimental approach is similar between the single product and the

multi-product model; however, the data as well as the test instances are described

separately. In addition, while the main purpose of the single product model is to

investigate the effects of economies of scale in the context of an integrated facility

location, capacity acquisition, and technology choice model, the main purpose of the

multi-product model is to investigate the effects of economies of scope, as well as the

combined effects of scale and scope. All computational experiments are conducted

with randomly generated data that reflect a relatively wide range of possible problem

parameters in order to obtain more general insights. Most of the experiments, with the

exception of instances when robust optimization solutions are compared to stochastic

programming solutions, are conducted using the polyhedral uncertainty set, due to

58



the solution efficiency that greatly exceeds the efficiency of the ellipsoidal version of

the problem.

5.1.1 Generation of Problem Samples

A similar sample generation approach is used for both the single product and

multi-product models. These same samples are used for the robust model as well as

for a “non-robust” model, described in Section 5.1.2. The first step is to identify the

number of test instances that represent different combinations of facility and technol-

ogy type costs, as well as the cost ratios between flexible and dedicated technologies

(for the multi-product model). Each of the facility and technology type costs (f , e,

and g, defined in Chapter 3) is scaled to either “low” or “high” values, as described

below. This way, a wide range of possible outcomes can be observed, and at the same

time the number of these possible outcomes is contained to a manageable number of

combinations. The second step is to generate two samples – one for the single product

model and one for the multi-product model – and to scale the corresponding facility

and technology costs.

It is assumed that the facility and demand locations (x and y -coordinates) are

uniformly generated in a 100×100 square, transportation costs are set proportional

to the Euclidean distances between the locations, and the customer zone demands

are drawn from a uniform distribution (see, for example, Cornuejols et al., 1991 [17],

Lim and Kim, 1999 [35], Melkote and Daskin, 2001 [42], Baron et al., 2011 [4]). The

fixed production facility investment costs, fixed technology investment costs, and

unit technology investment costs are assumed to be equal for all facilities, i.e., fi = f ,

eil = el, and gil = gl. In addition, we assume that the dedicated capacity investment

costs are the same for both products – this assumption may be too restrictive for

real world problems; however, in support of our approach it is not uncommon in

the analytical literature on dedicated vs. flexible capacities to assume that the unit
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capacity investment costs for both products are the same (see, for example, Fine and

Freund (1990) [22], Lus and Muriel (2009) [37]). Thus, eDikl = eDl and gDikl = gDl .

The sampling of el and gl is described as follows. We assume that there exist

three different technology types (l1, l2, and l3) that represent a piecewise linear

non-decreasing cost structure. We also assume that l1 represents the most “labor-

intensive” technology, while l3 represents the most “capital-intensive”, or the most

automated technology (l2 is an intermediate alternative between l1 and l3). Thus,

e1 < e2 < e3, and g1 > g2 > g3. The fixed and unit technology costs, el and gl,

are generated from U(0, emax) and U(0, gmax), respectively, and sorted to satisfy the

following conditions:

0 < e1 < e2 < e3 < emax

gmax > g1 > g2 > g3 > 0.

The fixed facility costs are sampled from U(0, fmax). Scalars fmax, emax, and gmax

represent the upper limit the corresponding costs f , el, and gl can be drawn from.

Each of the max parameters is scaled to “low” or “high” to control the relative

magnitude of f vs. el, el vs. gl, and f vs. gl. It is assumed that the second stage

production costs are technology independent1, and are sampled from U(1, 10).

The sample size2 for the single-product model is 150, and for the multi-product

model 100. Each of the individual problems is solved for varying levels of robustness,

i.e., for 21 levels of Γ, where Γ ∈ [0, 20].

1The technology-based differences in unit costs are already reflected in gl.
2The sample sizes are based on two factors: the magnitude of standard error and computational

burden.
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Single Product Model Dataset

Table 5.1 summarizes the test instances for the single product model. Each indi-

vidual random single product problem is replicated R = 150 times, and the robust

problem (using the polyhedral uncertainty set) is solved, yielding a total of 25,200

instances of individual min-max robust problems (2fmax × 2emax × 2gmax × 21Γ ×
150R).

Data Values Description

I 10 number of production facilities

J 20 number of customer zones

L 3 number of technology types

fmax 5,000 or 20,000 maximum facility costs

emax 10,000 or 15,000 maximum fixed technology costs

gmax 7.5 or 10.0 maximum variable technology costs

cijl U(1, 10) + 1×dist. production and transportation costs

d̄j U(50, 450) nominal demands

d̂j 0.5d̄j maximum deviation of demands

Γ 0, 1, . . . , 20 robustness levels

R 150 number of replications

Table 5.1: Data for the single product model.

Multi-product Model Dataset

Table 5.2 summarizes the test instances for the multi-product model. Each indi-

vidual random multi-product problem is replicated R = 100 times, and the robust

problem (using the polyhedral uncertainty set) is solved, yielding a total of 12,600

instances of individual min-max robust problems (6Δ × 21Γ × 100R). It can be

emphasized that in the multi-product model each of the dedicated technologies and

the flexible technology has two sub-types (labor-intensive and capital-intensive), re-
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sulting in 6 technologies total in the model; for example, the variables for units of

capacity established are zDi11, z
D
i21, z

D
i12, z

D
i22, z

F
i1, and zFi2.

Data Values Description

I 10 number of production facilities

J 10 number of customer zones

K 2 number of products

L 2 number of technology types

fmax 5,000 maximum facility costs

eDmax 15,000 maximum fixed dedicated technology costs

gDmax 10.0 maximum variable dedicated technology costs

Δ 1, 1.25, 1.5, 1.75, 1.9, 2 flexible to dedicated technology cost ratio

cijkl U(1, 10) + 1×dist. production and transportation costs

d̄j1 U(50, 450) product 1 nominal demands

d̄j2 U(200, 400) product 2 nominal demands

d̂jk 0.5d̄jk maximum deviation of demands

Γ 0, 1, . . . , 20 robustness levels

R 100 number of replications r ∈ R

Table 5.2: Data for the multi-product model.

The flexible technology costs are established as follows. As in the case for the

single product model, the technology costs are the same for all facility locations. To

obtain the flexible capacity investment costs we use the flexible to dedicated technology

cost ratio Δ (see Table 5.2). As a result, eFl = ΔeDl and gFl = ΔgDl . We have selected

six different values for this ratio, including extreme cases of Δ = 1 and Δ = 2 that

represent a range of possible values for Δ in a two-product setting.

5.1.2 Non-robust Model Assumptions

The non-robust model used for comparison purposes to assess the quality of so-

lutions obtained using robust optimization is constructed as follows. We use a de-
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terministic3 “box-robustness” model that is solved for different, gradually increasing

deviation intervals. In Section 4.2 we defined the box and polyhedral uncertainty sets

as follows:

Box: Ubox :=
{
w

∣∣∣ |wj| ≤ 1, ∀j
}

Polyhedral: UΓ :=
{
w

∣∣∣ ∑
j

|wj| ≤ Γ; |wj| ≤ 1, ∀j
}
.

According to the box uncertainty set definition, the random variable wj , j ∈ J is

bounded by a J-dimensional unit hypercube, and in robust solutions all wj ’s will

take values of 1. Therefore, to restrict the worst-case solution when all wj’s equal

to 1, the robustness parameter Γ in the definition of the polyhedral uncertainty set

controls the number dimensions that can deviate from 0. The importance of how the

polyhedral uncertainty set is defined is that it considers joint deviations. The box

uncertainty set allows all individual deviations. The non-robust model, therefore, is

constructed for gradually increasing intervals from 0 to 1, i.e., it is a box robustness

model for different interval sizes. For example, for card(J) = 20, the polyhedral

robust model with Γ = 10 is compared to the non-robust box model with |wj| ≤ 0.5,

i.e., instead of allowing any 10 out of 20 wj’s to deviate within the interval [0, 1], the

box model allows all 20 to deviate within the interval [0, 0.5].

5.1.3 Assumptions for Stochastic Programming Implemen-
tation

The data selection process when comparing the robust optimization solutions to

stochastic programming solutions is similar to the process described in Section 5.1.1;

however, except for using samples of problem instances, we randomly select one in-

3We call this model non-robust instead of deterministic because robust optimization is a deter-
ministic methodology itself.
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stance for the single product model, and one instance for the multi-product model.

These two instances are solved using both ellipsoidal and polyhedral uncertainty set-

based robust optimization. We also solve four instances using stochastic programming

(one for the single product model and three for the multi-product model). We then

simulate the performance of the robust solution using the same batch of samples that

is used to estimate the statistical upper bound in the stochastic solution. For the

multi-product case we investigate the effects of demand correlation: we use uncorre-

lated, −0.95, and 0.95 correlation levels between the two products.
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Figure 5.1: Standard deviations of normal and uniform set equal.

One of the main questions that needs to be addressed when comparing the results

obtained using robust optimization and those obtained using stochastic programming

is the relationship between the robust interval and a variability measure for the distri-

bution type used in stochastic programming. One approach is to make an assumption

that the half-length of the robust interval is equal to three standard deviations with

the probability of 99.7% (in the case of normal distribution). An alternative approach,

used in our study, is to assume that the robust interval corresponds to a symmetric

uniform distribution with its half-support equal to the robust interval4. Then, pro-

vided that such assumption is justified, we set equal the standard deviation for the

4Here we are including an additional assumption about the distribution of the random parameter
within the robust interval, i.e., we are assuming that it follows a uniform distribution, whereas the
original definition of the random parameter in robust optimization includes no such assumption.
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uniform distribution and the standard deviation for the normal distribution, in which

case the standard deviation for demands is σ = d̂/
√
3 (see Figure 5.1). Using the

two-stage decision framework (see Section 4.3), the stochastic program for our models

can be formulated as follows:

min
y,v,z

f�y + e�v + g�z+ Ed

[
Q
(
z,d(ω)

)]
. (5.1)

We use the Sample Average Approximation method in our stochastic programming

implementation (notation in Table 5.3). Our implementation is based on works by

Santoso et al. (2005) [47], Linderoth et al. (2006) [36], and Shapiro et al. (2009) [49].

In SAA, the continuous expectation function in (5.1) is approximated using Monte

Carlo sampling:

min
y,v,z

f�y + e�v + g�z+
1

N

N∑
n=1

Q(z,dn). (5.2)

N scenarios in the sampled problem (n = 1, . . . , N)

M number of replications of the SAA problem (m = 1, . . . ,M)

N ′ sample size to estimate the objective function value (n′ = 1, . . . , N ′)

u decision variables of the first stage

φ(u) objective function of the two-stage stochastic problem

ϑ optimal value of the true problem

φ̂N (u) objective function of the two-stage SAA problem

ϑ̂m
N optimal objective value of the SAA problem

ûmN decision variables in the optimal solution of the SAA problem

ϑ̄N,M statistical lower bound for ϑ

σ̂2
N,M estimate of the variance of ϑ̄N,M

LN,M (1− α) confidence lower bound

u∗ feasible solution of the true problem

φ̂N ′(u∗) statistical upper bound for ϑ

σ̂2
N ′(u∗) estimate of the variance of φ̂N ′(u∗)

UN ′(u∗) (1− α) confidence upper bound
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gap(u∗) estimate of the optimality gap

σ2
gap(u∗) estimate of the variance of gap(u∗)

Table 5.3: Notation used for SAA.

We use the following sample sizes: M = 20 batches of N = 50 and N ′ =

1,000, which is consistent with the stochastic programming literature (e.g., Santoso

et al. (2005) [47]). The Sample Average Approximation method is summarized as

follows, using notation provided in Table 5.3.

SAA Algorithm

1. For m = 1, . . . ,M repeat the following steps.

(a) Generate an i.i.d. random sample d1, . . . ,dN .

(b) For d1, . . . ,dN , solve the SAA problem, and let ϑ̂m
N and ûmN be the optimal

objective value and the optimal solution, respectively.

(c) Generate an i.i.d. random sample d1, . . . ,dN ′
, independent from sample d1, . . . ,dN

generated in Step 1a.

(d) Select a feasible solution u∗ to the true problem (5.1), i.e., the optimal solution

of the SAA problem ûmN , and estimate the true objective function value φ(u∗) (a

statistical upper bound), the variance of this estimate, and a (1−α) confidence

upper bound as follows:

φ̂N ′(u∗) := f�y∗ + e�v∗ + g�z∗ +
1

N ′

N ′∑
n′=1

Q
(
z∗,dn′)

, (5.3)

σ̂2
N ′(u∗) :=

1

N ′(N ′ − 1)

N ′∑
n′=1

(
f�y∗ + e�v∗ + g�z∗ +Q

(
z∗,dn′)−

φ̂N ′(u∗)
)2

, (5.4)

UN ′(u∗) := φ̂N ′(u∗) + z(α)σ̂N ′(u∗). (5.5)

2. Estimate a statistical lower bound to ϑ, its variance, and a (1 − α) confidence lower
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bound as follows:

ϑ̄N,M :=
1

M

M∑
m=1

ϑ̂m
N , (5.6)

σ̂2
N,M :=

1

M(M − 1)

M∑
m=1

(
ϑ̂m
N − ϑ̄N,M

)2
, (5.7)

LN,M := ϑ̄N,M − t(α,M−1)σ̂N,M . (5.8)

3. For each solution ûmN , m = 1, . . . ,M , estimate the optimality gap, and its variance:

gap(u∗) := φ̂N ′(u∗)− ϑ̄N,M (5.9)

σ2
gap(u∗) := σ̂2

N ′(u∗) + σ̂2
N,M (5.10)

The most difficult part of SAA is the Step 1b. For smaller problem instances the

SAA problem can be solved directly by CPLEX; however, larger problems require

application of a decomposition approach.

5.2 Results and Analysis

The results in this section are presented in the order that corresponds to the order

of the research questions (RQ1, RQ2, and RQ3) formulated in Chapter 1. In the

subsequent subsections, related to the research questions, the findings are presented

first for the single product model and then for the multi-product model. In general,

while the primary purpose of the single product model is to examine the effects of

economies of scale, the purpose of the multi-product model is to examine the joint

effects of scale and scope. Therefore, the single product model can be viewed as a

“building block” for a more general multi-product model.
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5.2.1 Findings Related to Research Question 1

In numerical studies related to RQ 1 we examine how different levels of robustness,

facility, and technology costs affect the quantities, types and allocation of technologies

to facilities.

Single Product Model

The single product experiments consist of eight instances that correspond to the

number of combinations formed by two fmax values (i.e., “low” and “high”), two emax

values, and two gmax values. Detailed results for these eight problem instances are

presented in Appendix Tables A1–A85. It can be noted that the low vs. high values

of these parameters were obtained by scaling them within the same sample, and not

by generating different random values. This way we are able to look at strictly the

effects of cost magnitude alone without any additional “random noise.” Each of the

eight cost combinations was solved for varying levels of robustness, represented by Γ.

For the purposes of expositional clarity, here, as well as in the following sections, we

graphically present only select figures that help facilitate the analysis and discussion.

As noted in Table 5.1, in the single product model experiments we use three

technologies of different capital-intensity, l1, l2, and l3. Figure 5.2 shows the detailed

results for the same level of fixed facility costs (fmax = 5,000). The top row of

Figure 5.2 (5.2a and 5.2b) represents low emax, while the bottom row (5.2c and 5.2d)

represents high emax. Likewise, the left column of Figure 5.2 (5.2a and 5.2c) represents

low gmax, while the right column (5.2b and 5.2d) represents high gmax. Figure 5.2 leads

to two observations with regards to the level of robustness and the relative magnitude

of fixed and unit technology costs. First, as the level of robustness increases, for low-

to-medium Γ values, the quantity of the most capital-intensive technology l3 increases

at a rate that substantially exceeds the rates of increase for technologies l1 and l2.

