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Network Flexibility for Recourse Considerations in Bi-Criteria 
Facility Location 

 

 

Abstract 

 

 
What is the best set of facility location decisions for the establishment of a logistics 

network when it is uncertain how a company’s distribution strategy will evolve? What is 

the best configuration of a distribution network that will most likely have to be altered in 

the future? Today’s business environment is turbulent, and operating conditions for firms 

can take a turn for the worse at any moment. This fact can and often does influence 

companies to occasionally expand or contract their distribution networks. For most 

companies operating in this chaotic business environment, there is a continuous struggle 

between staying cost efficient and supplying adequate service. Establishing a distribution 

network which is flexible or easily adaptable is the key to survival under these 

conditions.  

 

This research begins to address the problem of locating facilities in a logistics network in 

the face of an evolving strategic focus through the implicit consideration of the 

uncertainty of parameters. The trade-off of cost and customer service is thoroughly 

examined in a series of multi-criteria location problems. Modeling techniques for 

incorporating service restrictions for facility location in strategic network design are 

investigated. A flexibility metric is derived for the purposes of quantifying the similarity 

of a set of non-dominated solutions in strategic network design. Finally, a multi-objective 

greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-

criteria, multi-level facility location problems.

iii 
 





   

1. Introduction 

 

1.1 Motivation 

Opening production plants and warehouses in a distribution network is very costly. 

For this reason, the vast majority of the literature approaches this strategic decision from 

the myopic point of view of cost minimization. However, this approach may not be ideal 

from the perspective of the end consumer. The customer is a key element and member of 

the supply chain (Murphy & Wood 2011), yet their needs are rarely addressed in strategic 

network design. This is unfortunate considering customer service level can usually be 

significantly improved at a slight increase in cost above the cost minimizing network 

design solution (Shen & Daskin 2005). This key finding is the primary impetus behind 

this work. In this research, the trade-off between cost and customer service in muti-

criteria strategic network design is explored. 

Multi-objective optimization requires the decision maker to select a compromise 

solution. Usually, the selected compromise solution is one which optimizes no individual 

objective considered, performs adequately across all criteria, and is not dominated by any 

other feasible solution. If no strict ordering of preferences or ranking of the criteria can be 

determined a-priori, then the problem must be addressed by identifying a subset of 

solutions that are superior to all other alternatives. Pareto optimality or non-dominance is 

what is required for a solution to be a member of this set. This approach is taken in this 

research, and the focus is on posteriori solution methods and analyses.  
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 In the field of multi-criteria optimization, several methodologies have been 

developed to assist the decision maker in the selection of what is often referred to as “the 

chosen solution.” These methodologies are usually centered on comparing compromise 

solutions based upon the performance of their respective objective function values. It is 

argued that although the objective function values are important in that they are what 

distinguish the efficient solutions from their dominated counterparts in a mathematical 

model, objective performance doesn’t have to, and perhaps shouldn’t  be the only factor 

determining the selection of an ideal compromise solution for discrete location problems.  

The similarity of a network of locations relative to its neighboring solutions on 

the frontier could also be an important factor to consider when selecting the chosen 

Pareto efficient solution. The ease and cost of altering a network is related to its similarity 

to the recourse distribution configurations. In this work, we consider this aspect of 

decision analysis and lay the foundation for a new multi-criteria decision aid tool for the 

purposes of identifying solutions which exhibit a high degree of similarity to adjacent 

efficient solutions on the Pareto frontier. 

A network which is flexible in this context is likely to be able to have its structure 

adjusted more economically in response to evolving logistical strategies concerning level 

of customer service. Transportation mode shifts, inventory stocking decisions and other 

considerations can also impact the service level of a company, in addition to location 

decisions. However, if flexibility is considered at the onset of the network design of a 

company, then Pareto optimality could be maintained more economically while altering 

this strategic distribution network in the future. 
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1.2 Similar Problems in the Literature 

 Ultimately, this research contributes to the field of multi-criteria decision making 

in facility location, as evidenced by the literature review given in chapter 3. There have 

been three prominent surveys on the subject over the years: ReVelle et al. (1981), Current 

et al. (1990), and Nickel et al. (2005). This indicates that MCDM approaches to facility 

location continue to be an area of interest to many researchers around the world. 

However, there are several areas of research other than pure location theory papers which 

have some similarity with this work. These problems are briefly discussed here. 

 Conceptually, a problem in the field of management sciences and operations 

research similar to this work is the Real Options problem. Real options valuation is a 

technique pioneered in the field of finance as an alternative to discounted cash flow and 

net present value approaches to capital budgeting problems (Trigeorgis 1996). Real 

options analysis is defined in Chow & Regan (2011) as the following: “Real options are a 

corporate finance concept derived from financial options to place a value on the 

flexibility of an investment decision.”  

 The technique of real options has been applied in scenarios beyond the purely 

financial decision analysis world to a variety of decision making problems under 

uncertainty. In the context of network design, the “real option” is the right to call 

(expand) or put (contract) the network in reaction to the realization of uncertain business 

environments. Several studies have been conducted recently applying real options 

analysis to the network design problem, for example, Chow & Regan (2011), Chow & 

Regan (2011b), Loureiro et al. (2012).  
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 Although conceptually similar, there are two very important differences between 

the field of real options research and the approach taken in this research. Firstly, real 

options problems explicitly consider the evolution of uncertain parameters over time. In 

other words, they are dynamic optimization problems which incorporate time directly in 

the model. Secondly, the uncertainty of parameters is modeled as a nonstationary 

stochastic process, usually as a Brownian motion function. These techniques typically 

require the use of dynamic programming, while this work is strictly discrete, which is a 

significant simplification compared to real options work. The consideration of evolving 

parameters over time and the incorporation of stochastic processes are areas of future 

research. 

 Distribution system or supply chain redesign is another problem which has 

several similarities with this work. In these studies, an established network exists, and a 

change in the operating environment prompts a business to reevaluate their current 

distribution strategy. The result of this is usually that their network has been altered based 

upon senior management wishing to adjust their distribution scheme in response to a 

changing business environment. An excellent example of one such study is Camm et al. 

(1997). In that paper, the company Proctor & Gamble realized savings of over $200 

million dollars per year in a network redesign initiative. Several warehouse locations 

were closed as a result of this distribution system rationalization. 

 The main similarity between this work and the discrete distribution system 

redesign problem is that the parameters are unchanging during the optimization process, 

and network redesign is the primary theme of the work. Although these techniques are 

applied because of a direct result of the changing parameters in the operating 
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environment, the key difference between that field and the research here is that the 

uncertainty of the operating environment is implicitly considered at the distribution 

system design or redesign phase in the hopes that future redesign initiatives will be less 

expensive.  

 The flexibility of distribution strategies are being explored in a relatively new 

stream of research bearing some ideological similarities to the research developed here. 

Lin et al. (2007), Shimizu (2006), Cheshmehgaz et al. (2013), Rad et al. (2014) are some 

examples of this work. However, this stream of research is centered on the analysis of 

varying distribution amounts across the arcs in a given network. Therefore, these works 

are developing tactical level distribution strategies given an established, unalterable 

network of location decisions. This work focuses solely on strategic level location 

decisions. Integrating that stream of research with ideas developed here is an area of 

future research. 

  There are some graph theoretic papers that are conceptually similar to the work 

developed in this research, (Graham 1987, Lauri 2011, Koutra et al. 2011, Raymond et al. 

2012). Specifically, the area of graph similarity and the sub-graph matching problem 

have some bearing here. These research areas all focus on nodal evaluations and the 

connectivity of the graph. However, the methodology developed in this thesis does not 

consider the distribution arcs or graph connectivity. Incorporating some of these more 

sophisticated analytical techniques in the analysis of network flexibility is an area of 

future research. 

 Figure 1.1 depicts a simple example illustration of the research pursed here.   
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 Points A-E in figure 1.1 comprise the non-dominated set considering the criteria 

of cost and service level. Solution point D is superior from a network flexibility 

standpoint, as found in an analysis of the Pareto efficient set. Note that the cost 

minimizing and service maximizing solutions (A and E respectively) each perform worse 

than the compromise solutions, B-D on the metric of flexibility. The main point of this 

simple illustration is to highlight the fact that in discrete location, the relative similarity 

of a network of location decisions amongst a set of Pareto optimal configurations is a 

criterion that is not necessarily correlated with either service maximization or cost 

minimization. In fact, the performance of this criterion can vary quite widely among 

adjacent points on the frontier. This property is a key driver for this research, where the 

foundation for the quantifying of a performance metric called “network flexibility” is 

established. 

  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Figure 1.1 Post-optimal flexibility evaluation of the non-dominated set 

C 
D 

B 
A 

E 

𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐶𝐶𝐹𝐹 
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1.3 Research Purpose 

To address this consideration of network flexibility, the following question is 

considered: Do subsets of Pareto optimal solutions exist which have similar network 

structures? If so, which scenarios tend to generate cost efficient, highly flexible 

solutions? Not only would a decision maker be more reassured they selected a good 

compromise solution between cost and customer service, the increase in cost for a 

network to improve customer service in the future while possibly maintaining Pareto 

optimality could be drastically reduced. If a business sought to improve customer service 

in the future by altering their distribution network, this would potentially be much more 

costly to do so if the underlying structure of said network is inflexible in this context. If a 

compromise solution is selected purely based upon objective value performance, then the 

optimal locations themselves could very well result in a highly fragile network structure, 

which is costly to maintain optimality if reconfiguration is desired in the future. 

 A highly flexible distribution network is analogous to a manufacturing system 

capable of performing cost effective switches between production runs of varying types 

of goods. The scale and magnitude of costs are clearly different, but the concept is the 

same. Choosing a compromise solution can be a difficult task, but it can be simplified if 

the decision maker is presented with a solution that is non-dominated and highly flexible. 

This concept of quantifying flexibility through network similarity will be 

investigated via a Multi-Criteria Decision Analysis (MCDA) tool. MCDA is a technique 

used to assist decision makers in the selection of a course of action while considering 

multiple criteria. The MCDA approach taken here is complementary with classical multi-

objective combinatorial optimization (MOCO) techniques. A post-optimality analysis for 
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evaluating solution alternatives on the Pareto frontier and generating a set of performance 

metrics reflecting the network flexibility of each solution is the primary purpose of this 

research. 

In addition to the research quantifying the similarity of a distribution networks, a 

new approach for modeling service level considerations in strategic network design 

problems is given. This contribution expands location theory in the general area of 

facility location in public sector modeling. Lastly, the first implementation of a multi-

objective greedy randomized adaptive search (MOG) meta-heuristic for a multi-echelon 

location problem (Feo & Resende 1989) is provided and implemented. 

Section two briefly summarizes some key foundational theory of multi-objective 

optimization. Pareto optimality and the fundamental mathematics of discrete multi-

objective optimization of problems are summarized. In section three, the historical 

techniques for incorporating service level considerations are reviewed and discussed. 

Additionally, a unique modeling approach for service levels in distribution location is 

provided with a series of mathematical formulations for a variety of strategic network 

design problem. The field of MCDA is discussed in section four, and metrics used to 

capture network flexibility are derived and explained. In section five, the algorithmic 

solution approaches for this work are discussed. A simple, preliminary example is 

provided in section six. Computational exercises and analysis is given in section seven as 

well as a synthesis of the proposed contributions to the literature of this research. 
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2. Multi-Criteria Optimization Theory 

 

 As opposed to the mono-objective optimization problem, problems with more 

than one objective or multi-objective optimization problems seek to minimize (or 

maximize) a vector of 𝑘𝑘 objectives. In most cases, these objectives are conflicting where 

improving one objective degrades the value of others. The tradeoff inherent amongst 

objectives leads to an impossibility (usually) of attaining a single global optimum. This 

complication is addressed by generating a set of Pareto efficient, or Pareto optimal 

solutions which can be seen as being prefered to all others in a nonempty  feasible region 

𝑆𝑆. For this work, bold lower case notation can be assumed to be a column vector and bold 

upper case notation can be assumed to be a matrix of size 𝑚𝑚 × 𝑛𝑛 with 𝑚𝑚 rows and 𝑛𝑛 

columns. 

 

2.1 Multi-Objective Optimization 

 The notation used here is inspired by and similar to that used in both Miettinen 

(1999) and Collette & Siarry (2004). 

 The multi-objective optimization problem can be generalized as having the 

following form: 

𝑚𝑚𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝑆𝑆 {𝑓𝑓1(𝐱𝐱),𝑓𝑓2(𝐱𝐱), … ,𝑓𝑓𝑘𝑘(𝐱𝐱)}   (2.1) 
𝐶𝐶𝑠𝑠𝐹𝐹𝑠𝑠𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐶𝐶  𝐱𝐱 ∈ 𝑆𝑆, 

 

where there are 𝑘𝑘 ≥ 2 objective functions, and the decision variable vector 𝐱𝐱 =

(𝐹𝐹1,𝐹𝐹2, … , 𝐹𝐹𝑛𝑛)𝑇𝑇 belongs to 𝑆𝑆 which is a subset of the decision variable space 𝑅𝑅𝑛𝑛. In 
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problem (2.1), the constraint functions defining the region of feasibility are not provided 

so 𝑆𝑆 can be referred to hereafter in a more generalizable context. For ease of exposition 

regarding the mathematical notation used in this work, it is assumed that all objectives 

are to be minimized unless otherwise stated. 

In problem (2.1), the vector of objective functions is denoted by 𝐟𝐟(𝐱𝐱) =

{𝒇𝒇𝟏𝟏(𝐱𝐱),𝒇𝒇𝟐𝟐(𝐱𝐱), … ,𝒇𝒇𝒌𝒌(𝐱𝐱)}𝑇𝑇 . The image of the feasible region is a subset of the objective 

space and is denoted by 𝑍𝑍 = 𝐟𝐟(𝑆𝑆). This is typically referred to as the feasible objective 

region, where 𝑍𝑍 ⊂ 𝐑𝐑𝑘𝑘. The objective vectors or criterion vectors are denoted by 𝐳𝐳 =

(𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑘𝑘)𝑇𝑇 or 𝐟𝐟(𝐱𝐱), where 𝑓𝑓𝑖𝑖(𝐱𝐱) = 𝑚𝑚𝑖𝑖   ∀ 𝑆𝑆 = 1,2, … ,𝑘𝑘. The elements of Z are referred 

to as the criterion values or the objective function values.  

To provide more clarity as to the structure of 𝑆𝑆, it is convenient to further refine 

problem (2.1) in the following vectored notation: 

𝑚𝑚𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝑆𝑆 𝑓𝑓(𝐱𝐱)     (2.2) 
𝐶𝐶. 𝐶𝐶.              �⃗�𝑔(𝐱𝐱) ≤ 0 
                     ℎ�⃗ (𝐱𝐱) = 0 
where 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛, 𝑓𝑓(𝐱𝐱) ∈ 𝐑𝐑𝑘𝑘, �⃗�𝑔(𝐱𝐱) ∈ 𝐑𝐑𝑚𝑚 and  ℎ�⃗ (𝐱𝐱) ∈ 𝐑𝐑𝑝𝑝 

 

Problem 2.2 seeks to minimize a criterion vector of size 𝑘𝑘 manipulating 𝑛𝑛 decision 

variables subject to vectors of 𝑚𝑚 inequality constraints and 𝑝𝑝 equality constraints. 

Constraints of the form ℎ�⃗ (𝐱𝐱) = 0 are often referred to in the literature as active 

constraints. 

 

2.2 Pareto Optimality 

 The origins of the field of multi-objective optimization can be traced back to the 

ideas of Irish philosopher and economist, Francis Ysidro Edgeworth, and Italian engineer 
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and economist, Vilfredo Pareto. In 1881, Edgeworth described the concept of isolating 

criterion vectors of interest where no components or objective values can be improved 

without simultaneously deteriorating at least one other (Edgeworth 1987). Pareto 

developed the concept of domination and Pareto efficiency building upon the ideas of 

Edgeworth in 1896 (Pareto (1964, 1971). 

 Because attaining global optimality in most MOCO problems is generally not 

feasible, one must restrict the focus to identifying a subset of decision vectors in S which 

are better than the others. These “prefered” solutions map to objective values which are 

Pareto efficient, and they can be found on the leading edge of the k dimensional solution 

space. Solutions on this leading edge that are non-dominated are called Pareto optimal. 

The domination relation defined below is the key to identifying the subset of solutions 

which are Pareto Optimal. 

 
Definition 1. Domination Relation 
A vector 𝐱𝐱1 𝑑𝑑𝐶𝐶𝑚𝑚𝑆𝑆𝑛𝑛𝑑𝑑𝐶𝐶𝑆𝑆𝐶𝐶 𝐶𝐶𝐶𝐶𝐹𝐹𝑠𝑠𝐶𝐶𝑆𝑆𝐶𝐶𝑛𝑛 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆 𝐱𝐱2 if the following property holds: 
𝐱𝐱1𝑆𝑆𝐶𝐶 𝑑𝑑𝐶𝐶 𝐹𝐹𝑆𝑆𝑑𝑑𝐶𝐶𝐶𝐶 𝑑𝑑𝐶𝐶 𝑔𝑔𝐶𝐶𝐶𝐶𝑑𝑑 𝑑𝑑𝐶𝐶 𝐱𝐱2 𝑓𝑓𝐶𝐶𝑆𝑆 𝑑𝑑𝐹𝐹𝐹𝐹 𝐶𝐶ℎ𝑆𝑆 𝐶𝐶𝐹𝐹𝑠𝑠𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 and 
𝐱𝐱𝟏𝟏𝑆𝑆𝐶𝐶 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐹𝐹𝐹𝐹 𝐹𝐹𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑑𝑑𝑛𝑛 𝐱𝐱2 𝑓𝑓𝐶𝐶𝑆𝑆 𝑑𝑑𝐶𝐶 𝐹𝐹𝑆𝑆𝑑𝑑𝐶𝐶𝐶𝐶 𝐶𝐶𝑛𝑛𝑆𝑆 𝐶𝐶𝐹𝐹𝑠𝑠𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑛𝑛 𝐟𝐟(𝐱𝐱). 

 

The domination relation and Pareto optimality go hand in hand, as seen in definition 2, 

which provides a formal definition for global Pareto Optimality. 

 
Definition 2. Global Pareto Optimality 
A decision vector 𝐱𝐱∗ ∈ 𝑆𝑆 𝑆𝑆𝐶𝐶 𝑃𝑃𝑑𝑑𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝐶𝐶𝑝𝑝𝐶𝐶𝑆𝑆𝑚𝑚𝑑𝑑𝐹𝐹 if there does not exist another 
decision vector 𝐱𝐱 ∈ 𝑆𝑆 such that 𝑓𝑓𝑖𝑖(𝐱𝐱) ≤ 𝑓𝑓𝑖𝑖(𝐱𝐱∗)  ∀ 𝑆𝑆 = 1, 2, … ,𝑘𝑘 and  
𝑓𝑓𝑗𝑗(𝐱𝐱) < 𝑓𝑓𝑗𝑗(𝐱𝐱∗) 𝑓𝑓𝐶𝐶𝑆𝑆 𝑑𝑑𝐶𝐶 𝐹𝐹𝑆𝑆𝑑𝑑𝐶𝐶𝐶𝐶 𝐶𝐶𝑛𝑛𝑆𝑆 𝑆𝑆𝑛𝑛𝑑𝑑𝑆𝑆𝐹𝐹 𝑠𝑠 ≠ 𝑆𝑆. 

  

The globally Pareto optimal set contains the set of prefered alternatives in Z. However, 

there are also some solution values on the leading edge which do not belong to the Pareto 
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optimal set yet still exist on the frontier. These objective values are often refered to as 

weak Pareto optimal solutions. The Pareto optimal set is a subset of the weak Pareto 

optimal set, meaning that the entire leading edge in solution space is weakly Pareto 

optimal. Definition 3 formally defines weak Pareto optimality. 

Definition 3. Weak Pareto Optimality 
A decision vector 𝐱𝐱∗ ∈ 𝑆𝑆 𝑆𝑆𝐶𝐶 𝑤𝑤𝑆𝑆𝑑𝑑𝑘𝑘𝐹𝐹𝐹𝐹 𝑃𝑃𝑑𝑑𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝐶𝐶𝑝𝑝𝐶𝐶𝑆𝑆𝑚𝑚𝑑𝑑𝐹𝐹 if there does not exist  
another decision vector 𝐱𝐱 ∈ 𝑆𝑆 such that 𝑓𝑓𝑖𝑖(𝐱𝐱) < 𝑓𝑓𝑖𝑖(𝐱𝐱∗)  ∀ 𝑆𝑆 = 1, 2, … ,𝑘𝑘. 

 

 Figure 2.2.1 presents an example mapping of a two variable constraint defined 

feasible space to an objective space of dimension 𝐑𝐑2.  

 

 

 

 

 

 

 

 If the case where minimization is sought for both objectives, the entire Pareto 

frontier depicted in Figure 2.1 is identified by the edge in Z space closest to the origin 

connecting solutions 𝐳𝐳1 and 𝐳𝐳4. The (𝐳𝐳2, 𝐳𝐳3) edge of the frontier represents the set of 

Pareto optimal solutions. The solutions on the frontier from 𝐳𝐳3 (but not including) to 𝐳𝐳4 

are only weakly Pareto optimal and are therefore dominated by the Pareto optimal edge. 

The same applies to the solutions between 𝐳𝐳2 (but not including) and 𝐳𝐳1 as they are also 

merely weakly Pareto optimal. 

𝑓𝑓1(𝐱𝐱) 

𝑓𝑓2(𝐱𝐱) 

𝑍𝑍 

Figure 2.1 The feasible region S, its mapping to Z, and the Pareto frontier  
𝐹𝐹1 

𝐹𝐹2 

𝑆𝑆 

𝐳𝐳1 
𝐳𝐳2 

𝐳𝐳3 𝐳𝐳4 
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3. Bi-Criteria Distribution Network Design 

 

Location problems are characterized by a space or geographic region, a distance 

metric, and a set of known points. In discrete problems, these points typically represent 

demand originating sites and/or established facilities in a system or candidate facility 

locations. The manner in which demand is represented in the problem, either discretely, 

stochastically, or as a continuous function of density over an area is another defining trait 

of any location problem. Lastly, the facilities themselves can be sited at discrete 

candidate locations, or continuously at derived locations on a plane. The decision maker’s 

task is to locate at least one new facility and allocate demand such that a desired objective 

is achieved, whether that may be the minimization of costs or a surrogate measure of 

costs, the maximization of a customer service metric, or something else entirely. 

Since the seminal paper Geoffrion and Graves (1974), multi-echelon distribution 

location problems have been studied with ever increasing interest in the literature. 

Recently, several surveys have been provided on the topic or a related area recently; 

Bilgen & Ozkarahan (2004), Klose & Drexl (2005), Sahin & Sural (2007), Shen (2007), 

Melo et al. (2009), and Farahani et al. (2014). This indicates that modeling distribution 

networks continues to be a thriving area of research. Additionally, multi-criteria 

approaches have been consistently investigated for these problems throughout the years, 

as evidenced by the following surveys on the subject: ReVelle et al. (1981), Current et al. 

(1990), Nickel et al. (2005), and Farahani et al. (2010). 

The problem of designing a distribution network is typically approached as a 

facility location problem. In these types of models, a series of location decisions 
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reflecting the opening of a facility and the assignment of demand is made. The 

production-distribution hierarchical location problem and the strategic network or supply 

chain design problem are two different modeling approaches to distribution network 

design, with supply chain papers typically including additional decisions beyond 

location-allocation.  

In this chapter, the seminal papers from location theory pertinent to this 

discussion will be highlighted, and the literature on multi-criteria facility location in 

distribution network design is synthesized and summarized. In addition, a series of 

discrete facility location problems will be provided throughout as well as a discussion on 

modeling service levels in distribution network design. The notation used in this chapter 

is based on Daskin (2013). 

 

3.1 Model Assumptions 

 Several simplifying assumptions are required by the modeling approach taken in 

this work. A brief discussion of the more prominent assumptions required in discrete 

facility location follows. 

• Static Model  

Many real world scenarios in facility location are not static in nature. Therefore, non-

dynamic modeling approaches to strategic location problems can signify a simplifying 

assumption in the form of static model parameters. 

• Deterministic Parameters.  

Some model parameters in most strategic network design problems are inherently 

stochastic. Deterministic approaches are usually a simplification. 
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• Single, Homogenous Product.  

