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DISSERTATION ABSTRACT 

The first part of this dissertation explores the evolution of two iconic groups of species 

through Australian climate space: the Meliphagidae, or honeyeaters, which are primarily 

nectar-feeding birds, and the Hakeinae, a section of the plant family Proteaceae. Both 

groups are inferred to have had their origins in Gondwanan rainforests that were 

widespread across Australia 45 million years ago and then diversified into more arid 

environments as the continent’s climate became more arid. Accordingly, dry 

environments are inhabited by closely related (phylogenetically clustered) sets of species, 

although, in contrast to the honeyeaters, Hakeinae communities are characterized by 

more localized diversification. The impressive and rapid Hakeinae diversification may 

have been driven by specialization onto a variety of highly weathered, nutrient-poor soil 

types on the ancient Australian landmass. 

The second part of this dissertation reviews a variety of methods to assess the 

phylogenetic structure of communities, such as local assemblages of honeyeaters and 

Hakeinae. Many published methods were found to be redundant, and some of the truly 

unique approaches do not measure what they purport to. Accordingly, only a small subset 

of phylogenetic community structure methods have merit.  

In the third part of the dissertation, observations on foraging by 74 of 75 

Australian honeyeater species are used to explore patterns of community assembly. 

Australian honeyeater communities reflect both stochastic and deterministic processes. 

Co-occurring species exhibit substantial overlap in foraging niche space, in contrast to 

predictions from assembly theory based on competition. At the same time, species tend to 

occupy characteristic portions of niche space and available niche space is smaller in the 



arid regions of the continent. Within this smaller available niche space, arid-zone species 

tend to be more widely separated in niche space than species in more mesic 

environments.  

 



LETTER Niche conservatism constrains Australian honeyeater

assemblages in stressful environments

E. T. Miller,1,2* A. E. Zanne3,4 and

R. E. Ricklefs1

Abstract
The hypothesis of phylogenetic niche conservatism proposes that most extant members of a clade remain in

ancestral environments because expansion into new ecological space imposes a selectional load on a popula-

tion. A prediction that follows is that local assemblages contain increasingly phylogenetically clustered sub-

sets of species with increasing difference from the ancestral environment of a clade. We test this in

Australian Meliphagidae, a continental radiation of birds that originated in wet, subtropical environments,

but subsequently spread to drier environments as Australia became more arid during the late Cenozoic. We

find local assemblages are increasingly phylogenetically clustered along a gradient of decreasing precipitation.

The pattern is less clear along a temperature gradient. We develop a novel phyloclimatespace to visualise the

expansion of some lineages into drier habitats. Although few species extend into arid regions, those that do

occupy larger ranges and thus local species richness does not decline predictably with precipitation.

Keywords
Arid zone, Australia, biodiversity gradients, community assembly, Meliphagidae, phyloclimatespace, phyloge-

netic clustering, phylogenetic niche conservatism, phylogenetic structure, range size.

Ecology Letters (2013)

INTRODUCTION

Phylogenetic conservation of the niche, here defined broadly as the

climate envelope within which a species occurs, has been invoked

as a possible explanation for latitudinal gradients in species richness

(Darlington 1959; Latham & Ricklefs 1993; Wiens & Donoghue

2004; Hawkins et al. 2005; Jablonski et al. 2006). This hypothesis

predicts that evolutionary adaptation to novel climates is rare, and

descendant species remain within climate space similar to that of

their ancestors. Accordingly, as climate differs increasingly from the

ancestral state of a particular clade, those species able to persist

should belong to decreasing subsets of evolutionary lineages that

have acquired adaptations to these different conditions. Thus, one

expects to find increasing phylogenetic clustering in community

structure along a gradient from ancestral to derived climate space.

Although phylogenetic community structure is often seen to shift

along climate gradients, empirical evidence demonstrating the

importance of phylogenetic niche conservatism in generating latitu-

dinal diversity gradients has been mixed (Algar et al. 2009; Hortal

et al. 2011; Parra et al. 2011). Indeed, phylogenetic niche conserva-

tism, and the resulting predicted phylogenetic clustering away from

the environment of initial radiation, need have no clear bearing on

regional and local species richness patterns. Lineages that exhibit

large shifts in climatic niche space might diversify more rapidly

(Olalla-T�arraga et al. 2011) or have larger range sizes in novel habi-

tats.

Across many regions of the world, the predominant environmen-

tal gradient reflects variation in temperature (Hawkins et al. 2005).

In Australia, however, where the interior of the continent has

become exceedingly arid compared to coastal areas over the past

20 Mya (Appendix S1), precipitation is the primary environmental

driver. The north-south temperature gradient in Australia is less

pronounced than present in northern hemisphere continents, owing

to infrequency of freezing at higher latitudes in Australia, and in

keeping with the trend of lower temperature seasonality in the

southern hemisphere (Greenwood & Wing 1995; additional citations

Appendix S1). Hawkins et al. (2005) demonstrated strong influences

of water availability on bird richness patterns in Australia. More-

over, the continent has drifted equatorward coincident with a gen-

eral cooling of the globe, leading to complex temperature changes

over time (Appendix S1). Thus, the overall influence of temperature

on the evolution of its biota is arguably less clear than that of the

strong, directional trend in precipitation during this time. We focus

on precipitation here, but also report temperature results.

The Australian Meliphagidae, or honeyeaters, comprise an abun-

dant and widespread group of 75 bird species. At least one species

can be found almost anywhere on the continent, and they are varied

ecologically, from largely nectarivorous to almost entirely insectivo-

rous (Higgins et al. 2001). The Meliphagidae diverged from other

basal oscine passerines in the Eocene, approximately 45 Mya (Jøns-

son et al. 2011), when Australia was breaking away from Antarctica

and what remained of Gondwana (Appendix S1). The family thus

arose in a generally warm, wet world, on a continent that was much

wetter than it is today; Meliphagidae likely originated in the wet for-

ests that were widespread in Australia at that time (Appendix S1).

The northward movement of the continent led to extensive aridifi-

cation, which intensified in the mid- to late-Miocene, 5–15 Mya

(Appendix S1). The new arid climate space would have provided
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substantial ecological opportunity for lineages that could adapt to

the novel, physiologically stressful, open-vegetation environments.

Because Meliphagidae are speciose, form a dominant part of Austra-

lian avian assemblages, span a range of climatic and ecological

niches, radiated largely in situ, and face few dispersal limits within

the continent, the family is an ideal taxon for analysis of evolution

in climate space. Importantly, a recent molecular phylogeny is avail-

able (Ny�ari & Joseph 2011).

In this paper, we address the role of phylogenetic niche conserva-

tism in the evolutionary radiation of Australian Meliphagidae. We

develop a phyloclimatespace approach for visualising evolution

through climate space, and use it to inform interpretation of pat-

terns of phylogenetic community structure. We predict that evolu-

tion into new climate space is infrequent, and that local assemblages

are composed of increasingly related species along a gradient of

decreasing precipitation as compared to the ancestral climate of Me-

liphagidae. Because temperature has fluctuated throughout the evo-

lution of this group, and in absolute terms the modern temperature

gradient in Australia spans neither a notable portion of the global

range in temperatures to which birds are subjected nor the range of

temperatures to which the clade is thought to have been subjected

over time, we do not expect to see clear results with respect to tem-

perature. Nevertheless, a priori, we also predict that Meliphagidae

assemblages should be increasingly phylogenetically clustered along

a gradient away from the ancestral temperature regime. Despite

these predicted relationships, and the linkage in the literature

between these ideas and diversity gradients, we would not necessar-

ily expect to see a strong relationship between climate and species

richness, as species’ range sizes and the diversification rates of par-

ticular lineages, among other factors, are also relevant. To address

this potential disconnect, we explore species’ range sizes, occupancy

of suitable climate space, and species richness in local assemblages

as functions of climate.

METHODS

Geographical data assembly

We obtained all sight and specimen records of Meliphagidae in Aus-

tralia from the Global Biodiversity Information Facility (http://

www.gbif.org/, n = 37 462), eBird (Sullivan et al. 2009, n = 28 056),

and the Atlas of Living Australia (http://www.ala.org.au/,

n = 2 296 074). We filtered the three databases in R (R Develop-

ment Core Team 2011) to eliminate duplicate or non-georeferenced

records, which left n = 2 273 404.

We generated a list of unique taxon names in this database

(n = 385), determined their modern taxonomic interpretation (Toon

et al. 2010; Ny�ari & Joseph 2011), and cleaned all names accord-

ingly. Some of the taxa do not occur in Australia, and were there-

fore either incorrectly identified or poorly georeferenced. We

discarded these, which left n = 2 269 088 across 75 species (mini-

mum n = 130, Meliphaga fordiana; maximum n = 230 992, Anthochaera

carunculata). We cleaned this initial database by visually inspecting all

records on a species-by-species basis to eliminate poorly georefer-

enced points (n = 3075). The resulting point distributions were sim-

ilar to, but more detailed than, available range maps. The final data

set consisted of 2 269 088 unique records, because some of these

records are associated with counts of multiple individuals, it con-

tained 3 259 066 individuals total.

Climate data assembly

We described the climate niche of each species and grid cell with

WorldClim layers (http://www.worldclim.org/bioclim). We divided

Australia, including Tasmania, into equal-area grid cells (‘local

assemblages’) of 100 9 100 km and summarised the mean of each

layer for each grid cell. To determine the effect of spatial scale on

our analyses (Cavender-Bares et al. 2006), we did the same for cells

of 50 9 50 and 200 9 200 km. After exploring interrelationships

among the 19 WorldClim variables, we chose to use mean annual

temperature (MAT) and mean annual precipitation (MAP) to

describe climate; these variables are uncorrelated in Australia

(r2 = 0.001). We used MAT instead of maximum, minimum or diur-

nal range in temperature for two reasons: (1) these were strongly

correlated with MAP (r2 greater than or equal to 0.21) and (2) many

honeyeater species are nomadic, and temperature extremes may not

be as biologically relevant if birds migrate or undertake local move-

ments to avoid the harshest conditions (Higgins et al. 2001). We

used the log10 of MAP because the distribution of precipitation is

strongly right-skewed in Australia, and much interesting species

turnover occurs among arid and semi-arid grid cells; the distribution

of log10 MAP is close to normal (Shapiro–Wilk test, unlogged MAP

W = 0.83, log10 MAP W = 0.96; the value of a normal distribution

equals 1).

We defined the centre of each species’ climatic niche as the mean

MAT and MAP of unique grid cells in which the species occurred.

Community data matrix assembly and manipulation

For each grid cell, we used a split-apply-combine strategy (Wickham

2011) to generate two forms of spatially referenced data matrices

(Webb et al. 2008), where species’ abundances were calculated either

as (1) the total number of records per species per grid or (2) the

total number of individuals per species per grid. Since results were

qualitatively similar for both matrices, and not all records were asso-

ciated with count data, we report results only on the more conser-

vative number of records.

Not all grid cells were evenly sampled. To account for this, we

used rarefaction in the R package vegan (Oksanen et al. 2012) to

restrict our analyses to grid cells for which at least 90% of the spe-

cies were estimated to have been sampled (Chao 1987), and from

which at least as many records existed as there were species in the

most species-rich grid cell. Thus, in addition to cuts based on rare-

faction, we excluded grid cells with fewer than 32, 33, and 36 unique

records at the 50 9 50 km, 100 9 100 km and 200 9 200 km

scales respectively. In total, these cuts removed 15, 22 and 43% of

the original 50, 100 and 200 km grid cells, respectively, more or less

evenly distributed throughout the continent (Appendix S5).

Although it made no qualitative difference to results, to ensure all

Meliphagidae were represented in the final matrix, we included a grid

cell estimated to have had 84% of its species recorded, as otherwise

Lichenostomus hindwoodi would have been excluded.

Range size was quantified as the number of grid cells in which a

species occurred. We calculated each species’ proportion of suitable

climate space occupied as the number of grid cells occupied divided

by the number of grid cells available within the range of climate

space bounded by the 5 and 95% quantiles of its distribution in cli-

mate space. This was done separately for MAT and MAP. We

regressed species richness, range size and the proportion of grid

© 2013 John Wiley & Sons Ltd/CNRS
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cells occupied against MAP and MAT, accounting for potential spa-

tial autocorrelation in species richness (Appendix S2).

Defining assemblages over a given scale is necessary in macroeco-

logical studies; we justify the scale we chose for this study in the

following. First, Australia is relatively homogeneous topographically.

Second, because we focus on phylogenetic niche conservatism, and

the role it may have in mediating species occurrence patterns,

whether the species in a grid cell interact is not critical. Third, in a

separate study, ETM travelled extensively and studied the behaviour

of all Australian Meliphagidae species. Both these observations and

those of others (Higgins et al. 2001 and references therein) support

the high vagility of these species. During this work, ETM occasion-

ally recorded all birds seen during a single morning of travel by

foot. From these lists, we conclude it is likely to observe a consider-

able portion of a grid cell’s constituent Meliphagidae species at a

single time and place (n = 27 mornings, mean proportion of spe-

cies = 0.40 � SD 0.16, range = 0.16–1). Finally, results were quali-

tatively similar across the 16-fold range in scale discussed above.

Assembly of the phylogeny

We used a modified version of a recently published phylogeny (Ny�ari
& Joseph 2011). This tree, created from nuclear (Fib5) and mito-

chondrial (ND2) genes, was associated with branch lengths, but

lacked nine of the 75 Australian species. We added these species

manually, in one case (Manorina) incorporating molecular information

available in GenBank (www.ncbi.nlm.nih.gov/genbank) to infer in-

trageneric relationships, and in another case (Melithreptus) incorporat-

ing more recent phylogenetic information (Toon et al. 2010). We

assumed Conopophila whitei to be sister to C. rufogularis/albogularis, and

Xanthotis macleayanus to be sister to X. flaviventer. We specified branch

lengths from these new taxa to their nearest node by choosing bioge-

ographically similar comparisons and assigning the new taxa the aver-

age branch lengths of their relevant comparisons. For instance, X.

flaviventer, missing from the original phylogeny, was added to the ter-

minal branch of its sister at a depth equal to the mean distance sepa-

rating C. rufogularis/albogularis, Meliphaga fordiana/albilineata, Ramsayornis

fasciatus/modestus and Phylidonyris nigra/novaehollandiae. Branch lengths

used in phylogenetic analyses (except the ancestral state reconstruc-

tion with priors, see below) represent uncorrected genetic distances,

though in figures we have scaled the phylogeny using a penalised

likelihood approach (Sanderson 2002) to facilitate visualization.

Phylogenetic signal in climate niche

To test our hypothesis of phylogenetic niche conservatism in species’

environmental niches, we assumed a drift (Brownian motion) model

of evolution (Cooper et al. 2010) and calculated Pagel’s k (Pagel

1999) using the R package phytools (Revell 2012). This metric has

recently been shown to perform well among those describing phylo-

genetic signal (M€unkem€uller et al. 2012). In practice, k ranges from

zero to one, where k = 1 denotes that the trait in question is consis-

tent with an underlying Brownian model of evolution. A P-value for

k is calculated with a likelihood ratio test, where the observed k is

compared to a trait distribution having no phylogenetic signal (Revell

2012). We ran this analysis with both the non-ultrametric and ultra-

metric (Sanderson 2002) form of the tree. Because results were quali-

tatively similar, we report only those for the non-ultrametric

phylogeny (see also Litsios & Salamin 2012). Results of analyses using

Blomberg’s K (Blomberg et al. 2003) in the R package picante (Kembel

et al. 2010) yielded similar results, and we do not report those here.

Ancestral state reconstruction

We reconstructed ancestral climate states using two approaches. First,

we used restricted maximum likelihood (REML) ancestral state recon-

struction (Schluter et al. 1997), as implemented in the R package ape

(Paradis et al. 2004) to infer the most likely MAT and log10(MAP) cli-

mate values for the ancestor of modern Meliphagidae, assuming a

Brownian model of evolution. This function returned similar results

using least squares (Felsenstein 1985), maximum likelihood and REML.

Second, because the first approach does not consider the geologi-

cally and palynologically corroborated decrease in precipitation over

the course of Meliphagidae evolution (Appendix S1), we used a

Bayesian approach (Slater et al. 2012), where we fit models of evolu-

tion to species’ current climate niches after placing priors on the

root state. Our priors (mean MAP 1250 � 275 SD mm yr�1, mean

MAT 19 � 1.5 SD °C) are based on published literature (Appendix

S1) and expert opinion (pers. comm. D. R. Greenwood,

S. McLoughlin). We reconstructed ancestral precipitation based on

the common logarithms of species’ MAP values. The two alterna-

tives we considered were Brownian and directional trend models of

evolution. The latter is a Brownian model that incorporates an addi-

tional parameter, M, describing the expected value of the trait, in

this case climatic niche, through time (Slater et al. 2012). The R

function used, fitContinuousMCMC, will be incorporated in future

versions of geiger (Harmon et al. 2008). We ran 107 generations of

each model, sampling every 100 generations, and discarded the first

104 generations as burn-in. Number of generations needed was

determined by repeated runs and comparisons of effective sample

size with Tracer (http://beast.bio.ed.ac.uk/Tracer). We compared

the fit of these different models with Akaike’s information criterion

for MCMC samples, using fitContinuousMCMC functions.

Phyloclimatespace

We visualised Meliphagidae exploration of climate space using an

approach similar to a phylomorphospace (Sidlauskas 2008). In our

case, our axes described the MAT and MAP of the extant taxa or

the internal nodes as inferred by REML ancestral state reconstruc-

tion. Tips and internal nodes were plotted on this climate space,

and the resulting points connected according to the underlying phy-

logeny. The branches were coloured by assigning all extant taxa a

colour state of red. We divided the remaining nodes into four quan-

tiles corresponding to distance from the root in the ultrametric tree,

and assigned nodes colours as a function of their respective quantile

(where blue was closest to the root). We used the R package plotrix

(Lemon 2006) to colour branches by blending colours between two

nodes according to a walk through RGB colour space.

We further explored a visual trend in the resulting figure by plot-

ting the precipitation midpoint of each evolutionary vector (i.e. a

branch from either an internal node to another such node or to an

extant taxon) as a function of its angle through climate space.

Phylogenetic community structure

We used picante to calculate the mean phylogenetic pairwise distance

(MPD) among the members of each grid cell (Webb 2000). This

© 2013 John Wiley & Sons Ltd/CNRS
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index is not weighted by abundance. MPD increases with phyloge-

netic over-dispersion (or evenness, larger phylogenetic distances

among the members of an assemblage) and decreases with cluster-

ing (shorter phylogenetic distances).

Abundance-weighted MPD is defined as the average phylogenetic

distance between two randomly chosen individuals from the assem-

blage (Webb et al. 2008). It incorporates intraspecific phylogenetic

distances of zero (assuming each taxon is represented by a single

branch). However, our prediction that phylogenetic clustering

increases away from ancestral environments concerns interspecific

phylogenetic distances. By setting the diagonal element of the rela-

tive weight matrix used in the calculation of traditional abundance-

weighted MPD equal to zero, we modified it to reflect only inter-

specific phylogenetic distances. We refer to this as interspecific

abundance-weighted MPD, and its appropriate interpretation is the

average phylogenetic distance among heterospecific individuals.

Alternatively, it can be thought of as the MPD among species,

where all distances are weighted by the number of individuals of

each co-occurring species. Interspecific abundance-weighted MPD is

particularly useful here in that it downweights the influence of

vagrants on MPD scores.

We regressed both forms of MPD for each grid cell against the

corresponding MAT and MAP value to test the prediction that phy-

logenetic clustering increases with distance from the ancestral cli-

mate. Because spatial autocorrelation is a potentially confounding

issue of such analyses, we used spatial eigenvector mapping and var-

iation partitioning to separate the components of spatial and envi-

ronmental influences on the response variables (Appendix S2).

Though null models have been developed to explore the statistical

significance of any given assemblage’s phylogenetic structure (Kem-

bel 2009), these standardise an observed score to a given set of

assumptions. Our prediction was directly concerned with phyloge-

netic distances irrespective of species richness; we were interested in

the relationship of raw MPD scores to climate. Accordingly, we

developed null expectations of MPD under four scenarios (Appendix

S3). We used the null expectations to calculate the 97.5 and 2.5%

quantiles of the distribution of the metric at each value of species

richness observed in the original data set. A given grid cell was con-

sidered ‘overdispersed’ or ‘clustered’ if the observed MPD score was

greater or less than, respectively, the confidence intervals of the sim-

ulated scores at the corresponding richness (a two-tailed test).

RESULTS

Phylogenetic signal in environmental niche

Significant phylogenetic signal was observed in species’ climate

traits. For precipitation, k = 0.595 (P = 0.01), and for temperature,

k = 0.616 (P = 0.0005). Thus, the observed phylogenetic trait distri-

bution differed significantly from that expected given a star phylog-

eny (Revell 2012).

Ancestral state reconstruction

Our first method of reconstruction (REML) placed the ancestor of

the Meliphagidae in an environment that received 748.6 mm yr�1

precipitation (Fig. 1, 95% CI = 447.5–1252.6, residual log-likeli-

hood = 19.3), with a MAT of 21.1 °C (95% CI = 10.8–31.5 °C,
residual log-likelihood = �518.4, subject to the known limitations

of such reconstructions; Cunningham et al. 1998; An�e 2008; Slater

et al. 2012; Appendix S4). This is moist by current Australian stan-

dards, and is at the upper range of precipitation that supports tem-

perate woodland vegetation (Appendix S1).

Our second method, a Bayesian approach with a prior placed on

the root (Slater et al. 2012), found, for MAP, highest support for a

trend model of evolution with negative M, the parameter describing

the expected value through time (on a log10 scale, mean = �0.21,

95% highest probability density = �0.48–0.05; due to the penalised

likelihood smoothing approach, all tip to root distances equal 1).

For MAT, a trend model of evolution was also best supported

(mean M = 2.20, 95% HPD = �3.23–7.97). In neither case was the

trend model strongly supported over a stationary Brownian model.

For MAP, Akaike’s difference score (dAIC) of the Brownian model

was 2.45. For MAT, dAIC was 3.53. We therefore calculated the

ancestral state at the root as the weighted average of these two

models, based on the Akaike weights. We used kernel density esti-

mates (Rosenblatt 1956), and calculated the HPD with the R pack-

age hdrcde. With this approach, the ancestral Meliphagidae were

inferred to come from an environment characterised by mode MAP

of 1205 mm yr�1 (95% HPD = 829–1779 mm yr�1) and mode

MAT of 19.3 °C (95% HPD = 16.2–22.0 °C). Inferred MAT is

Figure 1 The Australian Meliphagidae phylogeny with mean annual precipitation

depicted both across the tips and at the internal nodes (reconstructed with

Brownian model of evolution and no trend). These values are represented both

by the colour of the circles (internal nodes) and the squares (extant taxa) and, in

the case of the extant taxa, by the distance of the squares from the tips of the

phylogeny. Distances are proportional to the mean annual precipitation

experienced by a given taxon. Colours range from red (taxa inhabiting driest

areas) to orange to green (wettest areas). Observed k = 0.595 (P = 0.01).

© 2013 John Wiley & Sons Ltd/CNRS
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therefore approximately in the middle of current Australian temper-

ature range, while the inferred MAP is much wetter than most of

modern Australia (dashed lines Fig. 3).

Phyloclimatespace

Few lineages shifted out of the ancestral precipitation regime to

invade the arid zone of Australia (Fig. 2a). In contrast, at moderate

to high precipitation, evolution across broad ranges of temperature

was frequent. Moving progressively from areas of high to low pre-

cipitation, we found that the orientation of evolutionary vectors in

climate space narrowed significantly, with the lineages evolving

towards drier climates remaining within narrow temperature ranges,

and that lineages already in arid areas tended to evolve towards

even drier climates (Fig. 2b).

Phylogenetic community structure

Local Meliphagidae assemblages were increasingly phylogenetically

clustered along a gradient of decreasing precipitation from the

inferred ancestral state of the Meliphagidae, whether measured in

non-abundance-weighted (Fig. 3a, r2 = 0.496, P < 0.0001, n = 695)

or interspecific abundance-weighted MPD (Fig. 3c, r2 = 0.716,

P < 0.0001, n = 695). Honeyeaters that co-occur in drier areas are

more closely related to each other than are species in wetter areas.

Results were consistent across a 16-fold range in grid area; linear

regressions of MPD against MAP were significant both at the

50 9 50 km (non-abundance-weighted r2 = 0.474, P < 0.0001,

n = 1851, interspecific abundance-weighted r2 = 0.648, P < 0.0001,

n = 1851) and the 200 9 200 km scales (non-abundance-weighted

r2 = 0.558, P < 0.0001, n = 214, interspecific abundance-weighted

r2 = 0.753, P < 0.0001, n = 214; see also Lanier et al. 2013). These

results remained consistent after accounting for spatial autocorrela-

tion; adjusted r2 values after removal of spatial nuisance parameters

for both forms of MPD at the 100 km scale were 0.496 and 0.716

respectively (Appendix S2).

The phylogenetic structure of Meliphagidae assemblages was

poorly related to the temperature gradient in Australia. This was

true irrespective of whether measured in non-abundance-weighted

(Fig. 3b, r2 = 0.006, P = 0.039, n = 695) or interspecific abun-

dance-weighted MPD (Fig. 3d, r2 = 0.015, P = 0.001, n = 695), and

held across both changes in scale and after accounting for spatial

autocorrelation (Appendix S2).

For non-abundance-weighted MPD, the assemblages of 40 of 695

total grid cells exhibited closer phylogenetic relationships than

97.5% of the richness null expectations at the corresponding species

richness. Of these, 33 also exhibited significant phylogenetic cluster-

ing according to the frequency null expectations. The assemblages

of seven grid cells were significantly overdispersed according to fre-

quency null expectations, one of which was also considered overdi-

spersed according to the richness null (Figs 3a,b and S3.2). For

interspecific abundance-weighted MPD, 137 assemblages were con-

(b) (a)

Figure 2 Meliphagidae evolution through climate space. (a) Extant taxa plotted as red points, positioned according to current climate niche. These are connected by the

underlying phylogeny, with internal nodes placed with respect to inferred ancestral states (REML method). Colours in this panel represent distance of node from root

(i.e. � proportional to time). Grey points show modern range of Australian climate. The four species in the top left corner are Tasmanian endemics. (b) Precipitation

midpoint of each vector as a function of angle through climate space. Like Fig. 1, colour in this panel represents precipitation, and the axis is inverted, such that lineages

that evolved through wet climate space are plotted closest to origin. There is a tendency for lineages already in dry areas (outer ring of polar graph) not to evolve

towards wetter climates (i.e. � towards 0°). Outlier vector in this respect (small arrow) is discussed in Appendix S7.
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sidered significantly clustered according to the richness null, but

only 3 of these were significantly clustered using the frequency null

(Figs 3c,d and S3.3).

Species richness

Species richness was positively correlated with MAP (Fig. 4a, Appen-

dix S2, r2 = 0.245, P < 0.0001, n = 695), as predicted by many

hypotheses for the latitudinal diversity gradient and, since the ances-

tral state of the clade was inferred to have been an area of high pre-

cipitation, also in accordance with phylogenetic niche conservatism. It

was, however, either weakly negatively correlated with MAT (Fig. 4b,

r2 = 0.094, P < 0.0001, n = 695) or, if spatial autocorrelation was

accounted for, uncorrelated (Appendix S2). Regardless, neither cli-

mate variable explained much variation in species richness.

Range sizes

Range size was inversely related to MAP, such that species in arid

areas occupy larger ranges than do species in wetter areas (Fig. 4c,

r2 = 0.374, P < 0.0001, n = 75). Range size was not related to

MAT (Fig. 4d, r2 = 0.0004, P = 0.872, n = 75). Moreover, species

in arid areas occupy a larger proportion of available habitat space

than do species in wetter areas (with respect to precipitation,

r2 = 0.18, P = 0.0001, n = 75, Fig. S6A; with respect to temperature

r2 = 0.258, P < 0.0001, n = 75, Fig. S6C). There was a weak but

significant negative relationship between per cent of occupied tem-

perature space and species’ mean temperature niches (r2 = 0.056,

P = 0.041, n = 75, Fig. S6D).

DISCUSSION

Phylogenetic niche conservatism predicts descendant species remain

in environmental space similar to that of their ancestors, with infre-

quent shifts into new climates (Latham & Ricklefs 1993; Wiens &

Donoghue 2004). Accordingly, one expects increased phylogenetic

clustering with increasing distance from the ancestral environment

of a clade. For the Australian Meliphagidae, a diverse bird group

distributed continent-wide, but believed to have originated in an

area of high precipitation (Jønsson et al. 2011; Appendix S1; this

(a) (b)

(c) (d)

Figure 3 MPD as a function of climate. Points represent 100 9 100 km grids. Nonsignificant points coloured according to position between upper and lower confidence

intervals (Appendix S3). Larger points deviate beyond one or more null model. Dashed lines represent inferred mode and 95% highest probability distribution for

ancestral state at root (Bayesian approach with priors). Solid lines are ordinary least squares regressions. (a) Non-abundance-weighted MPD as function of log10 of MAP.

Phylogenetic distances among assemblage members increase with precipitation (r2 = 0.496, P < 0.0001, n = 695). (b) Non-abundance-weighted MPD as function of MAT.

Phylogenetic distances are poorly related to temperature (r2 = 0.006, P = 0.039, n = 695). (c) Interspecific abundance-weighted MPD as function of log10 of MAP

(r2 = 0.716, P < 0.0001, n = 695). (d) Interspecific abundance-weighted MPD as function of MAT (r2 = 0.015, P = 0.001, n = 695).
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study), we predicted increased phylogenetic clustering in increasingly

arid climates. This was strongly supported; variation among assem-

blages in MAP explains much variation in phylogenetic community

structure at a continental scale. We also predicted increased phylo-

genetic clustering away from the ancestral MAT of the clade. This

was not supported, and may be related to fluctuating temperatures

in Australia during Meliphagidae evolution, and the small extant

temperature gradient in Australia (Appendix S1).

Our phyloclimatespace approach offers additional insight into the

Australian Meliphagidae radiation. Shifts into novel climate space

were rare; radiation into and within arid climates was particularly

infrequent. In general, few lineages are characterised by long

branches, which would suggest dramatic niche shifts. Evolution

across broad swathes of Australian temperature regimes was evident

among lineages inhabiting moist climates. Lineages that had moved

into semi-arid habitats were the source of lineages that radiated into

even more arid climates and, in keeping with the trend model of

evolution being best supported, there appears to be a strong direc-

tionality to the evolution of these lineages. This is best seen in the

winnowing of the distribution of evolutionary vectors in arid areas

(Fig. 2b). Finally, few lineages evolved towards both hotter and

drier habitats, and of these, none terminated in hot deserts. Because

water availability decreases with increasing temperature, the adaptive

load imposed on a population by a shift towards lower precipitation

might be offset by parallel evolution to a lower temperature regime.

In future studies, such questions might be better addressed by an

analysis that considers species’ entire climate envelopes or, ideally,

their physiological tolerances (Vieites et al. 2009).

Despite strong support found here and by others (Algar et al.

2009; Hortal et al. 2011; Kooyman et al. 2011; Parra et al. 2011) for

the phylogenetic niche conservatism hypothesis, i.e. increased phylo-

genetic clustering away from ancestral environments, species richness

of Australian Meliphagidae declines only slightly with decreasing pre-

cipitation (Fig. 4a). This could have resulted from rapid diversifica-

tion of the few lineages adapted to arid climates, although this does

not seem to be the case (Fig. 2a). Rather, arid-adapted species tend

to occupy larger geographical ranges (Fig. 4c) and a greater propor-

tion of available climate space (Fig. S6) than mesic-restricted species.

Radiation into arid climes has been infrequent, but the increased

phylogenetic clustering in these areas cannot be attributed to any

(a) (b)

(c) (d)

Figure 4 (a) Species richness per 100 9 100 grid cell as a function of MAP. More species are found in wetter areas, but little variation in species richness is explained by

MAP (r2 = 0.245, P < 0.0001, n = 695). (b) Species richness as function of MAT (r2 = 0.094, P < 0.0001, n = 695). (c) Species range sizes (sum of grid cells in which a

species occurs) as function of MAP (r2 = 0.374, P < 0.0001, n = 75). Points in this and next panel represent individual species. The three outlying species with small

range sizes in arid regions are Ashbyia lovensis, Manorina melanotis and C. whitei. The first two are habitat specialists with restricted ranges, while the third occurs widely

throughout inland Australia but is rarely observed. (d) Species range sizes as function of MAT (r2 = 0.0004, P = 0.87, n = 75).
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single clade. Instead, a few such clades within the Meliphagidae

have entirely or partly radiated into dry areas. In total, 34 unique

species occur in various combinations in significantly phylogeneti-

cally clustered assemblages. Of these, the Australian chats, long con-

sidered a separate family (Epthianuridae, Appendix S7), comprise

one notable example. The Ptilotula clade (Ny�ari & Joseph 2011) of

six species is another. The majority of these significantly clustered

sites were located in the arid interior (Appendix S5).

Significantly overdispersed assemblages of species (Figs 3 and

S3.2) might be interpreted as evidence for competitive exclusion, but

we caution against this for three reasons: (1) we have not directly

assessed competition among these species (Mayfield & Levine 2010),

(2) seven (or one, depending on the null) significant sites is fewer

than we would expect by chance (2.5%) to be significantly overdi-

spersed and (3) the lack of significantly overdispersed sites when

MPD is abundance-weighted suggests that vagrant and/or rare spe-

cies might have influenced the non-abundance-weighted results.

Increased phylogenetic clustering away from an ancestral climate

might be expected of a rapidly diversifying taxon with poor dis-

persal, irrespective of phylogenetic niche conservatism. However,

the Australian Meliphagidae are highly mobile, and many species

engage in migrations and/or nomadic movements (Higgins et al.

