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Introduction

Our project focused on building upon the equations below, which were
explored in 1 dimension [2]:

∂u
∂t = div

(
∇u
|∇u|

)
(1)

ut = sign(u)xx (2)

for x ∈ Rn and t ∈ (0,∞).
Equation (1) represents the Total Variation Flow and equation (2)
represents the Sign Fast Diffusion Equation.
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Introduction

Specifically, we were gaining insight into radial solutions in higher
dimensions and how the perimeter of the level sets change.

Applications:
seeking radial solutions
entropy solutions
solving image denoising problems
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Background

Theorem
For initial data u(0, ρ), such as ρ · u(0, ρ) is monotone decreasing, there is
a time, T, at which the function stabilizes to a constant or zero. This is
called the extinction time or stabilization time[4].
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Notation:

Some variables to know:
ρ = radius, ρ ∈ (0,∞)

υ = solution to Sign Fast Diffusion Equation (SFDE)
u = solution to Total Variation Flow (TVF)
n = dimension of Rn

T = extinction time, or the time at which the solution stabilizes
Note: t ∈ [0,∞) or [0,T]
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Lemma 1
Let u(t, x) = u(t, ρ), with ρ := |x|, be a radial, continuous, and piecewise
smooth solution to the TVF, with |uρ| > 0 on sets of positive measure in
Rn for each t. Let n ≥ 2. Then, υ := uρ satisfies the SFDE

υt =

(
(sign(υ) · ρn−1)′

ρn−1

)′
. (3)
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Idea of Proof

1 Compute ∂

∂xi

(
∇u
|∇u|

)
= u′(ρ)

ρ · |u′(ρ)| · x⃗.

2 By taking the divergence we get ut =

(
sign(u′(ρ)) · ρn−1)′

ρn−1 .

3 Remembering υ := uρ we get υt =

(
(sign(υ) · ρn−1)′

ρn−1

)′
.
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Lemma 2
Let (t, ρ) vary in an open set. If ρ · u(0, ρ) is radially decreasing, then the
solution to the TVF is [1]

u(t, ρ) =
(

u(0, ρ)− (n − 1)
ρ

t
)

+

. (4)
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Idea of Proof
If ρ · u(0, ρ) is radially decreasing then sign(uρ) = −1 and

−(ρn−1)′

ρn−1 = −(n − 1) · ρn−2

ρn−1 = −n − 1
ρ

Thus, ut = −n − 1
ρ

(which is independent of t).

Hence,
∫ t

0
us = −n − 1

ρ
t, and

u(t, ρ) =
(

u(0, ρ)− (n − 1)
ρ

t
)

+

.

Schneegans, Shumakovich Total Variation Flow in Rn Dimensions with Examples Relating to Perimeters of Level SetsAugust 5, 2022 9 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Idea of Proof
If ρ · u(0, ρ) is radially decreasing then sign(uρ) = −1 and

−(ρn−1)′

ρn−1 = −(n − 1) · ρn−2

ρn−1 = −n − 1
ρ

Thus, ut = −n − 1
ρ

(which is independent of t).

Hence,
∫ t

0
us = −n − 1

ρ
t, and

u(t, ρ) =
(

u(0, ρ)− (n − 1)
ρ

t
)

+

.

Schneegans, Shumakovich Total Variation Flow in Rn Dimensions with Examples Relating to Perimeters of Level SetsAugust 5, 2022 9 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Idea of Proof
If ρ · u(0, ρ) is radially decreasing then sign(uρ) = −1 and

−(ρn−1)′

ρn−1 = −(n − 1) · ρn−2

ρn−1 = −n − 1
ρ

Thus, ut = −n − 1
ρ

(which is independent of t).

Hence,
∫ t

0
us = −n − 1

ρ
t, and

u(t, ρ) =
(

u(0, ρ)− (n − 1)
ρ

t
)

+

.

Schneegans, Shumakovich Total Variation Flow in Rn Dimensions with Examples Relating to Perimeters of Level SetsAugust 5, 2022 9 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lemma 3
Assume ρ · u(0, ρ) is a monotone decreasing function. Then,

u(t, ρ) =
(

u(0, ρ)− (n − 1)
ρ

t
)

+

.

is a solution to ut =
(sign(u′(ρ))·ρn−1)

′

ρn−1 with the initial datum u(0, ρ). Then,
1 For all t, u(t, ρ) ≤ u(0, ρ) for each ρ.

