University of Missouri, St. Louis

IRL @ UMSL

Undergraduate Research Symposium

UMSL Undergraduate Works

January 2024

Examining Immune Markers as Determinants of Cognitive Difficulties Among Perinatally Infected Youth with HIV

Addie Halbrook alhbfb@umsystem.edu

Jacob Bolzenius bolzeniusj@umsl.edu

Julie Mannarino julie.mannarino@mimh.edu

Robert Paul robert.paul@mimh.edu

Follow this and additional works at: https://irl.umsl.edu/urs

Part of the Psychiatry and Psychology Commons

Recommended Citation

Halbrook, Addie; Bolzenius, Jacob; Mannarino, Julie; and Paul, Robert, "Examining Immune Markers as Determinants of Cognitive Difficulties Among Perinatally Infected Youth with HIV" (2024). *Undergraduate Research Symposium*. 145.

Available at: https://irl.umsl.edu/urs/145

This Article is brought to you for free and open access by the UMSL Undergraduate Works at IRL @ UMSL. It has been accepted for inclusion in Undergraduate Research Symposium by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Examining Immune Markers as Determinants of Cognitive Difficulties Among Perinatally Infected Youth with HIV Addie Halbrook, Jacob Bolzenius, Julie Mannarino, Robert Paul

Introduction

- Perinatally acquired HIV (PHIV) remains a major global health challenge with an estimated 2.7 million youth affected worldwide. 90% of PHIV youth reside in low- and middle-income countries where access to antiretroviral therapy (ART) remains incomplete.
- PHIV youth experience cognitive difficulties when compared to uninfected peers, including deficits in:
 - Learning and memory
 - Processing speed
 - Executive function
 - Motor function
- PHIV youth who survive the early years of life with ART exhibit unique cognitive-immune profiles when compared to adults with chronic HIV.
- Elevated immune factors present in childhood may exacerbate adverse effects of HIV on these individuals as they progress into adolescence
- **Research question:** What is the relationship between immune markers and cognitive outcomes among PHIV youth compared to HIV- youth?

Methods

- Participants included 105 PHIV youth and 44 HIV- youth residing in two privately funded orphanages in Yangon, Myanmar. Each orphanage provided similar education, nutrition, recreational activities, and care.
- PHIV youth had confirmed serostatus and were taking ART for ≥ 24 months. PHIV youth maintained 100% adherence to ART regimen under daily supervision by the orphanage staff.
- Demographic and clinical data was collected through staff interview and medical record review. Blood was collected and assayed for immune markers per standard protocols.
- Cognitive testing was conducted by trained pediatricians. The battery consisted of culturally relevant measures of executive function, learning and memory, psychomotor and processing speed, visuospatial, and gross motor.
- Groups were compared using ANCOVAs (covarying for demographic/clinical differences), and Pearson correlations were used to compare cognition and immune biomarkers

University of Missouri-St. Louis

Variable	PHIV (n=105)	HIV- (n=44)	<i>p</i> value
Age, M (SD)	12.88 (2.22)	13.95 (1.29)	.003
Sex (% male)	52 (50.0%)	17 (38.6)	.205
Number of Months Residing in Orphanage, M (SD)	82.85 (33.76)	63.70 (27.85)	.001
Grade, M (SD)	5.19 (2.32)	7.11 (1.47)	<.001
Current CD4+ T-cell count, Median (IQR)	729 (565- 1026)	798 (690-905)	.753
HIV Viral Load, n (%) undetectable	85 (81.7%)	-	_
CD14 Count (log10), Median (IQR)	6.24 (6.15- 6.32)	6.05 (5.99- 6.11)	<.001
CD163 Count (log10), Median (IOR)	5.14 (4.89-	4.83 (4.65-	.027

Fig. 1 Demographic and Clinical Characteristics of HIV positive and negative youth

Test	PHIV (n=105)		HIV- (n=44)	
	CD14	CD163	CD14	CE
Color Trails 2	.173	.065	083	
Digit Span Forward	060	162	003	.(
Digit Span Backward	199 [*]	187	027	
Animal Fluency	146	201 [*]	.136	.(
Food Fluency	077	113	.118	
HVLT-R Total Learning	055	174	.048	3
BVMT-R Total Learning	021	056	.143	
HVLT-R Delayed Recall	076	102	.171	
BVMT-R Delayed Recall	017	027	.174	
Grooved Pegboard- Dominant	033	.176	.075	
Grooved Pegboard- Nondominant	.000	.121	.128	.(
Color Trails 1	014	.184	.030	,
Trails A	037	.075	.353 [*]	
Digit Symbol	142	108	202	
Symbol Search	129	195	003	
Block Design	030	126	128	
Beery VMI	023	196	.055	.(
Timed Gait	.314**	031	.051	
** <i>p</i> < .01; * <i>p</i> < .05				

Fig. 2 Correlation between raw cognitive test scores and immune markers in HIV positive and negative youth

)163 049 .142 037 .184 **350*** .112 183 .010 063 042 137 056 105 .134 .175 005

041

Results

- PHIV individuals were younger, were in a lower grade, and had spent a longer time residing in the orphanage than individuals without HIV
- PHIV performed worse than youth without HIV on all cognitive domains
- Among PHIV, greater levels of immune biomarkers were associated with poorer cognitive performance on measures of Executive Function and Gross Motor
- Worse performance on measures of Learning and Psychomotor/Processing Speed were correlated with higher immune biomarkers among individuals without HIV

Discussion

- Children with HIV exhibited poorer neurocognitive function in all domains than youth without HIV
- Higher inflammatory markers, including CD14 and CD163, correlated with worse neurocognitive function in PHIV children
- Elevated immune biomarkers present during the transition to adolescence may exacerbate the effect of HIV on neurocognition
- HIV+ children from resource-limited countries face challenges such as malnutrition, poor education, and family stress, which may contribute to cognitive difficulties
- Protective factors such as higher household income and social support contribute to resilience in PHIV children
- Understanding the interactions and synergistic effects of peripheral markers of immune activation can aid in earlier diagnosis, accurate prognosis, and effective treatment of neurocognitive decline among PHIV