2001). Moreover, after correction for spatial autocorrelation, the

results remained significant (Appendix S2). The strong pattern

observed here seems unlikely to be the product of geographical

inertia. Indeed, many Meliphagidae lineages likely underwent range

shifts as the continent drifted northwards and the climate changed

with it. Accordingly, phylogenetic clustering in arid-zone Meliphagi-

dae represents the effect of an increasingly relevant habitat filter in

drier areas. Numerous physiological adaptations for aridity have

been documented in the Meliphagidae and other passerines (Wil-

liams & Main 1977; Maclean 1996; Tieleman 2005). In Australia,

some arid areas are also among the warmest on the continent,

which compounds physiological stresses (Maclean 1996; McKechnie

& Wolf 2010). An alternative potential basis for this phylogenetic

clustering, by no means mutually exclusive, is the lower productivity

of arid regions (Boelman et al. 2003), combined with phylogeneti-

cally conserved differences in abilities to procure sufficient

resources in such areas.

The Meliphagidae arose when Australia was much wetter than it

is today, and was largely covered by Gondwanan forests (Appendix

S1). As the continent drifted northwards, it experienced extensive

aridification. A few clades have yielded lineages that invaded novel

arid habitats, producing phylogenetic clustering in these areas. Such

evolutionary shifts were presumably facilitated by ecophysiological

adaptations to the new climates (Maclean 1996) and, perhaps, forag-

ing adaptations associated with different vegetation structure and

food resource characteristics of these new areas. Although phyloge-

netic niche conservatism may bear a complex relationship to pat-

terns of local and regional species richness (Algar et al. 2009), it can

clearly govern aspects of diversification, species’ distributions and

community assembly processes along strong gradients of environ-

mental conditions.
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Additional references for the paleoclimate of Australia 2 

 The climate history of the continent of Australia, from its Gondwanan origins to the 3 

present, has been fairly well studied. While gaps in our understanding remain to be filled, 4 

multiple approaches—particularly geological and palynological—have largely corroborated each 5 

other and helped to shape current knowledge of Australian paleoclimate. Due to space 6 

constraints in the main text, we offer a more complete bibliography here.  7 

Australia began separating from Antarctica and what remained of Gondwana by the early 8 

Cenozoic (McLoughlin 2001; McGowran et al. 2004). The Meliphagidae diverged from other 9 

basal oscine passerines in the Eocene, approximately 45 Mya (Gardner et al. 2010; Jønsson et al. 10 

2011). The family thus had its origin in a generally warm, wet world, on a continent that was 11 

much wetter than it is today (Huber & Goldner 2012); the Meliphagidae likely originated in the 12 

wet forests that were widespread in Australia at that time (Beadle 1981; Truswell 1993; 13 

Greenwood 1996; Greenwood et al. 2003). Since the Gondwanan breakup, Australia has 14 

continued equatorward movement, accompanied by extensive aridification that intensified in the 15 

mid- to late-Miocene, 5-15 Mya (Truswell 1993; Greenwood 1996; Hill et al. 1999; McLoughlin 16 

2001; Greenwood et al. 2003; McGowran et al. 2004; Greenwood & Huber 2011; Herold et al. 17 

2011; Huber & Goldner 2012). It also appears there has been an increase in the seasonality of 18 

this rainfall, resulting in drier dry seasons, as Australia has drifted towards the dynamic 19 

Intertropical Convergence Zone (Greenwood 1996; Huber & Goldner 2012). In summary, there 20 

has been a general, directional trend towards lower and less consistent annual precipitation 21 

across Australia since the origin of the Meliphagidae. Mean annual temperature, on the other 22 

hand, has fluctuated throughout Meliphagidae evolution, and though the world has generally 23 



Miller, Zanne & Ricklefs                                                                   

2 

Appendix S1 Page 2 

cooled during this time, Australia’s simultaneous equatorward movement has generated a 24 

complex set of temperature shifts throughout its history (Truswell 1993; Greenwood et al. 2003; 25 

McGowran et al. 2004).  26 

 27 
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Beadle, N.C.W. (1981). The vegetation of Australia. Cambridge University Press, 31 

Cambridge, UK. 32 

 33 

2. 34 

Gardner, J.L., Trueman, J.W.H., Ebert, D., Joseph, L. & Magrath, R.D. (2010). 35 

Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian 36 

songbirds. Mol. Phylogenet. Evol, 55, 1087–1102. 37 

 38 

3. 39 

Greenwood, D.R. (1996). Eocene monsoon forests in central Australia? Aust. Syst. Bot., 40 

9, 95–112. 41 

 42 
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Greenwood, D.R. & Huber, M. (2011). Eocene precipitation: a global monsoon? Abstract 44 
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Appendix S2: 1 

Observed results cannot be explained solely as a product of spatial autocorrelation 2 

 Spatial autocorrelation is a potentially confounding issue in many ecological studies 3 

(Griffith & Peres-Neto 2006; Dormann et al. 2007; Bini et al. 2009; Beale et al. 2010; Peres-4 

Neto & Legendre 2010). Since it is theoretically possible that any relationship we observed 5 

between mean pairwise phylogenetic distance (MPD) or richness and mean annual precipitation 6 

(MAP) or mean annual temperature (MAT) could be solely due to spatially contagious processes 7 

like dispersal and speciation, we employed spatial eigenvector mapping to partition out the 8 

contributions of environmental and spatial predictors on observed MPD and richness. Under 9 

some scenarios (dependent on the structure of the autocorrelation), this method has been shown 10 

to have type I error rates over 5% (Beale et al. 2010). 11 

 We used the procedure described in Dormann et al. (2007). However, because our goal 12 

was to test whether the environmental variables were significant in the face of spatial 13 

autocorrelation, we used a liberal approach in our selection of spatial eigenvectors. Specifically, 14 

we used all resulting 295 eigenvectors with positive eigenvalues as predictors in multiple 15 

regression models. Our results, therefore, represent a conservative estimate of the amount of 16 

variation in MPD (or richness) explained by the environmental variables after partitioning out 17 

the component of variation due solely to spatial autocorrelation (the spatial nuisance parameter; 18 

Peres-Neto & Legendre 2010).  19 

 As in the main text, we tested for the influence of MAT and MAP on MPD and richness 20 

separately. For each of these, we derived three regression models: (1) a model that incorporated 21 

the environmental variable in question and all spatial variables, including latitude and longitude; 22 

(2) a model that only incorporated the spatial variables; (3) a model that only incorporated the 23 
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environmental variable. We then partitioned the variation (Legendre & Legendre 1998) 24 

explained by these models into shared and unique components.  25 

 For non-abundance-weighted MPD, MAP remained significant after inclusion in model 1 26 

with all variables (P = 0.0002). The adjusted (for multiple explanatory variables) R2 for the 27 

entire model was 0.725. The proportion of variation that could be explained solely by the 28 

environment (fraction [a] in Legendre & Legendre 1998) was 0.006, while that which could be 29 

explained both by this and by spatially structured environmental data (fraction [ab], see also 30 

Peres-Neto & Legendre 2010) was 0.496. Thus, the adjusted R2 of the spatial nuisance 31 

component of our results (fraction [b]) was 0.223. For interspecific abundance-weighted MPD, 32 

MAP also remained significant in model 1 (P < 0.0001), and the entire model adjusted R2 = 0.91. 33 

Proportions of variation were adjusted R2 [a] = 0.014, adjusted R2 [ab] = 0.716, and adjusted R2 34 

[b] = 0.18. 35 

 For non-abundance-weighted MPD, MAT did not remain significant in model 1 (P = 36 

0.358), and the entire model adjusted R2 = 0.716. Proportions of variation were adjusted R2 [a] = 37 

0, adjusted R2 [ab] = 0.005, and adjusted R2 [b] = 0.711. For interspecific abundance-weighted 38 

MPD, MAT remained significant (P = 0.0005), and the entire model adjusted R2 = 0.899. 39 

Proportions of variation were adjusted R2 [a] = 0.003, adjusted R2 [ab] = 0.014, and adjusted R2 40 

[b] = 0.882. 41 

 For richness, MAP remained significant in model 1 (P = 0.02), and the entire model 42 

adjusted R2 = 0.846. Proportions of variation were adjusted R2 [a] = 0.002, adjusted R2 [ab] = 43 

0.244, and adjusted R2 [b] = 0.6. However, MAT was no longer significant after accounting for 44 

spatial autocorrelation (P = 0.059). The entire model adjusted R2 = 0.845. Proportions of 45 

variation were adjusted R2 [a] = 0.001, adjusted R2 [ab] = 0.093, and adjusted R2 [b] = 0.751. 46 
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Appendix S3: 1 

A novel approach to significance testing of observed phylogenetic community structure 2 

 Typically, mean phylogenetic pairwise distance (MPD) scores are standardized by 3 

comparison to a null model, yielding the metric often referred to as net relatedness index (NRI, 4 

Webb 2000). In this manner the significance of the observed points is also assessed. However, as 5 

our prediction was concerned with raw MPD scores, a standardized score was, in our study, an 6 

unnecessary abstraction of our response variable. Moreover, had we had a time-calibrated 7 

phylogeny, observed MPD scores would have been directly interpretable as the average 8 

evolutionary time separating two species in an assemblage.  9 

 Despite this, we were still interested in the significance of our observed phylogenetic 10 

structure. Therefore, for both the unweighted and interspecific abundance-weighted MPD, we 11 

randomized the community data matrix using the richness and frequency shuffles in the R 12 

package picante (= four null models total; Kembel et al. 2010). However, rather than using these 13 

to standardize our MPD scores, we retained all randomizations and their associated species 14 

richness per scenario, and used them to calculate 95% confidence intervals at each unique 15 

species richness value that occurred in the observed dataset. 16 

 With unweighted MPD, a richness null calculated in this manner is equivalent to a 17 

traditional richness null, but a frequency null is quite different (Fig. S3.1). This is because the 18 

matrix randomization for the latter maintains species’ occurrence frequencies by shuffling 19 

species among sites; the resulting random assemblages have a strong tendency towards the 20 

median number of species per assemblage in the observed dataset, and random assemblages of 21 

low and high species richness are infrequently sampled. Thus, observed sites are compared to 22 

randomized sites with a narrow distribution of species richness centered on the median of the 23 
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dataset, irrespective of the species richness of the observed site. Since the width of the 24 

confidence intervals are negatively correlated with species richness, such frequency nulls have 25 

high type I error risks (Hardy 2008), presumably particularly so at low species richness. Our 26 

approach avoids these shortcomings, though it is computationally intensive and, unless well-27 

sampled species richness are discarded after sufficient sampling, observed scores will be 28 

compared to null expectations generated from unequal sampling. Code to calculate null 29 

expectations in this manner is available (http://www.umsl.edu/~emmq7). 30 

 With interspecific abundance-weighted MPD, our richness null compares observed 31 

assemblages to random assemblages of the corresponding species richness, where all species can 32 

occur with equal probability and rank abundance curves are sampled in proportion to their 33 

occurrence in the observed data. For instance, if half of the assemblages of a given species 34 

richness in the observed data contain a few very common species and many rare species, and the 35 

other half contains mostly moderately common species, this structure is maintained in the 36 

randomized data. Our frequency null compares observed assemblages to random assemblages of 37 

the same species richness, where species occur with a probability proportional to their 38 

occurrence in the original dataset, and with an abundance drawn from each species’ specific 39 

observed abundance distribution (e.g., if a species is widespread but everywhere rare, this same 40 

structure is maintained in the randomized data).  41 

 We ran 105 iterations of each of the four null models. As expected, the frequency nulls 42 

infrequently sampled low and high species richness. We subsequently randomized the matrices 43 

as detailed, but this time only retained the first 100 random samples of each species richness. By 44 

combining these raw values with those from the corresponding 105 iterations, we ensured that all 45 

observed scores were compared to at least 100 random assemblages of equivalent species 46 
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richness. We compared these final confidence intervals to those generated from fewer iterations, 47 

and found that the positions of the confidence intervals—particularly at moderate to high species 48 

richness—remained quite stable after only a few hundred randomizations. Since, after secondary 49 

sampling for infrequently sampled species richness values, only random assemblages of high 50 

species richness (31-34 species) received fewer than 1,000 samples, and none of our significant 51 

grid cells contained this many species, we are confident that the significance of very few of our 52 

sites would change with additional iterations of the null models. 53 
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 70 

 71 

 72 

Figure S3.1. A schematic diagram, using simulated values, of the difference between a typical 73 

null model approach and the approach we take in this study. (A) Matrix randomizations to 74 

maintain species richness shuffle species within columns. All species can occur with equal 75 

probability. Observed sites are compared to random values of corresponding species richness. 76 

(B) Matrix randomizations to maintain species’ occurrence frequencies shuffle species across 77 

A

B

C

D
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columns. Observed sites, irrespective of species richness, are compared to random values with an 78 

underlying distribution of species richness values centered on the median species richness in the 79 

observed dataset. (C) Results of a typical richness null and our approach are equivalent when the 80 

richness shuffle is used as, in either case, observed sites are compared to random values of 81 

corresponding species richness where all species can occur with equal probability. (D) Results of 82 

a typical frequency null and our approach differ when a frequency shuffle is used. Our approach 83 

compares observed sites to random sites of corresponding species richness. 84 

 85 
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 86 

 87 

Figure S3.2. Observed and expected non-abundance-weighted mean pairwise phylogenetic 88 

distance among the members of n = 695 100 × 100 km grid cells. The non-significant sites are 89 

color-coded from light orange through light blue according to their position between the upper 90 

and lower confidence intervals. Null expectations for the richness null are plotted as light gray 91 

hollow circles, and those for the frequency null are dark hollow circles. Significant sites are also 92 
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color-coded: orange are clustered according to a richness null, red are clustered according to both 93 

the richness and frequency nulls, blue are overdispersed according to a frequency null, and 94 

purple are overdispersed according to both frequency and richness nulls. 95 

  96 
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 97 

 98 

Figure S3.3. Observed and expected interspecific abundance-weighted mean pairwise 99 

phylogenetic distance among the members of n = 695 100 × 100 km grid cells. The non-100 

significant sites are color-coded from light orange through light blue according to their position 101 

between the upper and lower confidence intervals. Null expectations for the richness null are 102 

plotted as light gray hollow circles, and those for the frequency null are dark hollow circles. 103 

Sig. clustered (richness null)
Sig. clustered (both nulls)

Sig. overdispersed (both nulls)
Sig. overdispersed (frequency null)

Increasingly even assemblages

Increasingly clustered assemblages
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Significant sites are also color-coded: orange are clustered according to a richness null, and red 104 

are clustered according to both the richness and frequency nulls. 105 
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Figure S4. The Australian Meliphagidae phylogeny with mean annual temperature 

(MAT) depicted both across the tips and at the internal nodes (reconstructed assuming a 

Brownian model of evolution with no trend). These values are represented both by the 

color of the circles (internal nodes) and the squares (extant taxa) and, in the case of the 

extant taxa, by the distance of the squares from the tips of the phylogeny. Distances are 

proportional to the mean annual temperature experienced by a given taxon. The colors 

range from cyan (taxa inhabiting coldest areas) to orange to red (hottest areas). Observed 

Pagel’s λ = 0.616 (P = 0.0005). Our restricted maximum likelihood reconstruction placed 

the ancestral Meliphagidae in an environment characterized by 21.1°C MAT (95% CI = 

10.8-31.5°C, residual log-likelihood = -518.4). 
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Figure S5.1. Non-abundance-weighted mean pairwise phylogenetic distance (MPD) 

mapped across Australia. Grid cells represent 100 × 100 km local assemblages, and are 

color-coded from red (more clustered) to blue (more even). When not abundance-

weighted, co-occurring species are more closely related in the interior and west of the 

continent, while species in the east and particularly the north are less closely related. 

Figure S5.2 shows which of these grid cells deviate beyond null expectations. 
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Figure S5.2. Significance, according to a frequency null, of observed non-abundance-

weighted MPD mapped across Australia. Yellow grid cells did not deviate beyond 

expectations of a frequency null and, generally, a richness null (the 7 additional sites also 

considered clustered according to a richness null were all located in the interior of the 

continent). Red grid cells were significantly clustered, and blue significantly 

overdispersed. The single site also considered overdispersed according to a richness null 

was located on Cape York in the far northeast of the continent. 
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Figure S5.3. Interspecific abundance-weighted mean pairwise phylogenetic distance 

(MPD) mapped across Australia. Grid cells represent 100 × 100 km local assemblages, 

and are color-coded from red (more clustered) to blue (more even). When abundance-

weighted, co-occurring species are more closely related in the interior and west of the 

continent, while assemblages along the north and northeast are composed of less closely 

related species. Figure S5.4 shows which of these grid cells deviate beyond null 

expectations. 
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Figure S5.4. Significance, according to a richness null, of observed interspecific 

abundance-weighted MPD mapped across Australia. Yellow grid cells did not deviate 

beyond expectations of either a richness or a frequency null. Red grid cells were 

significantly clustered, and no sites were overdispersed. The three sites also considered 

clustered according to a frequency null were all located in the southern interior of the 

continent. 
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Figure S6. Percent of available climate space occupied by species as a function of their 

mean climate niches. This is calculated as the number of grid cells actually occupied 

divided by the total number of grid cells available within the range of climate space 

bounded by the 5 and 95% quantiles of a species’ distribution in climate space. (A) The 

percent occupied of available precipitation space as a function of species’ mean annual 

precipitation (MAP) niche (r2 = 0.18, P = 0.0001, n = 75). The outlying point in the top 

right corner of this and panel C refers to Lichenostomus hindwoodi, a species represented 

by a single grid cell in the analysis. Because of this, its climate “range” is restricted to 

those cells with climates exactly matching the cell it occurs in. Like figure 4 in the main 

text, the three species in the bottom left of this and panel C are Ashbyia lovensis, 

Manorina melanotis, and Conopophila whitei. The first two are habitat specialists with 

restricted ranges, while the third occurs widely throughout inland Australia but is rarely 

observed.  (B) Percent occupied of available precipitation space as a function of species’ 

mean annual temperature (MAT) niche (r2 = 0.044, P = 0.07, n = 75). (C) Percent 

occupied of available temperature space as a function of species’ MAP niche (r2 = 0.258, 

P < 0.0001, n = 75). (D) Percent occupied of available temperature space as a function of 

species’ MAT niche (r2 = 0.056, P = 0.041, n = 75). 
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Figure S7. Meliphagidae evolution through climate space, and detail of Epthianurinae 

divergence. (A) Extant taxa are plotted as red points, positioned according to their current 

climate niche. These are connected by the underlying phylogeny, with internal nodes 

placed with respect to their inferred ancestral states (REML method). Colors in this panel 

represent the distance of the node from the root (i.e. color is approximately proportional 

to time in this panel). Gray points show the modern range of Australian climate. The four 

species in the top left corner are endemic to Tasmania. (B) Precipitation midpoint of each 

vector as a function of its angle through climate space. Like Figure 1, color in this panel 

represents precipitation, and the axis is inverted, such that lineages that evolved through 

wet climate space are plotted closest to the origin. There is a tendency for lineages 

already in dry areas (outer ring of polar graph) not to evolve towards wetter climates (i.e. 

± towards 0°). The outlier vector in this respect (indicated with a small arrow) relates to 

an inferred divergence of small magnitude (13 mm/yr difference) between the ancestral 

Epthianurinae (Ashbyia lovensis + Epthianura spp.) and the four extant Epthianura spp., 

which suggests that Epthianura, an arid-adapted lineage, evolved a short distance back 

towards higher precipitation. Ancestral state reconstructions are subject to many 

limitations, but it is worth noting this result is probably driven by the extremely dry 

habitats preferred by Ashbyia lovensis, the sister to Epthianura; the reconstruction places 

the ancestral Epthianurinae in a drier habitat than three of the four Epthianura spp. (C) 

Detail of the Epthianurinae divergence, illustrating its small magnitude. Because the short 

branch leading to the ancestral Epthianura overlies the branch leading to the ancestral 

Epthianurinae, the internal node is difficult to discern. The bent arrow is a stylized 

representation of the direction of the evolutionary vector leading to Epthianura; the 
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internal node in question is immediately to the lower left of the bend in the arrow 

(between blue and cyan). 
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Summary 

1. Competitive exclusion and habitat filtering are believed to have an important influence 

on the assembly of ecological communities, but ecologists and evolutionary biologists 

have not reached a consensus on how to quantify patterns that would reveal the action of 

these processes. No fewer than 22 phylogenetic community structure metrics and nine 

null models can be combined, providing 198 approaches to test for such patterns. 

Choosing statistically appropriate approaches is currently a daunting task. 

2. First, we explored the statistical behavior of these metrics and null models, given 

random community assembly. This provides a baseline against which empirical results 

can be compared. Second, we developed spatially explicit, agent-based simulations where 

communities were created according to random, competitive exclusion or habitat filtering 

assembly rules, and then sampled from these communities to create realistic community 

data matrices. We quantified the performance of all 198 approaches against each of the 

three assembly processes. 

3. Our first approach reduced to ca. 60 the number of truly unique approaches. Moreover, 

the second component of the analysis, our assessment of type I and II error rates, suggests 

that only 30 of these approaches are suitable for testing community assembly patterns.  

4. While many reviewed methods performed poorly, we are able to recommend best 

practices for detection of significant phylogenetic community structure. We also 

introduce a new R package, metricTester, to facilitate robust analyses of method 

performance. 

 



 

 

Key-words: Phylogenetic community structure, review, phylogenetic metric, null model, 

habitat filtering, competitive exclusion, phylogenetic clustering, phylogenetic 

overdispersion, community assembly, metricTester 

 

Introduction 

The idea that competition among species increases with relatedness goes back at least to 

Darwin (1859), who noted that more closely related species tend to be more ecologically 

similar and should therefore compete more intensely (reviewed in Cavender-Bares et al. 

2009). Referred to as the competition-relatedness hypothesis (Cahill et al. 2008), this 

competitive exclusion is predicted to result in communities composed of less closely 

related species (phylogenetic overdispersion) than would be expected if communities 

were assembled entirely via stochastic processes (Elton 1946; Webb et al. 2002; but see 

Mayfield & Levine 2010), such as speciation and dispersal. In contrast to competitive 

exclusion, which limits similarity of co-occurring species, habitat filtering is the process 

whereby only those species possessing similar traits (i.e. those within a specific subset of 

trait space) are able to survive and reproduce within a given abiotic environment (Harper 

1977; Keddy 1992). Thus, to the extent that such traits are evolutionarily conservative, 

habitat filtering results in local assemblages of species more closely related than expected 

by chance (phylogenetic clustering; Webb 2000; Cavender-Bares et al. 2009). Habitat 

filtering operates largely independently of individual interactions. In contrast, 

competitive exclusion occurs via either direct or indirect antagonistic interactions among 

individuals of different species. Thus, while the patterns thought to be indicative of 

habitat filtering and competitive exclusion represent opposite ends of a gradient, and the 



 

 

two processes are often studied in concert, they are in fact rather dissimilar. Regardless, 

until recently, few methods existed to test for patterns of relatedness within communities, 

and those available took a taxonomic rather than a phylogenetic approach (Elton 1946; 

Vane-Wright et al. 1991).  

Beginning in the early 1990s, a number of methods were developed to quantify 

phylogenetic patterns in community structure, by which one might infer the action of 

community assembly processes. However, misconceptions about the relationships of 

these metrics to each other and to species richness (reviewed in Box 1) have reduced their 

impact on our understanding of community assembly. Furthermore, while the metrics 

introduced by Webb and others (Webb 2000; Webb et al. 2002) have been most 

influential in community ecology, other metrics have also received widespread use, and 

their performance across different assembly processes has not been comprehensively 

assessed. Recent reviews (Kraft et al. 2007; Kembel 2009; Vamosi et al. 2009; Vellend et 

al. 2011) have addressed the performance of some of these metrics, but have evaluated 

only partially overlapping assortments of metrics, often using different methods. 

Consequently, results cannot be compared among studies, making the selection of 

appropriate metrics for empirical research difficult.  

Assessing the significance of an observed phylogenetic community structure metric 

requires an expectation, generally produced by a null model. Since their introduction, 

these metrics have been linked to null models (Webb 2000), when, in fact, they are 

independent concepts. A null model requires a reference pool (e.g., a regional species 

pool, perhaps with abundance or frequency information), which is randomized with 

certain constraints, the details of which are defined by the null model used. These 



 

 

randomized values are generally used to standardize observed metrics. Thus, the metric 

for a particular community and phylogeny is fixed, but the significance of that metric 

varies according to which null model is used (Connor & Simberloff 1979; Diamond & 

Gilpin 1982; Gotelli 2000). A good null model randomizes those structures in the 

observed data (e.g., individual co-occurrence patterns) relevant to the null hypothesis, 

and maintains structures in the dataset unrelated to the null hypothesis (e.g., species’ 

abundance distributions) (Gotelli & Graves 1996). In practice, null model performance, 

specifically type I (false positive) and II (false negative) error rates, and redundancy 

among null models is rarely tested (but see Gotelli 2000). 

Here, we compare the performance of 22 phylogenetic community structure metrics 

(Table 1) and 9 null models (Table 2). We develop spatially explicit, agent-based 

simulations of community assembly based on habitat filtering, competitive exclusion or 

the random placement of individuals, and then compare the ability (type I and II error 

rates) of each metric + null model combination to identify the correct assembly process. 

We quantify inter-correlations and document cases of equivalency among metrics. We 

also assess the response of both the metrics and the null models to variation in species 

richness. We conclude by discussing the implications of our findings for future tests of 

community assembly processes. 

 

Methods 

Null model background  

We adopt the following terminology. The community is the spatial extent (i.e. study 

area) of interest. A research question pertinent at this scale might be, “what assembly 



 

 

processes govern species composition in a rainforest community?” The quadrat is the 

sampling unit. For instance, 15, 1-ha forest plots in the Ecuadorian Amazon would be 

considered 15 quadrats of this rainforest community. We refer to the quadrat by species 

data matrix as the community data matrix (CDM).  

We test the performance of nine null models (Table 2) designed to randomize patterns 

in species co-occurrence data. Perhaps the simplest of these is the richness null model, 

which randomizes species occurrences (or abundances) within quadrats, thereby 

maintaining species richness (and for abundance data: total abundance and the rank-

abundance curve) of each quadrat. In contrast, a frequency null model randomizes 

occurrences within species in the CDM, which maintains species’ occurrence frequencies 

(or abundances) but not quadrat species richness. For clarity, we refer to this null as the 

“frequency by quadrat” null, because in our implementation of it, metric values from 

randomized quadrat assemblages are grouped by the quadrat they are associated with, and 

then confidence intervals on metric values are calculated for each observed quadrat in the 

CDM. The species richness of the randomized assemblages resulting from the frequency 

by quadrat null approximates a normal distribution around the mean species richness in 

the observed CDM. Thus, this null model may exhibit high type I error rates, particularly 

at low species richness, as the large variance anticipated of repeated small samples from a 

larger pool (Efron 1979) is not incorporated in the expectation, and observed low species 

richness quadrats tend to be compared to randomized quadrats of the mean species 

richness. To account for this, Miller et al. (2013, Appendix 3 of that paper) developed the 

“frequency by richness” null model, wherein randomized quadrats are grouped by their 

species richness values. Confidence intervals on observed metric values are then derived 



 

 

for each species richness value, thereby maintaining both species richness and species’ 

occurrence frequency data structures in the null model. The “independent swap” null 

model also maintains these same two data structures (Gotelli 2000; Gotelli & Entsminger 

2001), but we directly test that null here to confirm that it and the “frequency 

concatenated by richness” model perform similarly. We also examine the “trial swap” 

(Miklós & Podani 2004) and 1s (Hardy 2008) null models, which are functionally 

equivalent to the independent swap and richness null models, respectively (see Appendix 

S3 in Supporting Information), and are therefore excluded from analyses of statistical 

performance.  

Prior to the development of abundance-weighted metrics, few null models 

intentionally maintained aspects of abundance distributions. For instance, a species might 

occur infrequently, but have high abundance when it is present. Hardy (2008) introduced 

the “2x” and “3x” null models to maintain both species richness and occurrence 

frequency, as well as either the species or quadrat-level structure of abundance data. The 

2x maintains the total abundance and rank-abundance curve of each quadrat, but neither 

species’ abundances nor the set of species-specific abundance distributions. In contrast, 

the 3x maintains species’ abundances and the set of species-specific abundance 

distributions, but not the abundance distributions of each quadrat. No null model that we 

know of maintains species richness, species occurrence frequency, species-specific and 

quadrat-specific abundance distributions. We developed (Appendix S3) and tested a 

model that approximates this behavior, which we call the “regional null”. It is meant to 

simulate a fixed propagule pressure on a local community, where local dynamics have no 

influence on the regional pool. Instead of using observed species abundance and 



 

 

occurrence frequencies from the community (i.e. study area) of interest, information from 

a larger, regional pool is used to generate a null expectation; species’ colonization 

probabilities are proportional to regional abundances.  

 

 

metricTester 

We wrote an R software package to run our analyses. This package is available from 

Github, along with associated documentation, and can be directly installed using the 

devtools package (metricTester, user name “eliotmiller”). metricTester interfaces with 

functions from the R packages picante (Kembel et al. 2010), ape (Paradis et al. 2004), 

vegan (Oksanen et al. 2013), geiger (Harmon et al. 2008), and spacodiR (Eastman et al. 

2011), among others. It also interfaces with ecoPD (Cadotte et al. 2010). To simplify 

conflicts with picante we renamed some of the functions in ecoPD and rebuilt the 

package, hosted under the name ecoPDcorr in the same Github account.  

 

General behavior of the metrics 

To understand the behavior of the 19 focal metrics (Table 1) across variation in 

species richness we generated a phylogenetic tree that terminated at 50 species using a 

pure-birth model (birth=0.1), then assembled a CDM that included one “quadrat” at every 

species richness value between 10 and 40 species. We use the term quadrat loosely here, 

but in keeping with terminology throughout the paper (see Null model background).  

Specifically, we refer to a CDM row with no spatial association. These quadrats were 

created by randomly sampling from the tips of the phylogeny, and assigning selected 



 

 

species abundances from a log-normal distribution (mean = 3, SD = 1). For each 

simulated CDM, we calculated the focal metrics for each quadrat, and retained those 

values. Using the same tree, we repeated this process 50,000 times, retaining the results 

from each. We then calculated the mean and 95% confidence intervals at every sampled 

species richness value, and plotted these across their respective species richness values. 

We performed a Pearson correlation on the retained results to examine 

intercorrelations among metrics. Because of the large number of simulations, some 

metrics that appear exactly correlated do in fact differ subtly (Appendix S2). We used 

these correlations to generate a dendrogram and better visualize relationships among 

metrics.  

 

General behavior of the null models 

We explored the behavior of 9 null models (Table 2) across variation in species 

richness. We used MPD for this, since null model expectations (confidence intervals) of 

phylogenetic structure converged relatively quickly (exhibited less stochasticity) for this 

metric, and MPD is not inherently correlated with species richness (Fig. 1A). Using an 

abundance-weighted metric did not affect results (not shown). We also explored how 

expectations changed with increasing numbers of randomizations (Appendix S3). We did 

this by plotting the expected confidence intervals across the corresponding species 

richness while increasing the randomization of a given, initial CDM and phylogeny. In 

sum, this set of analyses identified null models that do or do not converge efficiently on a 

stable range of expected metric values, and identified functional equivalence among the 

null models. The trial swap and 1s null models were found to be functionally equivalent 



 

 

to other null models (Appendix S3), and we therefore did not directly test their 

performance. This left seven focal models (Table 2). 

 

Agent-based spatial simulations of community assembly to assess the performance of 

metric + null combinations 

The first two sets of analyses illustrated the underlying behavior of each of the focal 

metrics and null models. In this third analysis, we assessed the ability of each metric + 

null model combination to detect a given assembly process. To generate test cases against 

which to assess each approach, we created CDMs with three types of spatially explicit 

community assembly simulations, intended to model the extremes of habitat filtering, 

competitive exclusion and random assembly. Because of the computing time required to 

run these tests (>>10,000 hr), we did not systematically examine sensitivity of results to 

simulation parameters, but results remained qualitatively the same after preliminary 

exploration of variation in parameters (Appendix S4), and metricTester is programmed in 

a manner to facilitate future study.  

All spatial simulations produced 300 x 300 m communities according to one of three 

assembly rules: random assembly, habitat filtering, or competitive exclusion. We began 

by generating a phylogeny of 100 species using a pure-birth model (birth = 0.1) and log-

normal rank abundance curve, and randomly assigned species abundances from this 

distribution. We expanded assigned abundances to create a vector of individuals with 

species identities. In the random assembly spatial simulation, these individuals were then 

randomly placed within the community. 



 

 

In habitat filtering simulations, we independently evolved two traits according to a 

Brownian motion evolutionary process (sigma = 0.1). These traits are meant to mimic 

two independently evolving environmental preferences, e.g., soil moisture and pH. In our 

case, we treated these as spatial preferences (i.e. x and y-axis preferences), and scaled the 

simulated traits to match community bounds. We then placed individuals near their 

spatial preference, with a controllable degree of variation (exact parameters in Appendix 

S4). This simulation has the effect of placing related individuals near each other in space. 

We selected parameters that compromised between producing realistic-looking 

communities, and producing strong, readily detectable phylogenetic patterns. A 

consequence of this was that individuals were clumped near their preferred locations, 

which infrequently resulted in quadrats with < 2 species (example community in 

Appendix S4).  

