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Abstract 
 
 
 

I present high-resolution, near infrared NIRSPEC spectra of carbon monoxide for two 

classical T Tauri stars:  RY Tau and DG Tau. The purpose of the study is to further 

test whether there is a correlation between gas and dust with inclination to constrain 

models of dust settling and turbulence in disks. 12CO overtone and fundamental 

absorption lines in the 2.3 and 4.7 µm spectral region were measured, respectively. 

13CO was detected for DG Tau. Rotational temperatures and column densities were 

calculated for each source. The ratio ~ NCO/AV was measured as a function of 

inclination and compared to the results presented by Rettig et al. (2006). The results 

for RY Tau follow the trend reported by Rettig et al. (2006). The gas to dust ratio 

toward DG Tau is enormously larger than that found for similar sources.  
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1. Introduction 
 
 

Star formation begins in dense concentrations of interstellar gas and dust called dark 

molecular clouds. These molecular clouds are low in density ∼ 109 m-3, having 

temperatures of ∼10K (Zeilik and Gregory, 1998). Star formation starts when the 

denser part of the cloud core collapses under its own gravity. Firstly, cores start to 

collapse and then the outer cloud. As the core collapses, the molecular cloud breaks 

into fragments, releasing gravitational potential energy as heat. As the temperature 

and pressure increase, these fragments form in to protostars. As the protostars form, 

the temperature and the pressure go up in the center of the protostar. 

 

Young stellar objects (YSOs) are divided into different categories depending on their 

age, mass and environment. We are studying classical T Tauri stars, which are low 

mass young stars. T Tauri stars are pre-main sequence stars that are surrounded by 

disks. These disks contain gas and dust. They are mostly in between 105 and 108 years 

in age and have a low mass of 0.5 to 3.0 M


. Evolution of YSOs can be categorized 

into four stages. Class 0 stage objects are young protostars which are surrounded by 

an envelope of dust and gas ∼ 103 to 104 AU in size. These objects have ages of 

approximately 104 years (Feigelson and Montmerle, 1999). As the YSO reaches the 

class I stage, conservation of angular momentum causes the envelope to flatten into a 

disk while decreasing the radius of the envelope. In this stage, most of the material 

has accreted onto the disk or the star. The YSOs start interacting with an accretion 

disk in class II stage giving rise to a classical T Tauri star. Class III, weak-emission T 
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Tauri stars have little or no accretion disks (Wolk & Walter, 1996; Feigelson and 

Montmerle, 1999). In this project we are interested in studying classical T Tauri stars. 

The study of the evolution of planetary systems helps us to understand the formation 

of planets since the planets form from the disks. 

 

Carbon monoxide (CO) is the second most abundant molecule in disks next to H2. 

Even though H2 is the most dominant gas component in the circumstellar disks, it is 

difficult to detect. In contrast, the rovibrational lines of CO are strong over a range of 

column densities and temperatures, and can be used as a diagnostic to infer 

information about their environment (Brittain et al.2003; Najita et al.2003). The 

rotational temperature of CO can be used to infer the gas temperature in the disk, 

assuming the gas is thermalized. 

 

Grain growth refers to the increase in the size of grains, probably by collisional 

sticking. This eventually leads to the formation of planetesimals through gravitational 

interaction (Dullemond & Dominik 2004). Dust settling and grain growth are 

expected to take place in the upper disk atmosphere (Miyake & Nagakawa 1995; 

Dullemond & Dominik 2004) until a balance with turbulence is reached towards the 

midplane (Rettig et al. 2006). Rettig et al. (2006) presented observations to test the 

extent to which dust preferentially settles to the midplane of the disk atmosphere. 

While the grain growth and dust settling will decrease the column density of particles 

at high disk latitude, it will increase the density towards the midplane (Rettig et al. 

2006). To test this theory, Rettig et al. (2006) examined the gas-to-dust ratio for four 
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disks with known inclinations, ranging from nearly face-on to nearly edge-on. They 

found that dust-to-gas ratio decreased as inclination increased. If the dust and gas are 

well mixed in YSO disks (D’Alessio et al. 1999), it would be expected that the 

correlation between the column density and the extinction is independent of the 

viewing angle. If dust settles towards the midplane in YSO disks, face-on disk should 

be expected to have a larger ratio than a disk viewed edge on (Rettig et al. 2006). In 

the latter case, this ratio should approach the interstellar gas-to-dust ratio. The 

preliminary results of Rettig et al. (2006) indicated that dust settling or grain growth 

has occurred.  

