Investigation of Alzheimer’s Amyloid-β Protein Aggregation With a New Fluorescent Dye.

Emma Albery
eladcg@umsystem.edu

Follow this and additional works at: https://irl.umsl.edu/urs

Part of the Biochemistry Commons, and the Biotechnology Commons

Recommended Citation
Available at: https://irl.umsl.edu/urs/143

This Article is brought to you for free and open access by the UMSL Undergraduate Works at IRL @ UMSL. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
Investigation of Alzheimer’s Amyloid-β Protein Aggregation With a New Fluorescent Dye

By: Emma Alberty | Advisor: Dr. Michael R. Nichols, Ph.D. | Biochemistry and Biotechnology

Introduction

• Alzheimer’s Disease (AD) is the most common form of dementia characterized by the impairment of at least two brain functions such as memory loss and judgment. AD is a progressive illness that can last as many as 20 years. AD is largely considered to be caused by the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. A better understanding of the structure and function of these plaques may lead to clearer understanding of the disease. To analyze amyloid plaques, aggregation assays are often used. During these assays we begin with monomer and place the sample in biological conditions to see how long it takes for the monomer to aggregate. A key component of these assays is a tracer molecule such as Thioflavin T. The tracer molecule allows us to determine how long the monomer has begun to aggregate. I have been analyzing a new fluorescent dye to determine if it may be a better fit for amyloid beta aggregation assays.

Methods

Amyloid Beta Aggregation Assay: Solutions were prepared in Amyloid beta specific Eppendorf tubes and placed on ice until the first measurement was completed. To measure each sample an aliquot was placed into a quartz cuvette and measured in the fluorometer or placed in a 96-well plate. After the sample was completed it was placed back into Eppendorf tube for incubation. The samples in the plates were left in the plate and transferred to incubator. Each samples were gently shaken at 37°C. A reading was taken in either the fluorometer or plate reader every 30 minutes for 3-4 hours.

• AT540 shows two peaks one at ~540nm and a smaller peak at ~560nm.
• AT540 does not show a large difference between the control sample (AT540 only) and the sample with Amyloid beta monomers.

Objectives

• To determine if AT540 is a possible replacement for ThT in Amyloid beta aggregation assays.
• To compare results from the fluorometer and the plate reader instruments.

• Alzheimer’s beta 42 is one product that can be cleaved from Amyloid Precursor Protein or APP which is a naturally occurring protein and its presence is not indicative of AD.
• In the pathogenic pathway APP is cleaved by beta secreterase and gamma secretease to form Aβ 42 which forms insoluble aggregates that eventually form plaques.

• Tht is another tracer molecule that is widely considered a gold standard for amyloid aggregation with an excitation peak at 450 nm and an emission peak at 482 nm.
• Both ThT and AT540 will only show fluorescence if there are fibrils present in a sample allowing us to measure if a sample has aggregated into oligomers or fibrils. AT540 does show a growth curve, however it is not as clear as the one shown for ThT.

Conclusion

• AT540 does not show better results during amyloid beta aggregation assays than ThT. This molecule seems to be dependent on a large salt concentration which makes using the tracer for amyloid assays difficult since they need to stay at biological conditions.
• AT540 does not show high enough difference between the control and the sample to be preferred over ThT.