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Abstract 
 
     2-Dimensional Electrophoresis is one of the tools in the identification of proteins by 

molecular weight and pH. The display of molecular weight allows the researcher to quickly 

identify whether a specific protein or peptide string is in the sample. The pH measurement 

allows even better resolution between different species in the sample. The MultiEnzyme 

ElectroPhoresis (MEEP) program tries to model that by providing a graph that displays separated 

protein strings by both molecular weight and pH. The ability to cleave the protein with 43 

different enzyme variations allows the researcher to analyze appropriate enzymes to isolate a 

protein subsequence before the actual experiment or to compare the experimental data with 

the simulated electrophoresis. This thesis reviews protein cutting simulations that have been 

done in the past or are currently available. It then describes the MEEP program: how it appears 

to the user, how the user makes it operate, and how it is structured. The thesis provides 

validation information for the calculation of molecular weight and isoelectric point. The program 

will hopefully provide a useful addition for the researcher’s work. 
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program with a single enzyme and a single amino acid cut point. From there we expanded the 

program to two-dimensions and then to multiple enzymes. He has asked for flowcharts and 

explanations on various topics at times that I would not have done otherwise. The smaller goals 

kept this project within reach. 
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Chapter 1 -Introduction and Review 
 

1.1 Introduction 
 
     Electrophoresis is the movement of charged particles through a gel solution in an electric 

field. 1 One common type of electrophoresis is SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) where the gel is polyacrylamide and sodium dodecyl sulfate 

(SDS) is used to denature the proteins. When a voltage is applied to the gel the proteins 

separate based on molecular mass. Often you will see an electrophoresis plot in a research 

paper as that provides essential information as to whether a protein is in a solution. By 

displaying the relative molecular weight of a test sample versus a reference protein, the 

researchers can gain confidence that they have isolated a given protein in their experiment.  

Figure 1 2 shows electrophoresis used as part of a verification that acetylated α-Synuclein 

protein had been isolated in genetically modified Escherichia coli strains and from human 

erythrocytes.  

 

 

Figure 1: Electrophoresis with Standards and α-Synuclein Protein 

     2-Dimensional (2-D) Electrophoresis 1 provides the benefits of separating particles based not 

only on charge or molecular weight but also on a second criterion such as isoelctric point. In the 
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first step of a two-step process, a voltage is applied in a gel that has a pH gradient, the protein 

fragments will move to a point where the combined charge of their negative and positive 

charges is zero at that pH. That point is called the isoelectric point (IEP) and the technique is 

called isoelectric focusing (IEF). The second step is a voltage applied at right angle to the first to 

get the separation of the protein fragments by molecular weight. 

 

 

Figure 2: 2-D Electrophoresis 

     Figure 2 3 shows 2-D electrophoresis gels where two samples have been compared and 

protein differences are noted by the arrows. By having two dimensions the separation of the 

proteins is easier to analyze although the sheer number of points makes for difficult 

comparisons.  

     This paper examines various models or simulations that have become available for the 

researcher who wants molecular weight or IEP data on a protein or set of proteins. Not only the 

whole protein but protein segments, when digested by enzymes, have been provided by these 
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programs and calculators. Most of the time the information is provided in a textual format. The 

cleavage by one protease out of a small set of proteases helps the researcher isolate the 

protein. In several cases an algorithm searches the input for matches between an amino acid in 

the input sequence and the enzyme requirement at the cut point. 

     This program attempts to provide a different “view” of things by giving the researcher a 

graphical display of a protein when cleaved or cut by not only one enzyme but by a series of 

enzymes. Each enzyme cutting process uses up to six amino acids around the cut site. The 

display provides a one-dimensional view of the molecular weights of the cut protein.  To better 

isolate the protein subsequences, a two-dimensional view is also provided with molecular 

weight varied on one axis and isoelectric point varied on the other axis.  When the researcher 

wants a more quantitative view of the cut sequences, the program provides a text file that 

records the molecular weight, the isoelectric point (IEP) for the subsequence, and the string of 

amino acids (AA) in the subsequence itself. 

      Since there are at least two ways to calculate the isoelectric point, the program provides two 

methods: one method scans the sequence and finds the pH point where the charge sum is zero, 

the other method uses the Henderson-Hasselbalch equation to step through values of pH that 

would let the equation approach a point where the positive and negative charges of the 

sequence balance out to zero. 