 

Recent models predict that dust particles settle towards the midplane (Garaud  et al. 

2004; Garaud & Lin 2004; Fouchet et al. 2005). The current question is: how are dust 

and gas mixed in the disk? Therefore, many sources need to be analyzed for a better 

understanding of how dust and gas are mixed. In this project, we investigated the 

gas/dust ratio in two additional classical T Tauri stars with known inclinations to 

compare with Rettig et al. (2006).  

 

The observations, data reduction and analysis techniques are discussed in § 2. In § 3, I 

discuss the results for each source. The discussion and future work are discussed in § 

4 and 5, respectively.   
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2. Data reduction and CO analysis 
 
                 2. 1 Observations and Data Reduction 
 
 

Data in this project were collected using the NIRSPEC instrument (McLean et al. 

1998) at the W.M Keck Observatory on Mauna Kea, Hawaii. NIRSPEC is a near-

infrared spectrometer, which provides a high resolving power (λ/Δλ) of ∼ 25,000. 

Table 1 provides a summary of the K and M band observations. We targeted the 

fundamental and overtone absorption lines of carbon monoxide in the 4.7 µm (M) and  

2.3 µm (K) regions, respectively. The data were gathered in an (A, B, B, A) sequence. 

This describes where the object is positioned in the slit of the NIRSPEC instrument, 

i.e., the upper or lower half of the slit.  The data in this work were reduced using IDL 

(Interactive Data Language) routines. The correct order was chosen and the data were 

cropped from a 1024×1024 to a 1024×150 pixel area.  

 
 
                       Table 1. 
 
                                                               Observations 
 

 
    
Object Date Spectral 

Range(cm-1) 
Setting Integration 

Time(s) 
  K band   
DG Tau  Feb 17 2006 4200-4265 K1 720 
DG Tau  Feb 17 2006 4263-4323 K2 240 
RY Tau  Feb 18 2006 4200-4265 K1 480 
RY Tau  Feb 18 2006 4263-4323 K2 240 
  M band   
DG Tau  Feb 18 2006 1986-2018 M-wide  240 
RY Tau  Feb 18 2006 1986-2018 M-wide  240 
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The data files were dark-subtracted and flat-fielded. This was done to account for 

pixel-to-pixel sensitivity variations and in order to remove hot or dead pixels. To 

clean the data, each pixel was compared with the nearby pixels and verified if it was 

within a selected standard deviation (3σ). The spatial and spectral dimensions were 

straightened before extracting the spectrum. The straightening procedure was made 

using a Gaussian fit on each of the 1024 columns and identifying the peaks of the A 

and B beams. Subtracting A and B beams, (A-B-B+A), the sky was cancelled to first 

order. The A beam collects the sky counts when the telescope in the B position and 

vice versa. Skylines due to H2O and CO display as vertical lines in the frame  

(Figure 1). 

 

Figure 1. Sky lines are shown on an AB set in the M-wide band setting for a sample 

source. 

           

Once the data were dark-subtracted, flat-fielded, cleaned, straightened, and sky 

subtracted, the Spectral Synthesis Program (Kunde and Maguire, 1974) and the 

updated HITRAN 2004 database (Rothman et al. 2005) were used to straighten the 

data spectrally. This was done in order to wavelength calibrate and remove skylines. 
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To stretch the data, the central wave number and dispersions (left and right) of the A 

and B beams were determined separately. The dispersion fitting has to be adequate in 

order to fit a proper atmospheric model. This was achieved by adjusting the stretch 

manually. i.e. defining right or left dispersion coefficients up to ninth order 

dispersions.    

 

The telluric abundances were adjusted to fit the depths of the atmospheric 

absorptions. When comparing with other molecules, H2O mostly varies with time for 

the A and B beams. The sky background was found to be dominated by water and CO 

in the M-Wide setting.  

 

The difference in counts between telluric lines in successive A and B beams should 

be close to zero. A figure of miscancelled sky is shown below (Figure 2). The 

miscancelled sky lines appear in beams mainly due to rapidly changing weather, i.e., 

thin clouds.  

 

   

 

Figure 2.  Miscancelled sky lines are shown on an AB set in the M-Wide setting for a 

sample source.  
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Therefore, to correct the appropriate data frame, a method that analyzed the 

background level was carried out to subtract the excess sky background (Figure 3).  

