
University of Missouri, St. Louis
IRL @ UMSL

Theses UMSL Graduate Works

4-13-2018

Evaluation of Vaporization Enthalpies and Vapor
Pressures of Various Aroma and Pharmacologically
Active Compounds by Correlation Gas
Chromatography
Daniel Simmons
drs8t2@mail.umsl.edu

Follow this and additional works at: https://irl.umsl.edu/thesis

Part of the Analytical Chemistry Commons, Organic Chemistry Commons, and the Physical
Chemistry Commons

This Thesis is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by
an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Simmons, Daniel, "Evaluation of Vaporization Enthalpies and Vapor Pressures of Various Aroma and Pharmacologically Active
Compounds by Correlation Gas Chromatography" (2018). Theses. 335.
https://irl.umsl.edu/thesis/335

https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/thesis?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/thesis?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/thesis/335?utm_source=irl.umsl.edu%2Fthesis%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu


  

 

 

 

 

 

 

Evaluation of Vaporization Enthalpies and Vapor Pressures of Various Aroma and 

Pharmacologically Active Compounds by Correlation Gas Chromatography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Daniel R. Simmons 

 

B.S., Chemistry, University of Missouri- St. Louis, 2014 

 

A Thesis Submitted to the Graduate School at the University of Missouri- St. Louis  

in partial fulfillment of the requirements for the degree 

 Master of Science in Chemistry  

 

May 2018 

 

 

 

 

 

Advisory Committee 

 

James S. Chickos, PhD. 

Thesis Advisor 

 

Keith J. Stine, PhD. 

 

Benjamin J. Bythell, PhD. 

 



2 

 

Index 

Abstract……………………………………………………………………………………5 

 

Chapter 1:  Introduction…………………………………………………………………...6 

1.1.  Introduction…………………………………………………………………..6 

1.2.  Structure and Properties……………………………………………………...9 

1.2.1. Lactone Aroma Compounds………………………………………9 

1.2.2. Aldehyde Aroma Compounds……………………………………10 

1.2.3. Profens and Benzoic Acids………………………………………11 

1.2.4. Alcohol Aroma Compounds……………………………………..14 

1.3.  Brief History, Natural Occurrence and Overview of Uses…………………16 

1.3.1. Lactone Aroma Compounds……………………………………..16 

1.3.2. Aldehyde Aroma Compounds……………………………………19 

1.3.3. Profens and Benzoic Acids………………………………………21 

1.3.4. Alcohol Aroma Compounds……………………………………..24 

Chapter 2:  Experimental Methods………………………………………………………32 

 2.1.  Compounds…………………………………...…………………………….32 

  2.1.1.  Lactone Compounds……………………………………………...32  

  2.1.2.  Aldehyde Compounds……………………………………………35 

  2.1.3.  Profens and Benzoic Acid Compounds…………………………..37 

  2.1.4.  Alcohol Aroma Compounds……………………………………...40 

2.2.  Instrumentation and Methods……...……………………………………….42 

 2.2.1.  General Methods………………………………………………….42 



3 

 

 2.2.2.  Methods for Lactone Compounds………………………………...43 

  2.2.2.1.  Identification of Nepetalactone Diastereomers…………44 

  2.2.2.2.  ID of cis/trans Whiskey Lactone Diastereomers……….44 

  2.2.2.3.  ID of cis/trans Menthalactone Diastereomers…………..45 

 2.2.3.  Methods for Aldehyde Compounds………………………………46 

 2.2.4.  Methods for Profen Compounds………………………………….47 

 2.2.5.  Methods for Alcohol Compounds………………………………...48 

  2.2.5.1.  ID of Compounds Present in Patchouli Oil……………..50 

 2.3.  Calculations…………………………………………………………………50 

  2.3.1.  Enthalpy of Vaporization…………………………………………50 

  2.3.2.  Vapor Pressure……………………………………………………51 

   2.3.2.1.  Lactone Vapor Pressures……………………………….51 

   2.3.2.2.  Profen Vapor Pressures…………………………………52 

  2.3.3.  Temperature Corrections…………………………………………54 

  2.3.4.  Group Additivity Approach for Estimating Heat Capacity………55 

  2.3.5.  Estimation of Vaporization Enthalpy…………………………….55 

  2.3.6.  Estimation of Fusion and Sublimation Enthalpies for Lactones….56 

  2.3.7.  Clarke and Glew Equation for Sublimation Vapor Pressures…….57 

  2.3.8.  Sublimation, Fusion, and Vaporization Enthalpies of Profen Stds.58 

  2.3.9.  Estimation of Error……………………………………………….59 

Chapter 3:  Results and Discussion………………………………………………………63 

 3.1.  Lactones…………………………………………………………………….63 

  3.1.1.  Oil of Catnip (Nepetalactone)…………………………………….63 



4 

 

  3.1.2.  Whiskey Lactone and Menthalactone……………………………72 

 3.2.  Aldehydes………………………………………………………………….79 

 3.3.  Profens……………………………………………………………………..82 

 3.4.  Alcohols……………………………………………………………………97 

  3.4.1.  Identification of the Components in Patchouli Oil……………….97 

  3.4.2.  Patchouli Alcohol Vaporization Enthalpy………………………103 

Chapter 4:  Summary…………………………………………………………………...109 

Appendix………………………………………………………………………………..112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Abstract 

Scientists in the pharmaceutical, food, and aroma industries can benefit from reliable 

thermochemical data.  Vaporization enthalpy and vapor pressure data are not available 

for all compounds.  Furthermore, some literature data is conflicting.  The goal of this 

work was to use a method called correlation gas chromatography (CGC) to generate 

reliable vaporization enthalpy data in instances where other experimental methods are not 

applicable.  Vapor pressures of the targets were also calculated in cases where the 

required literature data on the standards used in this technique were available.   

 

CGC involves making a standard cocktail that includes a mixture of standards and one or 

more unknowns.  Reliable literature values for vaporization enthalpy must be available 

for the standards in order to evaluate the vaporization enthalpy of the targets.  From the 

retention time of both the standards and their vapor pressures, it was possible to evaluate 

the vapor pressures of the targets.  The compounds examined were structurally diverse.  

There included saturated and unsaturated compounds, cyclic and acyclic, aliphatic and 

aromatic, lactones, aldehydes, carboxylic acid derivatives, profens, and alcohols.  Despite 

structural differences, their properties can be separated into two broad categories: aroma 

compounds and pharmacologically active compounds.  Each class of compounds brought 

about unique challenges.  Some were oils that were extracted and characterized prior to 

measurement.  Aldehydes proved to be unstable.  Some carboxylic acids gave poor peak 

shapes requiring a search for a suitable column.  Additionally, some of the profens  

displayed liquid crystal behavior- adding additional complications. 

   

Vaporization enthalpies were measured for nepetalactone, whiskey lactone, 

menthalactone, trans-2-hexenal, 2,6-dimethyl-5-heptenal, 2,6-nonadienal, trans-2-

nonenal, trans,trans-2,4-decadienal, 2-butyl-2-octenal, patchouli alcohol, and 

Fenoprofen.  Vapor pressures were measured for nepetalactone, whiskey lactone, 

menthalactone, and Fenoprofen.  Vaporization enthalpy and vapor pressure values for the 

standards were all within experimental error of literature values, except in the case of 2-

tetradecanol. 
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Chapter 1: Introduction 

1.1. Introduction 

The compounds examined in this work are structurally diverse.  Many of the 

compounds are naturally occurring.  The target analytes and many of the compounds used 

as standards are generally recognized as safe (GRAS).  The GRAS compounds are safe 

enough to consume and examples studied in this work can be found in the food we eat, 

the beverages we drink, our medications, perfumes, and products we give to our pets. 

 Many of the lactones, aldehydes, and alcohols studied in this work are classified 

as aroma compounds.  They are sufficiently volatile that even in relatively low 

concentrations at standard temperatures and pressures they can be perceived by the sense 

of smell.  Many of these compounds are naturally occurring in foods and/or beverages.[1-

6]  Others are naturally extracted into food or beverage during cooking or through a 

maturation process.[6-9]  Lactones of interest include catnip (nepetalactone), whiskey 

lactone (4-methyl--octalactone), and mint lactone (5,6,7,7a-tetrahydro-3,6-dimethyl- 

2(4H)-benzofuranone).  Aliphatic aldehydes of interest include trans-2-hexenal, 2,6-

dimethyl-5-heptenal, trans, cis-2,6-nonadienal, trans-2-nonenal, trans, trans-2,4-

decadienal, 2-butyl-2-octenal, and lauric aldehyde while aromatic aldehydes of interest 

included trans-cinnamaldehyde, tolualdehyde, and cyclamen aldehyde.  The major 

alcohol of interest is patchouli alcohol, which is used in the fragrance industry as well as 

a starting material for an anti-cancer drug, Taxol®. 

Vapor pressure, its temperature dependence, and enthalpy of vaporization, are of 

importance to a variety of industries, including food science, the perfume industry, the 

chemical industry, and depending on the nature of the chemical, also to the 
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environmental protection agency (EPA).  Vapor pressure governs the extent of exposure 

to chemicals, both benign and otherwise.  Vapor pressure is the connecting link between 

the consumer’s nose and palate to the aroma ingredients in foods and beverages.  The 

aroma profile of a food not only depends on the concentrations of the aroma compounds, 

but also their affinity for the structural components (i.e. proteins, lipids, cellulose, etc.) of 

the food.  Since many aroma compounds tend to be non-polar, or only moderately polar, 

the presence of lipids can influence the vaporization, and therefore the perception, of 

these compounds.[10]  While the flavor profile of a food or beverage is comprised of 

both volatile and non-volatile components[11], this work examines materials that tend to 

be relatively volatile. 

2-Arylpropionic acids (profens) and benzoic acid derivatives are another major 

category of compounds studied in this work.  Several of these possess analgesic 

properties.[12-14]  The target compound in this study was Fenoprofen, which is a 

nonsteroidal anti-inflammatory drug (NSAID).  Better-known examples of NSAIDs are 

Naproxen (Aleve®) and Ibuprofen.[14]  More broadly, NSAIDs belong to a class known 

as active pharmaceutical ingredients (APIs).  APIs are the chemical(s) present in 

medication that are responsible for the therapeutic effect.  For brevity in the remainder of 

this thesis, the profens and benzoic acid derivatives will be referred to as profens even 

though not all of the benzoic acid derivatives are profen compounds. 

Enthalpy of vaporization data is useful in the pharmaceutical industry as well.  

Vaporization enthalpy data is usually compiled with other solvent properties.  The 

compilation of data can then be used to select the best solvent for processing APIs.  One 

group recently suggested using this data to find safer solvents relative to solvents 
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traditionally used.[15]  Solvent vaporization enthalpy data can also be used to generate 

guidelines for drying APIs.  This is typically a time/energy intensive process.[16]   

The enthalpy of vaporization data of the API itself can also be useful.  It is 

necessary, at times, to calculate the enthalpy of formation of reactants and products in the 

production of pharmaceutical compounds.  The enthalpy of formation data is then, in 

turn, used to calculate the reaction heat.[17, 18]  Estimation of the reaction heat is 

required prior to the first large-scale production run of pharmaceutical compounds as a 

safety measure.  If the reaction heat is estimated to be large, then the equipment required 

for the reaction needs to be appropriately engineered to maintain conditions within 

accepted safety margins.[18]   

A couple of the aroma compounds in this study have also seen some use as an 

analgesic.  Menthalactone, also known as mintlactone, has undergone phase I, II, and III 

clinical trials and has been used to combat headache, toothache, and muscle pain [19].  

Patchouli alcohol is perhaps most widely known for its application in the perfume 

industry.  It has, however, also been used as a cold remedy [20] and has anti-

inflammatory properties [21] among others.  

Aside from menthalactone and patchouli alcohol, the analgesic compounds and 

the aroma compounds are different not only in their application, but the physical 

properties are in stark contrast as well.  An easily observable difference is that the 

lactones and aldehydes (aroma compounds) studied are all liquids at room temperature, 

whereas the 2-arylpropionic acid and benzoic acid derivatives (NSAIDs) are all solids.  

The alcohols gave varied results.  Some of them are liquids at room temperature and 

others are solid.  The aroma compounds studied have high vapor pressures that give a 
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strong (and often pleasant) odor even with small sample sizes.  Accordingly, this means 

the enthalpies of vaporization are generally lower (42-84 kJ/mol) as compared to the 

sublimation enthalpies of the profens and benzoic acid derivatives which range between 

96-140 kJ/mol at 25°C.[22]  Thus, more energy is required to transfer the latter to the gas 

phase.   

 

1.2. Structure and Properties 

1.2.1. Lactone Aroma Compounds 

Lactones are cyclic esters that occur naturally in a variety of ring sizes.  Lactones 

examined in this study are of both of the γ- and δ- variety.  The γ-lactone designation 

means the γ carbon is connected to the ring oxygen and forms a 5-membered ring.   The 

δ-lactone designation means the δ carbon is connected to the ring oxygen forming a 6-

membered ring.  The carbonyl carbon is not considered in this system of nomenclature.  

Figure 1-1 depicts the difference between γ- and δ-lactones.  As compared to smaller ring 

sizes (α or β), the γ- and δ-lactones are more structurally stable due to less ring strain 

resulting from a more favored bond angle geometry.[6]  The standards that were utilized 

in these studies also had aliphatic side chains on the γ- and δ-positions.   

O

O

(CH2)nCH3

O

O

(CH2)nCH3

n = 2, 5, 6
Standards:

n = 1, 3, 5, 6  

FIGURE  1-1.  The structures of the  and δ-lactone standards. 
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Lactones are prepared synthetically by oxidizing the corresponding cyclic ketone 

in a Baeyer-Villager reaction.[23]  Likewise lactones could also be produced by the 

reversible intramolecular esterification of the associated hydroxy acid.  The reverse of 

this reaction would result in hydrolysis back to the acyclic form.[6] 

As with acyclic esters, electron density is highest around the oxygen atoms, while 

the aliphatic side-chains are non-polar.  In the compounds of Figure 1-1 there are 

stereocenters at the γ-position for γ-lactones and at the δ-position for δ-lactones.  The 

target analytes, nepetalactone, whiskey lactone, and menthalactone each possess multiple 

stereocenters that are discussed further in section 2.1.1. 

 

1.2.2. Aldehyde Aroma Compounds 

 The aldehyde compounds examined in this study had simpler structures than the 

lactones and profens/benzoic acids.  There is, however, still some variety in structure.  

Variations include saturated, mono-unsaturated, and polyunsaturated aldehydes.  Both cis 

and trans double bonds are represented, although in the aliphatic aldehydes the double 

bonds have predominately trans stereochemistry.  Examples of straight chain and 

branched aliphatic aldehydes are represented, as well as aromatic aldehydes. 

 In general, aldehydes can undergo many reactions similar to ketones, but are 

generally more reactive.  These reactions are textbook reactions and usually involve 

nucleophilic attack at the carbonyl carbon.  When compared to ketones, however, 

aldehydes are more prone to degradation by molecular oxygen.  The degradation of 

aldehydes in the presence of oxygen can result in some interesting products through 

multiple reaction pathways that proceed via a radical mechanism.  By far, the major 



11 

 

product is the corresponding carboxylic acid.  However, the formate ester, primary or 

secondary alcohol, or ketone/aldehyde may also form under some conditions.[24] 

 

1.2.3. Profens and Benzoic Acids 

The structures of profens and benzoic acids are very similar in that they both 

contain six-membered aromatic rings with carboxylate groups at the 1-position.  The 

difference is, however, that the profens contain an extra ethylene group.  The general 

class of arylpropionic compounds could have the aryl group attached to either the α- or β-

carbon of the propionic acid.  The profen nomenclature denotes that the aromatic group is 

attached at the α-carbon and therefore they are 2-arylpropionic acids.   Figure 1-2 shows 

a comparison of benzoic acid derivatives (1, 2) and 2-arylpropionic acids (3). 

O

OH

O
R

R= alkyl group

O

OH

R

R= alkyl group

1 2

O

OH

CH3

R

R= alkyl, phenyl, alkoxy

3
 

FIGURE  1-2.  Compounds used in the analysis of Fenoprofen consisted of alkylbenzoic acid 

derivatives 1, alkoxybenzoic acid derivatives 2, and 2-arylpropionic acid derivatives 3.  The R 

groups listed represent the scope of compounds used. 

Most of the profens and the benzoic acids used in this study were substituted at 

the para position.  However, in the case of Fenoprofen, the substitution is an ether bridge 

to another aromatic group at the meta position.  In the case of the benzoic acids, both 

alkyl and alkoxy substituted derivatives were used for standards.  It is worth noting that 

another class of NSAIDs based on salicylic acid has a similar structure to benzoic acid.  

Salicylates are benzoic acids with an o-hydroxy group. 
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Lastly, it should be noted that unlike the benzoic acids the profens have a 

stereocenter at the α-carbon.  The configuration that seems to have the largest 

biotherapeutic significance is the (S)-(+)-configuration[13, 25, 26].  Both R,S Fenoprofen 

and R,S flurbiprofen are administered by prescription in racemic form while both S (+)-

ibuprofen and S (+)-naproxen are available over the counter.[27] 

A fascinating and, admittedly, complicating point about the Fenoprofen salts 

commonly encountered is that they can form liquid crystals.  Liquid crystals are a phase 

of matter between the solid crystalline and liquid state.  Liquid crystals are less ordered 

than solid crystals in that they have orientational order, but lack positional order.[28]  

Liquid crystals are, however, more ordered than liquids or glass phases which are 

isotropic or amorphous.  The complication is that the phase equilibrium for the one 

component system is no longer just a function of temperature and pressure, but now the 

phase transitions must be taken into account as well.  Additionally, there is generally a 

lack of temperature-pressure data for liquid crystals[29] and they can undergo both first 

and second order solid-liquid phase transitions.[28]  

Complicating matters even more, many liquid crystals can exist as several 

different polymorphs.[29]   The Fenoprofen Ca
2+

 ·2H2O salt is capable of forming 

thermotropic smectic liquid crystals[28, 30, 31].  The sodium salt, on the other hand, can 

form both thermotropic smectic and lyotropic lamellar liquid crystals.[28, 30]  

Interestingly, the potassium salt doesn’t form the thermotropic liquid crystal, but it does 

form the lyotropic lamellar liquid crystal in the presence of water.[28]  The different 

polymorphs have different physical properties and stabilities.[28, 30] 
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Thermotropic phases result from a temperature change.[28, 30]  The 

intermolecular interaction of molecules in thermotropic smectic liquid crystals looks 

approximately like bundles of cigars stacked in layers.  They are all oriented in the same 

direction, roughly parallel to each other; however, the bundles may not have long range 

positional order.  The layers of bundles may be slightly askew from the perpendicular 

axis and can move with respect to one another.[28]   

Lyotropic liquid crystals are more common in pharmaceuticals.[30]  They are 

induced by the presence of solvent.[28, 30]  In the aqueous lyotropic laminar 

arrangement, the Fenoprofen molecules would be arranged similar to a phospholipid 

bilayer found in cell membranes.  The polar propionic group would be facing out and the 

non-polar phenyl rings would face the inside of the bilayer.  Figure 1-3 shows the 

difference in intermolecular arrangement between the solid crystal, and the thermotropic 

smectic and lyotropic laminar liquid crystal structures. 

 

FIGURE  1-3.  Fenoprofen salts have a rod-like shape and can take the form of crystals 1, 

thermotropic smectic liquid crystals 2, and lyotropic lamellar liquid crystals 3.[28] 
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Fenoprofen exhibits a planar-rod shape in the liquid crystal state.[28]  In this case, 

liquid crystals may be formed by heating the calcium dihydrate crystal to drive off the 

water.[30, 31]  It is reported that the compound in this state, appears to be solid until it is 

under pressure.[30]  Due to the possibility of liquid crystal formation, the melting of 

Fenoprofen sodium salt has a wide  temperature range of 58-80 °C.[28]  The liquid 

crystal nature of Fenoprofen was not observed in this study.  In fact, the Fenoprofen 

calcium salt was first converted to the free acid as described in section 2.1.3.  Although 

S-ibuprofen, R,S-flurbiprofen, and S-naproxen are all crystalline at standard temperature 

and pressure, the Fenoprofen neutral acid is a viscous liquid.  

 

1.2.4. Alcohol Aroma Compounds 

Most of the alcohol standards used for this study had simple structures.  They 

were linear saturated primary alcohols.  The exceptions were 2-tetradecanol, which of 

course is a secondary alcohol, and 1-adamantanol which is a tertiary alcohol.   

1-Adamantanol has an interesting structure with three fused aliphatic rings and it 

also has some peculiar properties.  For one, it undergoes a solid-solid phase transition at 

T = 357.1 K [32].  Also, consider a comparison to 1-decanol, which is the linear saturated 

alcohol with the same number of carbons.  The boiling point of 1-adamantanol might be 

expected to be lower than that of 1-decanol.  The orientation of the fused rings gives the 

1-adamantanol molecule diamondoid geometry.  This geometry presumably should lead 

to lower van der Waals forces because it has less surface area as compared to 1-decanol.  