5Abbreviations used in these and other tables are explained on page 95.
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(a) emax = 10,000, gmax = 7.5
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(b) emax = 10,000, gmax = 10.0
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(c) emax = 15,000, gmax = 7.5
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(d) emax = 15,000, gmax = 10.0

Figure 5.2: Average capacity levels with fmax = 5,000.

In other words, most of additional capacity that is acquired due to increased levels of

robustness, can be attributed to the most capital-intensive technology. Second, the

relative magnitude of fixed and unit technology costs has the following impact on the

quantity of capacity:

• higher fixed costs e lead to lower levels of capital-intensive technology l3,

• higher fixed costs e lead to higher levels of labor-intensive technology l1,

• higher unit costs g lead to higher levels of capital-intensive technology l3,

• higher unit costs g lead to lower levels of labor-intensive technology l1,

• neither fixed nor unit costs have substantial impact on the levels of intermediate

technology l2 for the parameter values considered.
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Figure 5.3: The impact on the average capacity levels of “high” (fmax = 20,000) vs. “low” (fmax =
5,000) fixed facility costs for emax = 10,000 and gmax = 7.5.

The outcomes for high fixed facility costs fmax = 20,000 show very similar impact

(see Figure 5.3) for all four combinations of technology costs. The average quantity

of l3 technology is approximately 15-30% higher over the range of Γ for fmax =

20,000 vs. fmax = 5,000, the average quantity of l1 technology is approximately

35% lower for fmax = 20,000 vs. fmax = 5,000, and the average quantity of l2

remains about the same6. We can conclude that higher fixed facility costs lead to

higher utilization of more capital intensive technologies and lower utilization of labor-

intensive technologies, because for fmax = 20,000 there are fewer facilities on average,

which in turn favors high fixed cost and low unit cost technology l3.

Figure 5.4 shows the average number of installations of technologies l1, l2, and l3

per facility with fmax = 5,000. Due to constraint
∑

l vil ≤ 1 (see page 32), the sum

of the number of average technology installations is equal to the average number of

facilities open. Just like in the case with regards to the quantities of technology types,

the average number of technology installations are affected by the level of robustness

and the relative magnitude of fixed and unit technology costs. The average number of

high capital intensity installations l3 increase with the increase of robustness level Γ,

the average number of low capital intensity installations l1 decrease with the increase

6Because of high similarity of the impact of fixed facility costs, we include comparative results
only for the first instance (Figure 5.2a).
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(a) emax = 10,000, gmax = 7.5
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(b) emax = 10,000, gmax = 10.0
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(c) emax = 15,000, gmax = 7.5
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(d) emax = 15,000, gmax = 10.0

Figure 5.4: Average number of technology installations with with fmax = 5,000.

of Γ, while the average number of medium capital intensity installations l2 remain the

same. The impact of the first stage costs (the fixed facility costs, and fixed and unit

technology costs) on the average number of technology installations are summarized

as follows:

• higher fixed costs e lead to fewer l3 installations on average,

• higher fixed costs e lead to more l1 installations on average,

• higher unit costs g lead to more l3 installations on average,

• higher unit costs g lead to fewer l1 installations on average,

• neither fixed nor unit costs have substantial impact on the number of l2 instal-

lations on average for the parameter values considered.
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Figure 5.5: The impact on the average number of technology installations of “high” (fmax = 20,000)
vs. “low” (fmax = 5,000) fixed facility costs for emax = 10,000 and gmax = 7.5.

Figure 5.5 shows the impact of high vs. low fixed facility costs on the average number

of technology installations7. With the increase in fixed facility costs the number of l1

and l2 installation decreases substantially (approximately 40% for l1 and 25% for l2),

while the number of l3 installations show only a slight increase. Especially sensitive

to the fixed facility costs is the average number of established capacities of type l1,

as the low-fixed-cost benefits of l1 diminish with the increases in fixed facility costs.

The increase in fixed facility costs lead to fewer, but larger capacity installations

represented by technology l3.

The average capacity sizes per technology installations, as expected, are larger for

l3, and smaller for l1. The impact of different emax and gmax values on the installation

sizes appear to be insignificant. However, the average sizes depend on the fixed facility

costs fmax and the different levels of robustness.

Multi-product Model

The multi-product experiments consist of six instances that represent the different

levels of flexible to dedicated cost ratio. Detailed results for these six problem in-

stances are presented in Appendix Tables A9–A20. The insights obtained from these

test instances are related not only to the relative amounts of capacity established,

7The effects of high fixed facility costs are shown for Figure 5.4a
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represented by use of dedicated vs. flexible technologies under different technology

costs between the two, but also to the interdependence between the labor-intensive

and capital-intensive technologies on the one hand, and the dedicated and flexible

technologies on the other hand. The levels of robustness, just as in the single product

case, is varied from 0 to 20. The multi-product version of the problem is solved for

two technologies, labor-intensive and capital-intensive, hereafter denoted L and K,

respectively8. The combination of L and K technologies with D (dedicated) and F

(flexible) produce the following technology types in a two-product setting: D1L, D2L,

D1K, D2K, FL, and FK. Symbol D without an index means the combined amount

of dedicated capacities of the two products, i.e., D = D1 + D2. It is important to

note that in the multi-product version of the model we are not varying the fixed facil-

ity costs, and the dedicated fixed and variable unit capacity investment costs – they

are fmax = 5,000, eDmax = 15,000, and gDmax = 10.0, respectively. What is changing,

however, is the ratio of flexible capacity investment costs to the dedicated capacity

investment costs, denoted Δ. The instances with Δ = 1 and Δ = 2 represent extreme

cases, when the flexible capacity either costs the same as each dedicated capacity (as-

suming both dedicated capacities have the same costs), or the flexible capacity costs

the same as the sum of costs of two dedicated capacities. These two extreme cases

are included for illustration purposes only to show that when Δ = 1, a firm would

never invest in dedicated capacities, and when Δ = 2, a firm would never invest in

flexible capacity. Thus, in the interest of analyzing more interesting instances, we

will focus four alternatives with Δ = 1.25, Δ = 1.5, Δ = 1.75, and Δ = 1.9. Fig-

ure 5.6 reflects the dynamics between D, F , L and K with changing Δ. The left

column of Figure 5.6 shows the changes in dedicated technology levels with increas-

ing Δ, whereas the right column shows the changes in flexible technology levels. In

the case of dedicated technologies D, the labor-intensive technology L dominates, in

8For notational simplicity we are using L and K, instead of l1, l2, etc., as we are considering
only two levels of capital-intensity in the multi-product case.
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(a) D capacities, Δ = 1.25
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(b) F capacities, Δ = 1.25
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(c) D capacities, Δ = 1.5
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(d) F capacities, Δ = 1.5
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(e) D capacities, Δ = 1.75
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(f) F capacities, Δ = 1.75
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(g) D capacities, Δ = 1.9
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(h) F capacities, Δ = 1.9

Figure 5.6: Average capacity levels for various flexible to dedicated technology cost ratio Δ values.
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terms of quantities, over capital-intensive technology K, i.e., DL dominates over DK.

The opposite situation can be observed for flexible technologies, that is, the capital-

intensive flexible technology FK has higher capacity levels than the labor-intensive

flexible technology FL. With the increase of the flexible capacity costs relative to

dedicated capacity costs, the diminishing amounts of flexible capacity are replaced by

the capital-intensive dedicated technologies DK, while the levels of labor-intensive

dedicated technologies DL show only smaller increases. Another observation pertains

to the impact of the level of robustness on the relative amounts of technology types.

It appears that higher levels of Γ “favor” more capital-intensive technologies: for low

Δ values (1.25), FK clearly dominates over other types; for high Δ values (1.9 and

2), DK almost doubles the established capacity. Considering labor-intensive flexible

capacity FL, the results show that its use becomes insignificant for higher Δ values

(1.75 and 1.9); however, for lower Δ values (1.25 and 1.5) FL exhibits significant

presence. Moreover, it appears that FL has a tendency to decrease with increasing

robustness levels.

Figure 5.7 shows the average sizes per technology installation for different Δ values

(1.25, 1.5, and 1.75). As expected, capital-intensive technologies have larger sizes per

installation, both for dedicated and flexible technologies. This result for the multi-

product case is consistent with the result obtained in the single product case, and it

confirms the effects of economies of scale in a multi-product setting.

In the multi-product case there is no restriction placed on how many dedicated

or flexible technologies can be established at a single facility. Therefore, one can

consider a question about the average number of technology installations per facility,

taking into account varying robustness levels. Our findings indicate that the number

of technology installations per facility depends on the flexible to dedicated cost ratio

Δ alone, and not on the level of robustness.

In this section we focused on four outcomes that emerge from different combi-
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(a) D capacities, Δ = 1.25
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(b) F capacities, Δ = 1.25
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(c) D capacities, Δ = 1.5
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(d) F capacities, Δ = 1.5
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(e) D capacities, Δ = 1.75
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(f) F capacities, Δ = 1.75

Figure 5.7: Average capacity levels per technology installation for various flexible to dedicated
technology cost ratio Δ values.

nations of first stage costs and varying levels of robustness: the number of facilities

open, the relative quantities of different technologies installed, the average sizes of

technology installations, and the number of technologies established per facility. Our
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findings related to the first research question show that both the single product and

multi-product model solutions exhibit behavior that is consistent with the effects of

economies of scale and scope.

5.2.2 Findings Related to Research Question 2

In this section, we look at how robust optimization solutions differ from non-

robust solutions, with respect to the quantities, types and allocation of technologies

to facilities for varying levels of robustness. A method for developing a non-robust

(or a “box”) model was described in Section 5.1.2. As previously, we will consider

the single product case first, followed by a more general multi-product version of the

problem. The issue of comparing a robust solution to a non-robust solution is an

important one as it allows to separate the “effects of robustness” from the effects

of scale and scope. We will address the question of why non-robust solutions are

inferior to robust ones in Section 5.2.3. These robustness effects manifest themselves

in manner that can be considered similar to the “risk pooling” behavior.

Single Product Model

In the single product case the comparison between robust and non-robust solu-

tions is done for the three technologies of different capital intensity, l1, l2, and l3.

The robust problem and solution is described in detail in Section 5.2.1. Figure 5.8

illustrates the differences between the robust and non-robust (“box”) solutions, con-

sidering different first stage costs9. The solutions for both models are the same when

Γ = 0 and when Γ = card(J) by construction, representing the nominal and worst-

case (as defined in robust optimization) instances, respectively. Figure 5.8 considers

a case when fmax = 5,000; similar results are obtained with fmax = 20,000. Accord-

9The solid lines and letter r denote robust solutions, while the dashed lines and letter b denote
non-robust (“box”) solutions.
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(a) emax = 10,000, gmax = 7.5
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(b) emax = 10,000, gmax = 10.0
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(c) emax = 15,000, gmax = 7.5
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(d) emax = 15,000, gmax = 10.0

Figure 5.8: Average capacity levels: robust vs. non-robust (“box”) solutions.

ing to the solved instances, for all cost combinations there is a substantial difference

between capacity levels for high capital-intensity technology l3 according to the ro-

bust vs. non-robust solutions. The capacities for low capital-intensity technology l1

are essentially the same for both robust and non-robust solutions. The capacities

for medium capital-intensity technology l2 are just slightly higher for the robust so-

lutions. In terms of the number of total facilities and the number of facilities with

certain technologies10, the robust vs. non-robust solution differs as follows: while the

total number of facilities is the same for both robust and non-robust solutions, the

number of l3 technologies is higher and the number of l1 technologies is lower for the

10There is only one technology per facility in the single product case (see constraint 3.6 on
page 32).
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robust solutions compared to non-robust ones.

These results suggest that the robust solution prescribes larger facilities, repre-

sented by more capital-intensive technology l3, in which case the production-distribution

network can better respond to joint demand deviations. The non-robust model is op-

timized only for individual demand deviations. Thus, in the single product case, the

robust solution can be considered more “volume flexible”11, which means greater cost-

effectiveness in responding to spatially distributed uncertain demand realizations.

Multi-product Model

In the multi-product case the comparison between robust and non-robust solutions

is done for the dedicated as well as flexible capacities. In this section we consider the

total amount of dedicated capacity for each of the two levels of capital-intensity. Fig-

ure 5.9 shows the robust solutions compared to non-robust solutions as the flexible

capacity becomes more expensive compared to dedicated capacity12, expressed in the

value of Δ. Figure 5.9a indicates that in the case of Δ = 1 dedicated capacity is not

used; the inclusion of this case is for illustration purposes only to show that when

Δ = 1, a firm would never invest in dedicated capacities. According to Figure 5.9 the

quantities of both the labor-intensive technology DL and the capital-intensive tech-

nologyDK increase with the increase in Δ. However, while the robust and non-robust

solutions do not differ much for the labor-intensive technology, the robust solutions

for the capital-intensive technology show notable differences. This observation sup-

ports the claim that when the levels of robustness increase, and the flexible capacity

becomes more expensive, a firm would rely more on dedicated capital-intensive tech-

nology DK.

Figure 5.10 reflects the changes in the quantities of flexible technologies FL and

11Not to be confused with the flexibility concept as used in this work and applied to multi-product
technology flexibility.

12The solid lines and letter r denote robust solutions, while the dashed lines and letter b denote
non-robust (“box”) solutions.
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(a) Δ = 1.0
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(b) Δ = 1.25
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(c) Δ = 1.5
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(d) Δ = 1.75
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(e) Δ = 1.9
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(f) Δ = 2.0

Figure 5.9: Comparison of robust to non-robust (“box”) solutions for DL and DK technologies for
different Δ values.

FD as the Δ increases, i.e., the flexible technology becomes more expensive relative to

dedicated technology. Figure 5.10f represents an instance when Δ = 2, in which case a

firm is not investing in flexible capacity. Just like for the dedicated capacity, this case
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(a) Δ = 1.0
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(b) Δ = 1.25
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(c) Δ = 1.5
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(d) Δ = 1.75
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(e) Δ = 1.9
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Figure 5.10: Comparison of robust to non-robust (“box”) solutions for FL and FK technologies for
different Δ values.

is included for illustration purposes. As flexible capacity becomes more expensive, its

overall amount is decreasing. However, there exist notable differences between the

robust and non-robust solutions. For Δ values 1.0, 1.25, and 1.5 the robust solutions
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indicate higher levels for the capital-intensive technology FK than the non-robust

solutions. For the flexible labor-intensive technology FL, the respective amounts

used between robust and non-robust solutions are similar, although robust solutions

indicate slightly higher levels of FL for Δ = 1.0 to Δ = 1.75. The behavior of the

flexible technologies indicate a similar pattern to dedicated technologies, namely, the

differences between robust and non-robust solutions can be attributed mainly to the

capital-intensive technology FK. Our experiments comparing robust vs. non-robust

solutions also revealed that in cases when Δ is not too high (i.e., 1.0, 1.25, and 1.5) the

robust solutions prescribe more flexible capacity compared to non-robust solutions.

That is, the combined quantity FL + FK is higher for the robust than non-robust

solutions. The overall pattern of behavior of the four technologies (DL, DK, FL, and

FK) under increasing level of robustness indicate that while the flexible capacity has

relatively low cost, a firm invests in capital-intensive flexible technology to better cope

with demand uncertainty. With the increased cost of flexible technology, a firm shifts

its increased amounts of capacity due to increased robustness to capital-intensive

dedicated technologies.