 

 
 
 

Figure 3.  Data frame with the corrected sky background in the M-Wide band. 
 
 

Finally, the A and B beam frequencies were interpolated to the same dispersion to get 

one spectrum. The telluric model was subtracted from the interpolated spectrum to 

get the residual plot. An example of the interpolated final spectrum with telluric 

model and residual plot is shown in Figure 4. 
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       Wavenumber (cm-1) 

Figure 4.  Illustrates the final spectrum for M band data from a sample source.    

Plotted with red, blue and green color lines are the extracted spectrum, telluric model 

and the residual, respectively. 

 

2.2 Removal of photospheric lines 

 

The spectra of Classical T Tauri stars have photospheric absorption lines superposed 

on CO absorption from the disk, particularly in the K band. Therefore, we applied 

NEXTGEN and Marcs advanced stellar photosphere models (Hauschildt 1999; Najita 

2008) to the K band data to remove contamination. In order to do that, we compared 

our sources to spectroscopic standards of the same spectral type. The spectroscopic 

standards were corrected to the veiled level of each source  
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(Hesman & Gunther 1997). To accomplish a best fit for each model, the models were 

Doppler shifted to the data and compared to the original data by the least squares 

method (Horne et al. in prep). The preliminary residual plot for DG Tau before 

removing the photospheric lines is shown in Figure 5(a) and the final residual for DG 

Tau after removing photospheric lines is shown in Figure 5(b).   
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Figure 5(a). 
Indicates the 
residual plot of K2 
Order 33 for DG 
Tau, before 
removing the 
photospheric lines. 
Two vertical lines 
in red color 
indicate the 
selected region of 
the absorption CO 
line.         

 

Figure 5(b). 
Indicates the 
residual plot of K2 
Order 33 for DG 
Tau after removing 
the photopheric 
lines. Two vertical 
lines in red color 
indicate the selected 
region of the 
absorption CO line. 
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          2.3 CO Analysis 

 
Equivalent widths of the absorption line profiles were measured by fitting Gaussians 

to each absorption line and by directly integrating. This was done in order to measure 

the area of each CO line. We examined that both of the methods produced 

comparable values except in the case where an absorption line was blended with 

another feature. The CO lines have emissions superposed in the M band for RY Tau 

and DG Tau. A Gaussian profile was fitted to each side of the absorption lines to 

subtract the emissions. This was done in order to extract the absorption lines for the 

analysis.  

 

The column densities and temperatures of the measured CO absorptions were 

determined with the help of Boltzmann’s equation. 

                             NJ" = (2J"+1)e-hcBJ" (J"+1)/kT                                                

                             NJ" /Ntot  = (2J"+1)e-hcBJ" (J"+1)/kT / Q                                           (1) 

where B is the rotational constant, J" is the rotational quantum number of the lower 

state, h is Planck’s constant, c is the speed of light, k is Boltzmann’s constant, NJ" is 

the population in each level and Q = kT/hcB is the total rotational partition function at 

the rotational temperature of the gas. Q is determined by using the general partition 

function, where the general partition function is given by: 

      Qr =  ∑ (2J"+1)e- hcBJ"(J"+1)/kT   (Sum over J’s)                           (2) 

Using asymptotic expansion, formula (2) can be written as, 

                      Qr = kT/hcB + 1/3 + hcB/15kT + 4/315(hcB/kT)2 + …......     (3) 
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For small B and large T, formula (3) goes over into the (classical) result 

       Qr = kT/hcB                       (Herzberg, 1950)                          (4) 

 If the CO lines are optically thin, then the equivalent width is related to the column 

density by 

                         NJ" = EW/ 8.85 x 10-13. f                                                         (5) 

Where f is the oscillator strength of the absorption line and the constant is:  

                         (πe2 /mc2 )  

The Boltzmann equation was modified to plot population diagrams with  

ln(NJ"/(2J"+1)) vs EJ /k. Then the rotational temperature was determined by the 

negative inverse of the slope of the best-fit line. 

 

The percent of the total molecule which should fall in one rovibrational state provides 

the measure of fractional population. The fractional population is determined by:              

                           fp  =    (2J"+1) e-hcBJ" (J"+1)/kT / Q                                              (6) 

Then the total column density was calculated by:  

                           Ntot = NJ"/ fp .  

 

Once the temperatures and column densities were determined, we calculated gas-to-

dust ratios for each source and compared our results to those obtained by Rettig et al. 