Very few real world distribution systems produce, move and store a single product. For 

this reason, approaches which model a single aggregated product is a significant 

simplification. 

• Inelastic Demand 

In many real world scenarios, demand is responsive to the level of service provided. For 

this work however, an assumption of inelastic demand is made. However, the 

development of profit-based objectives incorporating the elasticity of demand for 

distribution systems is an especially interesting area of future research. 

• Closest Facility Assignments 

In uncapacitated facility location modeling, demands are typically assigned to the closest 

open facility. For this work, this assumption will be dropped for some models. Multiple 

echelon distribution systems exhibit interesting properties in regards to closest 

assignment. This is discussed in depth later in this chapter. 

• Demand Allocation Made in Isolation for each Demand-Facility Pair 

Often, subsets of demand points require service from the same facility. Therefore, this is 

usually a simplifying assumption in many real world problems. 

• Uncapacitated Models 

For this research, capacity considerations will not be considered. This can be seen as a 

simplifying assumption for some real world scenarios. However, the interest here is 

strictly limited to the spatial impact of location decisions in distribution networks on cost 

and service level. For this reason, the arbitrary incorporation of capacity considerations is 

not necessary. Additionally, adding capacity can lead to seemingly strange customer 
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facility assignments and can significantly increase the difficulty of solving these 

problems, (Waston et al 2013). Capacity considerations in this stream are an area of 

future research. 

• Direct Shipment 

In the work provided here, multi-stop routes or other more sophisticated distribution 

strategies are not modeled. The simplifying assumption is that transportation costs can be 

adequately approximated via a linear function of distance between a customer and their 

assigned facility. 

• No Economies of Scale Shipment Savings 

The per unit distribution cost differences are minimal in the work, reflecting that there is 

no economies of scales savings on any long haul arcs due to varying modes or cost 

structures. 

 

3.2 Background 

The location of warehouses in distribution networks has been studied since Kuehn 

& Hamberger (1963). The P-Median location problem is the forbearer of discrete 

modeling approaches in strategic network design. The seminal paper Hakimi (1964) 

originally defined the P-Median problem on a network seeking to locate P facilities such 

that the total demand-weighted distance to service all customers is minimized in a graph 

theoretic contribution. An integer programming formulation of the problem is provided in 

ReVelle & Swain (1970) and has been widely used ever since. This formulation is 

provided below. 

Inputs 
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ℎ𝑖𝑖 = demand at node 𝑆𝑆 ∈ 𝐼𝐼  

𝑑𝑑𝑖𝑖𝑗𝑗 = distance between demand node 𝑆𝑆 ∈ 𝐼𝐼 and candidate facility location 𝑠𝑠 ∈ 𝐽𝐽  

𝑃𝑃 = number of facilities to locate  

Decision Variables 

𝑋𝑋𝑗𝑗 = �1 if location 𝑠𝑠 ∈ 𝐽𝐽 is selected
0 otherwise                              

 

𝑌𝑌𝑖𝑖𝑗𝑗 = �1 if demand at node 𝑆𝑆 ∈ 𝐼𝐼 is served by a facility at 𝑠𝑠 ∈ 𝐽𝐽
0 otherwise                                                                                

 

Using this notation, the P-median problem is formulated as follows: 

Minimize ∑ ∑ ℎ𝑖𝑖𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼        (3.1) 

Subject To: ∑ 𝑌𝑌𝑖𝑖𝑗𝑗 = 1𝑗𝑗∈𝐽𝐽    ∀𝑆𝑆 ∈ 𝐼𝐼     (3.2) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 = 𝑃𝑃         (3.3) 

𝑌𝑌𝑖𝑖𝑗𝑗 ≤ 𝑋𝑋𝑗𝑗   ∀𝑆𝑆 ∈ 𝐼𝐼; 𝑠𝑠 ∈ 𝐽𝐽    (3.4) 

𝑋𝑋𝑗𝑗 ∈ {0,1}   ∀𝑠𝑠 ∈ 𝐽𝐽     (3.5) 

𝑌𝑌𝑖𝑖𝑗𝑗 ∈ {0,1}   ∀𝑆𝑆 ∈ 𝐼𝐼; 𝑠𝑠 ∈ 𝐽𝐽    (3.6) 

Objective (3.1) minimizes the total demand-weighted distance between the demand nodes 

and the closest facility. Constraint (3.2) forces all demands to be satisfied. Constraint 

(3.3) states that exactly P facilities are to be located. Constraint (3.4) prevents the 

assignment of any demand to a facility that is not selected. Constraint (3.5) and (3.6) are 

binary restrictions on the location and customer assignment decision variables. 

 This model tends to locate facilities close to large clusters of demand. Therefore, 

the minimization of the weighted average distance (P-median) performs well on the 

metrics of transportation costs and aggregate customer service in the form of average 

response time. For this reason, the P-Median facility location model remains today as one 

17 Copyright, Jeremy W. North, 2014 
 



   

of the most useful approaches to network design It is often the best starting point, or all 

that is needed when considering a strategic network design or supply chain design 

problem (Watson et al. 2013). Secondly, this approach highlights the value of additional 

facilities. As the number of facilities to locate P is increased, a decreasing marginal 

improvement in transportation costs and customer service can be seen. However, as 

pointed out in Daskin (2013), the marginal improvement in demand weighted total 

distance isn’t always strictly monotonically decreasing. This characteristic is present in 

most real networks. 

 In the case where a direct consideration of the fixed facility location costs is 

essential to incorporate in a modeling approach, the simple facility location model or the 

uncapacitated facility location problem (UFLP) can be considered. It is usually prudent to 

do so when the differences in the costs to open a facility differ significantly across 

candidate locations. Otherwise, there is no need to include this cost parameter and 

complicate the model unnecessarily. The reason for this is that the sum product of fixed 

costs and location variables would be roughly proportional to the total number of 

facilities chosen, in which case, it would be beneficial to examine the demand weighted 

total distance at varying levels of the amount of total locations to select. 

 Determining the number and optimal location of warehouses in a distribution 

network was first considered in Kuehn & Hamberger (1963). Efroymson & Ray (1966) 

expanded upon this work and provided a branch and bound algorithm for the optimal 

location of factories. Finally, Erlenkotter (1978) is considered a seminal paper in this 

field as well. In that work, the authors provide an efficient dual-based procedure which is 

still heavily used today. The formulation for the UFLP is given below. 
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Inputs 

𝑓𝑓𝑗𝑗 = annualized fixed cost of opening a facility at 𝑠𝑠 ∈ 𝐽𝐽  

𝑆𝑆𝑖𝑖𝑗𝑗 = cost to service demand 𝑆𝑆 ∈ 𝐼𝐼 from candidate facility location 𝑠𝑠 ∈ 𝐽𝐽  

Decision Variables 

 

𝑌𝑌𝑖𝑖𝑗𝑗 = proportion of demand at node 𝑆𝑆 ∈ 𝐼𝐼 served by a facility at 𝑠𝑠 ∈ 𝐽𝐽 

Using this additional notation, the UFLP is formulated as follows: 

Minimize ∑ 𝑓𝑓𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 + ∑ ∑ 𝑆𝑆𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼       (3.7) 

Subject To: ∑ 𝑌𝑌𝑖𝑖𝑗𝑗 = 1𝑗𝑗∈𝐽𝐽    ∀𝑆𝑆 ∈ 𝐼𝐼     (3.8) 

𝑌𝑌𝑖𝑖𝑗𝑗 ≤ 𝑋𝑋𝑗𝑗   ∀𝑆𝑆 ∈ 𝐼𝐼; 𝑠𝑠 ∈ 𝐽𝐽    (3.9) 

𝑋𝑋𝑗𝑗 ∈ {0,1}   ∀𝑠𝑠 ∈ 𝐽𝐽     (3.10) 

𝑌𝑌𝑖𝑖𝑗𝑗 ≥ 0    ∀𝑆𝑆 ∈ 𝐼𝐼; 𝑠𝑠 ∈ 𝐽𝐽    (3.11) 

Objective (3.7) minimizes the total costs. Constraint (3.8) forces all demands to be 

satisfied. Constraint (3.9) prevents the assignment of any demand to a facility that is not 

selected. Constraint (3.10) is a binary restriction on the location variables. Constraint 

(3.11) enforces non-negativity on the demand allocation variables. Note that due to 

constraint (3.8), the demand allocation variables 𝑌𝑌𝑖𝑖𝑗𝑗 have an upper bound of 1. 

 In the UFLP, the tradeoff inherent in fixed facility location costs and variable 

transportation costs are considered directly in the objective. As the number of facilities is 

increased, transportation costs decrease. Usually, the optimal solution for the UFLP is 

one which balances this tradeoff.  

 The previous models are both concerned with cost based performance metrics (or 

a surrogate measure of cost). In network design problems, customer service is an oft 
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overlooked factor in modeling distribution systems. For this work, the metric of customer 

service is considered directly in a multi-criteria framework, with the intent of adequately 

capturing and analyzing the trade-off between service level and cost in distribution 

system design. 

 An alternate approach to incorporating customer service restrictions on a 

distribution problem would be to simply add a maximum service level constraint to the 

model. An early paper taking this approach is Holmes et al. (1972), and an old review on 

these modeling approaches is given by Moon & Chaudry (1984).  

These types of models are usually referred to as time definite or maximum service 

restriction problems. Using the previously defined notation, a service level constraint for 

the P-Median problem is provided below. 

𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗 ≤ 𝑑𝑑𝑐𝑐   ∀𝑆𝑆 ∈ 𝐼𝐼; 𝑠𝑠 ∈ 𝐽𝐽    (3.12) 

where 𝑑𝑑𝑐𝑐 is a maximum coverage distance. In concert with constraint (3.2), this approach 

forces all customers to be assigned to a facility within a certain distance, mandating a 

maximum response time. When incorporated in a P-Median problem, this effectively 

minimizes total demand weighted distance given a minimum service level for all 

demands. This is essentially a single iteration of a multi-criteria scalarization technique 

resulting in the identification of a single point on the trade-off frontier between cost and 

customer service. In this work, a broader viewpoint is considered, where the entire Pareto 

frontier is of interest.  

 Before proceeding further with the historical coverage based modeling 

approaches, a brief discussion of the various factors influencing service level in private 

sector distribution systems follows. 
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• Proximity to customer 

The proximity of a distribution location to a customer is the primary determinant of 

service level, (Murphy & Wood 2011). The approach taken in this work is to focus solely 

on this contributing factor of service level via the use of discrete location models. 

• Inventory levels 

Lead time to customer is heavily impacted by the inventory levels at stocking locations 

throughout a distribution system. Generally, higher inventory levels lead to increased 

levels of customer responsiveness. 

• Reorder Policies 

The reorder policy or strategy at any given echelon of a distribution system also impacts 

the customer responsiveness of the system. The reason for this is that the reorder policy 

of a product determines the stocking levels of a product over a time horizon, which in 

turn affects customer responsiveness/service level. 

• Model Choice 

The mode of transportation used to deliver product to a customer is a factor that has a 

massive impact on customer service level. After all, what is reachable by a plane in one 

day is much larger than the distance achievable by an automobile in a day. 

• Direct Shipment from Warehouses 

A common assumption in location allocation models in distribution networks is that 

demands can only be serviced by warehouses. In a multi-echelon problem when demand 

can potentially be serviced by different types of facilities (like plants for example), this is 

a rather restrictive assumption. In some models considered in this work, this assumption 

will be dropped, and customers can be serviced by plants or warehouses. 
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• Employee Training 

Many intangible factors also contribute to customer service level. The level of training or 

experience level of the employees affecting the movement and storage of goods and 

materials is one of the more prominent of these intangible factors. 

 The use of covering based objectives in this work is driven by the fact that in most 

private sector distribution problems, service levels are naturally partitioned by delivery 

windows, usually in days. What this means is that customers (retailers) don’t necessarily 

care if they can receive their shipment within one hour of issuing an order or one day. To 

them, service level is essentially one day. This factor naturally leads to the performance 

metric of customer service to be measured in days elapsed since the issuance of an order. 

Provided below is an example illustration from Murphy & Wood (2011) depicting 

varying service levels in distribution. 
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Figure 3.1 Distribution radii of a warehouse in Central Oklahoma 
 

Depicted above in figure 3.1 is an example of one and two day delivery zones for a 

hypothetical warehouse located in Central Oklahoma. Under the assumption that any 

demand within the radius of 500 miles from this location has an adequate road network 

such they can be reached in time, their service level is effectively measured at one day. 

Therefore, the service level to a customer located at Tulsa, Oklahoma is the essentially 

the same as a customer located in Omaha, Nebraska, because both locations can be 

reached in one day. However, a customer located at Atlanta, Georgia would receive a 

lower level of service if they received product from the same location. It is this reality in 

physical distribution which led us to take coverage based approaches in this work, where 

a customer is covered if they are within a given distance from their assigned facility.  
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 Another important consideration leading to the use of coverage base approaches is 

the recent emphasis on same day delivery in business. The explosion of ecommerce has 

fueled the idea of reducing the time elapsed between order and delivery to point where it 

is a heated area of competition. Covering based modeling approaches in facility location 

can be used to help address these considerations in distribution system design. 

 In covering models, there are two core approaches. The first is set covering, or 

what is called the set covering location problem (SCLP). Once again, the initial discovery 

of this location problem is attributed to Seifollah Louis Hakimi in his seminal graph 

theoretic work Hakimi (1965). An integer programming formulation of this problem was 

given in Toregas et al. (1971). This model is provided below. 

 

 Inputs 

𝑑𝑑𝑖𝑖𝑗𝑗 = �1 if candidate facility 𝑠𝑠 ∈ 𝐽𝐽 can cover demand 𝑆𝑆 ∈ 𝐼𝐼
0 otherwise                                                                         

  

Using this additional notation, the SCLP is formulated as follows: 

Minimize ∑ 𝑓𝑓𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽         (3.13) 

Subject To: ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 ≥ 1𝑗𝑗∈𝐽𝐽   ∀𝑆𝑆 ∈ 𝐼𝐼     (3.14) 

𝑋𝑋𝑗𝑗 ∈ {0,1}   ∀𝑠𝑠 ∈ 𝐽𝐽     (3.15) 

Objective (3.13) minimizes the fixed costs of all selected facilities. Constraint (3.14) 

forces all demands to be covered at least once. Constraint (3.15) is a binary restriction on 

the location variables.  

The set covering location model does not consider the assignment of demands to 

locations. In scenarios where capacity is a concern, other approaches modeling the 
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decision of customer assignment may be necessary. For ease of further discussion, the 

binary coverage matrix is redefined below using the previously given notation. 

𝑑𝑑𝑖𝑖𝑗𝑗 = �1 if 𝑑𝑑𝑖𝑖𝑗𝑗  ≤ 𝑑𝑑𝑐𝑐
0 otherwise 

 

This implies that the number of facilities needed in any given realization of a SCLP is 

controlled to a large extent by the maximum coverage distance parameter 𝑑𝑑𝑐𝑐. As this 

value increases, the number of facilities needed to cover all demands decreases, and vice 

versa. Note that if the cost to locate a facility is the same for all candidate locations 𝑠𝑠 ∈ 𝐽𝐽, 

the fixed cost parameters 𝑓𝑓𝑗𝑗   may be dropped from the model. 

 In the SCLP, all customers must be served within a maximum service level and 

transportation costs are largely ignored. However, similar to the relationship of the P-

Median versus the UFLP, it may be more beneficial to examine the incremental impact of 

adding facilities to the network, or if budgetary concerns are present restricting the 

maximum number of facilities required. These issues were addressed in the maximal 

covering location problem (MCLP) in Church & ReVelle (1974). This model is provided 

below. 

Decision Variables 

𝑍𝑍𝑖𝑖 = �1 if demand node 𝑆𝑆 ∈ 𝐼𝐼 is covered
0 otherwise                                           

Using this additional notation, the MCLP problem is formulated as follows: 

Maximize ∑ ℎ𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖∈𝐼𝐼         (3.16) 

Subject To: 

𝑍𝑍𝑖𝑖 ≤ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽   ∀𝑆𝑆 ∈ 𝐼𝐼     (3.17) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 ≤ 𝑃𝑃         (3.18) 
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𝑋𝑋𝑗𝑗 ∈ {0,1}   ∀𝑠𝑠 ∈ 𝐽𝐽     (3.19) 

𝑍𝑍𝑖𝑖 ∈ {0,1}   ∀𝑆𝑆 ∈ 𝐼𝐼   `  (3.20) 

Objective (3.16) maximizes the amount of covered demand. Constraint (3.17) states that 

a customer cannot be covered if a facility is not within the coverage radius. Constraint 

(3.18) disallows more than P facilities to be opened. Constraints (3.19) and (3.20) are 

binary restrictions on the location and coverage variables. 

 The MCLP maximizes the amount of demand covered given that no more than P 

facilities can be opened. Like the SCLP, the coverage matrix 𝑑𝑑𝑖𝑖𝑗𝑗  is heavily dependent 

upon the allowable coverage distance 𝑑𝑑𝑐𝑐. An alternative formulation for this problem can 

be given by minimizing the uncovered demand, which results in a model structure that is 

very similar to the P-Median problem, Daskin (2013). This model is given below. 

 

Decision Variables 

𝑊𝑊𝑖𝑖 = �1 if demand node 𝑆𝑆 ∈ 𝐼𝐼 is not covered
0 otherwise                                                  

Using this additional notation, the MCLP problem can be reformulated as follows: 

Minimize ∑ ℎ𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖∈𝐼𝐼         (3.21) 

Subject To: 

∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 + 𝑊𝑊𝑖𝑖 ≥ 1𝑗𝑗∈𝐽𝐽   ∀𝑆𝑆 ∈ 𝐼𝐼     (3.22) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 ≤ 𝑃𝑃         (3.23) 

𝑋𝑋𝑗𝑗 ∈ {0,1}   ∀𝑠𝑠 ∈ 𝐽𝐽     (3.24) 

𝑊𝑊𝑖𝑖 ∈ {0,1}   ∀𝑆𝑆 ∈ 𝐼𝐼   `  (3.25) 

Objective (3.21) minimizes the amount of uncovered demand. Constraint (3.22) states 

that if a customer cannot be covered by a facility within the allowable radius, then the 
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uncoverage variable is positive. Constraint (3.23) disallows more than P facilities to be 

opened. Constraint (3.24) and (3.25) are binary restrictions on the location and 

uncoverage variables. 

 A key difference to note between the SCLP and the MCLP is that in the SCLP, no 

individual demand is favored amongst any other demand. Therefore, the magnitudes of 

the demands have no influence on the optimal location decisions.  

The models given in this section provide the foundation for the approaches taken 

in this work. All subsequent models presented here are based upon these seminal papers. 

What follows is a survey of the literature on multi-objective distribution system design 

problems.  

 

3.3 Literature Review 

In this review, the literature highlighting the multi-objective approaches to facility 

location in distribution system design will be reviewed or discussed, with a focus on 

multi-echelon systems consisting of at least three levels (usually plants, distribution 

centers or warehouses and demands or customers).  These papers include those works 

categorized as facility location in supply chain design and hierarchical production-

distribution location.  

Multi-objective approaches to facility location have been consistently pursued 

since the inception of the field. ReVelle et al. (1981), Current et al. (1990), Farahani et al. 

(2010) are the prominent surveys on the subject. The role of facility location in supply 

chain design was also recently reviewed by Melo et al. (2009). What follows is a review 
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and categorization of those multi-objective facility location problems in supply chain 

design. 

 

3.3.1 Multi-Objective, Multi-Echelon Supply Chain Design Papers 

 This portion of the literature is targeting research classified as being multi-

objective supply chain design for multi-echelon systems. The applicable papers found in 

the existing literature surveys on the subject of location in supply chains were included 

as, well as a total of 42 additional works identified. These papers are primarily applied, 

featuring scenarios across a number of industries from typical retail networks to biofuel 

supply chains. 

The most commonly used problem structure in the literature on facility location in 

supply chain design features deterministic parameters, a single commodity, and a single 

time period. Table 3.1 categorizes the selected literature according to the number of 

location echelons, data type, number of products and time periods, and the inclusion of 

reverse logistics activities. The papers are further partitioned within the table by their 

respective number of location echelons.  
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Table 3.1: Problem Structure  
The number of location echelons, data type (deterministic/stochastic), amount of products 
and time periods (single/multiple), and whether reverse logistics is present 

Article Location Echelons Data Products Periods Reverse 
Altiparmak et al. (2006) 1 D S S N 
Azaron et al. (2008) 1 S M S N 
Cardona-Valdes et al. (2011) 1 S S S N 
Cardona-Valdes et al. (2014) 1 S S S N 
Dehghanian & Mansour (2009) 1 D S S Y 
Du & Evans (2008) 1 D M S Y 
Farahani & Asgari (2007) 1 D S S N 
Hertwin et al. (2014) 1 D S S N 
Hugo & Pistikopoulos (2005) 1 D M M N 
Jabal-Ameli & Mortezaei (2011) 1 D S S N 
Liao et al. (2011) 1 S M S N 
Makui et al. (2006) 1 D S S N 
Melachrinoudis et al. (2005) 1 D S S N 
Olivares-Benitez et al. (2012) 1 D S S N 
Olivares-Benitez et al. (2013) 1 D S S N 
Paksoy & Chang (2010) 1 D S M N 
Pinto-Varela et al. (2008) 1 S M S N 
Wang et al. (2011) 1 D M S N 
Yazdian & Shahanaghi (2011) 1 S S S N 
You & Grossman (2011a) 1 S S S N 
Amin & Zhang (2013) 2 S M S Y 
Bhattacharya & Bandyopadhyay 
(2010) 2 D M M N 

Chen et al. (2007) 2 S M M N 
Giarolo et al. (2011) 2 D M M N 
Guillen et al. (2005) 2 S M M N 
Kim & Moon (2008) 2 S M S N 
Ramudhin et al. (2010) 2 D M S N 
Rezazadeh & Farahani (2010) 2 D M S N 
Selim & Ozkarahan (2008) 2 S M S N 
Xu et al. (2008) 2 S S S N 
You & Grossman (2011b) 2 S M M N 
You et al. (2011) 2 D M M N 
Chaabane & Paquet (2010) >2 D M M Y 
Erkut et al. (2008) >2 D S S Y 
Fonseca et al. (2010) >2 S M S Y 
Hiremat et al. (2013) >2 D M S N 
Khajavi et al. (2011) >2 D S M Y 
Pati et al. (2008) >2 D M S Y 
Pishvaee & Torabi (2010) >2 S S M Y 
Pishvaee et al. (2010) >2 D S S Y 
Ramezani et al. (2013) >2 S S S Y 
Wang et al. (2013) >2 D S S Y 

 

Roughly half of the articles reviewed are single location echelon problems. About 

a third of the articles site facilities in two echelons, the majority of them being production 

facilities and DCs. Of these two location echelon papers, all but one of them also 
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accounted for multiple product types. Ten of the 42 articles (20%) located facilities in 

more than two echelons. Every one of these papers included reverse logistics activities 

except Hiremat et a. (2013). 

 About 40% of the surveyed articles incorporated stochastic parameters in their 

modeling approach. This is a surprising finding, which may suggest a general trending 

away from deterministic modeling approaches toward stochastic ones, as far as MO 

problems are concerned. Another interesting finding was that half of the papers model 

multiple product types. Only 11 of the 42 articles were dynamic models. Additionally, 

only about 28% of the papers were deterministic, single product type, and single period 

models. This finding suggests that most MO supply chain design papers, contrary to their 

single objective counterparts, tend to incorporate other more realistic, complicating 

factors in their models.  