 

1.2 Purpose 

     The purpose of this research is to provide a method to visualize the separation of peptide 

sub-sequences by both molecular weight and by isoelectric point (IEP) as with two-dimensional 

electrophoresis. An input peptide sequence is cleaved by multiple selectable enzymes to provide 

a unique display of that protein or peptide sequence when one or more enzymes are used.  
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     One motivation for this work is to help researchers by providing a tool to find out if a protein 

is present in the 2-D electrophoresis gel. Another motivation is to provide a tool to help 

students visualize what to expect when a protein of interest is cleaved by a set of enzymes. 

Simulations are available that provide a textual display of amino acid sequences that have been 

cut by an enzyme and display the cuts as a list in the order of the sequence of the cuts. This 

simulation provides a visual display of the cuts in the order of the molecular weights of the 

subsequences, providing a graph that is similar to a 2-D electrophoresis gel. It also utilizes six 

positions around the cleavage point, instead of one position, which in turn provides a more 

realistic simulation. Although a simulation is not the same as running a 2-D electrophoresis gel, 

it can provide useful information to better identify what to expect when a 2-D electrophoresis 

gel is run. If a subsequence is present in the simulation and not in the actual electrophoresis, 

then it may be necessary to analyze the results for differences. 

1.3 Review of Simulation and Modeling Programs 

1.3.1 Simulation with GPMAW 

     In 2001, Perl, Steen, and Pandey developed a program 4 called General Protein/Mass Analysis 

for Windows (GPMAW) that analyzed proteins and peptides. A company called Lighthouse data 

was formed and has continued to develop the program. The current version of the program is 

intended for mass spectrometric analysis of proteins and peptides. A smaller version of the 

program called GPMAW lite is provided by the company, Alphalyse. The program provides the 

molecular weight, extinction coefficient, isoelectric point, and hydrophobicity index, and 

numbers and percentages of amino acids. It also will cleave the protein with one of 6 proteases 

and display information on molecular weight, isoelectric point, and HPLC retention time. 
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     Figure 3 shows the input screen for the web based program. 5 The input can be entered as an 

accession number from NCBI or UniProt or it can be entered as a text string. The user can select 

one of the six proteases for cleavage. In the text box, the amino acid string 

“GAVLIMPWFSTNQYCKHRDE”, a sample string with each amino acid, is entered and the 

protease trypsin, which cleaves the amino acid string at Lysine (K) or Arginine (R), is selected. 

Once the Calculate button is pressed the program calculates the parameters and displays the 

output. 

     Figure 4 shows the output screen which has two display areas. The top area displays the input 

string in groups of ten. The check boxes allow the user to identify characteristics for the 

sequence such as those amino acids that are acidic or basic. The bottom box displays the 

subsequences from the cuts along with the molecular weight, HPLC retention time and the 

isoelectric point. 
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Figure 3: GPMAW lite Input Screen 

 

 
Figure 4: GPMAW lite Output Screen 
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1.3.2 Simulation with 2-D Electrophoresis for Multiple Proteins 
 
Fisher, Sekera, Payne, and Craig 6 described the construction of a program in 2012 that simulates 

2-D electrophoresis and tandem mass spectrometry for proteins. The program is meant to be 

used in biochemistry, proteomics, and bioinformatic education. The 2-D electrophoresis 

program simulates the display of the proteins in a mixture of proteins, locating the proteins by 

molecular weight and by isoelectric point, as shown in Figure 5. In the simulation, the user can 

watch the mixture of proteins move across the top of the screen as the simulated isoelectric 

focusing moves them to different positions based on pH. Once that part of the simulation has 

completed, the simulation of the SDS PAGE moves the protein dots down the gel based on 

molecular weight.  

     The user can then click on a single dot to bring up a second window, Figure 6, which will allow 

the user to do a Blast search, an NCBI search, a UniProt search, or to run the simulated mass 

spectrum. In this case the dot selected is the iron-sulfur protein of hydrogenase 3. 

 
Figure 5: 2-D Electrophoresis Program by Fisher et. al. 
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Figure 6: Protein Information Window for Fisher Program 

     By clicking on the Run Mass Spectrum button, the user then brings up the second program, 

Figure 7, that simulates a tandem mass spectrometer. The user can then select from four 

different proteases to observe the effect of those proteases on the mass spectrum. 

 

 
Figure 7: Tandem Mass Spectrometer Simulation from Fisher et. al. 