(2006). Using the temperature and the column density, we determined the ratio of ~ 

[N(CO)/AV]disk for each source, where AV is the visual extinction (in magnitudes) due 

to dust. This value was compared to the interstellar ratio of [N(CO)/AV]interstellar ~ 1.4 

x 1017 cm-2 mag-1 . This interstellar ratio was obtained by the measured CO/H2 ratio to  
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be  ∼ 1.56 × 10-4 and AV/NH2 ∼ 10.8 × 10-22 mag/cm2 (Mathis 1990). Kulesa (2002) 

confirmed the ratio of AV/NH up to AV = 60.  

 

Finally, we calculated the ratio of [N(CO)/AV]disk /[N(CO)/AV]interstellar = Δ  for each 

source and compared to results by Rettig et al. (2006). Table 2 presents measurements 

for 12CO v=2-0, v=1-0 and 13CO v=1-0. The final results are shown in Table 3. 

 
  

                                                      Table 2. 

Line ID Rest      RY Tau  RY Tau 
12CO v: 
2-0 Wavenumber EW (x10-3 cm-1) 

COLUMN DENSITY 
(cm-2) 

  (cm-1)       
R0 4263.837 7±5 (8.5±0.1)E+18 
R1 4267.541 11±5 (6.2±0.2)E+18 
R3 4274.74 15±5 (5.1±0.1)E+18 
R6 4285.008 24±10 (6.2±0.3)E+18 
R15 4311.961 56±10 (4.9±0.2)E+18   
R16 4314.596 12±2 (1.4±0.3)E+19 
P1 4256.217 72±10 (8.9±0.2)E+18 
P2 4252.302 19±5 (1.2±0.2)E+18 
P12 4209.343 75±20 (4.2±0.3)E+18 
12CO v: 
1-0       
R0 2147.081 11±5 (3.3±0.1)E+17 
R1 2150.855 77±10 (1.1±0.2)E+17 
P1 2139.426 47±10 (1.3±0.2)E+17 
P2 2135.546 11±5 (1.5±0.1)E+17 
P3 2131.631 13±5 (1.2±0.1)E+17 
P4 2127.682 15±5 (1.1±0.1)E+17 
P5 2123.698 25±5 (1.5±0.1)E+17 
P6 2119.68 23±5 (1.0±0.1)E+17 
P29 2018.148 63±20 (1.4±0.3)E+17 
P30 2013.352 35±10 (3.0±0.1)E+17 
P31 2008.525 42±10 (2.1±0.1)E+17 
P32 2003.667 71±30 (3.0±0.1)E+17 
P33 1998.78 15±5       (2.1±0.2)E+17 
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Line ID Rest      DG Tau  DG Tau 
COLUMN  12CO v: 

2-0 Wavenumber EW (x10-3cm-1) DENSITY(cm-2) 

  (cm-1)      
R0 4263.837 34±10 (4.5±0.3)E+19 
R1 4267.541 15±5 (1.1±0.5)E+19 
R3 4274.74 17±5 (5.6±0.4)E+18 
R4 4278.234 18±5 (5.8±0.2)E+18 
R5 4281.657 19±5 (5.6±0.4)E+18 
R6 4285.008 7±5 (2.1±0.6)E+18 
R10 4297.704 19±5 (6.2±0.5)E+18 
R11 4300.699 21±10 (7.5±0.3)E+18 
R12 4303.623 14±10 (6.0±0.3)E+18 

R13 4306.475 16±5 (8.2±0.6)E+18 
R14 4309.254 54±20 (3.2±0.3)E+18 
R15 4311.961 11±5 (8.5±0.1)E+18 
R16 4314.596 18±5 (1.7±0.3)E+19 
R18 4319.648 17±5 (2.8±0.5)E+19 
P1 4256.217 67±30 (9.1±0.2)E+19 
P2 4252.302 89±50 (6.3±0.7)E+19 
P3 4248.317 14±2 (2.0±0.4)E+19 
P4 4244.263 79±40 (3.2±0.5)E+19 
P6 4235.946 76±40 (2.6±0.4)E+19 
P7 4231.685 38±10 (1.3±0.2)E+19 
P8 4227.354 36±10 (1.2±0.6)E+19 
P9 4222.954 14±5 (5.1±0.8)E+18 
P11 4213.948 56±30 (2.5±0.3)E+19 
P12 4209.343 34±10 (1.8±0.7)E+19 
P13 4204.669 34±10 (2.4±0.6)E+20 
12CO v: 
1-0       
R0 2147.081 110±10 (4.4±0.2)E+18 
R1 2150.855 120±10 (1.7±0.6)E+18 
P1 2139.426 70±50 (2.0±0.3)E+18 
P2 2135.546 110±10 (8.0±0.4)E+17 
P6 2119.68 110±10 (6.3±0.2)E+17 
P29 2018.148 79±10 (1.5±0.3)E+18 
P30 2013.352 5±1 (1.2±0.4)E+18 
P32 2003.667 51±10 (1.7±0.6)E+18 

