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Abstract 

Amongst the scientific community, there is consensus that evolution has 

occurred; however, there is much disagreement about how evolution happens.  In 

particular, how do we explain biodiversity and the speciation process?  Computational 

models aid in this study, for they allow us to observe a speciation process within time 

scales we would not otherwise be able to observe in our lifetime.  Previous work has 

shown phase transition behavior in an assortative mating model as the control 

parameter of maximum mutation size (µ) is varied.  This behavior has been shown to 

exist on landscapes with variable fitness (Dees and Bahar, 2010), and is recently 

presented in the work of Scott et al. (submitted) on a completely neutral landscape, for 

bacterial-like fission as well as for assortative mating.  Here I investigate another 

dimension of the phase transition.  In order to achieve an appropriate ‘null’ hypothesis 

and make the model mathematically tractable, the random death process was changed 

so each individual has the same probability of death in each generation.  Thus both the 

birth and death processes in each simulation are now ‘neutral’:  every organism has not 

only the same number of offspring, but also the same probability of being randomly 

killed.  Results show a continuous nonequilibrium phase transition for the order 

parameters of the population size and the number of clusters (analogue of species) as 

the random death control parameter δ is varied for three different mutation sizes of the 

system.  For small values of µ, the transition to the active state of survival happens at a 

small critical value of δ; in contrast, for larger µ, the transition happens later – 

suggesting a robustness of the system with increased mutation ability.  
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Introduction 

Phase transitions are an inherent characteristic of nature.  The most familiar 

examples occur in the realm of physics with the classical thermodynamic equations of 

state and their relation to the physical changes of a substance.  Pressure, volume, and 

temperature define a substance as a gas, liquid, solid, or plasma; while, energy, entropy, 

and enthalpy define the processes that bring a system into equilibrium with its 

environment.  Any changes to the state of the system, such as increasing or decreasing 

the temperature, can lead to a sharp change in the physical properties of the system, 

which is characteristic of a phase transition.  Even more, the equations of state for these 

systems are reversible. This dynamic reversibility allows for these transitions to be 

classified as equilibrium phase transitions.  Equilibrium phase transitions are not to be 

confused with a system that reaches a steady state with its environment; rather, they 

are systems that can seamlessly transition from one state to another no matter what 

the direction of travel.  For example, water can freeze, and ice can melt; hence there is 

an intrinsic reversibility of the two states, and the system obeys the so-called principle 

of detailed balance (Henkel et al., 2008).  

Statistical mechanics is another way to view natural phase transitions.  Instead of 

the continuous equations of state, statistical mechanics examines the macroscopic 

behavior that occurs from interactions among the individual microscopic components. 

The famous Ising model is probably the most studied model in the literature of the 

statistical mechanics of phase transitions.  It was developed by Ernst Ising in 1925 and 

describes ferromagnetism as the energy of interaction between adjacent spins on a line. 
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It was almost another twenty years before the two dimensional model was solved 

exactly by Lars Onsager in 1944 -- this was a great feat, since the three dimensional case 

has yet to be solved (Ódor, 2002; Solé, 2011), and the 1-D case does not exhibit phase 

transition behavior (Cipra, 1987).  The phase transition behavior of the 2-D model is 

shown to occur between two qualitative states of magnetization where disorder and 

order amongst the spins represent the unmagnetized and magnetized states, 

respectively.  The critical point of this phase transition marks the coexistence of the two 

states, i.e., ‘ordered structures exist at every length scale’ (Yeomans, 1992).  

Phase transition behavior can be characterized by the discontinuities or 

divergences of mean field parameters at the critical point.  In a first order phase 

transition, there are discontinuities in the first derivatives of a variable describing some 

property of the system at the critical point, while a second order transition has a 

discontinuity/divergence in the second derivative.  Consider the thermodynamic first 

law for a magnetic system:  

                         

 where dU, dS, dH, and dV represent changes in the internal energy, entropy, magnetic 

field, and volume, respectively, and T, M, and P are temperature, magnetization, and 

pressure, respectively.  The change in free energy of a system is: 
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Substituting (2) into (1) and assuming the volume and temperature are held constant, 

the free energy then becomes 

                                                              

and the magnetization is then 

     
  

  
 
   

                                             

The second derivative of the free energy is equal to the isothermal susceptibility 

     
   

    
   

                                            

The magnetization M in this case would serve as the order parameter of the system, 

while the magnetic field would serve as the control parameter since it is the parameter 

that is varied.   The critical point (Hc) marks the transition between the two different 

phases of the system – in this case, magnetized for H>Hc and unmagnetized for H<Hc.  If 

there exists a discontinuity in the first derivative of the free energy that describes the 

order parameter M (Eq. 4), then the system is said to be of first order or exhibit a first 

order phase transition (a discontinuous jump in M at Hc).  If the discontinuity exists in 

the second derivative of the free energy (Eq. 5), the system is said to be of second order, 

and the magnetization M will exhibit a continuous phase transition.  In this case, a 

fluctuating state of the order parameter rather than a discontinuous jump as the control 

parameter is varied marks Hc.  At Hc scale-free behavior – or, as mentioned previously, 

the existence of order at all length scales – of properties, such as the size of clusters 



   

5 
 

created by adjacent spins that line up together in space, will occur.   But what happens 

when we leave this well-defined domain of classical thermodynamics? How do we 

classify all the complex dynamic phase transitions that occur in nature?  