In competitive exclusion simulations, we first placed individuals using the random 

assembly process. Following this, each generation, we calculated the mean relatedness of 

every individual in the simulation to all individuals within 15 m, which we term the 

“interaction distance”. We then identified the 20% of individuals with the highest mean 

relatedness. For each of these individuals, we identified the individual within their 

interaction distance to which they were most closely related. We randomly selected one 

of the two individuals to remove from the community. At the end of each generation, the 

same number of individuals as was removed was drawn from the original vector of 

individuals, and situated randomly in the community. This was repeated for 100 

generations each competitive exclusion simulation. Preliminary analyses indicated that 

results were similar across different interaction distances and percentages of individuals 



 

 

considered (Appendix S4). These simulations produced realistic-looking communities, 

with evenly spaced individuals, approximately the same number of individuals as would 

occur in a tropical rain forest of similar size (800 stems/ha, Murphy et al. 2013), and 

communities with phylogenetically overdispersed geographic neighborhoods (Appendix 

S4). The rank abundance curve of the final community was notably different than that of 

the initial community (Appendix S4). 

In all spatial simulations, after a given community was assembled, we randomly 

placed 15, non-overlapping quadrats of 30 x 30 m within its confines. We recorded the 

individuals in each quadrat to create a CDM, and calculated observed metrics. To assess 

significance of these observed metrics, each CDM was randomized 1,000 times 

according to the null model being tested. We chose this number due to multiplicative 

increases in computing time required by additional randomizations. Results were 

qualitatively similar with additional randomizations (Appendix S4). For reasons 

explained below, rather than using these values to calculate standardized metric scores, as 

is often done (e.g., standardized MPD equals NRI, Box 1), we retained all randomized 

values and used these to construct 95% confidence intervals at each observed species 

richness (or for a given quadrat for the frequency by quadrat null). A quadrat was 

recorded as having significant phylogenetic structure if it was either above 

(overdispersed) or below (clustered) these confidence intervals. 

Thus, for each of the 7 focal null models, 100 communities were assembled for 

competitive exclusion and another 100 for habitat filtering (1400 communities in total). A 

new phylogeny and log-normal rank abundance curve was used for generating each 

community. All 19 metrics were calculated and retained for each community after each of 



 

 

1,000 randomizations of the initial CDM. Due to poor performance and the functional 

equivalence of some null models in the habitat filtering and competitive exclusion 

simulations, we only tested the results of the random assembly spatial simulations against 

the richness, independent swap, and regional null models (300 communities total). Some 

habitat filtering simulations resulted in < 2 species being sampled in a given quadrat, and 

such runs were discarded. 

Type I and II error rates were assessed for each metric + null model approach as the 

proportion of the 100 communities for a given assembly process and null model for 

which these errors were recorded. For the habitat filtering and competitive exclusion 

simulations, we defined a type I error for a given community as occurring when at least 

one quadrat deviated beyond the 95% confidence interval in the opposite direction from 

that expected given the simulated assembly process. A type II error occurred when less 

than half of the quadrats deviated beyond confidence intervals in the expected direction. 

A successful run was when at least half of the quadrats deviated beyond the confidence 

intervals in the direction expected given the simulated assembly process. Thus, for each 

community, for a given metric + null test either a success or a type II error was recorded. 

In addition, a type I error could also be recorded for each community. For the random 

assembly spatial simulation only type I error rates were recorded. Here, a type I error was 

defined as at least one quadrat deviating beyond either of the 95% confidence intervals.  

We have two reasons for tallying error rates like this. First, if 14 of 15 quadrats are 

within null model expectations but, for instance, one falls below the 95% confidence 

intervals, then a researcher might conclude a community showed evidence of habitat 

filtering, since >5% of plots showed that signal. Second, we believe it is not well 



 

 

appreciated that null model expectations vary in metric-specific manners across species 

richness, and presenting results in this way emphasizes this point. 

 

Results 

General behavior of the metrics 

We directly evaluated behavior of 19 focal community phylogenetic metrics (Table 1) 

across variation in community species richness. MPD, interspecific AW MPD, PSV and 

PAE were not correlated with species richness (Fig. 1A). Intraspecific AW MPD, 

complete AW MPD, PSE, IAC, HAED, HED, SimpsonsPhy, PD, PDc, and QE were 

positively correlated with species richness. MNTD, AW MNTD, PSC, and EED were 

negatively correlated with species richness. The intercorrelations (Fig. 1B, Appendix S5) 

among metrics and post-hoc plotting of absolute metric values against each other 

revealed that: (1) MPD is equivalent to PSV; (2) complete AW MPD is equivalent to 

SimpsonsPhy and QE, and approximately equal to intraspecific AW MPD (Appendix S2) 

and to PSE; and (3) PSC is equivalent to MNTD. Moreover, MPD, interspecific AW 

MPD, and intraspecific AW MPD are equivalent to Δ+, Δ*, and Δ, respectively, of 

Clarke & Warwick (1998) (Box 1, Appendix S2). Based on these intercorrelations (Fig. 

1B), we classify the metrics into the following groups: Clade 1 are “total community 

relatedness” metrics; Clade 2 metrics focus on the relationship between “evolutionary 

distinctiveness and abundance” (Cadotte et al. 2010); Clade 3 are “nearest-relative” 

metrics; and Clade 4 metrics are closely correlated with species richness, and increase 

both with the addition of new species, and phylogenetically unique species.  

 



 

 

General behavior of the null models 

The confidence intervals from the richness null model matched statistical 

expectations (Fig. 2), with more variance observed at smaller subsamples of the regional 

species pool (i.e. a confidence funnel; Clarke & Warwick 1998). The 1s and richness null 

models were equivalent (Fig. S3.1). We found (Fig. S3.4) that the frequency by richness 

null was equivalent to the independent swap null. Moreover, the trial swap null seemed to 

converge slowly (i.e. after >106 randomizations) on the same expectations as these two 

nulls (Fig. S3.2). Because of this inefficiency, we did not assess the performance of the 

trial swap null model further. The confidence intervals of the frequency by quadrat null 

model did not form a confidence funnel. Instead, the value beyond which an observed 

metric needed to deviate to be considered significant was approximately the same for all 

quadrats, irrespective of underlying species richness of the quadrat (Fig. 2). We also 

found that the expectations from the 2x and 3x null models were equivalent, but varied 

inconsistently across species richness, and did not form a confidence funnel (Fig. 2, Fig. 

S3.5). Finally, expectations for the independent swap varied depending upon 

relationships between occurrence frequency and phylogenetic uniqueness. For instance, if 

phylogenetically unique species occurred more frequently in the input CDM, then 

confidence intervals were shifted upwards from those obtained without incorporating 

occurrence frequency (Fig. S3.6). 

 

Performance of metric + null approaches 

There was a great deal of variation in performance of different approaches. Across all 

metrics for both competitive exclusion and habitat filtering assembly simulations, the 



 

 

frequency by quadrat null showed high rates of type I error, particularly for metrics that 

were correlated with species richness. The 2x and 3x nulls showed low type I error rates, 

but also a complete lack of power for all assessed metrics. The independent swap and 

frequency by richness null models performed reasonably well in habitat filtering 

simulations when used with some metrics (e.g., PD and MPD, Fig. 3), but poorly in 

competitive exclusion simulations with all metrics (Fig. 4). Finally, the richness and 

regional nulls performed well with most metrics in both the habitat filtering and 

competitive exclusion simulations.  

These results suggested that additional exploration of the 2x, 3x and frequency by 

quadrat nulls was not worthwhile, and that these should not be considered accurate 

gauges of metric performance. Furthermore, because of the equivalence of the 

independent swap and frequency by richness nulls (Appendix S3), we only tested the 

performance of the metrics, given random community assembly, with the richness, 

independent swap, and regional null models (collectively, the “reasonable” models). 

Here, all metrics showed overall random phylogenetic community structure, but all also 

had type I error rates of 20-39% (Fig. S1.1).  

Given a community assembled according to habitat filtering, PD and PDc 

outperformed other metrics when using reasonable models as gauges of performance 

(Fig. 3). For Clade 1 metrics (Fig. 1B) with habitat filtering, the non-abundance-weighted 

metrics (PSV, MPD) showed higher type I error rates than other metrics from this clade. 

Given a community assembled according to competitive exclusion, PD and PDc also 

performed well at detecting overdispersion (Fig. 4), though here they were outperformed 

by all Clade 1 metrics. If we take overall metric performance as the difference between 



 

 

the sum of successful runs and the sum of type I errors across the reasonable models 

across both habitat filtering and competitive exclusion simulations, then PD and PDc 

performed best overall, followed closely by the Clade 1 methods (Fig. 5). Clade 3 metrics 

never performed as well as Clade 1 metrics. Some metrics (PAE, HAED) failed more often 

than they succeeded.  

 

Discussion 

The unification of phylogenetic community structure methods with age-old questions of 

community assembly has revolutionized the fields of ecology and evolution. Since 

Webb’s seminal papers (Webb 2000; Webb et al. 2002), there has been an explosion of 

interest in these matters, including a wide variety of “improvements” upon existing 

measures (Box 1). Many of these, however, have never been adequately tested, and 

others are equivalent, as we show here (Fig. 1B). Our objective was to assess a wide 

range of available methods in order to identify those with demonstrable utility, and to 

identify those that measure unique aspects of phylogenetic community structure. 

Which metrics are best? The results of our study suggest that the answer depends in 

part on which community assembly process are of interest, and which null models are 

used. However, some clear and general answers did emerge. Across all reasonable null 

models (richness, independent swap and regional) and community assembly simulations, 

PD (Faith 1992) consistently performed well (Fig. 5), showing low type I error rates and 

more power than most other metrics; it was particularly good at detecting the effects of 

habitat filtering (Fig. 3). Clade 1 (“total relatedness”) metrics (Fig. 1) also performed 

well, particularly at detecting effects of competitive exclusion (Fig. 4). Like Kembel 



 

 

(2009), and unlike Kraft et al. (2007), we found that Clade 3 (“nearest-relative”) metrics 

were never as powerful as Clade 1 metrics. Abundance-weighted forms of Clade 1 

metrics showed both lower type I error and less power than non-abundance-weighted 

forms, presumably because the latter can be strongly influenced by the presence or 

absence of a single individual. Finally, the metrics introduced by Cadotte et al. (2010) 

generally showed poor performance, particularly PAE and HAED
 (PDc is an exception, but 

see Box 1). As suggested by Cadotte et al. (2010), the metrics do indeed measure unique 

aspects of phylogenetic community structure (Fig. 1B). These aspects, however, do not 

seem to be related to traditionally recognized community assembly processes. Of the 

Cadotte metrics, IAC showed the greatest power to detect both non-random patterns, 

particularly when used with the regional null; this node-based metric does not incorporate 

branch length information. HED was closely correlated with PD (r = 0.94), but did not 

perform well. 

Which null models are best? Again, our results suggest that the answer depends in 

part on the choice of metric and the community assembly process of interest. In general, 

we strongly recommend against the use of a frequency by quadrat null. The confidence 

intervals for this null model account for neither the increased variance in expectations at 

smaller subsamples of the regional species pool (Clarke & Warwick 1998), nor the 

correlation of many metrics with species richness (Fig. 1). This results in extremely high 

rates of type I error across all metrics, particularly those that are correlated with species 

richness (Fig. 3, 4). The 2x and 3x null models performed poorly. While they exhibited 

low type I error rates (Hardy 2008), they also never detected the expected phylogenetic 

signal in any of our simulations. We suspect that the extreme constraints imposed on the 



 

 

matrix randomizations by these nulls resulted in a biased and inefficient exploration of 

reasonable phylogenetic space. Regardless of the reason, the instability across species 

richness shown by the confidence intervals for the 2x and 3x null models (Fig. 2) leads to 

the logically unappealing conclusion that the expectations for a given metric can change 

dramatically based on whether N or N+1 species are present in an observed community. 

The regional null (Appendix S3) was designed to simulate propagule 

pressure/dispersal probability on a local community (study area) of interest, such that 

deviations from these dispersal pressures (e.g., the product of environmental filters) can 

be readily detected, and local community dynamics (e.g., competition) do not obfuscate 

expectations. For instance, given strong competitive exclusion, local communities may 

show widespread phylogenetic overdispersion, where certain species are generally 

excluded. When these observed occurrence frequencies are taken as regional occurrence 

frequencies and randomized accordingly (as in the independent swap), it becomes 

difficult to detect phylogenetic overdispersion, since the randomized CDMs will tend to 

contain distantly related species. The regional null avoids this issue by using expectations 

from a larger, fixed pool as the standard against which to compare observations from the 

study area, but it is difficult to quantify dispersal pressure on a community of interest, 

and this null model may not be practical for many researchers. Future studies should 

investigate what information might be used to construct these expectations (e.g., range 

sizes), and whether this null can be of widespread utility. 

We emphasize that null model choice cannot be driven entirely by statistical 

properties. There may be sound biological reasons for why a given null should be 

employed (Gotelli & Graves 1996), even if its statistical performance is not on par with 



 

 

others. For example, there could be instances where not every species in the pool could 

reasonably disperse to every site, and a constrained null model might need to be 

developed. However, such reasoning should not come at the expense of statistical 

common sense. For instance, if a phylogenetically unique species occurs only 

infrequently in observed communities, then a null such as the independent swap that 

maintains species’ occurrence frequencies should be used; failure to do so would result in 

a loss of power to detect phylogenetic overdispersion. Conversely, if a CDM is not 

thought to be representative of a regional species pool (e.g., biased sampling across study 

areas), then the independent swap will only confuse interpretation of results. 

What approach do we suggest? The richness null may offer the simplest results to 

interpret by making the clearest assumptions (any species can occur anywhere); more 

constrained null models raise questions of sampling artifacts and the efficiency of swap 

algorithms. We emphasize that little should be made of the deviation of any single 

community beyond null model expectations; the high type I error rates of most 

approaches casts doubt on the interpretation of single community tests. When multiple 

communities are available, these can be arranged along an environmental gradient to test 

hypotheses. Here, the slope of the overall relationship is of interest, rather than the 

significance of any given community (Miller et al. 2013). Hypothesis testing in this 

manner minimizes the necessity of a null model and, if the metrics in question are not 

correlated with species richness (e.g., PSV), also the need to standardize the metrics. Raw 

metric values, which often have intrinsic meaning, can then be used instead of 

standardized scores. For instance, the MPD of a community, given a time-calibrated 

phylogeny, is equal to the mean evolutionary time separating co-occurring taxa. Some 



 

 

metrics, however, are correlated with species richness, and should be standardized if the 

researcher is interested in phylogenetic community structure (as opposed to, e.g., 

phylogenetic diversity itself). In short, researchers need to consider what they are 

measuring with their metric(s) of choice, whether they need to standardize those metrics, 

and why or why not they might procure significant results.  

By making the assumption that the traits responsible for community assembly covary 

with phylogeny, this study maintains the sometimes questionable dogma that habitat 

filtering leads to phylogenetic clustering, and that competitive exclusion leads to 

phylogenetic overdispersion (Webb et al. 2002; Mayfield & Levine 2010). If trait data 

are available, we encourage researchers who use these methods to fit explicit models of 

evolution to traits pertinent to the assembly processes in question (Butler & King 2004), 

and to also investigate patterns of community structure in functional traits. In this study 

we did not test approaches that account for variation among quadrats in species co-

occurrence probabilities (e.g., Cavender-Bares et al. 2004; Hardy & Senterre 2007), but 

metricTester could be adapted to investigate these metrics. There is also an expansive 

assortment of existing (and yet to be created), hypothetically useful null models whose 

behavior and performance remains to be tested (e.g., Ulrich & Gotelli 2010). Ultimately, 

advanced approaches (Ives & Helmus 2011) may prove more powerful and gain wider 

use than current phylogenetic community structure metrics, but the existing arsenal 

remains well suited to addressing a wide variety of questions.  
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Table 1. The 22 phylogenetic community structure metrics reviewed in this paper. We 

paraphrase (or sometimes directly quote) the original description of the metric. While 

some metrics we discuss are in fact equivalent, these original descriptions often 

emphasized their uniqueness. IAC is a node-based metric, and the only reviewed metric 

that increases in value with an increase in the relatedness of the species in the focal 

community set.  

Metric Abbreviation Description Citation 

Quadratic entropy QE Within community diversity 
based on species dissimilarity.  
 

(Rao 1982) 

Phylogenetic 
diversity 

PD Sum of total branch lengths for 
a set of species, and length to 
root if set does not span it. 
 

(Faith 1992) 

Non-abundance-
weighted mean 
pairwise 
phylogenetic 
distance 
 

MPD Mean of all pairwise branch 
lengths for a set of species.  

(Webb 2000; 
Webb et al. 
2002) 

Non-abundance-
weighted mean 
nearest taxon 
distance 

MNTD Mean of the branch lengths 
separating each species from its 
closest relative in the set of 
species. 
  

(Webb 2000; 
Webb et al. 
2002) 

Taxonomic 
diversity* 

Δ Average phylogenetic distance 
between any two individuals 
from a set. 
 

(Clarke & 
Warwick 
1998) 

Taxonomic 
distinctness* 

Δ* Average phylogenetic distance 
between any two heterospecific 
individuals. 
 

(Clarke & 
Warwick 
1998) 

Presence-absence 
case of taxonomic 
diversity* 

Δ+ Average phylogenetic distance 
between any two species from a 
set. 
 

(Clarke & 
Warwick 
1998) 

Phylogenetic species 
variability 

PSV Measures how phylogenetic 
relatedness decreases the 
variance of a hypothetical 
Brownian motion trait shared 
by all species in the 
community. 

(Helmus et al. 
2007) 



 

 

 
  Table 1 continued  
Metric Abbreviation Description Citation 

Phylogenetic species 
clustering 

PSC Modified form of PSV 
incorporating maximum off-
diagonal element matrix of 
community phylogenetic 
correlation structure. 
 

(Helmus et al. 
2007) 

Phylogenetic species 
evenness 

PSE Modified form of PSV 
incorporating species 
abundance. 
 

(Helmus et al. 
2007) 

Phylogenetic form 
of Simpson’s index 

SimpsonsPhy Extension of Simpson diversity 
index that incorporates 
phylogenetic information. 

(Simpson 
1949; Hardy & 
Senterre 2007) 

Abundance-
weighted MNTD 

AW MNTD Abundance-weighted form of 
MNTD. 
 

(Webb et al. 
2008) 

Phylogenetic 
diversity without 
regard to a larger 
regional pool 

PDc Sum of total branch lengths for 
a set of species, not including 
length to root. 
 
 

(Faith 2007; 
Cadotte et al. 
2010) 

Phylogenetic 
abundance evenness 

PAE “Phylogenetic evenness of 
abundance distribution scaled 
by branch length.” 
 

(Cadotte et al. 
2010) 

Imbalance of 
abundance 

IAC IAC. “Relative per-node 
imbalance in individual 
distribution.” 
 

(Cadotte et al. 
2010) 

Community 
evolutionary 
distinctiveness 

HED “Entropic measure of diversity 
of evolutionary distinctiveness 
among species.” 
 

(Cadotte et al. 
2010) 

Equitability 
evolutionary 
distinctiveness 
 

EED “Equitability of HED.” (Cadotte et al. 
2010) 

Community 
abundance-weighted 
evolutionary 
distinctiveness 
 
 

HAED “Entropic measure of diversity 
of evolutionary distinctiveness 
among individuals.” 

(Cadotte et al. 
2010) 



 

 

  Table 1 continued  
Metric Abbreviation Description Citation 
Equitability 
abundance-weighted 
evolutionary 
distinctiveness 
 

EAED “Equitability of HAED.” (Cadotte et al. 
2010) 

Complete 
abundance-weighted 
MPD 

complete AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between two 
individuals from a set, possibly 
between the same individual. 
 

(Webb et al. 
2008, 
Appendix S2 
of this paper) 

Intraspecific 
abundance-weighted 
MPD 

intra AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between any two 
individuals from a set.  
 

(Appendix S2 
of this paper) 

Interspecific 
abundance-weighted 
MPD 

inter AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between two 
heterospecific individuals.  

(Miller et al. 
2013, 
Appendix S2 
of this paper) 

* Denotes three metrics not directly assessed here due to equivalency with other metrics 

(see Appendix S2), leaving 19 focal metrics in this paper. 



 

 

Table 2. The nine null models reviewed in this paper. A community data matrix (CDM) where quadrats (i.e. sites or samples) are rows 1 

and species are columns is used as the input. The citation lists either the simulation name from Gotelli (2000), or gives a more recent 2 

citation where necessary.  3 
  Constraints (data features left unchanged after randomization) 
Null model Description Quadrat species 

richness 
Quadrat rank-
abundance curve 
(and quadrat 
total abundance) 

Species 
occurrence 
frequency 

Species-specific 
abundance 
distribution (and 
species total 
abundance) 

Citation 

Richness Randomizes species’ occurrences (or abundances) 
among species, independently within each quadrat. 
 

X X   SIM3 

1s* Randomizes species’ occurrences (or abundances) 
among the tips of a phylogeny. With respect to the 
CDM, this shuffles entire columns among species.  
 

X X  † Hardy (2008) 

Frequency by 
quadrat 

Often simply called a “frequency” null. Shuffles 
species’ occurrences (or abundances) 
independently within each species. 
 

  X X SIM2 

Frequency by 
richness 

The same randomization as above null, but then 
groups randomized quadrats by their species 
richness. Observed values compared only to values 
from randomized quadrats of corresponding 
species richness. 
 

X‡  X X Miller et al. 
2013; 
Appendix S3 

Independent 
swap 

Transposes randomly chosen submatrices of the 
form (0,1)(1,) or (1,0)(0,1) in the CDM. When 
CDM contains abundance data, treats non-zero 
elements as 1. 
 

X  X § SIM9 



 

 

  Constraints (data features left unchanged after randomization) 
Null model Description Quadrat species 

richness 
Quadrat rank-
abundance curve 
(and quadrat 
total abundance) 

Species 
occurrence 
frequency 

Species-specific 
abundance 
distribution (and 
species total 
abundance) 

Citation 

Trial swap* Same as independent swap, but guarantees 
equidistribution of results (evenly distributed 
randomized results). 
 

X  X § Miklós & 
Podani (2004) 

2x Modified form of independent swap for abundance 
data. Transposes randomly chosen submatrices, 
switching elements of the submatrices within 
quadrats. 
 

X X X  Hardy (2008) 

3x As for 2x, but switches elements within species. 
 

X  X X Hardy (2008) 

Regional Described in detail in Appendix S3 of this paper. X‡ Strictly 
maintains total 

abundance, 
approximately 
maintains rank-

abundance curve 

Approx. Approx. Appendix S3 

* These were not included in tests of metric + null model performance due to equivalency with the richness and independent swap 1 

(Appendix S3), leaving seven focal models in this paper. 2 

† Because columns are moved as a unit, each randomized CDM contains the same set of species-specific abundance distributions as 3 

the original CDM, though these abundance distributions are disassociated from their original species (i.e. the set of columns is the 4 

same, but each column is now associated with a different species). 5 



 

 

‡ The randomized matrices do not always contain quadrats with species richness values the same as those of the original CDM, but by 1 

concatenating results later by randomized quadrat species richness, observed quadrats are compared to random quadrats of the same 2 

species richness.  3 

§ Intended for use with presence/absence data, thus the fact that the picante (and metricTester) implementations also maintain column 4 

sums (and not just the sum of non-zero elements), and therefore also maintain species-specific abundance distributions is an 5 

unintentional consequence of the way these null models are coded. 6 

 7 
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Figure 1.  2 

  3 



 

 

Figure 1. (A) Behavior of 19 focal phylogenetic community structure metrics (Table 1) 1 

across variation in species richness. Panels are color-coded from blue (good) to red (poor) 2 

according to sum of all successes (runs that successfully detected the simulated assembly 3 

process--either habitat filtering or competitive exclusion) minus sum of all type I errors 4 

encountered during the same runs for the richness, independent swap, and regional null 5 

models. (B) Dendrogram of intercorrelations among the phylogenetic community 6 

structure metrics (and species richness itself). Closely correlated metrics are annotated 7 

along branches. Clade 1 metrics focus on “total community relatedness”; Clade 2 metrics 8 

on the relationship between “evolutionary distinctiveness and abundance”; Clade 3 on 9 

“nearest-relative” measures of community relatedness; and Clade 4 metrics are 10 

particularly closely correlated with species richness. 11 

  12 



 

 

 1 

Figure 2. Confidence intervals (95%) for the richness, both forms of the frequency, 2x 2 

and 3x null models (Table 2) across variation in species richness. Expectations shown 3 

here are the result of 105 randomizations. Because the 2x and 3x nulls follow identical 4 

distributions (Fig. S3.5), only a single layer is included in this figure. The arrow indicates 5 

a region of particular concern for type I error when using the frequency by quadrat null. 6 

Other null model behavior (including the independent swap, trial swap, and regional 7 

models) is summarized in Appendix S3. 8 

  9 



 

 

 1 

Figure 3. Performance of metric + null model approaches at detecting phylogenetic 2 

clustering given habitat filtering. A successful run was defined as over half of the 3 

quadrats in an arena showing significant phylogenetic clustering. Though occasional 4 

sampled quadrats contained < 2 species, and the entire iteration was discarded, results 5 

were scaled as if 100 iterations had been run, to facilitate visual comparison. Thus, results 6 

(i.e. each column of bars) are on the same scale. Actual sample sizes are given in Table 7 

S1.1 (smallest n = 84). 8 

  9 



 

 

 1 

Figure 4. Performance of the different metric + null model approaches at detecting 2 

phylogenetic overdispersion given competitive exclusion. A successful run was defined 3 

as over half of the quadrats in an arena showing significant phylogenetic overdispersion. 4 

Results are on the same scale. Thus, for instance, the independent swap exhibited a high 5 

type II error rate. 6 

  7 



 

 

 1 

Figure 5. Overall performance of the different metrics using the richness, independent 2 

swap and regional null models. Blue bars are the sum of runs that successfully detected 3 

the simulated assembly process (either habitat filtering or competitive exclusion). Red 4 

bars are the sum of the type I errors encountered during the same runs. The results of 581 5 

runs are shown (Table S1.1). Thus, the length (count) of the bar divided by 581 provides 6 

an estimate of overall power and type I error rates. Asterisks denote abundance-weighted 7 

metrics, and numbers refer to the Clade (Fig. 1B) they belong to. 8 

  9 



 

 

Box 1: Abbreviated history of phylogenetic community structure metrics. 1 

Faith (1992) introduced PD, a metric that quantifies the unique evolutionary history 2 

represented by co-occurring taxa. It was intended (and is often used) as a conservation 3 

tool. While PD built upon previous work by Vane-Wright et al. (1991) and others, it was 4 

the first to explicitly incorporate phylogeny. Since PD is the sum of all branch lengths 5 

connecting the species in a community (Table 1), the assumption that it increases with 6 

additional species, and is therefore correlated with species richness, was implicit (exact 7 

solution provided by Nipperess & Matsen 2013). 8 

Subsequently, Clarke and Warwick introduced metrics (Δ, Δ+, Δ*) focused on the 9 

average branch length among a group of taxa or individuals, again linking their 10 

methodology to conservation decisions (Warwick & Clarke 1995, 1998; Clarke & 11 

Warwick 1998, 1999). Their pioneering papers explored some statistical properties of the 12 

metrics, including the fact that mean expected Δ+ is not correlated with species richness, 13 

but the width of its confidence intervals decreases with species richness (creating a 14 

“confidence funnel”). Yet, the conservation-specific scope of their papers limited their 15 

impact on community ecology. In fact, we were unaware of these metrics until after we 16 

had run our initial analyses. 17 

Webb (2000) introduced two new metrics--MPD and MNTD--and the standardized 18 

forms of these, NRI (net relatedness index) and NTI (nearest taxon index). Initially, MPD 19 

was slightly different than Clarke and Warwick’s metrics, only incorporating nodal 20 

distances, but by Webb et al. (2002) the definition had expanded to incorporate branch 21 

length, and was therefore equivalent to Δ+ (Appendix S2). Yet, by linking community 22 

assembly processes with these phylogenetic patterns, it was MPD and MNTD that 23 



 

 

revolutionized the field of community ecology. Moreover, despite the equivalency of 1 

MPD and Δ+, Webb stated that both MPD and MNTD are correlated with species 2 

richness when only MNTD is (Fig. 1A), and devised standardization procedures to 3 

“correct” for this. This misperception occasionally persists to the present (e.g., Ulrich & 4 

Fattorini 2013), despite empirical solutions to the contrary (Tsirogiannis & Sandel 2013). 5 

Helmus et al. (2007) introduced PSE, the “first” metric to incorporate abundance 6 

information. While this is not entirely true (Rao 1982; Warwick & Clarke 1995; Hardy & 7 

Senterre 2007), their focus on community assembly linked their approach with venerable 8 

evolutionary questions. Helmus et al. (2007) also introduced two other metrics intended 9 

to be similar but superior to NRI and NTI--PSV and PSC. The noted advantage to these is 10 

the lack of need for a reference species pool, and therefore the ability of these metrics to 11 

transcend the particulars of the phylogeny and community data matrix at hand, and allow 12 

raw metric values to be directly compared. However, these should therefore have been 13 

compared with MPD and MNTD, respectively. Had this been done, it would have been 14 

noted that PSV and PSC are directly proportional to MPD and MNTD, respectively, a 15 

still all but unknown fact (though see Vellend et al. 2011). Instead, PSV and PSC were 16 

compared with NRI and NTI. As a further complication, the PSC function in picante 17 

(Kembel et al. 2010) returns the inverse of PSC (M. Helmus, pers. comm.). This has 18 

confounded subsequent papers (e.g. Giehl & Jarenkow 2012; Villalobos et al. 2013). 19 

Some authors have incorrectly claimed that PSC is not inherently correlated with species 20 

richness.  21 

Cadotte et al. (2010) introduced metrics focused on phylogenetic abundance 22 

distributions. We review seven of those here: PDc (this was actually discussed earlier, 23 



 

 

Faith (2007)), PAE, IAC, ED, HED, EED, HAED, and EAED
 (see Table 1). Cadotte et al. 1 

(2010) showed their metrics ranked communities differently than each other and than 2 

metrics like PSV and MNTD, but offered no discussion of the metrics’ statistical 3 

properties, nor has any subsequent paper. The metrics are available in ecoPD (http://r-4 

forge.r-project.org/projects/ecopd/).   5 

We discuss six additional metrics in this paper: QE (Rao 1982), SimpsonsPhy (Hardy 6 

& Senterre 2007), abundance-weighted (AW) MNTD, and three variants of AW MPD 7 

(Table 1, Appendix S2). Both complete AW MPD and AW MNTD were introduced in 8 

Phylocom (Webb et al. 2008) and picante without accompanying publication, and their 9 

statistical properties and relationship to other metrics remains essentially unknown. 10 

Interspecific AW MPD was introduced in (Miller et al. 2013), and intraspecific AW 11 

MPD is “first” described in the current paper (Appendix 2), though as we subsequently 12 

discovered, it is equivalent to Δ (Clarke & Warwick 1998). Similarly, after exploring the 13 

behavior of QE and SimspsonsPhy and finding them equivalent, we realized this was 14 

already known (Hardy & Senterre 2007; Allen et al. 2009).  15 



Appendix S1. Metric + null results for random community assembly, and sample sizes of 

all assembly simulations. 

 

Figure S1.1. Performance of the different metric + null approaches given random 

community assembly. All metrics always detected an overall signal of random assembly 

for all three nulls, but occasional quadrats deviated beyond 95% expectations (20-39% of 

tests had at least one such quadrat, depending on the metric + null combination). The 

non-abundance-weighted metrics exhibited slightly higher type I error rates, presumably 

because of the large effect of the presence or absence of a single individual on the 

resulting metric value. All results in the figure are presented on the same scale. 

  



Table S1.1. Sample sizes (iterations) for the different community assembly, null model 

analyses. Metric performance with random assembly was assessed with only the first 

three null models. Results are scaled (Fig. 3, 4, S1.1) to facilitate visual comparison.  

 

 Habitat filtering Competitive exclusion Random 

Richness 87 101 102 

Frequency by quadrat 95 110 100 

Frequency by richness 94 100 120 

2x 84 100  

3x 95 100  

Independent swap 90 100  

Regional 103 100  

 



Appendix S2. Three forms of abundance-weighted MPD, and equivalency of some forms 

to Clarke and Warwick’s metrics. 

 

Three forms of abundance-weighted MPD 

 Abundance-weighted mean pairwise phylogenetic distance (MPD) and mean 

nearest taxon distance (MNTD) were introduced in Phylocom (Webb et al. 2008) without 

accompanying scientific papers. These methods have entered into common usage in the 

literature, but they have not been discussed at any length. A variation on abundance-

weighted MPD was recently introduced that only accounts for interspecific phylogenetic 

distances (Miller et al. 2013). This is different than the implementation in Phylocom and 

picante (Kembel 2009).  

 There are at least three different possible forms of abundance-weighted MPD 

(Fig. S2.1). Consider a local assemblage of three species drawn from a regional species 

pool. Qualitatively, species A, B, and C are clustered in the phylogeny. But, how should 

the abundances of these three species affect the metric? In the simple case of an 

assemblage of two individuals of species A, and one each of species B and C, all of the 

potential interactions among individuals can be visualized schematically (Fig. S2.1).  

 If we include only interactions among heterospecific individuals to derive a 

matrix of abundance weights for the MPD calculation (Fig. S2.1, “interspecific”), we 

obtain the MPD among heterospecific individuals within the community. This is the same 

as the MPD among species, weighted by the number of individuals of each interacting 

species. It is also the same as Δ* of Clarke & Warwick (1998) (see below). The resulting 

MPD calculated with this metric is slightly less than the unweighted version. This slight 



decrease is due to down-weighting in the calculation of the contribution of the 

phylogenetic distance between individuals of the rarer species, B and C, compared to that 

of unweighted MPD (Fig. S2.1).  