    
13CO v: 
1-0       
R10 2134.313 19±10 (7.1±0.2)E+16 
R12 2140.827 62±30 (7.1±0.2)E+16 
R13 2144.033 22±10 (8.7±0.2)E+16 
R15 2150.34 16±10 (6.9±0.2)E+16 
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   3. Results 
 
 

Table 3 reports the results for 12CO fundamental and overtone absorption lines for 

two additional sources with the results for four other sources presented by Rettig et al. 

(2006).  

 
 

     RY Tau 
 

RY Tau is a classical T Tauri star located in the Taurus-Auriga cloud, where  

d = 140 pc (Elias, 1978; Amboage et al 2008). It has a spectral type of F8-G1 (Mora 

et al.2001; Calvet et al.2004; Scherergerer et al. 2007; Amboage et al. 2008) and a 

stellar mass of 1.69 M
 (Beckwith et al. 1990; Scherergerer et al. 2007) with a stellar 

luminosity of 12.8 L
 (Akeson et al. 2005). The disk inclination was found to be 25˚ 

(Koerner et al. 1995) with a visual extinction of AV ~ (2.2 ± 0.2) mag (Calvet et al. 

2004; Scherergerer et al. 2007). 

 

Preliminary results of RY Tau specify that the carbon monoxide absorption has a 

rotational temperature of approximately 260±40 K from the K band data. The 

fundamental 12CO absorption lines in the M band spectrum shown in Figure 6, are 

optically thick. Using the K band data, the column density of 12CO was calculated to 

be ~ 2.8±0.1×1018 cm-2. Similarly, using the M band data, the column density was 

calculated to be  ~ 1.7±0.1×1017 cm-2. The calculated rotational temperature and the 

column density for the M band data do not agree within the errors when compared to 

the K band data. Therefore, we can conclude the M band data is optically thick. All 

population diagrams for RY Tau are shown in Figure 8. K band data indicate the ratio 
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between the column density and the extinction is, [N(CO)/AV]disk ~ 1.3±0.2×1018 cm-2 

mag-1. Therefore, the calculated Δ = 9.2±0.1, which is consistent with the results 

reported by Rettig et al. (2006). This result suggests that dust settling and/or grain 

growth has occurred.      

    Wavenumber (cm-1) 

     Wavenumber (cm-1) 

Figure 6. Indicates the 
normalized plot of RY 
Tau for the M band data. 
The spectrum is plotted 
with the solid line, the 
telluric model with the 
dashed line and the 
residual (spectrum-
telluric) is shown above 
the spectrum and telluric 
model. Rovibrational line 
positions for 12CO v=1-0 
and v=2-1 are marked and 
identified in blue and red 
color, respectively. 

(a) M-Wide Order 15 

 

 

(b) M-Wide Order 16 
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        Wavenumber (cm-1) 

(a)   K1 Order 32 

       Wavenumber (cm-1) 

(b)     K2 Order 33 

 

 

Figure 7. Normalized 
spectrum of RY Tau for 
the K band data. The 
spectrum is plotted with 
the solid line, the telluric 
model with the dashed 
line and the residual 
(spectrum-telluric) is 
shown above the 
spectrum and telluric 
model. Rovibrational 
line positions are shown 
in the graph. 
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  EJ"/k 
 
 (a) K band 12CO with Trot = 260±40 K and NCO = 2.8±0.1×1018 cm-2   

 
       

 
         EJ"/k 

 
(b) M-Wide 12CO with Trot = 760±35 K and NCO = 1.7±0.1×1017 cm-2 

 
Figure 8. Population diagram for CO for RY Tau data. 
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     DG Tau  

DG Tau is a classical T Tauri star, which is located in the Taurus molecular cloud and 

at a distance of 140 pc (Elias 1978;Kitamura et al. 1996). Estimated spectral types 

range from K5 to M2 (Hartigan et al. 1995). It has a K magnitude of 6.98  ± 0.013 

(Colavita et al. 2003) and a disk inclination of 70˚±10˚ (Kitamura et al. 1996;Colavita 

et al. 2003). The mass and the luminosity of the star are estimated to be 0.56 M


 and 

1.7 L
, respectively (Beckwith et al. 1990; Kitamura et al. 1996). The visual 

extinction was found to be AV ~ 1.6 (Kitamura et al. 1996; Adams et al. 1990; 

Beckwith et al. 1990).  