Our numerical studies related to the second research question indicated that there

exist differences between robust and non-robust solutions with regards to how in-

creasing levels of robustness affect the optimal quantities of different capacity types.

Robust solutions show a more rapid rate of increase in capital intensive as well as

flexible technologies, compared to the non-robust solutions. These increases can not

be attributed just to the effects of economies of scale and scope.

5.2.3 Findings Related to Research Question 3

This section presents results related to the comparative performance of solution

obtained by robust optimization compared to those obtained by stochastic program-

ming. Detailed results are presented in Appendix Tables A21–A28. As previously, we
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first review results related to the single product model, and then turn to analysis of

the multi-product model. The stochastic programming results are obtained using the

Sample Average Approximation method as described in Section 5.1.3. The results for

both the single product and multi-product model are compared in two aspects: first,

in terms of costs, and second, in terms of capacities of different technologies.

Single Product Model

Figure 5.11 illustrates the comparison of results obtained by robust optimization

to those obtained by stochastic programming. In Figure 5.11a the total robust solu-

tions for the ellipsoidal and polyhedral uncertainty sets are presented. In Figure 5.11b
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Figure 5.11: Single product model costs.

the performance of the first stage robust solution is compared to the stochastic solu-

tion. It shows that by appropriately selecting the robustness parameters Γ or Ω, the

performance in terms of costs of the first stage solution obtained via robust optimiza-

tion is of comparable quality to the stochastic first stage solution. Specifically, the

best performance in the case of polyhedral uncertainty set is obtained with Γ = 3.0

(with value 186,730.9), and in the case of ellipsoidal uncertainty set with Γ = 5.5,

which is equivalent to Ω = 1.23 (with value 186,953.9). In both instances, these

values are within the ranges of standard errors for the estimates of robust solutions
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and the stochastic upper bound (UB = 186,747.4). These results are consistent with

the theoretically recommended robustness budget Γ that scales with
√
card(J) (e.g.,

Bertsimas et al., 2013 [10]), and are based, according to [10], on implications of the

probability laws, specifically, the central limit theorem. Thus, as a general guideline

for selecting an appropriate level of robustness, in the case when solving the model

for all Γ is not practical, we would chose Γ =
√

card(J) (or in this case,
√
20 ≈ 4.47,

which is equivalent to Ω = 1).
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(a) Polyhedral set.
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(b) Ellipsoidal set.

Figure 5.12: Capacity levels for the single product solutions (robust vs. stochastic).

Taking into account the above considerations with regards to the appropriate

values of the robustness parameters, we can address the issue of the best capacity

configuration for the single product model with three technology alternatives l1, l2,

and l3. According to Figure 5.12, we can observe that the robust capacity solutions

for the three technologies are relatively close to the horizontal dashed lines, repre-

senting the stochastic capacity solutions, at Γ = 4.47 (Figure 5.12a) and Ω = 1

(Figure 5.12b.) It is a characteristic for the objective values of robust solutions (e.g.,

red and blue solid lines in Figure 5.11a) to exhibit “smooth” increases along hori-

zontal axis. However, the capacity graphs (in Figure 5.12) exhibit “erratic behavior”

that represents qualitative shifts from one technology type to another. This outcome

can be explained, as suggested in Chapter 4, by the differences between the largest
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and the costliest demand deviations in the “optimal robust” solutions. By gradually

increasing Γ, the objective value reflect the gradually increasing costs of these devi-

ations, thus the resulting “smoothness” of the objective value graph in Figure 5.11a.

However, when we consider gradually increasing Γ, the resulting capacity size in-

creases or transitions from one technology to another do not have to be “gradual” or

“smooth.” In other words, because the costliest demand deviations are not the same

as the largest demand deviations, the rates of cost increases and the rates of capacity

increases with the increase in Γ can be very different. Another factor that contribute

to the qualitative shifts between technologies is that we do not impose lower and

upper limits on the amounts that can be produced using particular technology types,

which means that slight cost differences can lead to radically different outcomes with

respect to technology types.

Multi-product Model

The cost results for the robust vs. stochastic multi-product model are presented

in Figure 5.13, specifically, Figure 5.13a shows the robust solutions for both the ellip-

soidal and polyhedral uncertainty sets, and Figures 5.13b – 5.13d show the stochastic

solutions as well as simulated first stage robust solutions for different levels of corre-

lation. In the case of the multi-product version of the model, for both polyhedral and

ellipsoidal uncertainty sets, the estimate of the cost performance of the first stage so-

lution is slightly worse at the respective lowest points (see Figure 5.13), and is outside

the range of the standard errors (with the exception for the polyhedral uncertainty

set with uncorrelated and negatively correlated demands). However, this difference is

roughly 0.5% of the total costs, which is about the same as the gap between stochastic

upper bound and lower bound. Based on the extensive simulation results we can not

conclude that the performance of the first stage robust solution is substantially worse

than the performance offered by stochastic solution, provided that the values of ro-
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(b) Stoch. solution; unorrelated demands.
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(c) Stoch. solution, −0.95 correlated demands.
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(d) Stoch. solution, 0.95 correlated demands.

Figure 5.13: Multi-product model costs.

bustness parameters are chosen appropriately. Quite the opposite: we can argue that

the robust solution performs very well taking into account the absence of demand

correlation information, or any distributional information explicitly included in the

robust optimization model.

When considering the capacity levels of different technology types (Figure 5.14),

we can observe that the robust solutions are relatively close to stochastic solutions in

the uncorrelated case at Γ = 4.47 and Ω = 1, which is similar to our observations for

the single product model. However, for both the negatively and positively correlated

cases, the proportions of flexible vs. dedicated capacities given by the robust solution

are different from the proportions given by the stochastic solution. According to

the stochastic solution, the levels of flexible capacity are much higher in the case of
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(a) Polyhedral set, uncorrelated.
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(b) Ellipsoidal set, uncorrelated.
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(c) Polyhedral set, −0.95 correlation.
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(d) Ellipsoidal set, −0.95 correlation.
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(e) Polyhedral set, 0.95 correlation.
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(f) Ellipsoidal set, 0.95 correlation.

Figure 5.14: Capacity levels for the multi-product solutions (robust vs. stochastic).
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negatively correlated demands, and there is no need for flexible capacity in the case of

positively correlated demands – this result is consistent with results from the flexible

capacity literature.

To conclude our discussion with regards to experimental results in this section,

we need to be aware about the implicit assumptions we make when we compare the

results obtained by using robust optimization methodology vs. the results obtained by

using stochastic programming. Without making these assumptions we would not be

able to “compare apples to oranges.” Therefore, we need to use caution when making

conclusive statements about the relative performance of these two approaches. In

our presentation of results we discussed the performance of the first stage solution,

not the performance in terms of total costs, which include both the first stage and

the recourse costs. Of course, the robust optimization method will give much higher

total costs, because it is the worst case approach vs. the expected value approach.

However, from the perspective of strategic capacity acquisition perspective we are, in

fact, interested primarily in these first stage solutions.
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Chapter 6

Conclusions and Future Research

In this dissertation we provided theoretical background on capacity planning and

resource acquisition decisions, applied the robust optimization methodology to the

integrated facility location, capacity acquisition, and technology choice problem, and

conducted rigorous computational studies. We have obtained insights for making

strategic level capacity investment decisions and insights regarding the uncertain mar-

ket environment in which these decisions are made. The importance of determining

appropriate locations and technology types, and a correct assessment of changing

market dynamics becomes even more pronounced for firms with global operations.

We believe that the simultaneous consideration of various strategic decision level is-

sues is a step towards a more integrative approach, as often recommended in the

literature, in production-distribution network and supply chain modeling. As a re-

sult, we obtained insights for further research as well as for managerial considerations.

These insights can be summarized as follows.

• Robust optimization provides solutions that are both feasible and optimal for

all random demand realizations within a specific uncertainty set and level of

robustness. However, due to the differences between largest vs. costliest demand

realizations, the total amount of capacity established will be larger than the total
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aggregate demand under stochastic demand conditions. The difference between

the total installed capacity and total realized demand constitute the safety

capacity. In an optimization model context, this safety capacity is represented

as slacks in supply constraints. The robust solution not only determines the

appropriate amount of this safety capacity, but it also places these slacks in

those supply constraints that will provide maximum robustness at minimum

cost. In this sense robust optimization can be interpreted as “optimization of

slacks.”

• For varying levels of robustness, we showed that the fixed facility costs, the

fixed and unit technology costs, and the flexible-to-dedicated cost ratio affect the

number of facilities open, the relative amounts of different technologies installed,

the average sizes of technology installations, and the number of technologies

established per facility. At the same time our findings indicate that the choice

of a particular technology type is highly volatile with respect to increasing

levels of robustness, even though the total capacity amounts show more gradual

increases. We provided an explanation regarding these apparent shifts, and we

attributed this phenomenon to the uncertainty set based robust optimization

approach that leads to such outcome, which is absent in both deterministic

optimization and stochastic programming.

• Our numerical studies in both single product and multi-product settings showed

a consistent pattern of behavior of robust solutions with regards to capital-

intensive and flexible technologies. We showed that this behavior, i.e., a risk-

pooling behavior, can not be attributed just to the effects of economies of scale

and the effects of economies of scope alone by comparing robust solutions to

non-robust solutions. In the single-product setting these “robustness effects”

mean that with the increase of robustness levels, the additional safety capacity

will be allocated to the most capital-intensive technology. In the multi-product
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setting, the “robustness effects” depend on the relative cost of flexible vs. ded-

icated technologies. When the flexible technology is not too expensive relative

to the dedicated technology costs, the safety capacity will be allocated to a

more capital-intensive flexible technology. When the flexible technology costs

become expensive relative to the dedicated technology costs, the safety capacity

will be allocated to capital-intensive dedicated technologies. We also analyzed

the behavior of labor-intensive technologies. Labor-intensive dedicated tech-

nologies indicate higher amounts of capacity than capital-intensive dedicated

technologies; however, the opposite can be observed for flexible technologies:

the amounts of labor-intensive flexible technologies used are always lower than

the amounts of capital-intensive flexible technologies for our setting.

• We conducted experimental studies with the purpose of comparing the results

obtained using robust optimization, using both the ellipsoidal and polyhedral

uncertainty sets, to the results obtained using stochastic programming. An in-

sight from the comparison is that our numerical studies confirmed the theoretical

guidelines related to the “best” choice of the robustness parameter within the

context of traditional stochastic programming and the probabilistic paradigm.

Also, we provided an interpretation of the concept of value-of-information and

determined that there exists a level of robustness under which the robust solu-

tions demonstrate comparable performance to stochastic solutions. In addition

to comparing the robust optimization solutions to the stochastic programming

solutions we compared the results of robust optimization based on different un-

certainty sets, i.e., the ellipsoidal uncertainty set and the polyhedral uncertainty

set. As expected, the polyhedral version of the robust problem gives more con-

servative results. This comparison contributed not only to understanding of

the magnitude of differences between the two robust solutions, but also to un-

derstanding of computational challenges associated with solving a non-convex
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bilinear ellipsoidal uncertainty set based robust problem.

Our facility location, capacity acquisition, and technology choice model has certain

practical implications. First, a number of conditions have to be present for this model

to be applicable to practical industry settings. These conditions stipulate that there

exist spatially distributed random demands and that the transportation costs are

not negligible. Furthermore, there exist production capacities of different technology

types that lead to economies of scale and economies of scope. These are relatively

restrictive conditions; therefore, it is more likely that this model is applicable to firms

with global operations that face spatially distributed markets, substantial production

and transportation costs, and a range of technologies and product families. One

example of a potential industrial application would be agricultural supply chains,

where transportation of raw agricultural output is cost-prohibitive, and therefore the

processing facilities need to be located near the areas of varying density and varying

scope of agricultural output.

There are some limitations to our work. One of the limitations is related to the

type of study we conduct. Any research findings that are based on computational

experiments can only be generalized using a great deal of caution. These findings can

either offer insights by confirming theoretical conclusions, or lead to more extensive

studies of questions that require additional research. Our experimental design was

developed with an intent to minimize the possibility of outcomes that are based

on specific problem parameters, rather than on relationships of more fundamental

nature. Another limitation is related to the fact we have not provided a detailed

industrial application using the facility location, capacity acquisition and technology

choice model using robust optimization methodology.

Future research may focus on additional questions that were identified in the

course of working on this dissertation. Some of the potential research directions in-

clude the extension of the uncertainty set formulations to other problem parameters
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(e.g., costs), the examination of the model in a multi-period setting, and the inclusion

of additional supply chain echelons. But perhaps one of the more interesting exten-

sions of the model would be to formulate the production and transportation costs in

a way that would lead to similar effects of economies of scale and scope for the second

stage recourse problem. This formulation would be possible due to the ability of the

primal cut algorithm to solve mixed integer subproblems, as binary variables would be

needed to formulate production and transportation costs as piecewise linear concave

costs. Another research direction is the focus on a large-scale implementation of this

model. As a part of this implementation, a method for finding tight big-M values

needs to be developed. Overall, we believe that the modeling approach presented in

this dissertation is applicable to a wide range of problems, and that this work using

robust optimization methodology has a “prototypic value” beyond specific problem

context.
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Abbreviations for Appendix Tables A1–A20:

Y
∑

r

∑
i yi(r)/R

Z1
∑

r

∑
i zi1(r)/R

Z2
∑

r

∑
i zi2(r)/R

Z3
∑

r

∑
i zi3(r)/R

V1
∑

r

∑
i vi1(r)/R

V2
∑

r

∑
i vi2(r)/R

V3
∑

r

∑
i vi3(r)/R

ZD1
∑

r

∑
i

∑
l z

D
i1l(r)/R

ZD2
∑

r

∑
i

∑
l z

D
i2l(r)/R

ZF
∑

r

∑
i

∑
l z

F
il (r)/R

VD1
∑

r

∑
i

∑
l v

D
i1l(r)/R

VD2
∑

r

∑
i

∑
l v

D
i2l(r)/R

VF
∑

r

∑
i

∑
l v

F
il (r)/R

ZD11
∑

r

∑
i z

D
i11(r)/R

ZD12
∑

r

∑
i z

D
i12(r)/R

ZD21
∑

r

∑
i z

D
i21(r)/R

ZD22
∑

r

∑
i z

D
i22(r)/R

ZF1
∑

r

∑
i z

F
i1(r)/R

ZF2
∑

r

∑
i z

F
i2(r)/R

err standard error

Abbreviations for Appendix Tables A21–A28:

(p) polyhedral uncertainty set

(e) ellipsoidal uncertainty set

Rob(*) objective values of robust solutions

Est(*) estimates of the first stage robust solutions

LB lower statistical bound of stochastic solutions

UB upper statistical bound of stochastic solutions

Z1(*) robust solution for
∑

i zi1

Z2(*) robust solution for
∑

i zi2

Z3(*) robust solution for
∑

i zi3

ZD1(*) robust solution for
∑

il z
D
i1l

ZD2(*) robust solution for
∑

il z
D
i2l

ZF(*) robust solution for
∑

il z
F
il

Z1(stoch) stochastic solution for
∑

i zi1

Z2(stoch) stochastic solution for
∑

i zi2

Z3(stoch) stochastic solution for
∑

i zi3

ZD1(stoch) stochastic solution for
∑

il z
D
i1l

ZD2(stoch) stochastic solution for
∑

il z
D
i2l

ZF(stoch) stochastic solution for
∑

il z
F
il

err standard error
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 167,992.7 2,258.5 1,856.1 168.8 1,497.4 166.9 1,663.8 161.6 4.87 2.35 1.44 1.07
1 176,588.7 2,345.1 1,836.6 172.1 1,567.2 173.3 1,921.3 174.1 4.86 2.26 1.43 1.17
2 183,587.5 2,415.2 1,854.7 178.2 1,577.5 179.8 2,143.7 185.8 4.91 2.22 1.43 1.26
3 189,695.9 2,493.1 1,809.8 177.9 1,599.8 185.9 2,408.0 193.9 4.93 2.15 1.40 1.38
4 195,156.9 2,569.9 1,814.3 182.7 1,667.5 194.4 2,543.9 202.2 4.98 2.13 1.42 1.43
5 200,078.7 2,646.6 1,844.6 188.4 1,696.3 198.4 2,666.6 208.3 4.99 2.11 1.41 1.47
6 204,555.9 2,717.3 1,849.7 193.8 1,752.8 202.1 2,770.5 215.6 5.02 2.07 1.43 1.51
7 208,655.5 2,781.0 1,892.7 200.7 1,798.8 207.1 2,836.8 222.9 5.05 2.06 1.45 1.53
8 212,403.7 2,840.9 1,900.1 203.4 1,815.3 211.2 2,947.5 227.5 5.07 2.04 1.45 1.57
9 215,840.8 2,896.1 1,912.7 207.0 1,842.1 212.9 3,030.9 231.6 5.09 2.03 1.47 1.59

10 218,995.5 2,948.6 1,964.9 212.6 1,852.1 216.0 3,085.9 237.4 5.13 2.04 1.47 1.61
11 221,866.2 2,999.5 1,982.8 214.7 1,891.3 219.0 3,139.6 241.3 5.15 2.05 1.49 1.61
12 224,487.9 3,044.2 1,991.4 214.5 1,891.2 220.9 3,226.1 243.4 5.17 2.04 1.49 1.65
13 226,878.7 3,083.8 2,001.1 217.1 1,865.7 220.7 3,327.9 246.2 5.19 2.03 1.47 1.69
14 229,033.7 3,120.9 1,994.5 218.7 1,898.4 224.0 3,375.9 249.3 5.22 2.03 1.49 1.71
15 230,951.9 3,154.1 2,045.8 223.5 1,907.6 225.7 3,384.2 252.6 5.27 2.06 1.50 1.71
16 232,643.7 3,182.5 2,067.3 226.1 1,911.3 226.2 3,415.2 254.7 5.31 2.09 1.50 1.73
17 234,129.7 3,205.9 2,082.5 228.0 1,931.8 227.4 3,428.1 255.9 5.35 2.11 1.51 1.73
18 235,387.8 3,224.7 2,056.7 225.3 1,945.3 228.8 3,476.8 255.2 5.35 2.08 1.52 1.75
19 236,395.1 3,238.7 2,048.5 225.9 1,953.3 229.7 3,507.5 257.1 5.35 2.07 1.52 1.76
20 237,114.6 3,250.2 2,040.7 223.9 1,973.4 229.8 3,512.0 257.4 5.35 2.07 1.53 1.76

Table A1: Single product solution: fmax = 5,000, emax = 10,000, gmax = 7.5.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 173,239.0 2,320.3 1,310.9 150.0 1,363.0 159.6 2,343.5 175.6 4.71 1.77 1.37 1.57
1 181,979.4 2,411.8 1,358.9 156.5 1,363.6 164.5 2,598.1 187.5 4.75 1.77 1.31 1.67
2 189,105.9 2,487.4 1,348.2 161.4 1,405.9 170.9 2,818.7 196.3 4.77 1.70 1.33 1.75
3 195,354.9 2,569.4 1,342.7 164.5 1,446.0 177.5 3,019.9 205.8 4.79 1.65 1.33 1.81
4 200,936.9 2,649.3 1,314.7 164.9 1,491.7 185.7 3,208.7 210.3 4.80 1.60 1.33 1.87
5 205,962.3 2,728.5 1,318.9 169.3 1,517.1 188.6 3,364.4 215.8 4.85 1.58 1.34 1.93
6 210,536.6 2,801.6 1,315.9 171.0 1,536.5 192.2 3,515.7 220.8 4.88 1.55 1.33 1.99
7 214,728.6 2,869.1 1,338.3 175.7 1,521.0 193.2 3,658.0 226.8 4.91 1.55 1.32 2.04
8 218,573.0 2,932.3 1,342.6 179.5 1,546.3 197.1 3,767.1 231.5 4.93 1.54 1.31 2.08
9 222,098.0 2,990.3 1,348.2 180.8 1,599.4 201.5 3,834.4 234.4 4.95 1.52 1.35 2.09

10 225,333.6 3,044.8 1,356.4 183.6 1,605.9 205.4 3,934.3 237.6 4.97 1.50 1.35 2.12
11 228,284.9 3,097.5 1,361.8 186.9 1,613.7 206.1 4,034.7 241.8 5.01 1.49 1.38 2.15
12 230,980.2 3,144.9 1,369.6 188.4 1,640.8 207.8 4,093.3 245.3 5.03 1.49 1.39 2.16
13 233,428.1 3,186.3 1,410.0 190.9 1,659.4 210.3 4,119.5 247.8 5.07 1.52 1.39 2.15
14 235,626.8 3,224.4 1,406.5 193.1 1,676.1 212.4 4,183.5 251.4 5.09 1.51 1.40 2.19
15 237,601.9 3,259.7 1,424.6 195.0 1,698.0 214.0 4,210.0 253.0 5.12 1.52 1.42 2.18
16 239,342.2 3,289.8 1,424.0 195.8 1,709.2 216.2 4,256.9 255.2 5.15 1.53 1.43 2.20
17 240,865.8 3,315.1 1,389.5 195.3 1,727.0 217.6 4,321.8 258.1 5.17 1.50 1.43 2.24
18 242,157.2 3,334.4 1,402.6 196.4 1,736.4 219.0 4,338.9 259.5 5.19 1.51 1.43 2.25
19 243,193.7 3,348.6 1,424.1 197.1 1,737.1 220.0 4,347.2 259.8 5.21 1.53 1.43 2.25
20 243,932.1 3,360.0 1,409.0 197.4 1,763.7 222.6 4,353.4 262.4 5.21 1.52 1.44 2.25

Table A2: Single product solution: fmax = 5,000, emax = 10,000, gmax = 10.0.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 174,787.7 2,349.3 2,472.2 187.3 1,579.5 178.5 965.6 148.2 4.73 2.75 1.37 0.61
1 183,629.9 2,431.6 2,547.9 195.4 1,682.9 189.3 1,076.1 158.7 4.75 2.73 1.37 0.64
2 190,852.2 2,502.6 2,603.3 204.0 1,789.7 200.3 1,164.4 168.0 4.76 2.69 1.41 0.67
3 197,146.2 2,574.7 2,622.2 209.1 1,865.8 209.3 1,302.2 176.5 4.79 2.63 1.43 0.72
4 202,776.1 2,648.2 2,663.5 213.2 1,906.8 214.8 1,431.5 182.3 4.81 2.63 1.43 0.75
5 207,874.9 2,723.2 2,687.1 218.2 1,959.6 219.6 1,545.7 189.2 4.85 2.61 1.45 0.79
6 212,504.6 2,794.7 2,678.7 221.9 1,985.6 222.4 1,689.0 195.7 4.87 2.59 1.44 0.85
7 216,721.5 2,860.0 2,717.6 228.1 2,012.8 225.7 1,777.9 201.8 4.90 2.59 1.44 0.87
8 220,583.5 2,920.9 2,761.2 232.6 2,062.5 230.4 1,822.0 205.7 4.95 2.61 1.46 0.89
9 224,133.6 2,976.7 2,765.2 234.2 2,114.0 235.2 1,890.1 211.3 4.99 2.60 1.48 0.91

10 227,374.9 3,028.7 2,766.2 234.8 2,096.5 235.4 2,025.6 215.2 4.99 2.57 1.47 0.95
11 230,334.6 3,080.2 2,800.9 237.0 2,124.5 237.6 2,072.8 219.8 5.05 2.59 1.49 0.97
12 233,022.3 3,125.7 2,857.0 240.8 2,130.2 238.7 2,110.8 220.8 5.07 2.61 1.49 0.97
13 235,473.8 3,166.6 2,876.7 243.7 2,133.3 239.4 2,174.4 224.4 5.08 2.60 1.49 0.99
14 237,687.5 3,205.0 2,915.1 248.5 2,137.9 240.3 2,210.5 228.7 5.09 2.61 1.49 0.99
15 239,663.5 3,239.1 2,918.4 251.2 2,178.6 242.4 2,236.0 231.6 5.15 2.64 1.50 1.01
16 241,406.9 3,268.8 2,937.9 251.9 2,193.7 244.1 2,258.2 232.4 5.16 2.65 1.50 1.01
17 242,946.1 3,294.8 2,920.1 253.0 2,219.7 247.0 2,298.1 233.8 5.17 2.63 1.52 1.02
18 244,247.8 3,314.6 2,939.9 254.2 2,207.2 247.3 2,329.0 236.0 5.19 2.65 1.51 1.03
19 245,286.9 3,328.7 2,949.7 255.5 2,227.4 249.4 2,330.3 236.8 5.19 2.64 1.52 1.03
20 246,026.6 3,339.3 2,958.6 255.7 2,223.5 248.8 2,344.0 237.7 5.20 2.65 1.51 1.03

Table A3: Single product solution: fmax = 5,000, emax = 15,000, gmax = 7.5.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 181,106.0 2,413.2 1,918.3 168.0 1,543.9 171.3 1,555.1 159.0 4.60 2.29 1.37 0.94
1 190,132.8 2,497.6 1,877.7 174.7 1,582.3 176.4 1,841.3 173.3 4.58 2.18 1.35 1.05
2 197,486.4 2,567.1 1,858.1 177.0 1,639.0 181.9 2,052.0 182.9 4.59 2.11 1.37 1.12
3 203,932.7 2,642.3 1,864.0 181.3 1,698.7 188.9 2,226.1 194.7 4.59 2.05 1.36 1.18
4 209,708.7 2,717.5 1,944.2 188.9 1,730.1 195.7 2,315.5 199.8 4.66 2.08 1.38 1.20
5 214,935.7 2,795.1 1,932.6 191.6 1,790.3 202.4 2,457.7 207.2 4.70 2.05 1.40 1.25
6 219,674.6 2,869.5 1,966.8 196.8 1,789.5 206.3 2,584.2 215.1 4.74 2.07 1.37 1.30
7 224,001.6 2,936.7 1,963.2 200.3 1,844.0 211.6 2,686.6 221.1 4.76 2.04 1.38 1.34
8 227,956.8 2,999.8 1,984.7 205.3 1,866.8 214.5 2,784.4 224.5 4.79 2.03 1.40 1.36
9 231,599.6 3,058.5 1,996.6 209.0 1,892.3 218.5 2,875.5 231.1 4.81 2.02 1.41 1.39

10 234,929.4 3,113.1 1,978.2 207.1 1,938.8 221.5 2,963.1 233.5 4.83 1.99 1.43 1.41
11 237,966.0 3,167.1 2,004.4 211.5 1,939.8 223.1 3,043.6 238.6 4.85 1.99 1.43 1.44
12 240,726.9 3,214.8 2,032.8 214.4 1,954.7 224.6 3,100.4 241.5 4.90 2.01 1.44 1.45
13 243,237.7 3,257.2 2,012.6 216.9 1,974.0 228.0 3,189.9 247.1 4.91 1.98 1.45 1.48
14 245,509.5 3,296.3 2,029.6 217.6 1,979.3 228.4 3,248.5 248.0 4.93 1.98 1.46 1.49
15 247,550.7 3,333.4 2,043.7 218.5 1,996.4 230.3 3,287.0 249.3 4.96 2.00 1.46 1.50
16 249,352.8 3,365.1 2,053.6 219.7 2,011.1 232.0 3,321.5 251.1 4.98 2.01 1.47 1.51
17 250,941.8 3,392.4 2,060.2 222.6 2,016.3 233.1 3,358.6 253.5 5.00 2.00 1.47 1.53
18 252,279.8 3,413.3 2,065.5 223.9 2,027.6 234.3 3,382.5 255.3 5.01 1.99 1.47 1.54
19 253,352.2 3,428.0 2,068.6 224.6 2,043.6 235.1 3,394.6 256.6 5.01 1.99 1.48 1.54
20 254,110.9 3,439.2 2,080.8 225.0 2,049.8 235.7 3,395.5 256.7 5.03 2.01 1.47 1.54

Table A4: Single product solution: fmax = 5,000, emax = 15,000, gmax = 10.0.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 196,063.0 2,778.7 1,357.5 160.1 1,448.0 167.2 2,211.9 178.6 3.61 1.30 1.12 1.19
1 204,888.1 2,866.7 1,358.1 164.4 1,501.6 175.0 2,447.9 189.1 3.67 1.28 1.12 1.27
2 212,216.5 2,938.9 1,361.8 167.7 1,522.3 181.2 2,665.7 197.9 3.74 1.27 1.13 1.34
3 218,617.6 3,010.3 1,380.0 169.3 1,469.5 181.7 2,922.8 202.5 3.77 1.26 1.07 1.45
4 224,394.8 3,078.5 1,374.9 173.1 1,503.2 186.4 3,094.7 210.4 3.81 1.22 1.07 1.52
5 229,616.1 3,147.4 1,405.1 175.3 1,589.6 194.8 3,158.7 215.9 3.85 1.23 1.11 1.52
6 234,398.6 3,213.1 1,415.2 178.8 1,596.3 196.4 3,312.9 222.1 3.91 1.22 1.11 1.58
7 238,741.8 3,273.8 1,432.9 185.1 1,663.7 202.8 3,382.8 228.9 3.95 1.21 1.13 1.60
8 242,697.1 3,330.6 1,450.5 189.5 1,697.7 206.3 3,471.5 233.0 3.98 1.21 1.15 1.63
9 246,332.0 3,383.1 1,444.7 192.0 1,713.4 210.0 3,591.5 238.8 3.99 1.19 1.14 1.66

10 249,665.8 3,433.8 1,451.3 194.9 1,727.5 213.6 3,688.2 244.5 4.01 1.18 1.13 1.69
11 252,721.7 3,481.8 1,487.6 198.1 1,752.5 216.8 3,734.9 248.1 4.01 1.19 1.13 1.69
12 255,516.0 3,525.6 1,498.1 199.1 1,767.9 219.1 3,808.7 251.5 4.02 1.19 1.13 1.70
13 258,056.2 3,565.2 1,513.3 202.4 1,785.8 221.9 3,871.9 255.7 4.05 1.20 1.13 1.73
14 260,335.4 3,601.2 1,520.3 203.9 1,791.4 224.6 3,942.5 259.1 4.07 1.20 1.13 1.74
15 262,387.0 3,634.8 1,530.3 205.8 1,798.5 226.2 3,995.3 261.8 4.09 1.21 1.12 1.77
16 264,203.0 3,664.0 1,514.2 208.1 1,823.1 229.9 4,044.4 267.4 4.11 1.20 1.13 1.79
17 265,788.4 3,689.1 1,514.9 209.2 1,811.4 228.7 4,107.2 267.9 4.13 1.21 1.13 1.80
18 267,139.1 3,709.9 1,526.4 210.5 1,813.5 230.1 4,133.4 270.0 4.14 1.21 1.13 1.81
19 268,222.2 3,724.8 1,519.9 210.7 1,820.2 230.9 4,165.0 271.5 4.15 1.21 1.13 1.82
20 268,999.7 3,736.2 1,510.3 208.4 1,841.2 231.2 4,174.6 272.1 4.16 1.21 1.13 1.82