 

1.3.3 Determination of Peptide Sequence Cutting for Multiple Enzymes 

     ExPASy is a Swiss Institute for Bioinformatics (SIB} website. The ExPASy title is an abbreviation 

for Expert Protein Analysis System. 7  It provides databases and software in the areas of 

genomics, phylogeny, systems biology, evolution, population genetics, and transcriptomics. 8 Of 

particular interest for this research is their work in proteomics and within that is the area of 

function analysis. They developed a program, PeptideCutter, 9 which analyzes peptide sequences 
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cleaved with proteases or chemicals. The input to the program, Figure 8, is a peptide sequence 

or a FASTA protein file identified with a protein identifier or an accession number. In this case, 

the sequence “GAVLIMPWFSTNQYCKHRDE” was chosen to include each amino acid. The other 

main input is the set of proteases and chemicals used to cut the sequence into subsequences, in 

this example, trypsin.  

     The output, Figure 9, shows the sequence “GAVLIMPWFSTNQYCKHRDE” cut by trypsin at the 

Arginine (R) location. For each subsequence, the length of the subsequence is given along with 

the molecular weight. 

 
 

Figure 8: PeptideCutter Input Webpage 
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Figure 9: PeptideCutter Output Webpage 

 

1.3.4 Determination of Isoelectric Point Using ExPASy 
 
     The ExPASy website also has under the proteomics function analysis area, a program, 

ProtParam 10, that provides for a given peptide sequence, the molecular weight, theoretical 

isoelectric point, the amino acid composition, atomic composition, extinction coefficient, 

estimated half-life, instability index, aliphatic index, and average hydrophobicity. Figure 10 

shows the input page for the ProtParam program. 
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Figure 10: ProtParam Tool Input Webpage 

     The output generated from ProtParam program, Figure 11, provides a textual output of the 

isoelectric point which is of interest for this research. 
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Figure 11: ProtParam Webpage Output 
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1.3.5 Determination of Isoelectric Point Using IPC 
 
     The Isoelectric Point Calculation (IPC) program, 11  is described in a journal article by 

Kozlowski. 12 The webpage that displays the program input form, Figure 12 , contains an entry 

window where a peptide sequence can be entered. The result of the calculation is shown in the 

display, Figure 13, of the isoelectric point (IEP) relative to the molecular weight, average IEP 

from different sources, and a listing of those source values. 

 

 
Figure 12: Protein Isoelectric Point Input Webpage 

 
Figure 13: Protein Isoelectric Point Calculator Output 
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Chapter 2 – Developing and Testing of Program 
 

2.1 Multi-enzyme 2-Dimensional Electrophoresis Program Description 
 
     The MultiEnzyme ElectroPhoresis Program (MEEP) is the program developed to provide a 

two-dimensional representation of the electrophoresis of a protein or peptide sequence. It is a 

stand-alone program that runs on Windows 10 computers.  

2.1.1 Program Display and Operation 

     Figure 14 shows the display that the user sees when they start the MEEP program. Figure 15 

shows the text output that is available to the user when they press the “Specify and Save 

Optional Output File”. It contains the list of subsequences of the input amino acid sequence 

sorted by molecular weight. Each row consists of the computed value of the molecular weight, 

the computed value of the isoelectric point, and the subsequence. 

 

 

Figure 14: MEEP Program Display 
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Figure 15: MEEP Output Text File 

     Figure 16 shows a closeup of the input side of the program display. There are a pair of radio 

buttons that are used to select between the specification of an input text file and a sequence 

that the user enters in the text input area. When the user clicks the button “Specify Input File”, a 

window pops up that allows the user to locate and select the file. The selected file is displayed in 

the text box below the button. The input file must be in FASTA format or just contain the 

sequence to be evaluated. It has limited ability to isolate text from row numbers along the 

margin as it removes numbers, special characters, spaces, and end of line characters from the 

input text when the text is cleaned of unwanted characters at the beginning of processing. The 

text can be in either upper case or lower case or a combination of the two. The other radio 

button, “use text box”, allows for the input of any amino acid sequence from one amino acid to 

a whole protein. 

     The “Specify and Save Optional Output File” button allows the user to specify an output file 

that will contain the molecular weight, isoelectric point, and subsequences in a sorted list as 

shown in Figure 15. The name of the selected file is displayed in the text box below the button. 
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Because the program allows the user to change the input files or input sequences or the 

enzymes used for each “Cut Input Sequence” button press, it is also possible to generate and 

save multiple output files. 

     Under the label “Select Enzymes to Use for Cutting”, a checked list box that lists all the 

enzymes, provided in the ExPASy website, that are selectable by the user is displayed. Each time 

the user selects or deselects one of the 43 enzyme variations of the 24 enzymes and chemicals, 

the selected list is updated for the program. 