 

Before removing photospheric lines, preliminary results for DG Tau, indicated that 

the CO has a rotational temperature of Trot ~ 860 K in the K band data. Figure 8 and 9 

show the spectra for each order. After removing photospheric absorption from the K 

band data, it resulted a rotational temperature of 290±60 K and a column density of 

3.7±0.1×1019 cm-2. Using the M band the column density was calculated to be  

9.2 ±0.5×1017 cm-2, which suggest the M band is optically thick. 13CO was detected in 

the M band and resulted in a rotational temperature and column density of 714±40 K 

and 7.4±0.2×1016 cm-2, respectively. However, the results of 13CO do not agree with 

the results obtained from 12CO. The reason for the discrepancy of 13CO is may be due 

to not having sufficient quality data to obtain a realistic rotational temperature and 

column density. All population diagrams are shown in Figure 11. The obtained ratio 

between the column density and the visual extinction  

[N(CO)/AV]disk ~ 2.3±0.2×1019 cm-2 mag-1 and Δ = 164±10 is much higher than the 
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result reported by Rettig et al. (2006). However, DG Tau does not follow the trend on 

inclination and the extinction compared to other five sources in Table 3. This may be 

due to inadequately constrained orientation or an underestimate of the extinction (AV) 

by ignoring scattering. 

Wavenumber (cm-1) 

 

Wavenumber (cm-1) 

 

Figure 9. Indicates the 
normalized plot of DG 
Tau for the M band 
data. The spectrum is 
plotted with the solid 
line, the telluric model 
with the dashed line 
and the residual 
(spectrum-telluric) is 
shown above the 
spectrum and telluric 
model. Rovibrational 
line positions for 12CO 
and13CO are marked 
and identified in blue 
and red color, 
respectively.   

 

(a) M-Wide Order 15 

(b) M-Wide Order 16 
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 Wavenumber (cm-1) 

           

 
 

 
             Wavenumber (cm-1) 

Figure 10. Indicates 
the normalized plot 
of DG Tau for the K 
band data. The 
spectrum is plotted 
with the solid line, 
the telluric model 
with the dashed line 
and the residual 
(spectrum-telluric) is 
shown above the 
spectrum and telluric 
model. 
Rovibrational line 
positions are shown 
in the graph. 

 

(a) K1 Order 32 

(b) K2 Order 33 
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                          EJ"/k 
 

(a) K band 12CO with Trot = 290±60 K and NCO = 3.7±0.1×1019 cm-2  

                                                              

EJ"/k 

 

     (b) M-Wide 12CO with Trot = 830±30 K and NCO = 9.2±0.5×1017 cm-2 
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                      EJ"/k  

 
          (c) M-Wide 13CO with Trot = 714±40 K and NCO = 7.4±0.2×1016 cm-2  

 

Figure 11. Population diagrams of CO for DG Tau data. 
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4. Discussion 
 

 
The data were collected using M and K filters to target the fundamental (v=1-0) and 

overtone (v=2-0) lines of CO, respectively. The results of the two sources: RY Tau 

and DG Tau were compared to results reported by Rettig et al. (2006) to further test 

the dust stratification of the disks. Rotational temperatures and column densities of 

each source were compared along with the NCO/AV and inclination. The sources 

showed a trend between inclination and NCO/AV, which clearly suggests that dust 

settling and grain growth has occurred.  

 

As we discussed, gas to extinction ratio is dominated by the effect of dust settling and 

grain growth. But this may not be the only ongoing effect. There could be additional 

issues to be counted. One of them could be the age difference among the sources we 

used in this project. It may effect gas-to-dust ratio. Another reason could be the 

differences in stellar masses, which may lead to differences in evolutionary 

timescales (Rettig et al. 2006).  