2 As t increases, u(t, ρ) decreases for fixed ρ.
3 u(0, ρ) has a finite extinction time if and only if ρ · u(0, ρ) is bounded

[4].
4 If u(t, ρ) =

(
u(0, ρ)− (n−1)

ρ t
)
+

has a global maximum, then the
profile of u(t, ρ) decreases to 0 as t increases from 0 to T.
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Figure: The following figure is a visual representation of how the maxima changes with
time in a decreasing function. The horizontal axis shows the radius, Ri, and the vertical
axis shows the heights, Ai. The pink curve is showing the monotone decreasing function
with the orange rectangles representing uu(0, ρ) (the upper staircase above the curve).
The arrows pointing downward represent how the maxima decrease with time. In
addition, as the radii increase, the steps decrease at a slower rate.
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Example #1:

Example
Let ρ · u(0, ρ) be monotone decreasing. We will show how u(t, ρ) changes
over time and point out how there is one case where no extrema are
found. Let u(0, ρ) = c1

1
ρ2 . Additionally, n > 2.

Outline of Work:
1 Using Equation (4), take ∂u

∂ρ
.

2 Set uρ(t, ρ) = 0 to find any potential extrema within the function.

3 Solving for ρ, we get: ρ = − 2c1
(n − 1)t .
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Example #2:

Example
Let ρ · u(0, ρ) be monotone decreasing. We will show how u(t, ρ) changes
over time for a generalized example and point out how this is one case for
all n > N > 1, where N ∈ Q, where no extrema are found. Let u(0, ρ) =
c1

1
ρN .

Outline of Work
1 Using Equation (4), take ∂u

∂ρ
.

2 Set uρ(t, ρ) = 0 to find any potential extrema within the function.

3 Solving for ρ, we get: ρ = N−1

√
− Nc1
(n − 1)t .
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Example #3 (Volcano Case):

Example
Keeping the level ℓ fixed, as t increases, the perimeter of the level sets
does not change as t increases until the graph of u(x, t) no longer
intersects the plane u(x, t) = ℓ. When ℓ is not fixed, the perimeter of level
sets increases with t.

We will use the particular solution of the equation below found in [4].

u(x, t) =


(n−1)(T−t)

|x| |x| >
(

1
(n−1)(T−t))

1
(n−1)

)
[(n − 1)(T − t)] n

n−1 |x| ≤ 1
[(n−1)(T−t)]

1
n−1

.
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Example #3 (Volcano Case):

Key Notes
1 If ℓ1 < ℓ2, then the level curve u(x, t0) = ℓ1 has a larger perimeter

than the level curve u(x, t0) = ℓ2 as long as the sets are not empty.

2 For ℓ2 = 1
[(n−1)(T−t0)]

1
n−1 the intersection of the profile of u(|x|, t0)

with the plane u(x, t0) = ℓ2 is a disc. For ℓ2 > 1
[(n−1)(T−t0)]

1
n−1 the

intersection of the profile of u(|x|, t0) with the plane u(x, t0) = ℓ2 is
the empty set.
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Example #3 (Volcano Case):

(a) The following is a 3D representation
of the “volcano” shape with contour
lines. As you go down the volcano, the
circle contours become larger.

(b) Analogous to the circle contours,
the perimeters of the level sets become
larger when ℓ decreases.
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Example #3 (Volcano Case):

Work:
1 The perimeter of a level set is equal to 2πr(t) where

r(t) = 1
[(n−1)(T−t)]

1
n−1

.

2 Thus, the perimeter at a specific ℓ is 2π
[(n−1)(T−t)]

1
n−1

.

3 Lastly, you can observe the behavior of the level sets given the
equation.
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Example #3 (Volcano Case):

Work:
1 The perimeter of a level set is equal to 2πr(t) where

r(t) = 1
[(n−1)(T−t)]

1
n−1

.

2 Thus, the perimeter at a specific ℓ is 2π
[(n−1)(T−t)]

1
n−1

.

3 Lastly, you can observe the behavior of the level sets given the
equation.
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Questions?
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Thank you!
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