     After the user has provided the input text or text file and selected at least one enzyme to cut 

the sequence, the “Cut input Sequence” button can be pressed. If the user does not select one 

of the input forms, the button is not available. If the user does not select an enzyme to cut the 

sequence before pressing the “Cut Input Sequence” button, a message will pop up telling the 

user that the first enzyme in the list has been selected. 

     When the user is done with the program the “Close Program” button can be pressed to exit 

from the program. It is also possible to select the X in the upper right of the program to exit. 

     Figure 17 shows the output side of the program. There are three outputs that are generated 

when the user selects the “Cut Input Sequence” button. The “Cut Sequence List” that provides 

the sorted list of the cut subsequences from largest to smallest, the graph that displays the 

idealized representation of what the one-dimensional electrophoresis would look like, and the 

graph of the idealized two-dimensional electrophoresis. The scale of the molecular weight is 

automatically adjusted on each graph, depending on the molecular weight of the largest cut 

subsequence. The pH scale is set to a range of 2 to 14. 

     There is one pair of input radio buttons on the output control section of the display: the “IEP 

Calculated using Average” button and the “IEP Calculated using Iteration”. The “IEP Calculated 

using Average” option is the default option when the program is run. It will calculate the 
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isoelectric point by scanning the sequence of sorted pKa values and finding the pKa value where 

the charge sum of the positive charge residues and negative charge residues, along with the 

charges of the amine end and the carboxyl end sum to zero. It then averages the value of the 

pKa of that residue and the next pKa to get the value of the IEP.  

     The “IEP Calculation using Iteration” calculates the isoelectric point by summing the fractional 

ionization values for both the positive and negative residues at increasing pH values until the 

difference becomes close to zero. A more complete explanation of the calculations is given in 

the section on isoelectric point calculations. 

 

 
Figure 16: Input Control Section of MEEP Display 
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Figure 17: Output Section of MEEP Display 

2.1.2 Program Logic 
 
     The structure of the MEEP program was based on the programming language, C#, which was 

developed by Microsoft Corporation. It uses an integrated development environment program 

(IDE) called Visual Studio that allows the programmer to write the C# code within a structure 

that has standardized methods to simplify coding and debugging. The MEEP program uses a 

graphical user interface (GUI) to provide the display that the user sees as well as the method of 

input. One of the features that Visual Studio provides is a package of programming tools that 

gives the programmer the ability to “drag and drop” the components of the displayed form as 

seen in Figure 14. Part of the code is used to interface those components with the other parts of 

the program. The two graphs used to display the electrophoresis simulation were placed on the 

form as generic graphs and then modified by specifying components that could be manipulated 

to get the program to display the appropriate titles, scales, and output symbols. 
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Figure 18: Program Flowchart 
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     An overview flowchart of the functional logic that provided the interpretation of the input 

and calculation of the output is shown in Figure 18. When the “Cut Input Sequence” button is 

pressed, the program must establish whether there is more than one enzyme that is cutting the 

input string. The reason is that when multiple enzymes are used it is necessary for the output of 

one set of cuttings of the sequence to be used as inputs for the next enzyme to cut. If it is the 

first time through the logic it is necessary to read the text file that has the peptide string or 

protein. Regardless of whether the input comes from a file or a text box, the input data must be 

cleaned, such as removing introductory lines, as in the case of FASTA files, or end of line 

characters, or spaces, or converting lower case letters to upper case letters. Once the input has 

been cleaned, the single letter abbreviation amino acid string is taken one amino acid at a time 

and evaluated. After the check for the end of the sequence, the process of matching the amino 

acid with the enzyme is performed. If the match is successful, the amino acid is added to the 

subsequence and the looping continues. If the check of all the amino acids in the sequence has 

been completed, then any remaining portion of the amino acid sequence that is not part of one 

of the cut subsequences is added as another subsequence. 

     After the amino acid sequence has been checked against an enzyme, there is a check to see if 

the selected enzyme is not the first enzyme, as the later enzymes must evaluate the 

subsequences generated by the first enzyme and each of those subsequences must be treated 

as a separate sequence by the later enzymes. If the input list of subsequences generated by the 

previous enzyme has not all been read, then the program needs to read in the next subsequence 

for processing. 

     When the list of subsequences is completed or if the first enzyme check is completed then a 

check is made for additional enzymes. If there are more enzymes then the program loops back 
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to pick up those enzymes, otherwise, the processing is complete. If there are more enzymes, 

then the loop checks to see if it is the second or subsequent enzyme and the program checks to 

see if it is the first time with that enzyme. If it is the first time, then the output subsequences 

from processing of the previous enzyme must be converted to the set of input sequences to be 

evaluated. After those adjustments, each new subsequence is read in to be processed as before.  