 

(Kamp & Dullemond, 2004) modeled the gas and dust temperatures in the disk 

atmosphere as a function of scale height. If  Tgas > Tdust , the scale height for the gas 

distribution relative to the dust distribution might affect the gas-to-dust ratio. This 

could be one of the reasons that DG Tau (∼ 290 K) does not fit with the trend 

presented by Rettig et al. (2006). Inclination for DG Tau was assumed to be 70˚±10˚. 

Therefore, the reason for a discrepancy may be due to inadequately constrained 

orientation and this may indicate DG Tau has a slightly more face on orientation than 
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thought before. Also an underestimate of the extinction could be another reason for a 

discrepancy. Some groups have developed theoretical models to discuss the disk 

structure and the evolution of the disk (Goldreich & Ward 1973; Youdin & Chiang 

2004). Balsara et al. (2009) tested the effect on gas-to-dust scale heights with 

different grain sizes as a function of time using 0.3 and 10 AU. They found that three 

different families of grains nearly overlap at 0.3AU. This may indicate dust and gas 

are well mixed in the disk atmosphere within a few orbits. 

 

Table 3. 

Source Inclination 

  (deg) 

     AV [N(CO)/AV]disk 

(cm-2mag-1) 

  T(CO)     

    (K) 

    Δ 

RY Tau    25  2.2±0.2 1.3±0.2 x 1018   260±40   9.2±0.1 

T Tau N ∗   25-45     1.5 1.2±0.2 x 1018  ~ 100   8.1±1.5 

RNO 91∗  60±10      9 3.8±0.7 x 1017  ~  50   2.7±0.5 

HL Tau∗  67±10     24 3.2±0.5 x 1017     ~ 100   2.3±0.4 

DG Tau   70±10     ~ 1.6 2.3±0.2 x 1019   290±60   164±10 

T Tau S∗   >80      35 2.6±0.4 x 1017 100-300   1.8±0.4 

    ∗Rettig et al. (2006), AV for RY Tau (Calvet et al. 2004; Scherergerer et al. 2007), 

AV for DG Tau (Kitamura et al. 1996; Adams et al. 1990;Beckwith et al. 1990). Disk 

inclination for RY Tau (Koerner et al. 1995). Inclination for DG Tau (Kitamura et al. 

1995; Colavita et al. 2003) 
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5. Future work 

 

Two additional sources are not sufficient to test the structure of the dust in disks. 

Therefore in the future, the number of sources should be increased in order to do a 

better analysis. 

 

If CO lines cannot be fit with a straight line in a population diagram, this implies that 

the gas is optically thick. The CO lines for the M band were found to be optically 

thick and often superposed on broad CO emission lines originating in the hot inner 

disk. Therefore, we need to subtract a Gaussian profile from the emission lines to 

extract the absorption lines. Then we need to correct the equivalent width to correct 

for optical depth using a curve-of-growth analysis. As the dust becomes optically 

thick, the column density of CO is underestimated since you are not searching as far 

into the disk. In optically thick case, column density is given by, 

                             N = (mecε0 /e2) (νbτ/f),      

Where τ is the optical depth, ν is the wavenumber of the transition, b is the rms (root 

mean square) line width and b is given by, b=σrms/1.665 (Hobbs, 2005). 

Since CO absorption lines are not resolved we cannot measure b directly. Therefore, 

we solve its value by taking R and P branches into account individually. i.e. R1 and 

P1 should result in same column density since they probe from the same energy level. 
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Better constraints will be used for the evolutionary state of each source and since 

better inclination determination will become available for some sources (Rettig et al. 

2006), updates will be made to the list. Therefore, this will be approached with 

further observations (Horne et al. in prep). Also, using a larger sample will help to 

account for evolutionary differences of the sources. 



 33 

REFERENCES 

Adams, F. C., Emerson, J. P., and Fuller, G. A., 1990, ApJ, 357, 606 

Akeson, R. L., Boden, A. F., Monnier, J. D., Millan-Gabet, R., Beichman, C., Beletic, 
          J., Calvet, N., Hartmann, L., Hillenbrand, L., Koresko, C., Sargent, A., and  
          Tannirkulam, A., 2005, ApJ, 635, 1173 
 
Amboage, V.A., Dougados, C., Cabrit, S., Garcia, J.V., and Ferruit, P., 2008 A&A  
         493, 1029 
 
Balsara, D. S., Tilley, David A., Rettig, T., and Brittain, S. D., 2009MNRAS. 397, 24 
 