 The interspecific metric will be useful when it is the phylogenetic distances 

among individuals of different species that are of interest. For example, when testing for 

habitat filtering or interspecific competition, given an increase in the number of 

individuals of species A, a researcher might prefer not to have the metric show a dramatic 

increase in the degree of clustering (as happens with alternative versions of the metric, 

see below and Fig. S2.2d). This is because it is the phylogenetic distances among 

individuals of different species that are hypothesized to be clustered and/or 

overdispersed. As another example, a researcher studying phylogenetic niche 

conservatism might be interested in how phylogenetic community structure changes 

along an environmental gradient. Given abundance data, he or she could study these 

changes along the gradient, down-weighting the importance of rarely recorded species 

(e.g., vagrants) and up-weighting the importance of abundant species.   

 Alternatively, one might wish to account for both inter- and intraspecific 

interactions to obtain the mean pairwise phylogenetic distance between any two 

individuals within the community (Fig. S2.1, “intraspecific”). Here, the two intraspecific 

interactions for species A, which correspond to phylogenetic distances of zero, are given 

weight when calculating MPD, considerably decreasing the resulting metric from the 

unweighted version. This intraspecific abundance-weighted MPD is equal to Δ of Clarke 

& Warwick (1998) (see below). It will likely be preferred when examining patterns in 

community phylogenetic structure predicted to arise from processes generating negative 



density-dependence mediated by phylogenetic relatedness. For example, in the case of 

pathogen mediated species co-occurrence, the inclusion of both intra- and interspecific 

phylogenetic distances is important as both con- and heterospecific individuals represent 

potential hosts, and the expectation may be not only of even spacing among species, but 

even abundance distributions of individuals among species.   

 Lastly, abundance-weighted MPD, as currently implemented in Phylocom and 

picante, is calculated by accounting for all possible interactions, including those of an 

individual with “itself” (Fig. S2.1, “complete”) (Webb et al. 2008; Kembel et al. 2010). 

The biological interpretation of this metric seems more complicated than those of the 

interspecific or intraspecific methods. The complete method might be likened, 

biologically, to including an individual’s impact both on others and on itself; for 

example, an individual’s use of environmental resources reducing availability for all 

individuals, including itself. The diagonal element in the abundance weight matrix of the 

complete method is equal to n2, where n is the number of individuals of a species, while 

that in the intraspecific method is n2 – n. Thus, the MPD values calculated with either 

version will converge rapidly as n increases (Fig. S2.3). Only at low total local 

assemblage abundance is the difference in MPD values between these metrics notable. 

Nevertheless, it seems that intraspecific MPD is a more accurate implementation of 

abundance-weighted MPD as defined by Webb et al. (2008) to be the average 

phylogenetic distance between any two individuals drawn from a sample.  

 Each of these methods corresponds to a different biological interpretation, and 

they performed similarly overall (Fig. 3-5). A few points should still be understood about 

the intraspecific and complete methods. Both intraspecific and complete abundance-



weighted MPD will correlate with assemblage species richness, since at lower richness, 

proportionally more intraspecific phylogenetic distances (i.e. distances of zero) are 

included in the mean (Fig. 1). Also, assemblages of uniform species abundances will 

have different MPD scores depending on whether they are abundance-weighted or not 

(Fig. S2.2). Finally, abundance-weighted MPD will always be less than the unweighted 

form (except in the unique case where all species in the assemblage are represented by a 

single individual, Fig. S2.2).  

 It is instructive to consider how these three different MPD metrics change as 

species abundances vary. If all species’ abundances are increased, keeping relative 

abundances the same, the resulting metric is unchanged for the interspecific and complete 

methods, but decreases for the intraspecific method (it converges on the complete method 

with increasing total assemblage abundance, Fig. S2.3).  If individuals of both species A 

and C are increased in tandem towards infinity, holding B constant, then the interspecific 

method converges on the phylogenetic distance between species A and C (4 in this 

example), while the latter two methods converge on the mean of the phylogenetic 

distance between species A and C and their intraspecific phylogenetic distance (2 in this 

example; the mean of 4 and zero). Similarly, with the interspecific method, adding 

individuals of species A only to the assemblage will increase the contribution of the 

phylogenetic distances between species A and other species, while with either of the 

other two methods, it will increase the contribution of both interspecific distances 

involving species A, and distances within species A (Fig. S2.2).  

 

Some forms of MPD are equivalent to Clarke and Warwick’s earlier metrics 



 While writing this manuscript, we became aware of three additional phylogenetic 

community structure metrics that were not incorporated in the main simulations (Clarke 

& Warwick 1998). This oversight was due in large part to the fact that these metrics have 

been more frequently used by conservation biologists than by community ecologists (Box 

1). As we show here, they are equivalent to other metrics that we did assess, and 

consequently are expected to perform equivalently. Specifically, non-abundance-

weighted MPD is equal to Δ+, interspecific MPD is equal to Δ*, and intraspecific MPD is 

equal to Δ (Fig. S2.4). 

 To demonstrate the equivalency of the metrics, we use our package metricTester, 

geiger (Harmon et al. 2008), picante (Kembel et al. 2010), and vegan (Oksanen et al. 

2013), among others. Our package can be installed directly from GitHub using the 

devtools package (username = “eliotmiller”; note that the dependency ecoPDcorr must 

also be installed using the same username). 

 

library(metricTester) 

library(geiger) 

 

#simulate tree with birth-death process 

tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50) 

 

#generate log-normal abundance curve 

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1)) 

 

#use this log-normal abundance curve to create a community 



#data matrix (cdm) with 16 quadrats of species richness 

#between 10 and 25.  

cdm <- simulateComm(tree, min.rich=10, max.rich=25, 

 abundances=sim.abundances) 

 

#generate a phylogenetic distance matrix 

dists <- cophenetic(tree) 

 

#calculate the various forms of MPD using metricTester 

naw.mpd <- modified.mpd(cdm, dists, 

 abundance.weighted=FALSE) 

inter.mpd <- modified.mpd(cdm, dists, 

 abundance.weighted="interspecific") 

intra.mpd <- modified.mpd(cdm, dists, 

 abundance.weighted="intraspecific") 

 

#calculate the various forms of Clarke and Warwick's 

#metrics 

temp.CW <- taxondive(cdm, dists) 

delta <- temp.CW$D 

delta.star <- temp.CW$Dstar 

delta.plus <- temp.CW$Dplus 

 

#Non-abundance-weighted MPD is equal to delta +. Also, call 



#the raw values if you want to see those directly 

plot(delta.plus~naw.mpd) 

 

#Interspecific abundance-weighted MPD is equal to delta * 

plot(delta.star~inter.mpd) 

 

#Intraspecific abundance-weighted MPD is equal to delta 

plot(delta~intra.mpd) 

 

 



 

 

Figure S2.1. Schematic illustrating how non-abundance-weighted and three different 

forms of abundance-weighted MPD are calculated. Interspecific MPD accounts only for 
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phylogenetic distances among heterospecifics, intraspecific also accounts for distances 

among conspecifics, and complete also includes interactions of an individual with itself. 

  



 

 

Figure S2.2. Examples showing how varying species’ abundances affects the different 

abundance-weighted MPD metrics. Branch lengths are the same as in Fig. S2.1. In all 

examples shown, unweighted MPD would be equal to 3.3. (a) Intraspecific MPD is 

equivalent to unweighted MPD in the special circumstance where one individual of each 

species is present, whereas the interspecific method is always equivalent to unweighted 

MPD when all species are equally abundant. (b) When all species’ abundances are 

increased, keeping relative abundances constant, intraspecifc MPD decreases as more 

intraspecific distances are incorporated. (c) When individuals are added to species A and 

C, interspecific MPD increases, emphasizing the distance between these upweighted 

species. Intraspecific and complete MPD decrease, emphasizing the intraspecific 

phylogenetic distances within species A and C. (d) Intraspecific and complete MPD 

decrease dramatically when only individuals of species A are added, whereas 

interspecific MPD decreases only somewhat (as a result of a down-weighting of the 

phylogenetic distance between species B and C). 
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Figure S2.3. Intraspecific abundance-weighted MPD converges on complete abundance-

weighted MPD with increasing total community size. To determine this, a series of 1,000 

community data matrices were generated with the same phylogeny, number of species 

and number of quadrats, but the cells in the matrix were randomly filled by drawing from 

log-normal distributions with increasingly larger means. 
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Figure S2.4. Scatterplots demonstrating the equivalency of Δ+ to MPD, Δ to intraspecific 

AW MPD, and Δ* to interspecific AW MPD. These plots were produced with the 

example code from metricTester shown above.  
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Appendix S3. Null models: behavior across variation in species richness, documenting 

equivalency, and a new method. 

 

Behavior of existing null models across species richness 

 As described in the main text, we were interested in quantifying the behavior of 

the null models (Table 2) across varying species richness. Basic principles of 

bootstrapping (Efron 1979) suggest that there should be more variance when small 

subsamples of a larger pool are taken. If two random taxa are drawn from a phylogeny, 

they could be close sister species, or they could span the root. The calculated 

phylogenetic community structure metrics from these two extremes could vary greatly. 

Alternatively, if all the species from a phylogeny are present in a community, we know 

what the calculated metric will be—no bootstrapping is necessary. This should lead to a 

confidence funnel (e.g., Clarke & Warwick 1998), with more variable expectations at 

lower species richness. But what sorts of expectations do the different nulls we tested 

generate? How do they differ from each other? What factors influence their distributions?  

 The richness null (=SIM3, Gotelli (2000)) we tested swaps abundances within 

quadrats. In other words, given a quadrat by species community data matrix (CDM), this 

null shuffles the contents of each row (a quadrat). Accordingly, species are sampled with 

equal frequency. We would expect that for metrics like mean pairwise phylogenetic 

distance (MPD) that are uncorrelated with species richness (Fig. 1), the mean expected 

value would not change with species richness. Simulations show this is the case (Fig. 2). 

This is a useful null to use as a benchmark against which to understand other more 

constrained nulls. Briefly, we note that a slight variations on this, the 1s null model 



(Hardy 2008), converges on the same expectations as the richness null (Fig. S3.1). The 2s 

null (Hardy 2008) is Hardy’s implementation of the richness null, and we examined it 

here simply to confirm that different R packages do indeed give similar solutions. There 

could be situations where these models do not converge, but we are unaware of what they 

are and we do not discuss either the 1s or 2s nulls further. 

 The frequency null we tested (=SIM2, Gotelli (2000)) swaps abundances within 

species. We refer to this as the frequency by quadrat null. Given a quadrat by species 

CDM, this null shuffles the contents of each column (a species). This means that species 

are not sampled with equal frequency. Importantly, it also means that the randomized 

quadrats tend to contain the mean number of species as were observed in the input CDM. 

For example, given a CDM with four quadrats, one of species richness 2, two of species 

richness 5, and one of species richness 8, randomized quadrats will tend to contain 5 

species. Based on the principles of bootstrapping mentioned above, it should be clear 

why this would be problematic; the larger expected variance at low species richness will 

not be incorporated in the null model, and high type I error rates are expected (black 

arrow in Fig. 1 points to the region of concern).  

 To account for this, Miller et al. (2013) developed a method where the per quadrat 

raw metric values and associated species richness from a frequency null were retained. 

These values were concatenated by species richness, and observed values were compared 

to those expected at their corresponding species richness. We refer to this as the 

frequency by richness null.  

 Like the frequency by richness null, the derivation of a CDM where the 

randomized quadrats contain the same number of species as the input CDM, and 



individual species occur with the same frequency as the input CDM are the goals of the 

independent swap (Gotelli & Entsminger 2001) and trial swap null models (Miklós & 

Podani 2004). The trial swap null model has been considered a more efficient 

implementation of the independent swap (Miklós & Podani 2004). In our simulations this 

was not the case. With increasing randomizations of a given CDM, the independent swap, 

trial swap and frequency by richness nulls all show increasingly stable expectations, but 

the trial swap seems to stabilize at a slower rate (Fig. S3.2). Regardless of the reason for 

this result, all three nulls seem to converge on the same solution (Figs. S3.3 and S3.4). 

 The 2x and 3x nulls (Hardy 2008) were developed to maintain not only aspects of 

species richness and occurrence frequency, but also either the quadrat-specific rank 

abundance curve or the species-specific abundance distribution, respectively. While these 

are aspects of a dataset that a researcher most certainly might wish to maintain, in 

practice, the extreme constraints imposed on the matrix randomizations seems to result in 

inefficient exploration of phylogenetic space. Both nulls also gave identical solutions 

(Fig. S3.5). We were unable to determine why these nulls behaved as they did, but the 

fact that their expectations wobble across species richness seems to be an undesirable 

property. Biologically, it is hard to construct a reason why one should expect 

dramatically different phylogenetic community structures with the presence or absence of 

a single species. 

 What determines how expectations for the independent swap (or frequency by 

richness or trial swap) vary from those given the richness null? It may not be intuitive to 

all readers that species within a phylogeny vary in their mean phylogenetic distance to 

other species in the phylogeny. In an ultrametric tree, all species are equidistant from the 



root. How can one differ from another in its mean relatedness to other species? Consider 

the case of a single species that is sister to the rest of the phylogeny. This species is 

separated by larger average evolutionary distances than are the other species. The 

relationship between species’ occurrence frequencies and their mean relatedness 

determines how the expectations for the independent swap shift from those of the 

richness null.  

 To illustrate this point, we generated a CDM as described in the main text. For 

every species in the CDM, we next calculated both its mean relatedness to the rest of the 

species and its occurrence frequency in the CDM. In the first simulation (Fig. S3.6, 

“sim1”), we then replaced species identities in the CDM such that species that were more 

closely related to the rest became the most frequent occurring species in the CDM. In 

other words, the most closely related species in the phylogeny also became the most 

common in the new CDM. We performed the opposite procedure in the second 

simulation (“sim2”). When distant relatives are also the least frequently observed species, 

the expectations are shifted downwards from those given a richness null. When distant 

relatives are the most frequently observed species, the expectations are shifted upwards 

(Fig. S3.6). Moreover, mean expected MPD, which is uncorrelated with species richness, 

begins to show some correlation with species richness when using a null model like this. 

This is because the probability of including rare species in the randomized matrices 

increases with larger samples. Thus, the expected MPD is positively correlated with 

species richness in the first simulation, and negatively correlated in the second.  

 

Development of the regional null model. 



 No null model of community assembly that we know of maintains species 

richness, species occurrence frequency, and species abundance. The null models that 

come closest to achieving these objectives are the 2x and 3x nulls of (Hardy 2008), and 

these perform poorly. We develop a new null model aimed at achieving these goals. We 

do so both because of its theoretical value and, in particular, because our competitive 

exclusion simulations led us to recognize the importance of local interactions on species 

occurrence frequencies (Appendix S4). Specifically, our competitive exclusion 

simulations produce a local effect where some species that are regionally common 

become locally less so. Such species are closely related to species that are more common 

in the local community. When these local occurrence frequencies are used to inform a 

null model like the independent swap, short phylogenetic distances (like those between 

sister species) tend not to occur in the randomized matrices, which results in the expected 

phylogenetic community structure being shifted upwards from that given a null that 

maintains only species richness (Fig. S3.7). Accordingly, it becomes difficult to detect 

phylogenetic overdispersion.  

 In empirical situations, researchers are likely interested in testing for the effects of 

community assembly processes in a focused area (e.g., a forest plot, a grid cell on a map, 

a soil sample, etc.). The thought, likely, is that the focal area was historically or is 

currently subject to community assembly processes (e.g., competitive exclusion) that 

operate at a different scale than regional dispersal pressures on the focal area. The 

regional null is intended to simulate these regional dispersal probabilities (i.e. propagule 

pressure, with no intended implication of invasive biology). Based on our results in the 

main text, it performs well and, as we explain below, it largely accomplishes the 



objectives of maintaining species richness, occurrence frequency, and abundance 

distributions. It requires, however, that a regional abundance vector (in the form of “sp1, 

sp1, sp1, sp2, sp2, …”) be provided. Developing a vector like this is easy in our 

simulations, but may be more difficult in empirical situations. If a dataset consisted of 

evenly sampled sites, so as not to introduce biases in species occurrence frequencies, and 

the assumption was made that species abundances reflected their dispersal probability, 

then a vector of all individuals across the entire dataset could be used (use the function 

“abundanceVector” in our package to do so). Most real-world situations would be more 

complicated than this, and the practicality of the regional null remains to be 

demonstrated. 

 The regional null takes as input a regional abundance vector, as described above. 

For each quadrat in the randomized CDM, it then samples with equal probability from 

this vector the same number of individuals as were in that quadrat in the observed CDM. 

The metric of interest is calculated on the quadrats from this randomized CDM, and these 

values are retained, along with the associated species richness from each quadrat. This 

process is repeated many times. At the end of this process, the mean and 95% confidence 

intervals of all randomized values at each observed species richness value are then 

calculated. Thus, species richness is strictly maintained, as observed quadrats are only 

ever compared with the 95% CI from randomized sites of corresponding species richness.  

 Species occurrence frequencies are also approximately maintained with the 

regional null. For instance, after 1,000 randomized CDMs were generated with the 

regional null, we calculated the mean occurrence frequency across all randomized CDMs 

for each of the 50 species in community. These values were closely correlated with the 



observed occurrence frequencies for the same 50 species (r2 = 0.83, p < 0.001, Fig. S3.8). 

The abundance at which a species occurs in any given quadrat is also approximately 

maintained with the regional null. For instance, within a given quadrat from these same 

randomizations, a randomly selected species was mostly found as a single individual, 

occasionally as two individuals, and very infrequently at higher abundances (Fig. S3.9A). 

This is similar to the abundance distribution of the same species in the original CDM 

(Fig. S3.9B). 

 

 

 

Figure S3.1. Confidence intervals (95%) for null models (shaded by color) across 

variation in species richness. The same initial CDM, phylogeny and number of 

randomizations as Fig. 1 were used. The richness and 1s null models provide identical 

expectations. The 2s null model also converges on the same expectation; this model is 
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simply the spacodiR implementation of what amounts to a richness null, but we include it 

here to confirm that different R packages provide similar results.  
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Figure S3.2. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across varying species richness and with increasing 

randomizations of an initial CDM. The darker lines in all panels represent mean trend 

lines. The shading around those lines represents confidence around that mean; the 

shading is only visible on the trial swap panels. 

 

 

Figure S3.3. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across species richness (after 103 randomizations). These are 

the leftmost three panels from Fig. S3.2. Darker lines represent mean trends. Shading 

around those lines represents confidence around the mean; the shading is only visible for 

the trial swap mean. 
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Figure S3.4. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across species richness (after 106 randomizations). These are 

the rightmost three panels from Fig. S3.2. Darker lines represent mean trends. Shading 

around those lines represents confidence around the mean; the shading is only visible for 

the trial swap mean. 
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Figure S3.5. Confidence intervals (95%) for the 2x and 3x null models (Table 2) across 

variation in species richness. Expectations shown here are the result of 105 

randomizations. The two null models follow identical distributions. 
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Figure S3.6. Results of two simulations varying the occurrence frequency of individual 

species in the CDM according to mean relatedness to the rest of the species in the 

phylogeny. In the first simulation, the most closely related species occurred most 

frequently. This pattern was reversed in the second simulation. Expectations do not shift 

notably when using the richness null. 

 

 

 

Figure S3.7. Confidence intervals (95%) for null models (shaded by color) across 

varying species richness. The arenas were constructed with the same parameters as 

described for the competitive exclusion simulations in the main text. The expectations 

shown here are the result 10^5 randomizations. After 100 generations of competition, the 

abundance of some species that are closely related to other species (i.e. “nested” in the 

phylogeny) decreases across the arena (Fig S4.11). Their occurrence frequency in random 
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quadrats, used to generate the CDM does as well. Thus, the expectations given an 

independent swap null, which accounts for occurrence frequency, are shifted notably 

upwards from those given a richness null. Moreover, some species are lost from the arena 

entirely, and the mean expectations for the richness null are therefore also shifted slightly 

up from those given the regional null. 
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Figure S3.8. Mean occurrence frequency of 50 species, after 1000 randomizations with 

the regional null model, as compared with their initial occurrence frequency. Species 

tended to occur with a frequency proportional to their occurrence frequency in the 

observed matrix (r2 = 0.83, p < 0.001). 

 

 

 

Figure S3.9. (A) Histogram of the abundance distribution of a randomly selected species 

across 1000 randomized community data matrices (after excluding all quadrats where it 

did not occur at all). (B) Histogram of the observed, original abundance distribution of 

the same randomly selected species as A (after excluding all quadrats where it did not 

occur at all). 
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Appendix S4. Metric and null model approach results are robust to variation in spatial 

simulation parameters and number of randomizations of community data matrix. 

 

 In this study, we created community data matrices according to one of three 

community assembly processes: random assembly, habitat filtering and competitive 

exclusion. The random communities contained approximately the same number of 

individuals as stems recorded in forest plots of similar size (Murphy et al. 2013). Species 

within these communities were distributed according to a log-normal rank abundance 

curve (example community Fig. S4.1). The metricTester-specific parameters are listed 

below. 

 

Simulate a phylogeny of 100 species with geiger: 

 

tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=100) 

 

Generate a random spatial community of 300 x 300 m, assigning species abundances 

from a log-normal distribution with mean log of 3.2: 

 

arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, 

y.max=300, mean.log.individuals=3.2).  

 

 In the habitat filtering community assembly simulation, we set our parameters to 

compromise between producing realistic-looking communities, and producing strong and 

readily detectable phylogenetic patterns. A consequence of this was that individuals 



tended to be distributed more densely in the center of the community, and more 

individuals were situated in the community than, e.g. stems in forest plots of similar size 

(Fig. S4.2). There is room for improvement in future simulations, but exploration of 

variation in these parameters yielded qualitatively identical results to those used in the 

main text (Fig. S4.3-5). The metricTester-specific parameters we used are listed below.  

 

Generate a phylogeny of 100 species and allow two traits to evolve independently 

following a Brownian motion distribution: 

 

temp <- phyloNtraits(100) 

 

Scale those traits to match the size of the community: 

 

scaled <- scaler(temp[[2]], min.arena=0, max.arena=300) 

 

Place individuals down near their preferred spatial location. First determine how many 

individuals per species there are in the community by drawing from a log-normal 

distribution with mean of 5. Then create normal distributions of length = 100 and SD = 

35 around the preferred X and Y location of each species. Draw as many individuals per 

species as were determined by the first process, and place them down at their selected 

X,Y location.  

 



positions <- locationSampler(phyloNtraits.results=temp, 

scaled.results=scaled, mean.log.individuals=5, 

length.parameter=100, sd.parameter=35) 

 

 The competitive exclusion community assembly simulations began with a 

community created with the same parameters as the random community described above. 

Because the same numbers of individuals were removed as were added to the competitive 

communities, the communities likewise contained approximately the same number of 

individuals as the random communities (Fig S4.6). The metricTester-specific parameters 

we used are given below. The first two steps follow those of the random community 

above. 

 

tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=100) 

 

arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, 

y.max=300, mean.log.individuals=3.2) 

 

Take the phylogeny and random community, set the interaction distance to be 15 m, the 

percent of individuals considered to be 20%, and run the competitive exclusion 

simulation for 100 generations. 

 

comp <- competitionSimulator(tree=tree, initialArena=arena, 

max.distance=15, percent.killed=0.2, iterations=100) 

 



 The competitive exclusion simulations were robust to parameter variation. Both 

variation in the interaction distance and in the percent of individuals “killed” per 

generation resulted in communities with regions of approximately equal genetic 

“overdispersion” (Fig. S4.7-8). These communities looked realistic and similar to the 

random communities, though the even spacing of close relatives was discernible (Fig. 

S4.9 and S4.10).  

 During the competitive exclusion simulations, some species that were initially 

common in the community became less so with each generation (Fig. S4.11). These 

species were those with many close relatives in the phylogeny. A null like the 

independent swap that incorporates species occurrence frequencies derives these from 

occurrence frequencies in the observed community data matrix (CDM). After the 

competitive exclusion simulations, therefore, longer than average branch lengths end up 

being frequently sampled in the randomized CDMs. Accordingly, the expected 

phylogenetic community structure is shifted upwards from that given a richness null, and 

it becomes difficult to detect phylogenetic overdispersion (Fig. S3.7). This occurs despite 

the fact that, throughout the competitive exclusion simulations, removed individuals were 

settled from the initial regional abundance pool. Our development of the regional null 

model (Appendix S3) was motivated in large part by this complication. 

 



 

Figure S4.1. Example of a 300 x 300 m random assembly community, created using the 

same parameters as those in the study. The 15, 30 x 30 m quadrats are also plotted. Each 

species is assigned a unique color, though with 100 species they cannot be readily 

distinguished from one another. 
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Figure S4.2. Example of a 300 x 300 m community, created using the same habitat 

filtering assembly parameters as those in the study. The 15, 30 x 30 m quadrats are also 

plotted. Each species is assigned a unique color. 
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Figure S4.3. The results of a limited number of iterations testing the performance of the 

19 phylogenetic community structure metrics with the 2x null (Hardy 2008) and a habitat 

filtering assembly process. To determine whether the lack of power in the initial metric + 

null performance results (Appendix S1.1) might have been a result of insufficient 

randomizations, each CDM was randomized 10,000 times in these tests. Due to the 

prohibitive computing time involved with this large number of randomizations, only 10 



iterations were run and results were scaled up to 100, such that red bars represent type I 

error rates here (e.g., EED exhibited a 27% type I error rate). 

 

 

Figure S4.4. The results of 100 iterations testing the performance of the 19 phylogenetic 

community structure metrics with the richness null and a habitat filtering assembly 

process. To determine whether the initial metric + null performance results (Appendix 

S1.1) were sensitive to the number of individuals placed in the community, we set the 



“mean.log.individuals” parameter to be equal to 3 in these tests. This generates 

communities with approximately the same number of individuals as the random and 

competitive exclusion simulations.  

 

 

 

Figure S4.5. The results of 100 iterations testing the performance of the 19 phylogenetic 

community structure metrics with the richness null and a habitat filtering assembly 

process. To determine whether the initial metric + null performance results (Appendix 

S1.1) were sensitive to the number of randomizations of the CDM, each CDM was 



randomized 10,000 times in these tests. Results were similar to those in the main text, 

though there is a slight increase in the power of the “tip-clustering” metrics PSC and 

MNTD. 

 

Figure S4.6. Example of a 300 x 300 m community, created using the same competitive 

exclusion assembly parameters as those in the study. The 15, 30 x 30 m quadrats are also 

plotted. Each species is assigned a unique color, though with 100 species they cannot be 

readily distinguished from one another. 
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Figure S4.7. Change in the mean genetic neighborhood over 25 generations of the 

competitive exclusion assembly for four different interaction distances. The mean genetic 

neighborhood is defined as the mean of the mean of pairwise phylogenetic distances 

among an individual and all individuals within the interaction distance, for all individuals 
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in the community. Across a wide range of interaction distances, the general pattern of 

increasing phylogenetic overdispersion is evident. 

 

 

 

Figure S4.8. Change in the mean genetic neighborhood over 25 generations of the 

competitive exclusion assembly for four different percent killed parameters. The mean 

genetic neighborhood is defined as the mean of the mean of pairwise phylogenetic 
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distances among an individual and all individuals within the interaction distance, for all 

individuals in the community. Across a wide range of percent killed parameters, the 

general pattern of increasing phylogenetic overdispersion is evident. Based on these 

preliminary results, it appears that removing (“killing”) a small percentage (e.g., 2.5%) of 

individuals each generation would ultimately generate a similar pattern to removing a 

large percentage (e.g., 20%). 

 

 



Figure S4.9. Example of a 300 x 300 m random assembly community, created using the 

same parameters as those in the study. Here, a random individual was selected near the 

center of the community (marked with a white asterisk). Individuals were then color-

coded as a function of their relatedness to the focal individual, where bright red indicates 

a member of the same species. The size of individual dots was scaled according to their 

mean relatedness to all other species in the phylogeny, such that large dots indicate a 

member of a species with many close relatives. In this random community, bright red 

dots occasionally occur close together, and on average the plot is “redder” then Fig. 

S4.10. Also, the dots in the plot appear to be more uniform in size.   



 

Figure S4.10. Example of a 300 x 300 m competitive exclusion community, created 

using the same parameters as those in the study. The community from Fig. S4.9 was used 

as a starting point. An individual of the same species as that figure was selected near the 

center of the community (marked with a white asterisk). Individuals were then color-

coded as a function of their relatedness to the focal individual, where bright red indicates 

a member of the same species. The size of individual dots was scaled according to their 

mean relatedness to all other species in the phylogeny, such that large dots indicate a 



member of a species with many close relatives. In this community, bright red dots appear 

regularly spaced, and on average the plot is “darker” then Fig. S4.9. Also, the dots in the 

plot appear to be more heterogeneous in size.   

 

 

Figure S4.11. Changes in the rank abundance curve after 25 generations of the 

competitive exclusion assembly simulations. The initial rank abundance curve is shown 

in black. Increasing the interaction distance results in increasingly large deviations from 



the initial rank abundance curve. Some species (e.g., 8 and 9) dramatically change 

abundance during these competition simulations. Four separate simulations with the same 

initial community and phylogeny are shown here. The similarities across the simulations 

are striking. 
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Appendix S5. Intercorrelations among 19 phylogenetic community structure metrics. 

 

 



Figure S5.1. Dendrogram of intercorrelations among the phylogenetic community 

structure metrics (and species richness itself). This is the same topology as Fig. 2, 

repeated here for use with Table S5.1. Closely correlated metrics are annotated along 

branches. Clade 1 metrics focus on “total community relatedness”; Clade 2 metrics on the 

relationship between “evolutionary distinctiveness and abundance”; Clade 3 on “nearest-

relative” measures of community relatedness; and Clade 4 metrics are particularly closely 

correlated with species richness. Tips are color-coded from blue (good) to red (poor) 

according to the sum of all successes (runs that successfully detected the simulated 

assembly process—either habitat filtering or competitive exclusion) minus the sum of all 

type I errors encountered during the same runs for the richness, independent swap, and 

regional null models.   

 

 

 

 



Table S5.1. Pearson correlation coefficients among 19 phylogenetic community structure metrics. The raw values used to calculate 

these correlations were generated over 50,000 randomized community data matrices spanning a range of species richness values. 

 
 Richness MPD Interspecific 

AW MPD 
Intraspecific 
AW MPD 

Complete 
AW MPD MNTD AW 

MNTD PSV PSC PSE PAE IAC Haed Eaed Eed Hed SimpsonsPhy PD PDc 

Richness 1 0 0 0.52 0.53 -0.75 -0.61 0 -0.75 0.26 0 0.57 0.9 -0.09 
-
0.28 0.98 0.53 0.94 0.94 

MPD 0 1 0.5 0.39 0.39 0.25 0.2 1 0.25 0.45 0 0.03 0 -0.02 0.19 0.01 0.39 0.18 0.18 

Interspecific AW MPD 0 0.5 1 0.78 0.78 0.13 0.36 0.5 0.13 0.89 0.39 
-
0.18 0.09 0.45 0.1 0 0.78 0.08 0.08 

Intraspecific AW MPD 0.52 0.39 0.78 1 1 -0.32 -0.06 0.39 -0.32 0.96 0.31 0.16 0.59 0.41 
-
0.07 0.53 1 0.57 0.57 

Complete AW MPD 0.53 0.39 0.78 1 1 -0.33 -0.07 0.39 -0.33 0.95 0.31 0.17 0.6 0.4 
-
0.07 0.54 1 0.58 0.58 

MNTD -0.75 0.25 0.13 -0.32 -0.33 1 0.8 0.25 1 -0.09 0 
-
0.46 -0.78 -0.04 0.02 -0.8 -0.33 -0.58 -0.58 

AW MNTD -0.61 0.2 0.36 -0.06 -0.07 0.8 1 0.2 0.8 0.16 0.57 
-
0.52 -0.56 0.27 0.02 

-
0.64 -0.07 -0.47 -0.47 

PSV 0 1 0.5 0.39 0.39 0.25 0.2 1 0.25 0.45 0 0.03 0 -0.02 0.19 0.01 0.39 0.18 0.18 

PSC -0.75 0.25 0.13 -0.32 -0.33 1 0.8 0.25 1 -0.09 0 
-
0.46 -0.78 -0.04 0.02 -0.8 -0.33 -0.58 -0.58 

PSE 0.26 0.45 0.89 0.96 0.95 -0.09 0.16 0.45 -0.09 1 0.35 
-
0.04 0.34 0.51 0.01 0.26 0.95 0.33 0.33 

PAE 0 0 0.39 0.31 0.31 0 0.57 0 0 0.35 1 
-
0.26 0.11 0.5 0 0 0.31 0 0 

IAC 0.57 0.03 -0.18 0.16 0.17 -0.46 -0.52 0.03 -0.46 -0.04 -0.26 1 0.69 -0.4 -0.3 0.63 0.17 0.62 0.62 

Haed 0.9 0 0.09 0.59 0.6 -0.78 -0.56 0 -0.78 0.34 0.11 0.69 1 0.08 
-
0.17 0.94 0.6 0.86 0.86 

Eaed -0.09 -0.02 0.45 0.41 0.4 -0.04 0.27 -0.02 -0.04 0.51 0.5 -0.4 0.08 1 0.32 -0.1 0.4 -0.18 -0.18 

Eed -0.28 0.19 0.1 -0.07 -0.07 0.02 0.02 0.19 0.02 0.01 0 -0.3 -0.17 0.32 1 
-
0.21 -0.07 -0.34 -0.34 

Hed 0.98 0.01 0 0.53 0.54 -0.8 -0.64 0.01 -0.8 0.26 0 0.63 0.94 -0.1 
-
0.21 1 0.54 0.94 0.94 

SimpsonsPhy 0.53 0.39 0.78 1 1 -0.33 -0.07 0.39 -0.33 0.95 0.31 0.17 0.6 0.4 
-
0.07 0.54 1 0.58 0.58 

PD 0.94 0.18 0.08 0.57 0.58 -0.58 -0.47 0.18 -0.58 0.33 0 0.62 0.86 -0.18 
-
0.34 0.94 0.58 1 1 

PDc 0.94 0.18 0.08 0.57 0.58 -0.58 -0.47 0.18 -0.58 0.33 0 0.62 0.86 -0.18 
-
0.34 0.94 0.58 1 1 
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abundanceVector Generate regional abundance vector

Description

Given a community data matrix of sites by species, extract the column-wise sums (the total number
of individuals of each species) and expand to create a regional abundance vector.