 

2.1.3 Match to Enzyme Logic 

     The general logic of matching the amino acid sequence to the enzyme is shown in Figure 19. 

When an amino acid is compared with an enzyme, it is checked with the enzyme’s required 

amino acids at one of the six locations. If it matches, then the program checks to see if all 

positions have been checked. When that occurs, the program must do additional processing for 

trypsin because trypsin has exceptions that will block the cutting if the amino acid sequence has 

a certain combination of amino acids around the cut point. If the enzyme is trypsin and the 

sequence matches the exclusion, then the program ends the matching process for that amino 

acid. Otherwise, the amino acid has satisfied all the criteria and the molecular weight and 

isoelectric point are calculated.  

     For each amino acid that does not match, it is necessary to determine which position in the 

enzyme was compared. If the position compared was not the first position for that enzyme, then 

the program must reset the counters for the amino acid sequence and the enzyme, to allow for 

a possible shift in the correct sequence starting point. The other decision that needs to be made 

in the matching routine is whether all positions for the enzymes have been matched. If not, then 

the processing ends, and the next amino acid is retrieved.  
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Figure 19: Match to Enzyme Flowchart 
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2.1.4 Enzyme Function in Program 

     To improve the quality of the simulation, the enzyme cutting logic involved the use of 43 

enzyme variations with the potential evaluation of six amino acid residues around the cut 

position. The logic used in this program was based on the enzyme cutting protocol in the ExPASy 

website. 13 They in turn based their nomenclature on descriptions by Schechter and Berger 14 15. 

The rules for the enzyme function were taken from the work of Keil. 16 

     Table 1 shows the enzymes used in this program along with the six positions around the 

cleavage point of the amino acid sequence. The position, four amino acids before the cut point, 

referenced from the amino acid end of the sequence, is labeled P4. Each successively closer 

position to the cut is decremented in count, with P1 being the closest to the cut. On the carboxyl 

side of the cut the amino acid, locations increase from P1’ to P2’. At each position, the amino 

acids are listed as one-character abbreviations that will satisfy the requirements of the enzyme 

for a cut. At the positions where there is a “Not” written, each of those amino acids cannot be in 

that position for the cut to work. Arg-C proteinase is one of the simpler enzyme cut sequences, 

requiring only an arginine (R) at the amino acid position right before the cut. Thrombin (P) is 

probably the most complex cutting enzyme and requires the amino acid sequence to contain 

any of the amino acids A, F, G, I, L, T, V, or M at the locations, four and three positions before 

the cut. At the position two amino acids before the cut, a proline (P) is required and at the 

position immediately before the cut, an arginine (R) is required. At the two positions after the 

cut, P1’ and P2’, the amino acid sequence cannot have the amino acids aspartate (D) or 

glutamate (E).  

     The name for the enzyme in the table is the name given by the ExPASy site. The information 

in parentheses following the name represents my way of distinguishing different unique 

conditions for the same enzyme. As an example, there are four entries for Pepsin. Two of the 
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conditions require a pH of 1.3 and two require a pH greater than 2. The label “Pepsin (pH 1.3) 

(not R)” is used when the pH is at 1.3 and the amino acid is not an arginine (R) at position P1. For 

the Pepsin with (pH 1.3) (F, L), the amino acid sequence must be at a pH of 1.3 and have either a 

phenylalanine (F) or a leucine (L) at position P1.  

     It is necessary to assign names with parenthetical modifications to variations in particular 

enzymes that are shown in the ExPASy website; specifically, Chymotrypsin, Pepsin, and Trypsin. 

Each of these enzymes have multiple entries for the cutting rules that reflect modifications that 

cannot be addressed as one enzyme. For example, Chymotrypsin - high specificity is divided into 

two groupings: the first entry has phenylalanine (F) or tyrosine (Y) in position P1 and not proline 

(not P) in position P1’. The second entry has tryptophan (W) in position P1 and not methionine 

(not M) or not proline (not P) in position P1’. Since the first entry has rules in two positions that 

do not match up to the rules in the second entry, it is necessary to add these as separate rules 

for the cutting process. If someone wants to include both sets of rules for Chymotrypsin high 

specificity, they would need to check both Chymotrypsin - high specificity enzyme selections. For 

Chymotrypsin - low specificity there are four entries, for Pepsin – pH 1.3 there are two entries, 

for Pepsin – pH >2 there are two entries, and for Trypsin there are three entries. 
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Table 1: Enzymes and Cutting Rules 