Also, the primary alcohol should be more polarizable and more easily accessible for 

hydrogen bonding than the tertiary alcohol.  The tertiary alcohol is more sterically 
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hindered and can better spread a dipole charge amongst three carbons instead of one.  The 

lower van der Waals forces, less polarizability, and lower steric accessibility of the 

hydroxyl on 1-adamantanol should give it a lower boiling point as compared to 1-

decanol.  However, 1-adamantanol is a solid at room temperature and sublimes at 282-

283°C[33]  with an enthalpy of sublimation of 86.6 ± 0.3 kJ mol
-1

 [32].  ACD labs 

predicted a hypothetical boiling point of 245.8 ± 0.8°C for 1-adamantanol [34].  

However, in a recent paper, Nelson and Chickos predict a hypothetical boiling point of 

248.1 ± 0.5°C for 1-adamantanol using the CGC method.  They note that the reported 

fusion temperature, Tfus = 279.8 °C, exceeds the predicted boiling point at one 

atmosphere and that 1-adamantanol likely behaves like CO2(s) by subliming at 1 atm.[35]  

More recent work also suggests that primary alcohols may not be good vapor pressure 

standards for polycyclic compounds, making the hypothetical boiling point of 1-

adamantanol difficult to predict with confidence.  1-Decanol, on the other hand is a liquid 

at room temperature, with a boiling point of 231.1°C [36].  This collection of properties 

is intriguing as they tend to defy the usual predictors of relative boiling points. 

The target compound in the alcohol study, patchouli alcohol, is also a tertiary 

alcohol with three fused aliphatic rings.  Likewise, in this case the C15 patchouli alcohol 

has a higher predicted boiling point than 1-pentadecanol.  Patchouli alcohol has a melting 

point of 55-56°C [37] and a predicted boiling point of 287.4 ± 0.8°C [34] whereas 1-

pentadecanol has a melting point of 7°C and a boiling point of 229°C [38]. 
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1.3. A Brief History, Natural Occurrence, and Overview of Uses 

 1.3.1. Lactone Aroma Compounds 

 Lactones are found in a range of biological organisms.  Lactones occur as 

byproducts of metabolism in various animal milk fats[3]  and in certain plants[39].  In 

plants they are derived from lignin[7]  and they serve as natural defense mechanisms 

against various insects.[39]  Fungi, however, synthesize lactones from a feedstock of 

sugars and lipids.[5]  

Lactones are known for being aroma compounds.  As seen in Table 1-1, many are 

associated with pleasant odors.  Both γ- and δ-lactones contribute to the pleasant smell of 

butter oil.  In fact, several of the standards used in this study such as: δ-octanolactone, δ-

decanolactone, δ-dodecanolactone, and γ-dodecanolactone have been the interest in butter 

aroma research.[3]  Many of the same lactones are present in olive oil as well.  Olive oil 

lactones that are relevant to this study are δ-octanolactone, γ-nonanolactone, γ-

decanolactone, δ-decanolactone, δ-dodecanolactone, and  γ-dodecanolactone.[4]   

Various fruits contain lactone aroma compounds.  Many lactones are present in 

pineapple.  The ones pertaining to this study are γ-hexanolactone, γ-octanolactone, δ-

octanolactone, γ-decanolactone, γ-dodecanolactone, and δ-dodecanolactone.[1, 11]  γ-

Octanolactone is found in the essence oil of oranges (from orange juice concentrate).[2] 

As stated earlier, some aroma compounds are extracted during the preparation or 

maturation process for food or beverage.  Whiskey lactone, as the name implies, is found 

in whiskey due to extraction from the whiskey barrels.[7]  Among other functions, 

charring the inside of the oak barrels for aging whiskey increases availability of certain 

oak compounds that are extracted by the alcohol.  One such compound is whiskey 
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lactone.[7]  Whiskey lactone has a sweet woody aroma at low concentrations and a sweet 

coconut aroma at high concentrations.[7]  In addition to whiskey lactone, American 

Bourbon whiskey also contains γ-nonalactone, δ-nonalactone, γ-decalactone, and γ-

dodecalactone.[7]  Chinese rice wine also contains lactones.  Those which are relevant to 

this study include γ-hexanolactone, γ-nonanolactone, and γ-decanolactone.[8]  Likewise, 

pineapple wine contains γ-nonanolactone.[11]  γ-Nonanolactone, γ-decanolactone, and δ-

decalactone have been reported to be present in some Sauvignon blanc and Merlot wine 

samples as well.[40]  γ-Nonanolactone is also one of the key odorants of Tinta Negra 

Mole grapes, which account for 85-90% of Madeira wines produced.[9] 

 

TABLE 1-1 

Aroma profiles of lactone compounds used in this work. 

 

Compound CAS-registry 

no 

Odor Reference 

γ-Hexanolactone 695-06-7 sweet, peach [8] 

γ-Octanolactone 104-50-7 fatty, herbal, caramel, coconut [2, 5] 

δ-Octanolactone 698-76-0 coconut-like [41] 

γ-Nonanolactone 104-61-0 coconut, cream, peach, 

strawberry 

[7-9, 11] 

γ-Decanolactone 706-14-9 peach, fruity [3, 4, 7, 8] 

γ-Undecanolactone 104-67-6 peach, coconut-like [3, 41] 

δ-Undecanolactone 710-04-3 sweet, milky [42] 

γ-Dodecanolactone 2305-05-7 peach, creamy, fruity [3, 4, 7] 

δ-Dodecanolactone 713-95-1 peach-like, sweet, flowery [43] 

cis-Whiskey Lactone  55013-32-6 wood, coconut [7] 

trans-Whiskey Lactone 39638-67-0 coconut, stale [7] 

Menthalactone isomers 13341-72-5 coconut, creamy, spearmint, 

sweet, tobacco 

[44] 

Nepetalactone isomers 490-10-8 citronella [45] 

 

As mentioned in section 1.2.1 the lactone standards used in this study are chiral.  

For at least some lactones both enantiomers can be found in nature.  Although the 

enantiomers are mirror images of one another, they may possess different odor 

characteristics and are present in different foods.  In the case of γ-decanolactone the S-
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enantiomer is found in mango, while the R-enantiomer is found in many fruits- especially 

peaches.[6] 

In other instances, different diastereomers are present in the same compound.  

One of the target analytes in this study is menthalactone, a mixture of 5,6,7,7a-

tetrahydro-3,6-dimethyl-2(4H)-benzofuranone diastereomers.  It originates from 

peppermint leaves among other sources and finds use as a flavorant, in cosmetics and, as 

stated earlier, has undergone phase I, II, and III clinical trials for use as an analgesic.[19]   

Although lactones are abundant in nature, there has also been some interest in 

preparing them synthetically.  Several different ways have been developed.  In 1899 the 

Baeyer-Villager reaction was first used to oxidize menthone and carvomenthone to their 

corresponding lactones with peracids. [23, 46]  More recent developments have allowed 

the use of aqueous hydrogen peroxide as the oxidizer in the presence of organometallic 

catalysts.[46]  Besides natural extraction, menthalactone can be prepared synthetically 

from (+)-menthofuran.  In the United States, menthalactone production is on large 

scale.[47] 

Current research in lactone synthesis seems to be for the purpose of pest control 

chemicals.[39]  Several lactones have shown promise for use as insect repellants.  Both δ-

octanolactone and δ-nonanolactone have been proven effective against tsetse flies that 

plague waterbuck.[48]  The naturally occurring nepetalactone diastereomers have also 

shown promise as insect repellant against Aedes aegypti (yellow fever mosquito)[49] and 

Anopheles gambiae (Afro-tropical pathogen vector mosquitoes)[50].      

The major active constituent of catnip oil, (4aS,7S,7aR)-nepetalactone, has been 

studied by several chemists over the years and was isolated by steam distillation.  Nepeta 
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species that are known to contain nepetalactones have been used both as folk medicine 

for nervous, respiratory, and gastrointestinal diseases as well as traditional medicine for 

diuretic, anti-asthmatic, tonic, sedative, and others.[51]  Essential oils from N. Persica, 

which contain (4aS,7S,7aR)-nepetalactone and (4aS,7S,7aS)-nepetalactone have also 

shown antibacterial properties against E. coli, P. aeruginosa, S. aureus, S. typhi, and E. 

faecalis.[51] 
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FIGURE  1-4.  Essential oils from N. Persica can contain both (4aS,7S,7aR)- nepetalactone, 1, 

and (4aS,7S,7aS)-nepetalactone, 2. 

 

 1.3.2. Aldehyde Aroma Compounds 

 Aldehydes of the variety studied can be found in many types of foods and 

beverages commonly consumed.  They are of interest to food scientists because they are 

known to be aroma compounds and often possess pleasant odors.  The aroma profiles of 

the aldehyde aroma compounds utilized for this study are presented in Table 1-2.  

Hexanal is among the few volatile chemicals responsible for the aroma of butter.[3]  Also 

found in butter oil are trans, trans-2,4-decadienal which provides a fatty[3, 7] or green 

note[2] and trans-2-nonenal which is described by flavorists as tasting like cardboard[3] 

or having a green note[7]. 

1 2 
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Alcoholic beverages also include aldehydes.  American whiskeys contain many of 

the aldehydes used in this study.  These include nonanal, trans-2-nonenal, trans, cis-2,6-

nonadienal, trans, trans-2,4-decadienal, and trans-cinnamaldehyde.[7]   Chinese rice 

wine contains hexanal, benzaldehyde and cinnamaldehyde.[8]  

 

TABLE 1-2 

Odors of aldehyde compounds in this study 

 

Compound CAS-registry 

no 

Odor Reference 

Hexanal 66-25-1 green, cut grass [2, 4, 8] 

trans-2-Hexenal 6728-26-3 green, cut grass [4] 

Benzaldehyde 100-52-7 almond, bitter, cherry [8, 9] 

Octanal 124-13-0 citrus, lemon, green, soapy [2, 4, 43] 

2,6-Dimethyl-5-heptenal 106-72-9 Green, sweet, oily, melon [52] 

Nonanal 124-19-6 soapy, sweet, melon [2, 7] 

Tolualdehyde 104-87-0 fruity, cherry, phenolic [44] 

trans, cis-2,6-Nonadienal 17587-33-6 green [7] 

trans-2-Nonenal 18829-56-6 green, cardboard [3, 7, 43] 

trans-4-Decenal 65405-70-1 fresh, citrus, orange, madarin, 

tangerine, green, fatty 

[53] 

Decanal 112-31-2 lemon, fatty [2] 

trans-Cinnamaldehyde 14371-10-9 fruity [7] 

trans, trans-2,4-Decadienal 25152-84-5 fatty, solvent, green [2-4, 7, 43] 

2-Butyl-2-octenal 13019-16-4 fruity, pineapple, green, 

sweet, ripe, juicy 

[54] 

Lauric aldehyde 112-54-9 soapy, waxy, citrus, orange, 

madarin 

[53] 

Cyclamen aldehyde 103-95-7 floral, fresh, rhubarb, musty, 

green 

[53] 

 

 Common fruits are also known to contain various aldehydes.  For instance, 

pineapple contains hexanal, trans-2-hexenal, nonanal, decanal, and benzaldehyde.[1]  

Aldehydes are major contributors to the aroma of orange essence oil. The relevant 

aldehydes include hexanal, octanal, nonanal, trans-2-octenal, decanal, and trans, trans-

2,4-decadienal.  Of these, octanal and decanal are among the most aroma active 

compounds.[2]   
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 Trans-2-hexenal is one of the key components responsible for the green aroma of 

virgin olive oil.[4]  Other aldehydes from this study that are found in olive oil include 

hexanal, octanal, nonanal, benzaldehyde, trans-2-nonenal, trans-2-decenal, and trans, 

trans-2,4-decadienal.[4]   

 Hexanal is formed naturally by aldehyde-lyase.[4]  Naturally occurring trans-2-

hexenal comes from the enzymatic degradation of linolenic acid.[4] 

 Aldehydes have also seen use as fragrances in perfumes and colognes.  Many of 

the aldehydes studied in this work were of natural origin and in recent years have been of 

interest to consumers in the form of essential oils.  Essential oils are thought by some to 

be healthy sources of natural remedies. 

 

 1.3.3. Profens and Benzoic Acids 

 NSAIDs (nonsteroidal anti-inflammatory drugs) are some of the earliest and most 

widely prescribed drugs.  Uses for NSAIDs include pain relief, anti-inflammatory, fever 

reduction, and some can be used as blood thinners.[14]  The use of benzoic acids, in 

particular o-hydroxybenzoic acids, to relieve pain dates back to the ancient Egyptians.  

Bark and leaves from willow trees were used for stiff and painful joints.  Salicin, seen in 

Figure 1-4, is a precursor to aspirin and was first isolated from willow tree bark in 1828 

by Johann Buchner.  It was not until 1857 that acetylsalicylic acid (aspirin) was first 

synthesized by Hammond Kolbe.  In 1899 aspirin was patented and marketed by 

Bayer.[14] 
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FIGURE 1-4.  Salicin isolated from willow tree bark contains a glucose ether linkage that can be 

hydrolyzed to give salicyl alcohol.  The salicyl alcohol is then oxidized to salicylic acid. 

  

By 1939 a synthesis for a 2-arylpropionic acid (α-orthomethoxyphenyl-propionic 

acid) was described.  The pathway was rather lengthy and involved converting a benzyl 

alcohol to the ethyl ester, then reacting with ethyl oxalate, evolution of carbon monoxide 

giving the rearrangement to the diethyl ester, addition of methyl iodide to methylate at 

the benzylic carbon, and finally hydrolysis of the diesters and decarboxylation of the 

diacid to give the monoacid.[55]  At that time its biological activity was unknown.  

 By 1951, there were at least two synthetic routes to naproxen (β-(6-methoxy-1-

naphthoyl)-propionic acid), one by reacting a napthalene cadmium reagent with the 

propionyl chloride and the other was an inverse Grignard reaction using the Grignard 

reagent generated from 1-bromo-6-methoxynapthalene and succinic anhydride. [56]  

 In 1959, John Nicholson and Stuart Adams first synthesized ibuprofen and it was 

marketed in 1969.[14]  It wasn’t until 1971 that the mechanism of aspirin-like 

compounds on inhibition of prostaglandin synthesis was explained by Sir John Robert 

Vane.  In 1982 he shared the Nobel Prize in Physiology or Medicine for this 

discovery.[14] 
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In 1973, the absolute stereochemistry of (+)-naproxen was determined to be (+)-

(S)-naproxen by degradation to  the previously characterized (-)-(S)-2-phenyl-1-

propanol.[57] 

Some 2-arylpropionic acids such as Fenoprofen, naproxen, and ibuprofen belong 

to a class of compounds known as nonsteroidal anti-inflammatory drugs (NSAIDs).[14]  

The mechanism of these profens is thought to involve binding to the cyclooxygenase-2 

(COX-2) receptor.[12]  The specificity and mechanism of action of profens on COX-2 is 

different than other classes of NSAIDs such as fenamates or salicylates.[14, 58]  This 

binding inhibits COX-2 from oxidizing arachidonic acid, 2-arachadonoylglycerol, and 

arachadonoylethanolamide into various prostagladins.  Degradation of the prostagladins 

into metabolites are responsible for the pain and inflammation.[12] 

 Fenoprofen was developed by Eli Lilly and is sold commercially as the calcium 

dihydrate form under the name Nalfon.[25, 30]  Fenoprofen is currently marketed to treat 

osteoarthritis and rheumatoid arthritis.[28]  Like ibuprofen and naproxen, fenoprofen has 

only one stereocenter and it is found on the propionic acid moiety.  Also like ibuprofen 

and naproxen, the active enantiomer for COX inhibition is the (S)-(+) isomer.[13, 25, 26]  

In the case of Fenoprofen, the (S)-(+) enantiomer shows 35 times more activity than (R)-

(-) in COX inhibition.[25]   The more common profens, naproxen and ibuprofen, were 

used as standards in the study as the vaporization enthalpies of these materials have 

previously been reported.[22] 
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1.3.4. Alcohol Aroma Compounds 

Patchouli oil is an essential oil containing patchouli alcohol as well as a whole 

host of sesquiterpenes.  The oil is described as having a powerful ambergris-type 

odor.[59]  By 1925, the United States was already importing more than 25,000 pounds of 

patchouli oil.[60] 

Patchouli oil is traditionally obtained by steam distillation of Pogostemon cablin 

leaves.[20]  The conversion of α-patchoulene to patchouli alcohol was reported in 

1961.[37]  However, in 1964, the authors realized their 1961 conversion results were 

interpreted incorrectly.  At this time they also gave a total synthesis of patchouli alcohol 

starting from (+)-camphor.  The lengthy process took approximately 40 steps.[59] 

Patchouli oil has many uses.  One such use is as a natural insect repellant.  It has 

been demonstrated to effectively repel termites and moths.  Furthermore, it is actually 

toxic to termites causing tissue destruction inside the exoskeleton.[20]  Patchouli oil has 

also been used in the perfume industry [20, 21] and to flavor toothpaste [21]. 

Patchouli oil has also been known to have pharmacological uses.  It was 

historically used as a cold remedy in Asia [20] and has also shown anti-inflammatory, 

anti-allergic, immunomodulatory, and antimicrobial properties[21].  Patchouli alcohol, 

the main constituent of patchouli oil, has been studied in the enhancement of cognitive 

abilities and as a neuroprotective agent as well as an anti-inflammatory in both in vitro 

and in vivo animal studies.[21]  Patchouli alcohol was also the starting material for the 

first total synthesis of Taxol (generic paclitaxel)[61, 62], which is a potent anti-tumor 

drug.  Taxol is found in nature in the pacific yew tree.  However, a synthetic method was 
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desired due to the scale necessary for production.  It took approximately 12,000 trees to 

yield 2.5kg of Taxol.[63]   

The Holton group reported the synthesis of Taxusin in 1988 from patchoulene 

oxide, which is derived from patchouli alcohol.[63]  Then in 1994, the Holton group 

published usage of Taxusin as starting material for the total synthesis of Taxol, which is a 

total of 47 steps when starting from patchoulene oxide.[61, 62]  The structure of 

patchouli alcohol can be seen in Figure 1-5. 
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FIGURE 1-5.  Patchouli alcohol was used as the starting material in the first total synthesis of the 

anti-tumor drug, Taxol. 
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Chapter 2: Experimental Methods 

2.1. Compounds 

2.1.1. Lactone Compounds 

Two lactone studies were conducted.  In the first study, the target analyte was 

catnip oil (nepetalactone).  Although nepetalactone has three chiral centers, there are only 

two naturally occurring diastereomers found in Nepata cataria.  These are (4aS,7S,7aR)-

nepetalactone (major), and (4aS,7S,7aS)-nepetalactone (minor).  A comparison of the 

structures can be seen in Figure 2-1. [1]  
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FIGURE  2-1. Structures of the major 1 and minor 2 diasteriomers of (4aS,7S,7aR) and 

(4aS,7S,7aS)-nepetalactone isolated from Nepata catonia, respectively. 

 

The analytes of interest for the second study were whiskey lactone and 

menthalactone.  The major diastereomers for whiskey lactone found in nature are cis 

(3S,4S)-4-methyl--octalactone (major) and trans(3S,4R)-4-methyl--octalactone 

(minor).  The major diastereomers of menthalactone found in nature are (-)-mintlactone 

((-)-(6R,7aR)- 5,6,7,7a-tetrahydro-3,6-dimethyl- 2(4H)-benzofuranone) and (+)-

isomintlactone ((+)-(6R,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone).  

All possible whiskey lactone and menthalactone diastereomers are shown in Figure 2-2. 

1 2 
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FIGURE  2-2. Top to bottom, left to right: Whiskey lactone major components [rel-(4R,5R)-5-

butyldihydro-4-methyl-2(3H)-furanone] 1a + 1b; Whiskey lactone minor components [rel-

(4R,5S)-5-butyldihydro-4-methyl-2(3H)-furanone] 2a + 2b; Mintlactone major enantiomer [(-)-

(6R,7aR)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone] 3a; Mintlactone minor 

enantiomer [(+)-(6S,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone] 3b; 

Isomintlactone components (6R,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone 4a 

and (6R,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone 4b. 
 

 All lactone standards were purchased from commercial sources.  The origin and 

purity of the standards are reported in Table 2-1.  Most of the compounds were used 

unaltered.  The catnip oil was isolated from a natural source and required removal of the 
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carrier which was tentatively identified by infrared spectroscopy as an alcohol or glycol.  

For catnip oil a few milliliters of oil was added to a few milliliters of methylene chloride.  

An emulsion formed and a few milliliters of deionized water were added to extract the 

carrier.  The solution was allowed to phase separate and the water layer was discarded.  

This was repeated two more times.  For storage, calcium chloride was added to the 

methylene chloride extract to dry the organic phase and prevent hydrolysis of the 

lactones.[1]   

 

TABLE 2-1 

Origin and purity of lactone compounds for this work. 

