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Abstract 

Inference to the best explanation (IBE) is the principle of inference according to which, when faced with a 

set of competing hypotheses, where each hypothesis is empirically adequate for explaining the phenomena, we 

should infer the truth of the hypothesis that best explains the phenomena. When our theories correctly display this 

principle, we call them our ‘best’. In this paper, I examine the explanatory role of mathematics in our best scientific 

theories. In particular, I will elucidate the enormous utility of mathematical structures. I argue from a reformed 

indispensability argument that mathematical structures are explanatorily indispensable to our best scientific 

theories. Therefore, IBE scientific realism entails mathematical realism. I develop a naturalistic, neo-Quinean 

ontology, which grounds physical and mathematical entities in structures. Mathematical structures are the truth-

makers for the entities of our quantificational discourse. I also develop an ‘ontic conception’ of explanation, 

according to which explanations exist in the world, whether or not we discover and model them. I apply the ontic 

account to mathematical structures, arguing that these structures are the explanations for particles, forces, and even 

the conservation laws of physics. As such, mathematical structures provide the fundamental grounding for 

ontological commitment. I conclude by reviewing the evidence from modern physics for the existence of 

mathematical structures.  
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To Willard van Orman Quine,  

Who first warned me that Plato’s beard has become gnarled, frequently dulling the edge of 

Ockham’s razor.  
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Mathematics provides enormous utility to the sciences, ranging in application from 

equations used in the physical sciences, such as quantum mechanics, to the use of statistics in the 

life sciences, such as biology. The question is ‘what follows about the ontology of mathematics 

from its application to science?’ I aim to show that a substantive thesis concerning the reality of 

mathematical structures does follow, provided one adopts a realist attitude toward science. As a 

scientific realist, I take it that our best scientific theories are based on the principle of ‘inference 

to the best explanation’ (IBE). Our ‘best scientific theories’ are ‘best’ in virtue of IBE, so their 

‘success’ is gauged relative to the principle as a baseline for scientific theories.  

My claim in this paper is that scientific realism entails mathematical realism. By 

‘mathematical realism’, I mean that mathematical structures are among ‘what there is’ in the 

universe. ‘Structures’ should not be confused with ‘entities’. The latter are simply those things 

that “figure as values of the variables in our overall system of the world” in the sense of Quine: 

numbers, functions, sets, etc., as well as so called ‘physical objects’: hypothetical particles, and 

so on.
1
 These ‘values of variables’ need to be grounded in order not to be ‘abstract’. On my 

account, structures do the grounding.     

 I employ a mathematical naturalism as my ontology of mathematics—not Quine’s 

Platonist naturalism, but naturalism in terms of mathematical structures, which are not abstract 

objects, but are fully grounded in the concrete, space-time universe. These structures are the 

truth-makers for statements about mathematical objects, and as such, meaningful reference to 

these objects is made possible.
2
 My naturalistic approach is motivated by the ontological 

                                                             
1 I use ‘entity’ interchangeably with ‘object’ throughout this paper. 
2
 I follow Ross Cameron (2010) in this respect, who asserts that “what there really is is what grounds the true 

sentences describing the world: that is, the real existents are the truthmakers for the true sentences of English. So 
the ontologist’s concern should be: what must the quantificational structure of the world be like to ground the 
true English claims we make?” My answer is that the quantificational structure is mathematical. 
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implications of modern physics, which suggest an ontology of structures, rather than objects and 

their properties. Although it remains difficult to pin down exactly what the structures are, 

physicists and philosophers currently look to structures of quantum physics, such as gauge 

symmetry invariants, mathematically characterized by the Casimir operators of gauge groups. 

Using group structures (the Poincare group, etc.), we derive structural properties with zero-value, 

like spin and charge, which are then ascribed to particles, such as the Higgs boson. The Higgs is 

not defined as an individual entity, but as a member of a mathematical structure—the gauge 

group of which it is a part. According to the current taxonomy of particle physics, zero-value 

properties “aren’t merely absences of quantities or holes in being,” but are “considered to be as 

real as non-zero value properties.”
3
 This, in outline, is my ontological approach.     

My argument is defended according to an explanatory indispensability argument of the 

following form: 

1. We ought to have ontological commitment to all structures that are explanatorily 

indispensable to our best scientific theories. 

2. Mathematical structures are explanatorily indispensable to our best scientific theories. 

Therefore, 

3. We ought to have ontological commitment to mathematical structures.
4
   

A key aim in formulating the indispensability argument this way is to illustrate how the existence 

of something can be demonstrated by showing how it explains a phenomenon (e.g.,  how the 

                                                             
3 Holger Lyre, “Structural Invariants, Structural Kinds, Structural Laws,” forthcoming in Probabilities, Laws, and 
Structures, 3. 
4 This version of the argument is Mark Colyvan’s (2001). As an entity realist, Colyvan follows Quine (1960, 1981). I 
have thus revised Colyvan’s entity formulation to reflect the structural argument; I sharpen the notion of 
‘indispensability’ via ‘explanatory indispensability’; and I also weaken the ‘all and only’ clause in the first premise to 
‘all’, leaving open possibilities besides structures for ontological commitment regarding scientific theories. The 
argument is otherwise the same.   
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existence of light quanta explains the photoelectric effect, how the molecular hypothesis explains 

Brownian motion, etc.); mathematical structures will be examined in this light.   