As noted by Yeomans (1992), the terminology of ‘second order phase transition’ 

is a relic of Ehrenfest, who classified transitions based on discontinuities in their 

derivatives rather than divergences.  It is proposed to use continuous, higher order, or 

critical to describe anything other than a first order transition (Yeomans, 1992).  This 

distinction is important because, while it is true that derivatives can be taken from the 

equations of state or from the partition function describing many systems in statistical 

mechanics, this cannot be done for many models that exhibit nonequilibrium phase 

transition behavior. For many nonequilibrium transitions do not emerge from 

continuous equations where derivatives exist; rather, models of the nonequilibrium 

type tend to be phenomenological, agent-based, and involve Markov chains and/or 

random walk processes (Henkel et al., 2008).  Irreversibility is characteristic of 

nonequilibrium phase transitions because of the so-called ‘absorbing states’ the systems 

can fall into.  An absorbing state is one from which the system cannot escape; thus, 

these transitions are irreversible in such a way that the principle of detailed balance is 

not obeyed.  For example, if we consider a phase transition between a surviving and an 

extinction state of a population, the population can never reverse back to the surviving 

state once it has gone extinct; extinction is thus an absorbing state.  For this reason 

nonequilibrium phase transitions are sometimes called absorbing phase transitions.  The 

terms are interchangeable.   
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 Characterization of critical phase transition behavior continues with the 

emergence of complexity and universality, for scientists are recognizing that ‘the road 

from disorder to order is maintained by powerful forces of self-organization … paved 

with power laws’ (Barabási, 2003).  Both equilibrium and nonequilibrium continuous 

phase transitions can be characterized by the critical exponents that define the scaling 

behavior of the system near the critical point. The scaling behavior near the critical point 

is described by a power law distribution.  These unique exponents can be used to 

determine the universality class of a phase transition (Ódor, 2002).  Events distributed 

according to a power law are said to be scale free because many tiny events occur with 

only a few large ones; there is no characteristic scale.  For example, since, on average, 

there are approximately 1,000,000 earthquakes of magnitude less than 3 on the Richter 

scale annually, and typically only about one above a Richter scale value of eight, it is 

thought that the current state of the tectonic plates exists at criticality (Buchanan, 

2000).  Other systems for which continuous phase transitions have been characterized 

include (but are not limited to): catalytic chemical reactions, mutation rates in viruses, 

epidemic spreading, changes in vegetation due to climate (Solé, 2011), social networks, 

stock market crashes, the world wide web (Barabási, 2003), earthquakes, solar flare 

occurrences, and the evolution of biological systems (Ódor, 2002).  Thus, the study of 

phase transition behavior gives the ability to group a broad range of systems into a 

particular universality class based on the specific behavior of the system at the critical 

point. 
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    Many systems which exhibit continuous phase transitions are also complex 

systems, to the extent that they involve the study of the phenomena which emerge 

from a collection of objects (Johnson, 2007).  In other words, it is from the manner in 

which individual objects interact that collective behavior emerges, with the ensemble of 

individuals exhibiting behavior as a whole unit.  For example, the dynamics of a traffic 

jam are heavily dependent on the individual choices of people and the space provided 

on the freeway.  During rush hour, individuals make independent choices to either drive 

on the freeway or to take the side streets.   If enough individuals choose to take the side 

streets, the space on the freeway does not completely fill, and a traffic jam will not 

occur; however, if enough individuals make the choice of the freeway, and those choices 

surpass the critical threshold of space available on the road, the whole system slows or 

stops and there is a traffic jam.  The traffic jam cannot be predicted because it is driven 

(no pun intended) by individual people’s driving choices; it is an emergent phenomenon, 

resulting from the collective behavior of the individual drivers (Johnson, 2007).   

With the recent rise in the study of emergent phenomena, and the seemingly 

eloquent description of nature it inspires, it seems only natural to look at evolution from 

such a bottom-up, collective approach.  But where is the bottom? If we look at the 

biological classification scheme for taxonomic ranks of life, species are at the bottom 

(Campbell, 2005).   But speciation is only a snapshot of the evolutionary history of life, 

for the time line of evolution began when the first replicator emerged from the 

primordial soup (Dawkins, 2006). These replicators developed protective coats, coated 

replicators emerged as cells, cells formed organisms, and then organisms grouped into 
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species. It is only after the emergence of multicellular individuals that one can begin to 

think of traditional Darwinian natural selection and speciation, let alone the important 

and controversial concept of group selection.   

Thus, when thinking in terms of “how bottom-up to go” in the study of 

evolution, the ‘unit’ of selection (what is actually being selected for) is important.  

According to Richard Dawkins, organisms are NOT the unit of selection (Dawkins, 2006); 

rather, selection occurs at the level of the genes (the replicators inside the cell). Other 

scientists such as Leo Buss and Stephen Hubbell generally agree that there are multiple 

levels of selection, yet Buss (1987) focuses on multicellular evolution while Hubbell 

(2001) focuses on the emergence of patterns of biodiversity.  Mikhailov and Calenbuhr 

(2002) address the ability to see evolution on multiple levels by saying, “Fortunately, in 

most cases the elements interact not fully expressing their complexity.  Therefore, they 

can be described as automata with a limited repertoire of responses and relatively 

simple effective internal dynamics.”  This suggests that it is sufficient to understand how 

the individual components drive the system to its collective behavior rather than include 

all the internal complexities of each individual; from this point of view, one can take a 

physics-based approach, and deal only with the simplest possible canonical organisms in 

order to investigate the emergence of collective behavior. For example, one could 

investigate the behavior of immensely complex organisms that are reduced to 

characterization by only a few simple rules, such as how they reproduce, mutate, and 

die.  This has been done recently with models of collective animal behavior, but a similar 
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approach can be taken in a simple evolutionary model with regard to the formation of 

clustering of organisms into "species".   