 

Compound CAS-

registry no 

Supplier Mass Fraction 

Purity 

(Supplier) 

Mass Fraction 

Purity (GC) 

γ-Hexanolactone 695-06-7 Bedoukian >0.98 0.993 

γ-Octanolactone 104-50-7 Bedoukian >0.97 0.996 

δ-Octanolactone 698-76-0 Bedoukian 0.98
a
 0.989

a,b 

γ-Nonanolactone 104-61-0 Bedoukian 0.98 0.982 

γ-Decanolactone 706-14-9 Bedoukian 0.97 0.984 

γ-Undecanolactone 104-67-6 SAFC >0.98 0.984 

δ-Undecanolactone 710-04-3 Bedoukian 0.98
a
 0.948

a,c 

γ-Dodecanolactone 2305-05-7 Bedoukian 0.97 0.930 

δ-Dodecanolactone 713-95-1 Bedoukian 0.98
a
 0.983

a,d 

Whiskey Lactone isomers 39212-23-2 Aldrich ≥0.98 0.995
e
 

Menthalactone isomers 13341-72-5 Aldrich ≥0.99 0.999
f
 

Nepetalactone isomers 490-10-8 Dr. Adorable, 

Inc. 

e-Bay  

a
 Sum of isomers [2] 

b
 Two isomers: 0.977, 0.023; the minor isomer separated, but was not identified. 

c
 Two isomers: 0.928, 0.072; the minor isomer separated, but was not identified. 

d
 Two isomers: 0.985, 0.015; the minor isomer separated, but was not identified. 

e
 Trans-to-cis ratio: 0.516 : 0.484.  Explanation in section 2.2.2.2.  Purity is the sum of 

the isomers. 
f
 (-)-menthalactone to (+)-menthalactone ratio: 93.3 : 6.7.  Explanation in sections 

2.2.2.3.  Purity is the sum of diastereomers. 

 

 

The whiskey lactone standard purchased from Sigma-Aldrich had a stated purity 

of ≥0.98 as a mixture of isomers and the menthalactone standard from the same company 



35 

 

had a stated purity of ≥0.99 as a mixture of isomers.  The manufacturer, however, doesn’t 

list any specifications for the ratios of these isomers or even identify which stereoisomer 

is present in the greatest proportion.[3]  The identification of these stereoisomers is 

discussed in section 2.2.2.2 and 2.2.2.3 respectively. 

 

2.1.2. Aldehyde Compounds 

 The compounds used in the aldehyde study were purchased from commercial 

sources.  Although some were of synthetic origin, it should be noted that several of the 

aldehydes used are of natural origin.  All were GRAS (generally recognized as safe) 

chemicals that could be used in flavors.  Figure 2-3 shows the structural variety of 

aliphatic aldehydes used in this work and Figure 2-4 shows examples of aromatic 

aldehydes that were used in this work.   
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FIGURE 2-3. A sampling of aliphatic aldehydes used for aldehyde study: 2,6-dimethyl-5-

heptenal 1; trans,trans-2,4-decadienal 2; trans-2-nonenal 3; lauric aldehyde (dodecanal) 4. 

 

The ease with which aldehydes may be oxidized by molecular oxygen 

necessitated special handling.  For this study, the samples were stored in the freezer, in 

the dark, and used unaltered in the analysis.  The origin and purity of the standard and 
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target compounds may be seen in Table 2-2.  Several compounds appeared to have lower 

purity than stated by their manufacturers.  This could be due to sample degradation 

during storage.  Although the samples were stored in the freezer and in the dark, they 

weren’t stored under inert gas and some were older samples.  The problem seems to be 

most evident in the straight chain saturated lower molecular weight aldehydes, regardless 

of manufacturer.  However, a couple of the unsaturated aldehydes have the same 

problem, namely trans-2-hexenal and trans, trans-2,4-decadienal.   
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FIGURE 2-4.  Select aromatic aldehydes used for aldehyde study: benzaldehyde, 1; p-

tolualdehyde (4-methylbenzaldehyde), 2; trans-cinnamaldehyde (trans-3-phenylprop-2-enal), 3; 

and cyclamen aldehyde (2-methyl-3-(p-isopropylphenyl)proprionaldehyde), 4. 

 

A few of the compounds were sold as a mixture of isomers.  Those that separated 

on the gas chromatography column are noted in Table 2-2.  The 2,6-dimethyl-5-heptenal 

used was of natural origin and contained unidentified isomers that separated.  The trans, 

cis-2,6-nonadienal purchased is of synthetic origin with a minor isomer that separated.  

The manufacturer’s specifications indicate the isomer is trans, trans in 0.1-7.0% 
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abundance.   The trans-2-nonenal purchased is also of synthetic origin with a minor 

isomer that separated.  The manufacturer identified this as the cis isomer in 0.1-3.5% 

abundance.  The analysis was accomplished with two standard cocktails as outlined in 

section 2.2.3. 

 

TABLE 2-2 

Origin and purity of aldehyde compounds for this work. 

 

Compound CAS-registry 

no 

Supplier Mass 

Fraction 

Purity 

(Supplier) 

Mass 

Fraction 

Purity 

(GC) 

Hexanal 66-25-1 Advanced 

Biotech 

≥ 0.95 0.899 

trans-2-Hexenal 6728-26-3 Bedoukian ≥ 0.98 0.858 

Benzaldehyde 100-52-7 SAFC ≥ 0.98 0.978 

Octanal 124-13-0 Sigma Aldrich ≥ 0.92 0.727 

2,6-Dimethyl-5-heptenal 106-72-9 Advanced 

Biotech 

≥ 0.90
a
 0.833

a 

Nonanal 124-19-6 Advanced 

Biotech 

≥ 0.95 0.837 

Tolualdehyde 104-87-0 Sigma Aldrich ≥ 0.97 0.989 

trans, cis-2,6-Nonadienal 557-48-2 Bedoukian ≥ 0.96
b
 0.946

b
 

trans-2-Nonenal 18829-56-6 Bedoukian ≥ 0.97
c 

0.990
c
 

trans-4-Decenal 65405-70-1 Bedoukian ≥ 0.95 0.993 

Decanal 112-31-2 SAFC ≥ 0.95 0.857 

trans-Cinnamaldehyde 14371-10-9 SAFC ≥ 0.99 0.993 

trans, trans-2,4-Decadienal 25152-84-5 Sigma Aldrich ≥ 0.89 0.769 

2-Butyl-2-octenal 13019-16-4 Alfrebro -------- 0.932 

Lauric aldehyde 112-54-9 Sigma Aldrich ≥ 0.95 1.000 

Cyclamen aldehyde 103-95-7 SAFC ≥ 0.90 0.984 
a
 Sum of isomers: Isomers separated on column, but they were not identified. 

b 
Sum of isomers: 0.0344 and 0.9118.  Isomers separated on column, but they were not identified. 

c
 Sum of isomers: 0.0707 and 0.9192.  Isomers separated on column, but they were not identified. 

 

2.1.3. Profens and Benzoic Acid Compounds 

Previously, standard mixtures of alkylbenzoic acids and alkoxybenzoic acids had 

been used to determine vaporization enthalpies of S (+)-ibuprofen and S (+)-naproxen 

and both classes of standards seemed to correlate well.[4]  However, subsequent work 
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has suggested that mixed standards may not be appropriate for evaluating the vapor 

pressure of the profens.[5]  The liquid crystal nature of several compounds discussed 

earlier raises the question of whether they can be used as vapor pressure standards- 

considering the phase transition enthalpies involved from crystalline solid to liquid 

crystal phase(s), isotropic liquid and finally to gas phase.  

Figure 2-5 shows the diversity of the structures used for the Fenoprofen study. 

Generally, the profens and benzoic acid derivatives were used as supplied in the free acid 

form.  However, R,S  Fenoprofen as received was the calcium salt hydrate.  It was 

converted to the free acid, extracted and washed as follows.  To a few milligrams of 

Fenoprofen were added 3 drops of 1N hydrochloric acid to convert the Fenoprofen 

calcium salt to the free acid.  The Fenoprofen free acid precipitated from the solution 

forming a waxy resin.  The resin was dissolved in a minimal amount of methylene 

chloride.  The organic layer was allowed to phase separate from the aqueous layer and the 

organic layer was collected.  This extract was used as the Fenoprofen reference and was 

subsequently mixed into the standard cocktail with the remaining standards. 
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FIGURE 2-5. Some arylpropionic acid and benzoic acid derivatives utilized in the Fenoprofen 

study.  Fenoprofen ((±)-2-(3-phenoxyphenyl)propionic acid) 1; s-Naproxen ((s)-(+)-2-(6-

methoxy-2-naphthyl)propionic acid) 2; (s)-Ibuprofen ((s)-(+)-2-(4-isobutylphenyl)propionic acid) 

3; biphenyl-4-carboxylic acid 4. 

 

Figure 2-6 compares the absolute stereoconfigurations of the three analgesics used in the 

profen study. 
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FIGURE 2-6. Top: R,S Fenoprofen; bottom: S ibuprofen, S naproxen. 
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The compounds used in the Fenoprofen study were purchased from commercial 

sources.  The origin and purities of the compounds can be seen in Table 2-3.   

 

TABLE 2-3 

Origin and purity of alkyl- and alkoxybenzoic acid compounds originally screened for the Fenoprofen 

study. 

 

Compound CAS-registry 

no 

Supplier Mass Fraction 

Purity (Supplier) 

4-Ethylbenzoic acid 619-64-7 Sigma Aldrich ≥0.99 

4-Methoxybenzoic acid 100-09-4 Sigma Aldrich ≥0.99 

4-Ethoxybenzoic acid 619-86-3 Sigma Aldrich ≥0.99 

(S)-Ibuprofen 51146-56-6 Sigma Aldrich ≥0.99 

4-Hexylbenzoic acid 21643-38-9 Sigma Aldrich ≥0.99 

4-Propoxybenzoic acid 5438-19-7 Sigma Aldrich ≥0.98 

4-Hexyloxybenzoic acid 1142-39-8 Alfa Aesar ≥0.98 

Biphenyl-4-carboxylic acid 92-92-2 Sigma Aldrich ≥0.95 

4-Heptyloxybenzoic acid 15872-42-1 Sigma Aldrich ≥0.98 

4-Octylbenzoic acid 3575-31-3 Sigma Aldrich ≥0.99 

Flurbiprofen 5104-49-4 Sigma-Aldrich ≥0.99 

(R,S)-Fenoprofen·n·H2O; Ca+2 salt 53746-45-5 Sigma-Aldrich ≥0.97 

4-Octyloxybenzoic acid 2493-84-7 Sigma Aldrich ≥0.98 

(S)-(+)-Naproxen 22204-53-1 Sigma Aldrich ≥0.98 

 

   2.1.4. Alcohol Aroma Compounds 

The compounds used in the alcohol study were purchased from commercial 

sources.  All of the compounds were used without alteration.  The origin and purities of 

the compounds can be seen in Table 2-4.   

 

TABLE 2-4 

Origin and purity of alcohol aroma compounds for the patchouli oil study. 

 

Compound CAS-

registry no 

Supplier Mass Fraction 

Purity 

(Supplier) 

Mass Fraction 

Purity (GC) 

1-Adamantanol 768-95-6 Aldrich 0.99 1.00 

1-Undecanol 112-42-5 Aldrich 0.99 0.96 

2-Tetradecanol 4706-81-4 Aldrich 0.98 1.00 

Patchouli Oil ------------ bulkapothecary.com ------------ 0.36 

1-Pentadecanol 629-76-5 Aldrich 0.99 0.99 

1-Hexadecanol 36653-82-4 MCB ------------ 0.98 
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The patchouli oil was a natural product that was obtained from Bulk 

Apothecary.com.  The origin of the oil was from Indonesia.  The components of the 

patchouli oil have previously been reported by Restek Corporation who also reported the 

gas chromatograph of the oil on their website. The identities of the components in 

patchouli oil were confirmed by GC-MS and they are described in section 2.2.5.1.   

Patchouli alcohol was found to be one of the major components of patchouli oil.  

Conveniently, it eluted last on the GC column used, so extraction of the patchouli alcohol 

from the mixture was not necessary.  Instead, patchouli oil was mixed together with the 

alcohols listed in Table 2-4.  The standards bracketed patchouli alcohol without 

interference from the nine other major components in patchouli oil.  

Figure 2-6 shows the main structural differences in the compounds used in the 

alcohol study.  Most compounds were primary alcohols, one was a secondary, and the 

target compound and 1-adamantanol are tertiary compounds. 

 

FIGURE  2-6.  Compounds used in the alcohol study included primary alcohols such as 1-

undecanol 1, a tertiary alcohol, 1-adamantanol 2, a secondary alcohol, 2-tetradecanol 3, and the 

target compound patchouli alcohol 4. 
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2.2. Instrumentation and Methods 

 2.2.1. General Methods 

In general each study followed the same basic methodology.  Each compound was 

diluted individually in an appropriate solvent.  The solvent chosen for each group of 

compounds was chosen for solubility and volatility purposes.  In each case, the solvent 

also functioned as a non-retained standard.    Each diluted compound was injected to 

establish relative retention times at a convenient oven temperature for identification.   

Additionally, the single compound runs were used to determine compound purity as a 

way of comparison to the manufacturer’s stated values.   

After establishing a relative retention time for each compound, the standards and 

target compounds were combined into a cocktail and analyzed by gas chromatography at 

various oven temperatures in order to identify an optimal T = 30 K temperature range 

where the compounds would separate in a reasonable amount of time.  Seven isothermal 

runs at T = 5 K intervals were run continuously to prevent instrumental drift.  Oven 

temperatures were recorded with external digital thermometers purchased from Fluke or 

Vernier (GoLink!).  The temperature was controlled to ±0.1 K by the gas chromatograph. 

All gas chromatographic measurements were made on one of three instruments.  

Each instrument was a Hewlett Packard 5890 of various vintages.  All instruments used 

flame ionization detectors (FID), helium for the carrier gas, and constant head pressures 

from 5-15psi depending on column length and desired retention times.  A split ratio of 

approximately 100:1 was used for all measurements.  Columns were chosen according to 

the class of compounds and the ability to separate those with similar boiling points.  

Column lengths used ranged from 10 meters to 30 meters.  The exact columns and 
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conditions used for lactones are described in section 2.2.2, the conditions for aldehydes 

are described in section 2.2.3, the conditions for profens are described in section 2.2.4., 

and the conditions for alcohols are described in 2.2.5. 

 

2.2.2. Methods for Lactone Compounds  

For the nepetalacone study, each compound was diluted in methylene chloride 

and injected to establish retention times for each compound at the desired oven 

temperature for later identification when performing the official standard cocktail runs.  

Where necessary, compound purity assessment was taken from the single run 

chromatographs.  In many cases, however, the lactone standards purity assessments were 

taken from previous papers published in the Chickos lab using the same vials of each 

compound.  The results of this assessment can be seen in Table 2-1.  The column used 

was a Supelco 15 m, 0.32 mm inner diameter, 1.0 μm film thickness SPB-5 capillary 

column. Seven isothermal runs were performed with an oven temperature range of T = 30 

K at T = 5 K intervals from 398 – 428 K.[1] 

For the whiskey lactone/menthalactone study, each compound was diluted in 

acetone and injected to establish retention times for each compound at the desired oven 

temperature for later identification.  A Supelco SPB-5 15 m column with 0.32 mm inner 

diameter and 1.0 μm film thickness was also used for this analysis at  a constant head 

pressure of 7.0 psi.  The injector and detector were set to T = 473.15 K.  Seven isothermal 

runs were performed with an oven temperature range of T = 30 K at T = 5 K intervals 

from 404 – 434 K.[3] 
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    2.2.2.1. Identification of Nepetalactone Diastereomers 

 The nepetalactone diastereomers were identified by GC-MS and their structures 

were assigned based on their relative abundance as previously reported.[6]  The 

instrument used was a Hewlett Packard GC/MS System Model 5698A.  The GC portion 

was fitted with a Supelco SLBTM-5 MS capillary column (30 m x 0.25 mm; 0.5 μm film 

thickness).  Helium was used for the carrier gas at an oven temperature of 298K.  The 

mass spectrum was obtained by electron impact (EI) at 70 eV.   Shafaghat and Oji noted 

that the nepetalactone diastereomers have a slightly longer retention time than 

dodecane.[7]  Therefore, a small amount of dodecane was spiked into the catnip extract 

described in section 2.1.1.  The dodecane peak was used as a reference on the 

chromatogram.  Peaks that eluted after dodecane were analyzed by MS.  Two of them 

were found to be the nepetalactones by comparing their mass spectra to the NIST library.  

The comparisons may be seen in section 3.1.1.  Since the NIST library doesn’t specify 

stereochemistry, the relative abundancies on the gas chromatograms were compared to 

the published ratios for structural identification.[1, 6]  Caryophyllene appeared to be the 

only other material to elute after the nepetalactones. 

  

2.2.2.2. Identification of cis/trans Whiskey Lactone Diastereomers 

 The whiskey lactone diastereomers present in the standard sample from Sigma-

Aldrich were identified by GC peak area and relative retention order as compared to 

results published by Lahne.  The referenced results indicated a slight excess (52.2%) of 

the trans isomer which eluted first on a DB-5 column with similar composition to the one 

used for this work.[8]  The peak areas calculated for this work consist of the averages of 
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fourteen runs and can be seen in the Appendix Tables S3A and S3B.  This work finds the 

first eluting peak to have a slight excess of (51.6% ± 0.5%, average of 14 runs), which is 

in good agreement with Lahne.[3] 

 

2.2.2.3. Identification of cis/trans Menthalactone Diastereomers 

 Identification of the menthalactone diastereomers was accomplished by 

comparing GC peak areas to abundances found in literature.  The natural abundance of 

mint lactone is 10:1 in favor of the (-)-mintlactone as compared to (+)-isomintlactone in 

peppermint oil.  One synthetic pathway shows an abundance of 96:4, again in favor of    

(-)-mintlactone.[9]  The 96:4 ratio compares favorably to the 93.3:6.7 average ratio 

observed in this study.[3]  This data is presented in Appendix Tables S3C and S3D.   

The rotational data for (-)-mintlactone and (+)-isomintlactone found in literature 

were also used to verify the correct assignment.  (-)-mintlactone has a rotation of  [𝛼]𝐷
20= 

-51.8° and (+)-isomintlactone has a rotation of   [𝛼]𝐷
25= +76.9°.[9]  The sample from 

Sigma-Aldrich was measured to be  [𝛼]𝐷
20= -35°, again suggesting that (-)-mintlactone is 

in excess.  Since the experimental conditions of the rotation measurements of both the 

Aldrich sample and the literature value are unknown, the optical purity of the Sigma-

Aldrich standard could not be determined with certainty.  In light of this, the enthalpies of 

vaporization and vapor pressures calculated for (-)-mintlactone and (+)-isomintlactone 

are expressed as the sums of their respective racemic mixtures.[3]   
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2.2.3. Methods for Aldehyde Compounds 

For the aldehyde study, each compound was dissolved in methylene chloride and 

injected to establish retention times for each compound at the desired oven temperature.  

The results of this assessment can be seen in Table 2-2.  The aldehyde runs were 

accomplished with two sets of two runs, utilizing data from the first set of runs to 

establish standard values for 2,6-dimethyl-5-heptenal.  Then 2,6-dimethyl-5-heptenal was 

used as a standard in the second set of runs.  An explanation of standards and target 

analytes for the aldehyde runs can be found in Table 2-4.  All of the correlation gas 

chromatography (CGC) measurements were taken at a constant head pressure of 11psi on 

a J&W Scientific DB-5 30 m column with 0.53mm ID and 1.5μm film thickness at an 

oven temperature range of 358 – 388 K for cocktail 1 and 398 – 428 K for cocktail 2 as 

seen in Table 2-5. 

 

TABLE 2-5 

A summary of the compounds in each standard cocktail in order of elution on the J&W Scientific DB-5 

column.  Dichloromethane was used as the solvent. 

 

Compound Standard Cocktail 1 

(T= 358 K to 388 K) 

Standard Cocktail 2 

(T= 398 K to 428 K) 

Hexanal Standard Standard 

trans-2-Hexenal Target Analyte ----------- 

Octanal Standard ----------- 

2,6-Dimethyl-5-heptenal Target Analyte Standard 

Nonanal Standard ----------- 

trans, cis-2,6-Nonadienal Target Analyte ----------- 

trans-2-Nonenal ----------- Target Analyte 

trans-4-Decenal Standard ----------- 

Decanal Standard Standard 

trans, trans-2,4-Decadienal ----------- Target Analyte 

2-Butyl-2-octenal ----------- Target Analyte 

Lauric aldehyde ----------- Target Analyte 
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2.2.4. Methods for Profen Compounds 

It proved to be difficult to find a solvent that would work for all of the profen 

compounds.  Namely, 4-biphenyl carboxylic acid was relatively insoluble in many 

solvents.  DMSO and THF were found to work for this compound and THF was chosen 

as the safer alternative.  Several of the other compounds were insoluble in THF, so a 

mixed solvent system was used.  Therefore, each compound was dissolved in a mixture 

of methylene chloride/tetrahydrofuran and injected to establish retention times for each 

compound.  Under these conditions methylene chloride and tetrahydrofuran co-elute and 

thus the retention time adjustments were still from a single peak.   

Some selected standards were not able to be easily separated from the others.  An 

example was flurbiprofen which did not separate from Fenoprofen.  In order to get 

adequate resolution, the standards were split into two separate cocktails.  Fenoprofen, for 

instance, could not be separated from 4-heptyloxybenzoic acid.  Furthermore, naproxen 

was not able to be separated from 4-octyloxybenzoic acid.  The standards that were 

eventually used in the calculation of vaporization enthalpy data are given in Table 2-6.   