Enzyme P4 P3 P2 P1 P1’ P2’ 

Arg-C proteinase    R   

Asp-N endopeptidase     D  

BNPS-Skatole    W   

Caspase 1 F,W,Y, or L  H,A, or T D Not P,E,D, 
Q,K, or R 

 

Caspase 2 D V A D Not P,E,D, 
Q,K, or R 

 

Caspase 3 D M Q D Not P,E,D, 
Q,K, or R 

 

Caspase 4 L E V D Not P,E,D, 
Q,K, or R 

 

Caspase 5 L or W E H D   

Caspase 6 V E H or I D Not P,E,D, 
Q,K, or R 

 

Caspase 7 D E V D Not P,E,D, 
Q,K, or R 

 

Caspase 8 I or L E T D Not P,E,D, 
Q,K, or R 

 

Caspase 9 L E H D   

Caspase 10 I E A D   

Chymotrypsin  
high specificity (F, Y) 

   F or Y Not P  

Chymotrypsin  
high specificity (W) 

   W Not M or P  

Chymotrypsin 
Low specificity (F,L,Y) 

   F,L, or Y Not P  

Chymotrypsin 
Low specificity (W) 

   W Not M or P  

Chymotrypsin 
Low specificity (M) 

   M Not P or Y  

Chymotrypsin 
Low specificity (H) 

   H Not D,M, 
P, or W 

 

Clostripain    R   

CNBr    M   

Enterokinase D or E D or E D or E K   

Factor Xa A,F,G,I,L, 
T,V, or M 

D or E G R   
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Table 1 Cont.: Enzymes and Cutting Rules 

Enzyme P4 P3 P2 P1 P1’ P2’ 

Formic acid    D   

Glutamyl 
endopeptidase 

   E   

GranzymeB I E P D   

Hydroxylamine    N G  

Iodosobenzoic    W   

LysC    K   

Neutrophil elastase    A or V   

NTCB     C  

Pepsin (pH 1.3) (not 
R) 

 Not H,K, or 
R 

Not P Not R F or L Not P 

Pepsin (pH 1.3) (F, L)  Not H,K, or 
R 

Not P F or L  Not P 

Pepsin (pH > 2) (not 
R) 

 Not H,K, or 
R 

Not P Not R F,L,W or 
Y 

Not P 

Pepsin (pH > 2) 
(F,L,W,Y) 

 Not H,K, or 
R 

Not P F,L,W or Y  Not P 

Proline-
endopeptidase 

  Not H,K, 
or R 

P Not P  

Proteinase K    A,E,F,I,L,T, 
V,W, or Y 

  

Staphylococcal 
Peptidase I 

  Not E E   

Thermolysin    Not D or E A,F,I,M, 
Or V 

 

Thrombin (G)   G R G  

Thrombin (P) A,F,G,I,L, 
T,V, or 
M 

A,F,G,I,L,T, 
V,W, or A 

P R Not D or 
E 

Not D 
or E 

Trypsin (not P)    K or R Not P  

Trypsin (W)   W K P  

Trypsin (M)   M R P  

 
     The exceptions for the trypsin enzyme are given in Table 2. Trypsin not only requires the 

amino acid sequence to satisfy the conditions in Table 1 but also to “not” have the set of 

conditions given in Table 2.  For the Exception 1 case the amino acid sequence will not be cut if 

it has a cysteine (C) or an aspartate (D) in the position P2 and has a lysine (K) at position P1 and 
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has an aspartate (D) at position P1’. If an amino acid sequence satisfies all the conditions for 

Trypsin (not P) and satisfies all the conditions for Exception 1, it will not be cut. 

Table 2: Trypsin Exceptions 

Trypsin Exceptions P4 P3 P2 P1 P1’ P2’ 

Exception 1   C or D K D  

Exception 2   C K H or Y  

Exception 3   C R K  

Exception 4   R R H or R  

 
 

2.1.5 Isoelectric Point Determination 
 
     The program provides two methods to determine the isoelectric point. One method, the 

averaging method, calculates the isoelectric point by balancing the total charge on the peptide 

string. Since the total charge on the peptide string varies as a function of the pH, the list of pKa’s 

of the peptides is sorted and the charge on the peptide string is evaluated at each pKa until the 

total charge evaluates to zero. That pKa and the next one in the sequence are averaged to get 

the IEP. 