Structural Grounding 

 Premise 2 states that mathematical structures are ‘explanatorily indispensable’ to our best 

scientific theories. ‘Explanatorily indispensable’ means that without these mathematical 

structures, our best scientific theories wouldn’t be our ‘best’, since they would lack the requisite 

explanatory power. In this way, our best scientific theories entail mathematical structures. These 

structures ground the entities of our theories, according to a set of physical dependency relations. 

‘Grounding’ is thus a form of metaphysical necessitation—a relationship which indicates that 

some levels of being are more fundamental than others, and as such, necessitate the less 

fundamental. Hydrogen and oxygen atoms are more fundamental than H2O, insofar as H2O 

couldn’t exist without them. The grounding hierarchy is itself metaphysical, but direct 

dependency relations among phenomena are physical facts of nature. Like causation in the 

sciences, grounding is a system that backs explanatory patterns among facts in the world.  

 Consider the holes in Swiss cheese.
5
 The holes are directly dependent on the shape of the 

cheese, in the sense that if there is no shape, there are no holes. And there is no shape if there are 

no deeper, physically constitutive facts, which ground the shape in more fundamental relations. 

Thus, the direct dependency of holes on shape necessitates levels of being. This is because the 

holes form a pattern, which directly depends on a more fundamental level of being—the level of 

shape. Grounding features thus serve as inputs to structural explanation. They tell us why 

                                                             
5
 I thank Jonathan Schaffer (“Structural Equation Models of Grounding,” Washington University talk, March 8, 

2012) for this example.  
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something has properties, according to further, more fundamental facts (structural) responsible 

for those properties.   

 In the sciences, grounding relations tell us what grounds what. In geology, microphysical 

features ground volcanoes, according to features like elevation, slope and stratification. In 

mathematics, structures ground objects such as numbers, according to features like ordinality, 

cardinality, oddness and evenness. The natural-number system is a mathematical structure that 

grounds the natural numbers. A structural relation of this system is the successor function: a 

relation between non-fundamental objects—the natural numbers—and the fundamental structure 

that grounds them—the natural-number system. Numbers are thus ‘placeholders’ in a 

mathematical structure. They are not self-subsistent things, but are directly dependent on 

structure. The structure provides the grounding relations for numbers. I claim we ought to have 

ontological commitment to mathematical structure for three reasons. The first is metaphysical: 

because the structure grounds the number; the second is logical: because scientific realism entails 

mathematical structures, hence mathematical realism; and the third is quantum physical, which I 

discuss in the following section.  

Mathematical Structuralism and Ontic Structural Realism 

 Mathematical structuralism should be distinguished from ontic structural realism (OSR) 

in the following sense. OSR was originally formulated to answer underdetermination problems 

posed in quantum physics—problems like whether particles are individuals or non-individuals, 

whether quantum fields are substances or properties of space-time points, etc.
6
 OSR is therefore 

not wedded to any particular doctrine concerning mathematical structures. However, the 

                                                             
6 See French (2010) for an overview.  
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‘eliminativist’ version of OSR gives what I take to be the most conceptually coherent answer to 

the metaphysical underdetermination of physics: there are no objects at all, metaphysically 

speaking; structure ‘is all there is’.
7
 It’s the most coherent because it seems best equipped to deal 

with the original underdetermination problems OSR was enacted to solve.  

I believe OSR and mathematical structural realism are nonetheless engaged in a closely 

allied enterprise. In mathematics, I claim mathematical structure is ‘all there is’, in the sense that 

mathematical objects do not ‘exist’ independently of the structure that grounds them. In OSR, 

particles, like mathematical objects, do not ‘exist’ independently of the quantum physical 

structures that ground them. Over half a century ago, Quine pointed out that particles and 

mathematical objects are on equal ontological footing, but in any case, we need structures to 

ground entities. I believe physics and mathematics converge here, on the point of ontology. Like 

my account of explanatory indispensability, OSR looks to the best theories of modern physics to 

guide ontological commitment. Current physics suggests an ontology of structures over objects. 

Thus, I share with OSR the commitment to show that there are only structures.
8
      

The Indispensability of Mathematics to Science 

 Following Frege’s 1898 observation that “it is applicability alone which elevates 

arithmetic from a game to the rank of a science,”
9
 the thought that indispensability puts 

mathematics on par with science began to take hold. This motivated a realist conception of the 

utility of a ‘successful’ theory that generated novel prediction, tractability, economy, etc. By 

1947, Gödel was characterizing this ‘success’ in terms of set theory, noting that by ‘success’ he 

                                                             
7 See Ladyman and Ross (2007), p.130, for the original formulation.  
8
 If my ontology of mathematical structures is correct, there is ultimately nothing distinctively mathematical about 

them, since they are simply the quantum physical structures of physics; however, since they are fully described 
mathematically, there is nothing distinctively physical about them, either.  
9 Gottlob Frege, Philosophical Writings (Oxford: Basil, 1960), 187. 
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meant “fruitfulness in consequences, in particular in ‘verifiable’ consequences,” concluding that 

the axioms of set theory “would have to be accepted at least in the same sense as any well-

established physical theory.”
10

 Gödel’s point is that in virtue of set theory’s utility value, we 

must treat the entities of set theory as entities of a physical theory. The entities of set theory 

(axioms, definitions, etc.) are thus quantified over in any scientific theory to which they are 

applied, and are accordingly ‘verified’ along with mass, electron, etc. This empirical verification 

of applied mathematical entities leads to Putnam’s ‘hunch’ that mathematics is closer to an 

empirical science than an a priori discipline.
11

   

 The modern incarnation of the indispensability argument is due to Quine, who held that 

in our ontology, we “need to add abstract objects, if we are to accommodate science as currently 

constituted,” since “things we want to say in science may compel us to admit into the range of 

values of the variables of quantification not only physical objects but also classes and relations of 

them.”
12

 This is so, Quine thinks, because mathematics “is best looked upon as an integral part of 

science, on a par with the physics, economics, etc., in which mathematics is said to receive its 

applications.”
13

 Insofar as Quine means that scientific realism entails mathematical realism, I am 

in agreement; but as I argue in this paper, we need only accommodate the structures that ground 

Quine’s abstract objects—numbers, sets, classes, etc. This strategy circumvents Quine’s ‘hyper-

Pythagoreanism’
14

 by grounding objects in structures.  