Three different columns were tried on the profen compounds due to the difficulty 

in obtaining good peak shapes.  The first column tried was a 12m Supelco SPB-1 

0.22mm ID and 0.33μm film thickness at 5psi head pressure.  The SPB-1 column did not 

prove to give very reproducible peak shapes.  The peaks for the later eluting compounds 

were very broad, and as a result the retention times weren’t always consistent.  The 

second column was a 15m 0.25mm ID J&W FFAP column run at 10psi head pressure.  

The elution order of the compounds changed from one column to the next.  On the SPB-1 

column 4-ethoxybenzoic acid elutes before ibuprofen, however, on the FFAP column 
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ibuprofen elutes before 4-ethoxybenzoic acid.  Finally, the column that gave the best 

peak shapes was a 0.25mm inner diameter 30m DB-5MS at 11psi head pressure.  The 

DB-5MS column stationary phase composition is 5% phenyl, 95% dimethyl arylene 

siloxane.  The DB-5MS column afforded much sharper peaks and as a result it was 

possible to separate 4-octylbenzoic acid, Fenoprofen, and naproxen.  On the DB-5MS, 

seven isothermal runs were performed for each standard cocktail at an oven temperature 

range of 464 - 494 K for Standard Cocktails 1 &2, and 480 – 510 K for Standard Cocktail 

3.  The injector and detector temperature were set at 573 K for each run.  

TABLE 2-6 

A summary of the profen compounds in each standard cocktail in order of elution (at T = 480K) on the DB-

5MS column.  A mixture of dichloromethane and tetrahydrofuran was used as the solvent. 

Compound Standard Cocktail 1 

(T= 464 - 494 K) 

Standard Cocktail 2 

(T= 464 - 494 K) 

Standard Cocktail 3 

(T= 480 - 510 K) 

4-Ethylbenzoic acid ---------- ---------- Standard 

4-Methoxybenzoic acid Standard Standard Standard
a 

4-Ethoxybenzoic acid Standard Standard Standard
a 

(s)-Ibuprofen ---------- ---------- Target Analyte 

4-Propoxybenzoic acid Standard
a
 Standard

a
 ----------- 

4-Hexylbenzoic acid ---------- ---------- Standard 

α-Naphthaleneacetic acid ---------- ---------- Target Analyte
 a
 

4-Hexyloxybenzoic acid Standard Standard ----------- 

Biphenyl-4-carboxylic acid ---------- ---------- Standard 

4-Heptyloxybenzoic acid ----------- Standard ----------- 

4-Octylbenzoic acid ---------- ----------- Standard 

Fenoprofen Target Analyte ----------- Target Analyte 

4-Octyloxybenzoic acid Standard ----------- ----------- 

(s)-Naproxen ---------- Target Analyte Target Analyte 
a
This compound was in the standard cocktail, but the data has been omitted from calculations due 

to poor fit. 

 

2.2.5. Methods for Alcohol Compounds 

For the alcohol study, each compound was dissolved in methylene chloride and 

injected to establish retention times for each compound at the desired oven temperature.  

Compound purity assessment was taken from the single run chromatographs.  The results 

of this assessment can be seen in Table 2-4.  All of the correlation gas chromatography 
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(CGC) measurements were at a constant head pressure of 7.0psi.  The column was a 

Supelco 15 m, 0.32 mm inner diameter, 1.0 μm film thickness SPB-5 capillary column. 

Seven isothermal runs were performed at an oven temperature range of 419 - 449 K.   

  

2.2.5.1. Identification of Compounds Present in Patchouli Oil 

The compounds present in the patchouli oil sample were identified by GC-MS 

and their structures were assigned based on their mass spectra.  The instrument used was 

a Hewlett Packard GC/MS System Model 5698A.  The GC portion was fitted with a HP-

1 Ultra capillary column (12 m x 0.20 mm; 0.33 μm film thickness).  Helium was used 

for the carrier gas with an isothermal oven program at 413K.  The mass spectrum was 

obtained by electron impact (EI) at 50eV.   A lower than normal impact voltage was used 

to produce fewer fragments in an aging instrument.  This allowed better agreement with 

NIST library structures.  Positive identification of nine compounds was made in the 

GC/MS spectra.  The most predominant included patchouli alcohol, δ-guaiene, α-guaiene, 

seychellene, and α-patchoulene.  The compound identification results were compared to 

those that were published by Restek, which used a different column (Rtx-5; 10m 0.1mm 

ID, 0.1μm film thickness).  The work by Restek was performed with a temperature ramp 

of 30K/min.  Since the elution order is slightly different between the Rtx-5 column and 

the HP-1 Ultra column, the gas chromatogram peak areas were used to compare each 

compound to its counterpart on the other instrument.  The compound identifications from 

this work were found to be in good agreement with the ones published by Restek.  A 

summary of the compounds found in the patchouli oil sample is found in Section 3.4.1. 
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2.3. Calculations 

 2.3.1. Enthalpy of Vaporization 

 The calculations used for this study were adapted from those previously reported 

by Chickos.[10]  To measure the time each analyte spends on the column, the retention 

time of the non-retained reference was subtracted from the retention time of each analyte 

to give the adjusted retention time, ta.  The time each analyte spends on the column is 

inversely proportional to the analyte’s vapor pressure off the column.  The adjusted 

retention time, reference time, t0 = 60 s, and oven temperature, T, were then used to plot 

ln(t0/ta) vs 1/T for each analyte.  The resulting plots were linear with r
2
 > 0.99 in all cases.  

The actual r
2
 values for each plot can be found in the data tables of Chapter 3.  The slopes 

of those plots give rise to the following relationship seen in Eq (1), where ΔHtrn(Tm) is the 

enthalpy of transfer of the analyte from the column, at the mean temperature (Tm) of the T 

= 30K range to the gas phase.  R is the gas law constant, 8.3145 J·mol
-1

·K
-1

.   

 -slope = ΔHtrn(Tm)/R (1) 

It is interesting to note that occasionally two compounds will change elution order 

over the T = 30 K temperature range.  This change of elution order is due to the fact that 

the compounds have different enthalpies of transfer on the column as evidenced by the 

differing slopes of the ln(to/ta) vs 1/T plots.  Since the slopes are different the lines must 

intersect at some point if the lines were extended indefinitely.  Sometimes this happens to 

be within the range tested.  Although this doesn’t occur frequently, it is not completely 

uncommon and by comparing CGC generated vaporization enthalpies and vapor 

pressures with literature values the change in elution order does not seem to significantly 

affect the results.  Likewise, if the two compounds changing elution order overlap at one 
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particular temperature the same peak can be used for the calculations in both compounds 

and it appears that the relationships are still linear and agree with literature data. 

The enthalpy of transfer is related to the enthalpy of vaporization, Δ 𝐻𝑙
𝑔

(Tm), and 

the interaction enthalpy of analyte with the column, ΔHintr(Tm), by Eq (2).   

 ΔHtrn(Tm) = Δ 𝐻𝑙
𝑔

(Tm) + ΔHintr(Tm) (2) 

The interaction enthalpy of the analyte with the column generally is much smaller than 

the enthalpy of vaporization, so the approximation may be made that ΔHtrn(Tm) ≈ 

Δ 𝐻𝑙
𝑔

(Tm) and ΔHintr(Tm) is ignored. 

A second plot of vaporization enthalpy of the standards versus their enthalpy of 

transfer is also found to be linear.  The equation of this line combined with the 

experimentally determined enthalpy of transfer of the targets provides their vaporization 

enthalpy.   

 

 2.3.2. Vapor pressure 

 If the vapor pressure of the standards are available, plots of ln(p/p°) of the 

standards, where p° = 101325 Pa, against ln(to/ta) also results in a linear relationship.  The 

equation of this line combined with ln(to/ta) of the targets provides a measure of their 

vapor pressure.  This correlation appears to remain linear over a range of temperatures. 

 

2.3.2.1. Lactone Vapor pressures 

Thermochemical properties for some of the lactone standards were available in 

the literature as seen in Table 2-7.  Vapor pressures were calculated using equations (3) 

and (4).  These equations were determined to be the best fit for the compounds by their 
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respective authors.  Those compounds which have values for A, B, and C use equation 

(3) to calculate vapor pressure and those which have values for A’ and B’ use equation 

(4) to calculate vapor pressure.   

ln(p/Pa) = [A – B/T(K) –Cln(T/(K)/298.15)]/R     (3) 

 

ln(p/po) = A’ – B’/T     (4) 
 

The references in Table 2-7 explain the experimental methods and calculations used to 

arrive at the stated values.  The literature data for the compounds were taken at various 

temperature ranges as shown in the last column of Table 2-7.  In order to calculate the 

vapor pressures at a standard temperature of T = 298 K temperature adjustments were 

made as described in section 2.3.3.  

 

TABLE 2-7 

 Thermochemical properties of the  and δ lactones used as standards for the lactone studies. 

 

l
g
Hm(298 K) 

kJmol
-1

  

A 

 

B 

 

C 

 

T/K(range) 

 

-Hexanolactone
a
 57.2±0.3 281.5 76317.1 64.3 283-353 

δ-Octanolactone
b
 67.0±0.2 310.7 90681.9 79.3 288-353 

-Nonanolactone
a
 70.3±0.3 325.1 96899.9 89.2 296-363 

-Decanolactone
a
 75.6±0.3 342.0 104666.1 97.5 298-365 

  A’ B’   

-Octanolactone
c
 66.1±0.5 15.32 7693.9  298-350 

-Undecanolactone
c
 79.3±0.6 17.21 9204.7  298-350 

δ-Undecanolactone
c
 79.8±0.6 17.23 9276.0  298-350 

-Dodecanolactone
c
 83.7±0.6 17.85 9709.0  298-350 

δ-Dodecanolactone
c
 84.2±0.6 17.87 9782.3  298-350 

a 
Reference [11] 

b 
Reference [12]

 

c 
Reference [13] 
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2.3.2.2. Profen Vapor pressures 

For the Fenoprofen study, the vapor pressures of the solid standards were needed 

at the temperature where solid and liquid vapor pressures converge.  For compounds that 

do not form liquid crystals this is the triple point, which was approximated as the fusion 

temperature.  For those that formed liquid crystals, the temperature needed is the clearing 

temperature.  Since the heat capacity of the isotropic liquid phase is reasonably close to 

the heat capacities of the smectic and nematic phases for liquid crystal forming 

compounds, the transition temperature at the lower of the two phases was chosen to 

approximate the clearing temperature.  The reason this is thought to be a good 

approximation is that it is assumed the change in heat capacity as the liquid crystal 

reaches clearing temperature will cancel when the isotropic liquid cools back to the liquid 

crystal phase if all of the heat capacities of these phases are similar.[14] 

Sub-cooled vapor pressures were calculated using modified Clausius-Clapeyron 

equations (5A) for liquids and (5B) for solids.  The modification is a heat capacity 

correction which allows the vaporization enthalpy temperature to be adjusted to T = 

298.15 K.  The liquid heat capacity correction, eq (5A) has not been applied this way 

before.  However, the solid heat capacity adjustment has been used before for calculating 

sublimation vapor pressures and found to reproduce experimental values within a factor 

of three.[10, 14]  This liquid heat capacity correction would seem to have a similar 

degree of accuracy due to the strong agreement between calculated results using this 

method and literature results for ibuprofen as seen in section 3.3. 

 

ln(p/p
o
) =  -[l

g
Hm(Tm) + Cp·T/2][1/T – 1/ Tfus]/R + ln(p/p

o
)Tfus   (5) 

    for liquids: Cp(l)·T  = (10.58 + 0.26·Cp(l))·(Tfus – T)    (A) 
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 for solids:  Cp(cr)·T  = (0.75 + 0.15·Cp(cr))·(Tfus – T)   (B) 

 

2.3.3. Temperature Corrections 

Some standards (those in the profen study, for instance) are solid at T = 298.15 K. 

In order to calculate the vaporization enthalpy for the solids using equation (6) at T = 

298.15 K, the sublimation and fusion enthalpies had to be adjusted to that temperature, 

using equations (7) and (8).[15]  Equation (9) was used to adjust the enthalpy of 

vaporization to T = 298.15 K.  Cp(l) is the heat capacity of the liquid and Cp(cr) is the 

heat capacity of the crystal.  Since these values were not readily available, they were 

estimated using a group additivity approach[16] as described in section 2.3.4.  

Temperature corrections were also required to complete the vapor pressure calculations at 

the standard temperature.   

 

  𝑙
𝑔

Hm(298.15 K)/(kJ·mol
-1

) = 𝑐𝑟
𝑔 Hm(298.15 K)/(kJ·mol

-1
) –  (6) 

𝑐𝑟
𝑙 Hm(298.15 K)/(kJ·mol

-1
)  

  

𝑐𝑟
𝑔 Hm(T/K)/(kJ·mol

-1
) = 𝑐𝑟

𝑔 Hm(Tm) /(kJ·mol
-1

) +    (7) 

[(0.75 + 0.15·Cp(cr)/(J·K
-1

·mol
-1

))( Tm/K – T/K)]/1000  

  

𝑐𝑟
𝑙 Hm(298.15 K)/(kJ·mol

-1
) = 𝑐𝑟

𝑙 Hm(Tfus) /(kJ·mol
-1

) + (8) 

   [(0.15·Cp(cr) – 0.26·Cp(l))/(J·mol
-1

·K
-1

) – 9.83)] [Tfus/K – 298.15]/1000   

 

𝑙
𝑔

Hm(298.15 K)/(kJ·mol
-1

) = 𝑙
𝑔

Hm(Tm)/(kJ·mol
-1

) + (9) 

    [(10.58 + 0.26·Cp(l)/(J·K
-1

·mol
-1

))( Tm/K – 298.15)]/1000 

    

Although these equations are generally used to correct temperatures to T = 298.15 K, they 

appear to give satisfactory results between approximately T = 250 K to T = 500 K.  In this 
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range there is an uncertainty of 16 J·mol
-1 

associated with the bracketed term in eq 

(9).[15] 

2.3.4. Group Additivity Approach for Estimating Heat Capacity 

 As noted above, equations (7), (8), and (9) require heat capacity corrections for 

the liquid and crystalline phases.  Although heat capacity is sometimes ignored in 

estimating enthalpies of vaporiation or sublimation, Chickos, Hesse, and Liebman have 

found the error associated with the corrections to be less than estimations that do not 

include the heat capacity correction.  They have provided a simple way to estimate the 

heat capacities of compounds which do not have experimental data available.  This 

method involves adding together the group values for each carbon and functional group 

in the molecule.  Group values are from literature.[16]  An example can be seen using the 

data from Table 2-8 to estimate the heat capacity of whiskey lactone. 

 

TABLE 2-8 

Estimation of heat Capacities  

Group Values () J·K
-1

·mol
-1

  (l) (cr) 

Cyclic secondary sp
3
 carbon -CcH2- 25.9 24.6 

Cyclic tertiary sp
3
 carbon -CcH(R)- 20.6 11.7 

Cyclic quaternary sp
2
 carbon =Cc(R)- 21.2 4.7 

Primary sp
3
 C CH3-R 34.9 36.6 

Lactone R-[C(=O)O]c-R 67.4 45.2 

 

Cp (l) = 3*(25.9) + 2*(20.6) + 2*(21.2) + 2*(34.9) + (67.4) = 298.5 J·K
-1

·mol
-1

 

Cp(cr) = 3*(24.6) + 2*(11.7) + 2*(4.7) + 2*(36.6) + (45.2) = 225 J·K
-1

·mol
-1

 

 

2.3.5. Estimation of Vaporization Enthalpy 

 The target compounds of these studies did not have literature values available for 

vaporization enthalpies.  In the case of whiskey lactone, it was possible to use a group 
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additivity approach to estimate the vaporization enthalpy.  The estimated value was then 

compared to the experimental value.  This calculation is based on the work of 

Emel’yanenko et al.[11], using the parent lactone, γ-butyrolactone.  Each additional 

functional group is associated with a positive or negative enthalpy contribution and is 

added successively.[3]  A more complete explanation of the process can be seen in Figure 

2-7. 

 

 

FIGURE 2-7. Estimation of whiskey lactone comprises of the vaporization enthalpy of -

butyrolactone (53.9 kJmol
-1

), the contribution of the methylene group adjacent to the  

lactone (-0.67 kJmol
-1

), the contribution of  two methylene groups (4.52/CH2 kJmol
-1

), two 

methyl groups , one on the butyl chain (6.33 kJmol
-1

), and one adjacent to the lactone ring  

(1.11 kJmol
-1

). Two non-bonded 1,4 C-C interactions are also included, two involving the butyl 

chain with carbon (0.26 kJmol
-1 

each) and one 1,4 interaction involving carbon with the oxygen 

atom (-3.26 kJmol
-1

). 

 

2.3.6. Estimation of Fusion and Sublimation Enthalpies for Lactones 

Literature values for the fusion and sublimation enthalpies of isomintlactone were 

not available.  Therefore, they were estimated.  The fusion enthalpy, for instance, was 

taken as the product of the fusion temperature, Tfus, and the total phase change entropy, 

ΔtpchS.  For isomintlactone, Tfus = 353K.[17]  ΔtpchS is not known, but is estimated by 

using a group additivity approach.  First, entropy of the bicyclic backbone is calculated 

using the formula shown in Figure 2-8.  Then it is adjusted with corrections for each 



57 

 

functional group.  The bicyclic backbone used for isomintlactone is shown is Figure 2-8 

and Table 2-9 shows the temperature adjustments.[3] 

 

FIGURE 2-8. Polycyclic hydrocarbon ring systems: ΔtpceS (ring) = [(33.4)R + 3.7(N-3R)] where R = 

number of rings and N = total number of ring atoms. 

 

TABLE 2-9 

Fusion Enthalpy Adjustments  

Cyclic tertiary sp
3
 carbon -CcH(R)- -14.7 

Cyclic quaternary sp
2
 carbon =Cc(R)- -12.3 

Primary sp
3
 C CH3-R 17.6 

Lactone R-[C(=O)O]c-R 3.1 

 

The calculation:   [(33.4)2 + 3.7(9-6)] + 3.1 -2*14.7 - 2*12.3 + 2*17.6 = (62.218.6) JKmol
-1

 

cr
l
H (298.15 K)/(kJ·mol

-1
) = [(62.218.6) JKmol

-1
][353K]/1000 J/kJ = (226.5) kJmol

-

1 

2.3.7. Clarke and Glew Equation for Sublimation Vapor Pressures 

The Clarke and Glew equation[18], eq (10), was used to calculate the sublimation 

vapor pressure of the solid standards and unknowns in the profen study.  R is the molar 

gas constant, p
o
 = 10

5
 Pa, p is the vapor pressure at temperature T, 𝑐𝑟

𝑔 Hm is the 

sublimation enthalpy, 𝑐𝑟
𝑔 Gm is the Gibbs free energy of sublimation, 𝑐𝑟

𝑔 Cp is the heat 

capacity adjustment from the solid to gas phase, and θ is the temperature at which the 

vapor pressure is to be calculated.  For this calculation, temperatures are all adjusted to θ 

= 298.15 K.[19, 20] 

  The parameters used for the standards may be seen in Table 2-10.[14] 
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Rln(p/p
o
)  = 𝑐𝑟

𝑔 Hm (θ)(1/θ - 1/T ) - 𝑐𝑟
𝑔 Gm(θ)/θ + 𝑐𝑟

𝑔 Cp(θ)[θ/T -1 + ln(T/θ)] (10) 

TABLE 2-10 

Parameters of the Clarke and Glew Equation Used, po/Pa = 105
,  θ/K = 298.15 a

 

Compound  

 

cr
g
Hm(θ) 

kJ·mol
-1 

 

cr
g
Gm(θ) 

kJ·mol
-1 

 

cr
g
 Cp 

 J·mol
-1

·K
-1

 

cr
g
Hm(Tm/K)

b
 

kJ·mol
-1 

 

4-Ethylbenzoic acid 100.6±0.7 39.6±0.1 -40±11 99.3±0.5 (328.5) 

4-Methoxybenzoic acid 112.6±0.6 48.1±0.1 -28±11 110.6±0.3 (351.3) 

4-Ethoxybenzoic acid 121.9±1.0 52.5±0.1 -40±11 119.4±0.5 (361.2 

4-Hexylbenzoic acid 122.3±0.9 50.4±0.1 -43±11 119.9±0.7 (355.1) 

4-Hexyloxybenzoic acid 139.4±0.9
 
 57.7±0.1 -36±11 130.8±0.4 (371.2) 

4-Heptyloxybenzoic acid 157.2±1.2 62.5±0.2 -35±11 155.1±1.0 (358.3) 

4-Octylbenzoic acid 133.3±1.6 56.3±0.3 -41±11 130.7±1.3 (361.2) 

4-Octyloxybenzoic acid 161.4±1.2 64.8±0.2 -34±11 141.1±0.9 (367.8) 

a 
Refs [19, 20] 

b
 Sublimation enthalpy at the mean temperature of measurement. 