Usage

abundanceVector(cdm)

Arguments

cdm Community data matrix in picante format

Details

Simple function to create a regional abundance vector given a "regional" community data matrix.

Value

A character vector in the form "s1, s1, s1, s2, s2, s3, etc".

References

Miller, Trisos and Farine.

Examples

library(plyr)
library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

abund <- abundanceVector(cdm)
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allMetrics Calculate phylogenetic community structure metrics

Description

Given a phylo object, and a picante-style community data matrix (sites are rows, species are columns),
calculate all phylogenetic community structure metrics of interest.

Usage

allMetrics(tree, picante_cdm)

Arguments

tree Phylo object

picante_cdm A picante-style community data matrix with sites as rows, and species as columns

Details

Currently we are calculating 19 phylogenetic community structure metrics

Value

A data frame with the calculated 19 metrics and the associated species richness of all input "com-
munities".

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

results <- allMetrics(tree, cdm)
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allMetricsNull Generate null expectations for community structure metrics

Description

Given a phylo object, a picante-style community data matrix (sites are rows, species are columns),
a desired null method (any of picante or also 2x, 3x, 1s, & 2s of spacodiR), a desired number of
randomizations, and an output file name, will shuffle matrix according to null method, then calculate
all phylogenetic community structure metrics as defined in the allMetrics() function, then save each
iteration’s worth of shufffled values to a csv file for later import. Also calculates the richness of the
corresponding community.

Usage

allMetricsNull(tree, orig.matrix, null.method, regional.abundance,
no.randomizations, temp.file)

Arguments

tree Phylo object

orig.matrix A picante-style community data matrix with sites as rows, and species as columns

null.method A picante-style null, e.g. "richness" or "frequency", or "2x", "3x" "1s" or "2s",
which will call spacodiR. It can also now accomodate calls to "regionalNull"

regional.abundance

Optional vector of species names repeated the number of times present in the
regional abundance pool. For use with regionalNull.

no.randomizations

The desired number of no.randomizations the function will run, i.e. the number
of times orig.matrix will be shuffled and the metrics calculated on it

temp.file The desired name of the output csv file

Details

This runs much faster than trying to do this in memory in R. I will upload some of those type of
functions in the near future anyhow. If you call null metrics 2x, 3x, 1s or 2s, it will call spacodiR
for the resampling

Value

A csv file with each column equal to the value of a given metric for the shuffled community in
question (a row in the input matrix).

References

Miller, Trisos and Farine.
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Examples

library(geiger)
library(picante)
library(spacodiR)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

system.time(allMetricsNull(tree=tree, orig.matrix=cdm, null.method="richness",
no.randomizations=10, temp.file="output.csv"))

compareMins Utility function to identify minimum values

Description

Given a vector where the last element is the minimum, identifies which elements in that vector
match the last element.

Usage

compareMins(x)

Arguments

x A vector

Details

Simple utility function

Value

A logical vector of length input vector minus 1, corresponding to whether an element of the input
vector equals the last element of the input vector.

References

Miller, Trisos and Farine.

Examples

#create a basic input vector
temp <- c(1,2,3,4,5,6,1)

#use the compareMins function
compareMins(temp)
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competitionLooper Test metrics across multiple competitive simulation arenas

Description

Large, somewhat sloppy function tying many previous functions together into a single competitive
exclusion simulator function that generates spatial arenas, samples quadrats, generates null expec-
tations, tests for significance of observed metrics, and summarizes results as a matrix of type I and
type II error rates.

Usage

competitionLooper(no.species, x.min, x.max, y.min, y.max, no.quadrats,
quadrat_size, mean.log.individuals, max.distance, percent.killed,
competition.randomizations, null.method, concatBYrichness = TRUE,
no.randomizations, expectation, wrong, no.metrics, iterations, temp.file,
output.file)

Arguments

no.species Number of species in each arena
x.min Minimum X coordinate of arena, e.g. 0
x.max Maximum X coordinate of arena
y.min Minimum Y coordinate of arena, e.g. 0
y.max Maximum Y coordinate of arena
no.quadrats Number of quadrats to sample
quadrat_size Size of an individual quadrat
mean.log.individuals

Mean log of abundance vector from which species abundances will be drawn
max.distance The geographic distance within which geographically neighboring indivduals

should be considered to influence the individual in question.
percent.killed The percent of individuals in the total arena that should be considered (as a

proportion, e.g. 0.5 = half)
competition.randomizations

The number of generations per competitive exclusion arena simulation
null.method A picante-style null, e.g. "richness" or "frequency"
concatBYrichness

Whether to concatenate null results by the richness of the randomized quadrat
(the default), or by the quadrat ID (traditional method)

no.randomizations

Number of iterations the function should run, i.e. the number of times the
orig.matrix will be shuffled and the metrics calculated on it

expectation Expected value: 0=not significant, 1=clustered, 2=overdispersed
wrong Value of a typeI error rate, e.g. 2 if expecting 1.
no.metrics Need to specify how many metrics are being tested
iterations Number of arenas to simulate and test
temp.file File name of output file where null metric values are saved to. Re-written each

iteration
output.file File name of results file
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Details

Could easily modify this function to save more information than it currently does, though obviously
beware the additional space such an operation might require. A single null.csv file for 19 metrics by
1000 iterations is about ~50 megabytes. The results matrix is also written to csv in case the function
crashes part-way through.

Value

Two csvs and a matrix of results summarizing the type I and type II errors across all metrics and
spatial simulations. One csv is just a temporary file storing the null expectations, the other is a csv
of the same thing as the output matrix.

References

Miller, Trisos and Farine.

Examples

library(ape)
library(geiger)
library(colorRamps)
library(plyr)
library(picante)

competitionLooper(no.species=50, x.min=0, x.max=300, y.min=0, y.max=300, no.quadrats=15,
quadrat_size=50, mean.log.individuals=3.2, max.distance=15, percent.killed=0.2,
competition.randomizations=25, null.method="richness", concatBYrichness=TRUE,
no.randomizations=2, expectation=2, wrong=1, no.metrics=19, iterations=2,
temp.file="deleteme.csv", output.file="confused.csv")

competitionSimulator Simulate competitive exclusion over generations

Description

Given a phylogenetic tree, a spatial arena of individuals with species identities, and arguments for
the desired distance and percent removed, removes some of the most closely related individuals in
the arena, settles individuals based on abundances from a regional species pool, and repeats across
the desired number of generations.

Usage

competitionSimulator(tree, initialArena, max.distance, percent.killed,
iterations)

Arguments

tree Phylo object

initialArena A spatial arena with three columns: individuals (the species ID), X (the x axis
location of that individual), and Y (the y axis location). The initialArena actually
needs a number of other elements in order for later functions to work properly,
so any modifications to the code should take note of this.
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max.distance The geographic distance within which geographically neighboring indivduals
should be considered to influence the individual in question.

percent.killed The percent of individuals in the total arena that should be considered (as a
proportion, e.g. 0.5 = half).

iterations Number of generations to repeat simulation for.

Details

This function combines the killSome and settleSome functions into a loop that runs for the desired
number of generations.

Value

A list of 5 elements: the average relatedness in the geographic neighbordhood of consideration
(appended to any previous values that were fed into the function), the number of individuals killed,
the original input regional abundance vector, the new spatial arena, and the dimensions of that arena.
On the last iteration, it returns the arena BEFORE settling new individuals randomly.

References

Miller, Trisos and Farine.

Examples

library(geiger)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

#create a random arena
arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, y.max=300, mean.log.individuals=3)

#run the competitionSimulator for 25 generations
temp <- competitionSimulator(tree, arena, 30, 0.2, 25)

#create a quick vector for plotting
generations <- 1:25

#plot the average relatedness in geographic neighborhoods over generations
plot(temp$related[2:length(temp$related)]~generations)

filteringLooper Test metrics across multiple arenas

Description

Large, somewhat sloppy function tying many previous functions together into a single habitat filter-
ing simulator function that generates spatial arenas, samples quadrats, generates null expectations,
tests for significance of observed metrics, and summarizes results as a matrix of type I and type II
error rates.
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Usage

filteringLooper(no.species, x.min, x.max, y.min, y.max, no.quadrats,
quadrat_size, mean.log.individuals, length.parameter, sd.parameter,
null.method, concatBYrichness = TRUE, no.randomizations, expectation, wrong,
no.metrics, iterations, temp.file, output.file)

Arguments

no.species Number of species in each arena
x.min Minimum X coordinate of arena, e.g. 0
x.max Maximum X coordinate of arena
y.min Minimum Y coordinate of arena, e.g. 0
y.max Maximum Y coordinate of arena
no.quadrats Number of quadrats to sample
quadrat_size Size of an individual quadrat
mean.log.individuals

Mean log of abundance vector from which species abundances will be drawn
length.parameter

Length of vector from which species’ locations are drawn. Large values of this
parameter dramatically decrease the speed of the function but result in nicer
looking communities

sd.parameter Standard deviation of vector from which species’ locations are drawn
null.method A picante-style null, e.g. "richness" or "frequency"
concatBYrichness

Whether to concatenate null results by the richness of the randomized quadrat
(the default), or by the quadrat ID (traditional method)

no.randomizations

Number of iterations the function should run, i.e. the number of times the
orig.matrix will be shuffled and the metrics calculated on it

expectation Expected value: 0=not significant, 1=clustered, 2=overdispersed
wrong Value of a typeI error rate, e.g. 2 if expecting 1.
no.metrics Need to specify how many metrics are being tested
iterations Number of arenas to simulate and test
temp.file File name of output file where null metric values are saved to. Re-written each

iteration
output.file File name of results file

Details

Could easily modify this function to save more information than it currently does, though obviously
beware the additional space such an operation might require. A single null.csv file for 19 metrics by
1000 iterations is about ~50 megabytes. The results matrix is also written to csv in case the function
crashes part-way through.

Value

Two csvs and a matrix of results summarizing the type I and type II errors across all metrics and
spatial simulations. One csv is just a temporary file storing the null expectations, the other is a csv
of the same thing as the output matrix.
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References

Miller, Trisos and Farine.

Examples

library(ape)
library(geiger)
library(colorRamps)
library(plyr)
library(picante)

filteringLooper(no.species=50, x.min=0, x.max=300, y.min=0, y.max=300, no.quadrats=15,
quadrat_size=50, mean.log.individuals=4, length.parameter=5000, sd.parameter=50,
null.method="richness", concatBYrichness=TRUE, no.randomizations=2, expectation=1,
wrong=2, no.metrics=19, iterations=3, temp.file="deleteme.csv",
output.file="confused.csv")

killSome Remove most closely related individuals

Description

Given a phylogenetic tree, a spatial arena of individuals with species identities, and arguments for
the desired distance and percent removed, removes some of the most closely related individuals in
the arena.

Usage

killSome(tree, arenaOutput, max.distance, percent.killed)

Arguments

tree Phylo object

arenaOutput A spatial arena with three columns: individuals (the species ID), X (the x axis lo-
cation of that individual), and Y (the y axis location). The arenaOutput actually
needs a number of other elements in order for later functions to work properly,
so any modifications to the code should take note of this.

max.distance The geographic distance within which geographically neighboring indivduals
should be considered to influence the individual in question.

percent.killed The percent of individuals in the total arena that should be considered (as a
proportion, e.g. 0.5 = half).

Details

This function identifies individuals in the most genetically clustered geographic neighborhoods,
continues on to identify the most closely related individual to a focal individual, and randomly
chooses whether to remove that individual or the focal individual. It expects a list with a number
of additional elements beyond the arena (currently, the mean genetic relatedness of geographic
neighborhoods, a vector of regional abundance [where each element is a species name, repeated as
many times as is present in pool], and the dimensions of the arena).
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Value

A list of 5 elements: the average relatedness in the geographic neighbordhood of consideration
(appended to any previous values that were fed into the function), the number of individuals killed,
the original input regional abundance vector, the new spatial arena, and the dimensions of that arena.

References

Miller, Trisos and Farine.

Examples

library(geiger)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, y.max=300, mean.log.individuals=2)

new.arena <- killSome(tree, arenaOutput=arena, max.distance=50, percent.killed=0.2)

dim(arena$arena)
dim(arena$new.arena)

lengthNonZeros Calculate the species richness of a community

Description

Given a vector of abundances or presence/absences from a community data matrix, will calculate
the species richness of that community.

Usage

lengthNonZeros(input.vector)

Arguments

input.vector A vector from a community data matrix of abundances.

Details

An internal function to calculate richness of a cdm.

Value

A named vector of species richness.

References

Miller, Trisos and Farine.
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Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

#note that with this example, each community in the cdm will be labeled by its richness
apply(cdm, 1, lengthNonZeros)

locationSampler Simulate spatially explicity community

Description

Given the results of a call to phyloNtraits(), will generate a data frame with the spatial locations of
individuals and their species’ identity.

Usage

locationSampler(phyloNtraits.results, scaled.results, mean.log.individuals,
length.parameter, sd.parameter)

Arguments

phyloNtraits.results

Results of a call to phyloNtraits()

scaled.results Results of a call to scaler(). This is theoretically optional, but if not used, one
probably has to provide just the data frame of the results from the phyloNtraits
call

mean.log.individuals

Mean log of abundance vector from which species abundances will be drawn
length.parameter

Length of vector from which species’ locations are drawn. Large values of this
parameter dramatically decrease the speed of the function but result in nicer
looking communities

sd.parameter Standard deviation of vector from which species’ locations are drawn

Details

Should be sped up by removing for loops and inserting new mini-functions then applying them with
e.g. mapply(). Regardless, it works somewhat quickly. It takes results of calls to phyloNtraits()
and, if desired, scaler(), and given the input parameters mean log of individuals in the resulting
community, the length of the vector from which a species’ X & Y coordinates will drawn, and the
sd of that vector, it returns a dataframe of species and their X Y coordinates. The distribution of
abundances among species follows a log-normal distribution. The distribution of individuals within
species follows a normal distribution.
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Value

A data frame with X & Y coordinates for all individuals and their species identity

References

Miller, Trisos and Farine.

Examples

library(geiger)

results <- phyloNtraits(50)

scaled <- scaler(results[[2]], min.arena=0, max.arena=300)

positions <- locationSampler(phyloNtraits.results=results, scaled.results=scaled,
mean.log.individuals=4, length.parameter=5000, sd.parameter=50)

modified.mpd Calculate different versions of abundance-weighted MPD

Description

Given a picante-style community data matrix (sites are rows, species are columns), a phylogenetic
distance matrix, and a desired method of abundance-weighting, will calculate MPD.

Usage

modified.mpd(samp, dis, abundance.weighted = FALSE)

Arguments

samp A picante-style community data matrix with sites as rows, and species as columns

dis Phylogenetic distance matrix
abundance.weighted

One of either "FALSE", "interspecific", "intraspecific", or "complete"

Details

To be explained in forthcoming publication

Value

A vector of MPD values, calculated according to the abudance-weighted method specified

References

Miller, Trisos and Farine.
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Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

dists <- cophenetic(tree)

results <- modified.mpd(cdm, dists, abundance.weighted = "interspecific")

phyloNtraits Generate phylogeny with trait data

Description

Given a desired number of species, will generate a tree with that many species and associated trait
data for two traits following a Brownian motion evolution model.

Usage

phyloNtraits(no.species)

Arguments

no.species Desired number of species in resulting phylogeny

Details

Uses geiger’s sim.bdtree function with b=0.1 and d=0. Evolves two traits up phylogeny with Brow-
nian motion evolution process. Sigma from the Brownian motion process is set to 0.1 and cannot
currently be manipulated without modifying and redefining the function itself.

Value

A list where the first object is a phylogeny with the desired number of species and the second object
is a matrix of trait values for those species.

References

Miller, Trisos and Farine.

Examples

library(geiger)

results <- phyloNtraits(50)
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psc.corr Calculate corrected PSC

Description

Given a phylo object and a picante-style community data matrix (sites are rows, species are columns),
calculated corrected phylogenetic species clustering

Usage

psc.corr(samp, tree)

Arguments

tree Phylo object

samp A picante-style community data matrix with sites as rows, and species as columns

Details

Returns the inverse of psc as defined in picante

Value

A data frame of correctly calculated PSC values, with associated species richness and name of all
communities in input cdm

References

Helmus et al 2007

Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

results <- psc.corr(samp=cdm, tree=tree)
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quadratContents Identify individuals contained within a quadrat

Description

Given a spatially explicit data frame of individual locations in a simulated arena, and the bounds of
a series of quadrats, identifies the contents of each quadrat.

Usage

quadratContents(positions, quadrat_bounds)

Arguments

positions Data frame of three columns: "individuals", "X", and "Y"

quadrat_bounds Matrix of X Y coordinates of quadrats

Details

Takes a data frame like that returned from locationSampler(), and a matrix like that returned from
quadratPlacer(), and returns the resulting community data matrix such as might be generated by
someone surveying a forest plot. There is a check added so that if any quadrat has < 2 species the
function returns FALSE. There is probably a better way to do this, but this works.

Value

A matrix with species as rows and quadrats as columns. Quadrats are unnamed

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(colorRamps)

temp <- phyloNtraits(50)

scaled <- scaler(temp[[2]], min.arena=0, max.arena=300)

phydistmatrix <- cophenetic(temp[[1]])

#define a color for each species
cols <- blue2green2red(nrow(phydistmatrix))

positions <- locationSampler(phyloNtraits.results=temp, scaled.results=scaled,
mean.log.individuals=4, length.parameter=5000, sd.parameter=50)

#plot the arena. dont close the window
plot(positions$X, positions$Y, pch=20, cex=0.5, xlim=c(0,300), ylim=c(0,300),
col=cols[positions$individuals])
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bounds <- quadratPlacer(no.quadrats=15, x.max=300, y.max=300, quadrat_size=50)

quadratPlotter(bounds)

#this community data matrix is not in picante format, use t()
temp.cdm <- quadratContents(positions, bounds)

quadratPlacer Randomly place quadrats in arena

Description

Given a desired number of quadrats, the arena size, and the quadrat size, will attempt to place
quadrats down in a non-overlapping fashion

Usage

quadratPlacer(no.quadrats, x.max, y.max, quadrat_size)

Arguments

no.quadrats Number of quadrats to place

x.max Maximum x bounds of arena

y.max Maximum y bounds of arena

quadrat_size Size of desired quadrat

Details

Places quadrats down in non-overlapping fashion according to parameters supplied. Will run indef-
initely if unacceptable parameters are supplied, but will not crash.

Value

A matrix with the X & Y coordinates of the four corners of each quadrat placed

References

Miller, Trisos and Farine.

Examples

bounds <- quadratPlacer(no.quadrats=15, x.max=300, y.max=300, quadrat_size=50)
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quadratPlotter Plot simulated quadrats in arena

Description

Given a matrix of quadrat bounds, plots the quadrats in an already plotted, simulated arena

Usage

quadratPlotter(quadrat_bounds)

Arguments

quadrat_bounds Matrix of quadrat bounds

Details

Plots quadrats as defined by the supplied matrix, e.g. a call to quadratPlacer An active plot with the
simulated arena needs to already be open, see example.

Value

Plotted quadrats

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(colorRamps)

temp <- phyloNtraits(50)

scaled <- scaler(temp[[2]], min.arena=0, max.arena=300)

phydistmatrix <- cophenetic(temp[[1]])

#define a color for each species
cols <- blue2green2red(nrow(phydistmatrix))

positions <- locationSampler(phyloNtraits.results=temp, scaled.results=scaled,
mean.log.individuals=4, length.parameter=5000, sd.parameter=50)

#plot the arena. dont close the window
plot(positions$X, positions$Y, pch=20, cex=0.5, xlim=c(0,300), ylim=c(0,300),
col=cols[positions$individuals])

bounds <- quadratPlacer(no.quadrats=15, x.max=300, y.max=300, quadrat_size=50)

quadratPlotter(bounds)
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randomArena Generate a random spatial arena

Description

Given a phylogenetic tree, the desired dimensions of the arena, and the mean log of the regional
abundance pool, randomly generates spatial arena.

Usage

randomArena(tree, x.min, x.max, y.min, y.max, mean.log.individuals)

Arguments

tree Phylo object

x.min The x minimum of the output arena, e.g. 0

x.max The x maximum of the output arena

y.min The y minimum of the output arena, e.g. 0

y.max The y maximum of the output arena
mean.log.individuals

Mean of the log-normal distribution

Details

This function generates a log-normal regional abundance distribution and assigns those abundances
to random species. It then draws from this regional abundance distribution to settle individuals at
random in the landscape.

Value

A list of 4 elements: the mean of the genetic distance matrix of the input phylogeny, the regional
abundance vector (where each element is a species name, repeated as many times as is present in
pool), the spatial arena, and the dimensions of that arena.

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(colorRamps)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

#generate the random arena
arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, y.max=300, mean.log.individuals=2)

#calculate genetic distances
gen.dists <- cophenetic(tree)
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#define species colors for plotting
cols <- blue2green2red(nrow(gen.dists))

#plot the arena
plot(arena$arena$X, arena$arena$Y, pch=20, cex=0.5, xlim=c(0,300), ylim=c(0,300),
col=cols[arena$arena$individuals])

randomLooper Test metrics across multiple random arenas

Description

Large, somewhat sloppy function tying many previous functions together into a single simulator
function that generates random spatial arenas, samples quadrats, generates null expectations, tests
for significance of observed metrics, and summarizes results as a matrix of type I and type II error
rates.

Usage

randomLooper(no.species, x.min, x.max, y.min, y.max, no.quadrats, quadrat_size,
mean.log.individuals, null.method, concatBYrichness = TRUE,
no.randomizations, expectation, wrong, no.metrics, iterations, temp.file,
output.file)

Arguments

no.species Number of species in each arena
x.min Minimum X coordinate of arena, e.g. 0
x.max Maximum X coordinate of arena
y.min Minimum Y coordinate of arena, e.g. 0
y.max Maximum Y coordinate of arena
no.quadrats Number of quadrats to sample
quadrat_size Size of an individual quadrat
mean.log.individuals

Mean log of abundance vector from which species abundances will be drawn
null.method A picante-style null, e.g. "richness" or "frequency"
concatBYrichness

Whether to concatenate null results by the richness of the randomized quadrat
(the default), or by the quadrat ID (traditional method)

no.randomizations

Number of iterations the function should run, i.e. the number of times the
orig.matrix will be shuffled and the metrics calculated on it

expectation Expected value: 0=not significant, 1=clustered, 2=overdispersed
wrong Value of a typeI error rate, e.g. 2 if expecting 1.
no.metrics Need to specify how many metrics are being tested
iterations Number of arenas to simulate and test
temp.file File name of output file where null metric values are saved to. Re-written each

iteration
output.file File name of results file



readIn 21

Details

Could easily modify this function to save more information than it currently does, though obviously
beware the additional space such an operation might require. A single null.csv file for 19 metrics by
1000 iterations is about ~50 megabytes. The results matrix is also written to csv in case the function
crashes part-way through.

Value

Two csvs and a matrix of results summarizing the type I and type II errors across all metrics and
spatial simulations. One csv is just a temporary file storing the null expectations, the other is a csv
of the same thing as the output matrix.

References

Miller, Trisos and Farine.

Examples

library(ape)
library(geiger)
library(colorRamps)
library(plyr)
library(picante)

randomLooper(no.species=50, x.min=0, x.max=300, y.min=0, y.max=300, no.quadrats=15,
quadrat_size=50, mean.log.individuals=3.2, null.method="richness",
concatBYrichness=TRUE, no.randomizations=2, expectation=0, wrong=1|2, no.metrics=19,
iterations=2, temp.file="deleteme.csv", output.file="random.csv")

readIn Batch read multiple csv files to list

Description

Read in all the files from a given directory and save each to a different element of a list.

Usage

readIn(path, row.names = TRUE)

Arguments

path The path of the directory containing the files to be read

row.names Do the files to be read in have row names? Default is yes. If not, set this
argument to FALSE.

Details

This function reads in all the files from a given directory and stores each as a separate element in
a list. The names of the original files do not matter, but the function assumes all to be comma-
delimited files with the row names stored in the first column and with each column having a name.
Can modify this in the future if others find it useful.
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Value

A list with each file stored as a separate element.

References

Miller, Trisos and Farine.

Examples

#path <- "/Users/eliotmiller/Desktop/delete"

#test <- readIn(path)

#output <- matrix(0, nrow=19, ncol=3)

#for(i in 1:length(test))
#{
# output <- output + test[[i]]
#}

#output <- t(output)

#ordr <- c("IAC","Haed","PD","PD_Cadotte","Hed","Eed","AW_MNTD","NAW_MNTD","PSC","PAE",
"Eaed","NAW_MPD","PSV","inter_MPD","PSE","intra_MPD","QE","complete_MPD","SimpsonsPhy")

#output <- output[,ordr]

#dimnames(output)[[2]] <- gsub("_", " ", dimnames(output)[[2]])

#quartz(height=6, width=12)

#par(mar=c(6.6,4.1,4.1,2.1))

#barplot(output, beside=TRUE, las=2, cex.names=1, col=c("red","gray","blue"),
xlab="Metric", ylab="Count")

#legend(x=65, y=85, c("Type I error","Type II error","Successful"), fill=c("red","gray","blue"))

regionalNull Regional null model

Description

Entirely vectorized null model that maintains species richness (approximately only during this phase
of the calculation, but we do so strictly later on), species occurrence frequency, and species abun-
dance distributions.

Usage

regionalNull(cdm, tree, regional.abundance)
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Arguments

cdm Picante-style community data matrix with communities/quadrats/plots/etc as rows
and species as columns

tree Ape-style phylogeny

regional.abundance

Vector of species names, where each species’ name is repeated the number of
times necessary to accomodate its abundance in the regional species pool

Details

Although not as fast as, e.g. randomizeMatrix, this functions does not contain any for loops and so
still runs decently fast. It works by drawing the total number of individuals observed in the input
plot from the regional abundance vector. Thus while a randomized quadrat will not necessarily
have the same number of species as the observed quadrat, over many iterations it will likely be
sampled. We can then concatenate the results by richness at the end which will only compare
observed values to random quadrats of the same richness. As an example, an observed quadrat
might have two individuals of speciesA and two of speciesB. If the regional abundance vector is
c("spA","spA","spA","spA","spB","spB","spB","spC"), and we draw four individuals, it would be
possible to draw 1, 2, or 3 species, but in general, two species would be seen in the randomized
quadrats.

Value

A matrix with all species in the input tree in phylogenetic order, and the same number of randomized
quadrats as used in the input community data matrix

References

Miller, Trisos and Farine.

Examples

library(ape)
library(geiger)
library(plyr)
library(picante)

tree <- sim.bdtree(stop="taxa", n=50)

arena <- randomArena(tree, 0, 300, 0, 300, 3.2)

bounds <- quadratPlacer(15, 300, 300, 30)

temp.cdm <- quadratContents(arena$arena, bounds)

cdm <- t(temp.cdm)

regionalNull(cdm, tree, arena$regional.abundance)



24 settleSome

scaler Scale output of phyloNtraits to arena size

Description

Given a matrix of two traits, and the minimum and maximum extent of the desired arena, will return
a data frame of species’ traits scaled to the new arena size.

Usage

scaler(input.traits, min.arena, max.arena)

Arguments

input.traits Second element of the results of a call to phyloNtraits()

min.arena Minimum size of arena, e.g. 0

max.arena Maximum size of arena

Details

Scales a matrix of species’ traits to a desired mininimum-maximum range. Intended for use in a
spatially explicit scenario with two traits, but could easily be co-opted.

Value

A scaled and named dataframe of species traits

References

Miller, Trisos and Farine.

Examples

library(geiger)

results <- phyloNtraits(50)

scaled <- scaler(results[[2]], min.arena=0, max.arena=300)

settleSome Randomly settle individuals in a spatial arena

Description

Given output from the killSome function, randomly settles individuals in the arena.

Usage

settleSome(killSomeOutput)
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Arguments

killSomeOutput Output from the killSome function

Details

This function uses the number killed element of the killSome output to randomly draw from the
regional abundance vector, then settles the individuals at random in the arena.

Value

A list of 4 elements: the average relatedness in the geographic neighbordhood of consideration
(passed directly from the killSome output, not re-calculated here), the regional abundance vector,
the new spatial arena, and the dimensions of that arena.

References

Miller, Trisos and Farine.

Examples

library(geiger)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

#create a random arena
arena <- randomArena(tree, x.min=0, x.max=300, y.min=0, y.max=300, mean.log.individuals=2)

#remove some of the most closely related individuals
new.arena <- killSome(tree, arenaOutput=arena, max.distance=50, percent.killed=0.2)

dim(arena$arena)
dim(arena$new.arena)

#now settle some indiviudals

newer.arena <- settleSome(new.arena)

dim(new.arena$arena)
dim(newer.arena$arena)

sigTest Test significance of observed metrics

Description

Given a table of results, where the expected confidence intervals are bound to the rows of observed
scores, and the name of the metric of interest, returns a vector of 0, 1 and 2, where 0=not significant,
1=clustered, and 2=overdispersed.

Usage

sigTest(results.table, observed)
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Arguments

results.table Data frame of observed metrics with expected CIs bound in. See example

observed Name of metric of interest

Details

The column names need to be fairly carefully labeled, so follow convention.

Value

A vector of 0s 1s and 2s, corresponding to not significant, clustered and overdispersed.

References

Miller, Trisos and Farine.

Examples

library(plyr)
library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

system.time(allMetricsNull(tree=tree, orig.matrix=cdm, null.method="richness",
no.randomizations=10, temp.file="output.csv"))

possibilities <- read.csv("output.csv")

#call the summaries function from within a ddply statement
expectations <- ddply(possibilities, .(richness), summaries)

#calculate the observed metrics
observed <- allMetrics(tree, cdm)

#important merge command, confirm it works
results <- merge(observed, expectations, sort=FALSE)

oneMetric <- sigTest(results, "PSV")

#example of how to loop it over a table of results
metric.names <- names(observed)[3:21]

sig.results <- list()

for(i in 1:length(metric.names))
{
sig.results[[i]] <- sigTest(results, metric.names[i])
}

sig.results <- as.data.frame(sig.results)
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names(sig.results) <- metric.names

simulateComm Generate a simulated community data matrix

Description

Given a phylo object, desired min and max species richnesses, and a vector of potential species
abundances, will generate a community data matrix with these characteristics.

Usage

simulateComm(tree, min.rich, max.rich, abundances)

Arguments

tree Phylo object

min.rich Minimum richness of the resulting cdm

max.rich Maximum richness of the resulting cdm

abundances A vector of potential abundances, e.g. a log-normal distribution

Details

There is currently no implementation to control the frequency with which a given species is selected.

Value

A community data matrix (a data frame) with species as columns and sites as rows.

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)
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singleMetric Calculate specific phylogenetic community structure metric

Description

Given a phylo object, and a picante-style community data matrix (sites are rows, species are columns),
calculate a phylogenetic community structure metric of interest.

Usage

singleMetric(tree, picante_cdm, metric)

Arguments

tree Phylo object

picante_cdm A picante-style community data matrix with sites as rows, and species as columns

metric A phylogenetic community structure metric of interest. Options are: "mpd"
(non-abundance weighted MPD), "interspecific" (interspecific abundance-weighted
MPD), "intraspecific", "complete", "mntd" (non-abundance weighted MNTD),
"aw.mntd", "psv", "psc", "pse", "pae", "iac", "haed", "eaed", "eed", "hed", "simp-
son", "pd", "pd.c" (Cadotte’s re-defined PD), and "qe".

Details

Useful wrapper function to calculate a number of phylogenetic community structure metrics from
different packages.

Value

A data frame with the calculated metric and the associated species richness of all input "communi-
ties".

References

Miller, Trisos and Farine.

Examples

library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

results <- singleMetric(tree, cdm, "mpd")
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singleMetricNull Generate null expectations for a single community structure metric

Description

Given a phylo object, a picante-style community data matrix (sites are rows, species are columns),
a desired null method (any of picante or also 2x, 3x, 1s, & 2s of spacodiR), a desired number
of randomizations, and an output file name, will shuffle matrix according to null method, then
calculate the desired community structure metric as defined in the metric argument, then save each
iteration’s worth of shufffled values to a csv file for later import. Also calculates the richness of the
corresponding community.

Usage

singleMetricNull(tree, orig.matrix, metric, null.method, regional.abundance,
no.randomizations, temp.file)

Arguments

tree Phylo object

orig.matrix A picante-style community data matrix with sites as rows, and species as columns

metric The community structure metric of choice. Options are as in singleMetric

null.method A picante-style null, e.g. "richness" or "frequency", or "2x", "3x" "1s" or "2s",
which will call spacodiR. It can also now accomodate calls to "regionalNull"

regional.abundance

Optional vector of species names repeated the number of times present in the
regional abundance pool. For use with regionalNull.

no.randomizations

The desired number of no.randomizations the function will run, i.e. the number
of times orig.matrix will be shuffled and the metric calculated on it

temp.file The desired name of the output csv file

Details

This runs much faster than trying to do this in memory in R. I will upload some of those type of
functions in the near future anyhow. If you call null metrics 2x, 3x, 1s or 2s, it will call spacodiR
for the resampling. Note that if you have many quadrats (sites, communities, etc., i.e. rows in your
community data matrix), some with repeated species richness, this may be more efficient than using
a function like ses.pd() or ses.mpd() from picante (though it is almost entirely dependent on code
from that package).