     The other method, the iteration method, calculates the IEP 17 by using a form of the 

Henderson-Hasselbalch equation iteratively until the squared difference between the fractional 

value of the negative charged amino acids and the fractional value of the positive charged 

amino acids approaches zero. In the case of the program the value is 0.0000000001.  

     The Henderson-Hasselbalch equation is typically seen as  

𝑝𝐻 = 𝑝𝐾𝑎 + log
[𝐴−]

[𝐻𝐴]
 

However, it can also be written as  

𝑝𝐻 = 𝑝𝐾𝑎 + log
𝛼𝐴−

𝛼𝐴+
 

where 𝛼𝐴−  and 𝛼𝐴+ are the fractional coefficients and add up to 1. 

𝛼𝐴− + 𝛼𝐴+ = 1 
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By taking the anti-log of both sides of the Henderson-Hasselbalch equation, the equation 

becomes 

10𝑝𝐻−𝑝𝐾𝑎 =  
𝛼𝐴−

𝛼𝐴+
 

By adding 1 to both sides, the equation can be rearranged to get the fractional amount of the 

positive charged peptide, 𝛼𝐴+. 

1 + 10𝑝𝐻−𝑝𝐾𝑎 =  
𝛼𝐴−

𝛼𝐴+
+ 1 

 

1 + 10𝑝𝐻−𝑝𝐾𝑎 =  
𝛼𝐴−

𝛼𝐴+
+  

𝛼𝐴+

𝛼𝐴+
 

1 + 10𝑝𝐻−𝑝𝐾𝑎 =  
1

𝛼𝐴+
 

𝛼𝐴+ =
1

1 + 10𝑝𝐻−𝑝𝐾𝑎
 

In a similar fashion, it is possible to determine the fractional amount of the negative charged 

peptide. 

𝛼𝐴− =
1

1 + 10𝑝𝐾𝑎−𝑝𝐻
 

     Because there are multiple peptides in a polypeptide it is necessary to sum all n peptides for 

the positive charged peptide string and for the negative charged peptide string. The positive 

charged peptides are those peptides with a charged amino acid in the residue, arginine (R), 

lysine (K), or histidine (H), along with the amino group at the start of the amino acid sequence. 

The negative charged peptides are those peptides with a charged carboxyl residue, aspartate (D) 

or glutamate (E), or a cysteine (C) or tyrosine (Y) along with the carboxyl end of the amino acid 

sequence. 
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𝑡𝑜𝑡𝑎𝑙 𝛼𝐴+ = ∑
1

1 + 10𝑝𝐻−𝑝𝐾𝑎

𝑛

1

 

𝑡𝑜𝑡𝑎𝑙 𝛼𝐴− = ∑
1

1 + 10𝑝𝐾𝑎−𝑝𝐻

𝑛

1

 

     The pH is incremented by one pH unit until the squared difference starts to increase. The pH 

is then backed off by two units, the incrementing value is reduced by a factor of 10 and the 

incrementing process begins again. This iterating process continues until the squared difference 

becomes arbitrarily small, 0.0000000001. 

2.2 Validation 

     As a check on the numbers generated by the program, a comparison was made to the same 

calculations generated by two websites: ExPASy and IPC. Both ExPASy and IPC are referenced 

earlier as websites that generate values for IEP and molecular weight. The IPC website calculates 

the isoelectric point and the ExPASy site calculates both IEP and molecular weight. Because the 

ExPASy site is considered one of the primary sources for protein analysis, there was an attempt 

in the program to generate an IEP as close as possible to the value generated by the ExPASy site. 

That required the matching of pKa values used by ExPASy. To match with their calculations, the 

program uses the iterative method of IEP calculation and uses Bjellqvist, Basse, Olsen, Celis 18 for 

the values of the pKa’s. 
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Table 3: Test Cases for IEP and Molecular Weight 

Peptide # of 
AA 

MEEP 
ave IEP 
(pH) 

MEEP 
iter IEP 
(pH) 

ExPASy 
IEP 
(pH) 

IPC 
IEP 
(pH) 

MEEP  
Mol Wt 
(Daltons) 

ExPASy 
Mol Wt 
(Daltons) 