 

2.3.8. Sublimation, Fusion, and Vaporization Enthalpies of Profen Standards 

As an internal check, all sublimation enthalpies of the profen compounds with 

literature values were also calculated from the Clarke and Glew equation in 2.3.7.[19, 20] 

  Five compounds (4-hexylbenzoic acid, 4-hexyloxybenzoic acid, 4-

heptyloxybenzoic acid, 4-octylbenzoic acid, 4-octyloxybenzoic acid) have cr – cr phase 

transitions below the oven temperatures used in this work.  However, only the 3 alkoxy 

compounds were used as standards for later vaporization enthalpy calculations from the 

curves.  This is discussed in section 3.3.  Those enthalpies are included in their 

sublimation enthalpies at T/K =298.15. For comparison, temperature adjustments were 

also evaluated using equation (7) and compared to values from the Clarke and Glew 
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equation in Table 3-12 (Section 3.3). Comparisons between the two sublimation 

enthalpies calculated by eq (7) and the Clarke and Glew eq are within experimental error 

of each other also demonstrating the applicability of using eq (7) in this system as 

described in section 3.3. [14] 

Equation (8) was used to adjust literature fusion enthalpies to T = 298.15 K to 

account for differences in heat capacity of the liquid vs. the solid.  For the profens that 

were prone to form liquid crystals, this required an approximation.  The 𝛥𝑐𝑟
𝑙 𝐻 

measurement for solid to isotropic liquid must include all enthalpy changes from cr – cr 

phase transitions.  The assumption was made that the heat capacity of the liquid crystal 

regardless of its nature was approximately equal to that of the liquid phase.  The heat 

capacity adjustment was therefore applied to the lowest liquid crystal phase transition 

temperature regardless of whether it was a smectic or nematic phase.[14] 

 

2.3.9. Estimation of Error 

 Data processing was done in Microsoft Excel with the LINEST() function used to 

calculate the slopes, intercepts, and error associated with each best fit linear equation.  

The error expressed in the data tables in Chapter 3 are one standard deviation as 

recommended by the Guide to Expression of Uncertainty in Measurement.[21]  Since the 

enthalpy of transfer is a function of the slope and gas law constant, R, the error for the 

enthalpy of transfer was calculated as the error in the slope times R.  Error for enthalpy of 

vaporization must include the error in both the slope and intercept and therefore is 

calculated by Eq. (11), where 𝑢1 is the error in the slope times the enthalpy of transfer 

and 𝑢2 is the error in the intercept.  Although standards bracketed the unknown retention 
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times, the confidence intervals were not adjusted for unknown values at the ends of the 

curve where uncertainty is potentially higher. 

√𝑢1
2 + 𝑢2

2      (11) 

The error calculated from logarithmic values is reported as the average of the combined 

errors.  If the average was larger than the measurement, the smaller of the two values was 

used.  For the calculation of error in vapor pressure values, the error of each coefficient in 

the correlation equation was calculated at each temperature.[3] 

 The standard deviation associated with temperature adjustments for sublimation 

and fusion enthalpies has been estimated as 30% of the total adjustment.[16, 22]  A 

standard deviation of ± 16 J·K
-1

·mol
-1

 is associated with estimates of Cp(l). 
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Chapter 3: Results and Discussion 

3.1. Lactones 

 3.1.1. Oil of Catnip (Nepetalactone) 

 The oil of catnip sample received was a product of natural extraction, containing a 

mixture of compounds.  Prior to measuring the enthalpy of vaporization or vapor pressure 

some preliminary characterization was performed.  Initially, an IR spectrum was taken as 

shown in Figure 3-1.  The large –OH stretch is likely due to the presence of an alcohol or 

glycol carrier.  For this reason, the catnip sample was prepared as discussed in section 

2.1.1 for use in the remaining experiments.  Therefore, only the less-polar compounds are 

described below.[1] 

 
FIGURE 3-1. IR spectrum of the commercial catnip oil sample. 
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 GC-MS spectra were acquired
(1)

 and the oil was found to contain both major and 

minor nepetalactone isomers as well as caryophellene.  Dodecane was added as an 

internal reference for ease of identification since it was anticipated that the natural 

product contained numerous other materials.[2]  Such was not the case.  Figure 3-2 shows 

the GC portion of this experiment and illustrates the large difference in abundance of the 

major (4aS,7S,7aR) and minor (4aS,7S,7aS) isomers of nepetalactone.[1]  

(1)
The author thanks Chase Gobble for his time and effort in collection of the nepetalactone GC-MS spectra. 
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FIGURE 3-2. GC trace using total ion current detection. Retention times: 4.6min, dodecane 

standard; 8.46min, (4aS,7S,7aS)-nepetalactone; 9.46min, (4aS,7S,7aR)-nepetalactone; 

caryophyllene not shown. 

 

 

 

Some sample mass spectra of the nepetalactone isomers are shown in Figure 3-3 

(minor; 4aS,7S,7aS) and Figure 3-4 (major; 4aS,7S,7aR).  The spectra were compared to 

those from the NIST library in order to confirm assignments.[1]  It should be noted, 

however, that the fragmentation patterns of each diastereomer are quite similar.  In fact, 

the NIST library doesn’t specify stereochemistry on their mass spectra.  Furthermore, 

Pettersson, et al. note that it is not possible to assign nepetalactone stereochemistry based 
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solely on mass specta.[3]  Therefore, the nepetalactone compounds were merely 

identified by MS and the stereochemical assignment was made by GC peak area 

comparisons to the natural abundance in N. Cataria reported in the literature.  The 

literature values were generated by separating the diastereomers on a silica gel column 

and comparing their 
1
H and 

13
C NMR spectra.[4] 

 

FIGURE 3-3. A comparison of the mass spectrum of the minor isomer of nepetalactone; 

retention time 8.46 (top) to nepetalactone from the NIST/EPA/NIH mass spectra database 

(bottom). 

 

The similarities between the minor (4aS,7S,7aS) and major (4aS,7S,7aR) diastereomers 

can be seen by comparison of the top spectra in Figures 3-3 and 3-4.  They are each 

compared to the NIST nepetalactone spectrum for reference. 
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FIGURE 3-4. A comparison of the mass spectrum of the major isomer of nepetalactone; 

retention time 9.46 (top) to nepetalactone from the NIST/EPA/NIH mass spectra database 

(bottom). 

 

Once the assignment of stereochemistry of the nepetalactones was achieved, the 

catnip oil extract was analyzed on an HP 5890 gas chromatograph (using a SPB-5 column 

described in section 2.2.2).  Lactone standards were selected to bracket the 

nepetalactones and maintain reasonable retention times.  An example of one of the 

resulting chromatograms is shown below in Figure 3-5.  The standard cocktail was run 

isothermally over a T = 30 K temperature range at T = 5 K intervals.  Each experiment 

was run in duplicate.[1] 
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FIGURE 3-5. The gas chromatogram at T = 155.7 K. From left to right: (1) CH2Cl2; (2) -

hexanolactone; (3) -octanolactone; (4) δ-octanolactone; (5) (4aS,7S,7aS)-nepetalactone; (6) 

(4aS,7S,7aR)–nepetalactone; (7) -decanolactone; (8) -undecanolactone; (9) δ-undecanolactone; 

(10) -dodecanolactone; (11) δ-dodecanolactone. 

 

The retention times for each standard were plotted against the temperature of the 

run to obtain the enthalpy of transfer as described in section 2.3.  Then the enthalpy of 

transfer was plotted against the enthalpy of vaporization literature values for each of the 

standards.  This plot is shown in Figure 3-6.  The figure includes the error bars for one 

standard deviation by the statistics generated by the software.  The solid circles are the 

standards and the square boxes are the nepetalactone stereoisomers. 
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FIGURE 3-6. Enthalpy of transfer vs. enthalpy of vaporization for the nepetalactone study.  The 

major and minor isomers of nepetalactone are the squares. 

 

TABLE 3-1 

Correlation of Htrn(414K) with l
g
Hm(298 K) of the standards 

Run  1 

 

- slope 

T/K 

intercept 

 

Htrn(414K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 K) 

kJmol
-1

(calc) 

-Hexanolactone 4427.5 11.085 36.81 57.20.3 57.51.2 

-Octanolactone 5283.0 12.045 43.92 66.03.9 66.01.3 

δ-Octanolactone 5341.4 12.058 44.41 67.00.2 66.61.3 

(4aS,7S,7aS)-Nepetalactone 5522.0 12.100 45.91  68.41.4 

(4aS,7S,7aR) -Nepetalactone 5587.3 12.105 46.45  69.11.4 

-Decanolactone 6187.5 13.205 51.44 75.60.3 75.01.4 

-Undecanolactone 6647.7 13.776 55.27 79.44.4 79.61.5 

δ-Undecanolactone 6735.8 13.871 56.00 80.14.5 80.51.5 

-Dodecanolactone 7110.7 14.361 59.12 84.34.6 84.21.5 

δ-Dodecanolactone 7193.4 14.45 59.80 85.64.7 85.11.6 

l
g
Hm(298.15 K)/kJmol

-1
 = (1.190.02)Htrn(414 K) + (13.41.0) r

2
 = 0.9986  

 

The vaporization enthalpy of the nepetalactones was calculated from the product 

of the negative slope of the line and the gas constant derived from a plot of Htrn(414K) vs 

l
g
Hm(298 K) by a linear least squares analysis.  The bottom of Table 3-1 contains the 


trn

H
m
(414 K) / kJ.mol

-1
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resulting equation and correlation coefficient, r
2
, for Run 1.  Table 3-2 summarizes the 

results for both runs, the averages, and provides a comparison to the known literature 

values for each compound.  

 

TABLE 3-2 

A summary of the slopes, intercepts and vaporization enthalpies at T = 298.15 K from runs 1 and 

2; enthalpies in kJmol
-1

 

 

 

-slope 

T/K 

Intercept 

 

l
g
Hm(298 K) 

Runs 1/2 

l
g
Hm(298 K)avg 

runs 1 and 2 

l
g
Hm(298 K) 

Lit. 

-Hexanolactone             4427.5 11.085 57.51.2   

 4607.2 11.496 57.82.0 57.71.6 57.20.3 

-Octanolactone  5283.0 12.045 66.01.3   

 5389.2 12.290 65.52.1 66.31.7 66.03.9 

δ-Octanolactone  5341.4 12.058 66.61.3   

 5503.3 12.425 66.72.2 66.71.8 67.00.2 

(4aS,7S,7aS)-Nepetalactone 5522.0 12.100 68.41.4   

 5584.1 12.205 67.52.2 68.01.9  

(4aS,7S,7aR) -Nepetalactone 5587.3 12.105 69.11.4   

 5808.5 12.603 69.72.2 69.41.9  

-Decanolactone 6187.5 13.205 75.01.4   

 6363.8 13.603 75.22.3 75.11.9 75.60.3 

-Undecanolactone 6647.7 13.776 79.61.5   

 6796.0 14.111 79.52.4 79.62.0 79.44.4 

δ-Undecanolactone 6735.8 13.871 80.51.5   

 6955.0 14.361 81.12.4 80.82.0 80.14.5 

-Dodecanolactone 7110.7 14.361 84.21.5   

 7240.0 14.653 83.92.5 84.62.0 84.34.6 

δ-Dodecanolactone 7193.4 14.45 85.11.6   

 7389.5 14.888 85.42.5 85.32.1 85.64.7 

 

 

 Vapor pressures of the standards were calculated as described in section 2.3.2 

using equations described in section 2.3.2.1 and the constants found in Table 2-7 to 

calculate vapor pressure of the standards as a function of temperature.  Values of to/ta 

calculated from the slopes and intercepts of the standards and targets were first averaged 

for both Runs 1 and 2 and then used in a  plot of ln(p/p
o
) vs ln(to/ta)avg.  The vapor 

pressures calculated from the slope and intercept of the plot for both targets and standards 

at T = 298.15 K are reported and compared to literature or predicted values in Table 3-3. 
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This plot was then repeated at T = 10 K intervals up to T = 350 K, the temperature range 

for which the vapor pressures of the standards are valid. The vapor pressures were then fit 

to a first order polynomial, eq 12. 

ln(p/p
o
) = A’ -B’/(T/K)  where B = l

g
Hm(Tm/K)/R  (12) 

 

TABLE 3-3 

Correlation of ln(to/ta)avg with ln(p/po)exp of the standards at T = 298.15 K; po = 101325 Pa,  

 ln(to/ta)avg ln(p/po)exp ln(p/po)calc pcalc(298 K)/Pa plit(298 K)/Pa 

-Hexanolactone -3.856 -8.455 -8.45±0.03 21.9±0.6 21.6 

-Octanolactone -5.729 -10.485 -10.50±0.03 2.8±0.1 2.8 

δ-Octanolactone -5.941 -10.738 -10.74±0.03 2.2±0.1 2.2 

(4aS,7S,7aS)-Nepetalactone -6.472  -11.32±0.03 1.20±0.04 0.9
a
, 0.67

b
 

(4aS,7S,7aR)-Nepetalactone -6.749  -11.62±0.03 0.91±0.03 0.9
a
, 0.67

b
 

-Decanolactone -7.64 -12.615 -12.60±0.03 0.34±0.01 0.34 

-Undecanolactone -8.598 -13.663 -13.65±0.03 0.121±0.004 0.12 

δ-Undecanolactone -8.836 -13.882 -13.91±0.04 0.092±0.003 0.095 

-Dodecanolactone -9.557 -14.714 -14.70±0.04 0.042±0.002 0.041 

δ-Dodecanolactone -9.781 -14.94 -14.95±0.04 0.033±0.001 0.033 

ln(p/po)calc  =  (1.097±0.003) ln(p/po)exp  - (4.22±0.02)  
a
 Predicted vapor pressure, reference [5] 

b 
Predicted vapor pressure, reference [6]. 

 

The calculated vapor pressures were then used as an alternative means of 

calculating the vaporization enthalpy of the compounds.  This secondary way of 

calculating vaporization enthalpy based on known vapor pressures is a way to compare 

results based on data from different measured properties.  If the results are similar, then 

the vaporization enthalpy values have a higher level of certainty.  The results of this 

comparison can be seen in Table 3-4.  As can be seen the new vaporization enthalpies are 

all within the estimated experimental error for each method.  Also given, are the A’ and 

B’ constant values needed to calculate the vapor pressures of each standard at the 

required temperature.  The vaporization enthalpy at T = 324 K (the mean temperature of 

the seven runs) is given in the third column, the heat capacity corrections are given in 
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fourth column and the fifth and sixth columns give the calculated vaporization enthalpies 

at T = 298.15 K. 

 

TABLE 3-4 

A summary of the vaporization enthalpies calculated from vapor pressure 

calculations from T = 298.15 to 350 K adjusted from the mean temperature to T = 

298.15 K. 

 

 

 

A’ 

 

B’/K 

 

l
g
Hm(324 K)  

kJmol
-1 

 

Cp(l) 

(J·K
-1

·mol
-1

) 

l
g
Hm(298 K) 

kJmol
-1

  

From Vapor 

pressure (calc) 

From Table 4 

(calc) 

(4aS,7S,7aS)-

Nepetalactone 15.245 7916.9 65.80.2 298 68.10.5 68.01.9
a
 

(4aS,7S,7aR)-

Nepetalactone 15.443 8067.0 67.10.1 298 69.30.4 69.41.9
a
 

Standards      (Lit) 

-Hexanolactone 14.252 6764.2 56.20.3 206.6 57.90.5 57.20.3 

-Octanolactone 15.249 7674.7 63.80.2 270.4 65.90.5 66.03.9 

δ-Octanolactone 15.324 7766.7 64.60.2 264.4 66.60.5 67.00.2 

-Decanolactone 16.615 8708.2 72.40.1 334.2 74.90.4 75.60.3 

-Undecanolactone 17.223 9203.5 76.50.1 366.1 79.30.4 79.44.4 

δ-Undecanolactone 17.398 9333.7 77.60.1 360.1 80.30.4 80.14.5 

-Dodecanolactone 17.855 9706.1 80.70.1 398 83.60.4 84.34.6 

δ-Dodecanolactone 18.022 9829.0 81.70.1 392 84.60.4 85.64.7 

a 
A vaporization enthalpy of (50.90.3) kJmol

-1
 at the boiling temperature is predicted.  
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 3.1.2. Whiskey Lactone and Menthalactone 

An example chromatogram for the whiskey lactone and menthalactone 

compounds with standards can be seen in Figure 3-7.  The retention times for these runs 

may be found in Appendix Tables S2A and S2B.   

 

  

FIGURE 3-7. A representative gas chromatogram; Run 3 at T = 434.0 K.  From left to right: (1) 

acetone; (2) γ-hexanolactone; (3) trans-whiskey lactone; (4) cis-whiskey lactone; (5) γ-

nonanolactone; (6) γ-decanolactone; (7) (-)-mintlactone; (8) (+)-isomintlactone; (9) γ-

undecanolactone; (10) γ-dodecanolactone. The chromatogram is scaled for ease of identification 

of (+)-isomintlactone (8). 

 

As mentioned above in section 2.1.1, whiskey lactone and menthalactone each 

have four stereoisomers.  Two diastereomers for each were able to be separated on the 

SPB-5 column.  Figure 3-8 illustrates the structures of the major and minor isomers of 

whiskey lactone and isomintlactone shown previously.   
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FIGURE  3-8. Top to bottom, left to right: Whiskey lactone major components [rel-(4R,5R)-5-

butyldihydro-4-methyl-2(3H)-furanone] 1a + 1b; Whiskey lactone minor components [rel-

(4R,5S)-5-butyldihydro-4-methyl-2(3H)-furanone] 2a + 2b; Mintlactone major enantiomer [(-)-

(6R,7aR)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone] 3a; Mintlactone minor 

enantiomer [(+)-(6S,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone] 3b; 

Isomintlactone components (6R,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone 4a 

and (6R,7aS)-5,6,7,7a-tetrahydro-3,6-dimethyl-2(4H)-benzofuranone 4b. 
 

Identification of the whiskey lactone diastereomer as trans was accomplished by 

comparing the GC peak area ratios and relative retention times to those found by 
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Lahne.[7]  This is described in section 2.2.2.2.  The data for this may be found in 

Appendix Tables S3A and S3B. 

The identification of the mintlactone enantiomers was described in section 

2.2.2.3, and was done by optical rotation and by comparing GC peak areas to those found 

in nature and previously used synthetic pathways.[8]  This comparison can be seen in 

Appendix Tables S3C and S3D. 

The relationship between the enthalpy of vaporization and the enthalpy of transfer 

is shown below in Figure 3-9.  The error bars are relatively small and a discussion of the 

uncertainty calculations can be found in section 2.3.9. 

 

FIGURE 3-9. The relationship between the enthalpy of transfer at the oven temperatures and the enthalpy 

of vaporization at 298.15K of the lactone standards (diamonds) is used to calculate the enthalpy of 

vaporization of whiskey lactone and mintlactone (squares) at 298.15K.  Uncertainties in the unknown 

values were calculated as discussed in section 2.3.9. 

 

The calculated vaporization enthalpies for each of the compounds may be found 

in Table 3-5 for Run 3 and Table 3-6 for Run 4.  The r
2
 values are given in the tables and 

40

50

60

70

80

90

100

30 40 50 60

Δ
g
lH

 (
2
9
8
.1

5
K

)/
k
J·

m
o
l-1

 

 

ΔHtrn(Tm)/kJ·mol-1 



75 

 

are both greater than 0.99.  The literature values for vaporization enthalpies are given for 

the known compounds and the back-calculated values from the best-fit curve are in good 

agreement within the stated uncertainties.   

TABLE 3-5 
Correlation of Htrn(419K) with l

g
Hm(298 K) of the standards; uncertainties are one standard 

deviation; p
o
 =101325 Pa 

Run  3 

 

- slope 

T/K 

intercept 

 

Htrn(419 K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 K) 

kJmol
-1

(calc) 

γ-Hexalactone 4450±50 11.1±0.12 37.0±0.4 57.2±0.3 57±2 

trans-Whiskey lactone
a
 5450±30 12.26±0.07 45.3±0.2  67±2 

cis-Whiskey lactone
b 

5540±30 12.30±0.07 46.0±0.3  68±2 

γ-Nonalactone 5740±40 12.59±0.09 47.8±0.3 70.3±0.3 70±2 

γ-Decalactone 6200±40 13.2±0.10 51.5±0.3 75.6±0.3 75±2 

(-)-Mintlactone
c
 6030±50 12.6±0.11 50.2±0.4  73±2 

(+)-Isomintlactone
d
 6110±40 12.65±0.08 50.8±0.3  74±2 

γ-Undecalactone 6650±40 13.75±0.01 55.3±0.4 79.4±4.4 80±2 

γ-Dodecalactone 7120±50 14.4±0.12 59.2±0.4 83.9±4.6 84±2 

l
g
Hm(298.15 K)/kJmol

-1
 = (1.210.03)Htrn(419 K) + (12.71.3) r

2
 = 0.9987 

a
 cis (4S,5S)-4-Methyl--octalactone.  

b
 trans (4S,5R)-4-Methyl--octalactone.  

c 
(-)-(6R,7aR)-5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone.

  

d 
(+)-(6R,7aS)-

 
5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone. 