 The objectives considered in these papers were categorized into five different 

types: cost, profit, customer service, environmental, and other. Table 3.2 displays the 

selected articles and their respective objectives. The papers are further subdivided into bi-

objective and multi-objective papers. 
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Table 3.2: Objectives Considered 
Article Cost Profit Service Environmental Other   

Bi-Objective   
Amin & Zhang (2013)       
Cardona-Valdes et al. (2011)          
Cardona-Valdes et al. (2013)       
Chaabane & Paquet (2010)           
Du & Evans (2008)           
Farahani & Asgari (2007)           
Fonseca et al. (2010)           
Giarolo et al. (2011)           
Hertwin et al. (2014)       
Hugo & Pistikopoulos (2005)           
JabalAmeli & Mortezaei (2011)            
Khajavi et al. (2011)           
Kim & Moon (2008)           
Liao et al. (2011)           
Olivares-Benitez et al. (2012)           
Olivares-Benitez et al. (2013)       
Pinto-Varela et al. (2008)           
Pishvaee & Torabi (2010)           
Pishvaee et al. (2010)           
Ramudhin et al. (2010)           
Rezazadeh & Farahani (2010)           
Wang et al. (2011)           
Xu et al. (2008)           
Yazdian & Shahanaghi (2011)           
You & Grossman (2011a)           
You & Grossman (2011b)          
Multi-Objective             
Altiparmak et al. (2006)          
Azaron et al. (2008)           
Bhattacharya & Bandyopadhyay 
(2010)            
Chen et al. (2007)          
Dehghanian & Mansour (2009)          
Erkut et al. (2008)          
Guillen et al. (2005)          
Hiremath et al. (2013)       
Makui et al. (2006)           
Melachrinoudis et al. (2005)          
Paksoy & Chang (2010)            
Pati et al. (2008)          
Ramezani et al. (2013)       
Selim & Ozkarahan (2008)           
Wang et al. (2013)       
You et al. (2011)          
 

As seen in Table 3.2, every paper included at least one economic objective, with 

the majority of them considering costs. The most noteworthy of these papers are those 
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that suggest that an integrated total cost function may not be ideal.  For example, in 

Bhattacharya & Bandyopadhyay (2010), the authors consider an entire location echelon’s 

cost separately from total cost. They show that this method results in lower total costs as 

opposed to minimizing an aggregate total cost function.  

 Half of the selected articles incorporated a service level objective. There is a wide 

variety of types of objectives considered in this category. The different objectives 

considered as being service oriented are maximize volume fill rate, maximize the amount 

of demand served, maximize supply chain responsiveness, minimize lateness of delivery, 

minimize maximum lead time, enforce a guaranteed service level, minimize cycle 

tardiness, minimize delivery tardiness, and minimize total transportation.  

Twelve papers included environmentally oriented objectives as a part of their 

model. These papers generally sought to minimize damages to the environment 

associated with supply chain activates via the reduction of greenhouse gases (GHG). 

However, in Pati et al. (2008), the objective was to maximize the amount of recyclable 

material collected in a reverse logistics network, and in Wang et al. (2013), energy 

consumption and waste generation was minimized. 

Finally, 17 papers featured objectives that didn’t fall neatly into any of the other 

four categories. Some of these objectives are risk or robustness based, while others, like 

Fonseca et al. (2010) sought obnoxious facility location based objectives for the location 

of refuse or collection centers in reverse logistics.  
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3.3.2 Multi-Objective Hierarchical Production-Distribution Location Papers 

 Location decisions of hierarchical systems of facilities require the consideration 

of several aspects not found in single echelon location problems. This distinction is 

primarily due to the added complexity of multiple facility types capable of providing 

varying services to demands. Typically, a separate location echelon is modeled for each 

facility type with categories based upon the variety of service available. There have been 

several reviews on the subject with Sahin & Sural (2007) and Farahani et al. (2014) being 

the latest.  

Several classification schemes for the problem have been proposed. The scheme 

employed here is consistent with Sahin & Sural (2007), which features four distinct 

characteristics or attributes. This categorization scheme builds upon that proposed in 

Narula (1982) and Daskin (1995). These four problem defining attributes are flow pattern 

or flow discipline, service varieties, coherency, and objective. Before categorizing the 

selected papers, a detailed description is provided for each of these attributes. 

The flow discipline of a hierarchical location problem describes the manner in 

which demand is satisfied via the movement of goods or customers. There are two types 

of flow discipline, single-flow and multi-flow. In single-flow systems, flow can either 

originate from the demands or the highest location level in a given problem. In multi-

flow systems, demand can be directly satisfied by more than one location echelon. When 

the direction of travel of a flow originates from the demand nodes, this typically 

represents customers visiting service facilities in public sector location problems. For 

example, the referral of a customer in a hospital system to a larger facility featuring a 

greater service variety often occurs. It is important to note that this referral behavior in 

33 Copyright, Jeremy W. North, 2014 
 



   

service hierarchies is not generalizable to all demands and usually applies to a subset of 

customers. Reverse logistics in distribution is a private sector example of product flow 

originating from the demands. A production distribution logistics network can feature 

either single-flow or multi-flow behavior. Both single-flow and multi-flow systems will 

be examined in this dissertation. 

 The service variety of a problem can be described as either being nested or non-

nested. This distinction refers to the specific types of demand, if there are varying types 

of demand, any given location echelon is capable of satisfying. If higher level facilities in 

a problem scenario are capable of providing all the goods or services of lower level 

facilities and at least one additional good or service, then the system is classified as being 

nested. A hierarchical system is classified as being nested if it can offer all of the services 

of lower echelon locations. The US postal system is an example of a nested system of 

hierarchical facilities, where the lowest echelon consists of customer mailboxes and the 

higher echelons are postal centers and local mail depository boxes.  

Production-distribution networks with multiple goods can be either nested or non-

nested, depending upon the product variety, their production locations, and/or stocking 

points. Additionally, the flow discipline of a system affects to a large degree the service 

variety of a system. Multi-flow systems with flow originating from either the demands or 

the highest location echelon can be considered as being nested or non-nested. However, if 

the flow is originating from the highest echelon in a single flow system, like the typical 

production-distribution location problem, that system can never be nested despite the 

product variety offered. This can be easily seen by noting that if demand can only be 

satisfied by the lowest location echelon, then a nested implementation is not possible. 
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This characteristic is usually restricted to the production-distribution problem, and not 

necessarily to the other applications in hierarchical location. For example, health care 

applications can be nested, single flow systems, per Marianov & Serra (2001).  

 A coherent hierarchy is one in which demands that are assigned to a particular 

lower level facility must be assigned to the exact same higher level facility as  across all 

location echelons where customer demand satisfaction can occur. In other words, single 

sourcing restrictions at each echelon are enforced in coherent systems. The impact on 

network configuration this attribute has is immense. Coherent systems can have widely 

differing network structures compared to non-coherent systems. Either single-flow or 

multi-flow systems can have coherent structures. A hospital system receiving patients at 

smaller, satellite service facilities may refer patients to a larger facility with a wider 

variety of services available. This would be an example of a public sector application to a 

single-flow, coherent system. 

 Sahin & Sural (2007) categorize the various objectives used by papers in their 

literature review under the categories of median, covering, and fixed charge objectives. 

Obviously, this classification attribute isn’t unique to the hierarchical location problem. 

The scenarios modeled in this dissertation focus on the trade-off of cost (median) and 

customer service (maximal covering) at varying levels of amount of facilities to open. 

  Depicted below in Figure 3.2 is an example of a single-flow production-

distribution system.  
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 Figure 3.2 shows a production distribution location problem modeled as a 

hierarchical location problem consisting of production facility and warehouse location 

decisions, as well as customer to retail outlet assignment decisions. The structure of this 

network is single-flow with no nestedness or coherency considerations. The majority of 

applications in the production-distribution location problem feature this scenario. 

However, if customer demand is allowed to be satisfied directly by a production facility, 

then this scenario no longer applies, as the system would be multi-flow with possible 

nested and/or coherent structures.   

 Depicted below in Figure 3.3 is an example of a multi-flow production-

distribution system. 

Warehouse 
 

P-WH Arc 
 

Production Facility 
 

WH-R Arc 
 

Retail Outlet 
 

Figure 3.2 A single-flow hierarchical production-distribution system 
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A multi-flow variant of the production-distribution location problem can be seen 

in figure 3.3. This scenario captures the additional complication that occurs when direct 

delivery to customers from production locations is allowed. An assumption in this case is 

that tax considerations or other ancillary factors that influence location decisions are not 

considered.  

Tables 3.3-3.5 below list and categorize the production-distribution location 

problems, and hierarchical location problems in the literature featuring coverage based 

objectives or multiple objectives. The papers are described by the attributes discussed 

above. Flow pattern (FP) is indicated as being either S (single) or M (multiple). In the 

service availability column (SA), a paper is classified as being nested (N) or (-), meaning 

that the nestedness property was either not present or not considered. The spatial 

configuration column (SC) shows either (CO) for coherent or (-) for non-coherency or no 

consideration of this property. (LO) refers to the types of location objectives considered, 

with the options being fixed charge (F), coverage (CV), or multi-objective (MO). The last 

column is a brief description of key facets of the paper.  

Warehouse 
 

P-WH Arc 
 

Production Facility 
 

WH-R Arc 
 

Retail Outlet 
 Figure 3.3 A multi-flow hierarchical production-distribution system 

 

P-R Arc 
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Table 3.3 Categorization of production-distribution hierarchical location papers 
Reference FP SA SP LO Comments 
Kaufman et al. (1977) M - - F Distribution; First assignment-based formulation; Branch and bound 
Wirashinghe & Waters (1983) M N CO F Production-distribution; Modified Kaufman et al. (1977) 
Ro & Tcha (1984) M - - F Distribution; Branch and bound 
Tcha & Lee (1984 M - - F Production-distribution; Petrochemical company application 
Van Roy (1989) M N - F Production-distribution; Price elastic demand; algorithm from Dokmeci 

 
Gao, R. (1992) M - CO F Distribution; Primal-dual & branch and bound; 25 node problem 
Barros & Labbe (1994) S - CO F Warehouse-depot; Generalizes Tcha & Lee (1984) & Gao & Robinson 

 
Gao & Robinson (1994) M - CO F Distribution; Generalizes Gao & Robinson (1992) 
Pirkul & Jayaraman (1996) S - - F Production-distribution; Capacitated; 100 demand problems 
Aardal et al. (1996) S - - F Distribution; Valid inequalities and cuts; Comparison with continuous 

 
Tragantalerngsak et al. (1997) S - CO F Distribution; Capacitated upper facilities; 100 demand problems 
Aardal (1998) M - - F Production-distribution; Capacitated; Cutting plane; 50 demand 

 
Pirkul & Jayaraman ( 1998) S - - F Production-distribution; Single sourcing; similar to Pirkul & Jayaraman 

 
Marin & Pelegrin (1999) S - - F Distribution; Capacitated; Compares flow and assignment formulation 
Hinojosa et al. (2000) S - - F Production-distribution; Multi-period opening and closing decisions 
Kantor & Peleg (2006) S  - CO F Distribution; Steiner tree; Approximation algorithms 
Asadi et al. (2008) S  - CO F Distribution; Outlier demands not served; Approximation algorithms 
Mo et al. (2011) M - - F Production-distribution location; Two stage Stochastic program 
Litvinchev & Espinosa (2012) S - - F Production-distribution; Lagrangian relaxation; Up to 200 demand 

 
 
The production-distribution hierarchical location papers can be seen in table 3.3. 

There is a relatively even mix of single-flow versus multi-flow papers, but there are very 

few nested applications. Additionally, only a handful of papers consider or enforce 

coherency in their networks. The classic fixed charge objective has been the only criteria 

considered for all of the production-distribution papers in the hierarchical location 

literature. The majority of these papers feature a single product, which explains the lack 

of nestedness being an explicit modeling consideration. Table 3.4 provides a 

categorization of the covering-based hierarchical location papers. 

Table 3.4 Categorization of covering-based hierarchical location papers 
Reference FP SA SP LO Comments 
Charnes & Storbeck (1980) M N - CV EMS; 16 node problem; Goal programming 
Moore & ReVelle (1982) M N - CV Education; Uncoverage Cost; Binary model with LP relaxation; Honduras 
Ruefli & Storbeck (1982) M N - CV EMS; Similar to Charnes & Storbeck (1980); behaviorally linked systems 
Church & Eaton (1987) M N - CV Health care; Survey included; Referral systems; Zarzal, Columbia 
Desai & Storbeck (1988) M N CO CV Behaviorally and technologically linked systems; 21 node problem 
Vernekar et al. (1990) S - CO CV Computer networks; Horizontal relations & resource deployment 
Serra et al. (1992) M N - CV Competitive environment; 55 node problem 
Gerrard & Church (1994) M N - CV Health care; Referral systems; Zarazal, Columbia & Uganda 
Mandell (1996) M N - CV EMS; Probabilistic version of Moore & ReVelle (1982) 
Espejo et al. (2003) M N - CV Binary model; Lagrangean; 700 demand problems 
Jayaraman et al. (2003) M N - CV Extends Moore & Revelle (1982) with capacitated facilities 
Johnson et al. (2005) M N - CV Health care; Nursing home system; Max demand served s.t. capacity and budget 
Shavandi et al. (2006) M N CO CV Fuzzy queuing structure; Based on Marianov & Serra (2001); 15 node problem;  
Sahin et al. (2007) M N - CV Health care; Sequential optimization procedure pq-Median to set cover 
Yasenovskiy & Hodgson (2007) M N - CV Health care; Max customer welfare; Spatial interaction-based model, Ghana 
Shavandi & Mahlooji (2008) M N - CV Health care; Congested models; Fuzzy framework and queuing system 
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Lee & Lee (2010) M N - CV Partial coverage; Heuristic solution; Up to 150 demand nodes 

 

As seen in Table 3.4, all application papers featuring covering objectives are 

public sector papers. Because covering based approaches typically neglect the 

distribution variables, they are not commonly applied on private sector problems. This 

work explores a new modeling approach expanding the concepts of facility coverage with 

distribution considerations. In a logistics network, customer service is usually measured 

in days elapsed. This effectively creates varying bands of service levels, as described 

previously in section 3.2. Coverage based objectives can be used to model these service 

level bands reflecting proximity to each customer. This approach will be used in this 

work to model customer service in multi-criteria distribution systems. 

All but one paper in table 3.4 is a multi-flow, nested version of the problem. This 

suggests that public sector papers, especially health services, dominate the use of 

coverage in hierarchical location modeling. A common cause of this is that the less 

restrictive flow discipline (multi-flow) is much more prevalent in public sector 

applications, where flow typically originates from the demands.  

Table 3.5 is a categorization of the multi-objective hierarchical location papers 

found in the literature. 

Table 3.5 Categorization of multi-criteria hierarchical location papers 
Reference FP SA SP LO Comments 
Calvo & Marks (1973) M N - MO Health care; First flow-based formulation 
Dokmeci (1979) M N - MO Health care; Bi-criteria variant of Dokmeci (1973) 
Schilling et al. (1979) M N - MO Fire protection; 120 node problem; Baltimore 
Flynn & Ratick (1988) M N CO MO Airline management; Nested and non-nested levels 
Serra & ReVelle (1993) M N CO MO Health care; first use of coherence; referral system; 25 node 

 
Serra & ReVelle (1994) M N CO MO Health care; Solution algorithms for Serra & ReVelle (1993) 
Serra (1996) M N CO MO Health care; Covering & median objectives 
Alminyana et al. (1998) M N CO MO Directed branching procedure for Serra & ReVelle (1993) 
Marianov & Serra (2001) S N CO MO Health Care; Covering and fixed charge; Congested 

  
Galavao et al. (2006) M N - MO Health care; Capacitated; Load balancing objective; Rio de 

 
Mitropoulos et al. (2006) M N - MO Health care; P-Median and covering objectives; Greece 
Pahlavani & Mehrabad 

 

M N - MO Min average travel time; Max coverage; Fixed cost; Fuzzy; 

 
Gu & Wang (2012) M N - MO Static and mobile vehicle location; Geo-spatial; Centering 

 
Baray & Cliquet (2013) M N - MO Health care; Median and max covering; Maternity hospitals in 
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Smith et al. (2013) M N - MO Health care; Median and max covering; Equity criteria; India 
      

 

As shown in Table 3.5, there has yet to be any multi-objective approaches utilized 

for the production-distribution location problem. The reason for this is the growing 

popularity of casting this problem as a supply chain design problem. Additionally, multi-

criteria applications are greatly outnumbered by single criterion papers. The vast majority 

of the multi-criteria models in the field of hierarchical location have been health care 

applications. These public sector models all consider equity objectives, usually in some 

form of covering, with direct consideration of budgetary limitations. All applications 

have been nested, and all but one, Marianov & Serra (2001), have been multi-flow. As 

discussed earlier, this is because multi-flow systems are quite prevalent in health care 

applications.  

 

3.4 Research Opportunities 

 Firstly, in private sector applications, a customer cannot be deemed “covered” if 

they are not being serviced by a facility within the coverage radius. The mere existence of 

a facility within the coverage radius (as in public sector applications) is insufficient for 

coverage in these problems. The allocation of demand or customer assignment 

determines coverage level. More exploration is needed on appropriate modeling 

approaches for covering in private sector applications.  

 Starting with the supply chain literature, there appears to be several areas of 

potential future research. These potential research areas are described below. 

• Profit oriented objectives 
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Profit maximization is usually the main goal of most businesses. Therefore, the 

incorporation of revenue oriented objectives within supply chain design models should 

occur more frequently than presently found in the literature. 

• Robustness and Risk 

Robustness was an objective that was sought by very few articles in this summary, 

while financial risk was considered by only three. Maximizing the robustness of a 

solution, or minimizing its riskiness, is a factor that an increasing number of real-world 

businesses wish to consider, especially during these periods of economic turmoil. 

• Metaheuristics 

The genetic algorithm is easily the most frequently used metaheuristic in multi-

objective supply chain network design models. More work comparing and evaluating the 

performance of other metaheuristics for this problem is needed.  

 Several promising areas of potential future research have resulted from touring 

the literature on the hierarchical production-distribution location problem. These areas 

are listed and described below. 

• Multi-criteria approaches 

All multi-criteria based approaches in the hierarchical location literature have been public 

sector problems. This can be explained by the natural way in which public sector 

problems, like health care and education systems, can be easily and accurately modeled 

as a hierarchical location problem. Although the production-distribution location problem 

is a private sector application, the amount of public sector application areas that naturally 

fit hierarchical location modeling techniques seems to greatly outnumber the potential 

41 Copyright, Jeremy W. North, 2014 
 



   

private sector applications. Despite this, more work is clearly needed on multi-criteria 

private sector applications to the production-distribution location problem. 

• Nestedness and/or coherency  

Through the incorporation of multiple products in production-distribution location, 

further exploration of the properties of nestedness and coherency is a promising area of 

future research.  

• Metaheuristics 

There is very little in the literature regarding metaheuristic algorithms and the 

hierarchical location problem, both private and public sector.  

 

3.5 Closest Assignment and Multi-Level Facility Location 

A key property motivating this research is that closest assignment is not 

necessarily the most economical option. This property was first discovered in Rojeski & 

ReVelle (1970). This aspect is examined in a multi-level location problem setting in this 

work. In simpler location problems where there is no intermediary stocking location in 

the system (i.e. two echelon problems), the closest assignment policy is usually the 

cheapest option from a transportation cost perspective. However, as seen in Figure 3.4 

below, this isn’t always true in multi-echelon distribution systems. 
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As seen in Figure 3.4 above, Distribution Strategy 1 ensures coverage of the 

demand node. However, Distribution Strategy 2 is the cost minimizing approach, clearly 

invalidating the assumption that closest assignment is the cheapest. This is especially 

significant in a multi-criteria problem setting, where multiple solutions on the Pareto 

frontier will feature assignments of demand to warehouses outside of their respective 

coverage radii. A similar situation where this issue can arise in these problems can be 

seen in scenario B presented in Figure 3.5 below. 

Warehouse 
 

Distribution Strategy 1 (coverage) 
 

Production Facility 
 

Distribution Strategy 2 
 

Demand Node 
 

Figure 3.4 Cost versus coverage in multi-echelon distribution. Scenario A 
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In scenario B depicted in Figure 3.5, there is a nominal difference in total 

transportation cost as determined by total path length between Distribution Strategies 1 

and 2. However, Distribution Strategy 2 is the cost minimizing one, and is likely to be 

selected more than once during the generation of the Pareto frontier. 

Finally, Figure 3.6 illustrates why the closest assignment restrictions that can be 

found in the literature on public sector location problems, initially presented in Rojeski & 

ReVelle 1970, does not properly address this issue in a multi-echelon distribution setting 

considering the conflicting criteria of cost and service level. 

 

Warehouse 
 

Distribution Strategy 1 (coverage) 
 

Production Facility 
 

Distribution Strategy 2 
 

Demand Node 
 Figure 3.5 Cost versus coverage in multi-echelon distribution. Scenario B 

 

Warehouse 

Distribution Strategy 1 (coverage) 
 

Production Facility 
 

Distribution Strategy 2 (coverage) 
 

Demand Node 
 Figure 3.6 Cost versus coverage in multi-echelon distribution. Scenario C 
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In Figure 3.6, Distribution Strategy 1 is nearly twice as costly as Distribution 

Strategy 2, despite the fact that either strategy is adequate for coverage of the demand in 

scenario C. However, if closest assignment restrictions were enforced via any of the 

approaches summarized in Gerrard & Church (1996), then cost would be unnecessarily 

increased in a mutli-echelon distribution scenario. 

Another issue potentially arises with the scenarios depicted in Figures 3.4 - 3.6. If 

the cost minimizing solution is chosen, then the customer may very well become 

dissatisfied at not receiving better service, under the assumption that they are aware of 

the distribution capabilities of their upstream supply chain partner. For example, suppose 

a customer is receiving a service level of one week from their upstream distributor. 

However, they are aware that there is a warehouse well within one day’s drive of their 

location. Given that they are being serviced by a warehouse well outside of their service 

radius, this customer may become dissatisfied. These types of issues can be addressed at 

the onset of the network design phase with the modeling approach given in this work. 

 For several public sector applications, the approach outlined in Rojeski & ReVelle 

(1970) is the prudent one to take. A good example would be in the case of emergency 

vehicle location and the impact on response times to patients in need. In that scenario, the 

closest vehicle should always respond to the call or be dispatched for service. However, 

for private sector applications, especially in multi-echelon distribution, the problem 

hasn’t been adequately addressed. This research contributes to the literature by 

addressing this gap through a series of multi-echelon location formulations for the 

distribution network design problem with mandatory service considerations. 
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3.6 Mandatory Service in Multi-Echelon Distribution System Design 

The conflicting criteria to be considered in all of the models provided here will be 

the minimization of the demand weighted average distance (P-median) and the 

maximization of the amount of demand within a given coverage radius (maximal 

covering). In the computational exercises, experiments will be conducted with increasing 

amounts of locations to select. Additionally, all of the models given here can be 

simplified to a single objective problem subject a minimum performance level on the 

other objective. Lastly, these flow based models can all by formulated as path-based, with 

three indexes on the distribution variables. These models are omitted here. 

The first model presented in this work is a single echelon warehouse location 

problem given a set of plants and demand generating nodes. This scenario reflects the all 

too common problem of determining the best number and location of warehouses in a 

distribution network. With the set of demands indexed by 𝑆𝑆 ∈ 𝐼𝐼, warehouses by 𝑠𝑠 ∈ 𝐽𝐽, 

plants by 𝑘𝑘 ∈ 𝐾𝐾, and the set of all nodes given by 𝑁𝑁 = 𝐼𝐼 ∪ 𝐽𝐽 ∪ 𝐾𝐾, this first scenario can 

be formulated as Model 3.1. Note that the superscripts on the distribution variables are 

there for clarity. They represent the origin of the shipment, not a third index. 