Value

A csv file with each column equal to the value of a given metric for the shuffled community in
question (a row in the input matrix).

References

Miller, Trisos and Farine.
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Examples

library(geiger)
library(picante)
library(spacodiR)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

system.time(singleMetricNull(tree=tree, orig.matrix=cdm, metric="mpd",
null.method="richness", no.randomizations=10, temp.file="output.csv"))

summaries Return average and CIs of input vector

Description

Given a vector of numbers, such as a column from a data frame of null expectations, returns the
average and 95 percent CIs of that vector

Usage

summaries(null.output)

Arguments

null.output Vector of numbers

Details

Took out the call to iterations, but if you want that back it’s just the length of v. Note that it’s very
important when you run this to have your null output be a file that has one column called richness,
and all others be various metrics you want confidence intervals returned for. Note also that this
function must be used from within a ddply statement in order to work as desired, see example.

Value

temp

References

Miller, Trisos and Farine.
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Examples

library(plyr)
library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

system.time(allMetricsNull(tree=tree, orig.matrix=cdm, null.method="richness",
no.randomizations=10, temp.file="output.csv"))

possibilities <- read.csv("output.csv")

#call the summaries function from within a ddply statement
expectations <- ddply(possibilities, .(richness), summaries)

typeI Test for type I errors

Description

Sloppy function that needs work. Intended to test for type I and II errors of results of testing of
various metrics against a single spatial simulations.

Usage

typeI(significance.results, expectation, wrong)

Arguments

significance.results

Data frame of significance results from call to sigTest()

expectation Expected value: 0=not significant, 1=clustered, 2=overdispersed

wrong Value of a typeI error rate, e.g. 2 if expecting 1.

Details

Note that IAC is thought to detect clustering if observed is greater than upper CIs, so we have
to explicitly flip our expectations in the function. See example below for how to test for type I
error rates if expecting random community structure. Note that it is possible to have a type I error
irrespective of power of test, so a row can have more than one 1 in it.

Value

Matrix with rows corresponding to metrics, and columns for type I errors, "NoSignal" (i.e. < 50
community data matrix exhibiting expected pattern), and "Good" (i.e. > 50 pattern). Values in table
are 0s and 1s, where 1 corresponds to a confirmation of the pattern in question.
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References

Miller, Trisos and Farine.

Examples

library(plyr)
library(geiger)
library(picante)

#simulate tree with birth-death process
tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50)

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1))

cdm <- simulateComm(tree, min.rich=10, max.rich=25, abundances=sim.abundances)

system.time(allMetricsNull(tree=tree, orig.matrix=cdm, null.method="richness",
no.randomizations=10, temp.file="output.csv"))

possibilities <- read.csv("output.csv")

#call the summaries function from within a ddply statement
expectations <- ddply(possibilities, .(richness), summaries)

#calculate the observed metrics
observed <- allMetrics(tree, cdm)

#important merge command, confirm it works
results <- merge(observed, expectations, sort=FALSE)

oneMetric <- sigTest(results, "PSV")

#example of how to loop it over a table of results
metric.names <- names(observed)[3:21]

sig.results <- list()

for(i in 1:length(metric.names))
{
sig.results[[i]] <- sigTest(results, metric.names[i])
}

sig.results <- as.data.frame(sig.results)

names(sig.results) <- metric.names

error.summ <- typeI(sig.results, expectation=1, wrong=2)

#if you are expecting 0s (random structure), then use: expectation=0, wrong=1|2
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ABSTRACT 

Aim: The genera Hakea and Grevillea, members of Hakeinae, account for much floral 

diversity in Australia. We reconstructed the phylogenetic history of Hakeinae, and tested 

the prediction that this impressive radiation was driven by shifts to novel arid climates 

and shorter growth forms. We also examined to what extent Hakeinae assemblages 

appear shaped by phylogenetic niche conservatism.  

Location: Australia. 

Methods: We sequenced 148 species of Hakea and Grevillea (and a wide breadth of 

outgroups) to create a phylogeny to test our predictions. We used this molecular tree and 

new methods described here to create complete phylogenies that included all 517 



Australian species. We quantified range sizes, heights, diversification rates, climate 

niches, and phylogenetic community structure, and compared the interrelationships 

among these variables.  

Results: We show that Hakea is nested within Grevillea. While the entire clade traces its 

origins to ca. 45 mya, many of these species appear to have originated in the last 5 mya. 

This rapid diversification was not driven by a shift out of rainforests, nor by a shift to 

smaller-stature plants, nor by species with intermediate ranges. Phylogenetic 

relationships among co-occurring Hakeinae species share some characteristics with the 

previously studied bird family Meliphagidae, in that Hakeinae assemblages are more 

closely related away from the inferred ancestral climate state. 

Main conclusions: Hakeinae diversification appears to have a geographic signal, and may 

have been driven by ongoing nutrient depletion from Australian soils, with concomitant 

radiation into specialized edaphic zones; the highest rates of radiation are seen in the 

most recently geologically active region of southeast Australia, where the weatherization 

process is more recent than in southwest Australia. Total species richness is highest in 

southwest Australia. The clade may trace its origins to open, oligotrophic habitats in that 

part of the continent. Hakeinae phylogenetic community structure bears a strong signal of 

localized radiations, particularly in temperate Australia. 

 

INTRODUCTION 

Two related iconic Australian genera, Hakea and Grevillea, comprise a notable portion of 

floral diversity of the continent (517 species total). Fossil evidence points to recent rapid 

radiation in the group. This diversification has been concomitant with radical shifts in 



Australian climate. What was the relationship between this dramatic diversification and 

aridification? Where, geographically and climatically, did the Hakeinae originate? What 

biogeographic patterns exist, and what do they tell us about drivers of extant Australian 

biodiversity? Finally, is there any evidence that diversification rates in the group are 

associated with shifts to arid habitats or smaller-stature plants? 

Species of Hakea and Grevillea, along with six additional species in the genera 

Opisthiolepis, Buckinghamia, and Finschia, form the almost entirely Australian subtribe 

Hakeinae (Weston & Barker 2006; Sauquet et al. 2009). For brevity, hereafter Hakeinae 

refers to the clade excluding Opisthiolepis and Buckinghamia. Hakeinae species exhibit 

phenomenal diversity, often within a site; they vary from stunted, clambering heath plants 

to rainforest trees. Many species within the group are bird-pollinated (Ford et al. 1979), 

but they span a range of pollinator strategies (Mast et al. 2012). As members of the 

family Proteaceae, Hakeinae species contribute a considerable component of the 

worldwide leaf economics spectrum; without Proteaceae, worldwide plant trait diversity 

would be notably shifted towards traits characteristic of faster growth (Cornwell et al. 

2014).  

 The Proteaceae are an ancient Gondwanan group, with a long-history in the fossil 

record (reviewed in Carpenter 2012), and a crown age of 126-85 mya (APG 2003). While 

most modern Australian genera (notable exceptions include Hakea and Grevillea) contain 

few species and are restricted to regions of high precipitation (Johnson & Briggs 1975), 

this was not always the case. The palynological record and macrofossils of leaf (Vadala 

& Greenwood 2001; Carpenter 2012) and reproductive structures (Dettmann & Clifford 

2005) mutually support the former widespread Australian distribution of Proteaceae. For 



instance, plants similar to Athertonia and Megahertzia, now monotypic genera of trees 

restricted to high elevation rainforest, ranged throughout inland New South Wales and 

southern Victoria 30-20 mya (Vadala & Greenwood 2001). The fossil record indicates 

that the family was diverse (more so than today) in form and likely formed an important 

component of the flora by ca. 60 mya (Dettmann & Jarzen 1998; Carpenter 2012). 

Despite this fairly robust historical record of Proteaceae, Hakeinae fossil evidence is, 

given its current extent, exceedingly sparse. Fossil fruits of a taxon that looks like extant 

members of the Grevillea Hilliana and Heliosperma groups were uncovered from 

sediments estimated to be 30-20 mya in Victoria (Dettmann & Clifford 2005), and pollen 

similar to some species of Grevillea occurs in sediments from ca. 72 mya, also from 

Victoria (Dettmann & Jarzen 1998). More recent fossils (< 4 mya) are known (Pole & 

Bowman 1996; Jordan et al. 1998); unless the fossil record is remarkably biased, a 

diverse Hakeinae appears to be a recent phenomenon. 

 Phylogenetically diverse assemblages of Proteaceae began disappearing in 

conjunction with dramatic climate changes on the continent. Australia completed its high-

latitude separation from Antarctica and the remnants of Gondwana in the early Cenozoic 

and began moving rapidly northwards ca. 55 mya (McLoughlin 2001; McGowran et al. 

2004; Vasconcelos et al. 2008). As the continent has drifted, it has experienced extensive 

aridification that intensified 15-5 mya and continues to the present (Truswell 1993; 

Greenwood 1996; Hill et al. 1999; Greenwood et al. 2003; Greenwood & Huber 2011; 

Herold et al. 2011; Huber & Goldner 2012). Unlike the clear signal of increasing aridity 

during this time, temperature in Australia has fluctuated as the continent has shifted 

towards the equator coincident with overall global cooling (Greenwood et al. 2003). 



While the continent as a whole has experienced extensive aridification, the process has 

not been spatiotemporally even. For instance, much of eastern Australia still receives 

substantial precipitation, and cool-temperate rainforests dominated by Nothofagus, 

Araucariaceae, and Podocarpaceae, among others, existed in regions of southeastern 

continental Australia until at least the late Miocene 11-5 mya (Hill 2004). In contrast, 

evidence of xeromorphic characters appeared earlier in the southwest than the southeast, 

and fossil floras from the early Eocene to mid-Pliocene in southwest and central Australia 

have been interpreted as coming from a vegetation mosaic, e.g. a riparian forest zone 

with adjacent sclerophyllous shrublands (Christophel et al. 1992; Dodson & Macphail 

2004; Carpenter et al. 2014). Do the Hakeinae trace their origins to these early 

heterogeneous habitats? 

Many species of Proteaceae, and Hakeinae in particular, present extreme 

examples of low leaf nitrogen and specific leaf area (SLA, leaf area to dry mass), 

hallmarks of scleromorphy (Hill 1998). However, such species also tend to live in arid 

areas, and a number of traits characteristic of xeromorphic (dry-adapted) vegetation are 

also exhibited by scleromorphic (low nutrient-adapted) species, which has confounded 

the study of these traits’ origins (Hill 1998; Fonseca et al. 2000). The evolution of 

scleromorphy in the Proteaceae specifically may have been driven by low nutrient levels, 

and/or high solar radiation (Jordan et al. 2005), and/or elevated atmospheric CO2 (Jordan 

et al. 1998). Regardless of the reason, given the origins of these traits prior to the 

aridification of Australia (Dettmann & Jarzen 1998), and the later, seeming exaptation of 

some of these same traits to xeric conditions, it is thought that early scleromorphic traits 

may have subsequently facilitated the success of lineages like the Hakeinae in modern 



Australia (Jordan et al. 2008; Crisp & Cook 2013). Was scleromorphy a key trait that 

drove modern Hakeinae diversity? 

 Australian soils are low in nutrients important to plant growth, particularly 

phosphorus, and have been this way for a long time (Orians & Milewski 2007; 

Vasconcelos et al. 2008). The continent receives little airborne nutrient input, and has 

been largely geologically stable throughout its independent history (Orians & Milewski 

2007). Exceptions to this stability did occur. The most notable geological feature in 

modern Australia is the Great Dividing Range, a series of low ranges and isolated 

mountaintops along the eastern and southeastern margin of the continent. While much of 

the range was likely in place before the Cenozoic, ca. 66 mya (Young & McDougall 

1993), uplift, warping and subsidence continue today. 

There has also been considerable volcanism in these areas, beginning ca. 70 mya 

in the central eastern ranges. The center of volcanism has “shifted” as the continent 

drifted northwards, arriving in central Victoria ca. 6 mya (Vasconcelos et al. 2008). This 

volcanism, basin formation, erosion of ranges and shifting of river valleys in this 

southeast region have been associated with a complex topographical and edaphic history 

(Holdgate et al. 2008). Until at least the late Miocene, these ranges were largely covered 

by rainforests, but as the continent has continued to dry and cool, most have been 

replaced by sclerophyll forest (Hill 2004), a process likely expedited by nutrient 

depletion (Beadle 1966).  

Another notable biogeographic barrier is the Nullarbor Plain, which separates 

southeast from southwest Australia. This large, semi-circular area of limestone initially 

formed by incursion from the Great Australian Bight (Frakes 1999). While it appears to 



have been in place as a marine barrier by 30 mya (Frakes 1999), its uplift ca. 14 mya has 

been associated with vicariance events in a number of plant taxa (Crisp & Cook 2007). 

The degree to which the Nullarbor has shaped Australian floras has been a long-standing 

matter of discussion (Hopper & Gioia 2004), and appears to vary between taxa (Crisp et 

al. 2004). It has never been adequately addressed in the Hakeinae, but the existence of 

both endemic and shared taxonomic groups between the southwest and southeast has 

been noted (Barker et al. 1999; Makinson 2000). What role have these biogeographic 

barriers played in Hakeinae diversification? 

 Range size could serve as a proxy for the recalcitrant idiosyncrasies of range 

contraction and expansion that ultimately drive diversification. For instance, since large-

ranged species should only infrequently be subject to complete population splitting, and 

small-ranged species may be at increased risk of extinction, species with intermediate 

range sizes may show the fastest rates of diversification (Rosenzweig 1995). Do 

Hakeinae with intermediate ranges diversify at a faster rate than others? In Appendix S1, 

we also ask to what degree Hakeinae obey Rapoport’s rule (Stevens 1989). 

 There is strong evidence that phylogenetic niche conservatism can shape the 

geographical distribution of lineages within a large continental radiation. This can be 

detected in the phylogenetic community structure of co-occurring species. Such a process 

is predicted to leave a signature of increasing phylogenetic clustering away from the 

clade’s climate of origin. Recent support for this was found in the Australian 

Meliphagidae (Miller et al. 2013), a speciose group of birds whose diversification was 

contemporaneous with that of the Hakeinae. Do the same principles apply to the 

Hakeinae? 



 The apparent rapid diversification and ecological success of the Hakeinae are a 

matter of great biological interest. Based on climatic and geological history and previous 

suggestions (e.g., Jordan et al. 2008), we hypothesize that the proto-Hakeinae (Johnson & 

Briggs 1975) were sclerophyllous, rainforest trees. These proto-Hakeinae would have 

grown as canopy or sub-canopy trees in oligotrophic soils on the margins of rainforests, 

or perhaps in light gaps within such forests. As Australia began drying out, the proto-

Hakeinae diversified into a number of lineages that radiated throughout the continent. We 

hypothesize that the geographic heterogeneity of the aridification process, in combination 

with edaphic specialization, drove the apparent rapid diversification of the Hakeinae. In 

accordance with this hypothesis, we predict that speciation rates in the clade are 

negatively correlated with height, which we use as a rough proxy for scleromorphy. We 

also predict that diversification rates are negatively correlated with precipitation and, to a 

lesser extent, temperature. We emphasize that diversification is fundamentally a process 

of populations splitting and not interbreeding or going extinct if and when they come 

back into contact. Thus, in the Hakeinae, we predict that diversification rates show a 

unimodal response with geographic range size, with the highest rates exhibited by 

intermediate ranged species. Finally, we predict that Hakeinae assemblages are 

increasingly related along gradients of decreasing precipitation and, to a lesser extent, 

temperature.  

 

METHODS 

Geographical data assembly 



We initially obtained 146,538 collections from the Atlas of Living Australia (ALA, 

http://www.ala.org.au/). These represented 737 unique, matched species names. This is 

fewer than the 3,090 unique names in the ALA system before internal cleaning, but it is 

more than modern estimates (e.g., 511, Weston & Barker 2006). First, we matched all 

unique names to their modern interpretation (excluding three and five extralimital 

Finschia and Grevillea species, respectively). After this, and exclusion of points 

identified by ALA as climatic outliers (using a reverse jackknife procedure, Chapman 

2005), the dataset consisted of 126,936 collections across 517 species. Finally, we went 

through all collections, species-by-species in a geographic context, bringing all taxonomy 

and distribution up to treatment in the Flora of Australia (FOA) (Barker et al. 1999; 

Makinson 2000), or in some cases more recent treatments (e.g., Downing et al. 2004). 

This included manually adding in collections excluded as climatic outliers. We used 

digitally available information to decide whether to keep points outside the accepted 

range. If the collection was modern and had been identified by a recognized authority, we 

generally kept it. Other points were removed, either because they were demonstrably 

badly georeferenced, or because they were georeferenced to general locality. Our final 

dataset consisted of 125,696 collections across 517 species (Fig. S4.1).  

 

Climate data assembly 

We used the WorldClim (http://www.worldclim.org/bioclim) climate layers, with the 

addition of a moisture index (MI) layer (Willmott & Feddema 1992), derived using a 

potential evapotranspiration layer from Australia’s Bureau of Meteorology. We focus on 

mean annual temperature (MAT) and mean annual precipitation (MAP), although we also 



use BIO4 (temperature seasonality) and BIO15 (precipitation seasonality, Appendix S1). 

We summarized climate layers in grid cells of 100 x 100 km.  

 

Plant height data assembly 

We obtained height data from Makinson (2000) and Barker et al. (1999). We always used 

the tallest value when ranges were given or subspecies were listed separately. Some 

species have been described since the publication of the flora. For these we used the 

maximum height recorded on a specimen label (checked through ALA).  

 

Community data matrix assembly and manipulation 

For each grid cell described above, we summarized the number of specimens per species 

to create a “community” data matrix (CDM). We used rarefaction in the R (R 

Development Core Team 2011) package vegan (Oksanen et al. 2013) to restrict our 

analyses to cells that were estimated to have had at least 70% of their constituent species 

sampled (Chao 1987), and from which at least two species had been collected from the 

cell.  

 

Molecular phylogeny assembly 

Our methods are detailed in Appendix S2. 

 

Complete phylogeny assembly 

All species of Hakeinae have been placed by experts in named, hierarchically clustered 

taxonomic groups (Barker et al. 1999; Makinson 2000). Since we were interested in 



exploring some questions best suited to complete phylogenies, we developed a method to 

add missing taxa into the molecular phylogeny. Existing methods (see Kuhn et al. 2011) 

differ primarily in how branch lengths are partitioned after adding taxa. An alternative is 

to consider the possible extremes of missing information; if results are consistent, they 

can be considered more strongly supported. With this in mind, one extreme to consider is 

that all missing taxa diverged from the stem-lineage of their taxonomic group. The 

opposite extreme is that all missing taxa diverged more recently than any of the 

sequenced species in their taxonomic group.  

 We wrote an R function 

(https://github.com/arborworkflows/aRbor/blob/master/R/randomlyAddTaxa.R) that, for 

each missing species A, finds a member of its taxonomic group, species B, that is in the 

tree. We used the function in three ways. With the “crown” option, species A was bound 

at a distance midway between the parent node to species B and the tips of the phylogeny 

(Fig. S4.2). With the “stem” option, if species B was sister to species C, both of which 

were in the same taxonomic group as species A, species A was bound at a distance 

midway between the parent and grandparent nodes of species B and C (Fig. S4.2). If 

there was no such species C, then species A was bound crownwards from B. This is 

necessary, as if species C belonged to another taxonomic group, binding A to its stem-

lineage would render clade (A,B) paraphyletic. Finally, with the “random” option, 

species A was bound randomly either crownwards or stemwards according to the rules 

above. 

 We generated 1,000 trees with each of these methods. For some of our analyses 

we used the entire set of trees and averaged results (see below). For diversification rate 



analyses we could not do this. Accordingly, we used TreeAnnotator (Appendix S2) to 

create maximum clade credibility (MCC) trees that maintained the target tree node 

heights. 

 

Ancestral state reconstruction and phyloclimatespace 

We reconstructed ancestral states using two methods for both the molecular tree and for 

the complete MCC tree obtained with the random method above (hereafter, we refer to 

this as the randomMCC tree, and the other two complete phylogenies as the stemMCC 

and crownMCC). First, for height and climatic niche, we calculated the maximum 

likelihood ancestral states using the R package phytools (Revell 2012). This method 

assumes a Brownian model of evolution, e.g., that climatic niches were not under 

selection during Hakeinae radiation. This assumption is likely incorrect. Thus, we also 

employed a Bayesian approach with geiger (Harmon et al. 2008) to derive ancestral 

climatic niches after placing priors on the root of the tree. These priors (MAP 1250 ± 275 

SD mm/yr, MAT 19 ± 1.5 SD °C) are based on continent-wide estimates, as described in 

Miller et al. (2013). With this approach, we fit and compared three different models of 

climatic niche evolution, a Brownian and a directional trend model with priors on the root 

state, and a Brownian model without priors (Slater et al. 2012). Per model, we ran 107 

and 108 generations for the randomMCC and molecular tree, and sampled every 103 and 

104 generations, respectively. We discarded the first 10% of generations as burn-in. All 

runs achieved a root-state ESS of > 200. We compared the fit of these different models 

with the Akaike information criterion.  



 We explored Hakeinae radiation through climate using a phyloclimatespace 

approach (Miller et al. 2013), now available in phytools. We implemented this approach 

using both the molecular and randomMCC tree and both the results of the maximum 

likelihood ancestral state reconstructions and those of the best-fit Bayesian approaches.  

 

Evolution across geographic space 

We visualized Hakeinae radiation across the Australian continent with the program 

phylowood (Landis & Bedford 2014). To do so, we wrote an R package R2phylowood 

(https://github.com/eliotmiller/R2phylowood) that takes as input a Nexus file and 

species’ centroids of distribution, and generates the necessary phylowood inputs. The 

geographic positions of ancestral nodes are calculated by maximum likelihood ancestral 

reconstruction from extant centroids. While this is certainly a simplistic approach, and 

given both historical climate change and geographic shifts in Australia little should be 

made of the specific locations of these ancestral nodes, particularly the latitudinal 

positions, we suggest it is informative with respect to longitudinal spread of the clade.   

 To directly examine the influence of the Nullarbor Plain on Hakeinae 

diversification, we explicitly defined southwest and southeast endemic taxa as species 

that occurred South of Karratha, Western Australia and either West of 129° E or East of 

Port Augusta, South Australia, respectively. We then pruned the molecular and 

randomMCC trees to species endemic to these areas, and calculated the per-node 

proportion of descendant species from each region. Nodes with only southeast or 

southwest taxa descending from them were considered to define endemic clades. We then 



visualized the timing of diversification in these two regions by looking at endemic clade 

accumulation over time (i.e. node through time plots). 

 

Range size analyses 

We calculated range size as the number of 100 x 100 km grid cells a species occurs in. 

 

Phylogenetic community structure 

We used picante (Kembel et al. 2010) to calculate non-abundance-weighted mean 

pairwise phylogenetic distance (MPD) among constituent species in each grid cell. We 

did so using the molecular phylogeny and each of the three, entire sets (n = 1000) of 

complete trees (see Complete phylogeny assembly). We summarized the results from each 

of the complete trees by taking the mean of the per-grid MPD values. 

 

Diversification rate analyses 

We used the program BAMM (Rabosky 2014) to quantify rates of diversification in the 

Hakeinae, using the molecular tree and the three complete MCC trees. We ran these 

analyses for between 106 and 109 generations, sampling between every 103 and 5 x 104 

generations. For all four runs, the ESS exceeded 200, the recommended minimum for 

BAMM. We discarded the first 10% of generations as burn-in. For the molecular tree, we 

accounted for missing taxa by setting the global sampling fraction to 0.279, and we did 

not set clade-specific sampling fractions, since sampling was not taxonomically biased 

(chi-squared test, p=0.99).  



 We used the R package BAMMtools (Rabosky et al. 2014) to explore variation in 

diversification rates. BAMMtools provides lineage-specific speciation and extinction 

rates. For the four models (one from each of tree), we extracted the per-species average 

speciation rates, and identified the single best shift configuration. This summarizes the set 

of shifts in diversification rate across the phylogeny with the highest maximum a 

posteriori probability.  

 

Geographical scale statistical analyses 

To explore geographic variation and potential drivers of macroecological patterns, we 

summarized per-grid species richness, diversification rates (the mean of the constituent 

species’ per-species average speciation rates), median height, mean range size, and MPD. 

We derived linear models between these responses and potential climatic drivers: MAT, 

MAP, MI, and, for mean range size, also temperature and precipitation seasonality 

(Appendix S1). 

 To directly compare phylogenetic community structure patterns in the Hakeinae 

with those in the Meliphagidae, we used picante to calculate net-relatedness indices 

(NRI) using a null model that maintained per-grid species richness (104 randomizations 

of CDM). We then derived a per-grid index equal to the Hakeinae NRI score minus that 

of the Meliphagidae. Large values of this index correspond to grid cells where Hakeinae 

phylogenetic community structure is overdispersed relative to that of the Meliphagidae, 

while small values correspond to grid cells where the Hakeinae structure is clustered 

compared to the Meliphagidae.  

 



Species level statistical analyses 

We tested our prediction that increased diversification rates are associated with decreases 

in plant height and increases in temperature and precipitation with two approaches. First, 

we used ordinary least squares (OLS) regression to compare the per-species average 

speciation rates with the height and climate traits. Second, we fit phylogenetic 

generalized least squares (PGLS) regressions. To better interpret PGLS results, we 

simulated 1,000 sets of Brownian motion trait evolution on the four phylogenies, and 

compared the correlation coefficients of these simulated traits with those of the observed 

traits. 

 

RESULTS 

Molecular phylogeny 

We found that all species of Hakea, Finschia, and sequenced non-Australian Grevillea 

were nested within an expanded Grevillea (Fig. 1). Like recent previous studies, 

Buckinghamia and then Opisthiolepis were sister to Grevillea. In contrast to previous 

suppositions, rainforest taxa (e.g. G. baileyana, G. robusta) were not resolved as the 

basal-most taxa. Instead, these species were nested in an early diverging lineage. The 

species that was sister to all others was the 1-3 m tall shrub G. endlicheriana, currently 

found in a rather small area inland from Perth, Western Australia. Some members of the 

Hilliana group (e.g., G. glauca, G. myosodes), which has also been postulated to be a 

basal lineage within the genus (Makinson 2000), were indeed resolved to have originated 

at an early stage of the Grevillea radiation (see also Dettmann & Clifford 2005) 

 



Where, geographically and climatically, did the Hakeinae originate? 

Using maximum likelihood the ancestral precipitation regime of the Hakeinae was 

inferred to have been 550 mm/yr (95% CI = 137-2239) and 607 mm/yr (95% CI = 313-

1178) with the randomMCC and molecular tree, respectively. The ancestral MAT was 

inferred to have been 19.7 °C (95% CI = 10.2-29.2) and 19.6 °C (95% CI = 15.0-24.2). 

Of the Bayesian models for the molecular tree, the trend and Brownian motion model 

with priors on the root were the best-supported models for precipitation and temperature, 

respectively. The trend parameter was negative, indicating a progression towards lower 

precipitation regimes. For the randomMCC tree, the Brownian motion models with priors 

received the most support. With these models, the ancestral precipitation regime of the 

Hakeinae was inferred to have been 1284 mm/yr (95% CI = 1276-1292) and 1198 mm/yr 

(95% CI = 1133-1267) with the molecular and randomMCC trees, respectively. The 

ancestral MAT was inferred to have been 18.7 °C (95% CI = 18.7-18.8) and 19.9 °C 

(95% CI = 19.4-20.3). These are all still running. They proceed painfully slowly. These 

are initial results, and subject to change. The molecular tree is likely to have ESS way 

over 200, but it’s not clear this will happen with the randomMCC tree. 

 The phyloclimatespace (Fig. 2, S4.3) shows major diversification of the Hakeinae 

within cooler regions of Australia, including arid climates. Many species within these 

regions directly abut the limits of available climate space, i.e. they are “pushed” against 

the left margin of gray points. In contrast, only some lineages have transitioned to warm 

and wet regions, where few species are found today. The results of the Bayesian analysis 

did not change these conclusions (Fig. S4.4-5). 



 The proto-Hakeinae are inferred to have lived in inland southwest Australia, near 

present-day Yeo Lake (-28.09°, 124.43°). Almost identical results were returned with all 

four trees.  

 

What was the relationship between Hakeinae diversification and climate changes? 

The best model of diversification for the molecular tree showed speciation rates 

increasing at a decreasing rate towards the present, with no significant shifts in any 

clades’ diversification rate (Fig. S4.6). Where missing species were added had a large 

influence on inferred diversification rates through time. When added to their stem-

lineage, diversification rates were inferred to have declined towards the present, with a 

single burst in diversification ca. 22 mya (Fig. S4.7-8). When added to their crown-

lineage, rates were inferred to have increased rapidly until ca. 30 mya, and then declined 

until a recent burst in speciation (Fig. S4.9-10). When added randomly either stemwards 

or crownwards, the Hakeinae were inferred to have diversified at a similar rate to the 

results from the molecular tree, though there is a clear recent (ca. 3 mya) rise in rates 

(Fig. 3a, S4.11).  

 Despite these overall differences in diversification rates among the four trees, 

there were general similarities in which clades, if any, were identified as showing shifts 

in diversification rate. For brevity, we discuss only those from the randomMCC tree. The 

best model with this tree identified two clades that have diversified at an increased rate 

compared to the background rate of the Hakeinae. These two clades, composed largely of 

members of the Grevillea Linearifolia and Pteridifolia groups (Makinson 2000) (Fig. 3, 

S4.11, S4.21-25), account for much of the recent increase in speciation rates. 



 In an OLS framework, per-species, model-averaged speciation rates 

(randomMCC) were weakly negatively correlated with species’ MAT (R2 = 0.1, p < 

0.001). Speciation rates were weakly positively correlated with MAP (R2 = 0.1, p < 

0.001). These results were qualitatively identical irrespective of the tree used. Neither 

MAT nor MAP was correlated with speciation rate in a PGLS framework. Indeed, the 

observed traits showed less correlation with speciation rate than did many simulated traits 

(Fig. S4.12). There is little to support the hypothesis that Hakeinae diversification has 

been driven entirely (or even partly) by climate change. 

 

Are shifts to shorter plants associated with increased diversification rates? 

Modern Hakeinae tend to be shrub-sized (median = 2 m, mean = 3 m, SD = 3.25). The 

proto-Hakeinae were inferred to be somewhat taller, however (4.9 m and 5.4 m with the 

randomMCC and molecular tree, respectively), and some modern species are as tall as 40 

m. These tall species are concentrated in the mesic northeast of the continent (Fig. S4.13). 

Like climate change, there is little evidence that shifts to shorter statures drove 

Hakeinae diversification. In an OLS framework, per-species, model-averaged speciation 

rates were very weakly negatively correlated with height (R2 = 0.02, p = 0.0005). These 

were not at all correlated in a PGLS framework (Fig. S4.12).  

 

What was the geographic pattern of Hakeinae diversification? 

We present linear models between possible environmental drivers and grid-cell averaged 

species richness, height, and diversification rates in Appendix S3. 



In contrast to the weakly supported climatic and height correlates (preceeding two 

sections), there appears to be a clear geographic pattern to diversification rates. 

Specifically, when the molecular, randomMCC or crownMCC trees are used (Fig. 4, 

S4.14-15), rapid rates of speciation are concentrated in and around the Great Dividing 

Range, particularly the recently geologically active South. When the stemMCC tree is 

used, rapid diversification was inferred to have occurred in the northwest of the continent 

(Fig. S4.16), but note the unusual tree shape produced when binding many missing 

species stemwards (Fig. S4.8). The rapid diversification rates seen in the southeast are a 

product of multiple, disparate Hakeinae lineages co-occurring there. Animated 

reconstruction of the geographic radiation shows early and continued diversification 

within the southwest, with subsequent invasion of eastern Australia by some lineages, 

and rapid radiation within the southeast in recent times (i.e. < 5mya, Appendix S5). 

With respect to the Nullarbor Plain, endemic southwest clades trace their origins 

to 34-28 mya (Fig. S4.17-18). Endemic, extant southeast clades first arose 12-11 mya. 

They quickly accumulated species, suggesting a possible role for the Nullarbor at this 

time. That said, some lineages may have “crossed” the Nullarbor as recently as 8 mya, 

perhaps via regions North of the Plain.  

 

What is the relationship between diversification and range sizes in the Hakeinae? 

Speciation rate was weakly negatively correlated with range size (R2 = 0.05, p < 0.001), 

and fitting the predicted quadratic relationship was not able to explain notably more of 

the variation in speciation rate. 

 



Does phylogenetic niche conservatism shape Hakeinae geographical distribution? 

MPD was weakly positively correlated with MAT (randomMCC, R2 = 0.08, p < 0.001, 

Fig. S4.19) and negatively correlated with MAP (R2 = 0.02, p = 0.0008, Fig. S4.20) and 

MI (R2 = 0.05, p < 0.001). MPD showed a unimodal response to temperature; the most 

overdispersed grid cells occurred around the ancestral temperature regime of ca. 20 °C. 

These results were qualitatively identical irrespective of the tree used. Our purpose is to 

highlight the lack of explanatory power of these models. We therefore do not account for 

spatial autocorrelation, which would likely change the significance of these weak but 

nominally significant relationships. 

Hakeinae phylogenetic community structure differed from that of the 

Meliphagidae. In particular, large parts of the interior were phylogenetically 

overdispersed relative to the Meliphagidae, while northern Australia and particularly the 

southwest and southeast were phylogenetically clustered relative to the Meliphagidae 

(Fig. 5).  