 

TABLE 3-6 

Correlation of Htrn(419K) with l
g
Hm(298 K) of the standards; uncertainties are one standard 

deviation; p
o
 =101325 Pa 

Run  4 

 

- slope 

T/K 

intercept 

 

Htrn(419 K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 K) 

kJmol
-1

(calc) 

γ-Hexalactone 461012 11.370.03 38.30.1 57.2±0.3 572 

trans-Whiskey lactone
a
 561014 12.580.03 46.70.11  682 

cis-Whiskey lactone
b 

570020 12.610.03 47.40.12  692 

γ-Nonalactone 588020 12.850.05 48.90.2 70.3±0.3 702 

γ-Decalactone 634020 13.430.05 52.70.2 75.6±0.3 752 

(-)-Mintlactone
c
 616030 12.790.07 52.10.2  732 

(+)-Isomintlactone
d
 626020 12.930.03 51.20.11  742 

γ-Undecalactone 678030 13.980.07 56.40.2 79±4 802 

γ-Dodecalactone 725020 14.590.06 60.30.2 84±5 842 

l
g
Hm(298.15 K)/kJmol

-1
 = (1.220.03)Htrn(419 K) + (111.3) r

2
 = 0.9988 

a 
cis (4S,5S)-4-Methyl--octalactone.

  

b 
trans (4S,5R)-4-Methyl--octalactone.

  

c 
(-)-(6R,7aR)-5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone.

  

d 
(+)-(6R,7aS)- 5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone. 
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Literature values for the vaporization enthalpy of whiskey lactone were not available.  A 

group additive approach was used to compare a theoretical value with the calculated 

experimental values[9].  This method was described in Figure 2-7.  A value of 67.2 

kJ·mol
-1

 was estimated and is relatively close to the experimental values of (682) 

kJ·mol
-1 

for cis-whiskey lactone and (692) kJ·mol
-1

 for trans-whiskey lactone.  Suitable 

group values were not available for the menthalactones, therefore this comparison was 

not able to be made for them. 

 Vapor pressures were calculated as described in section 2.3.2 and using values 

found in Table 2-7.  The retention times and vapor pressures of the standards were used 

to make a ln(to/ta) vs. ln(p/p
o
) plots as a function of temperature as described previously.  

The resulting linear relationships were used to calculate the vapor pressures of the 

whiskey lactone and menthalactone compounds at T = 298.15 K and at 10 K increments 

from T = (310 to 350) K.  Table 3-7 illustrates the calculated vapor pressures for the 

lactone compounds at T = 298.15 K.  Literature values are provided where available.  All 

calculated pressures are within experimental error of the literature values.   

TABLE 3-7 

Correlation of ln(p/p
o
) with ln(to/ta); calculated and literature vapor pressures at T = 298.15 K

a
 

 ln(to/ta) ln(p/p
o
) ln(p/p

o
)calc p/Pa p/Palit 

γ-Hexalactone -3.96 -8.46 -8.440.05 21.91.1 21.6 

trans-Whiskey lactone -6.12  -10.840.06 2.00.1  

cis-Whiskey lactone
 

-6.38  -11.120.06 1.50.1  

γ-Nonalactone -6.77 -11.51 -11.550.06 1.00.1 1.01 

γ-Decalactone -7.72 -12.61 -12.610.07 0.340.02 0.337 

(-)-Mintlactone -7.75  -12.640.07 0.330.02  

(+)-Isomintlactone -7.95  -12.860.07 0.260.01  

γ-Undecalactone -8.66 -13.66 -13.650.07 0.120.01 0.118 

γ-Dodecalactone -9.62 -14.71 -14.710.07 0.0410.003 0.041 

ln(p/p
o
) = 1.107ln(to/ta)  - 4.049       r

2
 = 0.9999 (8) 

a
 Uncertainties represent  one standard deviation; p

o
 = 101325 Pa 
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The calculated vapor pressures were then used to calculate vaporization 

enthalpies.  Heat capacity adjustments were needed to adjust the vaporization enthalpies 

from the mean temperature of measurement, 324 K to 298.15 K.  When available, 

literature heat capacities were used.  Vaporization enthalpies were calculated from vapor 

pressures using the Clapeyron equation (Eq 13).  These results were then compared to the 

vaporization enthalpies calculated from the transfer enthalpies and found to be within 

experimental uncertainty.  The comparison of vaporization enthalpies can be seen in 

Table 3-8. 

∆ 𝐻 = 𝑙
𝑔

−
𝑅∙ln (

𝑃2
𝑃1

)

1

𝑇2
 − 

1

𝑇1

     (13) 

TABLE 3-8 

Adjustments of vaporization enthalpies from T = (324 to 298.15) K evaluated from vapor 

pressures; uncertainties reported are one standard deviation, p
o
 = 101325 Pa 

 

l
g
Hm(324 K) 

kJmol
-1

 

Cp(l) 

JK
-1
mol

-1
 

CpT 

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1 

Calcd              By Corr
e
 

γ-Hexalactone 55. 80.2 206.6 1.70.4 57.40.4 57±1.6 

trans-Whiskey lactone
a
 65.30.2 300 2.30.4 67.60.4 681.7  

cis-Whiskey lactone
b 66.20.2 300 2.30.4 68.50.4 691.7

 
 

γ-Nonalactone 68.10.1 302.3 2.30.4 70.40.4 700.3 

γ-Decalactone 72.40.1 334.2 2.50.4 74.90.4 761.8 

(-)-Mintlactone
c
 70.80.1 298.5 2.30.4 73.10.4 73±1.8 

(+)-Isomintlactone
d
 71.70.1 298.5 2.30.4 74.00.4 741.8 

γ-Undecalactone 76.70.1 366.1 2.70.4 79.40.4 801.9 

γ-Dodecalactone 81.10.1 398 3.00.4 84.10.4 841.9 
a 
cis (4S,5S)-4-Methyl--octalactone.

  

b 
trans (4S,5R)-4-Methyl--octalactone.

  

c 
(-)-(6R,7aR)-5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone.

  

d 
(+)-(6R,7aS)- 5,6,7,7a-Tetrahydro-3,6-dimethyl-2(4H)-benzofuranone. 

e
 Obtained by correlation between  trnHm(298 K) and  l

g
Hm(298 K) of the standards. 
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(+)-Isomintlactone is a solid at room temperature requiring the fusion enthalpy for 

the calculation of its vapor pressure (see section 2.3.3.).  Since the fusion enthalpy of (+)-

isomintlactone was not available in the literature, it was estimated to be (227) kJmol
-1

 

by the methods described in section 2.3.5.  The vaporization enthalpy at T = 298.15 K 

was adjusted to Tfus, resulting in (702) kJmol
-1

.  Using these fusion and vaporization 

enthalpy values in equation 6, the sublimation enthalpy of (927) kJmol
-1

 is calculated at 

Tfus.  When this is adjusted back to T = 298.15 K, the sublimation enthalpy is (937) 

kJmol
-1

.  At Tfus = 352 K, a vapor pressure of p = 24 Pa is calculated for (+)-

isomintlactone using equation 14 and the isomintlactone constants given in Table 3-9.[8]   

 

ln(p/po) = A’ – B’/T     (14) 

 

 

Table 3-9 
Constants of Eq 14 obtained from correlations of ln(p/p

o
) vs ln(to/ta) from T= 

(298.15 to 350) K; p
o
= 101325 Pa.[8] 

 

 A' B' 

γ-Hexalactone 14.09±0.08 -6710±30 
(±) trans-Whiskey lactone 15.54±0.06 -7860±20 
(±) cis-Whiskey lactone 15.60±0.06 -7960±20 
γ-Nonalactone 15.92±0.05 -8190±20 
γ-Decalactone 16.61±0.04 -8710±13 
(-)-Mintlactone 15.94±0.04 -8520±13 
Isomintlactone 16.07±0.04 -8620±12 
γ-Undecalactone 17.29±0.03 -9220±10 
γ-Dodecalactone 18.02±0.02 -9760±10 

 

For the remainder of these calculations Tfus = 352 K was approximated as the 

triple point.  The fusion temperature and vapor pressure were used along with the 

sublimation enthalpy at Tfus to calculate the vapor pressure of the crystalline form at T = 
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298.15 K using equation 15.  The vapor pressure of the crystalline form was calculated to 

be p/Pa ≈ (0.08±0.04).[8]       

 

ln(p2/p
o
) = -∆Hsub(Tfus)/R[1/T2 – 1/T1] + ln(p1/p

o
)   (15) 

 

3.2. Aldehydes 

 As discussed above in section 2.1.2, many of the aldehydes were of natural origin 

and they are susceptible to oxidation.  The samples were old and may have degraded 

some.  Many of the samples were observed to have lower purity by GC than was reported 

by the manufacturers (see Table 2-2).  The initial mixtures included both aliphatic and 

aromatic aldehydes.  Literature values for the aromatic aldehydes did not correlate well in 

vaporization enthalpy vs. enthalpy of transfer plots.  Therefore, their data has been 

omitted from the calculations.  However, their retention times have still been included in 

the Appendix (Tables S4A – S4D) for reference.   

An example chromatogram of mix 5 at T = 358.15 K is given in Figure 3-10.  The 

elimination of the aromatic compounds left five standards for the mix 5 assessment and 

four standards for the mix 6 assessment.  The correlation obtained seems very acceptable 

with r
2
 ≥ 0.998.  An example plot is given in Figure 3-11.  The standards are represented 

by diamonds and the targets by squares.  The error bars are relatively small and were 

calculated as explained in section 2.3.9.      
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FIGURE 3-10. A representative gas chromatogram; Run 1 at T = 358.15 K.  From left to right: (1) 

dichloromethane;(2) hexanal; (3) trans-2-hexenal; (4) benzaldehyde; (5) octanal; (6) 2,6-dimethyl-5-

heptenal; (7) nonanal; (8) 2,6-nonadienal; (9) trans-4-decenal; (10) decanal; (11) trans-cinnamaldehyde 

 

 
 

FIGURE 3-11. The relationship between the enthalpy of transfer at the oven temperatures and the enthalpy 

of vaporization at 298.15K of the aldehyde standards (diamonds) is used to calculate the enthalpy of 

vaporization of the target compounds (squares) at 298.15K.  Uncertainties in the unknown values were 

calculated as discussed in section 2.3.9. 
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TABLE 3-10 
Data showing relationship between the enthalpy of transfer at 374K and the enthalpy of vaporization at 

298K for Aldehyde Run 5. 

Run 5 

 

- slope 

T/K 

intercept 

 

Htrn(374 K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 

K) 

kJmol
-

1
(calc) 

Hexanal 3970±40 11.1±0.1 33.0±0.3 42.5±0.4
a 

42±2 

trans-2-Hexenal 4200±50 11.3±0.1 35.0±0.4  45±2 

Octanal 4900±30 12.11±0.09 40.8±0.3 51.0±0.3
a 

51±2 

2,6-Dimethyl-5-heptenal 5110±30 12.32±0.09 42.5±0.3  53±2 

Nonanal 5390±30 12.72±0.09 44.8±0.3 55.3±0.3
a 

56±2 

2,6-Nonadienal 5550±40 12.8±0.1 46.1±0.3  57±2 

trans-4-Decenal 5820±40 13.2±0.1 48.4±0.3 60.0
b 

60±2 

Decanal 5850±30 13.27±0.09 48.7±0.3 59.5±0.4
a
 60±2 

Run 5:  ∆𝑙
𝑔

𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.11 ±0.03)𝛥𝐻𝑡𝑟𝑛(374 𝐾) + (6±1)  r
2
 =  0.9979                    

Run 6:  ∆𝑙
𝑔

𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.13 ±0.03)𝛥𝐻𝑡𝑟𝑛(374 𝐾) + (5 ±1)  r
2
 =  0.9982                   

a
 Reference [10] 

b 
References [11, 12] 

 

 

TABLE 3-11 
Data showing relationship between the enthalpy of transfer at 410K and the enthalpy of vaporization at 

298K for Aldehyde Run 7. 

Run 7 

 

- slope 

T/K 

intercept 

 

Htrn(410 K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 

K) 

kJmol
-

1
(calc) 

Hexanal 3820±40 10.82±0.09 31.8±0.3 42.5±0.4
a
 42.6±0.7 

2,6-Dimethyl-5-heptenal 4830±20 11.72±0.05 40.2±0.2 52.9±1.8
b 

52.7±0.8 

trans-2-Nonenal 5310±20 12.25±0.05 44.1±0.2  57.3±0.8 

Decanal 5530±20 12.57±0.05 45.9±0.2 59.5±0.4
a
 59.5±0.8 

trans,trans-2,4-Decadienal 5940±20 12.93±0.05 49.4±0.2  63.6±0.9 

2-Butyl-2-octenal 6180±20 13.26±0.05 51.4±0.2  66.0±0.9 

Lauric aldehyde 6430±20 13.68±0.06 53.4±0.2 68.3±0.9
a 

68.4±0.9 

Run 7:  ∆𝑙

𝑔
𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.19 ±0.01)𝛥𝐻𝑡𝑟𝑛(410 𝐾) + (4.9 ±0.6)  r

2
 =  0.9997                    

Run 8:  ∆𝑙

𝑔
𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.19 ±0.01)𝛥𝐻𝑡𝑟𝑛(410 𝐾) + (4.6 ±0.6)  r2

 =  0.9998                   
a Reference [10] 
b
 Generated from Standard Cocktail 5 (mean of Runs 5 & 6) 
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The vaporization enthalpy data for Run 5 has been given in Table 3-10.  

Correlation equations for Run 5 and its duplicate are given at the bottom of the table.  The 

vaporization enthalpies calculated are all within experimental error of the literature values 

that are available. 

A second mixture in which one of the standards, 2,6-dimethyl-5-heptenal, was 

evaluated in the first mixture, is summarized in Table 3-11. Correlation equations for this 

run and its duplicate are provided at the bottom of the table.  The vaporization enthalpies 

that were calculated for the compounds in Run 7 are given in Table 3-11.  For both runs, 

r
2
 > 0.999.  All of the calculated vaporization enthalpies are within experimental error to 

literature values. 

The retention times of the aldehydes in the form ln(to/ta) did not seem to correlate 

well with ln (p/p
o
) using vapor pressures that are currently available in the literature. One 

possible explanation is that data from literature and/or from this study may not be valid 

due to the ease of oxidation of the aldehydes.  This is currently under further 

investigation.  

 

3.3. Profens 

In the profen study, Runs 9-12 (2 mixtures in duplicate) were run with 

alkoxybenzoic acid standards.  The retention time data for these runs are reported in 

Appendix Tables S5A-S5D.  Runs 13-14 were performed using a wider variety of 

standards.  These included alkoxybenzoic acids, alkylbenzoic acids, and compounds with 

two rings such as α-napthaleneacetic acid, biphenyl-4-carboxylic acid, Fenoprofen, and 

naproxen.  The retention times for these runs can be seen in Appendix Tables S5E-S5F. 
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Sublimation enthalpies available in the literature[13, 14] were first adjusted to T = 

298.15 K using estimated heat capacities described in sections 2.3.3 and 2.3.4.  Table 3-

12 shows the adjustments of the literature sublimation enthalpies to T = 298.15 K.    

TABLE 3-12 

Adjustment of Literature Sublimation Enthalpies to T = 298.15 K, p
o
/Pa = 10

5
, Uncertainties 

are One Standard Deviation 

Compound  

 

cr
g
Hm(Tm) 

kJ·mol
-1 

 

Tm/K Cp(cr) 

J·K·mol
-1

 

Cp·T 

kJ·mol
-1

 

cr
g
Hm(298 K)

a
/ kJ·mol

-1 

Eq 3        Eq 6 

Ref 

4-Ethylbenzoic acid 99.3±0.7 328.2 203.6  0.9±0.3 100.2±0.8 100.6±0.7 [13] 

4-Methoxybenzoic acid 110.6±0.3 351.3 226.5 1.8±0.6 112.4±0.6 112.6±0.6 [14] 

4-Ethoxybenzoic acid 119.4±0.5 361.2 253.2 2.4±0.7 121.8±0.9 121.9±1.0 [14] 

4-Hexylbenzoic acid 119.9±0.2 355.1 311.2 3.0±0.9 122.9±1.3 122.3±0.9
 
 [13] 

4-Hexyloxybenzoic acid 130.8±0.4 371.2 361.2 4.0±1.2 140.8±1.3
b
 139.4±0.9

b
 [14] 

4-Heptyloxybenzoic acid 155.1±1.0 358.3 387.9 3.5±1.1 158.6±1.5 157.2±1.2 [14] 

4-Octylbenzoic acid 130.7±1.3 361.2 365 3.5±1.1 141.3±1.8
c
 140.4±1.3

c
 [13] 

4-Octyloxybenzoic acid 141.1±0.9 367.8 414.8 4.4±1.3 163.4±1.6
d
 161.4±1.2

d
 [14] 

a
 A comparison of the temperature adjustments using eq 7 and the Clarke and Glew equation (eq 10). 

b 
Includes a cr-cr phase transition at T/K= 342.2 (5.95 kJ·mol

-1
). 

c
 Sublimation enthalpy of 4-octylbenzoic acid including solid-solid phase transitions at T/K= (305.6 

and 366.6) (5.4±0.1 and 0.47±0.03 kJ·mol
-1

, respectively) and a liquid crystal transition at T/K = 

385.5 (1.2±0.12) kJ·mol
-1

. The sublimation enthalpy reported in Table 2-10 was measured in 

between the two cr-cr transitions. 
d
 Sublimation enthalpy of 4-octyloxybenzoic acid including a solid-solid phase transition at T = 

346.7 K (17.9 kJ·mol
-1

).  

Table 3-13 shows the terms used to calculate the fusion enthalpy adjustments to T 

= 298.15 K.  Adjustments were made as discussed in chapter 2 using equations (7) and (8).  

As noted in section 2.3.8, for profens that undergo a liquid crystal phase transition, the 

temperature at which the heat capacity correction was applied was the temperature of the 

first liquid crystal phase change (either smectic or nematic).  In the top of column 2, Tfus 

refers to the temperature of fusion and Tf is the temperature that the material first converts to 
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liquid crystal.  The footnotes at the bottom of the table identify the acids that form liquid 

crystals. Column 6 of Table 3-13 summarizes the fusion enthalpies at T/K = 298.15 [15] 

TABLE 3-13 

Adjustment of Literature Fusion Enthalpies to T = 298.15 K, Uncertainties are One Standard 

Deviation  

Compound  

 

∆cr
l
Hm(Tfus,Tf) 

kJ·mol
-1

 

Tfus/K
a
 Cp(l)/Cp(cr) 

J·mol
-1

·K
-1

 

cr
g
Cp·T 

kJ·mol
-1 

∆cr
l
Hm(298 K) 

kJ·mol
-1

 

Ref 

4-Ethylbenzoic acid 12.79±0.03 385.2 272/203.6 -4.4±1.3 8.4±1.3 [13] 

4-Methoxybenzoic acid 29.0±1.0 455.3 269.9/226.5 -7±2 21±2 [14] 

4-Ethoxybenzoic acid 35.1±1.0 471.0 301.8/253.2 -9±3 26±3 [16] 

4-Hexylbenzoic acid 13.8±0.1
b
 370.6 399.6/311.2 -5±2 9±2 [13] 

4-Hexyloxybenzoic acid 22.7
c
 380.0 429.4/360.8 -6±2 17±2 [14] 

4-Heptyloxybenzoic acid 31.65
d
 365.4 461.3/387.7 -5±1.4 26.8±1.4 [14] 

Biphenyl-4-carboxylic acid 32.1±0.2 499.5 329.5/236.1 -12±4 20±4 [17] 

4-Octylbenzoic acid 21.4±0.2
e 
 373.3 463.4/365 -6±2 16±2 [13] 

4-Octyloxybenzoic acid 32.2
f
 374.5 493.2/414.6 -6±2 26±2 [14] 

a
 For compounds forming liquid crystals, Tfus  refers to the temperature at which the crystal is 

converted to either the smectic or nematic phase, whichever is lower. 
b
 Includes a liquid crystal to isotopic liquid transition at T/K = 385.9 (0.95±0.04 kJ·mol

-1
). 

c
  Includes a cr - cr phase transitions at T/K = 342.2 (5.95 kJ·mol

-1
), cr –nematic transition at T/K 

= 380 (13.59 kJ·mol
-1

), and a nematic – isotropic transition at T/K = 426.1 (3.16 kJ·mol
-1

).  
d
 Includes a cr - smectic phase transitions at T/K = 365.4 (27.59 kJ·mol

-1
), smectic – nematic 

transition at T/K = 372.1 (1.94 kJ·mol
-1

) and nematic – isotropic transition at T/K = 420.8 (2.11 

kJ·mol
-1

). 
e
  Includes cr-cr phase transitions at T/K = 305.5 (5.40±0.1 kJ·mol

-1
) and 366.6 (0.47±0.03 

kJ·mol
-1

), a crystal to liquid crystal transition at 373.3 K (14.32±0.17) kJ·mol
-1

) and liquid crystal 

to isotropic transition at T/K = 385.4 (1.2±0.12 kJ·mol
-1

). 
f
 Includes a cr-cr phase transitions at T/K = 346.7 (17.87±0.1 kJ·mol

-1
), a cr – smectic transition at 

T/K = 374.5 (11.57 kJ·mol
-1

), a smectic  - nematic transition at T/K = 381.6 (1.38 kJ·mol
-1

), and a 

nematic to isotropic transition at T/K = 421.0 (1.38 kJ·mol
-1

). 