 

Model 3.1 

Inputs 

ℎ𝑖𝑖 = demand at node 𝑆𝑆 ∈ 𝐼𝐼 

𝑑𝑑𝑖𝑖𝑗𝑗 = distance between nodes 𝑆𝑆 ∈ 𝑁𝑁 and 𝑠𝑠 ∈ 𝑁𝑁  

𝑃𝑃 = number of facilities to locate  

𝑑𝑑𝑖𝑖𝑗𝑗 = �1 if candidate facility 𝑠𝑠 ∈ 𝐽𝐽 can cover demand 𝑆𝑆 ∈ 𝐼𝐼
0 otherwise                                                                         
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Decision Variables 

𝑋𝑋𝑗𝑗 = �1 if candidate location 𝑠𝑠 ∈ 𝐽𝐽 is selected
0 otherwise                                                   

 

𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝 = amount of product shipped from plant 𝑘𝑘 ∈ 𝐾𝐾 to warehouse 𝑠𝑠 ∈ 𝐽𝐽 

𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤 = amount of product shipped from warehouse 𝑠𝑠 ∈ 𝐽𝐽 to customer 𝑆𝑆 ∈ 𝐼𝐼 

𝑍𝑍𝑖𝑖 = �1 if demand 𝑆𝑆 ∈ 𝐼𝐼 is covered
0 otherwise                               

Minimize ∑ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤 +𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼 ∑ ∑ 𝑑𝑑𝑗𝑗𝑘𝑘𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝

𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽   (3.26) 

Minimize ∑ ∑ (1 − 𝑑𝑑𝑖𝑖𝑗𝑗)𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼     (3.27) 

Subject To:   

𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 ≤ 𝑍𝑍𝑖𝑖           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽            (3.28) 

ℎ𝑖𝑖𝑍𝑍𝑖𝑖 ≤ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗∈𝐽𝐽          ∀𝑆𝑆 ∈ 𝐼𝐼    (3.29) 

𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤 ≤ ℎ𝑖𝑖𝑋𝑋𝑗𝑗           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽   (3.30) 

∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗∈𝐽𝐽 = ℎ𝑖𝑖        ∀𝑆𝑆 ∈ 𝐼𝐼    (3.31) 

∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖∈𝐼𝐼 = ∑ 𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝

𝑘𝑘∈𝐾𝐾      ∀𝑠𝑠 ∈ 𝐽𝐽    (3.32) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 = 𝑃𝑃        (3.33) 

𝑋𝑋𝑗𝑗 ∈ {0,1}          ∀𝑠𝑠 ∈ 𝐽𝐽    (3.34) 

𝑌𝑌𝑖𝑖𝑗𝑗𝑤𝑤 ≥ 0           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽   (3.35) 

𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝 ≥ 0           ∀𝑠𝑠 ∈ 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾   (3.36) 

𝑍𝑍𝑖𝑖 ∈ {0,1}           ∀𝑆𝑆 ∈ 𝐼𝐼    (3.37) 

Objective (3.26) minimizes total demand weighted distance. Objective (3.27) minimizes 

total uncovered demands. Constraint (3.28) states that if a facility is selected within the 

coverage radius, then customer 𝑆𝑆 ∈ 𝐼𝐼 is covered. If customer 𝑆𝑆 ∈ 𝐼𝐼 is covered, then the 
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entirety of its demand must be satisfied by a facility within the coverage radius (3.29). 

Constraint (3.30) links the distribution variables to the facility selection variables and 

prevents any shipments from warehouses that aren’t selected. Additionally, a tight upper 

bound of ℎ𝑖𝑖 is enforced for each 𝑌𝑌𝑖𝑖𝑗𝑗𝑊𝑊 with this constraint. Demand must be satisfied at all 

customers (3.31). The total amount of product entering a warehouse is equal to the total 

amount of product leaving a warehouse (3.32). A total of 𝑃𝑃 facilities are to be located 

(3.33). Constraints (3.34) and (3.37) are binary restrictions on the facility location and 

coverage variables, while (3.35) and (3.36) are non-negativity restrictions on the 

distribution variables. 

Model 3.1 is a bi-objective warehouse location problem in a distribution system. 

This problem could also be referred to as a strategic network design problem or a supply 

chain design problem. However, the mandatory service considerations discussed 

throughout this chapter have been incorporated. With these restrictions in place, if a 

customer could be serviced within the coverage radius (by virtue of being close enough to 

an open facility that can service them), then they must be serviced by a facility within the 

coverage radius (but not necessarily by the closest selected location). This property will 

hold true at every iteration of a generating technique in multi-criteria optimization.  

The next model provided in this work is a multi-flow version of Model 3.1. Given 

the following additional notation, this problem can be formulated as Model 3.2. 

Model 3.2 

Inputs 

𝑑𝑑𝑖𝑖𝑗𝑗 = �1 if any plant 𝑘𝑘 ∈ 𝐾𝐾 or candidate warehouse  𝑠𝑠 ∈ 𝐽𝐽 can cover demand 𝑆𝑆 ∈ 𝐼𝐼 
0 otherwise                                                                                                                        
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Decision Variables 

𝑌𝑌𝑖𝑖𝑗𝑗 = amount of product shipped from facility 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾 to customer 𝑆𝑆 ∈ 𝐼𝐼 

Minimize ∑ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗 + ∑ ∑ 𝑑𝑑𝑗𝑗𝑘𝑘𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝

𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽𝑗𝑗∈𝐽𝐽∪𝐾𝐾𝑖𝑖∈𝐼𝐼     (3.38) 

Minimize ∑ ∑ (1 − 𝑑𝑑𝑖𝑖𝑗𝑗)𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾𝑖𝑖∈𝐼𝐼       (3.39) 

Subject To:  𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 ≤ 𝑍𝑍𝑖𝑖           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽              (3.40) 

ℎ𝑖𝑖𝑍𝑍𝑖𝑖 ≤ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾          ∀𝑆𝑆 ∈ 𝐼𝐼    (3.41) 

𝑌𝑌𝑖𝑖𝑗𝑗 ≤ ℎ𝑖𝑖𝑋𝑋𝑗𝑗           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽   (3.42) 

𝑌𝑌𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑋𝑋𝑘𝑘           ∀𝑆𝑆 ∈ 𝐼𝐼 ∪ 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾  (3.43) 

∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾 = ℎ𝑖𝑖         ∀𝑆𝑆 ∈ 𝐼𝐼    (3.44) 

∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 = ∑ 𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝

𝑘𝑘∈𝐾𝐾        ∀𝑠𝑠 ∈ 𝐽𝐽    (3.45) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 = 𝑃𝑃        (3.46) 

𝑋𝑋𝑗𝑗 ∈ {0,1}          ∀𝑠𝑠 ∈ 𝐽𝐽    (3.47) 

𝑌𝑌𝑖𝑖𝑗𝑗 ≥ 0           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾  (3.48) 

𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝 ≥ 0           ∀𝑠𝑠 ∈ 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾   (3.49) 

𝑍𝑍𝑖𝑖 ∈ {0,1}           ∀𝑆𝑆 ∈ 𝐼𝐼    (3.50) 

Objective (3.38) minimizes total demand weighted distance. Objective (3.39) minimizes 

total uncovered demands. Constraint (3.40) states that if a facility is selected within the 

coverage radius, then customer 𝑆𝑆 ∈ 𝐼𝐼 is covered. If customer 𝑆𝑆 ∈ 𝐼𝐼 is covered, then the 

entirety of its demand must be satisfied by a facility within the coverage radius (3.41).  

Constraint (3.42) links the distribution variables to the warehouse selection variables and 

prevents any shipments from warehouses that aren’t selected. Additionally, a tight upper 

bound of ℎ𝑖𝑖 is enforced for each 𝑌𝑌𝑖𝑖𝑗𝑗 with this constraint. Constraint (3.43) links the 
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distribution variables to the plant selection variables and prevents any shipments from 

plants that aren’t selected. Demand must be satisfied at all customers (3.44). The total 

amount of product entering a warehouse is equal to the total amount of product leaving a 

warehouse (3.45). A total of 𝑃𝑃 facilities are to be located (3.46). Constraints (3.47) and 

(3.50) are binary restrictions on the facility location and coverage variables, while (3.48) 

and (3.49) are non-negativity restrictions on the distribution variables. 

The final scenario modeled here is a bi-objective hierarchical production-

distribution location problem, where there are two location echelons (P warehouses and 

Q plants). Additionally, plants as well as warehouses can deliver product to demand 

(multi-flow). A simplification of the following model for the single flow scenario will not 

be given. With the following additional notation, this problem can be formulated as 

Model 3.3. 

Model 3.3 

Inputs 

𝑄𝑄 = number of plants to locate 

𝑀𝑀 =  ∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼   

𝑑𝑑𝑖𝑖𝑗𝑗 = �1 if candidate facility 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾 can cover demand 𝑆𝑆 ∈ 𝐼𝐼
0 otherwise                                                                                  

      

Decision Variables 

𝑋𝑋𝑗𝑗 = �1 if candidate location 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾 is selected
0 otherwise                                                          

 

𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝 = amount of product shipped from plant 𝑘𝑘 ∈ 𝐾𝐾 to warehouse 𝑠𝑠 ∈ 𝐽𝐽 

𝑌𝑌𝑖𝑖𝑗𝑗 = amount of product shipped from facility 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾 to customer 𝑆𝑆 ∈ 𝐼𝐼 

𝑍𝑍𝑖𝑖 = �1 if demand 𝑆𝑆 ∈ 𝐼𝐼 is covered
0 otherwise                                
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Minimize ∑ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗 + ∑ ∑ 𝑑𝑑𝑗𝑗𝑘𝑘𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝

𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽𝑗𝑗∈𝐽𝐽∪𝐾𝐾𝑖𝑖∈𝐼𝐼     (3.51) 
Minimize ∑ ∑ (1 − 𝑑𝑑𝑖𝑖𝑗𝑗)𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾𝑖𝑖∈𝐼𝐼       (3.52) 
Subject To:  𝑑𝑑𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 ≤ 𝑍𝑍𝑖𝑖           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾              (3.53) 

ℎ𝑖𝑖𝑍𝑍𝑖𝑖 ≤ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾          ∀𝑆𝑆 ∈ 𝐼𝐼    (3.54) 
𝑌𝑌𝑖𝑖𝑗𝑗 ≤ ℎ𝑖𝑖𝑋𝑋𝑗𝑗           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽   (3.55) 
𝑌𝑌𝑖𝑖𝑘𝑘 ≤ 𝑀𝑀𝑋𝑋𝑘𝑘           ∀𝑆𝑆 ∈ 𝐼𝐼 ∪ 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾  (3.56) 
∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗∈𝐽𝐽∪𝐾𝐾 = ℎ𝑖𝑖         ∀𝑆𝑆 ∈ 𝐼𝐼    (3.57) 
∑ 𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖∈𝐼𝐼 = ∑ 𝑌𝑌𝑗𝑗𝑘𝑘

𝑝𝑝
𝑘𝑘∈𝐾𝐾        ∀𝑠𝑠 ∈ 𝐽𝐽    (3.58) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗∈𝐽𝐽 = 𝑃𝑃        (3.59) 
∑ 𝑋𝑋𝑘𝑘𝑘𝑘∈𝐾𝐾 = 𝑄𝑄        (3.60) 
𝑋𝑋𝑗𝑗 ∈ {0,1}          ∀𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾   (3.61) 
𝑌𝑌𝑖𝑖𝑗𝑗 ≥ 0           ∀𝑆𝑆 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝐽𝐽 ∪ 𝐾𝐾  (3.62) 
𝑌𝑌𝑗𝑗𝑘𝑘
𝑝𝑝 ≥ 0           ∀𝑠𝑠 ∈ 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾   (3.63) 

𝑍𝑍𝑖𝑖 ∈ {0,1}           ∀𝑆𝑆 ∈ 𝐼𝐼    (3.64) 
Objective (3.51) minimizes total demand weighted distance. Objective (3.52) minimizes 

total uncovered demands. Constraint (3.53) states that if a facility is selected within the 

coverage radius, then customer 𝑆𝑆 ∈ 𝐼𝐼 is covered. If customer 𝑆𝑆 ∈ 𝐼𝐼 is covered, then the 

entirety of its demand must be satisfied by a facility within the coverage radius (3.54). 

Constraint (3.55) links the distribution variables to the warehouse selection variables and 

prevents any shipments from warehouses that aren’t selected. Additionally, a tight upper 

bound of ℎ𝑖𝑖 is enforced for each 𝑌𝑌𝑖𝑖𝑗𝑗 with this constraint. Constraint (3.56) links the 

distribution variables to the plant selection variables and prevents any shipments from 

plants that aren’t selected. Demand must be satisfied at all customers (3.57). The total 

amount of product entering a warehouse is equal to the total amount of product leaving a 

warehouse (3.58). A total of 𝑃𝑃 warehouses and Q plants are to be located (3.59) and 

(3.60) respectively. Constraints (3.61) and (3.64) are binary restrictions on the facility 

location and coverage variables, while (3.62) and (3.63) are non-negativity restrictions on 

the distribution variables. 
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4. Multi Criteria Decision Analysis 

 

4.1 Introduction 

 Multi-criteria decision analysis (MCDA) or multi-criteria decision aid is the 

process of applying a practical methodology to assist a decision maker in selecting a 

compromise solution to a difficult multiple criteria problem. Many techniques developed 

in MCDA are also capable of addressing the Condorcet paradox, a phenomenon more 

commonly known as intransitivity, which often arises in multi-criteria decision making, 

(Collet & Siarry 2004). Classic multi-objective optimization methodologies are incapable 

of addressing this issue, which necessitated the use of alternative measures to do so. 

Intransitivity can best be described as follows: 

 

“Given three actions 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶, we can have 𝐴𝐴 ≥ 𝐵𝐵,𝐵𝐵 ≥ 𝐶𝐶,𝑑𝑑𝑛𝑛𝑑𝑑 𝐶𝐶 ≥ 𝐴𝐴 

(here, the symbol ≥ corresponds to the preference relation),” (Collet & 

Siarry 2004). 

 

 MCDA techniques can be used as an alternative to multi-objective 

optimization techniques, or a complementary aid tool to further assist the decision 

maker. The approach taken in this work is complimentary with multi-objective 

optimization techniques by applying an MCDA methodology for the final 

selection of a Pareto efficient solution.  

  MCDA methodologies require as inputs a discrete set of possible courses 

of action for a given problem. Either a complete or partial ordering of these 
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solutions is done based upon one or multiple criteria. Partial orderings of this set 

of actions (solutions) are accomplished only if some solution alternatives are 

incomparable. Definition 4 formalizes the preference relations to be used, (Collete 

& Siarry 2004). 

 

Definition 4. Preference Relations 
Given courses of action 𝑑𝑑 and 𝐹𝐹:  
𝑑𝑑 𝑃𝑃 𝐹𝐹 indicates that action 𝑑𝑑 is preferred to 𝐹𝐹 or 𝑑𝑑 ≥ 𝐹𝐹 
𝑑𝑑 𝐼𝐼 𝐹𝐹 indicates that action 𝑑𝑑 is indifferent to 𝐹𝐹 or 𝑑𝑑 = 𝐹𝐹 
𝑑𝑑 𝑅𝑅 𝐹𝐹 indicates that actions 𝑑𝑑 and 𝐹𝐹 are not comparable or neither 𝑑𝑑 𝑃𝑃 𝐹𝐹 nor 𝑑𝑑 𝐼𝐼 𝐹𝐹 

 

 For this work, the criterion of network flexibility is going to be formally 

given and applied in a post-optimization procedure. The result of this analysis will 

be a complete ordering of the Pareto frontier with regards to this new criterion 

through the establishment of the preference relations between every pairing of 

solutions in the optimal set. A decision maker may then select a solution to 

implement based upon performance across all objectives in addition to overall 

network flexibility. 

 In the event that the size of the Pareto efficient set is too great to 

efficiently construct a complete ordering, a reduction in the amount of solutions to 

consider during the application of this MCDA tool should be conducted. Perhaps 

a classical MCDA approach like the ELECTRE or PROMETHEE methods can be 

applied prior to the use of this decision aid to assist in this process. A thorough 

discussion of these MCDA techniques can be found in Collette & Siarry (2004). 
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4.2 Network Flexibility for Pareto Efficient Solution Selection 

 The flexibility of a distribution network, in the context of multi-criteria 

location analysis, is determined by its relative distance from its neighboring 

solutions on the Pareto frontier. The term “distance” when used here indicates the 

degree to which varying sets of location decisions differ. This distance reflects the 

relative costs inherent in changing an established network to an alternate Pareto 

efficient solution. This can also be interpreted as the cost of adjusting the weight 

associated with the objectives in a MOCO optimization applying a scalar solution 

approach. This work focuses solely on the interactions of economic and customer 

responsiveness objectives, therefore, this is a post-optimality procedure of a bi-

criteria optimization problem. However, the MCDA technique given here can be 

just as easily applied in circumstances where there are more than two objective 

criterions. 

 The distance measurement used here is inspired by the Hamming distance, 

(Hamming 1950). The origins of the Hamming distance stems from information 

theory and the comparison of bit strings of equal length to determine the number 

of positions which corresponding elements differ between two strings. The 

procedure used here is ideologically the same by comparing the set of location 

decisions between two solutions and calculating the total amount of differing 

decisions. Hamming distance as applied in this work is defined below in 

definition 5, (Hamming 1950):  

 
Definition 5. Hamming Distance 
Given two binary variable vectors 𝐱𝐱1, 𝐱𝐱2 ∈ 𝑆𝑆, their Hamming distance is 
given by the the following: 𝑑𝑑𝐻𝐻(𝐱𝐱1, 𝐱𝐱2) = ∑ �𝐱𝐱𝑖𝑖1 − 𝐱𝐱𝑖𝑖2�𝑖𝑖    
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Using the Hamming distance calculation given in definition 5, and the 

previously defined set of candidate facility locations 𝐹𝐹, the network percentage 

difference (𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖,𝑗𝑗) metric between binary location variable vectors 𝐱𝐱𝑖𝑖 and 𝐱𝐱𝑗𝑗, 

each of length 𝑁𝑁 is presented below: 

 

𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖,𝑗𝑗 =
∑ �𝐱𝐱𝑛𝑛𝑖𝑖∈𝐿𝐿−𝐱𝐱𝑛𝑛

𝑗𝑗∈𝐿𝐿�𝑛𝑛∈𝑁𝑁

|𝐹𝐹|     (4.2.1) 

 

The metric above is the Hamming distance between any two feasible 

solutions in the set of Pareto optimal alternatives �𝐱𝐱i, 𝐱𝐱𝑗𝑗� ∈ 𝐿𝐿 divided by the 

cardinality of the set of location variables 𝐹𝐹. This metric gives the percentage 

difference in locations between any two logistics networks. Decision makers 

interested in preserving network flexibility will desire values for these metrics to 

be as close to zero as possible when compared to all other solutions on the Pareto 

frontier.  An assumption here is that closing and opening costs are symmetric 

across all candidate locations. If this isn’t the case, a cost based approach should 

be used.  

If there are |𝐿𝐿| Pareto optimal solutions, then there are a total of  

|𝐿𝐿| × (|𝐿𝐿|−1)
2

 𝑁𝑁𝑃𝑃𝑁𝑁 values to compute, with 𝐹𝐹 − 1 values for each member of the 

Pareto optimal set. In order to facilitate meaningful comparisons amongst the 

members of the Pareto optimal set, an aggregate 𝑁𝑁𝑃𝑃𝑁𝑁 score capturing the network 

flexibility of an individual solution must be utilized. For each member of the 
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Pareto optimal set, a mean of its |𝐿𝐿| − 1 𝑁𝑁𝑃𝑃𝑁𝑁 scores is used for these purposes. 

The mean network percentage difference (𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁) metric is given below. 

𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 = 1
|𝐿𝐿|−1

∑
∑ �𝐱𝐱𝑛𝑛𝑖𝑖 −𝐱𝐱𝑛𝑛

𝑗𝑗 �𝑛𝑛∈𝑁𝑁

|𝐹𝐹| =𝑗𝑗≠𝑖𝑖∈𝐿𝐿
∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗𝑗𝑗≠𝑖𝑖∈𝐿𝐿

|𝐿𝐿|−1 
  (4.2.2) 

 For the purposes of creating a complete ordering of the Pareto optimal set 

with this metric, the following holds true for solutions 𝑆𝑆, 𝑠𝑠 ∈ 𝐿𝐿: 

 

𝑆𝑆 𝑃𝑃 𝑠𝑠 ⊢ 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 < 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑗𝑗  

and 

𝑆𝑆 𝐼𝐼 𝑠𝑠 ⊢ 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 = 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑗𝑗  

 

 In the above, 𝑆𝑆 𝑃𝑃 𝑠𝑠 implies that 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 < 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑗𝑗 , while 𝑆𝑆 𝐼𝐼 𝑠𝑠 implies that 

𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 = 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑗𝑗.  

The 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 metric given by (4.2.2) may be used in the circumstances 

where the decision maker has absolutely no preference to any individual objective 

being pursued, and the level of objective performance degradation present when 

moving from solution 𝑆𝑆 ∈ 𝐿𝐿 to 𝑠𝑠 ∈ 𝐿𝐿 is of no concern. 

 However, if a maximum degradation level must be enforced as per the 

wishes of the DM, then a modification must be made to expression (4.2.2). In 

order to accommodate this consideration, we define a set for each Pareto efficient 

solution 𝐵𝐵𝑖𝑖∈𝐿𝐿 consisting of the subset of all other solutions in 𝐿𝐿 that respect a 

maximum degradation level for all 𝑘𝑘 objectives in regards to solution 𝑆𝑆. In other 

words a constraint is applied across the set of solutions, which filters out those 

that exceed a maximum allowable change in any objectives. Under the 
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assumption that all 𝑘𝑘 ∈ 𝐾𝐾 objectives are to be minimized, then this set can be 

calculated as follows: 𝐵𝐵𝑖𝑖 =  �𝑠𝑠 ≠ 𝑆𝑆 ∈ 𝐿𝐿: �𝑓𝑓𝑗𝑗𝑘𝑘(𝐱𝐱) − 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� ≤ 𝑝𝑝𝑘𝑘  ∀ 𝑘𝑘 ∈ 𝐾𝐾�, 

where the parameter 𝑝𝑝𝑘𝑘 is a maximum degradation percentage for objective 𝑘𝑘. 

Using this additional notation, the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 metric is redefined below in (4.2.3). 

 

𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖𝑝𝑝𝑘𝑘 = 1
|𝐵𝐵𝑖𝑖|

∑
∑ �𝐱𝐱𝑛𝑛𝑖𝑖 −𝐱𝐱𝑛𝑛

𝑗𝑗 �𝑛𝑛∈𝑁𝑁

|𝐹𝐹| =𝑗𝑗∈𝐵𝐵𝑖𝑖
∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗𝑗𝑗∈𝐵𝐵𝑖𝑖

|𝐵𝐵𝑖𝑖|
   (4.2.3) 

 

 This issue brings forth another important consideration that is relevant for 

this discussion. If there is a maximum acceptable degradation level of objective 

performance for each solution 𝑆𝑆 ∈ 𝐿𝐿, then varying sizes of the set 𝐵𝐵𝑖𝑖 could exist 

amongst the Pareto optimal solutions. Therefore, the cardinality of these sets 

should also be used as a metric capturing network flexibility. In fact, this concept 

must be used in conjunction with the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖𝑝𝑝𝑘𝑘 metric. After all, if a solution 𝑆𝑆 ∈ 𝐿𝐿 

has a 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖𝑝𝑝𝑘𝑘 = .1, then that solution would appear to have a rather strong 

network flexibility rating, in that its underlying structure is on average only 10% 

different than its fellow Pareto optimal solutions. However, if |𝐵𝐵𝑖𝑖| = 1, then that 

10%  𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖𝑝𝑝𝑘𝑘 rating suddenly seems much less impressive. After all, how 

flexible can a solution be if there is only one other acceptable recourse network 

structure? For simplicity of further discussion, this second aspect of network 

flexibility is formally defined in (4.2.4) as the acceptable recourse networks 

(𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖) metric. 
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𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 = |𝐵𝐵𝑖𝑖|: 𝐵𝐵𝑖𝑖 = �𝑠𝑠 ≠ 𝑆𝑆 ∈ 𝐿𝐿: �𝑓𝑓𝑗𝑗𝑘𝑘(𝐱𝐱) − 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� ≤ 𝑝𝑝𝑘𝑘  ∀ 𝑘𝑘 ∈ 𝐾𝐾� (4.2.4) 

 

 The 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 metric given above provides the number of acceptable recourse 

networks available to solution 𝑆𝑆 ∈ 𝐿𝐿. A decision maker interested in establishing a 

high degree of network flexibility would desire the value of this metric to be as 

close to |𝐿𝐿| − 1 as possible.  

For the purposes of creating a complete ordering of the Pareto optimal set 

in regards to this metric, the following holds true for solutions 𝑆𝑆, 𝑠𝑠 ∈ 𝐿𝐿: 

 

𝑆𝑆 𝑃𝑃 𝑠𝑠 ⊢ 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 > 𝐴𝐴𝑅𝑅𝑁𝑁𝑗𝑗  

and 

𝑆𝑆 𝐼𝐼 𝑠𝑠 ⊢ 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 = 𝐴𝐴𝑅𝑅𝑁𝑁𝑗𝑗 

 

 In the above, 𝑆𝑆 𝑃𝑃 𝑠𝑠 implies that 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 > 𝐴𝐴𝑅𝑅𝑁𝑁𝑗𝑗 , while 𝑆𝑆 𝐼𝐼 𝑠𝑠 implies that 

𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 = 𝐴𝐴𝑅𝑅𝑁𝑁𝑗𝑗. A solution with more recourse solutions has a higher degree of 

flexibility, hence is preferred. 