While evolution by natural selection (on individual organisms) is the standard 

view of Darwinian evolution, ‘neutral’ evolution is a relatively new idea that inspires 

much debate.  Natural selection has three main tenets:  

1. Competition for resources in the natural environment. 

2.  Variation of traits. 

3.  Heritability of traits. 

Having variation of traits means that some individuals will be able to compete better for 

resources, and thus have a better chance of surviving and passing along their traits to 

the next generation.  Therefore, individuals that are more ‘fit’ have traits that are well 

adapted to the environment.  In biology, fitness is a measure to describe reproductive 

success. Thus, natural selection is predicated on the assumption that organisms will 

have different fitnesses based on adaptability to the environment, and that those with 

greater fitness will have a greater chance of survival.  But what if criteria 1, 2 and 3 are 

present and variation doesn’t buy the organisms any improvement in fitness? 

Essentially, this is a null condition. In this case, would populations still survive and 

speciate? This type of null model was first proposed by Motoo Kimura (1968, 1983) who 

suggested the occurrence of speciation due to random genetic drift with his ‘Neutral 

Theory of Molecular Evolution.’  A different aspect of this null condition was introduced 

nearly eighteen years later with an investigation of ecological drift by Steven Hubbell 

(2001).  As implied in the title of Hubbell’s book, ‘The Unified Neutral Theory of 
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Biodiversity and Biogeography,’ ecological drift occurs under neutral conditions, in 

which every individual in the population experiences the same conditions. Neutral 

theory is still the subject of much controversy within the ecological community because 

it implies that every individual is just as fit as the next.  Even if neutral conditions rarely 

occur in nature, as some scientists who strongly disagree with Hubbell maintain, neutral 

theory can still serve as a useful ‘null hypothesis’, which is how Hubbell intended neutral 

theory to used (Hubbell, 2001).  It is from that perspective that a neutral model is 

presented here, in the context of an agent-based simulation of evolutionary dynamics. 

Initial inspiration for this work comes from an earlier implementation of the 

model (Dees and Bahar, 2010), where each organism had a variable ‘fitness’ defined by 

a randomized, rugged fitness landscape.  In the traditional Darwinian idea of evolution, 

the higher the fitness, the higher the reproductive success, and thus the more natural 

selection favors that particular organism's survival. (Or, in Richard Dawkins's "gene's-

eye" view, the more natural selection favors the genes which lead to the expression of 

the particular phenotypic trait as the basis for which the organism experiences 

selection.)  The Dees and Bahar model defined individual organisms by their position on 

a two dimensional landscape with the axes representing arbitrary phenotypic traits.  A 

phenotype is a trait (such as hair or eye color) resulting from the expression of a gene or 

a collection of genes.  So in essence, the landscape represents a phenospace and not a 

physical space.  Since the landscape does not pose any geographical barriers between 

individuals of a population, speciation is said to occur in sympatry – without 

geographical separation.  Organisms reproduced based on an assortative mating 
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algorithm, selecting mates nearby in the phenotype space.  Phase transition-like 

behavior was shown as a control parameter, mutability (µ), was varied for both the 

population size and the number of clusters – with a cluster being the analogue of a 

species.  The mutability µ represents how far an offspring can be from its parent and can 

be considered as biologically relevant since no offspring is an identical copy of its parent.  

 The model was further developed by Scott et al. (submitted), who took the 

neutral approach to fitness, in which each individual produces the same number of 

offspring in each generation.  In this case, each parent produces two offspring.  This 

version of the model also investigated two new mating schemes: a control case of 

random mating, and the reproductive strategy of bacteria-like asexual fission.  One of 

the most striking results is that phase transition behavior still exists as µ varied for the 

assortative mating reproduction scheme, even without the noise of natural selection. 

The fission reproductive scheme also showed phase transition behavior; however, the 

random mating did not, typically yielding only one giant component or cluster 

throughout the simulation.  This is consistent with the Erdös-Renyi model of network 

theory which predicts the emergence of a giant component (or cluster) from a randomly 

connected network (Barabási, 2003). 

 In both realizations above, after the populations reproduce, the offspring go 

through a series of removal/death processes.  There is an overpopulation limit set to 

eliminate any offspring that are too phenotypically close, a uniformly distributed 

random elimination of individuals of up to 70 percent, and removal of any organism 
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produced outside the boundary of the landscape.  The first major change I have 

implemented in the present work was to make the model more mathematically 

tractable so that particular properties of the phase transition behavior may be parsed 

out.  Here, instead of removing a random number of individuals chosen at random from 

the entire population, in each generation, each individual in the population has the 

same probability of death.  Effectively, this allows for both the death process as well as 

the birth process to be truly deemed ‘neutral’:  every organism has not only the same 

number of offspring, but also the same probability of being randomly killed. This 

simplifies the model compared to the earlier versions, in which the percentage of 

organisms killed varied from one generation to another (with a maximum death rate of 

70%), so that an organism might have a different probability of survival from its 

parent(s).   Secondly, previous versions investigated the transitions occurring for the 

order parameters of population size and number of clusters by means of varying the 

control parameter µ.  In this work, I investigate the phase transition which ensues as 

another parameter, the individual death probability δ, is varied.  The results developed 

below clearly show the presence of a continuous phase transition as δ is changed, in 

addition to the continuous transition already demonstrated along the dimension of the 

mutability µ. 