 

The vaporization enthalpies of the alkyl and alkoxyacids at T/K = 298.15 

calculated with the aid of eq (6) are provided in Table 3-14. Also included in this table is 
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the vaporization enthalpy of 4-biphenylcarboxylic acid evaluated previously by 

correlation gas chromatography.[15, 17] 

 

TABLE 3-14 

Vaporization enthalpies of the standards at T = 298.15 K, p
o
/Pa = 10

5
, Uncertainties 

are One Standard Deviation 

Compound  
cr

g
Hm(298 K)

a
 

kJ·mol
-1

 

cr
l
Hm(298 K)

b
 

kJ·mol
-1

 

l
g
Hm(298 K)

c
 

kJ·mol
-1

 

4-Ethylbenzoic acid 100.6±0.7 
8.4±1.3 

92±2 

4-Methoxybenzoic acid 112.6±0.6 
22±2 

91±3 

4-Ethoxybenzoic acid 121.9±1.0 
26±3 

96±3 

4-Hexylbenzoic acid 122.3±0.9 
9±2 

113±2 

4-Hexyloxybenzoic acid 139.4±0.9
d 
 

17±2 
122±2 

4-Heptyloxybenzoic acid 157.2±1.2 
26.8±1.4 

130±2 

Biphenyl-4-carboxylic acid   118±5
e
 

4-Octylbenzoic acid 140.4±1.3 16±2 125±2 

±2.6 4-Octyloxybenzoic acid 161.4±1.2 26±2 135±2 

a 
Ref [14]  

b 
From Table 3-13

 

c 
Using eq (6). 

d 
Includes a transition of 5.95 kJ·mol

-1 
at Tcr-cr/K = 348. 

e
 Ref [17] 

 

Examples of the vaporization enthalpy results for Runs 9, 11, and 13 are provided 

below in Table 3-15.  The linear correlations all exceed an r
2
 value of 0.999.  This 

linearity suggests that the approximations made by adjusting the heat capacity from the 

temperature of the first liquid crystal phase transition in section 2.3.8 seem reasonable.   
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TABLE 3-15 

Correlation of Vaporization Enthalpies with Enthalpies of Transfer, p
o
/Pa = 10

5 a
 

Run 9 
-slope/K intercept 

Htrn(479 K) 

kJmol
-1

 

l
g
Hm(298 

K) kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 
4-Methoxybenzoic acid 5160±130 10.7±0.3 42.9±1.1 91±3 91.1±1.0 

4-Ethoxybenzoic acid 5430±120 11.1±0.3 45.2±1.0 96±3 95.4±1.0 

4-Hexyloxybenzoic acid 7090±130 13.0±0.3 59.0±1.1 122±2 121.9±1.2 

Fenoprofen 7360±120 13.2±0.2 61.1±1.0  126.2±1.2 

4-Octyloxybenzoic acid 7920±130 14.0±0.3 65.9±1.1 135±2 135.2±1.2 

Run 11      

4-Methoxybenzoic acid 5620±80 11.7±0.2 46.8±0.7 91±3 90.9±0.7 

4-Ethoxybenzoic acid 5900±70 12.1±0.2 49.0±0.6 96±3 95.5±0.7 

4-Hexyloxybenzoic acid 7500±60 13.94±0.13 62.4±0.5 122±2 122.4±0.8 

4-Heptyloxybenzoic acid 7970±80 14.5±0.2 66.3±0.6 130±2 130.3±0.8 

(S)-Naproxen 8000±70 14.25±0.14   66.5±0.6 

 

130.8±0.8 

Run 13      

4-Ethylbenzoic acid 5080±90 10.8±0.2 42.3±0.7 92±2 92±2 

S-Ibuprofen 6070±80 11.9±0.2 50.5±0.7  106±2 

4-Hexylbenzoic acid 6620±80 12.5±0.2 55.0±0.6 113±2 113±2 

Biphenyl-4-carboxylic acid 6960±70 12.62±0.13 57.8±0.5 118±5 118±2 

4-Octylbenzoic acid 7420±70 13.4±0.2 61.7±0.6 125±2 124±2 

Fenoprofen 7520±70 13.45±0.14 62.5±0.6  126±2 

(S)-Naproxen 7730±60 13.54±0.12 64.3±0.5  129±2 

Run 9: l
g
Hm(298.15 K)/kJmol

-1
 = (1.92±0.02)Htrn (479 K) + (847±0.8); r 

2
 = 0.9999      

Run 11: l
g
Hm(298.15 K)/kJmol

-1
 = (2.01±0.01)Htrn (480 K) - (3.52±0.5);   r 2 = 0.9999       

Run 13: l
g
Hm(298.15 K)/kJmol

-1
 = (1.65±0.02)Htrn (495 K) + (22.0±1.2); r 

2
 = 0.9996      

a Uncertainties represent 1 standard deviation 

 

 

Figure 3-12 shows a plot of the literature vaporization enthalpies vs. the 

enthalpies of transfer from the column to the gas phase.  As can be seen there is a relatively 

large uncertainty associated with two of the standards.   
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FIGURE 3-12. A plot of literature vaporization enthalpies vs enthalpies of transfer from the 

column to the gas phase for run 10. 

 

 R,S- Fenoprofen (Runs 9-10) and S- naproxen (Runs 11-12) vaporization 

enthalpies were evaluated using standards with similar functional groups.  They were also 

both evaluated using only n-alkylbenzoic acids as standards in Runs 13-14.  These results 

and the comparison can be seen in Table 3-16.  The results for each compound calculated 

with both sets of standards are within experimental error of each other.  The value for S 

naproxen is also in good agreement with the value of 132± 7 kJ·mol
-1

 kJ·mol
-1 

reported 

earlier using both alkyl and alkoxybenzoic acids as standards[18].  Similarly, the 

vaporization enthalpy for S ibuprofen of (105.7±1.3) kJ·mol
-1

, evaluated using only 

alkylbenzoic acids as standards is also in good agreement with the previous value of 

(106±6) kJ·mol
-1

[18].Replacement of a carbon atom by oxygen in the form of an ether 
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appears to provide successful correlations. R,S Fenoprofen, not measured previously has 

been found to have a vaporization enthalpy of (128±6) kJ·mol
-1

at T/K = 298.15 [15].  

TABLE 3-16 

A Summary of the Vaporization Enthalpies at T/K = 298.15 (kJmol
-1

, p
o
 = 101325)

a
 

Targets Run 9 Run 10 Run 11 Run 12 Avg
b
 Lit 

Fenoprofen 126.2±1.2 125±2   125.6±1.2  

S Naproxen 

 

  130.8±0.8 

 

131±2 

 

131±2 

 

131.7±6.7
c
 

132.1±1.8
d
 

Standards       

4-Methoxybenzoic acid 91.1±1.0 91±2 90.9±0.7 91±2 91.0±1.4 90.9±2.5
e
 

4-Ethoxybenzoic acid 95.4±1.0 96±2 95.5±0.7 96±2 95.5±1.4 95.5±3.0
e
 

4-Hexyloxybenzoic acid 121.9±1.2 122±2 122.4±0.8 123±2 122±2 122.2±1.9
e
 

4-Heptyloxybenzoic acid   130.3±0.8 130±2 130±2 130.4±1.8
e
 

4-Octyloxybenzoic acid 135.2±1.2 135±2   135±2 135.0±2.1
e
 

Targets Run 13 Run 14     

S Ibuprofen 106±2 106±2   106±2 106.0±5.5
c
 

Fenoprofen 126±2 126±2   126±2  

S Naproxen 

 

129±2 

 

129±2 

 

  129±2 

 

131.7±6.7
c
 

132.1±1.8
d
 

Standards       

4-Ethylbenzoic acid 92±2 92±2   92±2 92.2±1.5
f
 

4-Hexylbenzoic acid 113±2 113±2   113±2 113.3±1.8
f
 

Biphenyl-4-carboxylic acid 118±2 118±2   118±2 117.6±4.5
f
 

4-Octylbenzoic acid 124±2 124±2   124±2 123.5±2.6
f
 

a
 Uncertainties are one standard deviation. 

b
 Average standard deviation. 

c
 Ref [19] 

d
 Ref [20] 

e
 Ref [14]  

f
 Ref [13]  

 

 Column 3 of Table 3-17 lists the vapor pressures of the standards in the form of 

ln(p/p
o
) calculated from the Clarke and Glew eq at either their fusion temperature or for 

those forming liquid crystals, their respective crystal to nematic or smectic temperature, 
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Tf, whichever is lowest.  The Clarke and Glew equation and the constants required 

(discussed in section 2.3.7) have been reprinted below as Eq 16 and Table 3-17. 

Rln(p/p
o
)  = 𝑐𝑟

𝑔 Hm (θ)(1/θ - 1/T ) - 𝑐𝑟
𝑔 Gm(θ)/θ + 𝑐𝑟

𝑔 Cp(θ)[θ/T -1 + ln(T/θ)] (15) 

TABLE 3-17 

Parameters of the Clarke and Glew Equation Used, p
o
/Pa = 10

5
,  T/K = 298.15

 a
 

Compound  

 

cr
g
Hm(θ) 

kJ·mol
-1 

 

cr
g
Gm(θ) 

kJ·mol
-1 

 

cr
g
 Cp 

 J·mol
-1

·K
-1

 

cr
g
Hm(Tm/K)

b
 

kJ·mol
-1 

 

4-Ethylbenzoic acid 100.6±0.7 39.6±0.1 -40±11 99.3±0.5 (328.5) 

4-Methoxybenzoic acid 112.6±0.6 48.1±0.1 -28±11 110.6±0.3 (351.3) 

4-Ethoxybenzoic acid 121.9±1.0 52.5±0.1 -40±11 119.4±0.5 (361.2 

4-Hexylbenzoic acid 122.3±0.9 50.4±0.1 -43±11 119.9±0.7 (355.1) 

4-Hexyloxybenzoic acid 139.4±0.9
 
 57.7±0.1 -36±11 130.8±0.4 (371.2) 

4-Heptyloxybenzoic acid 157.2±1.2 62.5±0.2 -35±11 155.1±1.0 (358.3) 

4-Octylbenzoic acid 133.3±1.6 56.3±0.3 -41±11 130.7±1.3 (361.2) 

4-Octyloxybenzoic acid 161.4±1.2 64.8±0.2 -34±11 141.1±0.9 (367.8) 

a 
Refs [13, 14] 

b
 Sublimation enthalpy at the mean temperature of measurement. 

 

Using the literature sublimation enthalpy measured at the mean temperature (provided in 

the last column of Table 2-10)[13, 14], the sublimation enthalpy of each standard was 

adjusted to each respective Tfus or Tf. Column four of Table 3-17 includes the temperature 

adjustment and the adjusted sublimation enthalpy at Tfus  or (Tf) is reported in
 
the fifth 

column. The corresponding vaporization enthalpies at Tfus (column 6 of Table 3-21) for 

4-ethyl-,  4-methoxy, 4-ethoxy and 4-hexyloxybenzoic acids, were calculated by 

subtracting the fusion enthalpy (column 2 of Table 3-14) from the corresponding 

sublimation enthalpy, column 5 of Table 3-19 according to eq (6). For the benzoic acids 

that form liquid crystals, the fusion enthalpy included all phase change enthalpies 
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occurring from conversion of the crystal to the liquid crystal, Tf, including the transitions 

to the clearing temperature.[15] 

 The temperature dependence of the subcooled liquid vapor pressures of the 

standards were calculated using the integrated form of the Clausius-Clapeyron equation 

modified to include a heat capacity adjustment for liquids, eq 5A.  This equation was then 

applied to calculate the subcooled vapor pressures of the standards at T/K = 298.15 and 

over the range of temperatures from T/K = (283.15 to 313.15). While eq 5A has not been 

used previously in this manner,  a related equation, 5B  dealing with sublimation vapor 

pressures has been found to reproduce experimental vapor pressures of a variety of 

crystalline materials within a factor of three[21].  A similar degree of accuracy for eq 5A 

is expected based on the results obtained for ibuprofen described below.   The last 

column of Table 3-18 reports the sub-cooled liquid vapor pressure of the standards at T/K 

= 298.15 in the form of ln(pl/p
o
). The liquid vapor pressure equations evaluated for the 

standards over the temperature range T/K = (283.15 to 313.15) are provided in Table 3-

19A. As a measure of quality control, the vaporization enthalpies calculated using these 

equations are compared to the values reported in Table 3-16 by direct correlation in the 

last two columns of Table 3-19A. Most results are within their experimental uncertainty. 
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TABLE 3-19 

Parameters Used in Eq 5A for Calculating Liquid Vapor Pressures at T/K  = 298.15 

 

Tm
a
/Tfus/Tf

.b 

K 

ln(p/p
o
)Tfus

c 

 

Cp(cr)·T 
d
 

kJ·mol
-1

 

cr
g
Hm(Tf,fus)

e
 

kJ·mol
-1

 

l
g
Hm(Tf,fus)

f
 

kJ·mol
-1

 

ln(pl/p
o
)298

g 

 
4-Ethylbenzoic acid 328/385.2 -7.0±0.3 -1.8±0.5 97.5±0.9 85±2 -15.1±0.1 

4-Methoxybenzoic acid 351.3/455.3 -4.2±0.3 -3.6±1.1 107.0±1.1 78±3 -15.9±0.1 

4-Ethoxybenzoic acid 377.8/471.8 -3.5±0.4 -3.6±1.1 116±2 81±3 -16.7±0.2 

4-Hexylbenzoic acid 355.1/370.6
b
 -10.8±0.4 -0.7±0.2 119.2±0.3 105±2 -19.4±0.1 

4-Hexyloxybenzoic acid 371.2/380
b
 -11.3±0.4 -0.5±0.1 130.3±0.4 114±2

g
 -21.6±0.1 

4-Heptyloxybenzoic acid 358.3/365.4
b
 -13.6±0.5 -0.4±0.1 154.7±1.0 123±2 -23.1±0.1 

4-Octylbenzoic acid 361.2/373.3
b
 -12.0±0.7 -0.1±0.2 135.9±1.3

f
 115±2

h
 -21.7±0.5 

4-Octyloxybenzoic acid 367.8/374.5
b
 -13.5±0.5 -0.4±0.1 140.7±0.9 126±2 -24.3±0.5 

a 
Tm: the mean temperature of vapor pressure measurements of the crystalline acid; Tfus: the fusion 

temperature;   
b 
Tf: temperature of transition of the crystal to the nematic or smectic phase, whichever is lower. 

c
 The sublimation vapor pressure relative to atmospheric pressure (10

5
 Pa) at Tfus or Tf calculated by 

the  Clarke and Glew equation (p = pcr = pl); for liquid crystals Tf = Tcr→liquid crystal. 
d 
Heat capacity adjustment from Tm to Tfus or Tf  using eq 7. 

e 
Sublimation enthalpy at Tfus calculated by adjusting the sublimation enthalpy measured at Tm (Table 

2-10 , column 5) for temperature and adding any cr → cr transitions occurring above Tm. 
f 
Vaporization enthalpy at Tfus calculated by subtracting the fusion enthalpy or total solid to isotropic 

liquid phase change enthalpy from column 5 
g 
Sub-cooled liquid vapor pressure calculated at T/K = 298.15 using Eq 5A. 

 

For the Fenoprofen study, the equations in Table 3-19A were used to evaluate 

ln(pl/p
o
) for the standards using calculated values of ln(to/ta)avg from standards and target 

analytes in Runs 9-14.  Values of (to/ta)avg were calculated from the slope and intercept of 

each run, averaged, then the logarithm was taken of the average.  The last two columns of 

Table 3-19A compare the results of vaporization enthalpies calculated from equation 5A 

to the vaporization enthalpies summarized in Table 3-20.  Most of these are within 

experimental error of each other. 
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TABLE 3-20 

Slopes, Intercepts and Vaporization Enthalpies of Liquid Alkyl and Alkoxybenzoic Acids at 

Tm/K = 298.15 Calculated Using Equation 5A, p
o
/Pa = 10

5
 

A.  Standards  

Sub-Cooled Vapor Pressure  

Equations from Runs 13/14 
a
 

l
g
Hm(298 K) 

kJmol
-1 

Eq 5A               Table 3-16 

4-Ethylbenzoic acid ln(pl/p
o
) =(21.80±0.05) - (10950±20)/T 91.0±0.1 92.2±0.7 

4-Methoxybenzoic acid ln(pl/p
o
) =(20.01±0.04) - (10650±12)/T 88.5±0.1 91±3 

4-Ethoxybenzoic acid ln(pl/p
o
) =(20.84±0.04) - (11149±13)/T 92.7±0.1 96±3 

4-Hexylbenzoic acid ln(pl/p
o
) =(26.10±0.07) - (13580±20)/T 112.9±0.2 113±2 

4-Hexyloxybenzoic acid ln(pl/p
o
) =(27.64±0.07) - (14740±20)/T 122.5±0.2 122±2 

4-Heptyloxybenzoic acid ln(pl/p
o
) =(29.78±0.08) - (15760±30)/T 131.1±0.2 130±2 

4-Octylbenzoic acid ln(pl/p
o
) =(30.54±0.09) - (16350±30)/T 123.4±0.2 124.1±0.7 

4-Octyloxybenzoic acid ln(pl/p
o
) =(30.53±0.09) - (16350±30)/T 135.9±0.2 135±2 

 

B. Targets 

Sub-Cooled Liquid Vapor Pressure Equations 
b
  

Eq 5A         

 

Table 3-16 

S Ibuprofen; Runs 13/14 ln(pl/p
o
) = (24.53±0.02) - (12630±0.5)/T 105.0±0.2 105.8±0.7 

R,S Fenoprofen; Runs 9/10 ln(pl/p
o
) = (28.35±0.003) - (15228±0.4)/T 126.6±0.01 125.6±1.2 

S Naproxen; Runs 11/12 ln(pl/p
o
) = (29.71±0.001) - (15938±1.0)/T 132.5±0.01 131±2 

4-Biphenylcarboxylic acid; 

Runs 13/14 

ln(pl/p
o
) = (26.49±0.01) - (14077±1.0)/T 117.0±0.2 118±5 

C. Targets Sub-Cooled and Liquid Vapor  

Pressure Equations from Runs 13/14
c
 

  

S Ibuprofen  ln(pl/p
o
) = (23.61±0.02) – (12366±0.02)/T 102.8±0.01 105.8±0.7 

R,S Fenoprofen  ln(pl/p
o
) = (28.48±0.01) – (15070.5±0. 2)/T 125.3±0.01 125.6±1.2 

S Naproxen;  ln(pl/p
o
) =(29.12±0.003) - (15494.7±1.0)/T 128.8±0.01 131±2 

4-Biphenylcarboxylic acid ln(pl/p
o
) = (26.49±0.01) – (14067.0±1.2)/T 116.9±0.01 118±5 

a 
Sub-cooled liquid vapor pressure equations evaluated using the Clasius of the standards to 

calculate ln(p/p
o
) at Tfus of each standard at the mean temperature of measurement, Eq 5A and the 

parameters reported in Table 3-17 to evaluate the vapor pressures over the temperature range T/K 

=(Tfus to 298.15).  
b 
Vapor pressure equations evaluated from correlations between ln(pl/p

o
)  and ln(to/ta) of only 

standards in Table 3-19A with the same functional group also over the temperature range T/K = 

(283.15 to 313.15). All correlations characterized by r
 2
 > 0.99. 

c 
Vapor pressure equations evaluated from correlations between ln(pl/p

o
)  and ln(to/ta) using all the 

standards in Table 3-19A in Runs 13/14 also over the temperature range T/K = (283.15 to 313.15). 

All correlations characterized by r
 2
 > 0.99. 
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  The vapor pressure results of the Table 3-20 calculations are shown in Table 3-21.  

At the bottom of Table 3-21, the correlation equation has been given for each set of runs.  