 The 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 metric considers only the differences in location decisions 

amongst logistics networks, but does not take into account distances. When 

deciding how similar two networks are spatially, distance might also be taken into 

account. For example, a network consisting of warehouses in New York, Atlanta, 

and Oakland is little different from a distance perspective than a network with 

warehouses in Newark, Birmingham, and San Francisco. However, the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 

58 Copyright, Jeremy W. North, 2014 
 



   

metric will suggest that the two distribution networks are vastly different, when in 

reality, they really aren’t.  

One way to address this is to modify the 𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖,𝑗𝑗 calculations such that a 

positive hamming distance can only occur if a non-selected location in solution 

𝑆𝑆 ∈ 𝐿𝐿 is further than a set distance from the closest location in solution 𝑠𝑠 ∈ 𝐿𝐿. 

Alternatively, comparing customer assignments amongst differing network design 

solutions could be a promising approach as well. Both approaches require 

comparing elements of location (or assignment) vectors across differing indices, 

going beyond the simple methodology presented in this work. However, these 

modifications are promising avenues of future research in this stream. 

 

4.3 Network Flexibility: A Cost Perspective 

 In the preceding section, a set of MCDA metrics to rate the relative 

flexibility of a distribution network by evaluating and comparing the similarity of 

the prescribed network configurations among a set of Pareto optimal solutions 

was formally defined. Often, a decision maker or a group of decision makers 

prefer comparisons and values displaying the costs of business decisions. In this 

case, network reconfiguration costs can be easily constructed to accompany the 

previously defined metrics. Building upon the existing notation, the following 

variables are defined to simplify this discussion. 

 

𝑈𝑈𝑓𝑓
𝑙𝑙,𝑘𝑘 = �𝐱𝐱𝑓𝑓𝑙𝑙∈𝐿𝐿 − 𝐱𝐱𝑓𝑓𝑘𝑘∈𝐿𝐿�    ∀ 𝐹𝐹 ≠ 𝑘𝑘 ∈ 𝐿𝐿,𝑓𝑓 ∈ 𝐹𝐹: 𝐱𝐱𝑓𝑓𝑙𝑙∈𝐿𝐿 − 𝐱𝐱𝑓𝑓𝑘𝑘∈𝐿𝐿 ≥ 0 

𝑉𝑉𝑓𝑓
𝑙𝑙,𝑘𝑘 = −1�𝐱𝐱𝑓𝑓𝑙𝑙∈𝐿𝐿 − 𝐱𝐱𝑓𝑓𝑘𝑘∈𝐿𝐿�   ∀ 𝐹𝐹 ≠ 𝑘𝑘 ∈ 𝐿𝐿,𝑓𝑓 ∈ 𝐹𝐹: 𝐱𝐱𝑓𝑓𝑙𝑙∈𝐿𝐿 − 𝐱𝐱𝑓𝑓𝑘𝑘∈𝐿𝐿 ≤ 0 
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Recall that 𝐹𝐹 = 𝐼𝐼 ∪ 𝐽𝐽. Using these decision variables, and an estimated closing 

cost for all candidate plant and warehouse locations (𝑆𝑆𝑖𝑖∈𝐼𝐼 , 𝑆𝑆𝑗𝑗∈𝐽𝐽), the following 

network reconfiguration cost estimation can be used: 

𝑁𝑁𝑙𝑙,𝑘𝑘∈𝐿𝐿 = ∑ �𝑓𝑓𝑖𝑖∈𝐼𝐼𝑈𝑈𝑖𝑖∈𝐼𝐼
𝑙𝑙,𝑘𝑘 + 𝑆𝑆𝑖𝑖∈𝐼𝐼𝑉𝑉𝑖𝑖∈𝐼𝐼

𝑙𝑙,𝑘𝑘 + 𝑓𝑓𝑗𝑗∈𝐽𝐽𝑈𝑈𝑗𝑗∈𝐽𝐽
𝑙𝑙,𝑘𝑘 + 𝑆𝑆𝑗𝑗∈𝐽𝐽𝑉𝑉𝑗𝑗∈𝐽𝐽

𝑙𝑙,𝑘𝑘�𝑖𝑖,𝑗𝑗∈𝑓𝑓     (4.3.1) 

where 𝑁𝑁𝑙𝑙,𝑘𝑘∈𝐿𝐿 is the total network reconfiguration cost between Pareto efficient 

solutions 𝐹𝐹 ≠ 𝑘𝑘 ∈ 𝐿𝐿. An assumption here is that the facility opening and closing 

costs are the only significant cost components. Rearrangement of distribution 

assets isn’t explicitly considered in (4.3.1). However, these costs can be included 

in the (𝑆𝑆𝑖𝑖∈𝐼𝐼 , 𝑆𝑆𝑗𝑗∈𝐽𝐽) parameter estimations, if they are significant enough to merit 

direct consideration within the MCDA approach. 

 If a decision maker will not allow network reconfiguration costs to exceed 

a specific value, or if an upper bound is desired on 𝑁𝑁𝑙𝑙,𝑘𝑘∈𝐿𝐿 for the purposes of 

further reducing the set of candidate solutions for the final decision, these 

calculations can be utilized in the development of the 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖∈𝐿𝐿 metric. Given 

below in (4.3.2) and (4.3.3) is an updated definition of the 𝐵𝐵𝑖𝑖 sets and the 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 

network flexibility metric to accommodate these cost considerations. 

 

𝐵𝐵𝑖𝑖 =  

�𝑠𝑠 ≠ 𝑆𝑆 ∈ 𝐿𝐿: �𝑓𝑓𝑗𝑗𝑘𝑘(𝐱𝐱) − 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� 𝑓𝑓𝑖𝑖𝑘𝑘(𝐱𝐱)� ≤ 𝑝𝑝𝑘𝑘  ∀ 𝑘𝑘 ∈ 𝐾𝐾 𝑑𝑑𝑛𝑛𝑑𝑑 𝑁𝑁𝑙𝑙,𝑘𝑘∈𝐿𝐿 ≤ 𝐹𝐹𝑟𝑟�  (4.3.2) 

𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖∈𝐿𝐿 = |𝐵𝐵𝑖𝑖|         (4.3.3) 
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4.4 Network Flexibility as an Additional Criterion in MCDA 

 The process outlined in sections 4.2 and 4.3 apply the MCDA technique derived 

here as a final solution selection procedure given an efficient subset of alternatives as 

found by competing criteria in a multi-objective optimization problem (cost and service 

in this case). However, a decision maker may be interested in incorporating the 

magnitudes of deviation of criterion performance of each solution in an efficient set from 

a best possible alternative. In this case, we must normalize criterion performance by 

using the ideal and nadir points. What follows is a brief summary of these concepts in 

multi-criteria optimization. 

Figure 4.1 Ideal and nadir points in a bi-criteria discrete optimization problem  

 

 

Figure 4.1 is a simple illustration of the ideal and nadir points as determined by a set of 

efficient solutions in a bi-criteria discrete optimization problem. In this case, 

minimization is sought for both criterions. As this illustration suggests, the ideal point is 
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an unattainable point in Z space (else we wouldn’t need multi-criteria techniques to solve 

the problem) where all criterion being considered is optimized. The nadir point is that 

point in Z space where the performances of all objectives are at their worst. In many 

cases, the nadir point is also infeasible. 

Let 𝑍𝑍𝑛𝑛 = the nadir point and 𝑍𝑍∗∗ = the ideal point. Given that minimization is sought in 

all cases, an objective vector 𝑍𝑍𝑖𝑖 can be normalized as follows. 

𝒁𝒁𝒊𝒊� =
𝒁𝒁𝒊𝒊 − 𝒁𝒁∗∗

𝒁𝒁𝒏𝒏 − 𝒁𝒁∗∗ 

By using these normalized values, MCDA techniques could then be applied to all 

criterion considered in a decision aid, with or without the inclusion of weights on the 

individual, normalized objective values.  
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4.5 Example MCDA Application 

 In this example, a Pareto optimal set for a multi-criteria location problem 

with two conflicting minimization objectives is examined. Because this is a 

discrete optimization problem, the frontier depicted in figure 4.1 is a dotted line, 

signifying the lack of an infinite set of Pareto efficient solutions.   

Figure 4.1 Example set of efficient solutions for a bi-objective location problem  

 

 As seen in Figure 4.1, there are six Pareto optimal solutions in this example. 

Therefore, |𝐿𝐿| = 6. Table 4.1 is the objective performance of all the solutions on 

the frontier. 

Table 4.1: Objective Performance 
Solution f1(x) f2(x) 

z1 25 100 
z2 30 60 
z3 40 30 
z4 50 26 
z5 60 23 
z6 75 20 

   

𝐳𝐳3 

𝐳𝐳4 

𝐳𝐳1 

𝐳𝐳5 𝐳𝐳6 

𝐳𝐳2 

𝑓𝑓1(𝐱𝐱) 

𝑓𝑓2(𝐱𝐱) 
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The simple data provided in Table 4.1 is normalized according to the ideal 

and nadir points below in Table 4.2. Table 4.3 is the set of location decisions for 

each efficient solution. 

 

Table 4.2: Normalized Objective Values 
f  Solution f1(x) f2(x) 

z1 0 1 
z2 .1 .5 
z3 .3 .125 
z4 .5 .075 
z5 .7 .0375 
z6 1 0 

 
 

Table 4.3: Facility Location Decisions 
Facility 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 𝐳𝐳6 

1 X  X X X X 
2 X X X  X  
3    X  X 
4     X  
5 X X X X  X 
6      X 
7 X X X    
8 X X X X X  
9    X   

10 X X X X X X 
11       
12       
13 X    X  
14  X X X  X 
15     X X 
16     X X 
17 X X X X X  
18    X  X 
19  X    X 
20 X  X  X X 

 

In the following analysis, all 6 Pareto optimal solutions will be compared 

using the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁 and 𝐴𝐴𝑅𝑅𝑁𝑁 metrics. For this analysis, the symbols “+”, “=”, and “-“ 

in cell (𝑆𝑆, 𝑠𝑠) indicates 𝑆𝑆 𝑃𝑃 𝑠𝑠, 𝑆𝑆 𝐼𝐼 𝑠𝑠, and 𝑠𝑠 𝑃𝑃 𝑆𝑆 respectively. 
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 Given below in Table 4.4 are the 𝑁𝑁𝑃𝑃𝑁𝑁 calculations for all (𝑆𝑆, 𝑠𝑠) ∈ 𝐿𝐿  pairings 

in the Pareto optimal set 𝐹𝐹 ∈ 𝐿𝐿. 

Table 4.4:NPD Matrix 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 .25     
𝐳𝐳3 .10 .15    
𝐳𝐳4 .40 .35 .30   
𝐳𝐳5 .25 .50 .35 .55  
𝐳𝐳6 .60 .55 .45 .40 .55 

 

By using the example output given in Table 4.4, Table 4.5 can be 

constructed with the equation given in (4.2.2). Recall that this metric is utilized 

when there isn’t a maximum allowable objective performance degradation 

restriction (which subsequently renders the 𝐴𝐴𝑅𝑅𝑁𝑁 metric useless). 

Table 4.5: Example 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁 Metrics 
Solution 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 
𝐳𝐳1 .32 
𝐳𝐳2 .36 
𝐳𝐳3 .27 
𝐳𝐳4 .40 
𝐳𝐳5 .44 
𝐳𝐳6 .51 

 
Normalizing Table 4.5, we have Table 4.6 below. 

Table 4.6: Normalized 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁 Metrics 
Solution 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 
𝐳𝐳1 .33 
𝐳𝐳2 .375 
𝐳𝐳3 0 
𝐳𝐳4 .54 
𝐳𝐳5 .71 
𝐳𝐳6 1 
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Given the information provided in Tables 4.2 and 4.6, a complete ordering of all 

solutions in 𝐿𝐿 can be created. This analysis can be seen below in Table 4.7. 

 

Table 4.7: Example 𝑀𝑀𝐶𝐶𝑁𝑁𝐴𝐴 Analysis (𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖) 
Rank 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖 𝑓𝑓1(𝐱𝐱) 𝑓𝑓2(𝐱𝐱) 

1 𝐳𝐳3 𝐳𝐳1 𝐳𝐳6 
2 𝐳𝐳1 𝐳𝐳2 𝐳𝐳5 
3 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 
4 𝐳𝐳4 𝐳𝐳4 𝐳𝐳3 
5 𝐳𝐳5 𝐳𝐳5 𝐳𝐳2 
6 𝐳𝐳6 𝐳𝐳6 𝐳𝐳1 

 
 As seen in Table 4.7, solution 𝐳𝐳3 appears to be the most flexible given this metric. 

From this table of information, a preference diagram can be created. This is given below 

in Table 4.8. 

 

Table 4.8: Preference Diagram (𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖,𝑓𝑓1(𝐱𝐱),𝑓𝑓2(𝐱𝐱)) 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 (-,-,+)     
𝐳𝐳3 (+,-,+) (+,-,+)    
𝐳𝐳4 (-,-,+) (-,-,+) (-,-,+)   
𝐳𝐳5 (-,-,+) (-,-,+) (-,-,+) (-,-,+)  
𝐳𝐳6 (-,-,+) (-,-,+) (-,-,+) (-,-,+) (-,-,+) 

 

Using Table 4.8, we can compare solutions 𝐳𝐳2 and 𝐳𝐳5 in the following fashion:  

• Solution 𝐳𝐳2 is superior for metric one (𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖).  

• Solution 𝐳𝐳2 is superior for metric two (𝑓𝑓1(𝐱𝐱)). 

• Solution 𝐳𝐳5 is superior for metric three (𝑓𝑓2(𝐱𝐱)). 
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Based on these findings, the conclusion that 𝐳𝐳2 𝑃𝑃 𝐳𝐳5, or solution 𝐳𝐳2 is preferred to 

solution 𝐳𝐳5 can be made. Using this procedure, an additional preference diagram can be 

created under the assumption that all performance metrics are considered to be equally 

important to the DM. This output is shown below in Table 4.9.  

Table 4.9: Preference Diagram (𝐹𝐹𝑖𝑖, 𝐹𝐹𝑗𝑗) 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 -     
𝐳𝐳3 + +    
𝐳𝐳4 - - -   
𝐳𝐳5 - - - -  
𝐳𝐳6 - - - - - 

 

 Considering the output given in Table 4.9, the chosen solution the DM should 

implement would be 𝐳𝐳3. Note that this conclusion can only hold if the importance of all 

three performance metrics is considered to be exactly equal. If weights were applied in 

this procedure, the outcome could be quite different. 

 If the DM wishes to enforce a maximum objective performance degradation 

restriction, then Metrics (4.2.3) and (4.2.4) should be used. Table 4.10 provides the  𝐴𝐴𝑅𝑅𝑁𝑁 

metric for three different  𝑝𝑝𝑘𝑘 values over all 6 efficient solutions. This can be constructed 

directly from Table 4.4. In the following, it is assumed that 𝑝𝑝𝑘𝑘 = 𝑝𝑝𝑙𝑙 ∀ 𝐹𝐹 ≠ 𝑘𝑘 ∈ 𝐾𝐾. In other 

words, the allowable percentage degradation is the same across all 𝑘𝑘 objectives. This 

assumption is made for simplicity of exposition here, but clearly isn’t mandatory. In fact, 

the elements of vector 𝑝𝑝𝑘𝑘 can be any number in the interval [0,1]. 
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Table 4.10:Example 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 Metrics 
Solution 𝑝𝑝𝑘𝑘 = .25 𝑝𝑝𝑘𝑘 = .35 𝑝𝑝𝑘𝑘 = .50 
𝐳𝐳1 3 3 4 
𝐳𝐳2 2 3 4 
𝐳𝐳3 2 4 5 
𝐳𝐳4 0 2 4 
𝐳𝐳5 1 2 5 
𝐳𝐳6 0 0 2 

  

Table 4.10 shows that at the most restricted level (𝑝𝑝𝑘𝑘 = .25), the solution 

exhibiting the most flexibility within a range of acceptability is 𝐳𝐳1. However, the best 

solution changes to 𝐳𝐳3 (for this metric) when 𝑝𝑝𝑘𝑘 is increased by 10% and 25%. 

 An updated version of Table 4.5 is given below, reflecting the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖
𝑝𝑝𝑘𝑘 values. 

 
 

Table 4.11: Example 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖
𝑝𝑝𝑘𝑘 Metrics 

Solution 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖.25 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖.35 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖.50 
𝐳𝐳1 .20 .20 .25 
𝐳𝐳2 .20 .25 .313 
𝐳𝐳3 .125 .225 .27 
𝐳𝐳4 N/A .325 .363 
𝐳𝐳5 .25 .3 .367 
𝐳𝐳6 N/A N/A .425 

    
 
 A normalization procedure will not be done in this case because the weights will 

be considered to be equal again in order to simplify this simple demonstration. If a 

decision maker examined the output for 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖.25 alone, that person could choose 

solution 𝐳𝐳3 under the impression that they selected the most flexible network 

configuration. However, the fact that its respective 𝐴𝐴𝑅𝑅𝑁𝑁3 metric is equal to 2 clearly 

contradicts this conclusion. Therefore, when conducting post optimality analyses of these 

metrics, a primary sorting of the Pareto optimal solutions should usually be made in 
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regards to the 𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖 metric first, followed by a secondary sub sorting using the 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖
𝑝𝑝𝑘𝑘 

metric. Tables 4.12 and 4.13 below give the analyses for a 𝑝𝑝𝑘𝑘 = .25. 

Table 4.12: Preference Diagram {(𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁𝑖𝑖.15),𝑓𝑓1(𝐱𝐱),𝑓𝑓2(𝐱𝐱)} 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 (-,-,+)     
𝐳𝐳3 (-,-,+) (+,-,+)    
𝐳𝐳4 (-,-,+) (-,-,+) (-,-,+)   
𝐳𝐳5 (-,-,+) (-,-,+) (-,-,+) (+,-,+)  
𝐳𝐳6 (-,-,+) (-,-,+) (-,-,+) (=,-,+) (-,-,+) 

 

Table 4.13: Preference Diagram (𝑝𝑝𝑘𝑘 = .25) 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 -     
𝐳𝐳3 - +    
𝐳𝐳4 - - -   
𝐳𝐳5 - - - +  
𝐳𝐳6 - - - = - 

 

 When comparing solution 𝐳𝐳2 and 𝐳𝐳3, the following procedure would be taken to 

reach the conclusion (-,+,-): 

1. 𝐴𝐴𝑅𝑅𝑁𝑁2 = 𝐴𝐴𝑅𝑅𝑁𝑁3 
a. 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁2.25 > 𝜇𝜇𝑁𝑁𝑃𝑃𝑁𝑁3.25  (-,,) 

2. 𝑓𝑓1(𝐱𝐱𝟐𝟐) < 𝑓𝑓1(𝐱𝐱𝟒𝟒)  (-,+,) 
3. 𝑓𝑓2(𝐱𝐱𝟐𝟐) > 𝑓𝑓2(𝐱𝐱𝟒𝟒)  (-,+,-) 

 
Therefore, 𝐳𝐳3 𝑃𝑃 𝐳𝐳2 is the appropriate conclusion. 

As seen in Table 4.13, if there is no preference between the performance metrics 

from the DM, but a maximum objective performance degradation level of 25% is in 

place, the best solution is 𝐳𝐳1 followed by 𝐳𝐳3 then 𝐳𝐳2. 

 Tables 4.14 and 4.15 show the final results displaying the preference matrices for 

both the 𝑝𝑝𝑘𝑘 = .35 and 𝑝𝑝𝑘𝑘 = .50. 
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Table 4.14: Preference Diagram (𝑝𝑝𝑘𝑘 = .35) 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 -     
𝐳𝐳3 + +    
𝐳𝐳4 - - -   
𝐳𝐳5 - - - +  
𝐳𝐳6 - - - - - 

 

From Table 4.14, the chosen solution would be 𝐳𝐳3, with 𝐳𝐳1 being the second best 

alternative followed by 𝐳𝐳2, 𝐳𝐳5, 𝐳𝐳4, and 𝐳𝐳6, in that order. 

Table 4.15: Preference Diagram (𝑝𝑝𝑘𝑘 = .50) 
Solution 𝐳𝐳1 𝐳𝐳2 𝐳𝐳3 𝐳𝐳4 𝐳𝐳5 
𝐳𝐳1      
𝐳𝐳2 -     
𝐳𝐳3 + +    
𝐳𝐳4 - - -   
𝐳𝐳5 - - - -  
𝐳𝐳6 - - - - - 

 

From Table 4.15, the chosen solution would again be 𝐳𝐳3, with 𝐳𝐳1 being the second best 

alternative followed by 𝐳𝐳2. 

 The preceding simple application of this decision aid assumes that the DM has no 

preference between the performance metrics, and that any weights associated with them 

are equal. If this isn’t the case, then a cost based approach can be implemented applying 

the weights reflecting the preferences of the decision maker. These cost estimations may 

then be normalized as well as the objective performance values to facilitate meaningful 

comparisons in the application of this decision aid technique. 
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5. Algorithms 

 

5.1 Approach 

 Two different solution methodologies will be employed in this work. The first 

solution approach will be an implementation of a state of the art scalarization, multi-

criteria methodology. Scalarization algorithmic techniques effectively transform multi-

objective optimization problems into mono-objective ones via the use of a scalar 

multiplier, or through the conversion of all but one objective into constraints. The 

methodology implemented in this study will be a recent innovation in scalarization 

algorithms found in Ehrgott (2006). This solution approach combines and captures the 

strengths of the two most popular scalarization methodologies, the weighted-sum-of-

objective-functions-method, (Gass & Saaty 1955), and the 𝜀𝜀-constraint methodology, 

which was first presented in Heimes et al. (1971). 

 The second solution approach to be used is an implementation of the 

metaheuristic algorithm commonly known as GRASP, or Greedy Random Adaptive 

Search Procedures. These algorithms all feature a stochastic component, which guides the 

search through the feasible region, or the image set 𝑍𝑍, followed by a subroutine that finds 

a locally optimal solution. The output of a GRASP algorithm, in the context of multi-

criteria optimization, is a set of solutions approximating the Pareto frontier. Because this 

is a heuristic, attaining the entire set of Pareto efficient solutions for a given discrete 

optimization problem is not assured. Given this reality, a series of metrics has been 

derived in Van Veldhuizen (2000) to evaluate the performance of multiobjective heuristic 

algorithms, one of which is applied in this work. 
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5.2.  Scalarization Methodologies 

 The weighted-sum-of-objective solution methodology is a convenient 

technique for several reasons. Firstly, it is rather simple to implement. Secondly, 

the outcome at each iteration of the algorithm is a solution that is provably Pareto 

efficient. Miettinen (1999) provides a more detailed discussion of the merits and 

various proofs associated with this methodology. 

 A significant drawback of this solution approach is that if an objective 

function is not convex, as is the case here and in most combinatorial optimization 

problems, then it is impossible to locate some points on the Pareto frontier. This 

can lead to a set of efficient solutions that don’t adequately approximate the entire 

frontier. Therefore, for some discrete optimization problems featuring an image 

space which is non-convex, it may not be appropriate to use the weighted-sum-of-

objectives in an a-postiori methodology, as is the case here.  

Given a vector of weights 𝛚𝛚𝑘𝑘, one weight for each objective 𝑘𝑘 ∈ 𝐾𝐾, 

problem (2.1) can be transformed using the weighted-sum-of-objectives method. 

This transformation is given below in problem (5.1). 

 

𝑚𝑚𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝑆𝑆  𝜔𝜔1𝑓𝑓1(𝐱𝐱) + 𝜔𝜔2 𝑓𝑓2(𝐱𝐱)+, … , +𝜔𝜔𝑓𝑓𝑘𝑘(𝐱𝐱)   (5.1)  
𝐶𝐶𝑠𝑠𝐹𝐹𝑠𝑠𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐶𝐶  𝐱𝐱 ∈ 𝑆𝑆       

 

Most implementations of problem (5.1) enforce the following property: ∑ 𝜔𝜔𝑘𝑘 = 1𝑘𝑘 , with 

all 𝜔𝜔𝑘𝑘 > 0. However, this restriction isn’t mandatory, it is usually done as a way of 

prioritizing or valuing the objectives in regards to each other. In a-priori implementations 
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of this algorithm, these weights can be the product of a pre-optimization analysis of the 

criteria. In most cases, the weights used typically sum to one. 