Methods  

 The simulated environment is a two dimensional phenospace, or morphospace 

(these terms are used interchangeably), which is not to be confused with a physical 
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space.  The phenospace simply utilizes a description of individuals based on phenotypic 

traits rather than where they exist in a physical or geographical space.  Thus, the 

location of each organism in the phenospace can be loosely interpreted as specifying its 

phenotypic traits (external characteristics).  In the simulations shown here, the 

phenospace was a finite, continuous, two-dimensional space, with 45 arbitrary units 

along each axis.  Each simulation started with an initial population of 300 individuals and 

was run for 2000 generations, unless the population became extinct.  

In contrast to previous work, the new dynamics incorporated here include an 

individual probability δ of dying, rather than the entire population being subject to some 

percent chance of dying, with that percentage varying randomly from one generation to 

another. The simulations take place on a neutral fitness landscape, where each 

organism produces the same number of offspring – in this case the fitness is two. The 

three main steps of the simulation involve:  1. A reproduction scheme – random, 

assortative, or asexual fission.  2. Production of offspring – to be dispersed based on 

mutability µ.  3.  Death processes – which include the removal of parents, the imposition 

of an overpopulation limit, random probability of death, and boundary conditions.  

Mating and Reproductive Strategy 

 Three mating schemes (random, assortative, and fission) were compared.  For 

each generation, every individual in the population chooses a mate, except for the case 

of bacterial-like fission where the individual simply splits within a defined space.  The 
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inherent difference between random and assortative mating is the spatial restriction 

imposed by the assortative scheme.  The biological rules of assortative mating (as 

mentioned in the Introduction) are followed by calculating the shortest Euclidean 

distance between two individuals in the population; thus, the most phenotypically 

similar individuals will always mate.  The individuals using the random mating strategy 

 

Figure 1 Schematic diagram for assortative mating. Parents are labeled as squares 

and offspring as circles. (a) A reference organism (yellow) selects its nearest 

neighbor (green) as a mate. The offspring are distributed in an area defined by the 

locations of the two parent organisms, extended by the mutability μ. (2) Generation 

of yellow’s offspring organisms. (3) Generation of green’s offspring. (This assumes a 

case in which yellow parent organism is also the nearest neighbor of the green 

organism. Note that this will not always be the case, and thus mating pairs will not 

necessarily be "monogamous").  (4) After every parent has mated (each acting once 

as the reference organism), all parents are removed, leaving their offspring to act as 

parents for the next generation.  
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will choose mates at random.  This leads to a variable distribution of phenotypic 

distance between mates.  For each mating strategy, every individual produces two 

offspring.  The placement of offspring in phenospace depends on µ, which defines an 

area around the parent(s) in which the offspring can be placed, and then distributes 

them within that area at random (illustrated in Figure 1 for assortative mating).  For 

assortative and random mating, µ extends along the x and y axis for each parent, thus 

creating a reproduction area that is representative of both parents. For fission, 

reproduction occurs in an area of 2µ*2µ, with the parent organism at the center. 

Elimination 

After each generation reproduces, the parent generation is eliminated (Figure 

1d), and the offspring undergo three further elimination processes that occur in the 

order presented.  The first controls how phenotypically close organisms can be to each 

other (in other words, an overpopulation limit) and removes one of any two individuals 

within a measured distance of 0.25 units on the phenospace.  Death due to an 

overpopulation limit can be mathematically represented as a coalescence process, and 

can be considered as biologically relevant because effectively it prevents hybridization 

between two reproducing individuals.  The overpopulation limit can also be viewed  

as a schematic representation of the competition for resources that would occur 

between phenotypically similar organisms (birds with the same size beak competing for 

the same food resources) located near each other in a physical space.  The second 

process is the random removal of offspring, implemented by giving every individual in 
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the population the same probability of removal δ, hence a neutral death process.  The 

final process is the elimination of any individual who exceeds the boundary of the 

phenotype space.  After these death processes have been applied, the remaining 

offspring serve as parents for the future generation.  

Clustering 

Clusters were determined in accordance with the "biological species concept", 

i.e., species defined by reproductive isolation.  A cluster seed was made by a closed 

group of three organisms – a reference organism, its mate, and its second nearest 

Figure 2 Schematic representation of the formation of reproductively isolated 

clusters. This algorithm is used for both the assortative mating and the fission model.  

The nearest organism to a reference organism is its mate (solid lines). The second 

nearest organism to the reference organism is its alternate (dashed lines). Lines are 

colored to indicate the mate and alternate mate of the correspondingly colored 

reference organism; for example, the white organism’s mate is the blue organism, and 

its alternate is the yellow organism. 
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neighbor, also described as its “alternate” mate.  An iterative process determined 

whether organisms within a cluster seed were listed in other cluster seeds, which led to 

the formation of groups of organisms composed of connected cluster seeds that formed 

a closed group. This closed set is analogous to a species, as mentioned previously, 

defined by reproductive isolation. The clustering algorithm is represented schematically 

in Figure 2.  The fission model used the same algorithm as the assortative mating 

scheme, but slightly modified so that the previously defined “mate” was the most 

phenotypically similar organism. Likewise, the second nearest neighbor was the second 

most phenotypically similar to the reference organism. Clustering in the random mating 

model was determined by first identifying a cluster seed, as in the assortative mating 

model, but instead of a second nearest neighbor as an "alternate" mate, the alternate 

was, as with mate selection in this model, chosen at random.  