                                                             
10

 Kurt Gödel, “What is Cantor’s Continuum Problem?” in Philosophy of Mathematics, eds. Paul Benacerraf and 
Hilary Putnam.  
11 See Putnam (1975). 
12 W.V. Quine, The Ways of Paradox, 231. 
13

 Ibid, 231. 
14

 At this time (1976), Quine was holding to an ontology of pure set theory, the triumph of which “has to do with 
the values of the variables of quantification, and not with what we say about them…The things that a theory 
deems there to be are the values of the theory’s variables, and it is these that have been resolving themselves into 
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Psillos-Style Scientific Realism vs. Laudan’s Pessimistic Induction 

 I follow Psillos in taking our best science as the most reliable guide to our ontological 

commitments.
15

 Given a ‘successful’ scientific theory, IBE needs to yield novel successful 

predictions of phenomena in a sound, reliable fashion. Larry Laudan’s attack on the ‘success’ of 

IBE, per his ‘pessimistic induction’, weakens the link between true theories and success, but 

leaves open the possibility that a scientific theory could still be approximately true. If some of a 

theory’s assertions bear an explanatory connection between empirical success and the theory’s 

being right about the unobservable world, we have reason not to take Laudan’s pessimistic 

induction seriously.  

The Ontic Conception of Explanation 

 The force of the IBE argument derives from the nature of explanation. In cases of 

genuine explanation, we have successfully delimited a portion of the objective structure of the 

world. This is the ‘ontic conception’ of explanation, which I defend. According to this 

conception, Newton’s explanation of the tides is deep and powerful because he uses the tides 

themselves to explain his theory of universal gravitation. By appealing directly to tidal 

acceleration, etc., the explanatory power of gravitational attraction goes up, providing deeper 

evidence for its existence. Newton does not use inferences, arguments or models. This is a matter 

of the direction of explanation in giving an account of how explanation works. We move from 

the world toward a theory. In Newton’s theory of the tides, it is the moon’s gravitational 

attraction itself that explains them.  

                                                                                                                                                                                                    
numbers and kindred objects—ultimately into pure sets. The ontology of our system of the world reduces thus to 
the ontology of set theory, but our system of the world does not reduce to set theory.” (Quine [1976], p. 503) 
15 Psillos (1999). 
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 Turning to neuroscience, let’s consider Carl Craver’s causal-mechanical explanation of 

neurotransmitter release. 

The mechanism begins…when an action potential depolarizes the axon terminal and so opens voltage-

sensitive calcium (Ca2+) channels in the neuronal membrane. Intracellular Ca2+ concentrations rise, causing 
more Ca2+ to bind to Ca2+ /Calmodulin dependent kinase. The latter phosphorylates synapsin, which frees the 

transmitter-containing vesicle from the cytoskeleton. At this point, Rab3A and Rab3C target the freed vesicle 

to release sites in the membrane. Then v-SNARES (such as VAMP), which are incorporated into the vesicle 

membrane, bind to t-SNARES (such as syntaxin and SNAP-25), which are incorporated into the axon terminal 

membrane, thereby bringing the vesicle and the membrane next to one another. Finally, local influx of Ca2+ at 

the active zone in the terminal leads this SNARE complex, either acting alone or in concert with other 

proteins, to open a fusion pore that spans the membrane to the synaptic cleft.16    

Craver appeals directly to the mechanism to explain the phenomenon. This is because the 

mechanism is the explanation of neurotransmitter release. What Craver has done is correctly read 

off the causal structure of the mechanism, such that we see how it works. It would be strange to 

think that the entities and activities involved in this process somehow depend on an observer to 

explain the mechanism; for instance, that t-SNARES are not incorporated into the axon terminal 

membrane unless there is an observer present.   

 Furthermore, like Newton’s explanation, there are no inferences, arguments or models 

involved. That’s because none of these qualify as genuine explanations. An inference like ‘the 

salt dissolved because it was placed in water’ is merely an inference with little explanatory value. 

An argument like ‘all gases expand when heated; x is a gas; so, x will expand when heated’ 

merely states a law-like regularity with a particular instance subsumed under it, and concludes 

with a future prediction. A model like Hodgkin and Huxley’s action potential, while historically 

important for neuroscience, is not genuinely explanatory. Hodgkin and Huxley are themselves 

clear on this point, noting that the agreement between their model and the voltage-clamp data  

must not be taken as evidence that our equations are anything more than an empirical description (my italics) 

of the time-course of the changes in permeability to sodium and potassium. An equally satisfactory 

description of the voltage-clamp data could no doubt have been achieved with equations of very different 

                                                             
16 Carl Craver, Explaining the Brain (Oxford: Oxford UP, 2007), 5. 



12 
 

form, which would probably have been equally successful in predicting (my italics) the electrical behavior of 

the membrane.17 

 Explanations must do more than describe and predict phenomena, in order to count as 

explanations. They don’t merely answer a why-question; they actually tell us why.
18

 In this way, 

explanations yield objective features, while phenomenological models yield only empirical 

adequacy. If we want to get the phenomena right, and not merely save them,
19

 we have to 

understand that mechanisms and mathematical structures are themselves the explanations, and 

that models of these explanations are pragmatic approximations, at best. Hodgkin and Huxley 

save the phenomena of the action potential with mathematical modeling, but leave the 

explanations of the underlying mechanisms for future generations.   