 

DISCUSSION 

The subtribe Hakeinae includes some of Australia’s most well known plants, species of 

Hakea and Grevillea, and it comprises a notable portion of floral diversity on the 

continent. Based on fossil evidence, its successful spread through the landscape has been 

a recent phenomenon. Presumably, its diversification into 525 extant species, 517 of 

which are Australian, also occurred rapidly. What drove this diversification?  

While the monophyly of Grevillea with respect to Hakea has been questioned, 

Hakea species are morphologically distinct and, prior to this study, Hakea itself was 



thought to be monophyletic (Barker et al. 1999; Makinson 2000). The molecular tree 

(Fig. 1) confirms this, showing conclusively that monophyletic Hakea (and Finschia) is 

nested within Grevillea.  

 Based on our molecular results, we conclude that extant Hakeinae diversity arose 

quite recently. Indeed, a considerable portion of species appear to have arisen in the last 5 

my (Fig. 3a). Given the dramatic aridification that occurred during this time (Truswell 

1993), and the purported scleromorphic proto-Hakeinae (Hill 1998), we hypothesized that 

the Hakeinae radiated out from rainforest margins into newly opened, low-nutrient 

shrublands, and that their success was facilitated by the utility of their scleromorphic 

traits in xeric conditions. Yet, in reality there are at least three kinks in this linear story.  

First, Hakeinae do not necessarily seem to trace their origins to rainforest. While 

the rainforest taxa like G. baileyana and robusta appear to have diverged fairly early in 

the radiation (Fig. 1), the proto-Hakeinae were inferred to be shrubs or short trees in 

open, mid-precipitation conditions. The immediate sisters to an expanded Grevillea, 

Buckinghamia and Opisthiolepis, are rainforest-restricted. Presumably the larger clade 

would trace its origins to the rainforest. This is similar to recent evidence suggesting that 

some clades of Australian marsupials secondarily re-invaded the rainforests from arid 

regions (Mitchell et al. 2014).  

Second, we predicted that diversification rates would be correlated with decreases 

in height (our proxy of scleromorphy) and shifts to drier and colder climates. This was 

not well supported. While we recognize that height is an imperfect proxy, we suggest it is 

unlikely that a better measure would yield different results.  



Third, speciation generally requires populations becoming isolated in some 

manner. Since geography is the most common means by which this might happen 

(Rieseberg & Willis 2007), and range size should serve as some measure of population 

interconnectedness, we also anticipated a unimodal relationship between range size and 

diversification rate (Rosenzweig 1995). In retrospect, this is a naïve approach to the 

problem. If a process like centrifugal speciation (Brown 1957) was relevant, the 

diversification rate of the parent species would not be expected to propagate down the 

phylogeny. Instead, we might expect to see parent species lying sister to a swarm of 

small-ranged daughter species. Interestingly, visual inspection of range size plotted 

across the Hakeinae phylogeny suggests this hypothesis warrants further investigation. 

Regardless, our initial prediction was not supported, and we conclude that our initial 

story of Hakeinae diversification was overly simplistic.  

 What did emerge in our analyses was a clear geographic signal of speciation. 

Speciation rates are highest in the southeast, particularly in the region of greatest recent 

volcanism and geological shifts (Fig. 4, Vasconcelos et al. 2008). At the same time, 

overall richness is highest in the southwest (Fig. S3.1). We attribute this pattern to the 

following modified scenario. Around 45 mya, the proto-Hakeinae lived along forest 

margins, or perhaps in oligotrophic or otherwise higher-light, lower-nutrient sites. Our 

simple ancestral state reconstruction suggested the Hakeinae arose near present-day Yeo 

Lake. This may be true, given that 45 mya the climate in this region could conceivably 

have been similar to the inferred ancestral climate regime of the Hakeinae. However, it 

seems equally likely that the geographic origin of the Hakeinae may have been 

elsewhere; basal members of the group (e.g., Grevillea glauca, G. endlicheriana) today 



occur in widely separated areas. Regardless of the geographic origin, it appears clear that 

the Hakeinae began diversifying early on in the southwest, and that this process has 

continued to the present day (Fig. S4.17-18). As Australia first began drying out, 

southwestern vegetation likely consisted of heterogeneous mixtures of closed forest with 

shrublands on more xeric sites (Vadala & Greenwood 2001). Such a scenario would offer 

spatial configurations conducive to speciation, particularly as the aridification intensified 

and marooned the early Hakeinae in disjunct habitats. Moreover, much of the 

southwestern diversity seems to owe its origins to edaphic specialization (Hopper & 

Gioia 2004), and it is likely that speciation into new edaphic zones would have also 

played an important role in this process. Finally, geographic areas covered by 

southwestern flora may once have been notably larger in extent (Burbidge 1960), and 

accordingly the region could in effect be a modern-day refugium. 

The development of proteoid roots (Purnell 1960) may have contributed to 

modern Hakeinae diversity. These near-surface roots excrete acids to solubilize and 

absorb otherwise inaccessible soil phosphate (Lambers et al. 2008). Not only are many 

Hakeinae species able to persist on extraordinarily poor soils, but they may actually 

deplete the soils beyond levels acceptable to most other plants (Pate et al. 2001). While 

the current diversity of low-nutrient edaphic zones would not always have been available, 

we speculate that as the weathering of soils proceeded in the southwest, new edaphic 

zones would have opened up and been colonized by Hakeinae. Gene flow between 

adjacent, differentially weathered zones derived from diverse parent material could have 

been inhibited by selection against hybrids, and by newly opened edaphic zones being 

initially colonized by members of extant Hakeinae lineages with pre-established post-



zygotic reproductive barriers between them. It is conceivable that this diversification 

could have involved a process where species radiated into suitable edaphic zones, drew 

down soil nutrients and, subject to strong selective pressure (phosphorus limitation), 

quickly diverged from their progenitors. Such a process would be difficult to test for, and 

it does not preclude scleromorphy, aridification, or range size as being important aspects 

of Hakeinae diversification, but these latter factors alone do not appear to have produced 

the diversity of forms and species we see today. An additional factor not addressed here, 

but which also may have been involved in this rapid diversification, was the onset of fire 

as a driving force structuring Australian vegetation (Orians & Milewski 2007). 

The apparent recent and rapid diversification in southeastern Hakeinae offers 

some support for this admittedly speculative hypothesis. Specifically, the complex 

topographical history of the southeast would have provided both ecological opportunity 

and the splitting and isolation of habitats conducive to speciation (Holdgate et al. 2008). 

Much of the Great Dividing Ranges were until recently covered in wet forests. In the last 

5 my, however, most of these forests have given way to dry sclerophyll forests and 

shrublands (Beadle 1966; Hill 2004). Members of the Grevillea Linearifolia group 

account for much of this recent diversification (Fig. 3, S4.21, S.4.23). These species have 

radiated into a number of habitats, particularly patches of heath and isolated rocky 

mountain slopes under Eucalyptus canopies on soil types that are rare in Australia.  

 The other group that showed a significant increase in diversification rate was a 

clade composed of members of the Grevillea Pteridifolia group (Fig. 3, S4.22, S4.24). 

This pan-Australian group is almost entirely bird-pollinated (Makinson 2000), which 

might be expected to increase gene flow and thereby decrease diversification rate (Toon 



et al. 2014). Both the Pteridifolia and Linearifolia groups (the latter of which exhibits a 

range of pollinator syndromes), contain some of Australia’s best-known bird-pollinated 

species (Fig. S4.25). While it is tempting to suppose that birds were involved in elevating 

speciation rates in these clades, some other bird-pollinated clades within the Hakeinae did 

not show increases in diversification rates. Sister to the Pteridifolia group are rainforest 

taxa like G. baileyana and robusta. It is possible that rather than an increase in speciation 

rate of the Pteridifolia group, there has been an increase in the extinction rate of these 

rainforest taxa. These questions await reanalysis with a complete molecular phylogeny 

and better understanding of pollinator syndromes across the clade. 

 The Nullarbor Plain and its influence on the diversification of the rich endemic 

southwest and southeast floras has long been a central theme in Australian botany 

(Hooker 1860; Burbidge 1960; Mast & Givnish 2002; Crisp et al. 2004; Jabaily et al. 

2014). Our animated reconstruction of Hakeinae geographic diversification suggests that 

the first eastern lineages began to arrive ca. 17 mya (Appendix S5). These lineages 

appear to have given rise to endemic southeast clades that quickly began accumulating 

species 12-11 mya. This is consistent with the purported uplift of the Nullarbor Plain 14 

mya and subsequent endemic diversification in the southeast and southwest (Crisp & 

Cook 2007). Despite the divide, some clades were able to cross the Nullarbor after the 

uplift, presumably via refugia like the MacDonnell Ranges. There may also have been 

limited recent dispersal of southeast lineages back to the southwest. While we caution 

that such conclusions based on the animated geographic reconstruction are subject to 

more careful analysis, they certainly support the notion that the Nullarbor Plain was a 



significant but not impermeable barrier to Hakeinae dispersal, and that this barrier may 

account for much of the endemism seen in modern-day temperate Hakeinae. 

 By filtering out some lineages physiologically unable to persist in climates 

different than their ancestral climate regime, phylogenetic niche conservatism has been 

shown to shape which lineages occur where (Algar et al. 2009; Miller et al. 2013). This 

process should lead to a pattern of increasing phylogenetic clustering away from the 

climate of origin of the clade in question. We found weak support for the relationship in 

the Hakeinae, where the most phylogenetically clustered areas were found in colder and 

warmer regions than the inferred moderate temperature ancestral region, and precipitation 

explained little of the variation in lineage co-occurrence patterns. Compared with the 

Meliphagidae, the Hakeinae showed considerable phylogenetic clustering in the 

southwest and southeast of the continent. This emphasizes the limited dispersal potential 

of Hakeinae, and a number of localized, endemic radiations, especially in the southwest 

and southeast. Arid interior Hakeinae assemblages showed more phylogenetic 

overdispersion than Meliphagidae, reflecting the differing origins of these groups; the 

Hakeinae appear to have originated somewhere in the interior of the continent, in a fairly 

dry area, while the Meliphagidae likely originated in rainforests. Phylogenetic niche 

conservatism does not seem able to explain much of the variation in lineage co-

occurrence patterns of this non-vagile group. 
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FIGURE LEGENDS 

Figure 1. Time-calibrated molecular phylogeny of the Australian Hakea and Grevillea. 

Branches are colored from blue to red as a function of the model-averaged lineage-

specific speciation rate as calculated in BAMM. 

 

Figure 2. Phyloclimatespace figure showing Hakeinae radiation across mean annual 

temperature and precipitation. Branches are colored from blue to red as a function of 

distance from the root. Light gray points represent grid-cell averaged climate values, used 

to show the breadth of climate space available to the Hakeinae in Australia. The 

phylogeny used in this figure is the randomMCC tree, and ancestral states are 

reconstructed with maximum likelihood. 

 

Figure 3. Speciation rate through time of the entire Hakeinae and the two clades that were 

detected as exhibiting significantly elevated rates of speciation. The phylogeny used in 

this figure is the randomMCC tree. 

 

Figure 4. Grid-cell averaged diversification rates across Australia, where red represents 

the fastest rates. The phylogeny used in this figure is the randomMCC tree. 



 

Figure 5. Map of differences in phylogenetic community structure between the 

Meliphagidae, a bird family, and the Hakeinae. Red colors correspond to areas where the 

Hakeinae are more phylogenetically clustered than the Meliphagidae, while blues 

correspond to areas where the Hakeinae are phylogenetically overdispersed as compared 

with the Meliphagidae.  













Appendix S1. Range size distributions among Hakeinae assemblages, and relation to 

Rapoport’s rule 

 

 Rapoport’s rule, as originally formulated, proposed that species range sizes are 

positively correlated with latitude (Stevens 1989). The focus on latitude has shifted over 

the years, and one modern interpretation of the rule states that climate stability may 

buffer small-ranged species from extinction, leading to a correlation between seasonality 

and range size. Recent support for the “rule” has been weak (Gaston et al. 1998), though 

some have found support for it (Morueta-Holme et al. 2013). In this appendix, we test the 

support for this interpretation of the rule, and also examine other aspects of range size 

distributions across the Australian continent.  

As described in the main text, we calculated range size per species as the number 

of 100 x 100 km grid cells that species occurs in. Then, per-grid, we calculated the mean, 

standard deviation, kurtosis and skewness (the four moments) of the distribution of range 

sizes of the constituent species. To visually summarize these different aspects of range 

size distributions, we ordinated the four moments with a principal coordinates analysis, 

with the variables scaled and centered. We then took the position of each grid cell along 

the first three PC axes and used this to create an RGB color scale. Here, the red, green 

and blue components of the scale were functions of the position of the grid cell along 

axes 1, 2 and 3, respectively. 

We found that average range sizes of species are clearly largest in the center and 

north of the continent (Fig. S1.1). Standard deviation in range size follows a similar 

pattern (Fig. S1.2). Differences between the southwest and southeast Hakeinae are 



apparent in the kurtosis (Fig. S1.3) and skew (Fig. S1.4) of the constituent species. 

Southwestern sites have more small-ranged species than do southeastern sites, in addition 

to a number of large-ranged species that also occur in the southwest. This can be seen in 

the PCA map (Fig. S1.5), where southwestern sites are colored less red, due to kurtosis 

and skew being strongly negatively loaded on PC1 (Table S1).  

We found that average range size was positively correlated with MAT (R2 = 0.27, 

p < 0.001) and negatively correlated with MAP (R2 = 0.24, p < 0.011) and MI (R2 = 0.38, 

p < 0.001). More relevantly, it was also positively correlated with precipitation 

seasonality and particularly with temperature seasonality. These two seasonality variables 

are negatively correlated with each other; a multiple regression with a significant 

interaction term between temperature and precipitation seasonality explained much of the 

variation in range size (R2 = 0.46, p < 0.01).  

We therefore find some support for Rapoport’s rule in the Australian Hakeinae, 

where a combination of temperature and precipitation seasonality was able to explain 

much of the variation in average range size. That said, highly seasonal climates 

characterize large areas of the Australian continent; species in seasonal regions have 

more space across which to spread. In general, we echo Gaston et. al’s sentiments that at 

best this pattern should be called the Rapoport effect. While it may well be a general 

macroecological phenomenon, future research would be better aimed towards 

understanding the mechanisms that might generate differential extinction patterns across 

different climate regimes, rather than addressing the generality of the rule per se.  

  



 

Figure S21. Map of average range size per grid cell across Australia. 

 



 

Figure S22. Map of standard deviation in range size per grid cell across Australia. 

  



 

Figure S23. Map of the kurtosis in range size per grid cell across Australia. 

  



 

Figure S24. Map of the skewness in range size per grid cell across Australia. 

  



 

Figure S1.5. Map of the four moments (mean, standard deviation, kurtosis, skewness) of 

range size per grid. The moments were ordinated with a PCA, then grid cells were 

assigned colors as a function of their position along PC1 (red), PC2 (green) and PC3 

(blue). The loadings for these axes are given in Table S1. As an example, the unique teal 

color of the southwest reflects the negative position of its grid cells along PC1 (small 

average range and standard deviation in range), and strongly positive positions along PC2 

and PC3 (large kurtosis and skew in range size distribution per cell).  



  



 PC1 PC2 PC3 PC4 

Mean  0.52 0.25 0.80 0.14 

Std. deviation 0.36 0.80 -0.46 -0.12 

Kurtosis -0.55 0.35 0.36 -0.67 

Skewness -0.55 0.41 0.11 0.72 

 

Table 1. Loadings on a scaled and centered PCA of each of the four moments of range 

size distributions across grid cells among Australian Hakeinae. 
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Appendix S2. Methods of molecular phylogenetic reconstruction 

 

 We created a molecular dataset of four chloroplast DNA (cpDNA) regions from 

up to 171 accessions, representing 93 species of Grevillea, 55 of Hakea, and 1 species 

from each of the other 10 genera in tribe Embothrieae (to which subtribe Hakeinae 

belongs), 1 species from each of the other 3 tribes in subfamily Grevilleoideae (to which 

Embothrieae belongs), 1 species from each of the other 4 subfamilies in Proteaceae, and 1 

species from each of the other 2 families in the order Proteales (following Weston & 

Barker 2006). Our sampling of Grevillea was taxonomically even, with 1-12 

representatives from 40 of the 41 informal groups recognized by Olde & Marriott (1994), 

and 1-12 representatives from each of the 33 informal groups recognized by Makinson 

(2000). Olde and Marriott’s (1994) monotypic Group 24, composed of Grevillea 

papuana from Papua New Guinea, was not sampled. 

We extracted genomic DNA using the DNEasy Plant Mini Kit (Qiagen, Valencia, 

California, USA). The four cpDNA regions that we sampled are the matK, atpB, and 

ndhF genes and the rpl16 intron. We amplified and sequenced all DNA regions, except 

the rpl16 intron, following Mast et al. (2008). We sequenced the rpl16 intron following 

Mast et al. (2005). We aligned and edited using Sequencher (Gene Codes Corporation 

2005). We compared chloroplast sequences to the complete chloroplast of Nicotiana 

tabacum (GenBank accession number NC 001879) to determine beginning and ending 

points of each cpDNA region and check that frameshifts were not implied by insertion of 

gaps in the alignment. We did not use rpl16 intron sequence data for taxa outside subtribe 



Hakeinae. For the purpose of modeling nucleotide substitutions in the data, we 

recognized each of the regions as separate data partitions.  

We used the Akaike information criterion (AIC) in MrModelTest 1.1b 

(http://www.abc.se/ca. nylander/) to select an adequately parameter-rich model of 

nucleotide substitution for each of the DNA regions. These models were then used for 

their respective partitions in the Bayesian analyses in BEAST version 1.7.1 (Drummond 

et al. 2012). We prepared the XML file using BEAUTi version 1.7.1 (Drummond et al. 

2012). We constrained the clade of Platanaceae and Proteaceae to be monophyletic, and 

chose an uncorrelated lognormal relaxed clock model (Drummond et al. 2006), the 

parameters of which we had BEAST estimate. We chose a Yule Process tree prior (Yule 

1925; Gernhard 2008) and, as a starting tree, gave BEAST a 50% majority rule tree from 

a MrBayes (Ronquist & Huelsenbeck 2003) analysis of the data after randomly resolving 

polytomies with branches of length 0.001 in Mesquite (Maddison & Maddison 2009). We 

set the prior of the mean for the uncorrelated lognormal relaxed clock parameter as an 

exponential distribution with a mean of 1, the priors for the two calibration nodes as 

described below, and accepted the default prior for the remaining parameters. We 

unlinked the substitution models and linked the clock models and trees. The Markov 

Chain Monte Carlo (MCMC) algorithm for each analysis was run for 50 x 106 

generations (sampled every 103 generations) twice with the data and once without the 

data to determine the marginal prior densities for each parameter. We considered the first 

quarter of the samples to represent the burn-in for the MCMC run. This number of 

generations was sufficient to produce very similar marginal posterior densities for each 

parameter, effective sample sizes (ESS) >200 (and typically >1000), and posterior 



densities that differed from most prior densities, as determined in Tracer version 1.5 

(http://beast.bio.ed.ac.uk/Tracer). We combined post-burn-in trees from multiple runs of 

BEAST in LogCombiner v. 1.7.1 (distributed with BEAST), then produced a maximum 

clade credibility tree showing node heights at the median sampled ages and 95% highest 

posterior density for the ages of branches with ≥95% p.p. in Tree Annotator v. 1.7.1 (also 

distributed with BEAST).  

 We used two priors on the age of nodes in the analysis. Each of the node age 

priors was described as a normal distribution. We gave the prior age for the MRCA (most 

recent common ancestor) of Proteaceae and Platanaceae a mean of 112.3 and a standard 

deviation of 6.48. This results in a bound of 99.6 (equivalent to 99.6 Ma) for the 2.5% 

quantile and a bound of 125.0 (equivalent to 125.0 Ma) for the 97.5% quantile. 125 Ma is 

the approximate time of appearance in the fossil record of the tricolpate pollen of the 

eudicots (Magallon et al. 1999), of which Proteales is an early diverging branch. It has 

been used elsewhere as a calibration for the MRCA of the eudicots (e.g., Bell et al. 

2005), for the MRCA of Proteales and Sabiaceae (Sauquet et al. 2009), and for the 

MRCA of Proteaceae and Platanaceae (Mast et al. 2008, 2012). 99.6 Ma is the upper 

boundary of the Albian (Gradstein et al. 2004), the earliest period from which fossil 

inflorescences have been recovered that can be assigned to Platanaceae (e.g., Crane et al. 

1993) using shared derived features (Crepet et al. 2004; Anderson et al. 2005). This is 

slightly older than the occurrence of the oldest fossil that can be assigned to Proteaceae 

based on its position in parsimony analyses (Sauquet et al. 2009): Triorites africaensis 

(Dettmann & Jarzen 1998) is from the Upper Cenomanian to Turonian (ca. 94 Ma ago) of 

Senegal and Gabon. We gave the prior age for the MRCA of Embothrium and its sister, 



Telopea, a mean of 37.5 and a standard deviation of 1.07. This results in a bound of 35.4 

(equivalent to 35.4 Ma) for the 2.5% quantile and a bound of 39.6 (equivalent to 39.6 

Ma) for the 97.5% quantile. 35.4 Ma is the estimated age of occurrence of pollen of 

Granodiporites nebulosus (Macphail & Truswell 1989). G. nebulosus was resolved as 

sister to Embothrium by Sauquet et al. (2009). Barker et al. (2007) and Sauquet et al. 

(2009) both used this fossil calibration in their studies of the family. 39.6 Ma is the upper 

bound of the 95% credible interval determined for the MRCA of Embothrium and 

Telopea by Mast et al. (2012) using Multidivtime 

(http://statgen.ncsu.edu/thorne/multidivtime.html, Thorne & Kishino 2002). For analysis 

of the rpl16 intron dataset, which did not include taxa outside subtribe Hakeinae, we 

assigned the MRCA of Buckinghamia, Grevillea, Hakea, and Finschia a prior with a 

mean of 35.05 and standard deviation of 4.955. This results in a bound of 25.34 

(equivalent to 25.34 Ma) for the 2.5% quantile and a bound of 44.76 (equivalent to 44.75 

Ma) for the 97.5% quantile. Sauquet et al. (2009) estimated the mean age of this node as 

35.05 Ma with a bound of 25.34 for the 2.5% quantile and a bound of 45.64 for the 

97.5% quantile. Barker et al. (2007) use a second calibration within tribe Embothrieae 

(the fossil pollen species Propylipollis ambiguus), but we do not use it here because 

Sauquet et al. (2009) demonstrated that it cannot be assigned such precision with 

confidence. Sauquet et al. (2009) also demonstrated that Hakeidites martinii, a pollen 

fossil previously assigned to Hakea by Khan (1976), cannot be assigned this precision 

with confidence. 

 

REFERENCES 



 

1. 

Anderson, C.L., Bremer, K. are & Friis, E.M. (2005). Dating phylogenetically basal 

eudicots using rbcL sequences and multiple fossil reference points. Am. J. Bot., 92, 1737–

1748. 

 

2. 

Barker, N.P., Weston, P.H., Rutschmann, F. & Sauquet, H. (2007). Molecular dating of 

the “Gondwanan” plant family Proteaceae is only partially congruent with the timing of 

the break-up of Gondwana. J. Biogeogr., 34, 2012–2027. 

 

3. 

Bell, C.D., Soltis, D.E. & Soltis, P.S. (2005). The age of the angiosperms: a molecular 

timescale without a clock. Evolution, 59, 1245–1258. 

 

4. 

Crane, P.R., Pedersen, K.R., Friis, E.M. & Drinnan, A.N. (1993). Early Cretaceous (early 

to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the 

Potomac Group of eastern North America. Syst. Bot., 328–344. 

 

5. 

Crepet, W.L., Nixon, K.C. & Gandolfo, M.A. (2004). Fossil evidence and phylogeny: the 



age of major angiosperm clades based on mesofossil and macrofossil evidence from 

Cretaceous deposits. Am. J. Bot., 91, 1666–1682. 

 

6. 

Dettmann, M.E. & Jarzen, D.M. (1998). The early history of the Proteaceae in Australia: 

the pollen record. Aust. Syst. Bot., 11, 401–438. 

 

7. 

Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W. & Lourens, L.J. (2004). A new 

geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27, 

83–100. 

 

8. 

Khan, A.M. (1976). Palynology of Tertiary sediments from Papua New Guinea. I. New 

form genera and species from Upper Tertiary sediments. Aust. J. Bot., 24, 753–781. 

 

9. 

Macphail, M.K. & Truswell, E.M. (1989). Palynostratigraphy of the central west Murray 

Basin. J. Aust. Geol. Geophys., 11, 301–331. 

 

10. 

Magallon, S., Crane, P.R. & Herendeen, P.S. (1999). Phylogenetic pattern, diversity, and 

diversification of eudicots. Ann. Mo. Bot. Gard., 297–372. 



 

11. 

Mast, A.R., Milton, E.F., Jones, E.H., Barker, R.M., Barker, W.R. & Weston, P.H. 

(2012). Time-calibrated phylogeny of the woody Australian genus Hakea (Proteaceae) 

supports multiple origins of insect-pollination among bird-pollinated ancestors. Am. J. 

Bot., 99, 472–487. 

 

12. 

Mast, A.R., Willis, C.L., Jones, E.H., Downs, K.M. & Weston, P.H. (2008). A smaller 

Macadamia from a more vagile tribe: inference of phylogenetic relationships, divergence 

times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; 

Proteaceae). Am. J. Bot., 95, 843–870. 

 

13. 

Sauquet, H., Weston, P.H., Anderson, C.L., Barker, N.P., Cantrill, D.J., Mast, A.R., et al. 

(2009). Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc. Natl. 

Acad. Sci., 106, 221–225. 

 

14. 

Thorne, J.L. & Kishino, H. (2002). Divergence time and evolutionary rate estimation 

with multilocus data. Syst. Biol., 51, 689–702. 

 



Appendix S3. Results of linear models between macroecological patterns and potential 

environmental drivers 

 

 As described in the main text, we used rarefaction to determine which grid cells 

had been adequately sampled. After removing insufficiently sampled grid cells, 749 

remained. This is the sample size for the following linear models. Since our purpose in 

presenting these results is to highlight the lack of explanatory power of these models, we 

do not account for spatial autocorrelation, which would surely change the significance of 

many of these weak but nominally significant relationships.  

Species richness per grid cell was negatively correlated with MAT (R2 = 0.07, p < 

0.001), and positively correlated with log10 MAP (R2 = 0.015, p = 0.0009) and MI (R2 = 

0.017, p = 0.0004). Regions of intermediate temperature and precipitation, particularly 

the southwest, showed the highest species richness (Fig. S3.1).  

 Median grid-cell height was positively correlated with temperature (R2 = 0.31, p < 

0.001; this is an exception to the weak correlations among most of these variables). It was 

positively (R2 = 0.006, p = 0.042) and negatively (R2 = 0.01, p = 0.007) correlated with 

MAP and MI, respectively. 

Grid-cell averaged diversification rates were negatively correlated with MAT 

(with randomMCC tree, R2 = 0.26, p < 0.001) and positively correlated with MAP (R2 = 

0.01, p = 0.002) and MI (R2 = 0.1, p < 01.001). These results were qualitatively identical 

irrespective of the tree used, with the exception of results from the stemMCC tree (see 

What was the geographic pattern of Hakeinae diversification? main text). Here, a 



positive correlation of MAT with diversification rate was observed (R2 = 0.02, p < 

0.001).  

 

 

Figure S3.1. Map of Hakeinae species richness, where red corresponds to the most 

speciose cells. 

 



Appendix S4. Supplementary figures 

 

Figure S4.1. Map of the 125,696 Hakeinae collections used in this study. Each of the 517 

unique species is illustrated with its own color. 

  



 

Figure S4.2. Schematic diagram illustrating the different ways that missing taxa can be 

added to a molecular tree. Assuming missing species C is part of the same taxonomic 

group as A and B, if crownwards addition is chosen, C will be bound either as illustrated 

here, or with similar branch lengths but sister to species A. If stemwards addition is 

chosen, C will be added sister to A and B. Note that if species B was not in the same 

taxonomic group as A and C, the algorithm would automatically add C crownwards and 

sister to A.  

  



 

Figure S4.3. Phyloclimatespace figure showing Hakeinae radiation across mean annual 

temperature and precipitation. Branches are colored from blue to red as a function of 

distance from the root. Light gray points represent grid-cell averaged climate values, used 

to show the breadth of climate space available to the Hakeinae in Australia. The 

phylogeny used in this figure is the molecular tree, and ancestral states are reconstructed 

with maximum likelihood. 

  



 

Figure S4.4. Phyloclimatespace figure showing Hakeinae radiation across mean annual 

temperature and precipitation. Branches are colored from blue to red as a function of 

distance from the root. Light gray points represent grid-cell averaged climate values, used 

to show the breadth of climate space available to the Hakeinae in Australia. The 

phylogeny used in this figure is the randomMCC tree, and ancestral states are 

reconstructed with the Bayesian method, where a Brownian motion with priors on the 

root state was the best-supported model. 



 

Figure S4.5. Phyloclimatespace figure showing Hakeinae radiation across mean annual 

temperature and precipitation. Branches are colored from blue to red as a function of 

distance from the root. Light gray points represent grid-cell averaged climate values, used 

to show the breadth of climate space available to the Hakeinae in Australia. The 

phylogeny used in this figure is the molecular tree, and ancestral states are reconstructed 

with the Bayesian method, where a Brownian motion without priors on the root state was 

the best-supported model. 



 

Figure S4.6. Model-averaged speciation rate through time of the molecular tree, as 

inferred with BAMM. 

  



 

Figure S7. Model-averaged speciation rate through time of the stemMCC tree, as inferred 

with BAMM. 

  



 

Figure S4.8. Maximum clade-credibility phylogeny of the Australian Hakea and 

Grevillea after addition of missing taxa using the stemwards method. Branches are 

colored from blue to red as a function of the model-averaged lineage-specific speciation 

rate as calculated in BAMM. 

  



 

Figure S4.9. Model-averaged speciation rate through time of the crownMCC tree, as 

inferred with BAMM. 

  



 

Figure S4.10. Maximum clade-credibility phylogeny of the Australian Hakea and 

Grevillea after addition of missing taxa using the crownwards method. Branches are 

colored from blue to red as a function of the model-averaged lineage-specific speciation 

rate as calculated in BAMM. 

  



 

Figure S4.11. Maximum clade-credibility phylogeny of the Australian Hakea and 

Grevillea after addition of missing taxa using the stemwards method. The first red dot 

identifies a clade composed of members of the Grevillea Linearifolia group. The second 

red dot identifies a clade composed of members of the Grevillea Pteridifolia group. These 

two groups were detected as showing an elevated rate of speciation compared to the rest 

of the Hakeinae.  



 

Figure S4.12. Distribution of the phylogenetic generalized least squares (PGLS) 

correlation coefficients of 1,000 simulated Brownian-motion traits with the lineage-

specific speciation rates from the randomMCC tree. The observed PGLS correlation 

coefficients of height, temperature and precipitation with these speciation rates are shown 

with vertical colored bars. 

  



 

Figure S4.13. Map of grid-cell Hakeinae median heights, where red corresponds to the 

tallest cells. 

  



 

Figure S4.14. Grid-cell averaged diversification rates across Australia, where red 

represents the fastest rates. The phylogeny used in this figure is the molecular tree. 

  



 

Figure S4.15. Grid-cell averaged diversification rates across Australia, where red 

represents the fastest rates. The phylogeny used in this figure is the crownMCC tree. 

 

  



 

Figure S4.16.  Grid-cell averaged diversification rates across Australia, where red 

represents the fastest rates. The phylogeny used in this figure is the stemMCC tree. 

  



 

Figure S4.17. A lineage through time plot (right axis) and the accumulation of southwest 

and southeast endemic clades over time (node through time plot, left axis). This is 

derived from the molecular phylogeny. 

  



 

Figure S4.18. A lineage through time plot (right axis) and the accumulation of southwest 

and southeast endemic clades over time (left axis). This is derived from the randomMCC 

tree. 

  



 

Figure S4.19. Mean pairwise phylogenetic distance (MPD) as a function of mean annual 

temperature. This was calculated as the average of 1,000 MPD calculations from the 

same number of complete trees created with the random addition method to the molecular 

tree. There is a tendency for the most phylogenetically overdispersed sites to occur near 

the ancestral temperature regime of ~19.9 °C.  

  



 

Figure S4.20. Mean pairwise phylogenetic distance (MPD) as a function of the log10 of 

mean annual precipitation. This was calculated as the average of 1,000 MPD calculations 

from the same number of complete trees created with the random addition method to the 

molecular tree. Very little of the variance in MPD can be explained by precipitation.  

 

 
  



 

Figure S4.21. Photographs of members of the Grevillea Linearifolia group. Clockwise 

from top left corner. (1) Grevillea reptans in-situ in heath habitat in Great Sandy National 

Park, pollination syndrome unknown. (2) The bird-pollinated Grevillea speciosa from 

Garigal National Park. (3) Grevillea sericea from Muogamarra Nature Reserve. While 

possibly pollinated by insects—here an invasive Apis mellifera visits it—it is also visited 

by nectarivorous birds like the Meliphagidae Acanthorhynchus tenuirostris. (4) Grevillea 

speciosa from Yengo National Park, growing under a Eucalyptus-dominated canopy in 

dry sclerophyll forest on a rocky sandstone slope. All photographs by Eliot Miller. 

 

  



 

Figure S4.22. Photographs of members of the Grevillea Pteridifolia group. Clockwise 

from top left corner. (1) An undescribed taxon currently included in Grevillea 

hookeriana, growing in tall heath/stunted forest in Dryanda State Forest. (2) Grevillea 

eriostachya growing on red sand dunes near Uluru National Park. (3) A closer view of 

the flowers of G. eriostachya, illustrating the copious, sticky nectar accumulated on the 

inflorescence. (4) Grevillea pteridifolia growing in vine forest in Iron Range National 

Park. (5) Grevillea excelsior growing in remnant mulga South of Payne’s Find, Western 

Australia. All photographs by Eliot Miller. 