 Implementation of this algorithm is done through a re-optimization procedure 

where the weights of the objectives are iteratively perturbed. However, 

incommensurability of units can lead to excessively long solution times if a full 

exploration of the Pareto frontier is desired. To address the incommensurability of units 

between the two competing objectives, a normalized version of the objectives can be used 

(see Section 4.4). 

The 𝜀𝜀-constraint works by preserving one of the objectives in a multi-objective 

problem as the objective function, while converting the others into inequality constraints. 

Problem (2.2) can be transformed using the 𝜀𝜀-constraint methodology as follows: 

 

𝑀𝑀𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝑆𝑆          𝑓𝑓1(𝐱𝐱)      (5.2) 
𝐶𝐶. 𝐶𝐶.               

      �⃗�𝑔(𝐱𝐱) ≤ 0  
 ℎ�⃗ (𝐱𝐱) = 0 
𝑓𝑓2(𝐱𝐱) ≤ 𝜀𝜀2 

. 

. 

. 
𝑓𝑓𝑘𝑘(𝐱𝐱) ≤ 𝜀𝜀𝑘𝑘 

where 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛, �⃗�𝑔(𝐱𝐱) ∈ 𝐑𝐑𝑚𝑚 and  ℎ�⃗ (𝐱𝐱) ∈ 𝐑𝐑𝑝𝑝 
 

 To develop the Pareto frontier using the methodology given by problem 5.2, the 

set of right hand side values associated with the constraintized objectives functions (𝜀𝜀𝑘𝑘) 

are iteratively perturbed in a re-optimization procedure, effectively finding all non-

dominated solutions. 

 The main advantage of the weighted-sum-of-objectives method is its ease of 

implementation and the speed with which the Pareto frontier can be generated. The 
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disadvantage of this methodology is that it is not possible to find any non-dominated 

solutions not located on the convex hull of the objective space. The 𝜀𝜀-constraint 

methodology, however, is able to find all non-dominated solutions, even the “convex 

dominated” points, but is harder to solve and takes longer to implement (Miettinen 1999). 

Point 𝐳𝐳7 in Figure 5.2.1 below is an example of a convex dominated solution. 

 

 Ehrgott (2006) presented a scalarization solution technique which combines the 

weighted-sum-of-objectives and the 𝜀𝜀-constraint methods, capturing the strengths of both 

methods. This methodology is called the elastic constraint method.  

 

 The elastic constraint methodology, on the other hand, is both easy to solve, like 

the weighted-sum-of-objectives, and capable of finding all efficient solutions, like the 𝜀𝜀-

constraint method, Ehrgott (2006). This methodology makes the constraintized objectives 

𝐳𝐳3 

𝐳𝐳4 

Figure 5.2.1 Example approximation of a Pareto face in bi-objective discrete optimization  
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elastic which results in easier solvability due to the possibility of upper bound violation at 

a penalty cost. Problem 2.2 is transformed below with the elastic constraint method. 

𝑀𝑀𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝑆𝑆          𝑓𝑓1(𝐱𝐱) + 𝜇𝜇2 𝐿𝐿2+, … , +𝜇𝜇𝐿𝐿𝑘𝑘      (5.3) 
𝐶𝐶. 𝐶𝐶.               

      �⃗�𝑔(𝐱𝐱) ≤ 0  
 ℎ�⃗ (𝐱𝐱) = 0 
𝑓𝑓2(𝐱𝐱) + 𝐿𝐿2 − 𝑆𝑆2 = 𝜀𝜀2 

. 

. 

. 
𝑓𝑓𝑘𝑘(𝐱𝐱) + 𝐿𝐿𝑘𝑘 − 𝑆𝑆𝑘𝑘 = 𝜀𝜀𝑘𝑘 

where 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛, �⃗�𝑔(𝐱𝐱) ∈ 𝐑𝐑𝑚𝑚, ℎ�⃗ (𝐱𝐱) ∈ 𝐑𝐑𝑝𝑝, 𝐿𝐿𝑘𝑘 ≥ 0, and 𝑆𝑆𝑘𝑘 ≥ 0 
 

In 5.3 above, the objective minimizes 𝑓𝑓1(𝐱𝐱) plus the sum product of an additional penalty 

factor and a positive slack value for all constraintized objectives which fail to meet a 

required performance level 𝜀𝜀𝑘𝑘. 

 The following procedure is used to implement the elastic constraint methodology 

in this work. 

Figure 5.1: Elastic Constraint efficient set generation algorithm 
 
Procedure ElasticConstraint 
1. EfficientSet = [] 
2. Data Read_Input() 
3. 𝑍𝑍1 = [min_cost, worst_uncoverage]  
4. Call Update(𝑍𝑍1, EfficientSet) 
5. 𝑍𝑍2 = [min_uncoverage, worst_cost]  
6. Call Update(𝑍𝑍2, EfficientSet) 
7. 𝜀𝜀 = worst_uncoverage 
8. While 𝜀𝜀 > min_uncoverage do 
9. 𝑍𝑍𝑖𝑖 = Call Model(𝜀𝜀) 
10. Call Update(Solution, EfficientSet) 
11. 𝜀𝜀 = 𝑍𝑍𝑖𝑖(coverage) - 1 
12. End_While 
13. Return ParetoSet 
End_ElasticConstraint 
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The algorithm given in Table 5.1 begins by finding the optimal values of each individual 

objective function by solving the single objective problems. These are then used to 

calculate the ideal and nadir points. In this case, the constraintized objective function is 

penalized with the surplus variable (as opposed to the slack variable as seen in problem 

5.3). Iterating from the worst performance to the best performance on the objective of 

coverage, the normalized version of the models are solved and the resulting solutions are 

stored in the Pareto efficient set. The step increment at each iteration of the algorithm is 

equal to the previous iteration’s uncoverage value minus one. This procedure generates 

the entire Pareto frontier using an optimal search methodology. 

 

5.3.  Heuristic Algorithm 

 For this thesis, a multi-objective GRASP algorithm (MOG) will be implemented. 

GRASP is a multi-start metaheuristic involving a construction phase and a local search 

phase (Feo & Resende 1989). In this methodology, a solution is generated through a 

greedy construction phase and improved through a local search phase. A facility location 

problem for multi-echelon location was recently solved using GRASP in Montoya-Torres 

et al. (2011). The approach taken for this study will be similar, but adapted for a multi-

criteria implementation. 

 Given below in Figure 5.2 is the generic pseudocode for the GRASP procedure 

employed here. 
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Figure 5.2: Pseudocode of the GRASP Procedure 
 
Procedure GRASP(Max_Iterations, α) 
1. Best_Solution = 0 
2. Data Read_Input() 
3. For k=1,…,Max_Iterations do 
4. Call Update(Solution, Best_Solution) 
5. Solution GreedyRandomizedConstruction(Seed) 
6. If feasible == false do 
7. Solution == Repair(Solution) 
8. EndIf 
9. Solution LocalSearch(Solution) 
10. Call Update(Solution, Best_Solution) 
8. EndFor 
9. Return Best_Solution 
End GRASP 
 
 

The construction phase of the algorithm terminates with the selection of all 

candidate facilities to be opened. At this point, a local search takes place resulting in a 

locally optimal solution. The procedure being taken to implement a MOG for this 

problem is based upon the concept outlined in the algorithm given in Table 5.1, where the 

search space is iteratively altered and a series of locally optimal solutions are found. This 

technique is referred to as iterated domain restriction and has been successfully applied in 

a number of papers featuring local search or multi-start algorithms in multi-criteria 

optimization, Murphy et al. (2000), Pasiliao (1998), Deb (2001).  

For the MOG applied in this work, the GRASP procedure displayed in figure 5.2 

will be repeated in the same fashion as the elastic constraint methodology, by iteratively 

changing the required uncoverage level and saving the best solution found at each 

iteration while respecting the constraints on the problem until uncoverage minimization is 

reached. The psudocode for this procedure is given below in table 5.3. 
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Figure 5.3: MOG Algorithm 
 
Procedure MOG(max_iterations, α) 
1. EfficientSet = [] 
2. Data Read_Input() 
3. 𝑍𝑍1 = [min_cost, worst_uncoverage]  
4. Call Update(𝑍𝑍1, EfficientSet) 
5. 𝑍𝑍2 = [min_uncoverage, worst_cost]  
6. Call Update(𝑍𝑍2, EfficientSet) 
7. 𝜀𝜀 = worst_uncoverage 
8. While 𝜀𝜀 > min_uncoverage do 
9. 𝑍𝑍𝑖𝑖 = Call GRASP(max_iterations, α) 
10. Call Update(𝑍𝑍𝑖𝑖, EfficientSet) 
11. 𝜀𝜀 = 𝑍𝑍𝑖𝑖(coverage) - 1 
12. End_While 
13. Return ParetoSet 
End_MOG 

 

The MOG is a stochastic local search algorithm that works by generating a 

restricted candidate list during the construction phase by evaluating the fitness of each 

candidate element by the performance of the objective function given the previously 

selected elements. In a greedy fashion, the best element is chosen and added to the list as 

well as a subset of the other candidate elements, the size of which is driven by the 

parameter 𝛼𝛼. The use of this parameter 𝛼𝛼 for the generation of the restricted candidate list 

(RCL) is given below. 

𝑅𝑅𝐶𝐶𝐿𝐿 = �𝑆𝑆 ∈ 𝐶𝐶�𝑍𝑍𝑖𝑖(𝑆𝑆) ≤ 𝑍𝑍𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛼𝛼�𝑍𝑍𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�� 

where 𝛼𝛼 ∈ [0,1]. 

The primary determinant of the performance of the GRASP algorithm is the 

selection of the 𝛼𝛼 parameter, effectively setting the size of the RCL. If this parameter is 

set too large, the resulting solutions are too random. If it is set too small, then the solution 

tends to be consistent with a pure greedy approach. Finding the appropriate value to 

utilize here is paramount for high performance of the algorithm. 
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Each iteration of the construction phase of the GRASP heuristic is repeated until 

the max iterations value is reached. For the implementation used here, the GRASP 

procedure halts when all of the facilities have been selected (P, and/or Q in this case), and 

the MOG ends with the generation of the Pareto frontier. 

The repair phase of this algorithm is especially important, and also contributes to 

the performance of the algorithm. For this work, this entails repairing a solution which 

violates the minimal coverage restrictions. A unique repair procedure was developed for 

this work. The psudocode for this repair function is given below in Figure 5.4. 

Figure 5.4: Repair Function 
 
Procedure Repair(Solution, Candidates) 
1. While Solution(coverage) > min_uncoverage do 
2. Call Update(𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  ∈ Solution, 𝑆𝑆𝑖𝑖𝑛𝑛 ∈ 𝐶𝐶𝑑𝑑𝑛𝑛𝑑𝑑𝑆𝑆𝑑𝑑𝑑𝑑𝐶𝐶𝑆𝑆𝐶𝐶) 
3. End_While 
4. Return Solution 
End_Repair 
 

In step 2 of the function given in Figure 5.4, the candidate location 𝑆𝑆𝑖𝑖𝑛𝑛 is added 

into the solution while 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 is removed. The candidate element selected to leave the 

solution (𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜) is the facility in the solution which covers the least amount of demand. 

The incoming facility (𝑆𝑆𝑖𝑖𝑛𝑛) is the one location in the list of candidates not in the solution, 

which increases demand coverage beyond what was lost via the removal of 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 at the 

smallest increase in cost. If minimal coverage is satisfied, the solution is sent back to the 

GRASP procedure, otherwise the process is repeated with the remaining locations (not 

𝑆𝑆𝑖𝑖𝑛𝑛) currently in the solution being considered for removal. 

For the local search step of the MOG, in this work, a substitution procedure 

similar to that outlined in Daskin (2013) is implemented. However, unlike the method 
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provided in Daskin (2013), this substitution procedure is done after the construction 

phase is completed, as is conventional in most GRASP implementations. During the 

substitution phase, each selected facility is re-evaluated with the change in objective 

value found if facility 𝑠𝑠 ∈ 𝐽𝐽 is replaced with any of the |𝐽𝐽| − 1 facilities not already 

present in the solution. The best improvement found during this phase, if any, is retained, 

and the procedure is repeated until all selected locations have been evaluated.  

Additionally, in order to inhibit the repeated discovery of previously identified 

non-dominated solutions, a tabu list (Glover 1986) was incorporated in the local search 

heuristic. This prevents the algorithm from allowing a previously chosen element in the 

candidate location pool to re-enter the solution for a set number of iterations. After some 

experimentation, a tabu list of size 10 was found to be the most effective for the data set 

considered in this work. Future research in this area will focus on formally evaluating the 

size of the tabu search lists and comparing other local search techniques in a multi-

objective GRASP framework across multiple datasets. 

The assignment of demand is a critical step before the evaluation of each 

candidate solution. In previous approaches to applying GRASP in location problems, a 

network model linear programming problem was solved as a sub-routine in the solution 

procedure, (Montoya-Torres et al. 2010, Montoya-Torres et al. 2011). For this work, 

however, the assignment of demand is done as a subroutine of the algorithm, which 

enforces the mandatory service restrictions developed in this work for multi-level 

location problems. The psudocode of this subroutine is below. 
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Figure 5.5: Solution Evaluation Procedure 
Procedure SolutionEvaluation(W_Array, P_Array, Flow_Type) 
1. TotalDistance, TotalCoverage = 0, 0 
2. If Flow_Type == 1 do 
3. Combined = W_Array ∪ P_Array 
4. For i in 1:length(Customers) 
5. temp = min(Distance[i,  j in Combined]) 
6. TotalDistance += temp 
7. If temp <= 500 
8. TotalCoverage += Demand(i) 
9. End_If 
10. End_For 
11. Else 
12. For i in 1:length(Customers) 
13. temp = min(Distance[i, j in W_Array, k in P_Array]) 
14. TotalDistance += temp 
15. If temp <= 500 
16. TotalCoverage += Demand(i) 
17. End_If 
18. End_For 
19. End_IfElse 
20. Return TotalDistance, TotalCoverage 
End_SolutionEvaluation 
 
 
 The Solution Evaluation procedure described above works by first identifying the 

flow type (1 == multi-flow) before “assigning” demand prior to criteria performance 

evaluation. The creation and retention of arrays of binary variables reflecting the 

allocation of demand for every single evaluation of a candidate solution unnecessarily 

increases the overhead and runtime of the algorithm. What this procedure does instead is 

identify the total distance by finding the assignment that is most economical, while 

iteratively updating the total demand covered, given vectors of selected facilities and 

plants. The procedure is polynomial in time at the worst case, but it runs even faster in 

practice due to the fact that the maximum number of comparisons required are 49 x 3 x 2 

(number of nodes x largest problem size in this work). 
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What follows is a formal definition of a metric used to evaluate the performance 

of the MOG implemented in this work. 

 

5.4.  Metaheuristic Solution Method Evaluation 

 Collete & Siarry (2004) provide a set of performance metrics for evaluating the 

Pareto frontier of a multi-objective optimization problem solved with metaheuristic 

algorithms. The majority of the techniques given in this monograph are based upon the 

work found in Van Velduizen (2000). The approaches given therein will be applied to 

evaluate the GRASP to be implemented in this work. The notation used here is similar to 

that found in Collete & Siarry (2004). 

 

5.4.1. Error Ratio 

 This metric is a measurement of the nonconvergence of a heuristic solution 

approach toward the optimal Pareto set by examining both the optimal and heuristic trade 

off surfaces and the elements of each set. 

𝐸𝐸 =
∑ 𝑆𝑆𝑙𝑙𝐿𝐿
𝑙𝑙=1
|𝐿𝐿|  

where |𝐿𝐿| is the cardinality of the optimal Pareto set, and 

𝑆𝑆𝑙𝑙 = �0 if 𝐹𝐹 in the Pareto efficient set is also in the heuristic tradeoff surface
1 otherwise                                                                                                               

The closer this evaluation metric is to 0, the more the heuristic solution set has converged 

toward the optimal tradeoff surface. 
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6. Computational Results 

 

6.1.  Data Inputs 

A series of ten multi-level location problems will be solved, each with varying 

numbers of warehouses and plants to locate, capturing a variety of scenarios under 

differing budget restrictions. For the computational results presented in this work, the 

“Sortcap” data set (Daskin 1995) consisting of 49 nodes representing the 48 contiguous 

United States and Washington, D.C. was used. The location of each node is the capital of 

their respective state where demand is equal to a 1990 population census totaling 

247,051,601. Great circle distances are used, and all 49 nodes are candidate facility 

locations for both warehouses and plants. The Julia programming language (Bezanson et 

al. 2012) was used to implement all solution methodologies used in this work, with the 

Gurobi solver being called to solve the elastic constraint models. Table 6.1 is a listing of 

all scenarios evaluated. 

 
Table 6.1: Scenarios Considered 
Scenario Flow (S or M) Warehouses (P) Plants (Q) 

1 M 1 1 
2 S 2 1 
3 S 2 2 
4 S 3 1 
5 M 2 1 
6 S 3 2 
7 S 4 1 
8 S 5 1 
9 M 2 2 
10 M 3 2 
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As seen in Table 6.1, the multi-level location problem where P warehouses and Q 

plants are located (model 3.3) is considered in the computational exercises of this work. 

Both single flow and multi-flow variants of the problem are evaluated throughout the ten 

scenarios analyzed here.  

The coverage distance is set at 500 miles for all scenarios, a relatively 

conservative estimate of the maximum travel distance of a freight vehicle in one day 

(considering the maximum driving time allowed in a day), slightly offset by the fact that 

big circle distances tend to understate road travel distances. At a coverage distance of 500 

miles, all demands can be covered with five facilities. For this reason, the last scenarios 

considered are P = 5, Q = 1, single flow and P = 3, Q = 2, multi-flow. 

 

6.2.  Elastic Constraint Methodology Results 

In order to find all non-dominated solutions in the trade-off of average distance 

and coverage, the elastic constraint methodology discussed in Chapter 5 was applied to 

all scenarios. Given below in Table 6.2 and are the summary results of this analysis. 

Table  6.2: Summary Results 
Scenario Average Distance Average Uncoverage 

1 808 1060 
2 814 1006 
3 518 982 
4 824 649 
5 827 630 
6 502 581 
7 821 392 
8 806 331 
9 505 307 
10 501 189 
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The results presented in Table 6.2 are given in descending order from worst to best 

average service level. Depicted in Figure 6.1 are the Ideal, Average, and nadir points for 

all scenarios.  

Figure 6.1 

 

As seen in Figure 6.1, the average points utilized in comparing the scenarios in this 

analysis exhibit the same pattern as the ideal points. However, in each scenario, the 

average point is usually feasible and is always very close to or on the frontier. 

As Table 6.2 indicates, average distance doesn’t always decrease with average 

uncoverage level across these scenarios. The cause of this is the existence of an extra 

plant. Figure 6.2 below illustrates this finding. 
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Figure 6.2: One Plant vs. Two Plant Solutions 

 

 

Clearly, an extra plant significantly reduces the average distance in multi-level location 

problems. In fact, average distance across all efficient solutions varies little among 

scenarios with the same number of plants. Additionally, Table 6.2 indicates that 

comparable or superior service level is achievable through locating fewer facilities with 

the restriction that all of them be distribution capable. Figure 6.3 shows, in addition to the 

impact that varying the amount of demand serving locations has on the average 

uncoverage levels of the problem. 
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Figure 6.3: Increasing Demand Serving Locations 

 

As seen in Figure 6.3, an expected increase in service levels occurs as the number of 

demand serving locations increase. However, an interesting finding can be seen by 

comparing scenarios 8 and 9.  Specifically, a slightly better average service level is 

achievable by opening four locations (2/2/M) as opposed to six (5/1/S). Granted, opening 

a distribution capable plant is generally more costly than a warehouse, it may not be as 

costly as opening three warehouses in some industries.  

 The work in Shen & Daskin (2005) highlights the importance of a multi-criteria 

approach in facility location problems. They found that significant improvements in 

service levels can almost always be achieved at a minor increase in cost above the cost 

minimizing level. The results of this work support that finding. Table 6.3 presents these 

findings across all ten scenarios. 
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Table 6.3: Percentage Improvement in Service Level with Minor Increase in Distance 

Scenario 
Increase in average Distance 

Less than %1 Up to 5% increase 
1 25.7% 37.9% 
2 18.2% 30.3% 
3 - 1.0% 
4 18.6% 37.2% 
5 14.5% 33.1% 
6 16.1% 16.9% 
7 19.2% 39.0% 
8 25.3% 45.7% 
9 21.0% 30.3% 
10 22.0% 33.0% 

Mean 18.1% 30.4% 
 

 As Table 6.3 indicates, a significant improvement in service level is possible in all 

cases, with the exception of Scenario 2 (2/2/S). Another important finding of this work is 

that quite often, a weakly Pareto efficient solution will be found when solving the mono 

objective problem of distance minimization (or cost) relative to the conflicting criteria of 

service level. In this analysis, at a precision of one average mile, pure distance 

minimization resulted in the identification of a weakly Pareto optimal point in 9 of the 10 

cases. In other words, alternate optimal solutions with better service levels are possible, 

yet could never be found in a mono-objective approach to the problem. These findings 

strongly support the use of multi-objective methodologies to solving multi-level facility 

location problems. 
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6.3. Multi-Objective Greedy Random Adaptive Search Results 

As discussed in Chapter 5, the most influential parameter to the performance of a 

GRASP algorithm is the one which dictates the size of the restricted candidates list (α). In 

addition, a parameter controlling the stopping point of each run of the algorithm by 

controlling the maximum number of iterations contributes to the performance of the 

algorithm as well.  

After extensive experimentation and parameter tuning, it was found that the best 

configuration is to set 𝛼𝛼 = .1 and 𝛽𝛽 (max iterations) equal to 10 total iterations without 

improving the incumbent solution. This result supports the findings in Montoya-Torres et 

al. (2011), a recent work applying GRASP in a facility location paper. In that paper, a 

three echelon location problem is solved using a GRASP across a set of random instances 

of data of varying size from 8000 mixed integer programming (MIP) variables up to 

500,000 MIP variables. Given below in Table 6.5 are the results of the MOG algorithm 

after 20 runs of each data set. 

Table 6.5: Multi-Objective GRASP Results 

Scenario 
Elastic Constraint MOG 

Efficient 
Solutions 

Average 
Run Time (s) 

Efficient 
Points Found 

Average 
Run Time (s) 

Error 
Ratio 

1 9 4.95 7 0.747 0..22 
2 8 4.99 7 0.93 0.12 
3 7 0.94 3 0.25 0.57 
4 21 16.7 16 1.58 0.24 
5 20 18.26 12 1.47 0.40 
6 12 4.93 9 2.43 0.25 
7 24 18.04 16 2.34 0.33 
8 31 34.5 24 3.48 0.23 
9 17 31.2 14 2.13 0.18 
10 28 42.57 21 3.78 0.25 

Mean 18 17.71 13 1.91 0.28 
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 As seen in Table 6.5, the MOG algorithm identified 72% of the Pareto efficient 

solutions on average, as found with the elastic constraint methodology. Additionally, the 

mean solution time of the MOG is over ten times faster than using optimal search. Due to 

the fact that MOG is a stochastic algorithm, it is highly likely that more efficient points 

can be found if the algorithm is allowed to run more than 20 times. Further testing of the 

effectiveness of the key parameters (𝛼𝛼 and 𝛽𝛽), and a detailed analysis of the tuning of 

such parameters is needed. Lastly, an evaluation of a set of local search heuristics is need 

in a GRASP framework to compare the effectiveness of a variety of these techniques in 

location problems. Care should be taken in the interpretation of these findings, as these 

results are not generalizable across all multi-level location problems. 

The MCDA solution selection techniques derived in Chapter 4 were applied to all 

scenarios. Given below in Table 6.4 is the results of this analysis. 