 The world is composed of explanatory information. For Wes Salmon, this information is 

Mark transmission: self-propagating causal processes with certain structural frequencies that 

persist beyond the point of intervention. This account follows the ontic conception, initially 

developed by Alberto Coffa, and later defended by Salmon.
20

 The central idea is that in stating 

‘the moon’s gravitational attraction explains the tides’, we assert that gravitational attraction is 

“out there in the physical world,” understanding that these objective features “are neither 

linguistic entities (sentences) nor abstract entities (propositions).”
21

  

 Although the causal-mechanical approach nicely elicits the ontic conception of 

explanation, explanation need not be causal-mechanical. While this kind of explanation can 

fruitfully be applied to biology and chemistry, matters are quite different in physics. That’s 

                                                             
17 A.L. Hodgkin and A.F. Huxley, “A Quantitative Description of Membrane Current and its Application to 
Conduction and Excitation in Nerve,” Journal of Physiology 117 (1952), 541. 
18

 See Salmon (1978) for the fully developed account. 
19

 See Van Fraassen (1980).  
20

 See Coffa’s dissertation (1973) for the original proposal of the ontic conception of explanation.  
21 Wesley Salmon, Four Decades of Scientific Explanation (Minneapolis: U of Minnesota Press, 1989), 86.  
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because unlike ‘bottom-up’ causal-mechanical explanations, which explain general regularities 

like Boyle’s law with the kinetic-molecular theory of gases, explanations in physics are often 

‘top-down’. These explanations appeal to something very general, like energy conservation, to 

explain a range of interactions among various phenomena, thus unifying them, rather than 

explaining them in terms of causes. Some thirty-five years ago, Mark Steiner pointed out that  

we do not learn about the neutrino by transmission of energy from the neutrino to us—the neutrino is very 

difficult to detect by direct interaction. Indeed, as far as is known, beta decay is noncausal—no anterior 
event causes the breakup of the unstable lithium 6 nucleus. Nor does the neutrino participate in any event 

which causes the other particles’ motion—through which we infer the existence of the neutrino. Beta decay 

‘just happens’ in accordance with the law of conservation of momentum, enabling us to infer a new 

particle. Laws of conservation are simply not causal laws. They provide constraints on what is allowed to 

happen (my italics).22    

The idea is that the constraints of conservation laws are not causes, but are nevertheless 

genuinely explanatory in many cases. This is because of their power to constrain fundamental 

forces. When electric and gravitational forces both conserve energy, it can’t be that these force 

laws explain why energy is conserved; the common explanation must be found in the law of 

energy conservation itself. On my account, mathematical structures are very closely akin to 

conservation laws, in the following sense. Conservation laws are entailed by invariance 

principles, and these principles play a central role in space-time symmetries, such as global 

gauge symmetries (‘global’ = depends on constant parameters). In fact, Emmy Noether’s first 

theorem
23

 states that ‘for every continuous global symmetry there exists a conservation law’. If 

these invariance principles turn out to be mathematical structures, it follows that conservation 

laws are entailed by mathematical structures, insofar as such laws are explained in terms of 

structures.  

                                                             
22

 Mark Steiner, “Mathematics, Explanation, and Scientific Knowledge,” Nous 12 (1978), 22. 
23 See Tavel (1971) for the English translation of this important 1918 work. 



14 
 

Graham Nerlich’s ‘geometric style of explanation’ uses the curvature and variable 

curvature of space-time as explanatory constraints, rather than causes.
24

 On his account, material 

particles causally interact, but their interactions are limited to select paths, directions and 

distances brought about by the geometric constraints of space-time. Thus, the mathematical 

structure of space-time is capable of explaining the behavior of matter without causing it. He 

notes that General Relativity 

provides a very strong example of geometric explanation since not only is spacetime curvature the 

fundamental explanatory concept of the theory, but the idea of spacetime geometry is actually used to 
reduce causal explanation by gravitational force in space during time. If spacetime is flat (i.e. Minkowskian 

or pseudo-Euclidean) then a geodesic or linear path in spacetime projects onto a motion, uniform in time, 

along a geodesic or linear path in space.      

Nerlich holds that in many cases, the geometry of space-time does the explaining, not 

causes within it. Acceptance of his argument depends in part on one’s view of what space-time 

is, and what it’s capable of on its own.  

The point has been to respond to the causal-mechanical approach to explanation, which 

works well in some sciences, but not in physics. I agree with Salmon’s estimate of top-down and 

bottom-up explanations: each offers explanatory virtues. The ontic conception of explanation 

applies to both, bringing us back to the IBE argument for scientific realism. The whole point of 

‘inference-to-the-best-explanation’ is that in making such inferences, we are approximating the 

way things stand in the world through explanation. By appealing directly to a mechanism or 

mathematical structure, rather than an argument or model, we recognize that explanations are 

part of the structure of the world. When we correctly read off the explanation, we call it our 

‘best’.     