Table A5: Single product solution: fmax = 20,000, emax = 10,000, gmax = 7.5.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 200,651.8 2,819.0 928.5 137.7 1,158.3 152.0 2,930.6 181.4 3.54 0.95 0.95 1.64
1 209,644.3 2,912.0 954.2 144.0 1,223.2 162.3 3,126.3 193.7 3.60 0.94 0.97 1.69
2 217,102.8 2,989.2 962.7 149.5 1,204.0 164.8 3,382.6 201.7 3.65 0.93 0.93 1.79
3 223,634.6 3,064.3 955.8 155.0 1,230.1 170.5 3,581.7 209.5 3.67 0.89 0.92 1.87
4 229,527.9 3,136.2 967.4 156.3 1,281.3 178.2 3,718.5 215.9 3.70 0.89 0.93 1.89
5 234,866.6 3,208.7 995.8 160.4 1,330.7 183.7 3,822.6 221.4 3.75 0.89 0.95 1.92
6 239,761.2 3,276.7 994.3 159.7 1,345.7 184.6 3,979.5 223.6 3.79 0.88 0.95 1.96
7 244,192.3 3,339.8 1,001.7 164.0 1,365.0 189.2 4,107.0 229.0 3.83 0.87 0.95 2.01
8 248,240.1 3,399.0 1,008.2 167.8 1,385.3 193.5 4,219.5 234.6 3.87 0.87 0.96 2.05
9 251,954.4 3,453.1 978.4 165.7 1,379.5 192.6 4,385.9 234.7 3.89 0.85 0.95 2.09

10 255,362.8 3,505.0 994.8 171.7 1,379.3 195.3 4,486.4 238.6 3.91 0.85 0.95 2.11
11 258,492.5 3,554.2 971.9 173.7 1,430.1 198.4 4,569.7 243.9 3.93 0.82 0.97 2.13
12 261,359.6 3,599.9 942.8 170.6 1,428.6 201.0 4,700.1 245.5 3.92 0.79 0.97 2.16
13 263,955.1 3,641.2 993.0 173.8 1,447.1 203.5 4,726.1 248.4 3.95 0.82 0.97 2.16
14 266,289.7 3,679.1 999.7 176.1 1,461.6 205.5 4,786.5 251.7 3.98 0.83 0.97 2.18
15 268,392.1 3,714.2 982.6 174.1 1,493.5 209.7 4,841.2 252.9 3.99 0.81 0.99 2.19
16 270,253.9 3,744.7 993.5 175.6 1,497.6 211.4 4,887.5 255.5 4.01 0.82 0.99 2.20
17 271,867.4 3,770.2 992.8 176.5 1,506.6 210.2 4,930.1 257.1 4.03 0.82 0.99 2.22
18 273,245.7 3,791.3 1,046.5 187.2 1,515.3 211.4 4,909.5 262.3 4.04 0.84 0.99 2.21
19 274,358.5 3,806.8 1,054.8 188.0 1,517.7 212.2 4,932.1 263.6 4.05 0.85 0.99 2.21
20 275,156.0 3,818.7 1,094.2 194.4 1,513.8 212.2 4,918.1 265.9 4.07 0.88 0.99 2.21

Table A6: Single product solution: fmax = 20,000, emax = 10,000, gmax = 10.0.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 202,152.4 2,805.3 1,978.7 178.2 1,636.3 181.0 1,402.4 162.9 3.52 1.69 1.15 0.68
1 211,275.1 2,896.7 2,017.6 182.0 1,710.4 189.9 1,566.3 171.9 3.56 1.67 1.16 0.73
2 218,823.7 2,970.4 2,028.3 186.6 1,808.7 198.5 1,695.2 179.4 3.59 1.65 1.19 0.76
3 225,405.4 3,044.5 2,066.7 194.1 1,875.4 204.6 1,810.0 189.1 3.66 1.64 1.21 0.81
4 231,339.4 3,112.8 2,090.6 202.1 1,955.6 212.4 1,909.5 197.6 3.71 1.64 1.22 0.85
5 236,720.4 3,182.6 2,096.2 207.9 2,038.3 220.7 2,001.6 206.7 3.73 1.61 1.25 0.87
6 241,645.8 3,249.1 2,120.9 213.3 2,064.4 224.7 2,126.0 214.3 3.79 1.61 1.27 0.92
7 246,098.5 3,310.8 2,175.4 217.3 2,120.8 228.4 2,167.1 216.9 3.83 1.62 1.27 0.93
8 250,179.5 3,369.4 2,203.5 221.9 2,133.7 231.7 2,266.4 223.3 3.87 1.63 1.28 0.96
9 253,915.1 3,422.6 2,171.5 222.6 2,156.1 235.8 2,405.4 230.6 3.89 1.59 1.27 1.02

10 257,337.1 3,471.9 2,183.0 224.7 2,139.2 234.6 2,526.8 233.1 3.89 1.59 1.25 1.05
11 260,478.7 3,519.9 2,205.4 228.8 2,139.1 236.7 2,617.9 239.5 3.90 1.59 1.24 1.07
12 263,347.9 3,564.4 2,216.8 232.1 2,159.3 239.2 2,689.0 243.7 3.92 1.59 1.25 1.09
13 265,955.7 3,605.4 2,238.8 234.3 2,184.9 242.1 2,738.3 245.9 3.95 1.61 1.25 1.10
14 268,285.8 3,643.0 2,224.3 233.3 2,182.6 242.0 2,840.3 246.6 3.99 1.61 1.25 1.13
15 270,388.4 3,677.8 2,222.4 235.6 2,211.2 244.0 2,886.3 249.2 4.00 1.60 1.25 1.15
16 272,238.8 3,708.2 2,242.1 238.4 2,229.0 246.0 2,907.3 252.2 4.01 1.61 1.25 1.15
17 273,866.3 3,734.6 2,241.0 241.7 2,256.1 249.1 2,931.3 255.1 4.02 1.60 1.27 1.15
18 275,247.8 3,756.4 2,267.1 243.0 2,237.2 249.6 2,967.4 256.2 4.03 1.61 1.25 1.17
19 276,360.7 3,772.2 2,269.2 244.8 2,257.5 252.2 2,978.1 257.2 4.04 1.61 1.27 1.17
20 277,162.5 3,783.3 2,276.6 245.5 2,265.1 252.9 2,984.4 257.8 4.04 1.61 1.27 1.17

Table A7: Single product solution: fmax = 20,000, emax = 15,000, gmax = 7.5.
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Objective Solutions

Γ ave. value err Z1 errZ1 Z2 errZ2 Z3 errZ3 Y V1 V2 V3

0 207,781.5 2,843.7 1,485.6 164.5 1,522.8 172.1 2,008.9 180.3 3.47 1.38 1.09 1.00
1 217,097.0 2,935.7 1,490.2 171.3 1,574.6 177.9 2,224.5 188.0 3.53 1.33 1.11 1.08
2 224,776.0 3,010.0 1,513.4 176.1 1,591.6 181.5 2,424.3 195.4 3.57 1.32 1.11 1.14
3 231,485.5 3,085.2 1,468.6 177.1 1,632.3 189.7 2,648.3 204.8 3.61 1.27 1.11 1.24
4 237,553.2 3,156.8 1,495.5 182.6 1,611.5 191.5 2,839.3 211.7 3.63 1.26 1.07 1.30
5 243,054.3 3,230.1 1,503.7 184.5 1,660.6 200.3 2,964.7 219.5 3.66 1.25 1.07 1.34
6 248,084.2 3,299.5 1,508.3 188.5 1,679.5 201.5 3,109.9 223.9 3.71 1.23 1.09 1.39
7 252,624.7 3,364.6 1,522.1 191.8 1,723.9 205.8 3,206.7 228.2 3.73 1.21 1.10 1.42
8 256,793.0 3,427.0 1,568.0 196.1 1,731.8 208.6 3,294.9 231.9 3.77 1.23 1.11 1.43
9 260,623.3 3,484.1 1,610.5 201.6 1,741.6 210.9 3,374.3 236.6 3.79 1.25 1.10 1.45

10 264,123.8 3,537.3 1,559.8 200.4 1,733.0 211.8 3,552.7 241.5 3.81 1.20 1.09 1.52
11 267,323.1 3,587.1 1,573.9 203.0 1,791.9 218.4 3,592.2 246.8 3.82 1.20 1.10 1.52
12 270,244.2 3,633.0 1,592.2 202.8 1,783.6 219.3 3,687.8 250.5 3.85 1.21 1.09 1.54
13 272,912.0 3,676.1 1,583.6 205.4 1,794.8 221.1 3,780.0 255.8 3.86 1.20 1.10 1.56
14 275,299.6 3,715.1 1,594.6 207.9 1,831.6 226.3 3,816.3 259.9 3.88 1.19 1.11 1.57
15 277,461.6 3,751.1 1,583.5 209.7 1,854.2 229.6 3,874.9 263.0 3.89 1.19 1.11 1.59
16 279,370.0 3,783.3 1,589.6 211.4 1,888.6 231.6 3,895.7 264.7 3.90 1.19 1.13 1.59
17 281,036.1 3,810.0 1,590.7 213.3 1,883.8 232.4 3,950.2 267.5 3.90 1.17 1.11 1.61
18 282,459.6 3,832.8 1,601.7 214.4 1,894.7 233.8 3,972.5 268.9 3.91 1.18 1.11 1.62
19 283,601.9 3,848.8 1,616.4 215.4 1,903.3 234.8 3,983.7 269.8 3.93 1.19 1.12 1.62
20 284,418.9 3,860.4 1,624.9 216.0 1,909.4 235.4 3,991.8 270.4 3.94 1.20 1.12 1.62

Table A8: Single product solution: fmax = 20,000, emax = 15,000, gmax = 10.0.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 187,315.7 3,295.6 0.0 0.0 0.0 0.0 5,471.3 40.3 4.05 0.00 0.00 4.05
1 195,926.0 3,410.5 0.0 0.0 0.0 0.0 5,794.4 42.3 4.13 0.00 0.00 4.13
2 203,114.6 3,526.2 0.0 0.0 0.0 0.0 6,069.6 45.8 4.14 0.00 0.00 4.14
3 209,487.8 3,634.5 0.0 0.0 0.0 0.0 6,313.9 48.2 4.16 0.00 0.00 4.16
4 215,293.6 3,737.8 0.0 0.0 0.0 0.0 6,539.2 50.4 4.24 0.00 0.00 4.24
5 220,623.7 3,832.4 0.0 0.0 0.0 0.0 6,736.1 52.1 4.25 0.00 0.00 4.25
6 225,566.4 3,924.7 0.0 0.0 0.0 0.0 6,919.6 53.9 4.28 0.00 0.00 4.28
7 230,158.9 4,014.7 0.0 0.0 0.0 0.0 7,084.7 55.5 4.29 0.00 0.00 4.29
8 234,364.2 4,093.4 0.0 0.0 0.0 0.0 7,234.0 56.4 4.29 0.00 0.00 4.29
9 238,293.2 4,171.1 0.0 0.0 0.0 0.0 7,377.3 56.8 4.31 0.00 0.00 4.31
10 241,924.8 4,246.9 0.0 0.0 0.0 0.0 7,505.4 57.1 4.32 0.00 0.00 4.32
11 245,303.8 4,317.6 0.0 0.0 0.0 0.0 7,621.4 57.9 4.34 0.00 0.00 4.34
12 248,403.1 4,381.9 0.0 0.0 0.0 0.0 7,737.2 57.6 4.38 0.00 0.00 4.38
13 251,239.2 4,440.5 0.0 0.0 0.0 0.0 7,835.2 58.0 4.38 0.00 0.00 4.38
14 253,830.5 4,495.8 0.0 0.0 0.0 0.0 7,921.8 58.7 4.39 0.00 0.00 4.39
15 256,165.8 4,545.1 0.0 0.0 0.0 0.0 7,995.7 58.7 4.41 0.00 0.00 4.41
16 258,258.9 4,592.4 0.0 0.0 0.0 0.0 8,062.7 59.3 4.43 0.00 0.00 4.43
17 260,086.1 4,633.0 0.0 0.0 0.0 0.0 8,115.3 59.2 4.44 0.00 0.00 4.44
18 261,605.2 4,669.8 0.0 0.0 0.0 0.0 8,157.2 60.0 4.45 0.00 0.00 4.45
19 262,810.6 4,700.6 0.0 0.0 0.0 0.0 8,188.3 60.2 4.45 0.00 0.00 4.45
20 263,624.6 4,715.8 0.0 0.0 0.0 0.0 8,206.9 60.5 4.45 0.00 0.00 4.45

Table A9: Multi-product solution: Δ = 1.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 197,322.4 3,497.2 617.3 94.7 776.4 117.2 4,077.6 218.0 3.80 1.02 1.03 2.76
1 206,450.3 3,610.4 585.5 91.8 755.8 112.2 4,449.3 211.7 3.87 0.90 0.94 2.96
2 213,974.5 3,726.8 598.4 93.0 789.3 115.1 4,660.9 217.0 3.90 0.91 0.97 2.98
3 220,636.2 3,839.8 586.6 92.8 785.9 116.7 4,917.3 220.9 3.94 0.89 0.95 3.04
4 226,704.1 3,947.5 620.1 97.3 842.1 122.9 5,046.1 231.0 3.98 0.92 0.99 3.04
5 232,257.1 4,045.5 629.9 98.2 880.3 127.2 5,199.8 235.8 4.02 0.91 1.00 3.09
6 237,402.2 4,141.1 630.2 97.9 891.5 130.8 5,371.1 239.2 4.09 0.90 0.99 3.16
7 242,135.2 4,231.4 648.6 100.7 924.5 134.3 5,487.3 245.1 4.13 0.91 1.00 3.17
8 246,501.4 4,311.7 666.7 101.4 952.1 135.2 5,603.6 246.9 4.18 0.92 1.02 3.21
9 250,554.7 4,391.5 722.5 107.4 1,023.1 143.5 5,625.4 259.1 4.21 0.96 1.10 3.18

10 254,301.6 4,468.5 752.8 109.8 1,046.8 148.0 5,702.1 265.9 4.21 1.00 1.13 3.16
11 257,775.3 4,540.6 799.3 115.1 1,091.2 150.9 5,730.6 273.4 4.21 1.04 1.17 3.12
12 260,944.9 4,605.2 835.2 117.8 1,161.7 154.5 5,740.6 278.8 4.24 1.08 1.21 3.09
13 263,840.3 4,664.7 887.6 123.2 1,205.6 160.5 5,743.8 289.0 4.27 1.10 1.21 3.10
14 266,494.7 4,721.2 935.0 127.3 1,257.1 164.2 5,731.8 295.8 4.26 1.12 1.23 3.07
15 268,905.9 4,772.8 973.9 132.2 1,296.8 167.9 5,731.7 305.7 4.27 1.16 1.26 3.04
16 271,040.9 4,819.8 981.5 134.0 1,304.1 170.1 5,779.7 309.6 4.27 1.18 1.26 3.04
17 272,884.0 4,860.1 1,036.2 141.1 1,341.8 176.0 5,742.2 322.2 4.28 1.24 1.31 3.00
18 274,416.2 4,896.2 1,053.0 143.4 1,347.9 178.6 5,760.1 327.9 4.30 1.24 1.32 3.00
19 275,630.1 4,925.7 1,049.5 144.8 1,327.4 180.8 5,813.4 332.0 4.30 1.25 1.30 3.00
20 276,453.1 4,939.9 1,080.0 149.9 1,345.8 183.0 5,781.1 339.5 4.32 1.28 1.32 3.00