Table 6.4: Selected Solutions/𝐴𝐴𝑅𝑅𝑁𝑁𝑖𝑖  
Scenarios 𝑝𝑝𝑘𝑘 = .05 𝑝𝑝𝑘𝑘 = .25 

1 𝐳𝐳1/6 𝐳𝐳4/8 
2 𝐳𝐳1/5 𝐳𝐳3/7 
3 𝐳𝐳5/3 𝐳𝐳4/6 
4 𝐳𝐳5/10 𝐳𝐳17/18 
5 𝐳𝐳7/12 𝐳𝐳16/19 
6 𝐳𝐳4/4 𝐳𝐳10/10 
7 𝐳𝐳10/11 𝐳𝐳21/20 
8 𝐳𝐳20/10 𝐳𝐳12/26 
9 𝐳𝐳6/4 𝐳𝐳13/16 
10 𝐳𝐳10/11 𝐳𝐳2326 

 
 Table 6.4 shows the selected solutions and the number of recourse networks 

available at the provided objective performance degradation level. As indicated, a most 

flexible solution, according to the metrics derived here, changed in every scenario when 

𝑝𝑝𝑘𝑘 was increased from 5% to 25%. Another interesting finding is that 45% of the 
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efficient solutions presented in Table 6.4 are “convex dominated,” or don’t lie on the 

convex hull of their respective solution spaces. This supports the conclusion that the use 

of more sophisticated search techniques is necessary when applying the MCDA 

techniques derived here in order to identify a more complete non-dominated set. Lastly, 

the incorporation of the mandatory service restrictions as defined in Chapter 3 have a 

negligible effect on total distance. This result coincides with another finding in Shen & 

Daskin (2005), where closest assignment restrictions resulted in negligible increases in 

total cost. What follows are illustrations of the efficient set of points, those found by the 

MOG algorithm, and the selected solutions based upon the criteria of flexibility across all 

ten scenarios considered in this work. 

Depicted below in Figures 6.4 and 6.5 are the non-dominated frontiers from 

Scenarios 1 and 2. 

Figure 6.4: Scenario 1 (1/1/M) 

 
 
The two points highlighted in Figure 6.4 correspond to the selected solutions for Scenario 

1 in Table 6.4. In this case, the most flexible solutions are near the cost (distance) 

minimizing extreme of the frontier. 
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Figure 6.5: Scenario 2 (2/1/S) 

 
 

 Similar to Figure 6.4, the more flexible solutions perform well on the average 

distance objective. In fact, at an allowable objective degradation level of %5, the distance 

minimizing point is the most flexible solution for both scenarios 1 and 2. Also, when 

comparing the Figure 6.4 and Figure 6.5, it is apparent that the scenarios are similar and 

have nearly identical frontiers. The reason for this is because in the single flow problem, 

the best solution at each iteration usually involves co-locating plants with warehouses, 

and the chosen locations are the same as the multi-flow problem. This result captures the 

scenarios explaining efficient location in multi-level facility location problems in Figures 

3.5 & 3.6 in chapter three.  

 Given below in Figure 6.6 is the frontier for Scenario 3. The MOG algorithm 

didn’t perform nearly as well here, only finding the two extreme points on the frontier 

and one compromise solution. Additionally, both selected solutions are convex 

dominated points in the recessed portion of the frontier. Unfortunately, neither were 

found with the MOG algorithm. 
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Figure 6.6: Scenario 3 (2/2/S) 

 
Below are Figures 6.7 and 6.8, illustrations of two more Scenarios with similar frontiers. 

 

Figure 6.7: Scenario 4 (3/1/S) 
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Figure 6.8: Scenario 5 (2/1/M) 

 
As seen in Figures 6.7 and 6.8, the solutions identified as being the most flexible are in 

the same areas of the frontier. As the allowable objective function degradation increases, 

the selected solution is one near the service level maximizing point in both cases.  

Presented below in Figure 6.9 is the frontier for Scenario 6. 

 

Figure 6.9: Scenario 6 (3/2/S) 
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In this scenario, the selected solution jumps from one near the cost minimizing point to 

one near the service level maximizing point, similar to Scenarios 4 and 5. Given below 

are the frontiers for Scenarios 7 and 8. 

Figure 6.10: Scenario 7 (4/1/S) 

 
 
Figure 6.10: Scenario 8 (5/1/S) 
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In these scenarios, both selected solutions are near the center of the frontier among the 

compromise solutions. Additionally, in Scenario 8 the chosen solution moved toward the 

distance minimizing point as allowable objective performance degradation (pk) was 

increased. The only other time this occurred was in Scenario 3. Given below in Figure 

6.11 and Figure 6.12 are the frontiers for Scenarios 9 and 10. 

Figure 6.11: Scenario 9 (2/2/M) 

 
 
Figure 6.11: Scenario 10 (3/2/M) 
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In both Scenarios 9 and 10, the selected solutions are toward the center of the frontier 

among the compromise solutions. Additionally, it can be seen that the MOG algorithm 

did quite well discovering well over half of the points in both scenarios. However, the 

uncoverage minimization point was not found in both scenarios with the MOG algorithm. 

 The findings, contributions, and future research of this work is summarized in the 

following section. Additionally, managerial insights are provided based upon the results 

given here.  
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7. Conclusion 

 

7.1 Findings, Contributions, and Future Research 

 There were three main goals of this research; each with a different purpose. The 

first purpose of this research was to contribute to location theory by developing new 

multi-level location models, which address the problem of efficient assignment of 

demands under a cost/service level trade-off, while enforcing mandatory service 

restrictions. A mandatory service policy is one in which any customer must be covered, if 

it is at all possible to do so, when given a set of selected locations. The task is then to 

choose the best subset of candidate locations at the ideal trade-off level of cost and 

customer service while enforcing mandatory service.  

Historically, enforcing adequate service level, in the context given in this work, is 

usually addressed via closest assignment restrictions. However, closest assignment 

constraints can be overly restrictive, and may not be the most efficient means of 

addressing service level restrictions, especially in multi-level location problems. The 

models we developed here address this issue. Although the scenarios considered here are 

multi-objective location problems, the idea of mandatory service restrictions in 

distribution modeling can be applied in the mono-objective scenario as well, a 

simplification that will be explored in future research. 

The classic approach of coverage-based modeling, a technique typically reserved 

for public sector location problems, has been successfully adapted to private sector 

distribution system design in this work. This is not to say that covering hasn’t been used 
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in private sector problems before, because it has. However, our approach is unique, and 

incorporates the distribution decisions which dictate the flow in the model, something 

which is all but ignored in most covering papers in the literature. This contribution is 

most significant, and will lead to a stream of research fully exploring this type of 

restriction in a variety of scenarios where existing service level modeling approaches in 

private sector location papers are compared and contrasted. Additionally, with the 

emergence of e-commerce and a general surge in focus on customer service in recent 

years, the idea of same day delivery is taking off in the business world. As such, 

modeling approaches to facility location in strategic network design should focus more 

on customer service. 

The second purpose of this work is to contribute to the field of multi-criteria 

decision making in facility location. This was done by quantifying the similarity of 

distribution networks, an approach which is unique. In this work, the foundation for a 

multi-criteria decision aid in facility location was laid. The metrics designed capture the 

flexibility of any given set of location decision in regards to its neighboring efficient 

solutions. Quite simply, the solutions that are most flexible are the ones that can be 

altered efficiently to any other non-dominated solution via opening and closing locations. 

Because operating priorities and strategies can evolve, and a company’s strategy can shift 

between cost and service. Selecting a distribution network that can be economically 

adapted to differing non-dominated solutions is ideal. This work begins to address this 

problem.  

As alluded to periodically throughout this work, only using Hamming distances to 

quantify flexibility may not be the best approach. However, this work is merely a starting 
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point in a new research stream. It remains to be seen how effective the metrics can be by 

themselves in practice. Regardless, the contribution of this thrust is in the initiation of a 

new research idea in modeling and capturing flexibility, and the starting point for 

measures meant to quantify the flexibility of a distribution network as a means of 

incorporating this facet in a decision methodology.  

Future research in this area will focus on ways of including distance, assignment 

arcs, and product flows into the quantifying of network flexibility, as well as developing 

dynamic solution approaches to consider the criteria of flexibility during the search for 

non-dominated solutions. Additionally, real world applications are needed to test and 

refine these metrics. Although the analysis here was not cost based, the cost based 

approach was provided for the metrics given, and cost based applications seem to be 

especially promising areas of future research.  

 The third and final purpose of this research was to apply a multi-objective greedy 

random adaptive search metaheuristic to the multi-level, multi-criteria location problem, 

first such research to do so. The criteria of cost in the form of average distance, and 

customer service in the form of total demand serviced within a given service level was 

considered. Although GRASP has been applied in a handful of location papers, there 

have been no MOG algorithms applied in facility location.  

 The local search phase of the MOG is especially vital to the performance of the 

algorithm. The technique applied here is a simple facility exchange routine with a tabu 

search restriction. Implementing tabu search in this local search subroutine greatly 

improved the performance of the algorithm by limiting the amount of dominated 

solutions found at each iteration, thereby nearly eliminating the redundant discovery of 

100 Copyright, Jeremy W. North, 2014 
 



   

previously found efficient solutions. This work contributes to the literature by presenting 

a unique MOG algorithm for the multi-level location problem and applying it with high 

success (72% of the non-dominated points found in just 20 runs). 

  

7.2. Managerial Insights 

 What follows are some managerial insights from this research. Caution needs to  

be taken when interpreting these insights. Scenarios too dissimilar to the ones considered 

in this work may not be directly applicable. 

 

1. Customer service level should not be disregarded in distribution system design. In 

almost every situation, a significant increase in customer service can be 

experienced at a nominal increase in cost. 

 

2. Comparable performance can be achieved with fewer locations, as long as all 

locations can distribute to customers. This should be considered in real world 

distribution system design and redesign decisions. It may ultimately be more 

efficient to simply expand the plant locations to incorporate customer distribution 

operations than simply opening a new warehouse. 

 

3. Opening additional plants can significantly decrease variable distribution cost in 

multi-level scenarios. In fact, the impact can be much more significant than 

opening additional warehouses.  
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4. Adding customer distribution capability to plants can lead to significant decreases 

in variable distribution cost and will always improve service level. 

 

5. The cost minimization objective is usually highly inflexible. In other words, 

choosing to ignore customer service restrictions may lead to a distribution 

network that is very costly to reconfigure if an improvement in customer service 

is desired while maintaining Pareto efficiency. 

 

6. The flexibility of a non-dominated solution can vary greatly across the frontier, 

even amongst points which are adjacent. This means that the average cost of a 

reconfiguration is not necessarily correlated in any way with the pursuit of cost 

minimization or customer service maximization.  

 

7. Greedy Random Adaptive Search Procedures can be effectively applied in facility 

location problems. As problem sizes increase, optimal search techniques become 

impossible to use to solve location problems. Heuristics are used in these cases. 

The GRASP and the MOG are excellent alternative solution methods to optimal 

search in facility location. 
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Appendix 

1. Data File 

# Updated: 10/2/2014 
# Created by Jeremy North 
######################################################################## 
# Daskin_Data.jl 
# Dissertation Dataset 1 
# Daskin 1995 
######################################################################## 
 
# Define containers 
points, dist = Dict{Int32, Array}(), Dict{Tuple, Float64}() 
coverage, non_coverage = Dict{Int32, Array}(), Dict{Int32, Array}() 
 
# points dictionary. [location name,demand(10000s),lat,lon] 
points[1] = ["CA",297.60021,115800,38.56685,-121.46736] 
points[2] = ["NY",179.90455,101800,42.66575,-73.799017] 
points[3] = ["TX",169.86510,72600,30.30588,-97.750522] 
points[4] = ["FL",129.37926,72400,30.457,-84.281399] 
points[5] = ["PA",118.81643,38400,40.27605,-76.884503] 
points[6] = ["IL",114.30602,59200,39.781433,-89.644654] 
points[7] = ["OH",108.47115,66000,39.988933,-82.987381] 
points[8] = ["MI",92.95297,48400,42.7091,-84.553996] 
points[9] = ["NJ",77.30188,71300,40.2234,-74.764224] 
points[10] = ["NC",66.28637,96600,35.82195,-78.658753] 
points[11] = ["GA",64.78216,71200,33.7629,-84.422592] 
points[12] = ["VA",61.87358,66600,37.53105,-77.474584] 
points[13] = ["MA",60.16425,161400,42.336029,-71.017892] 
points[14] = ["IN",55.44159,60800,39.7764,-86.146196] 
points[15] = ["MO",51.17073,61500,38.571902,-92.190459] 
points[16] = ["WI",48.91769,75200,43.0798,-89.387519] 
points[17] = ["TN",48.77185,74400,36.17155,-86.784829] 
points[18] = ["WA",48.66692,77800,47.041917,-122.893766] 
points[19] = ["MD",47.81468,138500,38.97165,-76.503033] 
points[20] = ["MN",43.75099,70900,44.947744,-93.103686] 
points[21] = ["LA",42.19973,67900,30.448967,-91.126043] 
points[22] = ["AL",40.40587,62200,32.3544,-86.284287] 
points[23] = ["KY",36.85296,61500,38.19077,-84.865203] 
points[24] = ["AZ",36.65228,77100,33.54255,-112.071399] 
points[25] = ["SC",34.86703,72600,34.039236,-80.886341] 
points[26] = ["CO",32.94394,79000,39.768035,-104.872655] 
points[27] = ["CT",32.87116,133800,41.7657,-72.683866] 
points[28] = ["OK",31.45585,54900,35.46705,-97.513491] 
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points[29] = ["OR",28.42321,60300,44.9245,-123.022057] 
points[30] = ["IA",27.76755,49500,41.576738,-93.617405] 
points[31] = ["MS",25.73216,54600,32.3205,-90.207591] 
points[32] = ["KS",24.77574,48800,39.0379,-95.691999] 
points[33] = ["AR",23.50725,64200,34.7224,-92.354076] 
points[34] = ["WV",17.93477,66100,38.35055,-81.630439] 
points[35] = ["UT",17.22850,67200,40.777267,-111.929921] 
points[36] = ["NE",15.78385,61700,40.8164,-96.688171] 
points[37] = ["NM",15.15069,99000,35.678502,-105.954149] 
points[38] = ["ME",12.27928,79500,44.330647,-69.729714] 
points[39] = ["NV",12.01833,99300,39.148328,-119.743243] 
points[40] = ["NH",11.09252,112400,43.231594,-71.560077] 
points[41] = ["ID",10.06749,67700,43.606651,-116.2261] 
points[42] = ["RI",10.03464,113000,41.82195,-71.419732] 
points[43] = ["MT",7.99065,63200,46.596522,-112.020381] 
points[44] = ["SD",6.96004,59500,44.372982,-100.322483] 
points[45] = ["DE",6.66168,88700,39.158691,-75.517441] 
points[46] = ["ND",6.38800,67900,46.805467,-100.767298] 
points[47] = ["DC",6.06900,123900,38.90505,-77.016167] 
points[48] = ["VT",5.62758,94100,44.266482,-72.571854] 
points[49] = ["WY",4.53588,68700,41.14545,-104.792349] 
 
# Calculate big circle distance between two points 
function haversine(point1, point2) 
  point1[1], point2[1] = pi * point1[1]/180, pi * point2[1]/180 
  point1[2], point2[2] = pi * point1[2]/180, pi * point2[2]/180 
  dlon, dlat = point2[2] - point1[2], point2[1] - point1[1] 
  a = (sin(dlat/2))^2 + cos(point1[1]) * cos(point2[1]) * (sin(dlon/2))^2 
  c = 2 * atan2(sqrt(a), sqrt(1-a)) 
  return(3961*c)         # 3961 = radius of Earth in miles 
end 
 
# Create distance matrix 
function distanceMatrix() 
  for i in 1:49 
    for j in i+1:49 
      dist[(i,j)] = haversine(points[i][4:5], points[j][4:5]) 
      dist[(j,i)] = dist[(i,j)] 
    end 
    dist[(i,i)] = 0 
  end 
end 
 
 
# Create coverage matrix (Aij) 
function coverageMatrix() 
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  for i in 1:49 
    coverage[i] = zeros(49) 
    non_coverage[i] = zeros(49) 
    for j in 1:49 
      if dist[(i,j)] <= minimumCoverage 
        coverage[i][j] = 1 
      else non_coverage[i][j] = 1 
      end 
    end 
  end 
end 
 
bigM, minimumCoverage, numNodes = 2470.51601, 500, length(points)          
distanceMatrix(), coverageMatrix()             
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2. Solution Display File 

# Updated: 10/19/2014 
# Created by Jeremy North 
######################################################################## 
# Reads solution, displays selected locations and solution to user 
######################################################################## 
 
include("Daskin_Data.jl") 
#include("DissertationModel1.jl") 
#include("DissertationModel2.jl") 
 
function getLocations(answerJ, answerK) 
  ansLocsW = Dict() 
  ansLocsP = Dict() 
  numNodes = length(answerJ) 
  for i in 1:numNodes 
    ansLocsW[i] = String[] 
    for j in 1:length(answerJ[i]) 
      if answerJ[i][j] == 1 
        push!(ansLocsW[i], locations[j]) 
      end 
    end 
  end 
  for i in 1:numNodes 
    ansLocsP[i] = String[] 
    for j in 1:length(answerK[i]) 
      if answerK[i][j] == 1 
        push!(ansLocsP[i], locations[j]) 
      end 
    end 
  end 
  for i in 1:numNodes 
    if ansLocsW[i] != "" 
      println(i, " warehouses ", ansLocsW[i]) 
    end 
    if ansLocsP[i] != "" 
      println(i, " plants ", ansLocsP[i]) 
    end 
  end 
end 
 
function getMOGLocations(answerJ, answerK) 
  for i in 1:length(answerJ) 
    if answerJ[i] == 1 
      println(i, " warehouses ", points[i][1]) 
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    end 
  end 
  for i in 1:length(answerK) 
    if answerK[i] == 1 
      println(i, " plants ", points[i][1]) 
    end 
  end 
end 
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3. Elastic Constraint Model: Single Flow 

# Updated: 10/6/2014 
# Created by Jeremy North 
######################################################################## 
# Single-Flow, P-Warehouse, Q-Plant location problem 
# Multi-Criteria: Min Distance, Max Service (coverage) 
# Application of Ehrgott (2006) elastic constraint methodology 
######################################################################## 
 
## MODULES & PACKAGES REQUIRED ## 
using JuMP 
using Gurobi 
include("Daskin_Data.jl") 
include("DissertationSolutionDataCollection.jl") 
 
## DATA ## 
customerI = length(points)              # set cardinality 
warehouseJ, plantK = customerI, customerI 
unCovered = bigM                           # initialize for cost min 
P, Q = 1, 1                                   # p warehouses q plants 
penalty = 100000000000000             # slack & surplus penalty (very big number) 
 
# solution containers and bookkeeping parameters 
solutionNum = 0 
runTimes, total_cost, total_coverage, keys = Float64[], Float64[], Float64[], Int[] 
answerJ, answerK, answerX1, answerX2 = Dict(), Dict(), Dict(), Dict() 
answerC, solutions = Dict(), Dict() 
 
## MODEL ## 
function hierarchicalMCTC(P, Q, requiredCover) 
 
  tic() 
  # Create Model # 
  m = Model(solver=GurobiSolver()) 
 
  # Decision Variables # 
  @defVar(m, Y1[1:customerI,1:warehouseJ] >= 0)       # flow w to c 
  @defVar(m, Y2[1:warehouseJ,1:plantK] >= 0)          # flow p to w 
  @defVar(m, X1[1:warehouseJ], Bin)                   # warehouse selection 
  @defVar(m, X2[1:plantK], Bin)                       # plant selection 
  @defVar(m, C[1:customerI], Bin)                     # customer coverage 
 
  # Elastic Constraint Variables # 
  @defVar(m, L >= 0)                                  # slack 
  @defVar(m, S >= 0)                                  # surplus 
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  # Solution Tracking Variables # 
  @defVar(m, totalCost >= 0) 
  @defVar(m, totalCoverage >= 0) 
 
  # Objective: min total cost + penalty*slack # 
  @setObjective(m, Min, sum{dist[(i,j)]*Y1[i,j], i = 1:customerI, j = 1:warehouseJ} + 
                        sum{dist[(j,k)]*Y2[j,k], j = 1:warehouseJ, k = 1:plantK} + 
                        penalty*S + penalty*L) 
 
  # Constraints # 
  # coverage 
  for i in 1:customerI 
    for j in 1:warehouseJ 
      @addConstraint(m, coverage[i][j]*X1[j] <= C[i]) 
    end 
  end 
 
  for i in 1:customerI 
      @addConstraint(m, points[i][2]*C[i] <= sum{coverage[i][j]*Y1[i,j],  

       j=1:warehouseJ})                      
  end 
 
  # linking X1 with Y 
  for j in 1:warehouseJ 
    for i in 1:customerI 
      @addConstraint(m, Y1[i,j] <= points[i][2]*X1[j]) 
    end 
  end 
 
  # linking X2 with Z 
  for k in 1:plantK 
      @addConstraint(m, sum{Y2[j,k], j=1:warehouseJ} <= bigM*X2[k]) 
  end 
 
  # demand 
  for i in 1:customerI 
    @addConstraint(m, sum{Y1[i,j], j=1:warehouseJ} == points[i][2]) 
  end 
 
  # flow balance 
  for j in 1:warehouseJ 
    @addConstraint(m, sum{Y1[i,j], i=1:customerI} == sum{Y2[j,k], k=1:plantK}) 
  end 
 
  # P Warehouses, Q Plants 
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  @addConstraint(m, sum{X1[j], j in 1:warehouseJ} == P) 
  @addConstraint(m, sum{X2[k], k in 1:plantK} == Q) 
 
  # elastic constraint (Covering Objective) 
  @addConstraint(m, sum{points[i][2]*C[i], i=1:customerI} + L - S >=    
         requiredCover) 
 
  # book keeping 
  @addConstraint(m, totalCost == sum{dist[(i,j)]*Y1[i,j], i = 1:customerI, j =  
 1:warehouseJ} + sum{dist[(j,k)]*Y2[j,k], j = 1:warehouseJ, k = 1:plantK}) 
  @addConstraint(m, totalCoverage == sum{points[i][2]*C[i], i = 1:customerI}) 
 
  # Solve (Gurobi default) # 
  status = solve(m) 
  # error checking 
  if status == :Infeasible 
    error("Model is infeasible!") 
  end 
 
  # Print results # 
  println("Best objective: $(round(getObjectiveValue(m)))") 
 
return toc(), int(getValue(totalCost)), getValue(totalCoverage), getValue(X1),  
   getValue(X2), getValue(Y1), getValue(Y2), getValue(C) 
end 
 
# Pareto Frontier Generation # 
function generateSolutions(P, Q) 
  requiredCover = 0 
 
  # find max coverage 
  runTime, runCost, maxCover, selectedJ, selectedK, Y1, Y2, C =  
      hierarchicalMCTC(P, Q, bigM) 
 
  # find rest of PO solutions, starting with cost min 
  while requiredCover <= maxCover 
    requiredCover += 1 
 

runTime, runCost, runCover, selectedJ, selectedK, Y1, Y2, C = 
hierarchicalMCTC(P, Q,     requiredCover) 

 
    if [runCost, runCover] in values(solutions) == false    # 
      global solutionNum += 1 
      push!(keys, solutionNum) 
      push!(runTimes, runTime) 
      push!(total_coverage, runCover) 
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      push!(total_cost, runCost) 
      answerJ[solutionNum] = selectedJ 
      answerK[solutionNum] = selectedK 
      answerX1[solutionNum] = Y1 
      answerX2[solutionNum] = Y2 
      answerC[solutionNum] = C 
      solutions[solutionNum] = [runCost, runCover] 
      global unCovered = bigM - runCover 
      requiredCover = bigM - unCovered 
    end 
  end 
end 
 
generateSolutions(5,1) 
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4. Elastic Constraint Model: Multi-Flow 
 

# Updated: 10/6/2014 
# Created by Jeremy North 
######################################################################## 
# Multi-Flow, P-Warehouse, Q-Plant location problem 
# Multi-Criteria: Min Distance, Max Service (coverage) 
# Application of Ehrgott (2006) elastic constraint methodology 
######################################################################## 
 
## MODULES & PACKAGES REQUIRED ## 
using JuMP, Gurobi 
include("Daskin_Data.jl") 
 
## DATA ## 
customerI = length(points)               # set cardinality 
warehouseJ, plantK = customerI, customerI 
unCovered = bigM                           # initialize for cost min 
P, Q = 1, 1                                         # p warehouses q plants 
penalty = 100000000000000            # slack & surplus penalty 
 