 

                                                             
24 Graham Nerlich, “What Can Geometry Explain?” British Journal for the Philosophy of Science, 30 (1979), 80.  
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Truth, Objectivity and Explanation  

 This accords with Whewell’s ‘coherence theory of truth’, which posits that as a 

successful theory develops, it tends to explain an increasing range of empirical phenomena, due 

to a natural core of principles in the theory. The principles will depend on the kind of science 

we’re working with. It seems to me that truth cannot be divorced from explanation in any non-

trivial sense. This is because on my view, explanation does not equate to empirical adequacy, 

since empirical adequacy yields only description and prediction. So, if truth cannot be divorced 

from explanation, and a theory’s success is gauged relative to its explanatory power, then a 

theory will be successful to the extent that it approximates truth. We gauge this extent by the 

depth and range of phenomena explained by the theory.  

 I follow Armstrong in his conjecture that the explanatory power of mathematics is the 

key justifying principle for why mathematics is indispensable to our ‘best theories’, and hence to 

the IBE form of scientific realism.
25

 This leaves open the possibility that our ‘best theories’ entail 

mathematics as a means of describing the objective world, only. The relevant mathematics is not 

itself part of the objective world. In this way, Armstrong’s account is consistent with 

mathematical fictionalism, since the fictionalist can be a realist with respect to our ‘best 

theories’, while denying reality to mathematics. Contrary to this position, I argue mathematical 

structures are part of the objective world itself, and hence explain that world; therefore, our ‘best 

scientific theories’ entail mathematical realism. Our best science, not metaphysics, is the most 

reliable guide to ontological commitment. On this account, we use explanatory power to 

establish existence, and thus to sanction ontological commitment.    

                                                             
25 Armstrong (1989) pp. 7-10. 
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Ontological Commitment to ‘What there Is’: A Case Example of Mathematical Structure     

 Assuming one of our best scientific theories is Einstein’s Theory of Special Relativity, 

the question is ‘what ontological commitments does the theory involve’? We know the Lorentz 

Transformations form the kinematic basis of Special Relativity. They are linear relations 

between events, where we can think of an event as simply a point in space-time. The 

fundamental assumption that will determine the Transformations is that space-time is 

homogenous. We must also assume there are symmetries of space-time and that rotations in 

space-time should be invariant.  

 In the most elementary sense, the assumptions boil down to an underlying notion of 

symmetry: essentially a ‘form-invariance’ principle, which allows for the transformation of 

variables that leaves the explicit form of the equations unchanged. Symmetry is, in this sense, a 

structural preservation mechanism for the automorphism structures in which particles are 

grounded. This mechanism allows us to characterize the structure of space-time, according to Lie 

algebra, Riemannian geometry, etc.  As a concrete space-time mechanism, symmetry yields 

invariance under transformation, thus providing a powerful explanatory account of the physical 

basis of automorphic structures—prime candidates for mathematical structures that ground 

space-time particles.   

 Einstein’s theory thus involves an ontological commitment to symmetry—the space-time 

mechanism which yields and preserves structure. If you’re a realist about events (space-time 

points), then according to the theory’s ontological commitment, you’re a realist about the 

symmetry in which those events are embedded, hence the structure that grounds the events. 

Recall that the theory states that transformations of relations between these events necessarily 
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occur within the space-time symmetry. Thus, insofar as symmetries of Special Relativity are 

mechanisms for preserving physical structures, the scientific theory entails ontological 

commitment those structures, and hence Special Relativity entails mathematical realism.  

Objection from the ‘Special Sciences’ 

 One objection to the indispensability of mathematical structures is that examples from 

physics are more transparent than other branches of science, such as the life sciences. If our ‘best 

scientific theories’ come from all areas of science, not just physics, it isn’t clear how 

mathematics plays a comparable explanatory role in these areas. While I agree that physics 

examples are more easily produced, I disagree that mathematics can’t play a comparable 

explanatory role in the life sciences. At least some theories of the life sciences achieve ‘success’ 

only by appeal to the explanatory power of the mathematics involved.    

 Take Alan Baker’s case study on North American cicadas.
26

 One of the goals of the study 

was to show why the life-cycle of the ‘periodical’ cicada is prime-numbered (13 and 17 years). 

Of the two evolutionary explanations offered by the biologists (one involving avoidance of 

predators, the other based on avoidance of hybridization with subspecies), both appeal explicitly 

to number-theoretic results, involving the notion of a ‘lowest common multiple’, as well as the 

intersection of prime number periods. Baker claims the explanations ineliminably involve 

reference to a coprime theorem that is genuinely explanatory, when considered as essential to the 

overall explanation given by the biologists. If we remove the theorem, the explanatory power of 

the theory is significantly weakened.     

                                                             
26 Alan Baker, “Are there Genuine Mathematical Explanations of Physical Phenomena?” Mind 114 (2005). 
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From this case of genuine mathematical explanation, Baker draws the conclusion that 

‘numbers exist’. Baker’s conclusion is not without its criticisms.
27

 The details of the case, 

concerning whether equally strong non-mathematical explanations could be given, are currently 

under debate. Furthermore, I argue that Baker’s numbers must be grounded in structures. But the 

example still suggests that mathematics does play a genuinely explanatory role in the life 

sciences, not just in physics. The cicada case thus provides reason to take mathematical realism 

seriously, according to its explanatory application in the life sciences. 