Zika polyprotein 3417 9.00 8.79 8.79 7.64 378498.31 378493.00 

Bovine serum 
albumin 

607 5.98 5.82 5.82 5.59 69293.7 69293.41 

Egg albumin 386 4.45 5.19 5.19 5.09 42882.24 42881.24 

Glyceraldehyde-3-
phosphate 
dehydrogenase 

335 9 8.57 8.57 7.74 36054.33 36053.21 

Carbonic 
anhydrase II 

260 5.98 6.41 6.41 6.12 29114.53 29113.78 

Trypsinogen 246 9 8.40 8.40 7.23 25786.29 25785.24 

Trypsin inhibitor 216 4.45 4.95 4.95 4.84 24005.85 24005.29 

α-Lactalbumin 123 4.45 4.80 4.80 4.67 14156.51 14156.04 

Thyroglobulin 2769 4.45 5.48 5.48 5.33 303224.20 303221.61 

ß- Amylase 499 4.45 5.17 5.17 5.04 56081.49 56079.70 

Alcohol 
dehydrogenase 

375 9.00 8.26 8.26 7.08 39859.2 39858.69 

Lactate 
dehydrogenase 

332 9.00 8.44 8.44 7.5 36689.58 36688.72 

Ferritin heavy 
chain 

183 4.45 5.31 5.31 5.13 21226.38 21225.64 

KHRKH 5 11.00 11.17 11.17 10.7 704.8 704.85 

CDEYC 5 3.80 3.67 3.67 3.29 631.66 631.62 

GAVLIMPWFSTNQ 13 5.53 5.52 5.52 5.98 1463.64 1463.71 

 
     Table 3 lists the peptide sequences taken from the UniProt website 19, the number of amino 

acids in the sequences, the various calculations of the isoelectric points and the molecular 

weight calculations. Some of the peptides come from standards for an SDS-PAGE calibration 

curve 20 and single polypeptide strings used in a Sephadex standard where FASTA sequences are 

available. A polypeptide string representing the Zika virus protein strings is used to display a 

large sequence. In addition, three other cases are sequences used to get a minimum (minimum 

required by ExPASy site) of five positive charges, KHRKH, and negative charges, CDEYC, and a 

group that contains the remaining amino acids, GAVLIMPWFSINQ. The MEEP average (ave) and 

MEEP iteration (iter) provide a comparison between the two methods used by the program to 

calculate the IEP. The positive values cause the average calculation to be less than the iterative 
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method. The negative values cause the average calculation to be greater than the iterative 

method. 

     A comparison between the program’s iterative calculation and the value calculated by the 

ExPASy site shows that calculations and the pKa’s used, are the same. The IPC website shows 

much more variability from the program’s calculation; since IPC uses the same iterative method,  

the differences must be related to the pKa’s used.  

     Because no reference was found at the ExPASy for the molecular weights, the molecular 

weights were taken from the CRC. 21 The difference between the ExPASy and CRC molecular 

weights are within 0.1 Daltons for small sequences but grows to 5.31 Daltons for the Zika 

polyprotein which has 3417 amino acids.  

 

  



  Mayes, Howard, 2017, UMSL, p. 32 
 

Chapter 3 – Conclusion and Future Direction 
 
     There are several programs that provide information that help the researcher determine 

what to expect with an electrophoresis experiment. This thesis describes several of those 

programs and their inputs and outputs.  

     The program MultiEnzyme Electrophoresis (MEEP) is described which includes its inputs, 

outputs, and its operation. The overall logic for the operation of the cutting and sorting is given 

as well as the logic associated with the matching of enzymes. A description is provided of the 

two methods available in the program to determine the isoelectric point for a subsequence. The 

equations are provided that go from the Henderson-Hasselbalch equation to the equations used 

in the program. For validation, several test sequences are compared with the values determined 

from the ExPASy website and the Isoelectric Point Calculator website. 

     The program provides another tool to help visualize what to expect when cuts are made in a 

protein sequence. I see it being used in two ways: 1) a fingerprint of the protein which would 

allow that protein to be isolated from among several proteins if present in a sample, 2) a 

predictive program to evaluate which enzymes would be best suited to isolate the expected 

protein fragments. Prior to running the experiment, an analysis can be made as to whether the 

enzymes chosen will provide an output that most effectively breaks out the fragments of 

interest. 

     So where to go in the future? Because the cutting process can be generalized it might be 

possible to look at nucleotides instead of peptides, both of which can use the 2-D 

electrophoresis. Another possibility would be to look at a mixture of proteins, so the extension 

of the program from one protein sequence to multiple proteins could be helpful. A third 

direction could be to address the statistical issues of cleavage of protein sequences with 

multiple enzymes at the same time. Currently the program evaluates the cleavage of the first 
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enzyme in the list and then evaluates the cleavage of the second enzyme, and then the 

following enzyme; until all the enzymes are addressed. Because not all the enzymes act all the 

time and the order in which the enzymes act will vary, a statistical approach would be needed to 

more accurately model that aspect. 
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