# solution containers and bookkeeping parameters 
solutionNum = 0 
runTimes, total_cost, total_coverage, keys = Float64[], Float64[], Float64[], Int[] 
answerJ, answerK, answerX1, answerX2 = Dict(), Dict(), Dict(), Dict() 
answerX3, answerC, solutions = Dict(), Dict(), Dict() 
 
## MODEL ## 
function hierarchicalMCTC(P, Q, requiredCover) 
 
  tic() 
  # Create Model # 
  m = Model(solver=GurobiSolver()) 
 
  # Decision Variables # 
  @defVar(m, Y1[1:customerI,1:warehouseJ] >= 0)       # flow from w to c 
  @defVar(m, Y2[1:warehouseJ,1:plantK] >= 0)          # flow from p to w 
  @defVar(m, Y3[1:customerI,1:plantK] >= 0)           # flow from p to c 
  @defVar(m, X1[1:warehouseJ], Bin)                   # warehouse selection 
  @defVar(m, X2[1:plantK], Bin)                       # plant selection 
  @defVar(m, C[1:customerI], Bin)                     # customer coverage 
 
  # Elastic Constraint Variables # 
  @defVar(m, L >= 0)                                  # slack 
  @defVar(m, S >= 0)                                  # surplus 
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  # Solution Tracking Variables # 
  @defVar(m, totalCost >= 0) 
  @defVar(m, totalCoverage >= 0) 
 
 
  # Objective: min total cost + penalty*slack # 
  @setObjective(m, Min, sum{dist[(i,j)]*Y1[i,j], i = 1:customerI, j = 1:warehouseJ} + 
                        sum{dist[(j,k)]*Y2[j,k], j = 1:warehouseJ, k = 1:plantK} + 
                        sum{dist[(i,k)]*Y3[i,k], i = 1:customerI, k = 1:plantK} + 
                        penalty*S + penalty*L) 
 
  # Constraints # 
  # coverage 
  for i in 1:customerI 
    for j in 1:warehouseJ 
      @addConstraint(m, coverage[i][j]*X1[j] <= C[i]) 
    end 
    for k in 1:plantK 
      @addConstraint(m, coverage[i][k]*X2[k] <= C[i]) 
    end 
  end 
 
  for i in 1:customerI 
      @addConstraint(m, points[i][2]*C[i] <= sum{coverage[i][j]*Y1[i,j],   
  j=1:warehouseJ} + sum{coverage[i][k]*Y3[i,k], k=1:plantK}) 
  end 
 
  # linking X1 with Y 
  for i in 1:customerI 
    for j in 1:warehouseJ 
      @addConstraint(m, Y1[i,j] <= points[i][2]*X1[j]) 
    end 
    for k in 1:plantK 
      @addConstraint(m, Y3[i,k] <= points[i][2]*X2[k]) 
    end 
  end 
 
  # linking X2 with Z 
  for k in 1:plantK 
      @addConstraint(m, sum{Y2[j,k], j=1:warehouseJ} <= bigM*X2[k]) 
  end 
 
  # demand 
  for i in 1:customerI 
    @addConstraint(m, sum{Y1[i,j], j=1:warehouseJ} + sum{Y3[i,k], k=1:plantK} ==  
          points[i][2]) 
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  end 
 
  # flow balance 
  for j in 1:warehouseJ 
    @addConstraint(m, sum{Y1[i,j], i=1:customerI} == sum{Y2[j,k], k=1:plantK}) 
  end 
 
  # P Warehouses, Q Plants 
  @addConstraint(m, sum{X1[j], j in 1:warehouseJ} == P) 
  @addConstraint(m, sum{X2[k], k in 1:plantK} == Q) 
 
  # elastic constraint (Covering Objective) 
  @addConstraint(m, sum{points[i][2]*C[i], i=1:customerI} + L - S >=  
         requiredCover) 
 
  # book keeping 
  @addConstraint(m, totalCost == sum{dist[(i,j)]*Y1[i,j], i = 1:customerI, j =  

1:warehouseJ} + sum{dist[(j,k)]*Y2[j,k], j = 1:warehouseJ, k = 1:plantK} + 
                               sum{dist[(i,k)]*Y3[i,k], i = 1:customerI, k = 1:plantK}) 
  @addConstraint(m, totalCoverage == sum{points[i][2]*C[i], i = 1:customerI}) 
 
  # Solve (Gurobi default) # 
  status = solve(m) 
  # error checking 
  if status == :Infeasible 
    error("Model is infeasible!") 
  end 
 
  # Print results # 
  println("Best objective: $(round(getObjectiveValue(m)))") 
 
  return toc(), int(getValue(totalCost)), getValue(totalCoverage), getValue(X1),  
   getValue(X2), getValue(Y1), getValue(Y2), getValue(Y3), getValue(C) 
end 
 
# Pareto Frontier Generation # 
function generateSolutions(P, Q) 
  requiredCover = 0 
 
  # find worst coverage 
  runTime, runCost, maxCover, selectedJ, selectedK, Y1, Y2, Y3, C =  
      hierarchicalMCTC(P, Q, bigM) 
 
  # find rest of PO solutions, starting with cost min 
  while requiredCover < maxCover 
    requiredCover += 1 
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runTime, runCost, runCover, selectedJ, selectedK, Y1, Y2, Y3, C =  
     hierarchicalMCTC(P, Q,    requiredCover) 

 
    if [runCost, runCover] in values(solutions) == false    # 
      global solutionNum += 1 
      push!(keys, solutionNum) 
      push!(runTimes, runTime) 
      push!(total_coverage, runCover) 
      push!(total_cost, runCost) 
      answerJ[solutionNum] = selectedJ 
      answerK[solutionNum] = selectedK 
      answerX1[solutionNum] = Y1 
      answerX2[solutionNum] = Y2 
      answerX3[solutionNum] = Y3 
      answerC[solutionNum] = C 
      solutions[solutionNum] = [runCost, runCover] 
      global unCovered = bigM - runCover 
      requiredCover = bigM - unCovered 
    end 
  end 
end 
 
generateSolutions(3,2) 
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5. Assign Demands and Evaluate Performance for Heuristic 
 
# Updated: 10/19/2014 
# Created by Jeremy North 
######################################################################## 
# Assigns demands to selected facilities with mandatory service restrictions 
# Multi-Criteria: Min Distance, Max Service (coverage) 
# Evaluate performance of heuristics (distance, coverage) 
######################################################################## 
 
## MODULES & PACKAGES REQUIRED ## 
include("Daskin_Data.jl") 
 
# finds demand assignment with manditory service restrictions, single flow 
function sfWeightedDistance(selectedWarehouses, selectedPlants) 
  x, y, covered = selectedWarehouses, selectedPlants, zeros(49) 
  z, shorts, assignments, numNodes = zeros(49), zeros(49), zeros(49), length(points) 
  if sum(x) == 0 
    x = y 
  end 
  if sum(y) == 0 
    y = x 
  end 
  for i in 1:numNodes 
    short = 100000000000 
    for j in 1:numNodes 
      if x[j] == 1 
        if dist[(i,j)] <= 500 
          covered[i] = points[i][2] 
          for k in 1:numNodes 
            if y[k] == 1 
              temp = (dist[(i,j)] + dist[(j,k)]) * points[i][2] 
              if short > temp 
                short = temp 
                assignments[i] = j 
                shorts[i] = short 
              end 
            end 
          end 
        end 
      end 
    end 
    if assignments[i] == 0 
      tempCheck = 100000000000 
      for k in 1:numNodes 
        if y[k] == 1 
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        temp = dist[(i,k)] * points[i][2] 
          if tempCheck > temp 
            short = temp 
            tempCheck = temp 
            assignments[i] = k 
            shorts[i] = short 
          end 
        end 
       end 
    end 
    z[assignments[i]] += points[i][2] 
  end 
  return(shorts, z, assignments, covered) 
end 
 
# finds demand assignment with manditory service restrictions, multi-flow 
function mfWeightedDistance(selectedWarehouses, selectedPlants) 
  z, shorts, assignments, covered = zeros(49), zeros(49), zeros(49), zeros(49) 
  x, y, combined, numNodes = selectedWarehouses, selectedPlants, 
selectedWarehouses, length(points) 
  for i in 1:numNodes 
    if selectedPlants[i] == 1 
      combined[i] = 1 
    end 
  end 
  for i in 1:numNodes 
    short = 100000000000 
    for j in 1:numNodes 
      if combined[j] == 1 
        if dist[(i,j)] <= 500 
          covered[i] = points[i][2] 
          for k in 1:numNodes 
            if y[k] == 1 
              temp = (dist[(i,j)] + dist[(j,k)]) * points[i][2] 
              if short > temp 
                short = temp 
                assignments[i] = j 
                shorts[i] = short 
              end 
            end 
          end 
        end 
      end 
    end 
    if assignments[i] == 0 
      tempCheck = 100000000000 
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      for k in 1:numNodes 
        if y[k] == 1 
        temp = dist[(i,k)] * points[i][2] 
          if tempCheck > temp 
            short = temp 
            tempCheck = temp 
            assignments[i] = k 
            shorts[i] = short 
          end 
        end 
       end 
    end 
    z[assignments[i]] += points[i][2] 
  end 
  return(shorts, z, assignments, covered) 
end 
 
function solutionPerformance(selectedWarehouses, selectedPlants, flowType) 
  assignments = zeros(49) 
  if flowType == 1 
    totalToCust, demandAtWarehouses, assignments, totalCovered  = 
sfWeightedDistance(copy(selectedWarehouses), copy(selectedPlants)) 
  else 
    totalToCust, demandAtWarehouses, assignments, totalCovered  = 
mfWeightedDistance(copy(selectedWarehouses), copy(selectedPlants)) 
  end 
  totalDistance, totalUncoverage = sum(totalToCust)/bigM, bigM - 
sum(totalCovered) 
  return(totalDistance, totalUncoverage, assignments) 
end 
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6. Multi-Objective GRASP 
 

# Updated: 10/17/2014 
# Created by Jeremy North 
######################################################################## 
# Single-Flow & Multi-Flow, P-Warehouse, Q-Plant location problem 
# Multi-Criteria: Min Distance, Max Service (coverage) 
# Multi-Objective Greedy Random Adaptive Search Procedures (MOG) 
######################################################################## 
 
## MODULES & PACKAGES REQUIRED ## 
include("Daskin_Data.jl") 
include("Assign_Demands.jl") 
include("DissertationSolutionDataCollection.jl") 
include("Local_Search_Heuristic.jl") 
#using Assign_Demands 
 
## DATA ## 
customerI = length(points)                 # set cardinality 
warehouseJ, plantK = customerI, customerI 
unCovered = bigM                           # initialize for cost min 
P, Q = 1, 1                                # p warehouses q plants 
penalty = 100000000000000                  # slack & surplus penalty 
 
# solution containers and bookeeping parameters 
solutionNum, numNodes, flowType = 0, length(points), 1 
runTimes, total_cost, total_coverage, keys = Float64[], Float64[], Float64[], Int[] 
MOGanswerJ, MOGanswerK, answerX1, answerX2 = Dict(), Dict(), Dict(), Dict() 
answerC, MOGsolutions = Dict(), Dict() 
 
function constructionPhaseSF(P, Q, alpha, requiredUncoverage, flowType, weight) 
  x, y, z, oneFacBestCover = zeros(49), zeros(49), [], 1427.1979399999998 
  selectedJ, selectedK, chosenJ, chosenK = zeros(49), zeros(49), zeros(49), zeros(49) 
  randomSelection, RCLnum, zMaxD, zMinD, zMaxC, zMinC = [], 0, 0, 0, 0, 0 
 
  for i in 1:numNodes 
    temp = zeros(49) 
    temp[i] = 1 
    x[i], y[i], z = solutionPerformance(zeros(49), temp, flowType) 
  end 
  RCL = Dict() 
  zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
  zMaxD2, zMaxC2 = copy(zMaxD), copy(zMaxC) 
 
  function normalizePerformance(x,y,zMaxD,zMinD,zMaxC,zMinC) 
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    x1, y1, z1 = copy(x), copy(y), zeros(49) 
    for i in 1:numNodes 
      x1[i] = (zMaxD - x[i]) / (zMaxD - zMinD) 
    end 
    for i in 1:numNodes 
      y1[i] = (zMaxC - y[i]) / (zMaxC - zMinC) 
    end 
    for i in 1:numNodes 
      z1[i] = weight * x1[i] + (1-weight) * y1[i] 
    end 
    return(x1,y1,z1) 
  end 
  zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
  x,y,weightedXYNorm = normalizePerformance(x,y,zMaxD,zMinD,zMaxC,zMinC) 
  zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
  zMaxWeighted, zMinWeighted = maximum(weightedXYNorm), 
minimum(weightedXYNorm) 
  minPerformanceD, minPerformanceC = zMaxD - alpha * (zMaxD - zMinD), 
zMaxC - alpha * (zMaxC - zMinC) 
  minPerformanceWeighted = zMaxWeighted - alpha * (zMaxWeighted - 
zMinWeighted) 
 
  # first RCL list creation & solution selection, plants 
  for i in 1:numNodes 
    if weightedXYNorm[i] >= minPerformanceWeighted 
      RCLnum += 1 
      selectedK = zeros(49) 
      selectedK[i] = 1 
      #print(sum(selectedK)) 
      RCL[RCLnum] = selectedK 
    end 
  end 
  chosenK = RCL[rand(1:RCLnum)] 
  # given first plant selection, keep going till all chosen 
  Q -= 1 
  while Q > 0 
    Q -= 1 
    RCL, RCLnum, x, y = Dict(), 0, zeros(49), zeros(49) 
    for i in 1:numNodes 
      temp = copy(chosenK) 
      if temp[i] == 1 
        x[i], y[i] = zMaxD2, zMaxC2 
      end 
      if temp[i] == 0 
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        temp[i] = 1 
        x[i], y[i], z = solutionPerformance(zeros(49), temp, flowType) 
      end 
    end 
    zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
    x,y,weightedXYNorm = 
normalizePerformance(x,y,zMaxD,zMinD,zMaxC,zMinC) 
    zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
    zMaxWeighted, zMinWeighted = maximum(weightedXYNorm), 
minimum(weightedXYNorm) 
    #minPerformanceD, minPerformanceC = zMaxD - alpha * (zMaxD - zMinD), 
zMaxC - alpha *   (zMaxC - zMinC) 
    minPerformanceWeighted = zMaxWeighted - alpha * (zMaxWeighted - 
zMinWeighted) 
 
    # first RCL list creation & solution selection, warehouses 
    for i in 1:numNodes 
      if weightedXYNorm[i] >= minPerformanceWeighted 
        RCLnum += 1 
        selectedK = copy(chosenK) 
        selectedK[i] = 1 
        RCL[RCLnum] = selectedK 
      end 
    end 
    chosenK = RCL[rand(1:RCLnum)]     # random selction 
  end 
  bestK = chosenK                     # outcome for chosen plants 
    # choose P warehouses 
  while P > 0 
    P -= 1 
    RCL, RCLnum, x, y = Dict(), 0, zeros(49), zeros(49) 
    for i in 1:numNodes 
      temp = copy(chosenJ) 
      if temp[i] == 1 
        x[i], y[i] = zMaxD2, zMaxC2 
      end 
      if temp[i] == 0 
        temp[i] = 1 
        x[i], y[i], z = solutionPerformance(temp, chosenK, flowType) 
      end 
    end 
    zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
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    x,y,weightedXYNorm = 
normalizePerformance(x,y,zMaxD,zMinD,zMaxC,zMinC) 
    zMaxD, zMinD, zMaxC, zMinC = maximum(x), minimum(x), maximum(y), 
minimum(y) 
    zMaxWeighted, zMinWeighted = maximum(weightedXYNorm), 
minimum(weightedXYNorm) 
    #minPerformanceD, minPerformanceC = zMaxD - alpha * (zMaxD - zMinD), 
zMaxC - alpha * (zMaxC - zMinC) 
    minPerformanceWeighted = zMaxWeighted - alpha * (zMaxWeighted - 
zMinWeighted) 
 
    # first RCL list creation & solution selection 
    for i in 1:numNodes 
      if weightedXYNorm[i] >= minPerformanceWeighted 
        RCLnum += 1 
        selectedJ = copy(chosenJ) 
        selectedJ[i] = 1 
        RCL[RCLnum] = selectedJ 
      end 
    end 
    chosenJ = RCL[rand(1:RCLnum)]     # random selction 
  end 
  bestJ = chosenJ                     # outcome for chosen warehouses 
  return bestJ, bestK 
end 
 
# Construct frontier using GRASP 
function buildFrontier(P,Q,alpha,requiredCover,flowType,maxIterations, weight) 
  MOGTimeStart = tic() 
 
  finalJ, finalK, finalSolution = [], [], [1000000000000000,bigM] 
  while maxIterations > 0 
 
    answerDistance, answerCoverage, assigns = 0, 0, [] 
    selectedWarehouses, selectedPlants = [], [] 
    weight = weight 
 
    selectedWarehouses, selectedPlants = 
constructionPhaseSF(P,Q,alpha,requiredCover,flowType, weight) 
 
    tempJ, tempK = copy(selectedWarehouses), copy(selectedPlants)      
    answerDistance, answerCoverage, assigns = solutionPerformance(tempJ, tempK, 
flowType) 
    if answerDistance <= finalSolution[1] && answerCoverage < finalSolution[2] ||            
       answerCoverage <= finalSolution[2] && answerDistance < finalSolution[1] 
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      finalJ, finalK, finalSolution = selectedWarehouses, selectedPlants, 
[answerDistance, answerCoverage] 
    else 
      maxIterations -= 1 
    end 
  end 
  MOGTimeEnd = toc() 
  println(finalSolution) 
  return finalJ, finalK, finalSolution, (MOGTimeEnd-MOGTimeStart) / 
maxIterations 
end 
 
weight = 1 
solutionNum = 1 
while weight >= 0 
  finalJ, finalK, finalSolution = buildFrontier(3, 2, .2, bigM, 0, 10, weight) 
  MOGanswerJ[solutionNum] = finalJ 
  MOGanswerK[solutionNum] = finalK 
  MOGsolutions[solutionNum] = finalSolution 
  solutionNum += 1 
  weight -= .01 
end 
 
MOGSolutionSet = Set() 
for i in 1:length(MOGsolutions) 
  push!(MOGSolutionSet, MOGsolutions[i]) 
end 
 
for i in 1:length(MOGsolutions) 
  println(MOGsolutions[i]) 
  getMOGLocations(MOGanswerJ[i], MOGanswerK[i]) 
end 
 
println(MOGSolutionSet) 
 
function Pareto_Filter() 
  MOGsolutionsTemp = copy(MOGsolutions) 
  for i in 1:length(MOGsolutions)-1 
    for j in i+1:length(MOGsolutions) 
      MOGsolutions[i][1] <= MOGsolutions[j][1] && MOGsolutions[i][2] < 
MOGsolutions[j][2] ||       
      MOGsolutions[i][2] <= MOGsolutions[j][2] && MOGsolutions[i][1] < 
MOGsolutions[j][1] 
      delete!(MOGanswerJ, j) 
      delete!(MOGanswerK, j) 
      delete!(MOGsolutionsTemp, j) 
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    end 
  end 
  MOGsolutions = MOGsolutionsTemp 
end 
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7. Local Search: Facility Switch with Tabu Mechanism 
 
# Updated: 10/26/2014 
# Created by Jeremy North 
######################################################################## 
# Single-Flow & Multi-Flow, P-Warehouse, Q-Plant location problem 
# Multi-Criteria: Min Distance, Max Service (coverage) 
# Local Search: Facility switch with tabu 
######################################################################## 
 
function GRASP_LocalSearch(selectedWarehouses, selectedPlants, callTracker, 
flowType, weight) 
  tempJ, tempK, = copy(selectedWarehouses), copy(selectedPlants) 
  numNodes, numLocsJ, numLocsK = 49, sum(tempJ), sum(tempK) 
  solutionD, solutionC = solutionPerformance(selectedWarehouses, selectedPlants, 
flowType)         
  finalJ, finalK = copy(selectedWarehouses), copy(selectedPlants) 
 
  function updateTabu(i) 
    for j in 1:numNodes 
      if haskey(tabuDict, j) == true 
        if tabuDict[j] > 10 
          delete!(tabuDict, j) 
        else 
          tabuDict[j] += 1 
        end 
      end 
    end 
    if haskey(tabuDict, i) == false 
     tabuDict[i] = 1 
    end 
  end 
 
  function updateWarehouses() 
    x, y, z, selectedLocs = zeros(49), zeros(49), zeros(49), Int32[] 
    for i in 1:numNodes 
      if tempJ[i] == 1 
          push!(selectedLocs, i) 
      end 
    end 
    while selectedLocs != [] 
      x, y = zeros(49), zeros(49) 
      tempJ = copy(selectedWarehouses) 
      node = pop!(selectedLocs) 
      for i in 1:49 
        tempJ = copy(selectedWarehouses) 

143 Copyright, Jeremy W. North, 2014 
 



   

        x[node], y[node] = bigM, bigM 
        tempJ[node] = 0 
 
        tempJ[i] = 1 
        if tempJ in values(MOGanswerJ) && finalK in values(MOGanswerJ) 
          x[i], y[i] = bigM, bigM 
        else 
          x[i], y[i] = solutionPerformance(tempJ, finalK, flowType) 
        end 
        if weight*x[i] + (1-weight)*y[i] < weight*solutionD + (1-weight)*solutionC &&          
            haskey(tabuDict, i) == false 
           
          if [x[i], y[i]] in values(MOGsolutions) == false 
            solutionD, solutionC = x[i], y[i] 
            finalJ = copy(tempJ) 
          end 
        end 
        updateTabu(i) 
      end 
    end 
  end 
 
  function updatePlants() 
    x, y, z, selectedLocs = zeros(49), zeros(49), zeros(49), Int32[] 
 
    for i in 1:numNodes 
      if tempK[i] == 1 
          push!(selectedLocs, i) 
      end 
    end 
 
    while selectedLocs != [] 
      x, y = zeros(49), zeros(49) 
      tempK = copy(selectedPlants) 
      node = pop!(selectedLocs) 
      for i in 1:49 
        tempK = copy(selectedPlants) 
        x[node], y[node] = bigM, bigM 
        tempK[node] = 0 
 
        tempK[i] = 1 
        if tempK in values(MOGanswerK) && finalJ in values(MOGanswerJ) 
          x[i], y[i] = bigM, bigM 
        else 
          x[i], y[i] = solutionPerformance(finalJ, tempK, flowType) 
        end 
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        if weight*x[i] + (1-weight)*y[i] < weight*solutionD + (1-weight)*solutionC && 
          haskey(tabuDict, i) == false 
          if [x[i], y[i]] in values(MOGsolutions) == false 
            solutionD, solutionC = x[i], y[i] 
            finalK = copy(tempK) 
          end 
        end 
        updateTabu(i) 
      end 
    end 
  end 
 
  if callTracker == 0 
    updatePlants() 
    updateWarehouses() 
  else 
    updateWarehouses() 
    updatePlants() 
  end 
  return finalJ, finalK 
end 
 
tabuDict = Dict() 
function Call_LocalSearch(selectedWarehouses, selectedPlants, callTracker, weight) 
  loopTemp1, loopTemp2 = [],[] 
  while loopTemp1 != selectedWarehouses || loopTemp2 != selectedPlants 
    loopTemp1, loopTemp2 = copy(selectedWarehouses), copy(selectedPlants) 
    answerDistance, answerCoverage = solutionPerformance(selectedWarehouses, 
selectedPlants, flowType) 
     
     if callTracker == 0 
      selectedWarehouses, selectedPlants = GRASP_LocalSearch(selectedWarehouses, 
selectedPlants, callTracker, flowType, weight) 
      callTracker = 1 
      selectedWarehouses, selectedPlants = GRASP_LocalSearch(selectedWarehouses, 
selectedPlants, callTracker, flowType, weight) 
     else 
      selectedWarehouses, selectedPlants = GRASP_LocalSearch(selectedWarehouses, 
selectedPlants, callTracker, flowType, weight) 
      callTracker = 0 
      selectedWarehouses, selectedPlants = GRASP_LocalSearch(selectedWarehouses, 
selectedPlants, callTracker, flowType, weight) 
     end 
  end 
  return selectedWarehouses, selectedPlants 
end 
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