The Right Kind of ‘Abstraction’: Mathematical Idealization and Explanatory Depth 

  Consider Batterman’s ‘asymptotic explanation’ of the rainbow.
28

 He starts by asking 

how it is that the circumstantial details (wind, raindrop shape, etc.) of rainbows are always 

unique, yet it is always the same structural pattern we witness. To explain this, we appeal to 

patterns and regularities. We have to know why rainbows always appear with the same light 

intensities and spacing between bows (among other things). Batterman uses the ‘asymptotic’ 

approach, which reveals how mathematical relations provide limiting cases for equations drawn 

from two different theories: classical and quantum mechanics. This means that certain 

mathematical structures shared by the two theories (bridged by semiclassical mechanics) remain 

stable under perturbations, and account for the light intensities and bow spacings in the same 

way.  

 The stability of the mathematical structures is mirrored in the rainbow, which can 

undergo perturbation of shape by raindrops and other factors, according to a wave equation in the 

limit, whereby the wavelength of light approaches zero. Robust and repeatable patterns emerge 
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from applied mathematics, deepening our understanding of the nature of such regularities and 

invariances. For Batterman, the explanatory power of the theory of geometrical optics (ray 

theory) and wave theory combined allows us to discard many of the physical details of the 

rainbow in favor of mathematical idealization. Using these theories together with asymptotic 

reasoning, Batterman explains where the arc of a rainbow comes from, predicts where the arc 

will be located, and accounts for the intensities and locations of various bows we see. He argues 

that these features of rainbows can only be explained by a combination of mathematics (the 

‘limiting operation’, geometry, etc.) and physical theory.  

 Batterman’s asymptotic reasoning distinguishes useful idealization of the rainbow from 

its literally realistic features. His ‘asymptotic explanation’ of supernumerary bows combines 

G.B. Airy’s integral equation with the Stokes Phenomenon. The explanation shows that the 

details supposedly distinguishing one physical system from another are actually irrelevant when 

we ‘abstract away’ from the systems themselves, in favor of understanding their universal 

behavior in terms of the fundamental physics which grounds all physical systems. As Batterman 

argues, the fundamental physics ineliminably involves accounting for the physical phenomenon 

(a rainbow) at the right level of mathematical abstraction. These are cases in which the 

explanatory indispensability of mathematics entails ontological commitment, given the role 

played by the mathematics in the theories.          

Like Batterman, Weslake’s ‘abstractive account of explanatory depth’ takes abstraction 

to be a genuine dimension of explanatory power, yielding some of our ‘best explanations’ of 

scientific theories.
29

 ‘Explanatory depth’ reveals the objective features of explanations by 

showing how ‘depth’ in no way depends on models or representations. This approach to 
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explanation tracks the attitudes of scientists. As Weslake notes, “The abstractive account 

provides an objective notion of explanatory virtue that justifies this claim, without requiring 

recourse to subjective notions of simplicity and understandability.”
30

  

Mathematics is explanatorily indispensable to IBE because of its ability to unify through 

generality. We often obtain deeper explanations by ‘abstracting away’ from the messy details. In 

doing so, we achieve greater explanatory range. Unlike D-N (deductive-nomological) models of 

scientific explanation, in which the mathematics is merely a component of the argument, the 

mathematics in Weslake’s account generates “explanations that would remain explanatory even 

if the fundamental laws of nature were different, within a certain set of constraints, from what 

they actually are.”
31

 In this way, mathematical explanation applies to an impressive range of 

nomologically and logically possible situations.    

‘Pure’ versus ‘Applied’ Mathematics: Can Empirical Science Entail Mathematical Truth? 

 Christopher Pincock holds that mathematics’ contribution to scientific explanation is not 

justified empirically, but only on ‘a priori’ grounds. He asserts that “mathematical claims can 

only contribute to explanations if the mathematical claims are independently supported by purely 

mathematical means,” concluding that mathematics is ‘conditionally’ indispensable to science, 

insofar as “its claims receive substantial support independently of its application in science.”
32

 

From this it follows, for Pincock, that mathematical claims are a priori, while claims concerning 

unobservables are empirical. The problem of reconciling mathematical and scientific claims is 

that “the truth of many mathematical claims goes far beyond what is needed for the explanation 
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to be successful.”
33

 Pincock’s point is that mathematical truth and empirical success are distinct 

concepts. Drawing ontological conclusions from their co-occurrence in a scientific explanation is 

a mistake.    

       I grant Pincock that the domain of pure mathematics is indeed separate from empirical 

science. But this point does not threaten my overall argument. Recall that the explanatory 

indispensability argument singles out applied mathematics as the driving force behind 

ontological commitment. As far as I’m concerned, mathematical structures posited by pure 

mathematics ‘exist’ only insofar as they receive application in the sciences. A Euclidean vector, 

for example, exists insofar as it describes the velocity and acceleration of a traveling particle—

but it does not ‘exist’ a priori, as a purely mathematical posit. We cannot determine pure 

mathematical truths by empirical science because such truths have intra-mathematical 

explanations—explanations which in no way depend on the empirical world. Whether we can 

discover such truths empirically is an interesting question, but whether we can know 

mathematical truths empirically and whether mathematical truths are empirical—these are really 

two different questions (outside the scope of this paper).  

 In Putnam’s essay ‘What is Mathematical Truth?’ he argues that mathematics is not 

justified by proof/induction (i.e., by purely formal means), but by ‘success’ in physical science. 

