The Effect of Caffeine on Bee Behavior: A Progressive Ratio Study

Kayle Cohen
kcrmf@umsystem.edu

Becky Hansis-O’Neill
University of Missouri-St. Louis, bhc35@umsl.edu

Aimee Dunlap Dr
University of Missouri-St. Louis, aimee.dunlap@umsl.edu

Follow this and additional works at: https://irl.umsl.edu/urs

Part of the Animal Studies Commons, Behavioral Neurobiology Commons, Other Psychology Commons, Other Social and Behavioral Sciences Commons, and the Pharmacology Commons

Recommended Citation
Available at: https://irl.umsl.edu/urs/160

This Article is brought to you for free and open access by the UMSL Undergraduate Works at IRL @ UMSL. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
Effect of Caffeine on Bee Behavior: Progressive Ratio Study
Kayle Cohen, Becky Hansis-O’Neill, Aimee Dunlap PhD

Introduction
The study of learning in bees has provided valuable insights into the cognitive and behavioral mechanisms of social insects. One approach to investigating learning in bees is by using behavioral pharmacology methodologies. Our research on bee learning behavior focuses on using caffeinated nectar and altering schedules of reinforcement to better understand nectar preferences.

The schedules included:
- Training
- Fixed ratio (FR) (1 reward/flower visit)
- Progressive ratio (PR) (1 reward/progressively more flower visits)

Our study utilized the fixed ratio (FR) and progressive ratio (PR) schedule of reinforcement to assess the effects of caffeinated nectar on the bees’ ability to learn. The PR schedule is a type of operant conditioning in which the number of responses required for a reward is gradually increased over time.

Methods
We trained two bumblebees to drink nectar from an artificial flower and recorded their responses. This project was meant to evaluate these methodologies on a small number of bees before moving on to a larger study. Caffeinated and non-caffeinated sucrose were pipetted into the artificial flowers, acting as a reward during FR and PR. For the caffeinated reward bees were administered a .0001 M dose of caffeine in 60% sucrose solution w/v (weight by volume).

Results
Our results from the schedule data shows that bees fed caffeinated nectar were not significantly more likely to earn rewards during the caffeinated progressive ratios than progressive ratios with sucrose nectar.

- This finding suggests that caffeine did not enhance sugar rewards.
- Drug exposed bees earn more rewards, indicating a possible psychotropic effect
- Because the project is ongoing, this result may be attributed to data limitations.
- Researchers are currently working on testing more bees to attain more conclusive results.

Future Work
Researchers will use Behavioral Observation Research Interactive Software (BORIS) to score videos of trial runs and analyze duration and grooming behaviors.

References


Acknowledgments
Research funded by UMSL Office of Research and Economic & Community Development.

Thank you to Moss Bailey, Abrah Salameh, Chandra Dudley, Sam Skuta, Vivian Congleton, Anderson Spencer, Teoni Walker, Katie de La Paz, Zane Beal, Ahmed Almoheef, Kevin Corrigan, Samir Benbakir, and Lindsey Dennison.