Table A10: Multi-product solution: Δ = 1.25.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 203,130.3 3,672.1 1,502.6 110.5 1,878.8 129.5 2,089.8 242.8 3.69 2.27 2.38 1.25
1 212,803.4 3,781.3 1,555.4 117.6 1,930.3 135.3 2,373.7 251.8 3.73 2.16 2.33 1.38
2 220,676.6 3,891.6 1,583.5 121.8 1,962.6 137.1 2,591.6 252.6 3.79 2.09 2.25 1.52
3 227,503.2 3,998.2 1,599.2 119.6 2,026.7 135.0 2,751.3 249.9 3.85 2.06 2.26 1.61
4 233,698.3 4,104.7 1,659.0 122.6 2,137.7 137.2 2,801.9 254.1 3.88 2.08 2.26 1.61
5 239,385.2 4,202.3 1,720.7 122.0 2,206.3 137.8 2,876.4 254.1 3.92 2.10 2.28 1.63
6 244,599.1 4,295.1 1,751.7 122.1 2,271.4 139.8 2,952.7 257.4 3.94 2.07 2.27 1.67
7 249,445.4 4,388.6 1,775.1 124.6 2,303.6 143.1 3,061.1 264.1 3.96 2.04 2.28 1.68
8 253,944.9 4,479.9 1,906.7 130.6 2,424.5 151.6 3,006.4 274.0 4.01 2.10 2.32 1.67
9 258,065.0 4,561.1 1,951.5 129.9 2,489.4 152.5 3,021.6 274.6 4.06 2.13 2.37 1.69

10 261,870.9 4,638.8 1,972.0 129.2 2,540.5 154.2 3,062.8 276.9 4.10 2.14 2.41 1.71
11 265,299.5 4,711.7 2,049.6 133.9 2,621.1 155.5 3,022.5 281.6 4.11 2.17 2.44 1.69
12 268,426.1 4,773.4 2,151.8 138.1 2,722.1 158.9 2,935.7 288.7 4.11 2.26 2.50 1.62
13 271,281.1 4,833.1 2,257.1 145.9 2,830.6 167.1 2,833.3 303.0 4.11 2.37 2.59 1.50
14 273,864.3 4,885.5 2,309.5 148.4 2,862.5 173.7 2,833.3 313.9 4.10 2.42 2.63 1.45
15 276,177.9 4,933.2 2,324.6 152.8 2,884.5 180.1 2,867.4 328.0 4.14 2.47 2.65 1.46
16 278,212.1 4,977.7 2,380.5 155.6 2,951.8 181.6 2,792.8 332.5 4.15 2.54 2.74 1.38
17 279,974.8 5,016.7 2,388.7 156.5 2,957.8 183.9 2,810.7 337.6 4.15 2.59 2.76 1.38
18 281,457.7 5,049.2 2,448.8 159.5 3,009.7 186.0 2,727.1 342.7 4.16 2.65 2.80 1.32
19 282,636.3 5,077.6 2,449.4 159.4 3,010.8 186.0 2,739.2 344.1 4.16 2.65 2.80 1.32
20 283,450.1 5,092.4 2,458.0 160.2 3,020.1 186.0 2,728.8 345.2 4.16 2.67 2.81 1.31

Table A11: Multi-product solution: Δ = 1.5.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 205,191.2 3,732.8 2,153.3 84.0 2,622.9 91.1 695.1 167.9 3.66 3.08 3.23 0.34
1 214,984.2 3,835.5 2,372.1 92.7 2,815.6 100.0 739.7 178.6 3.73 3.11 3.28 0.37
2 223,092.4 3,947.8 2,531.0 98.1 3,000.7 105.1 768.5 184.0 3.76 3.09 3.29 0.38
3 230,129.5 4,056.2 2,651.7 102.4 3,143.3 110.3 821.5 191.2 3.82 3.11 3.32 0.43
4 236,442.3 4,162.6 2,755.3 106.7 3,276.0 114.6 864.2 197.3 3.88 3.09 3.34 0.46
5 242,238.6 4,261.8 2,801.1 109.7 3,340.9 117.2 961.1 199.3 3.91 3.06 3.33 0.52
6 247,584.0 4,354.8 2,825.0 113.5 3,391.4 122.4 1,071.7 208.8 3.90 3.03 3.27 0.58
7 252,521.1 4,448.6 2,908.8 111.6 3,478.8 120.7 1,078.3 202.4 3.93 3.03 3.25 0.61
8 257,057.3 4,537.3 2,935.2 114.7 3,536.6 122.8 1,148.9 206.3 3.95 3.00 3.25 0.64
9 261,232.7 4,617.7 2,966.8 118.0 3,594.7 129.0 1,203.2 215.9 3.99 3.01 3.27 0.67

10 265,090.0 4,693.2 2,956.5 117.9 3,633.3 129.0 1,275.4 217.1 4.02 2.99 3.25 0.72
11 268,309.9 4,760.1 3,072.4 118.4 3,758.0 131.6 1,150.1 223.3 4.03 3.11 3.38 0.59
12 271,215.5 4,824.8 3,201.9 117.8 3,925.0 126.9 954.3 219.9 4.03 3.24 3.50 0.47
13 273,874.3 4,881.0 3,277.7 116.1 4,000.0 124.8 856.7 219.6 4.04 3.30 3.56 0.41
14 276,301.9 4,930.4 3,307.9 116.3 4,030.2 124.3 822.3 221.3 4.05 3.34 3.60 0.39
15 278,510.9 4,975.0 3,301.3 116.8 4,026.1 124.1 845.5 223.3 4.06 3.35 3.59 0.39
16 280,469.2 5,016.8 3,339.5 112.1 4,071.3 120.0 776.0 217.3 4.09 3.40 3.65 0.35
17 282,178.0 5,054.2 3,333.1 112.1 4,062.3 118.9 798.0 217.9 4.10 3.44 3.65 0.36
18 283,634.2 5,082.8 3,350.0 111.3 4,082.1 118.8 767.8 218.4 4.10 3.48 3.68 0.33
19 284,836.6 5,107.6 3,356.1 111.5 4,087.1 118.7 761.2 219.5 4.11 3.49 3.69 0.33
20 285,653.9 5,120.6 3,352.0 111.7 4,079.1 119.0 775.8 220.7 4.11 3.51 3.69 0.34

Table A12: Multi-product solution: Δ = 1.75.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 205,531.4 3,733.7 2,351.8 62.8 2,832.6 63.4 286.9 111.5 3.66 3.29 3.44 0.13
1 215,355.3 3,835.5 2,582.6 69.2 3,046.4 69.0 319.5 118.9 3.74 3.32 3.49 0.14
2 223,473.0 3,946.7 2,773.1 75.2 3,250.7 73.0 307.9 121.2 3.78 3.31 3.53 0.14
3 230,524.5 4,054.6 2,910.0 82.7 3,413.9 79.2 339.7 131.9 3.82 3.33 3.57 0.15
4 236,855.0 4,160.0 3,041.4 84.3 3,582.1 79.1 338.9 132.6 3.90 3.35 3.63 0.16
5 242,676.7 4,259.8 3,163.0 85.7 3,723.3 80.5 331.2 134.9 3.92 3.36 3.67 0.16
6 248,071.8 4,355.9 3,257.1 89.4 3,831.0 83.0 351.0 138.1 3.90 3.39 3.65 0.18
7 253,047.8 4,450.4 3,341.2 91.8 3,935.4 85.4 365.4 141.2 3.94 3.41 3.68 0.19
8 257,615.8 4,539.0 3,386.4 95.0 4,005.7 90.7 419.8 151.2 3.96 3.36 3.64 0.24
9 261,808.3 4,619.5 3,428.6 96.9 4,094.7 93.1 439.2 153.5 4.00 3.37 3.66 0.26
10 265,710.8 4,696.6 3,446.2 98.4 4,175.4 95.1 467.6 156.1 4.00 3.37 3.64 0.28
11 268,813.9 4,761.2 3,484.8 99.2 4,220.1 95.0 434.9 159.0 4.04 3.43 3.74 0.22
12 271,660.7 4,823.7 3,507.9 98.8 4,240.3 94.5 417.6 161.0 4.05 3.48 3.77 0.19
13 274,279.2 4,878.0 3,516.0 98.7 4,248.4 94.6 416.1 163.1 4.06 3.51 3.78 0.17
14 276,689.8 4,926.8 3,517.3 98.7 4,249.8 94.4 419.5 164.5 4.07 3.53 3.80 0.17
15 278,894.9 4,971.7 3,515.8 98.3 4,246.6 94.3 427.8 165.9 4.08 3.55 3.79 0.18
16 280,840.4 5,013.7 3,518.8 98.6 4,252.1 94.1 426.9 167.6 4.11 3.58 3.84 0.17
17 282,542.2 5,050.9 3,519.8 98.6 4,252.6 94.0 429.1 168.5 4.12 3.63 3.85 0.17
18 283,995.2 5,079.4 3,529.3 98.9 4,263.1 93.6 412.1 168.5 4.12 3.65 3.86 0.16
19 285,195.8 5,104.2 3,540.3 97.8 4,271.2 92.8 394.4 168.2 4.13 3.67 3.88 0.15
20 286,010.9 5,117.4 3,540.3 97.8 4,271.2 92.8 395.4 168.7 4.12 3.69 3.88 0.15

Table A13: Multi-product solution: Δ = 1.9.
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Objective Solutions

Γ ave. value err ZD1 errZD1 ZD2 errZD2 ZF errZF Y VD1 VD2 VF

0 205,601.7 3,733.8 2,485.6 39.5 2,985.7 18.1 0.0 0.0 3.66 3.42 3.57 0.00
1 215,427.9 3,835.3 2,738.6 44.1 3,221.7 21.2 0.0 0.0 3.73 3.45 3.63 0.00
2 223,545.8 3,946.4 2,927.3 46.5 3,426.0 23.8 0.0 0.0 3.78 3.44 3.66 0.00
3 230,600.3 4,054.3 3,085.2 48.8 3,607.3 26.1 0.0 0.0 3.82 3.47 3.71 0.00
4 236,941.6 4,159.7 3,218.9 49.9 3,772.5 27.5 0.0 0.0 3.91 3.50 3.78 0.00
5 242,767.3 4,259.4 3,341.0 51.5 3,912.6 27.9 0.0 0.0 3.92 3.51 3.82 0.00
6 248,168.7 4,355.0 3,453.9 53.4 4,038.2 27.7 0.0 0.0 3.91 3.54 3.81 0.00
7 253,146.8 4,449.7 3,548.7 55.1 4,154.5 27.4 0.0 0.0 3.94 3.57 3.84 0.00
8 257,724.8 4,538.3 3,628.5 57.0 4,265.7 27.1 0.0 0.0 3.96 3.58 3.86 0.00
9 261,927.9 4,619.1 3,687.5 58.4 4,374.2 27.1 0.0 0.0 4.00 3.62 3.90 0.00
10 265,835.1 4,695.6 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.00 3.62 3.90 0.00
11 268,920.4 4,759.7 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.03 3.62 3.92 0.00
12 271,758.8 4,822.5 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.05 3.66 3.94 0.00
13 274,375.0 4,876.8 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.06 3.68 3.95 0.00
14 276,783.1 4,925.7 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.07 3.70 3.97 0.00
15 278,987.7 4,970.7 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.08 3.73 3.97 0.00
16 280,928.7 5,012.5 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.11 3.75 4.01 0.00
17 282,629.0 5,049.8 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.12 3.80 4.02 0.00
18 284,080.8 5,078.3 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.12 3.81 4.02 0.00
19 285,279.8 5,103.3 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.13 3.82 4.03 0.00
20 286,094.7 5,116.4 3,728.4 59.2 4,478.5 27.2 0.0 0.0 4.12 3.84 4.03 0.00

Table A14: Multi-product solution: Δ = 2.0.
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Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 0.0 0.0 0.0 0.0 2,624.1 2,847.2
1 0.0 0.0 0.0 0.0 2,749.3 3,045.1
2 0.0 0.0 0.0 0.0 2,738.0 3,331.6
3 0.0 0.0 0.0 0.0 2,816.0 3,497.9
4 0.0 0.0 0.0 0.0 2,882.3 3,656.9
5 0.0 0.0 0.0 0.0 2,928.0 3,808.0
6 0.0 0.0 0.0 0.0 2,929.9 3,989.6
7 0.0 0.0 0.0 0.0 2,987.7 4,097.0
8 0.0 0.0 0.0 0.0 2,977.1 4,256.9
9 0.0 0.0 0.0 0.0 3,022.3 4,355.0

10 0.0 0.0 0.0 0.0 3,069.3 4,436.1
11 0.0 0.0 0.0 0.0 3,136.2 4,485.2
12 0.0 0.0 0.0 0.0 3,172.8 4,564.4
13 0.0 0.0 0.0 0.0 3,103.4 4,731.8
14 0.0 0.0 0.0 0.0 3,087.5 4,834.4
15 0.0 0.0 0.0 0.0 3,117.5 4,878.2
16 0.0 0.0 0.0 0.0 3,126.6 4,936.1
17 0.0 0.0 0.0 0.0 3,105.2 5,010.1
18 0.0 0.0 0.0 0.0 3,113.7 5,043.6
19 0.0 0.0 0.0 0.0 3,126.6 5,061.8
20 0.0 0.0 0.0 0.0 3,134.6 5,072.3

Table A15: Multi-product capacity details: Δ = 1.0.

Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 583.5 33.8 732.6 43.8 1,385.9 2,691.6
1 553.1 32.4 709.7 46.2 1,549.2 2,900.1
2 564.6 33.8 726.0 63.3 1,532.1 3,128.8
3 552.2 34.3 721.2 64.7 1,582.3 3,334.9
4 577.0 43.2 770.9 71.2 1,586.8 3,459.3
5 573.9 55.9 797.2 83.0 1,582.5 3,617.3
6 573.5 56.7 823.4 68.1 1,649.3 3,721.8
7 590.6 58.0 854.5 70.1 1,650.9 3,836.4
8 591.6 75.1 859.8 92.4 1,710.6 3,892.9
9 633.4 89.1 893.1 130.1 1,658.0 3,967.4

10 662.9 89.8 915.0 131.8 1,629.5 4,072.5
11 707.7 91.6 957.3 133.9 1,590.8 4,139.8
12 743.8 91.3 1,029.6 132.1 1,550.6 4,190.0
13 777.2 110.4 1,036.7 169.0 1,549.6 4,194.2
14 795.4 139.7 1,056.5 200.6 1,535.2 4,196.6
15 823.3 150.7 1,088.0 208.8 1,491.8 4,239.9
16 829.8 151.8 1,094.7 209.4 1,486.5 4,293.2
17 870.5 165.7 1,121.2 220.6 1,415.2 4,327.0
18 886.1 167.0 1,122.3 225.6 1,404.6 4,355.5
19 882.7 166.9 1,101.4 226.0 1,441.5 4,371.8
20 913.3 166.7 1,123.7 222.1 1,418.4 4,362.7

Table A16: Multi-product capacity details: Δ = 1.25.
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Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 1,208.3 294.3 1,466.7 412.1 470.8 1,619.0
1 1,198.2 357.2 1,509.4 420.9 553.7 1,820.0
2 1,196.7 386.8 1,484.5 478.1 604.6 1,987.0
3 1,211.8 387.5 1,490.4 536.3 658.4 2,092.9
4 1,222.4 436.6 1,526.2 611.5 703.1 2,098.8
5 1,250.4 470.4 1,578.9 627.4 705.2 2,171.2
6 1,252.1 499.6 1,601.0 670.4 727.2 2,225.5
7 1,263.1 512.1 1,622.3 681.3 740.1 2,321.0
8 1,302.0 604.7 1,655.6 768.8 706.7 2,299.7
9 1,336.6 614.9 1,740.4 748.9 685.8 2,335.8

10 1,353.2 618.8 1,745.4 795.0 656.6 2,406.2
11 1,376.9 672.8 1,762.0 859.1 626.4 2,396.1
12 1,438.0 713.8 1,767.3 954.8 599.9 2,335.8
13 1,522.7 734.4 1,831.2 999.4 472.5 2,360.8
14 1,543.5 766.0 1,860.5 1,002.0 399.8 2,433.6
15 1,570.0 754.6 1,875.5 1,009.0 387.6 2,479.8
16 1,606.5 773.9 1,915.7 1,036.1 340.3 2,452.5
17 1,623.1 765.6 1,933.1 1,024.7 321.2 2,489.5
18 1,672.5 776.3 1,974.6 1,035.1 291.7 2,435.4
19 1,674.2 775.2 1,975.2 1,035.6 293.7 2,445.5
20 1,677.1 781.0 1,974.7 1,045.3 294.9 2,434.0

Table A17: Multi-product capacity details: Δ = 1.5.

Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 1,510.6 642.7 1,777.8 845.2 18.5 676.6
1 1,633.5 738.6 1,874.8 940.8 9.3 730.4
2 1,700.5 830.6 1,926.3 1,074.4 12.7 755.8
3 1,727.5 924.2 1,964.8 1,178.4 28.8 792.7
4 1,710.9 1,044.4 2,034.1 1,241.9 42.6 821.6
5 1,744.3 1,056.7 2,063.2 1,277.7 73.8 887.3
6 1,710.9 1,114.1 2,041.4 1,350.0 99.9 971.8
7 1,718.2 1,190.6 2,074.8 1,403.9 139.0 939.3
8 1,729.5 1,205.7 2,117.3 1,419.3 152.8 996.1
9 1,772.1 1,194.7 2,143.9 1,450.8 160.6 1,042.6
10 1,768.0 1,188.5 2,127.3 1,506.0 203.1 1,072.3
11 1,840.1 1,232.3 2,200.7 1,557.2 128.8 1,021.3
12 1,874.8 1,327.1 2,219.7 1,705.2 83.8 870.5
13 1,880.1 1,397.6 2,203.3 1,796.7 48.4 808.3
14 1,932.0 1,375.9 2,258.7 1,771.5 45.9 776.5
15 1,949.0 1,352.3 2,247.6 1,778.5 44.3 801.1
16 1,950.8 1,388.7 2,276.4 1,794.9 43.3 732.7
17 1,977.5 1,355.5 2,273.4 1,788.9 44.2 753.8
18 1,980.2 1,369.8 2,278.6 1,803.5 36.1 731.7
19 1,988.7 1,367.4 2,288.3 1,798.9 22.1 739.1
20 1,991.7 1,360.3 2,288.5 1,790.6 22.2 753.6

Table A18: Multi-product capacity details: Δ = 1.75.
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Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 1,543.7 808.1 1,811.9 1,020.7 0.0 286.9
1 1,666.0 916.6 1,919.2 1,127.2 0.0 319.5
2 1,716.3 1,056.7 1,975.7 1,275.0 3.1 304.8
3 1,762.3 1,147.8 2,004.1 1,409.8 4.4 335.3
4 1,761.0 1,280.5 2,089.5 1,492.7 3.1 335.7
5 1,819.8 1,343.2 2,163.4 1,559.9 3.7 327.5
6 1,824.7 1,432.4 2,167.1 1,663.9 15.4 335.6
7 1,831.7 1,509.5 2,208.5 1,726.9 22.5 342.9
8 1,834.9 1,551.5 2,211.0 1,794.6 42.8 377.0
9 1,871.9 1,556.7 2,245.4 1,849.3 47.5 391.7
10 1,882.3 1,563.8 2,274.6 1,900.8 61.1 406.6
11 1,927.4 1,557.4 2,314.0 1,906.1 21.4 413.5
12 1,942.1 1,565.8 2,306.5 1,933.8 7.3 410.2
13 1,952.1 1,563.9 2,279.4 1,969.0 0.0 416.1
14 1,975.6 1,541.7 2,307.9 1,941.9 0.0 419.5
15 1,982.9 1,532.9 2,290.4 1,956.2 5.3 422.5
16 1,989.5 1,529.3 2,313.1 1,939.0 0.0 426.9
17 2,008.4 1,511.4 2,314.8 1,937.8 0.0 429.1
18 2,011.1 1,518.1 2,305.8 1,957.3 0.0 412.1
19 2,015.6 1,524.7 2,314.0 1,957.3 0.0 394.4
20 2,018.5 1,521.8 2,314.1 1,957.1 0.0 395.4

Table A19: Multi-product capacity details: Δ = 1.9

Γ ZD11 ZD12 ZD21 ZD22 ZF1 ZF2

0 1,556.2 929.4 1,816.7 1,169.0 0.0 0.0
1 1,674.2 1,064.4 1,923.5 1,298.2 0.0 0.0
2 1,727.7 1,199.7 1,984.3 1,441.7 0.0 0.0
3 1,774.9 1,310.3 2,020.5 1,586.8 0.0 0.0
4 1,772.1 1,446.8 2,100.0 1,672.5 0.0 0.0
5 1,836.2 1,504.8 2,181.5 1,731.1 0.0 0.0
6 1,853.2 1,600.7 2,200.8 1,837.4 0.0 0.0
7 1,857.9 1,690.8 2,245.9 1,908.6 0.0 0.0
8 1,884.0 1,744.5 2,280.7 1,985.0 0.0 0.0
9 1,929.3 1,758.1 2,320.8 2,053.4 0.0 0.0

10 1,948.2 1,780.2 2,362.3 2,116.3 0.0 0.0
11 1,951.3 1,777.1 2,339.4 2,139.1 0.0 0.0
12 1,956.5 1,771.9 2,321.0 2,157.5 0.0 0.0
13 1,959.2 1,769.2 2,286.6 2,192.0 0.0 0.0
14 1,982.7 1,745.7 2,315.0 2,163.5 0.0 0.0
15 1,993.3 1,735.1 2,301.7 2,176.8 0.0 0.0
16 1,996.6 1,731.8 2,320.2 2,158.3 0.0 0.0
17 2,015.5 1,712.9 2,321.9 2,156.6 0.0 0.0
18 2,018.3 1,710.0 2,320.7 2,157.8 0.0 0.0
19 2,022.7 1,705.7 2,321.1 2,157.4 0.0 0.0
20 2,025.6 1,702.8 2,321.2 2,157.3 0.0 0.0

Table A20: Multi-product capacity details: Δ = 2.0.
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Γ Ω Rob(p) Rob(e) Z1(p) Z2(p) Z3(p) Z1(e) Z2(e) Z3(e)

0.00 0.00 182,376.8 182,376.8 494.0 1,676.0 2,608.0 494.0 1,676.0 2,608.0
0.50 0.11 186,476.4 184,602.8 494.0 1,743.4 2,687.3 499.9 1,697.3 2,649.8
1.00 0.22 190,581.9 186,817.0 494.0 1,811.7 2,766.5 2,223.7 0.0 2,691.5
1.50 0.34 194,094.8 189,022.5 494.0 1,846.0 2,846.5 2,250.8 0.0 2,734.9
2.00 0.45 197,607.6 191,223.8 494.0 1,880.4 2,926.6 2,278.0 0.0 2,776.4
2.50 0.56 201,075.4 193,423.3 494.0 1,917.0 3,007.2 2,304.4 0.0 2,819.5
3.00 0.67 204,543.1 195,629.1 494.0 1,953.6 3,087.8 2,331.9 0.0 2,861.8
3.50 0.78 207,688.1 197,824.0 939.8 1,514.7 3,173.5 941.8 1,417.0 2,905.6
4.00 0.89 210,778.7 200,013.0 991.2 1,472.7 3,256.3 953.4 1,432.0 2,948.2
4.50 1.01 213,636.7 202,202.9 976.7 1,513.2 3,338.7 964.8 1,447.4 2,990.7
5.00 1.12 216,537.4 204,395.6 992.1 1,519.0 3,418.4 975.5 1,464.2 3,032.9
5.50 1.23 219,083.2 206,585.9 1,003.5 1,520.5 3,447.1 984.8 1,481.8 3,075.9
6.00 1.34 221,657.0 208,776.6 1,003.5 1,535.7 3,482.4 997.5 1,496.1 3,117.9
6.50 1.45 224,106.8 210,963.6 1,003.5 1,554.6 3,513.2 1,012.6 1,507.2 3,159.9
7.00 1.57 226,550.3 213,156.4 494.0 0.0 5,605.7 1,018.6 1,528.9 3,202.8
7.50 1.68 228,710.3 215,348.1 494.0 0.0 5,685.8 1,029.6 1,544.9 3,245.7
8.00 1.79 230,871.6 217,537.7 494.0 0.0 5,766.3 1,041.4 1,559.9 3,288.1
8.50 1.90 232,848.8 219,725.5 542.8 0.0 5,792.2 1,054.9 1,573.0 3,330.0
9.00 2.01 234,851.4 221,919.2 591.5 0.0 5,826.2 1,061.6 1,593.8 3,373.2
9.50 2.12 236,753.0 224,121.4 639.9 0.0 5,847.0 1,070.6 1,613.5 3,416.2

10.00 2.24 238,706.2 226,312.9 688.3 0.0 5,884.4 1,081.4 1,630.5 3,457.0
10.50 2.35 240,356.6 228,507.4 693.2 0.0 5,941.9 1,093.0 1,645.4 3,501.7
11.00 2.46 242,028.9 230,683.7 698.0 0.0 6,006.5 1,109.1 1,654.7 3,541.9
11.50 2.57 243,479.7 232,847.5 698.0 0.0 6,039.9 1,123.0 1,665.5 3,582.9
12.00 2.68 244,930.5 235,004.4 698.0 0.0 6,073.3 1,134.2 1,678.8 3,627.0
12.50 2.80 246,234.6 237,116.9 698.0 0.0 6,115.1 1,147.3 1,689.5 3,664.4
13.00 2.91 247,561.1 239,159.8 698.0 0.0 6,164.0 1,165.2 1,693.9 3,693.9
13.50 3.02 248,746.2 241,209.7 698.0 0.0 6,185.9 1,176.0 1,713.4 3,724.0
14.00 3.13 249,931.3 243,175.3 698.0 0.0 6,207.9 1,183.6 1,734.2 3,749.6
14.50 3.24 251,042.8 245,080.1 698.0 0.0 6,216.1 1,195.0 1,753.6 3,773.9
15.00 3.35 252,170.8 246,900.7 698.0 0.0 6,229.5 654.8 0.0 6,141.6
15.50 3.47 253,147.6 248,671.8 1,229.0 1,846.5 3,884.0 681.9 0.0 6,161.9
16.00 3.58 254,020.6 250,338.6 1,250.5 1,846.5 3,894.5 698.5 0.0 6,200.9
16.50 3.69 254,826.5 251,898.1 1,250.5 1,863.5 3,903.3 1,242.0 1,847.4 3,866.1
17.00 3.80 255,632.4 253,302.5 1,250.5 1,880.5 3,912.0 1,250.2 1,865.1 3,878.5
17.50 3.91 256,314.0 254,581.1 1,250.5 1,915.3 3,903.9 1,255.8 1,882.9 3,889.6
18.00 4.02 257,023.8 255,734.4 880.0 0.0 6,232.6 1,261.7 1,898.7 3,895.6
18.50 4.14 257,524.0 256,774.1 881.0 0.0 6,255.1 1,270.5 1,916.1 3,901.8
19.00 4.25 258,024.1 257,670.0 882.0 0.0 6,277.6 1,277.4 1,935.1 3,907.4
19.50 4.36 258,461.2 258,374.9 882.0 0.0 6,281.3 881.0 0.0 6,270.6
20.00 4.47 258,898.3 258,898.3 882.0 0.0 6,285.0 882.0 0.0 6,285.0

Table A21: Single product robust solution.
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Γ Ω E(p) errE(p) E(e) errE(e)

0.00 0.00 218,732.2 365.4 218,732.2 365.4
0.50 0.11 203,700.9 294.8 210,829.7 333.8
1.00 0.22 194,345.4 220.5 205,066.6 301.4
1.50 0.34 190,107.8 164.2 199,638.5 265.8
2.00 0.45 187,868.5 120.5 195,534.1 229.2
2.50 0.56 186,916.9 91.3 192,430.5 193.2
3.00 0.67 186,730.9 72.8 190,192.3 160.9
3.50 0.78 187,069.7 62.9 188,673.6 131.8
4.00 0.89 187,343.0 58.4 187,741.4 110.4
4.50 1.01 187,664.3 54.5 187,219.5 93.3
5.00 1.12 188,036.3 52.8 186,980.4 80.4
5.50 1.23 188,212.5 52.3 186,953.9 70.4
6.00 1.34 188,407.3 51.9 187,057.7 63.7
6.50 1.45 188,613.6 51.7 187,237.0 59.3
7.00 1.57 188,249.0 53.7 187,484.2 56.6
7.50 1.68 188,487.5 53.2 187,758.1 54.2
8.00 1.79 188,732.5 53.1 188,046.8 52.8
8.50 1.90 189,061.4 52.8 188,344.6 52.0
9.00 2.01 189,476.9 52.7 188,659.4 51.6
9.50 2.12 189,887.4 52.5 188,986.4 51.2
10.00 2.24 190,368.1 52.4 189,305.2 50.7
10.50 2.35 190,585.4 52.3 189,629.5 50.4
11.00 2.46 190,824.8 52.3 189,935.3 50.3
11.50 2.57 190,929.7 52.3 190,238.8 50.2
12.00 2.68 191,034.6 52.3 190,551.7 50.1
12.50 2.80 191,165.7 52.3 190,839.1 50.1
13.00 2.91 191,319.2 52.3 191,095.3 50.0
13.50 3.02 191,388.1 52.3 191,406.3 49.9
14.00 3.13 191,457.1 52.3 191,687.9 49.9
14.50 3.24 191,482.7 52.3 191,985.9 49.9
15.00 3.35 191,525.0 52.3 190,921.9 52.4
15.50 3.47 193,238.0 49.9 191,190.1 52.3
16.00 3.58 193,436.0 49.9 191,439.1 52.3
16.50 3.69 193,581.7 49.9 193,286.0 49.9
17.00 3.80 193,727.5 49.9 193,510.5 49.9
17.50 3.91 193,944.1 49.9 193,712.4 49.9
18.00 4.02 193,682.4 51.4 193,886.0 49.9
18.50 4.14 193,755.1 51.4 194,094.2 49.9
19.00 4.25 193,828.0 51.3 194,296.2 49.9
19.50 4.36 193,839.7 51.3 193,803.9 51.4
20.00 4.47 193,851.3 51.3 193,851.3 51.3