The contrast I wish to draw here is that Pincock and Putnam represent the Scylla and Charybdis 

of taking the whole of mathematics’ relation to the world as a disjunction—either analytic or 

synthetic. Pincock tends to think of mathematics as analytic, while Putnam stresses its synthetic 

character. Twentieth-century mathematics shows that neither view is strictly correct.  

                                                             
33 Ibid, 212. 
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  Treating mathematics in its reliance on a priori justification, Pincock clarifies that in 

providing an explanation, “scientists first justify the relevant mathematics by mathematical 

means and then use this mathematics to explain scientific phenomena.”
34

 He raises two related 

points. First, scientific explanation cannot yield mathematical truth because this can only come 

from within mathematics. Second, because of this, we face an underdetermination problem in 

trying to use our best scientific theories to provide evidence for the truth of mathematical claims. 

Given these factors, IBE scientific realism cannot entail mathematical realism, because our best 

scientific theories do not entail mathematical truth.  

Explanatory Indispensability over ‘Truth’: the Case for Mathematical Trivialism  

 It’s not immediately clear that our best scientific theories need to provide such evidence 

for the truth of mathematical claims. Some portion of mathematics behind the Theory of Special 

Relativity might turn out not to be justified, either due to the theory itself, or to something 

internal to the mathematics—but this doesn’t mean the theory isn’t true or approximately true. 

Nor does it mean mathematics is no longer explanatorily indispensable to the theory (hence 

entailed by IBE). It might turn out, for example, that mathematical truths are ‘trivially true’, as 

Cameron and Rayo have recently suggested.
35

  

On this account, mathematical truths make no demands of the world that they exist. So 

the truths themselves do not entail ontological commitment, and hence truth-makers are not 

required for mathematical truths. Take Goldbach’s conjecture, ‘every even number greater than 2 

is the sum of two primes’. Under trivialism, no truth-makers are required because nothing about 

the world needs to be satisfied to make the conjecture come out ‘true’; consequently, no 
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ontological commitment is accrued. In principle, Goldbach’s conjecture (the structural aspect) 

could still be explanatorily indispensable to some of our best scientific theories. If so, we ought 

to be ontologically committed to its structure, not because of its formal truth, but because of its 

explanatory indispensability.     

The Honeycomb Theorem  

 The question of how pure mathematics is justified by mathematicians is not my concern 

in this paper. Once justified, pure mathematics can be applied. Take an example from Lyon and 

Colyvan. Like Baker, they connect a mathematical theorem to a biological claim, yielding an 

explanation. They focus on the question, ‘why does a hive-bee honeycomb have a hexagonal 

structure?’ What needs to be explained is “why the honeycomb is always divided up into 

hexagons and not some other polygon (such as triangles or squares).”
36

 Biologists make 

assumptions concerning evolutionary advantage, and then build into their explanation the 

hypothesis that the hexagonal grid wastes less wax than other shapes, so the bees that use the 

grid are selected over bees that waste energy building less efficient combs. Then they conjoin the 

biological claim to what’s called the honeycomb theorem, proved by Thomas C. Hales in 1999: 

“A hexagonal grid represents the best way to divide a surface into regions of equal area with the 

least total perimeter.”
37

  

 Hales’s proof explains why the hexagonal grid provides an optimal means of dividing up 

a two-dimensional surface so that less wax is wasted and less energy spent. So, the evolutionary 

biology, coupled with the honeycomb theorem, gives us what Lyon and Colyvan refer to as our 

‘best explanation for this phenomenon’. We can only assume the geometry is justified, and that 
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intra-mathematical problems will be worked out intra-mathematically. We then conclude that the 

mathematics is explanatorily indispensable to the explanandum phenomenon, in this case, the 

structure of the hive-bee honeycomb.        

Ontological Commitment and IBE: The Fundamental Thesis   

 The explanatory power of mathematics brings us back to the notions of approximate 

truth, success, and the IBE argument for the entailment of mathematical realism. Our best 

scientific theories, which are true or at least approximately true, tell us that ontological 

commitment to some portion of mathematics is unavoidable; without ontological commitment to 

the truth of our best scientific theories, and hence without relying on these theories as a guide to 

ontological commitment, the commitment to mathematical realism would be unclear; but we do 

make the ontological commitment to the truth of our best scientific theories, insofar as we adopt 

the IBE scientific realist stance. In this way, scientific realism entails mathematical realism.  

What does this ‘portion of mathematics’ amount to? As the explanatory indispensability 

argument states, ‘mathematical structures’. Arthur Eddington held that for a ‘strict expression’ of 

structural knowledge, a mathematical form was essential. This is because “structural knowledge 

can be detached from knowledge of the entities forming the structure,” enabling us to “introduce 

spherical space in physics,” according to which “we refer to something—we know not what—

which has this structure.”
38

 Eddington indicates the type of structural grounding elucidated in 

this paper. Structures are ontologically fundamental, so we can genuinely refer to something like 

spherical space as a structure, not an object, without committing ourselves to the existence of an 

object—spherical space.   
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Premise 2 of my original argument states that ‘mathematical structures are explanatorily 

indispensable to our best scientific theories’. Adopting Shapiro’s ‘relationalist’ notion of 

mathematical ‘structure’, we could take it to be “the abstract form of a system, highlighting the 

interrelationships among the objects, and ignoring any features of them that do not affect how 

they relate to other objects in the system.”
39

 The problem with this conception is that it isn’t clear 

how ‘relations without relata’ makes sense. Furthermore, if by ‘abstract form’ Shapiro means 

mathematical structures are not fully grounded in the concrete space-time universe, his account 

falls short of my naturalistic requirement that mathematical structures must be the truth-makers 

for statements about mathematical objects, rather than ‘abstract’ in the Platonist sense.  