 

  



 

Figure S4.23. Map showing the distribution of the members of the Linearifolia group that 

showed significantly elevated rates of speciation. Each species is given a unique color. 

 

  



 

Figure S4.24. Map showing the distribution of the members of the Pteridifolia group that 

showed significantly elevated rates of speciation. Each species is given a unique color. 

  



 



Figure S4.25. Photograph of an individual of Xanthotis macleayanus, Meliphagidae, 

feeding on an inflorescence of Grevillea pteridifolia, Kingfisher Lodge, Julatten, 

northeast Queensland. Photograph by Bryan Suson. 

 



Appendix S5. Animated geographic reconstruction of Hakeinae radiation 

 

 

Open with a web browser. Animated reconstruction of Hakeinae radiation across 

Australian geographic space. Created with phylowood and R2phylowood. 
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ABSTRACT 

Resources are finite. Species utilize restricted subsets of the resource pool. A rich history 

of work examines how species are packed into this available niche space. If competition 

limits local species richness or the traits of potential immigrants, the signal should 

manifest itself at any of a few levels. At higher diversity, (1) species may occupy smaller 

niches, (2) they may be more closely packed in niche space, (3) or total assemblage niche 

space may simply be larger. With respect to niche overlap, if competition limits 

similarity, then (4) niche overlap should not increase linearly but, rather, level off with 

the addition of new species, and (5) observed assemblage niche overlap should be less 

than expected. To address these possibilities, we used field observations to characterize 

the niche sizes and positions of a large continental radiation of ecologically diverse birds, 

the honeyeaters (Meliphagidae). Species occupy characteristic and phylogenetically 

conserved niches, but many dimensions are needed to accurately describe these. At 

higher diversity, species occupy larger niches, are more closely packed in niche space, 

and total assemblage niche space is larger. This provides mixed support for an impact of 

competition on niche occupancy, and we conclude that niche overlap is the norm. Direct 



quantification of overlap, however, suggested that assemblage-level overlap was 

significantly less than would be expected if constituent species utilized available 

resources without regards to co-occurring species, and, as compared with a null model, 

this overlap decreased with increases in diversity. Thus, while species clearly overlap 

greatly in resource use, we do find some evidence for niche partitioning. Competition 

appears to influence community assembly in the honeyeaters. We suggest that it is a 

relatively minor determinant of the process, and operates “after” such things as 

phylogenetic niche conservatism and stochastic factors have shaped which lineages occur 

where. 

 

INTRODUCTION 

Most researchers probably agree that somewhere between the view that communities are 

predictably assembled, discrete entities of beautifully co-evolved organisms (MacArthur 

1958, 1970), and the view that communities are assembled entirely via dispersal 

probabilities and stochastic processes (Hubbell 2001), lies reality. Yet, many research 

questions seem to orbit around one or the other of these worldviews. An issue that has 

plagued researchers focused on demonstrating predictable community assembly 

processes like niche filling, competitive exclusion, and habitat filtering is a lack of fine-

grained ecological data; when results do not support hypotheses, it can be difficult to 

determine if this is merely a shortcoming of the data. To what degree might our 

traditional ecological conceptions be borne out, given ideal ecological data? 

 The Meliphagidae, or honeyeaters, are a diverse family of passerines distributed 

predominantly in Australia, New Guinea and the Pacific Islands. They occupy a wide 



range of ecological niches, with at least one species occurring almost everywhere in 

Australia, including Tasmania, where there are four endemic species. Most species take 

some nectar, but some are also largely frugivores, and others are dedicated insectivores 

(Higgins et al. 2001). Owing both to ease of observation, and a history of interest in 

Australia, their foraging behavior has been studied in some detail (Recher 1971; Ford & 

Paton 1976, 1982; Paton 1980; Pyke 1980; Recher et al. 1985; Ford 1990). These studies 

have laid the foundation upon which the current study is based. While these studies have 

often been descriptive in nature, it is quantitative foraging data like these that are 

frequently lacking when investigating community assembly patterns. 

 In this paper we test the hypotheses that limiting similarity structures bird 

assemblages, and that species partition niche space. In this paper we are concerned with 

the Eltonian niche (Elton 1927). We adopt the definition that this is, for a species, the 

position in and breadth of use of a resource pool within a habitat on which that species 

depends. Support for these hypotheses would provide indirect evidence contradicting the 

Eltonian Noise Hypothesis (Soberón & Nakamura 2009), which states that the milieu of 

biotic interactions do not shape species’ distributions at the continental scale. Support for 

our hypotheses might be exhibited at any of a variety of levels. At higher diversity, (1) 

species may occupy smaller niches, (2) be more closely packed in niche space, (3) or 

total assemblage niche space may simply be larger. With respect to niche overlap 

directly, if competition limits similarity, then (4) observed niche overlap should not 

increase linearly with the addition of new species, i.e. show at most asymptotic growth, 

and (5) observed assemblage niche overlap should be less than expected; diverse 

assemblages should show evidence of saturation (Ricklefs 1987). These predictions 



follow from a number of cherished ecological ideas: that niche space in any given 

assemblage is limited (Hutchinson 1957); that in order for a population to persist, 

individuals must compete more with individuals of their own species than with members 

of other species (Lotka 1925; Volterra 1926); and that, because of these facts, species 

from diverse communities are, over an evolutionary time-scale, able/forced to carve out 

more specialized, smaller portions of available niche space (May & MacArthur 1972).  

To address these predictions, we collected foraging data on the Australian 

Meliphagide. We use these data to quantify species’ Eltonian niches (Elton 1927; 

Soberón & Nakamura 2009; Peterson et al. 2011). While we acknowledge spatio-

temporal limitations in the dataset, it provides greater detail to address these hypotheses 

than any other dataset of which we are aware. Rather than species’ means, it is composed 

of species-specific sets of observations, intended to delineate the bounds of species’ 

niches. Rather than proxies of niche space, such as morphology or plant functional traits, 

it is focused on the actual resources consumed by the Meliphagidae.  

 

METHODS 

Our methods of data collection followed Miller & Wagner (2014). These are based on 

standardized methods of quantifying foraging behavior (Remsen & Robinson 1990). In 

brief, between July 2009 and May 2014, we spent 295 field days throughout continental 

Australia, Kangaroo Island, and Tasmania (Fig. 1). When not driving between sites, we 

spent the daylight hours walking transects, searching for and observing honeyeaters, and 

recording what they were eating and how they were getting it. We recorded the time, 

location, substrate the bird foraged on (e.g., flower, branch), the attack maneuver 



employed (e.g., sally-strike, glean, probe), whether the bird was hanging while 

performing it, the height of the foraging bird, the height of the surrounding canopy, the 

distance of the bird from the trunk, and the density of foliage around the foraging bird. 

These last two variables were recorded on an ordinal scale. Note then that these data 

contain continuous, ordinal, and discrete variables.  

To minimize biases, we discarded the first foraging maneuver we saw, if that was 

what drew our attention to the bird. Otherwise, if for instance we located the bird by 

vocalizations, we recorded the first maneuver we saw. We endeavored to only record one 

observation per individual per day. To better understand individual variation in foraging 

behavior, in some cases we did record multiple observations from single birds. However, 

we considered a series of observations like these to collectively represent a single data 

point (methods for weighting such series explained below). We had insufficient data to 

calculate the niche size of one species (see results). Rather than exclude it from analyses, 

since it is known to forage similarly to its congeners (Higgins et al. 2001), we included it 

as the average of those species.  

To provide ease of access to the data, and to facilitate its analysis, we wrote an R 

package, available from GitHub. The package contains the raw data and functions that: 

(1) provide detailed metadata on each measure, (2) appropriately convert raw 

observations to species’ averages, and (3) convert raw observations into metrics of 

species’ niche sizes. 

We define communities at the 100 x 100 km grid cell level. In many cases in 

Australia, it is reasonable that all species in a grid cell could interact ecologically. For 

instance, during a single day’s survey, we saw a mean of 40% of the bird species 



recorded from a given grid cell (n = 27, SD = 16, max = 100%, min = 21%). We 

acknowledge that it is not always the case that two species in a given grid cell could 

reasonably interact, and in the future would like to incorporate finer-scale spatial 

partitioning. Whenever possible, we weight all our metrics by the grid-cell level relative 

abundance of each species, which serves to diminish the influence of vagrants. We used 

the spatial dataset from Miller et al. (2013). This taxonomically and spatially cleaned 

dataset contains 2,273,404 points across all Meliphagidae species. The data were 

downloaded and concatenated from eBird (Sullivan et al. 2009) and the Atlas of Living 

Australia (http://www.ala.org.au/).  

A significant advantage of our foraging dataset is the ability to quantify both the 

position and size of species’ niches. Two difficulties arise, however. First, the dataset 

includes a combination of variable types. To contend with this, we calculated the Gower 

distances among all observations (Gower 1971). The Gower method calculates distances 

among both continuous and discrete variables. We weighted all variables equally, and 

treated ordinal variables with the method proposed by Podani (1999). We considered 

whether the foraging substrate was dead (e.g., a dead leaf, Rosenberg 1990) to be a 

binary asymmetric variable.  

We ordinated the distance matrix with non-metric multidimensional scaling 

(NMDS). We chose the number of dimensions to use in the NMDS by ordinating the 

same distance matrix across a range of dimensions and examining how stress decreased 

with the addition of dimensions. Based on an elbow in the plot, we chose a ten-

dimensional niche space. Results were qualitatively identical based on either the NMDS 

or a 792-dimension principal coordinates analysis (PCoA, see below). 



The other difficulty with the dataset is the uneven sampling across species (Fig. 

S1). Volumes such as would be calculated with convex hulls, for instance, are strongly 

influenced by outliers and the number of points in the hyper-volume. We therefore 

employed a measure of functional dispersion (FDis) that is robust to variation in sample 

size (Laliberté & Legendre 2010). FDis was developed to quantify the functional 

diversity of communities after ordinating, with PCoA, species based on their mean traits 

(i.e. a single point per species). Thus, we modify the definition slightly here, as the 

weighted mean absolute deviation of each species’ foraging observations from its 

weighted centroid. FDis has heretofore been calculated with the R package FD (Laliberté 

& Legendre 2010), which requires that data be ordinated by PCoA. We thus generalized 

FDis to ordination spaces beyond PCoA, including the NMDS used here. These functions 

are provided in our data package here. The inputs used by our functions are identical to 

those used in the FD package. 

We performed two separate FDis calculations on the same ordination space.  In 

the first, we used the R package FD (Laliberté & Legendre 2010) to calculate, in 

multivariate space, the mean absolute deviation of each species’ foraging observations 

from its centroid. Recall that some observations were serial. Thus, we weighted the 

influence of each observation on FDis by the inverse of the number of observations in the 

series; a single, non-serial observation had a weight of one. We refer to this species-level 

measure of niche size as FDissp. 

We also calculated a community level measure, FDiscomm. To do this, we 

calculated the weighted mean absolute deviation of all foraging observations from all 

species present in that community from the centroid of the community. The weights in 



the FDiscomm calculation were proportional to the relative abundance of each species in 

that grid cell. 

To determine whether the ordination space was a reasonable approximation of 

niche space based on our experiences in the field, and to determine what drove the 

ordination axes, we used the vegan (Oksanen et al. 2013) function envfit. This function 

fits vectors and factors onto the NMDS space, returning both the loadings of the 

continuous variables and the centroids of the ordinal and discrete variables. Note that 

NMDS is an unconstrained ordination; envfit fits linear responses. Responses were 

unsurprisingly non-linear, and so vegan methods like ordisurf are in some ways more 

appropriate. However, ordisurf is not useful for categorical variables, and we therefore 

used envfit despite this shortcoming. General interpretations of the ordination space were 

the same irrespective of whether ordisurf or envfit were used. 

To address prediction one, that species have smaller niches in higher diversity 

assemblages, we calculated the weighted-average niche size per grid cell, where weights 

were relative to species abundances in the cell. We fit a linear model between these 

average niche sizes and the diversity in the cell. 

To address prediction two, that species are more closely packed in niche space at 

higher diversity, we used Mahalanobis distances (Mahalanobis 1936) to calculate the 

mean pairwise distance in multivariate space among species’ weighted centroids. The 

weighting of these centroids follows the FDissp definition above. We calculated mean 

pairwise distances both without weighting, and by weighting by the relative abundance of 

each species in the cell, following the “interspecific” method (Miller et al. 2013). 



To test prediction three we fit linear models to the relationship of FDiscomm and 

the corresponding species richness of that grid cell. 

We used the R package nicheROVER (Swanson et al. 2014) to address predictions 

four and five. nicheROVER calculates species’ pairwise probabilities of niche overlap. 

This returns a probability that a given point of species A falls within species B’s niche, 

and vice versa. We averaged these two probabilities per species. This is the probability 

that a randomly selected point of either A or B falls within the niche of the other species. 

Per grid cell, we calculated a mean pairwise overlap among constituent species. We 

compared observed mean overlaps to those from a null model that randomized the 

identity of species observations within grid cells. This null model maintained the total 

size and position of the original assemblage niche space, species richness and number of 

observations per-species, but not species’ niche sizes. We calculated standardized effect 

sizes (SES) of these observed pairwise overlaps as the difference of the observed overlap 

and the mean randomized overlaps, divided by the standard deviation of overlaps, and 

compared these SES to the richness of the corresponding grid cells. 

To further test predictions four and five, we calculated the proportion of 

observations per grid cell that could be correctly classified to species with a linear 

discriminant analysis (LDA). Independent of any biological phenomena, these 

proportions decline with increasing richness (and total observations). Thus, we employed 

the null model described above to calculate a SES, per grid cell, of the proportion of 

observations correctly assigned to species as compared with the randomizations. 

 As additional descriptive checks on our data, and confirm that related species 

forage similarly, we calculated Pagel’s lambda (Pagel 1999), a measure of phylogenetic 



signal (“conservatism”). We calculated the signal in species’ weighted centroids along 

each of the 10 axes separately, and explored which axes showed reduced phylogenetic 

signal; it could be supposed that these axes are important for niche partitioning. We also 

quantified the phylogenetic signal in FDissp. We used the R package phytools (Revell 

2012) and the most recent, dated Meliphagidae phylogeny for this (Joseph et al. 2014), 

with the few missing species added manually as in Miller et al. (2013)  

 

RESULTS 

In sum, we collected 9,595 foraging observations across 74 of 75 species of Australian 

honeyeater. After accounting for serial observations, the dataset contains 7,302 

independent observations. The most-observed species was Lichmera indistincta (n=459). 

The least-observed species included in the dataset was Glycichaera fallax (n=20). We 

observed one individual of Conopophila whitei. This observation is excluded from the 

dataset, and we instead ran analyses considering this species to occupy a niche of average 

size and position between its congeners. 

 The ordination space corresponded to our conception of available niche space 

(Fig. S2). Multiple qualitative general areas of niche space can be discerned. Along the 

first few axes, nectar feeding, aerial attacks, and gleaning from leaves all sit in clearly 

distinct regions of multivariate space (Table S1); niche space is non-normally distributed, 

particularly along the first two dimensions.  

 Measures of FDissp ranged from 0.14 (Trichodere cockerelli, Ashbyia lovensis) to 

0.34 (Lichenostomus fuscus). In general, ground-foraging insectivores and then inveterate 

nectarivores tended to have the smallest niches, while well-known generalists (Higgins et 



al. 2001) like species of Lichenostomus (sensu lato), Meliphaga and Melithreptus had the 

largest niches. These niche sizes were phylogenetically conserved across species (Fig. S3, 

lambda = 0.75, p = 0.007).  

 Measures of FDiscomm showed little variation (range 0.28-0.33). The FDis of the 

entire ordination space was 0.32, which is less than some individual grid cells and 

species. What little variation there was did have a clear regional variation in FDiscomm; 

grid cells in the southeast of Australia, including Tasmania, were characterized by the 

largest available niche spaces (Fig. S4).  

 We found no support for prediction one. Instead, species’ average niche sizes 

were positively correlated with grid cell richness (R2 = 0.31, p < 0.001, Fig. 2). The 

smallest average niches were exhibited by assemblages in the eastern deserts (Fig. S5). 

 We found no support for prediction two. There was a weak positive correlation 

between distances among co-occurring species in multivariate space and the species 

richness of the corresponding grid cell (unweighted R2 = 0.11, p < 0.001, weighted R2 = 

0.02, p = 0.0003, Fig. S6). Assemblages from both Tasmania and the eastern deserts were 

the most widely separated in niche space (Fig. S7). 

 We found some support for prediction three. There was a positive correlation 

between FDiscomm and species richness (R2 = 0.12, p < 0.001, Fig. 3); more species-rich 

communities occupy slightly larger total niche space than communities with fewer 

species. 

 We also found support for predictions four and five. Mean observed pairwise 

niche overlap was always less than expected based on the null model. When the values 

from the null model were used to derive SES, there was a negative correlation with 



species richness (R2 = 0.64, p < 0.001, Fig. 4); co-occurring species show increasingly 

smaller pairwise niche overlaps with increasing diversity. All SES were significant, and 

observed assemblages showed less pairwise niche overlap than if the species were 

sampling randomly from available niche space. Considered geographically, mean 

pairwise overlap was highest in the north of the continent, and lowest in the deserts and 

Tasmania (Fig. S8). SES were lowest (most finely partitioned) in the southeast (Fig. S9). 

Across the entire ordination space, including allopatric species from around the 

continent, 11% of observations could be correctly classified to species. Within grid cells, 

between 15 and 57% of observations could be correctly classified. As expected, fewer 

points could be correctly classified at higher species richness. When values from the null 

model were used to derive SES, there was a positive correlation between these SES and 

species richness (R2 = 0.31, p < 0.001, Fig. 5). Species show increasingly distinct usage 

of niche space as diversity increases.  

 Foraging behavior showed a notable degree of phylogenetic signal (Table S2). 

Species’ positions along the 10 NMDS axes tended to be conserved. Only axis 10 did not 

show significant phylogenetic signal. This axis was driven by unusual foraging 

maneuvers like pecking, gaping, and hanging, and substrates like spider webs, woody 

fruits (e.g., Eucalyptus), and hanging bark (Table S1).  

  

DISCUSSION 

Community assembly rules have intrigued ecologists for well over 250 years. Darwin 

(1859) famously proposed that, owing to competition, potential invasive species will 

have more difficulty establishing in novel areas if a congeneric species already exists in 



that area than if they do not. Interspecific competition can structure species’ territories 

(Orians & Willson 1964), primary forest tree species ultimately outcompete pioneer 

species (Buffon 1742), competition has been shown to influence phenotypes (Schluter & 

Grant 1984), and we see interspecific squabbles at our bird feeders. Yet, at larger scales, 

the Eltonian Noise Hypothesis (Soberón & Nakamura 2009) reigns (see de Araújo et al. 

2014 for a specific test of the hypothesis, though researchers have been interested in the 

idea long before it had a name). Indeed, ideas such as neutral theory likely have been well 

received in part because of this noise (Hubbell 2001). 

In this study, we addressed five, non-mutually exclusive predictions that follow 

from the hypotheses that limiting similarity structures bird assemblages, and that species 

partition niche space. As diversity increases, to compensate, (1) species may occupy 

smaller niches, (2) become more closely packed in niche space, (3) or total assemblage 

niche space may grow as incoming species occupy peripheral niche positions. Also, if 

competition limits similarity, then (4) observed niche overlap should not increase linearly 

with the addition of new species, and (5) observed assemblage niche overlap should be 

less than expected. 

We found mixed support for the predictions. At higher species richness, co-

occurring species occupied larger niches (Fig. 2), showed little response in their average 

position (and distance from co-occurring species) in niche space (Fig. S6), and occupied 

larger total niche space (Fig. 3). Niche overlap is the norm in Australian honeyeater 

assemblages, as evidenced by the NMDS plot (Fig. S2) and these and previous results 

(e.g. Ford & Paton 1976).  



At the same time, observed niche overlap was always less than if co-occurring 

species sampled randomly from available niche space and, as compared with a null 

model, this niche partitioning increased with species richness (Fig. 4). Species became 

increasingly more identifiable by their foraging behavior as richness increased (Fig. 5). 

The most diverse communities showed the best evidence of niche partitioning.  

 Readers may question to what extent our data and methods are suitable to address 

these fundamental issues of ecology and evolutionary biology. With regards to the data 

quality itself, both niche size and position showed pronounced phylogenetic signal (Table 

S2), implying that the level of signal to noise ratio in the data was low, and that the 

ordination did indeed provide a reasonable multivariate descriptor niche space. Well-

known generalist species (e.g., Lichenostomus sensu lato) had large niches, while more 

specialized, ground-foraging insectivores and highly nectarivorous species had small 

niches. Within assemblages, 15-57% of observations could be correctly classified to 

species, and even at the continental-scale, with the entire dataset, 11% of observations 

could be correctly classified. Our niche space was ten-dimensional. While it may strike 

some readers as potentially over-fitting, we suggest that more than ten dimensions may 

best describe true niche space. Future studies should carefully consider potential niche 

space and its possible dimensions. 

 With regards to the applicability of these data to the questions, we know of no 

other dataset providing this level of detail. We acknowledge spatio-temporal biases, but 

we believe it is unlikely that additional data would change our conclusions. Our analyses 

account for differences in sample size among species. More data would provide more 

detail, but it would not dramatically alter the results. 



 We show here that species exhibit tremendous overlap in niche space. Whether or 

not this niche overlap is more than predicted by mathematical models remains to be 

tested (May & MacArthur 1972). Despite this overlap, species occupy characteristic 

niches, which corroborates our field-based intuition that species utilize subsets of niche 

space, and obtain these resources in species-specific manners. Evidence of niche 

partitioning was less obvious, and required the use of null models to demonstrate.  

 Based on maps of niche sizes and partitioning, it appears that some of the lowest 

levels of niche overlap occurred in the eastern deserts and Tasmania. The desert species 

occupied a small total niche space, and co-occurring species had small, widely separated 

individual niches. Tasmanian assemblages occupied large total niche spaces. Constituent 

species there exhibited large individual niches and were widely separated in space. It 

seems possible that populations in both of these regions are unable to grow large enough 

to buffer species from extinction given strong competition for niche space. In the case of 

the deserts, this process may lead to local extinction (i.e., an inability of immigrants to 

settle) of species with large niche overlap with residents, whereas in Tasmania it may 

have led to a small adaptive radiation into divergent niche spaces (Keast 1970).  

 The worldview that emerges from these results is one where species show some 

evidence of niche partitioning, particularly in low resource and insular habitats, but the 

general community assembly pattern is one of widespread niche overlap. Such a pattern 

can be explained if “local” communities (on any scale, including the acknowledged 

artificial scale employed here) are not inviolable evolutionary units, but merely 

geographically overlapping assemblages of species (Ricklefs 2008), each subject to a 

unique combination of the effects of competition, habitat filtering, and manifold 



additional extrinsic and intrinsic factors. In the title of the paper, we ask, “does 

competition matter?” Based on our results here, competition appears to influence 

community assembly in the honeyeaters, but we suggest that it is a relatively minor 

determinant of the process, and operates “after” such things as phylogenetic niche 

conservatism and stochastic factors have shaped which lineages occur where.  
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FIGURES 

 

Figure 1. Map of study sites across Australia. The size of the dot corresponds to the 

number of foraging observations we recorded at that site. 



 

Figure 2. Average species niche size per grid cell as a function of the richness of the grid 

cell. Species from the most species-rich grid cells occupy larger foraging niches on 

average (R2 = 0.31, p < 0.001). 



 

Figure 3. Assemblage-level functional dispersion, i.e. total niche size, as compared with 

species richness. The most species-rich assemblages occupy the largest total niches, 

though there is little absolute variation in the measure (R2 = 0.12, p < 0.001). 



 

Figure 4. Standardized effect sizes (SES) of mean pairwise niche overlap per grid cell as 

a function of the species richness of the cell. The SES are based on null model 

simulations where observations were randomly re-assigned per grid cell (R2 = 0.64, p < 

0.001). 



 

Figure 5. Standardized effect sizes (SES) of proportion of observations correctly 

classified to species per grid cell as a function of the species richness of the cell. The SES 

are based on null model simulations where observations were randomly re-assigned per 

grid cell (R2 = 0.31, p < 0.001). 

 



SUPPLEMENTARY FIGURES 

 

Figure S1. A bar graph showing sample size (number of independent foraging 

observations) across the 74 species of Meliphagidae included in the dataset. 

 

  



 

Figure S2. Ordination showing the first two axes from the non-metric multidimensional 

scaling of all 9,595 foraging observations. Continuous variable loadings are indicated 

with arrows. Centrodis of categorical variables such as foraging substrates, attack 

maneuvers, foliage density (FD), and distance from trunk (outer, middle, etc.) are 

denoted by text at the appropriate position. Each point, color-coded by species, 

corresponds to a unique foraging observation. 

  



 

Figure S3. Dated Meliphagidae phylogeny showing the evolution of niche size. Species 

with small niches are colored red, while species with large niches are colored in dark 

blue. A significant degree of phylogenetic signal was found in niche size (Pagel’s lambda 

= 0.75, p = 0.007). 

  



 

Figure S4. Functional dispersion at the community level, mapped across Australia. 

Yellow corresponds to small total community niche sizes, red to large. There is little 

absolute variation in the measure, but southwest Australia does have communities of 

slightly smaller total niche spaces. 

  



 

Figure S5. Average species niche size mapped across Australia. Yellow corresponds to 

small average niches, red to large. Species from the deserts of eastern Australia and, to a 

lesser degree, southwest Australia, tend to occupy smaller average niches. 

  



 

Figure S6. Mean pairwise Mahalanobis’ distances among species across the 10 

dimensions of the NMDS ordination, plotted against species richness. There is little 

pattern in the relationship, and more diverse assemblages do not appear more closely 

packed in niche space (R2 = 0.11, p < 0.001). 

  



 

Figure S7. Mean pairwise Mahalanobis’ distances among species mapped across 

Australia. Yellow corresponds to shorter distances, red longer. Species from assemblages 

in Tasmania and the eastern deserts are more widely separated in available niche space 

than are species in other regions of the continent.  

  



 

Figure S8. Mean pairwise niche overlap mapped across Australia. Yellow corresponds to 

lower levels of niche overlap, red to more. Species from Tasmania and the eastern deserts 

show the least absolute niche overlap. 

  



 

Figure S9. Standardized effect size of mean pairwise niche overlap mapped across 

Australia. Yellow corresponds to the most negative SES, which are grid cells that show 

the most significant niche partitioning as compared with the null randomizations.  

  



SUPPLEMENTARY TABLES 

Table S1. Table of loadings for continuous vectors and centroids of categorical variables 

across the ten dimensions of the non-metric multidimensional scaling ordination 

(NMDS). The continuous (including asymmetric binary) variables are on the first three 

rows. Foraging maneuvers and factor centroids begin with row “flake”. Hang directions 

begin with row “hang down,” and substrates begin with row “air.” Foliage density and 

then distance from trunk are the final rows. 

 

NMDS

1 NMDS2 NMDS3 NMDS4 NMDS5 NMDS6 NMDS7 NMDS8 NMDS9 NMDS10 

Dead -0.10 -0.10 0.03 -0.10 -0.07 0.48 -0.84 0.10 0.04 -0.14 

Attack 

height -0.03 -0.11 -0.06 0.73 0.39 -0.17 -0.21 -0.18 0.33 0.28 

Relative 

canopy 

height 0.04 0.00 -0.30 0.81 0.34 -0.35 -0.10 -0.07 -0.07 -0.05 

Flake -0.07 0.14 0.18 -0.03 -0.12 0.00 -0.05 0.00 0.10 0.06 

Flush-

pursue -0.05 0.19 -0.02 0.03 0.04 0.09 0.10 -0.11 -0.10 0.01 

Flutter-

chase -0.06 0.25 0.01 -0.01 -0.04 0.07 0.11 -0.15 -0.09 0.01 

Gape -0.06 0.00 0.10 0.03 0.04 0.16 0.00 0.02 0.03 0.07 

Glean -0.20 -0.07 0.02 -0.02 0.00 -0.03 0.01 0.00 -0.01 0.00 

Hammer -0.08 0.25 0.05 -0.23 -0.23 -0.12 -0.11 0.09 0.08 -0.02 

Leap -0.11 -0.03 -0.17 -0.10 -0.01 0.15 -0.04 0.14 0.10 -0.01 

Lunge -0.08 0.15 0.00 -0.16 -0.07 0.03 -0.07 0.04 0.05 0.02 

Peck -0.07 0.20 0.08 -0.14 -0.11 -0.05 -0.09 0.09 0.09 0.07 

Probe 0.20 -0.03 0.01 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 

Pull -0.05 0.07 0.10 0.06 0.00 0.10 -0.01 -0.03 0.07 -0.04 

Sally-

glide -0.07 0.30 -0.05 0.13 -0.08 -0.12 0.00 -0.05 0.05 0.05 

Sally- -0.07 0.10 -0.08 -0.03 0.03 0.08 -0.13 -0.09 0.02 0.06 



hover 

Sally-

pounce -0.07 0.15 0.08 -0.17 0.00 0.02 -0.05 0.03 0.10 0.02 

Sally-

stall -0.08 0.22 -0.07 0.09 -0.01 -0.07 -0.05 -0.03 0.03 0.01 

Sally-

strike -0.08 0.27 -0.07 0.10 -0.02 0.08 0.06 0.04 0.01 -0.01 

Screen -0.07 0.32 -0.08 0.16 -0.09 -0.18 -0.02 0.00 0.01 0.01 

Hang 

down -0.02 -0.15 0.06 0.09 -0.13 0.02 0.01 -0.10 0.09 -0.03 

Hang 

sideways -0.03 -0.12 0.12 0.10 -0.05 0.02 0.01 0.04 -0.07 0.17 

Hang up 0.04 -0.12 0.10 0.08 -0.06 0.02 0.02 0.10 -0.07 -0.14 

Hang 

upside-

down -0.02 -0.12 0.10 0.11 -0.07 0.01 -0.03 0.10 -0.02 -0.03 

Not 

hanging 0.00 0.04 -0.03 -0.03 0.03 -0.01 0.00 0.00 0.00 0.00 

Reach 

down -0.06 -0.06 0.20 0.09 -0.01 0.03 -0.02 0.05 0.03 -0.02 

Reach 

out -0.16 -0.16 0.04 0.07 -0.07 0.00 0.04 0.05 -0.04 -0.01 

Reach 

under -0.05 -0.06 0.23 0.09 0.00 0.00 0.00 0.00 -0.01 -0.03 

Reach up 0.03 -0.15 0.03 0.13 -0.05 0.00 0.00 0.02 -0.06 0.00 

Air -0.07 0.30 -0.05 0.09 -0.04 0.05 0.07 -0.01 -0.01 0.00 

Branch -0.06 0.02 0.20 0.03 0.13 0.00 0.00 0.02 0.05 0.00 

Flower 0.22 -0.03 -0.02 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 0.00 

Fruit -0.13 -0.05 0.00 -0.09 0.04 -0.10 0.19 -0.05 -0.01 0.00 

Ground -0.16 0.15 0.08 -0.24 -0.14 -0.13 -0.03 0.04 0.04 0.02 

Hanging 

bark -0.04 0.00 0.16 0.06 -0.03 0.03 -0.03 -0.01 -0.15 0.10 

Insect 

case 0.03 -0.01 0.05 0.01 -0.02 0.04 0.03 0.04 0.08 0.02 



Leaf -0.19 -0.10 -0.07 0.00 -0.01 0.03 -0.04 0.00 0.00 0.00 

Web -0.14 0.07 0.08 -0.04 0.00 -0.09 -0.01 -0.10 -0.10 -0.01 

Woody 

Fruit -0.03 -0.01 0.04 0.06 0.02 -0.05 0.03 0.05 -0.02 -0.02 

FD0 -0.08 0.20 0.06 0.02 -0.03 -0.01 -0.01 0.00 0.00 0.00 

FD1 -0.04 0.08 0.07 0.00 0.01 0.01 -0.04 -0.01 -0.02 -0.01 

FD2 0.02 -0.01 0.01 0.00 0.00 0.00 -0.03 -0.01 -0.01 -0.01 

FD3 0.03 -0.07 -0.03 0.00 0.00 0.00 0.02 0.00 0.01 0.00 

FD4 0.04 -0.13 -0.07 -0.02 0.02 0.01 0.06 0.01 0.02 0.01 

FD5 0.01 -0.17 -0.07 -0.07 0.07 0.09 0.07 0.02 0.01 0.00 

Inner 0.00 -0.01 0.15 -0.01 0.12 0.08 0.00 -0.02 -0.04 -0.01 

Middle 0.03 -0.05 0.02 -0.01 0.04 0.02 0.01 -0.01 -0.01 0.00 

Outer 0.00 0.00 -0.02 0.01 -0.03 -0.01 -0.01 0.00 0.00 0.00 

Way 

outer -0.11 0.26 -0.02 0.00 -0.11 -0.07 -0.01 0.04 0.03 0.01 

 

  



Table S2. Pagel’s lambda (a measure of phylogenetic signal) of species’ mean positions 

along each of the ten NMDS dimensions. Lambda ranges between 0 and 1, where 1 

equals Brownian motion evolution. All axes except 10 showed significant phylogenetic 

signal. 

NMDS axis Lambda p 

1 0.715 < 0.001 

2 0.907 < 0.001 

3 0.565 < 0.001 

4 0.813 < 0.001 

5 0.545 < 0.001 

6 0.960 < 0.001 

7 0.980 < 0.001 

8 0.789 < 0.001 

9 0.390 0.026 

10 0.279 0.192 
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