Table A22: Estimates of the single product robust solution.
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Γ Ω Rob(p) Rob(e) ZD1(p) ZD2(p) ZF(p) ZD1(e) DZ2(e) ZF(e)

0.00 0.00 173,151.9 173,151.9 2,268.0 3,016.0 0.0 2,268.0 3,016.0 0.0
0.50 0.11 177,399.7 175,183.4 2,359.8 3,159.6 0.0 2,311.5 3,070.1 0.0
1.00 0.22 181,137.1 177,214.8 1,924.4 2,586.8 1,091.0 2,355.0 3,124.2 0.0
1.50 0.34 184,301.3 179,246.3 2,543.1 3,303.0 0.0 2,398.5 3,178.3 0.0
2.00 0.45 187,593.8 181,277.0 2,158.9 2,824.3 1,091.0 2,442.0 3,238.4 0.0
2.50 0.56 190,381.1 183,241.9 2,175.5 2,842.0 1,091.0 2,485.5 3,286.5 0.0
3.00 0.67 193,102.7 185,060.5 2,299.3 3,135.4 1,177.6 2,530.2 3,340.9 0.0
3.50 0.78 195,223.6 186,873.5 2,926.2 3,929.7 0.0 2,573.9 3,395.0 0.0
4.00 0.89 197,327.9 188,686.4 2,933.5 3,970.6 0.0 2,617.6 3,449.2 0.0
4.50 1.01 199,364.2 190,479.7 2,997.3 4,094.7 0.0 2,042.3 2,803.8 1,196.5
5.00 1.12 201,573.7 192,270.9 2,421.8 3,361.5 1,250.4 2,072.4 2,846.4 1,209.2
5.50 1.23 203,532.0 194,064.6 2,432.0 3,367.4 1,281.1 2,103.1 2,888.6 1,220.9
6.00 1.34 205,535.5 195,860.1 2,442.2 3,379.0 1,314.3 2,133.8 2,931.8 1,232.9
6.50 1.45 207,331.6 197,648.9 2,449.1 3,403.1 1,310.0 2,164.9 2,974.7 1,245.7
7.00 1.57 209,174.6 199,442.2 2,472.6 3,477.4 1,317.3 2,194.9 3,015.5 1,256.7
7.50 1.68 210,781.4 201,236.4 2,485.9 3,478.8 1,327.4 2,225.9 3,058.4 1,268.6
8.00 1.79 212,466.6 203,028.2 2,510.2 3,495.3 1,344.8 2,256.4 3,101.1 1,280.8
8.50 1.90 214,027.4 204,819.3 1,655.5 2,734.7 3,023.8 2,287.0 3,142.7 1,292.4
9.00 2.01 215,544.6 206,612.1 1,659.7 2,747.6 3,028.0 2,317.7 3,185.5 1,304.8
9.50 2.12 217,027.3 208,402.0 1,664.6 2,760.4 3,042.0 2,348.3 3,227.6 1,316.7

10.00 2.24 218,513.9 210,190.3 1,669.5 2,771.2 3,063.8 2,378.8 3,269.5 1,327.6
10.50 2.35 219,902.0 211,965.6 1,679.2 2,783.9 3,101.3 2,409.2 3,311.3 1,339.6
11.00 2.46 221,316.1 213,724.8 1,684.6 2,791.8 3,124.3 2,438.0 3,352.3 1,352.6
11.50 2.57 222,583.6 215,457.6 1,688.8 2,798.4 3,134.3 2,463.9 3,391.3 1,367.2
12.00 2.68 223,868.7 217,131.2 1,696.6 2,818.5 3,154.5 1,665.9 2,710.0 2,970.7
12.50 2.80 225,060.6 218,730.2 1,702.8 2,820.3 3,157.9 1,682.0 2,733.3 3,004.6
13.00 2.91 226,252.1 220,294.5 1,709.0 2,822.1 3,161.3 1,696.5 2,751.4 3,036.6
13.50 3.02 227,345.2 221,816.9 1,718.2 2,827.3 3,170.8 1,709.1 2,763.8 3,065.0
14.00 3.13 228,344.4 223,337.4 2,922.7 4,063.5 782.0 1,719.4 2,779.8 3,088.6
14.50 3.24 229,257.7 224,802.4 2,928.7 4,071.3 793.3 2,853.7 3,990.9 769.4
15.00 3.35 230,185.9 226,256.7 2,914.5 4,079.1 817.4 2,861.4 4,003.4 787.7
15.50 3.47 231,053.3 227,674.4 2,926.1 4,080.3 823.8 2,865.2 4,037.7 802.6
16.00 3.58 231,920.9 229,032.6 2,937.5 4,081.5 830.9 2,877.0 4,055.5 818.3
16.50 3.69 232,671.3 230,321.3 2,932.8 4,081.5 845.2 2,918.6 4,057.6 814.7
17.00 3.80 233,439.4 231,552.8 2,904.4 4,081.5 877.8 2,928.9 4,065.1 828.1
17.50 3.91 234,153.5 232,697.8 2,897.2 4,081.5 893.5 2,922.8 4,077.7 844.3
18.00 4.02 234,873.1 233,763.9 2,898.1 4,081.5 904.5 2,928.2 4,075.5 861.3
18.50 4.14 235,557.6 234,745.1 2,905.5 4,081.5 904.5 2,925.9 4,078.9 877.0
19.00 4.25 236,258.7 235,640.5 2,916.4 4,081.5 904.5 2,924.2 4,081.4 893.2
19.50 4.36 236,615.0 236,447.2 2,928.2 4,081.5 904.5 2,926.5 4,081.5 904.2
20.00 4.47 236,971.3 236,971.3 2,940.0 4,081.5 904.5 2,940.0 4,081.5 904.5

Table A23: Multi-product robust solution.
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Γ Ω E(p) errE(p) E(e) errE(e)

0.00 0.00 230,838.6 517.3 230,838.6 517.3
0.50 0.11 206,098.2 361.0 219,115.2 448.2
1.00 0.22 189,455.0 274.3 209,230.5 382.3
1.50 0.34 188,187.0 186.7 201,233.7 321.1
2.00 0.45 179,876.1 84.3 196,091.0 265.9
2.50 0.56 179,776.8 82.4 192,548.3 219.7
3.00 0.67 181,579.0 67.8 188,633.9 174.3
3.50 0.78 182,218.4 66.2 185,888.3 141.1
4.00 0.89 182,362.2 65.6 184,005.7 122.0
4.50 1.01 183,032.0 64.0 181,129.0 83.1
5.00 1.12 183,228.3 64.2 180,822.8 75.7
5.50 1.23 183,453.3 63.7 180,721.0 71.3
6.00 1.34 183,737.5 63.2 180,772.0 68.9
6.50 1.45 183,843.2 63.2 180,928.7 67.4
7.00 1.57 184,284.8 62.7 181,131.4 65.8
7.50 1.68 184,411.8 62.6 181,391.2 64.9
8.00 1.79 184,702.7 62.5 181,685.7 64.3
8.50 1.90 184,900.0 62.5 182,000.6 63.8
9.00 2.01 184,973.1 62.8 182,345.6 63.3
9.50 2.12 185,069.4 62.7 182,699.3 63.0
10.00 2.24 185,170.5 62.6 183,057.3 62.7
10.50 2.35 185,322.9 62.0 183,431.6 62.5
11.00 2.46 185,418.1 61.8 183,810.4 62.3
11.50 2.57 185,481.3 61.8 184,187.0 62.2
12.00 2.68 185,640.9 61.6 184,733.0 62.2
12.50 2.80 185,684.5 61.6 184,956.1 62.0
13.00 2.91 185,728.3 61.6 185,147.8 61.9
13.50 3.02 185,804.4 61.6 185,302.2 61.8
14.00 3.13 188,946.0 59.4 185,454.1 61.9
14.50 3.24 189,081.6 59.3 188,226.3 59.6
15.00 3.35 189,212.9 59.3 188,441.8 59.5
15.50 3.47 189,314.0 59.3 188,704.0 59.4
16.00 3.58 189,419.6 59.3 188,940.1 59.4
16.50 3.69 189,496.0 59.3 189,114.4 59.4
17.00 3.80 189,593.1 59.3 189,286.7 59.3
17.50 3.91 189,670.1 59.2 189,427.1 59.3
18.00 4.02 189,751.6 59.2 189,558.5 59.3
18.50 4.14 189,785.1 59.2 189,672.6 59.3
19.00 4.25 189,834.9 59.2 189,790.2 59.3
19.50 4.36 189,888.9 59.2 189,879.2 59.2
20.00 4.47 189,943.2 59.2 189,943.2 59.2

Table A24: Estimates of the multi-product robust solution (uncorrelated demands).
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Γ Ω E(p) errE(p) E(e) errE(e)

0.00 0.00 230,202.3 294.0 230,202.3 294.0
0.50 0.11 205,615.4 242.9 218,508.9 276.2
1.00 0.22 180,320.3 57.8 208,693.5 250.6
1.50 0.34 187,898.0 138.6 200,777.2 220.9
2.00 0.45 178,667.4 25.5 195,744.4 187.7
2.50 0.56 178,710.0 24.1 192,254.6 156.1
3.00 0.67 181,237.2 16.3 188,435.4 127.1
3.50 0.78 182,193.8 16.7 185,735.2 103.1
4.00 0.89 182,341.5 16.0 183,873.4 85.6
4.50 1.01 183,024.2 14.6 179,987.1 26.9
5.00 1.12 183,086.4 14.2 180,057.6 24.6
5.50 1.23 183,354.5 14.1 180,198.3 22.9
6.00 1.34 183,673.6 14.0 180,397.1 21.1
6.50 1.45 183,776.4 13.8 180,651.5 19.6
7.00 1.57 184,225.8 13.5 180,918.3 18.5
7.50 1.68 184,360.5 13.5 181,226.0 17.7
8.00 1.79 184,662.6 13.5 181,556.0 16.8
8.50 1.90 184,896.1 13.6 181,895.6 16.1
9.00 2.01 184,969.5 13.5 182,261.2 15.6
9.50 2.12 185,065.9 13.5 182,630.3 15.1
10.00 2.24 185,166.9 13.5 182,999.9 14.6
10.50 2.35 185,319.3 13.5 183,384.7 14.3
11.00 2.46 185,414.5 13.5 183,772.1 14.0
11.50 2.57 185,477.7 13.5 184,156.2 13.8
12.00 2.68 185,636.9 13.5 184,728.8 13.7
12.50 2.80 185,680.5 13.5 184,951.9 13.6
13.00 2.91 185,724.3 13.5 185,143.7 13.5
13.50 3.02 185,800.6 13.4 185,298.2 13.4
14.00 3.13 188,922.3 12.6 185,450.3 13.3
14.50 3.24 189,061.6 12.6 188,196.1 12.7
15.00 3.35 189,198.6 12.6 188,419.0 12.7
15.50 3.47 189,300.9 12.6 188,686.0 12.7
16.00 3.58 189,407.5 12.6 188,925.8 12.7
16.50 3.69 189,485.5 12.6 189,099.5 12.6
17.00 3.80 189,584.8 12.6 189,274.1 12.6
17.50 3.91 189,662.4 12.7 189,416.4 12.6
18.00 4.02 189,744.1 12.7 189,549.3 12.6
18.50 4.14 189,777.6 12.7 189,664.2 12.6
19.00 4.25 189,827.4 12.7 189,782.4 12.6
19.50 4.36 189,881.5 12.7 189,871.7 12.7
20.00 4.47 189,935.8 12.7 189,935.8 12.7

Table A25: Estimates of the multi-product robust solution (−0.95 correlated demands).
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Γ Ω E(p) errE(p) E(e) errE(e)

0.00 0.00 230,270.1 730.3 230,270.1 730.3
0.50 0.11 205,702.1 511.7 218,555.5 637.8
1.00 0.22 198,830.7 437.1 208,766.6 546.1
1.50 0.34 187,941.7 251.9 200,865.1 457.6
2.00 0.45 182,501.5 169.1 195,769.9 367.0
2.50 0.56 182,085.9 158.8 192,262.4 296.9
3.00 0.67 181,987.9 86.2 188,415.5 238.3
3.50 0.78 182,167.2 83.4 185,706.7 199.2
4.00 0.89 182,316.1 83.1 183,842.8 170.8
4.50 1.01 182,997.6 82.1 183,987.1 176.6
5.00 1.12 183,413.5 84.3 182,902.5 150.3
5.50 1.23 183,606.3 83.6 182,214.5 128.4
6.00 1.34 183,855.4 82.8 181,823.2 110.1
6.50 1.45 183,962.9 82.9 181,661.3 95.2
7.00 1.57 184,395.9 82.6 181,656.1 87.8
7.50 1.68 184,512.8 82.4 181,769.4 84.6
8.00 1.79 184,787.3 82.1 181,965.5 83.2
8.50 1.90 184,877.2 81.4 182,219.5 82.3
9.00 2.01 184,950.8 81.2 182,518.5 82.5
9.50 2.12 185,046.9 81.0 182,839.0 82.8
10.00 2.24 185,147.8 80.9 183,175.2 82.6
10.50 2.35 185,299.6 80.9 183,532.0 82.3
11.00 2.46 185,394.4 80.8 183,896.0 82.1
11.50 2.57 185,457.5 80.8 184,258.1 81.9
12.00 2.68 185,616.8 80.8 184,712.6 81.2
12.50 2.80 185,660.4 80.8 184,934.1 81.1
13.00 2.91 185,704.2 80.9 185,124.8 81.0
13.50 3.02 185,780.3 80.8 185,278.6 80.9
14.00 3.13 188,977.5 76.1 185,430.6 80.8
14.50 3.24 189,106.2 76.0 188,267.0 76.2
15.00 3.35 189,225.1 75.9 188,470.4 76.2
15.50 3.47 189,323.3 75.8 188,723.9 76.0
16.00 3.58 189,425.8 75.8 188,952.2 75.8
16.50 3.69 189,497.0 75.7 189,128.0 75.9
17.00 3.80 189,585.0 75.4 189,294.2 75.8
17.50 3.91 189,658.8 75.3 189,428.4 75.7
18.00 4.02 189,738.2 75.2 189,554.6 75.6
18.50 4.14 189,771.8 75.2 189,664.6 75.5
19.00 4.25 189,821.5 75.2 189,778.8 75.3
19.50 4.36 189,875.6 75.2 189,865.9 75.2
20.00 4.47 189,929.8 75.2 189,929.8 75.2

Table A26: Estimates of the multi-product robust solution (0.95 correlated demands).
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LB errLB UB errUB gap % gap Z1 errZ1 Z2 errZ2 Z3 errZ3

185,663.6 397.5 186,747.4 129.4 1,083.8 0.58 589.0 3.4 1,698.7 7.8 3,222.1 35.6

Table A27: Single product stochastic solution.

Corr. LB errLB UB errUB gap % gap ZD1 errZD1 ZD2 errZD2 ZF errZF

0.0 179,558.7 350.8 180,285.2 215.9 726.5 0.4 2,420.0 70.0 3,236.3 89.6 586.8 134.7
−0.95 178,484.5 123.9 178,673.1 76.2 188.6 0.1 1,690.5 91.7 2,419.7 84.1 1,731.7 153.8
0.95 179,309.7 483.3 180,388.8 209.5 1,079.1 0.6 2,781.2 26.5 3,644.9 27.3 0.0 0.0

Table A28: Multi-product stochastic solutions.
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