Consider the natural number 5. The Quine-Putnam indispensability argument decrees that 

in ‘quantifying over’ the number 5 we are confirming its existence and thus ought to be 

ontologically committed to it;
40

 however, on the structural account, the number 5 cannot be 

explanatorily indispensable to our best scientific theories unless it is considered part of the 

natural-number system, with a structural position in it. The structural component of the number 5 

can be explanatorily indispensable, insofar as it is grounded in the natural-number structure.    

 Mathematical structuralism stems from a close attention to the current scientific climate. 

In quantum physics, ‘group structure’ plays an indispensable explanatory role. These types of 

structure are central to theories of gauge symmetry, invariance principles, objectivity of 

structure, etc. It is far from clear, however, that quantification over a set of numbers requires 

ontological commitment to each and every number of the set plus commitment to the set itself. 

Abstracta such as numbers and sets violate what Ladyman and Ross call the ‘principle of 
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naturalistic closure’ (PNC):
41

 metaphysical claims earn their keep by explanatory contribution to 

a set of scientific hypotheses (at least one of which is drawn from physics), such that the 

metaphysics strengthens the explanatory power of the hypotheses, when joined together. As I 

have shown in this paper, mathematical structuralism accords quite well with the PNC, though 

the principle is too strongly stated that one of the hypotheses must be drawn from physics.      

 Quantifying over ‘the set of all electrons’ does not strengthen the explanatory power of 

the theory of electrons in which it appears. On the other hand, quantifying over the structural 

properties of electrons does strengthen the theory’s explanatory power, provided we can ground 

the properties in the appropriate physical structures. The PNC is a latter-day extension of 

Quine’s own naturalistic principles, but it rules out his method of quantification, since 

quantifying over abstract objects fails to strengthen explanatory power. As Steven Weinberg 

points out, “mathematical structures that physicists develop in obedience to physical principles 

have an odd kind of portability. They can be carried over from one conceptual environment to 

another and serve many different purposes.” He concludes that these structures are often found 

“to be extraordinarily valuable by the physicist.”
42

  

The idea is that mathematical structures have a life of their own, independent of the 

interests of the physicist who uses them. That mathematical structures can be ‘carried over from 

one conceptual environment to another’ suggests a genuine reference to them—that their 

existence persists through theory change.
43

 The enormous flexibility of mathematical structures, 
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highlighted by Weinberg, brings us back to the utility value of mathematics and what ontological 

conclusions can be drawn.   

Conclusion 

 I conclude by recalling Eugene Wigner’s well-worn phrase concerning the ‘unreasonable 

effectiveness of mathematics in the natural sciences’: “The miracle of the appropriateness of the 

language of mathematics for the formulation of the laws of physics is a wonderful gift which we 

neither understand nor deserve.”
44

 As I have tried to show throughout this paper, the 

‘appropriateness’ is a matter of physical fact, not a ‘miracle’, since mathematical structures are 

fully instantiated in the concrete space-time universe. They serve as truth-makers for 

mathematical statements, and these statements render our formulations of the laws of physics 

true, or at least approximately true. For these reasons, there is nothing ‘unreasonable’ about the 

‘effectiveness’ of mathematics.  

 The insight that mathematical structures are fully ‘physical’ goes the distance in helping 

us understand Wigner’s ‘gift’ of the language of mathematics. By ‘reading off’ this language 

from mathematical structures, we achieve great explanatory power in our scientific theories, 

particularly in quantum physics. If the principle of ‘invariance under transformations’ is 

sufficiently explained by mathematical structures, we conclude, on the basis of explanatory 

power, that those structures exist. Thus, they become explanatorily indispensable to our best 

scientific theories.    

 As for explanation, I have argued for the ontic conception: explanations are full-bodied 

features of the world. Mathematical structures are themselves such explanations. These 
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structures are fundamental. They ground mathematical objects and serve as truth-makers for 

statements about them. To recap, we ought to have ontological commitment to mathematical 

structures for three reasons: because they ground what we posit about the world; they are 

entailed by scientific realism; and because there is powerful evidence for them in quantum 

physics. The idea that mathematical structures are among ‘what there is’ has become 

commonplace in physics today. Max Tegmark has recently claimed that ‘reality itself is a 

mathematical structure’.
45

 He argues for a monism about mathematical structure, according to 

which 

instead of having one mathematical description for this and a different one for that, we realize there’s a 

single mathematical structure that encompasses all of it…it would be a natural conclusion…if there’s a 
single mathematical structure that is our reality, and all the mathematical structures that we’ve discovered 

before are part of this more beautiful whole.46 

 I adopt Batterman’s approach to explanatory contact between mathematics and natural 

science, which “looks to the world as the ‘driving influence’ for how mathematics gets applied, 

rather than to fortuitous parallels or analogies between mathematical structures and physical 

structures.”
47

 Batterman concludes, against Wigner’s ‘miracle’, that “the world itself tells us that 

a certain kind of mathematical language is required for genuine understanding.”
48

 By 

‘mathematical language’, Batterman means mathematically powerful idealizations that yield 

rich, explanatory patterns among physical phenomena. Making such connections reveals that 

mathematics is explanatorily indispensable to our best scientific theories, and therefore, that IBE 

scientific realism entails mathematical realism (structural).   
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