Results 

Examples from typical runs of the simulation are illustrated as snapshots at 2000 

generations in Figures 3 and 4, for assortative mating and bacteria-like fission, 

respectively. The dots indicate the general population of individuals on the phenospace, 

while representative clusters are shown in red, white, yellow, purple and blue.  The 

values of δ = 0.23, 0.38, and 0.43 for the assortative case, and δ = 0.26, 0.40, and 0.44 

for the fission case, were chosen because they represent an approximation of the 

critical value, δc, at which the transition from extinction to survival occurs, measured 

using population size as an order parameter, at μ = 0.30, 0.60, and 0.90 respectively.  δ = 

0.20 is representative of a survival state for each μ value shown.  Figures 5 and 6 show  
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Figure 3 Clustering for assortative mating on a 45 x 45 landscape at 2000 

generations. Individuals are represented by dots with example clusters highlighted 

in red, white, yellow, purple and blue. Approximate critcal values of  δ are 0.23, 

0.38, 0.43 for μ = 0.30, 0.60, 0.90, respectively. δ = 0.20 lies within the survival 

regime of each µ. 
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Figure 4 Clustering for bacteria-like fission on a 45 x 45 landscape at 2000 

generations. Individuals are represented by dots with example clusters highlighted 

in red, white, yellow, purple, and blue. Approximate critical values of δ are 0.26, 

0.40, 0.44 for μ = 0.30, 0.60, 0.90, respectively. δ = 0.20 lies within the survival 

regime of each µ. 
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 Population  

µ 

Assortative Mating 
δc 

Fission 
δc 

0.30 0.23 0.26 

0.60 0.38 0.40 

0.90 0.43 0.44 

 

 Number of Clusters  

µ 

Assortative Mating 
δc 

Fission 
δc 

0.30 0.23 0.27 
0.60 0.38 0.40 
0.90 0.43 0.44 

 

phase transition curves of the population size as the control parameter δ is varied at μ 

=0.03, 0.60, and 0.90; Figures 7 and 8 show phase transition curves for the number of 

clusters. Figures 5b-8b show a sharp rise in the standard deviation that indicates an 

estimated value of δc.  

 The  estimated values of δc are shown in Table 1.  The value of δc  is the same for 

both order parameters (number of clusters and population size), with the exception of 

the fission model at μ = 0.30, where the order parameter of population size has δc =  

0.26 and, for the number of clusters, δc = 0.27.  Furthermore, it can be seen from Figures 

3 and 4, as well as Figures 5 and 6, that, as µ increases, the population is able to survive 

for larger values of δ, i.e., δc shifts as a function of µ.  The population size transition 

becomes significantly less sharp as µ increases. This indicates that there might be  

Table 1 Values of δ corresponding to the peak in standard deviation in Figures 5b - 8b.  These 

values represent an estimate of δc for each mating scheme and value of µ.  The values of δc 
match, with respect to each mating scheme and order parameter, except for μ = 0.30 in the 
fission model. 
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Figure 5 (a) Mean population for 

assortative mating as a function of 

the random death probability δ 

and mutability μ. Mean values are 

calculated over all surviving 

generations for each simulation, 

and then averaged over five 

different simulations at each value 

of δ and μ; (b) Standard deviation 

over the five simulations. Each 

simulation ran for 2000 

generations, unless extinction 

occurred. 
 

 

a 

b 
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Figure 6 (a) Mean population for 

fission scheme as a function of the 

random death probability δ and 

mutability μ. Mean values are 

calculated over all surviving 

generations for each simulation, 

and then averaged over five 

different simulations at each value 

of δ and μ; (b) Standard deviation 

over the five simulations. Each 

simulation ran for 2000 

generations, unless extinction 

occurred. 
 

a 

b 
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a 

b Figure 7 (a) Mean number of 

clusters for assortative mating as a 

function of the random death 

probability δ and mutability μ. 

Mean values are calculated over 

all surviving generations for each 

simulation, and then averaged over 

five different simulations at each 

value of δ and μ; (b) Standard 

deviation over the five simulations. 

Each simulation ran for 2000 

generations, unless extinction 

occurred. 
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a 

b Figure 8 (a) Mean number of 

clusters for fission scheme  as a 

function of the random death 

probability δ and mutability μ. Mean 

values are calculated over all 

surviving generations for each 

simulation, and then over five 

different simulations at each value of 

δ and μ; (b) Standard deviation over 

the five simulations. Each simulation 

ran for 2000 generations, unless 

extinction occurred.   
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another transition, as µ increases beyond the values presented here, to a point where 

there is no phase transition at all.  Similarly, Figures 7 and 8 show that δc increases with 

µ for the transition defined with the number of clusters serving as an order parameter; 

however, instead of the phase transition curve flattening out as µ increases, there now 

exists a sharp peak at µ=0.30 that flattens as µ increases, suggesting again a qualitative 

change in behavior of the transition as µ is increased.  

Figures 9 and 10 show the distributions of the number of generations a 

population survives for µ = 0.30 and both mating schemes.  The number of generations 

was set to one million, and one hundred simulations were run for each µ and δ 

presented.  The trend from both figures demonstrate a more Gaussian-like distribution 

for values of δ in the absorbing state of extinction, and a more power law-like 

distribution in the neighborhod of δc.  Note that had the fission simulation been allowed 

to continue beyond the one millionth generation, the tail of the distribution would have 

extended further.   The six simulations that stopped at the millionth generation are not 

shown.  After the approximated δc, all simulations ran to one million generations, thus 

indicating the system was in the active ‘survival’ state.  Similar behavior occurred for μ = 

0.60, 0.90 (data not shown). 