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., and Guesten, R., 1990, AJ, 99, 924 
 
Brittain, S. D., Rettig, T. W., Simon, T., Kulesa, C., Disanti, M. A., and Dello R. N.,  
          2003, ApJ, 588, 535 
 
Brittain, S. D., Rettig, T. W., Simon, T., and Kulesa, C., 2005,ApJ, 626, 283 
 
Calvet, N., Muzerolle, J., Briceño, C., Hernández, J., Hartmann, L., Saucedo, J., and 
         Gordon, K.D., 2004, AJ, 128, 1294 
 
Colavita, M., Akeson, R., Wizinowich, P., Shao, M., Acton, S., Beletic, J., Bell, J., 
         Berlin, J., Boden, A., Booth, A., and 53 coauthors., 2003 , ApJ, 592, 83 
 
D'Alessio, P., Calvet, N., Hartmann, L., Lizano, S., and  Cantó,J., 1999, ApJ, 527, 
         893 
 
Dullemond, C. P., & Dominik, C., 2004, A&A, 421, 1075 
 
Elias, J.H., 1978, ApJ, 224, 857 
 
Feigelson, E.D., and Montmerle, T., 1999, ARA&A, 37, 363 
 
Fouchet, T., Bézard, B., and  Encrenaz, T., 2005, SSRv, 119, 123 
 
Garaud, P., Barrière-Fouchet, L., and Lin, D. N. C., 2004, ApJ, 603, 292 
 
Garaud, P., and Lin, D. N. C., 2004, ApJ, 608, 1050 
 
Goldreich, P., Ward, W.R., 1973, ApJ, 183, 1051 
 
Hartigan P., Edwards, S and Ghandour L., 1995, ApJ, 452, 736 
 



 34 

Hessman, F. V., and Guenther, E. W., 1997, A&A, 321, 497 
 

      Hobbs, L.M., 2005MNRAS, 359, 1356 
 
Herzberg, G., 1950, spectra of Diatomic Molecules (New York:Van Nostrand  
          Reinhold), 370 
 
Kamp, I., and Dullemond, C. P., 2004, ApJ, 615, 991 
 
Koerner, D. W., and  Sargent, A. I., 1995, AJ, 109, 2138 
 
Kulesa C., 2002, Ph.D. thesis, Univ.Arizona 
 
Kunde, V. R., and Maguire, W. C., 1974, JQSRT, 14, 803 
 
Kitamura, Y.,  Kawabe, R., and Saito, M., 1996, ApJ, 465, 137 
 
Mathis, J. S., 1990, ARA&A, 28, 37 
 
McLean, I. S., et al., 1998, Proc, SPIE, 3354, 566 
 
Mora, A., Merín, B., Solano, E., Montesinos, B., de Winter, D., Eiroa, C., Ferlet, R.,  
         Grady, C. A., Davies, J. K., Miranda, L. F., and 12 coauthors., 2001, A&A, 378, 
         116 
 
Miyake, K., and Nakagawa, Y., 1995, ApJ, 441, 361 
 
Najita, J., Carr, S., and Mathieu, R. D., 2003, ApJ, 589, 931 
 
Najita, J. R., Crockett, N., and Carr, J. S., 2008, ApJ, 687, 1168 
 
Pringle, J. E., 1981, ARA&A, 19, 137 
 
Rettig, T., Brittain, S., Simon, T., Gibb, E., Balsara, D. S., Tilley, D. A.; Kulesa, C., 
2006, ApJ, 646, 342 
 
Rothman, L. S., Jacquemarta, D., Barbeet, A.., and 27 colleagues, 2004, J.  
          Quant.Spec. Radiant. Transf, 96, 139 
 
Schegerer, A. A., Wolf, S., Ratzka, T., and Leinert, C., 2007, A&A, 478, 779  
 
Youdin, A. N., and Chiang, E. I., 2004, ApJ, 601, 1109Y  
 
Wolk, S. J., and Walter, F. M., 1996, AJ, 111, 2066 



 35 

 
 
Zeilik, M., and Gregory, S., Astronomy & Astrophysics fourth edition ( Fort Worth: 
          Saunders College Publishing), 305 
 

 

 

 


	Carbon Monoxide in Disks Around Two T Tauri Stars: RY Tau & DG Tau
	Recommended Citation

	Microsoft Word - Thesis final copy.doc