While Figures 9 and 10 show increasingly critical behavior of the system lifetime, 

Figures 11-16 suggest the emergence of power law scaling of cluster sizes. In these 

figures, the abundance of clusters of a given size (measured as individuals/cluster) are 

shown on a log-log scale.  Here, for each value of µ and both mating schemes, there  
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Figure 9 Lifetime distributions from 100 simulations show the number of 

generations a population survived for µ = 0.30 in the fission model (horizontal 

axis) vs. the number of simulations which survived for that many generations 

(vertical axis).  The top distribution shows a value δ within the extinction 

regime. The bottom shows a value just below the value of δc obtained from the 

maximal standard deviation (Figures 6b and 8b). Simulations were allowed to 

run for 1,000,000 unless extinction occurred first. Note the different horizontal 

axis scales. 
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Figure 10 Lifetime distributions from 100 simulations show the number of 

generations a population survived for µ = 0.30 of the assortative mating model 

(horizontal axis) vs. the number of simulations which survived for that many 

generations (vertical axis).  The top distribution shows a value δ within the 

extinction regime. The bottom shows a value just below the value of δc obtained 

from the maximal standard deviation (Figures 5b and 7b). Simulations were 

allowed to run for 1,000,000 unless extinction occurred first. Note the different 

horizontal axis scales. 
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appears to be a trend toward increased linearity on the log-log plots of the abundance 

curves as δ→δc . In contrast to Figures 9 and 10, these results illustrate a trend toward 

power law behavior on the approach to δc from the regime of survival (δ approaching δc 

from above), instead of from the asborbing state (δ approaching δc from below).  

Results from the Scott et al. investigation showed minimal survival of the 

population for the values of μ presented here for the random mating scheme.  

Furthermore, no phase transition existed with respect to the control parameter μ; 

instead, the population size followed a smooth, Gaussian-like curve as μ was varied. In 

strong contrast to the assortative and fission models,  clustering in the random model 

only consisted of ‘one giant component’ – which was to be expected due to the 

similarity the random mating scheme bears to random graph theory.   For the random 

mating scheme presented here, minimal survival has also been observed for μ ≤ 0.90, 

suggesting that this model will show similar behavior to the results of Scott et al.. 

Investigation further into the random mating scheme with respect to δ will be the focus 

of future simulations. 

Discussion 

Nonequilibrium continuous phase transition behavior has been demonstrated 

for both order parameters of population size and numbers of clusters and for both the 

asexual fission and assortative mating models.  A transition to an active ordered state of 

survival occurs for δ > δc, while for δc < δ the absorbing state of extinction is one from 

which the system can never escape – thus the reason this system is classified as 

‘nonequilibrium’.   The approximate values of δc for both mating schemes and all values 
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of μ have been identified by the sharp peak in the standard deviations (Figures 5b – 8b) 

of the measures serving as the order parameters (population size and number of 

clusters).  These values of δc are estimates, since the standard deviation plots were 

obtained over five simulations only; a larger number of simulations, and also a finer 

spacing of values of δ, would yield a more accurate determination of these values.  

Nevertheless, the existence of the fluctuating ordered state at δc demonstrates that this 

is a continuous phase transition, for there is no discontinuous jump in the order 

parameters. The existence of power law behavior in the distributions of lifetimes 

(Figures 9 and 10) and possibly in the distribution of cluster sizes (Figures 11 through 16) 

in the neighborhood of δc is further evidence of the continuous nature of the transition.   

Unique to power law behavior and continuous phase transitions is the ability to classify 

a system into a particular universality class.  The control condition of random mating still 

showed similar behavior to the results of Scott et al., thus indicating that the type of 

mating has an effect on collective behaviour.  Further investigation will determine the 

universality class, and examine more critically the effect random mating has on the 

present model.   

An increased robustness of the system is presented here by the fact that, as µ 

increased, δc also increased for both the assortative mating and fission schemes.  This 

indicates that populations are able to survive in less hospitable environments (or 

harsher death conditions) if they are able to mutate further from their parents.  The 

simulations presented here showed that populations could still survive with δc  = 0.44 at 

μ = 0.90 for the fission model and δc = 0.43 for assortative mating.  Experimental 
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(Sniegowski et al., 1997) and computational (Taddei et al., 1997) studies have 

demonstrated that Escherichia coli can increase its mutation rate in order to maintain 

survival in inhospitable conditions. Sniegowski et al. (1997) demonstrated a ‘rise in 

mutators in populations of E. coli undergoing long-term adaption to a new 

envirionment,’ and ascertained that ‘mutator alleles must have arisen by mutation;’ 

while, Taddei et al. (1997) demonstrated an increased mutation rate depending on the 

number of mutator alleles present.  Generally, an allele ‘is an alternate version of a gene 

that produces distinguishable phenotypical effects’ (Campbell, 2005).  Similarly, since 

the model presented here is representative of phenospace where independent x,y 

coordinates represent  organisms’ phenotypes, rather than explicit genotypes, these 

simulated organisms also demonstate an increased ability to survive based on 

decreasing phenotypic similarity between offspring and parent.     

There is also evidence suggesting that aggregation behavior is determined by μ. 

Previous investigation by Scott et al. (submitted) showed a phase transition curve for 

the number of clusters as a function of μ, which is similar to that observed here as a 

function of δ (Figures 7 and 8).  In both cases, the number of clusters exhibited a sharp 

peak for values of the control parameter beyond the critical range (note that this 

corresponds to μ > μc for the transition as μ is varied, and for δ < δc for the transition 

shown in Figures 7 and 8).  Using the Clark and Evans (1954) nearest neighbor index, R, 

Scott et al. showed that, for values of μ  below this sharp peak in number of clusters, the 

organisms form aggregated, clumped clusters, and for values of μ above this peak the 

organisms form ‘more uniformly spaced clusters’.  Preliminary investigation (data not 
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shown) has shown similar aggregation behavior at the value of μ = 0.30 when δ is varied 

for both assortative mating and fission schemes. Furthermore, Figures 7 and 8 illustrate 

the erosion of the sharp peak for μ = 0.60, 0.90, and thus, for these values of μ, the 

qualitative change in clustering does not appear to occur.  This suggests that the 

characteristics of ‘aggregation’ in the model may be heavily dependent on μ.  These 

qualitative changes in clustering might be characterized better through percolation 

theory, which deals primarily with the permeation of clusters through space.  Below, I 

will sketch out possible directions for future studies investigating the percolation 

propeties of the system, and then discuss how percolation will help to determine the 

universality class of the system.  

Percolation theory (or ordinary percolation) is the description of how individual 

components group together in space in a given generation and is not concerned with 

the change from generation to generation.  Of particluar interest is the formation of a 

cluster that spans from end to end of the space – when this happens it is said that 

percolation is achieved.  This point at which percolation is first achieved is called the 

percolation threshold pc, which is the probability (or fraction of space occupied by 

organisms) for which the emergence of an ‘infinite’ cluster – one that spreads from end 

to end of the landscape, but theorized to reach infinity if the landscape was infinte – 

occurs.  For example, if the the landscape has N individuals, then p = 1 corresponds to 

space being completely filled, p = 0 to no individuals in the space at all, and pcN 

indicates the fraction of individuals needed for percolation to be achieved.  This is 

important because this threshold defines another nonequilibrium continuous phase 
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transition, in which the system moves from a state where, before the threshold (p<pc), 

only clumped, aggregated clusters form, to one where, after the threshold  (p>pc), only 

unformly distributed clusters are formed.  Therefore, pc defines the critical point of a 

phase transition between the probability of connected components where before pc the 

system will never fully connect (or reach across the landscape), and after pc the system 

will always reach across the landscape (often times forming a ‘giant’ component).  For 

example, if the density of coffee grains is too high, then water will never percolate 

through the space – thus pc defines the fraction of grains necessary for water to 

percolate across the space. 

At pc, the system is said to have scale free behavior in the number of steps 

(analogous to the number of individuals per cluster) it takes for a cluster to form and in 

the path length (the measured distance between each organism of a cluster starting 

with the first cluster ‘seed’ organism and ending with the last) of cluster formation 

(Stauffer & Aharony, 1994).  Note that, at least for the case of this model, while a cluster 

is forming, the shortest route from end to end of the landscape is not taken, since an 

organism chooses its mate based on proximity.  For example, consider the assortative 

mating scheme and the algorithm of how organisms choose the most ‘similar’ mates 

(i.e., the shortest Euclidian distance) in order to form a cluster.  The first individual that 

starts the algorithm is not directed in any particular direction, for it ‘searches’ within a 

360   radius of itself and then chooses the closest individual as its mate, then that mate 

searches for the next closest to itself within 360  , and the next mate, and next mate, and 

so on… until a closed set is formed.  If the above implementation of the mating 
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algorithm is thought of in terms of bonds that form in space and time with each ‘mate 

step’ taken considered as a time step, it would appear that ‘mating’ exhibits 

characteristics of Brownian motion since these individual step lengths of mating are 

random in direction and restricted to be ‘near’ each other.  Thus, this type of mating 

behavior can lead to highly connected (or lengthy) clusters, which is why the within-

cluster path lengths form a power law distribution at criticality.  The same reasoning 

applies to the number of individuals (or steps) in cluster formation.  

Keeping in mind the previous rationale of the clustering algorithm, the 

percolation behavior of clusters above and below pc, and the Clark and Evans nearest 

neighbor index (which indicates that the clustering behavior shifts from aggregated to 

uniform as the plot of the number of clusters reaches its peak), I hypothesize that the 

peak of the clusters curve at μ = 0.30 should occur at the value of δ for which 

percolation is achieved (call it δp).  δp gives the probabilty or the percentage of 

organisms removed at pc, thus since pc indicates the fraction of individuals on the space, 

then pc = 1 - δp is the fraction of opened space.  To test the hypothesis that percolation 

occurs at δp, future simulations, particularly at δp, will reveal whether critical behavior of 

the formation of clusters (Note that Figures 11-16 provide prelimenary evidence of 

linear log-log behavior of cluster sizes for values of δ<δc) at the value of δp exists– thus 

indicating whether pc = 1 - δp.  Since percolation depends on the spread of a cluster in a 

given generation, the initial population size would need to be set as indicated by the 

number given by the population curve in Figures 5 and 6 at the hypothesized value of δp 

(starting the population at that value should eliminate transient generations when the 
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population size is too small to reach across the landscape). Examination of how the 

clusters fill the space by tracking the clustering algorithm will be performed as follows: 

since each assignment of a mate is considered a ‘time’ step, then the number of time 

steps can be recorded for each cluster.  Also, since each position of each organism in the 

phenospace is recorded, the path length of the clusters can be measured as well.   If 

scale free behavior is found in the length of time (number of mating steps) required for 

cluster formation or in the path length, then δp corresponds to the percolation threshold 

pc = 1 - δp.   Determining how clusters fill the space and the value of δ that gives the 

value of pc will help to determine the universality class of system because, if δp is not 

identical to δc, then the percolation of clusters through the landscape does not correlate 

with the phase transition in the order parameter of the number of clusters on the 

landscape.  

Clarification the system's universality class will begin by determining what the 

value of pc is.  According to Ódor (2002):  

If the critical point of the order parameter does not coincide with the percolation 
threshold, then at the percolation transition the order parameter coherence length is 
finite and does not influence percolation properties.  We observe random percolation in 
that case. In contrast if the critical order parameter and percolation threshold occur at 
the same critical point percolation is influenced by the order parameter behavior and 
we find different, correlated percolation universality whose exponents coincide with 
that of the order parameter.  

Therefore, if δc ≠ δp, then the percolation transition occurs at random (and no 

information is provided about the universality class of the system), but if δc = δp, then it 

can be concluded that the system exhibits correlated percolation universality, and the 

critical exponents can be obtained from percolation theory.  It is possible that we might 

observe, since percolation is related to clustering, and the peak of the number of 
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clusters depends heavily on µ (i.e., the peak starts to vanish for larger µ), that µc = μp 

and δc ≠ δp, so that the phase transition as one control parameter is varied belongs in a 

different universality class from the transition as the other control parameter is varied.  

Preliminary results from the Scott et al. paper (data not shown), show a possible 

percolation transition occurring at μc. It could be that since µ imposes a local restriction 

on percolation (i.e., the next generation of offspring are confined to a certain space 

allotted by µ), and δ effects individuals randomly and globally (death can happen 

anywhere on landscape), a different universality class should be expected for each 

control parameter of the system.  Thus, if the transition in relation to the control µ 

belongs to correlated percolation universality, and the transition in relation to δ does 

not, then what universality class does the transition in relation to δ belong to?   

A very general universality class that describes many nonequilibrium systems is 

the directed percolation universality class.  Characteristic of directed percolation (as 

implied by its name) is the directing of agent-based processes such that direction can 

either occur in space or time – or in both.  Because it is a percolating process, directed 

percolation describes nonequilibrium processes, since it is characteristic of a percolating 

system to reach an absorbing state; thus, directed percolation is a simple way to 

describe critical phenomena and many mean field models have been developed from it 

(Hinrichsen, 2000).  The directed percolation conjecture was constructed by Grassberger 

and Janssen, and presented in Henkel et al. (2008): 

According to this conjecture, it is thought that a given model should generically belong 
to the DP unversality class if  1. The model displays a continous phase transition from a 
fluctuating active phase into a unique absorbing state, 2. The transition is 
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characterised by a non-negative one-component order parameter, 3. The dynamic 
rules are short ranged, 4. The system has no special attributes such as unconventional 
symmetries, conservation laws, or quenched randomness.  

 

Regarding point 1, I have demonstrated continous phase transitions from a state of 

flutuating survival to an absorbing state of extinction as the parameter δ is varied.  

Secondly, each phase transition exists for a positive one-component order parameter 

(number of clusters or population size).  Third, the dynamic rules of the mating systems 

are short ranged, i.e., µ restricts how far offspring are generated from parents and 

assortative mating restricts individuals to mate with the most phenotypically similar 

individuals.  Lastly, the system has no symmetries, conserved qauntities, or any 

quenching of any kind.  The system is, in fact, be asymmetric with respect to the birth 

and death processes, for births occur locally, near the parent(s), while deaths may occur 

anywhere on the landscape (globally). This last point could also be a fundamental 

reason the organisms cluster for an individual-based model, for previous work has 

shown clustering of asexual organisms and credited the clustering to the asymmetric 

birth and death process as well (Meyer et al., 1996, Young et al. 2001).  Thus, based on 

the directed percolation conjecture, and how well the current evolution model fits each 

point, it is probable this model will fall into the directed percolation universality class.   

Note the phase transition as μ is varied (Scott et al., submitted) also satisfies this 

conjecture, but that there is also evidence suggesting this phase transition occurs at pc, 

which suggests that it could belong to the correlated percolation universality class 

instead.  More work will need to be done to parse out this seemingly paradoxical 

relationship between the space and time behavior of μ. 
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 If the above hypothesis is correct, such that ordinary percolation determines pc 

= 1 - δp (and δc ≠ δp) then the critical behavior of how organisms cluster on the space will 

not be correlated with δc.  It is likely δc is the critical point for a transition in the DP 

universality class.  If the model is found to belong to the directed percolation 

universality class, this would mean that (at least) one universality class could describe 

the system in relation to time (the transitions driven by the parameters δ and μ); while 

another describes its relation to space (the percolation transition).  These results will 

open fertile ground for speculation on the biological implications of the model. If it is 

shown that how the clusters fill the space is not correlated with the number of clusters, 

this may have a suggestive implication for the different structures of various types of 

biological diversity (between species vs. within species).  The demonstrated increase in 

the robustness of the system as μ increases could have relevance for the broad 

biological question of whether ‘evolvabilty’ itself can be selected for; simulations 

involving competition between organisms with different values of μ and δ may be 

helpful in this regard.  In the broadest sense, the phase transition approach to modeling 

speciation may ultimately contribute to the “hard problem” of multiple levels of 

evolution / group selection.  Further studies, including more a biologically realistic 

version of the present model – such as the inclusion of an explicit genetics – will 

undoubtedly be necessary in order to achieve that goal.  
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