As can be seen, the r
2
 values are all greater than 0.999.  The vapor pressures of the target 

compounds were calculated from these equations.  The equations were generated from run 

data over the temperature range of T= 283.15 – 313.15 K.  The calculated vapor pressures 

for compounds that were included in more than one mix are compared in the fifth and sixth 

columns.  Slightly larger vapor pressures are predicted by the alkylbenzoic acids but the 

results still remain within the experimental uncertainties cited. There do not appear to be 

any experimental values available for either the standards or targets.  S Ibuprofen and 

biphenyl-4-carboxylic acid were evaluated using only the alkylbenzoic acids as standards 

in Runs 13/14 while R,S Fenoprofen and S naproxen were evaluated using the 

alkoxybenzoic acids from Runs 9/10 and 11/12, respectively.  Columns 5 and 7 of Table 3-

21 compare the liquid vapor pressure values calculated in this work to estimated 

values.[22]These results do not agree as well.  Differences are between two and three 

orders of magnitude for the larger acids.  The vapor pressure of Fenoprofen, for instance, 

was calculated as (0.4±0.3)Pa vs. the estimate of 31.3Pa.  Another way to put the 

experimental data into perspective is to look at the uncertainties, which in some cases are 

around 25% of the calculated values.[15] 
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TABLE 3-21 

Results of Correlations Between ln(to/ta)avg and ln(pl/p
o
). Sub-cooled Liquid Vapor 

Pressures of R,S Fenoprofen, S Naproxen, S Ibuprofen and the Alkoxybenzoic Acids 

and a Comparison of Results Using Different Standards at T/K =298.15
a
  

Run 9/10 

 

ln(to/ta)avg ln(pl/p
o
) ln(pl/p

o
)calc 

10
4
pl/Pa 

 (298.15 

K) 

Run 9/10 

10
4
pl/Pa 

 (298.15 K) 

 

10
4
pl/Pa

 b
 

 (298.15 

K) 

Est 
4-Methoxybenzoic acid -6.86 -15.93 -15.9±0.3 130±30  9000 

4-Ethoxybenzoic acid -7.45 -16.65 -16.7±0.3 60±20  2800 

4-Hexyloxybenzoic acid -11.03 -21.59 -21.6±0.3 0.38±0.12  330 

R,S Fenoprofen -11.72  -22.7±0.3 0.14±0.05  31 

4-Octyloxybenzoic acid -12.83 -24.31 -24.2±0.4 0.03±0.01  48 

Run 11/12     From Run 9/10  

4-Methoxybenzoic acid -7.07 -15.93 -15.9±0.4 130±40 130±30 9000 

4-Ethoxybenzoic acid -7.67 -16.65 -16.7±0.5 60±20 60±20 2800 

4-Hexyloxybenzoic acid -11.17 -21.59 -21.7±0.5 0.39±0.13 0.38±0.12 330 

4-Heptyloxybenzoic acid -12.13 -23.09 -23.0±0.6 0.10±0.03  90 

S Naproxen -12.54  -23.6±0.6 0.06±0.02 0.12±0.001 34
 
 

Run 13/14     

From 

9/10 or 11/12 

 

4-Ethylbenzoic acid -6.32 -15.00 -15.0±0.6 310±2  6500 

4-Methoxybenzoic acid -6.86  -15.7±0.6 150±1 130±30/130±30 9000 

4-Ethoxybenzoic acid -7.48  -16.5±0.6 69±0.4 60±20/60±20 2800 

S Ibuprofen -8.55  -17.9±0.7 17±0.1  760 

4-Hexylbenzoic acid -9.77 -19.44 19.4±0.7 3.6±0.02  330 

Biphenyl-4-carboxylic acid -10.75  -20.7±0.8 1.0±0.01  68 

4-Octylbenzoic acid -11.54 -21.72 -21.4±0.8 0.4±.002  92 

R,S Fenoprofen -11.82  -22.1±0.8 0.26±0.002 0.38±0.12 31 

S Naproxen -12.43  -22.9±0.8 0.12±0.001 0.06±0.02 0.0034
 
 

Runs 9/10: ln(p/po) = (1.40±0.02)ln(to/ta) - (6.3±0.2); r 2 = 0.9995     

Runs 11/12: ln(p/po) = (1.42±0.02)ln(to/ta) - (5.9±0.2); r 
2
 = 0.9995      

Runs 13/14: ln(p/po) = (1.26±0.03)ln(to/ta) - (7.2±0.2); r 2 = 0.9987     
a Uncertainties represent 1 standard deviation; vapor pressures are believed accurate to within a 

factor of three. 
b Estimated, ref [6] 

 

 While there are no experimental sub-cooled liquid vapor pressure data available 

in the literature for comparison of the result in Table 3-21, vapor pressures of crystalline 

racemic and chiral ibuprofen and chiral naproxen have been reported.[20, 23, 24] 
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Vapor pressures for both racemic and chiral ibuprofen are available at T/K = 298.15. The 

fusion temperature of S naproxen at Tfus/K = 482 lies well above the temperature range at 

which vapor pressures evaluated indirectly from the Clarke and Glew equation are likely 

applicable. However, Tfus/K  = 324.3 for S ibuprofen falls within this range.  

Consequently, liquid vapor pressures of the alkylbenzoic acids from Runs 13/14 were 

also evaluated at the fusion temperature of S ibuprofen, Tfus/K  = 324.3, using eq 5A, and 

the appropriate terms in columns 2, 3 and 6 of Table 3-19.  Values of ln(pl/p
o
)of the 

alkylbenzoic acids were then correlated with their corresponding values of ln(to/ta)avg 

evaluated at the fusion temperature of (S)-ibuprofen. The resulting equation in 

combination with the corresponding value of ln(to/ta)avg for (S)-ibuprofen was then used to 

evaluate its vapor pressure at this temperature. A value of ln(pl/p
o
)= ln(pcr/p

o
)= -

(14.4±0.6) at T/K = 324.3 was obtained.  The vaporization enthalpy of (S)-ibuprofen was 

adjusted for temperature from T/K  = 298.15 to Tfus/K  = 324.3 using eq (9). A 

vaporization enthalpy of (102.4±1.4) kJ·mol
-1

 was calculated at this temperature. A 

sublimation enthalpy of (121±2) kJ·mol
-1

 is obtained by combining this value with the 

fusion enthalpy of (18.4±0.6) kJ·mol
-1

. Applying the sublimation enthalpy and the value 

of  ln(pcr/p
o
) evaluated at the fusion temperature to eq (5B) resulted in a value of ln(p/p

o
)= 

-(18.3±0.6) at T/K = 298.15. These calculations are summarized in Table 3-22.[15] 

 Vaporization enthalpies of chiral and racemic materials are generally quite similar 

as are their liquid vapor pressures.[16]  An approximate vapor pressure of (R,S)-

ibuprofen was estimated in a similar manner, also summarized in Table 3-22. Liquid 

vapor pressures of the 4-alkylbenzoic acids were calculated at the fusion temperature of 

R,S ibuprofen, Tfus/K  = 347.5, using eq (5A), the appropriate vaporization enthalpies and 
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liquid vapor pressures evaluated at fusion temperature of each respective 4-alkylbenzoic 

acid, Table 3-19 (columns 6 and 3 respectively).  These values were then correlated with 

the corresponding values of ln(to/ta)avg also evaluated at Tfus/K using the value for  S 

ibuprofen as a surrogate. A value of ln(p/p
o
) = -(11.9±0.6) was obtained for R,S 

ibuprofen. Using the vaporization enthalpy of S ibuprofen at T/K = 298.15 for the 

racemic form and adjusting it to Tfus of the racemic mixture, resulted in a value of 

(100.2±1.3) kJ·mol
-1

. Combined with a fusion enthalpy of (26.4±1.0) kJ·mol
-1 

for R,S 

ibuprofen,[19] a sublimation enthalpy of (127±2) kJ·mol
-1

 and the value of ln(pcr/p
o
)Tfus =  

-(11.9±0.6) applied to eq (5B) resulted in a value of ln(pcr /p
o
) = -(19.2±0.6) at T/K = 

298.15, Table 3-22.[15] 

 

TABLE 3-22 

Evaluation of the Vapor Pressure of Crystalline (S) and (R,S)-Ibuprofen at T/K = 298.15; 

Uncertainties are One Standard Deviation   

 Tfus
 

K 

ln(p/p
o
)Tfus

a Cp(l)/Cp(cr) 

J·K·mol
-1

 
Cp(l)·T 

kJ·mol
-1

 

l
g
Hm(Tfus) 

kJ·mol
-1

 

cr
l
Hm(Tfus) 

kJ·mol
-1

 

cr
g
Hm(Tfus) 

kJ·mol
-1

 

ln(pl/p
o
)298 K

 

 
(S) 324.3 -14.48±0.03 386.6/294.8 -2.9±0.4 102.4±1.4 18.4±0.6 121±2 -18.3±0.6 

(R,S) 347.5 -11.97±0.06 386.6/294.8 -5.5±0.8 100±2 26.4±1.0 127±2 -19.2±0.6 

a 
p = pcr = pl.

 

 

The vapor pressures of racemic and chiral ibuprofen and their sublimation 

enthalpies estimated in this work are compared to literature values in Table 3-23. The 

literature values include sublimation enthalpies measured directly. Vapor pressures 

measured by Perlovitch et al.[23] are by transpiration and those by Ertel et al.[24] are by 

Knudsen effusion. For S ibuprofen, our vapor pressure estimate agrees within a factor of 

three despite the fact that our sublimation enthalpy is considerably larger than the value 

reported by Perlovitch et al. For R,S ibuprofen, our vapor pressure estimate is smaller but 

with consideration of the uncertainty cited, also differs within a factor of three. Our 
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sublimation enthalpies for racemic S ibuprofen are also somewhat larger than both 

literature values. While this agreement may be fortuitous, the statement made above 

regarding the accuracy of eq (5A) is based on this result. As noted by Perlovitch et 

al.[23], the sublimation enthalpy reported by Ertel on the racemic material combined 

Knudsen effusion measurements using two orifices. Segregating the measurements by 

orifice size resulted in measurements of (117±2) kJ·mol
-1

, in better agreement with the 

transpiration results and (124 ±2) kJ·mol
-1

, in better agreement with these estimates.[15, 

23] 

TABLE 3-23 

A Comparison of Vapor Pressures of Crystalline S and R,S Ibuprofen Estimated in This 

Work With Literature Values
 

(S)-Ibuprofen 10
4
(pcr)298 

K/Pa 

cr
g
Hm(298 K) 

kJ·mol
-1

 

(R,S)-Ibuprofen 10
4
(pcr)298 K/Pa cr

g
Hm(298 K) 

kJ·mol
-1

 

This work 11±7 122±2 This work  5±2 129±2
a
 

Perlovitch et al.
b
 53±11 107.8±0.5 Perlovitch et al.

b
 18±4 115.8±0.6 

   Ertel
d
 11.8 121.8

b
 

a 
Evaluated by combining the vaporization enthalpy of S ibuprofen (100.2±1.3 kJ·mol

-1
) with the 

fusion enthalpy of (R,S)-ibuprofen (26.4±1.0 kJ·mol
-1

) both at Tfus/K = 347.5 and adjusting the 

sublimation enthalpy to T/K  = 298.15 using Eq (7). 
b
 Ref [23]  

c
 Ref [24] 

d 
Measured at an estimated mean temperature of T/K = 315. Adjusted to T/K = 298.15 results in a 

value of 122.6 kJ·mol
-1

. 

 

3.4. Alcohols 

 3.4.1. Patchouli Oil Components 

 Initially, the patchouli oil sample was dissolved in methylene chloride and 

injected on the gas chromatograph using a SPB-5 15m column to see if proper separation 

of compounds could be achieved.  Figure 3-13 shows a typical chromatogram of the 

patchouli oil sample.  
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FIGURE 3-13. A gas chromatogram of the patchouli oil sample generated in this study with a 

15m SPB-5 column at an oven temperature of T = 418.15 K.  From left to right: (1) β-

patchoulene; (2) caryophyllene; (3) α-guaiene (all cis); (4) seychellene; (5) α-patchoulene; (6) 

guaiene; (7) δ-guaiene; (8) patchouli alcohol 

 

 After the compounds were separated on the SPB-5 column, the sample was taken 

and injected on a GC-MS instrument with an 11m HP-1 Ultra column, electron impact 

(EI) ionization source and quadrupole mass analyzer.  50eV were used at the ionization 

source as opposed to the standard 70eV due to an aging instrument that was completely 

fragmenting the molecular ion.  As many of the compounds present are structural isomers 

of each other, identification was a little difficult from the EI spectra alone.  The 

experimental spectra were compared to those available from the NIST library.  Example 

spectra compared to NIST library structures can be seen in Figures 3-14 and 3-15.   
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FIGURE 3-14. An example mass spectra is given and compared to the NIST library structure.  

This particular compound is α-guaiene.   It is one of the more abundant compounds in the 

patchouli oil sample and it eluted third in Figure 3-13. 
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FIGURE 3-15. An example mass spectra is given and compared to the NIST library structure.  

This particular compound is patchouli alcohol.   It is the most abundant compound in the 

patchouli oil sample and it eluted last as seen in Figure 3-13. 

 

To further aid in identification, the relative peak areas and proposed structures 

were compared to literature published by Restek.[25]  The experimental results on the 

11m HP-1 Ultra column were favorable when compared to the Restek literature which 

used a Rtx-5SiMS.  The elution order, however, was different.  The Restek literature is 

reproduced below in Figure 3-16. [25]  The closest that the Restek literature 

chromatogram could be matched using an isothermal oven temperature on the 15m SPB-

5 column was at T = 393.15 K.  This chromatogram has been provided in Figure 3-

17.[15] 
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FIGURE 3-16. Restek has published this gas chromatogram of patchouli oil on their website.  

The column used was a Rtx-5SiMS.  The elution order differs slightly from that seen in Figure 3-

13.[25] 

 

 

FIGURE 3-17. This chromatogram taken on a HP-5890 with a 15m SPB-5 column with an 

isothermal oven temp, T = 393.15 K, is the closest that the Restek chromatogram could be 

reproduced [15].  The Restek chromatogram in Fig 3-15 was generated on a different column and 

was done with a temperature ramp program. 
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Nine out of the ten compounds that Restek identified were found in the patchouli 

oil sample in this study.  There was another compound that separated that could’ve been 

the one reported (selinene) by Restek, but it couldn’t be positively identified in this 

analysis.  Two different temperature programs were needed to identify all of the 

compounds as some compounds co-eluted at the lower temperature and different 

compounds co-eluted at the higher temperature.  The Kovats Retention Index (RI) was 

taken for each of the compounds to further aid in identification.  It should be noted, 

however, that the RI values are a function of temperature.  Table 3-24 is a comparison of 

the compounds identified in each.   

TABLE 3-24 

Summary of compounds found in the patchouli oil sample.  In order of elution from Restek 

literature. 

Compound 
Kovats Index Present in 

Lit Exp Restek Lit This work 

β-Patchoulene 1381
a 

1377
b
 Yes Yes 

β-Elemene 1390
a
 1383

b
 Yes Yes

c
 

Caryophyllene 1419
a 

1424
d 

Yes Yes 

α-Guaiene 1439
a
 1441

e
 Yes Yes 

Seychellene 1460
f
 1445

e 
Yes Yes 

α-Patchoulene 1456
a
 1456

e 
Yes Yes 

Guaiene 1490
f
 1453

d 
Yes Yes 

δ-Guaiene 1509
a
 1504

e
 Yes Yes 

Selinene 1517
g
 N/A

h
 Yes No

g
 

Patchouli Alcohol 1640
c
 1649 Yes Yes 

a 
Ref [26] 

b
The author thanks Manu Kuria for running the alkane retention index GC program on this compound. 

c 
This peak identified in a different temperature program than the one shown in Figure 3-13.  It co-elutes 

with peak 1 in Figure 3-13. 
d 
The author thanks Megan Orf for running the alkane retention index GC program on this compound. 

e 
The author thanks Lorna Espinosa for running the alkane retention index GC program on this compound. 

f 
Ref [27] 

g 
Ref [28] 

h 
In a different temperature program than the one shown in Figure 3-13 a peak that co-eluted was able to be 

separated from patchouli alcohol.  This peak was not able to be positively identified, but eluted shortly 

after patchouli alcohol and with a much lower abundance. 
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As can be seen in Table 3-24, many of the experimental and literature values for retention 

index are similar, however, there are a couple that differ by 15 or more; namely 

seychellene and guaiene.  The literature numbers were all taken from DB-5 columns as 

was used in our lab.  Although retention index numbers are often described to be 

independent of temperature, in reality there is some temperature dependence.  The large 

retention index differences for those compounds could be due to a different temperature 

program using a ramp instead of isothermal conditions, or it could simply be due to a 

much higher or much lower oven temperature than was experimentally used in our lab.  

Even with these differences in mind, it should still be noted that all compounds still 

eluted between the same n-alkanes as reported in the literature. 

 

3.4.2. Patchouli Alcohol Vaporization Enthalpy 

When identification of the compounds was completed, the vaporization enthalpies 

were measured on the 15m SPB-5 column.  Figure 3-18 shows a typical gas 

chromatogram of the patchouli oil with standards spiked in.  The inset, labeled 4, are the 

compounds in patchouli oil which can be more clearly seen in Figure 3-13. 
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FIGURE 3-18.  The initial patchouli oil runs were performed by simply spiking in standards and 

diluting with dichloromethane and run on a SPB-5 column at an oven temperature of T = 449 K.  

From left to right: (1) DCM; (2) 1-adamantanol; (3) 1-undecanol; (4) patchouli oil compounds- 

see Figure 3-13; (5) 2-tetradecanol; (6) patchouli alcohol; (7) 1-pentadecanol; (8) 1-hexadecanol    

 

Primary, secondary, and tertiary alcohols were all introduced into the patchouli oil 

sample.  Methylene chloride was used as the non-retained standard.  Initially, all of the 

alcohol standards that had literature vaporization enthalpy data available were plotted in 

the vaporization enthalpies vs enthalpies of transfer plot shown in Figure 3-19.  The 

correlation seems to be poor.   

However, if 2-tetradecanol isn’t included as a standard and the remaining three 

standards are used, the r
2
 value increases significantly to 0.9999 and the error bars 

decrease significantly.  This improved correlation can be seen in Figure 3-20. 
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FIGURE 3-19. A plot of literature vaporization enthalpies vs enthalpies of transfer from the 

column to the gas phase.  Using 1-pentadecanol, 1-undecanol, 1-hexadecanol, and 2-tetradecanol 

as standards, the r
2
 < 0.99 is not ideal and the error for each standard is on the order of 12-

14kJ/mol.  2-tetradecanol is the outlier and doesn’t seem to be an appropriate choice for a 

standard when using primary alcohols. 

 

 

FIGURE 3-20.  When taking out 2-tetradecanol, the other three standards correlate quite well.  

The r
2
 value is much higher and the error bars are now on the order of 1kJ/mol.  The blue 

diamonds are the standards and the red squares are the target analytes.  

y = 1.1779x + 29.568 
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Although using only three standards is less than ideal, the calculations were 

carried out and the computed enthalpies from experimental data were compared to 

literature values.  The calculated vaporization enthalpies for the standards and target 

analytes may be seen in Table 3-25.  Since only three standards were used and since all of 

the standards are primary alcohols these vaporization enthalpy values should be used as a 

rough estimate.  This experiment should be repeated with more appropriate standards 

such as secondary and tertiary alcohols if values are available in literature.  Furthermore, 

the retention times measured for these compounds did not tend to correlate well enough 

for vapor pressure calculations. 

 

TABLE 3-25 
Data showing relationship between the enthalpy of transfer at 434K and the enthalpy of vaporization at 

298K.  This data set was generated without using 2-tetradecanol as a standard. 

Runs 15 & 16 

 

- slope 

T/K 

intercept 

 

Htrn(374 K)  

kJmol
-1

 

l
g
Hm(298 K) 

kJmol
-1

 (lit) 

l
g
Hm(298 

K) 

kJmol
-

1
(calc) 

1-Pentadecanol 7200±200 14.3±0.4 60±2 104±3
a
 103.4±1.1 

 7540±40 15.08±0.08 62.7±0.3 
 

103.4±1.0 

1-Undecanol 5400±200 12.0±0.4 45±2 86±2
a
 85.8±1.0 

 5740±30 12.82±0.08 47.8±0.3  85.8±0.9 

1-Hexadecanol 7700±200 14.9±0.4 64±2 107.7±1.2
a
 107.8±1.2 

 7990±40 15.67±0.08 66.4±0.3 
 

107.8±1.1 

2-Tetradecanol 6500±200 13.4±0.4 54±2 99.9
b 

95.9±1.1 

 6780±30 14.13±0.07 56.4±0.3  96.0±1.0 

Patchouli alcohol 5800±200 11.5±0.4 48.3±1.4 
 

89.7±1.0 

 6130±30 12.28±0.07 51.0±0.2 
 

89.6±0.9 

1-Adamantanol 4400±200 10.0±0.4 36±2  75.8±0.9 

 4700±30 10.76±0.07 39.1±0.2  75.6±0.9 

Run 15:  ∆𝑙
𝑔

𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.161 ±0.014)𝛥𝐻𝑡𝑟𝑛(434 𝐾) + (33.6 ±0.8)  r
2
 =  0.9999                    

Run 16:  ∆𝑙
𝑔

𝐻𝑚(298.15 𝐾) / 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 = (1.178 ±0.012)𝛥𝐻𝑡𝑟𝑛(434 𝐾) + (29.6 ±0.7)  r
2
 =  0.9999                  

a
 Reference [29] 

b 
References [30] 
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Chapter 4: Summary 

 The nepetalactone sample was characterized by IR and GC-MS prior to CGC 

analysis.  The IR analysis showed the presence of a compound containing a broad OH 

peak- possibly a carrier.  The GC-MS analysis showed that the sample also contained 

caryophellene.  The vaporization enthalpies at 298.15 K of (4aS,7S,7aS)-nepetalactone 

and (4aS,7S,7aR) –nepetalactone were found to be (682) kJmol
-1

 and (692) kJmol
-1

 

respectively.  The vapor pressures at 298.15 K for (4aS,7S,7aS)-nepetalactone and 

(4aS,7S,7aR) –nepetalactone were found to be (1.2±0.04) Pa and (0.91±0.03) Pa 

respectively.  These compare favorably to literature predictions.  The vaporization 

enthalpies calculated from the vapor pressures generated from correlations between 

ln(p/p
o
) and ln(to/ta) were in good agreement with the ones calculated from the 

correlations between vaporization enthalpies and enthalpies of transfer from the 

condensed phase to the gas phase of the standards. 

 The vaporization enthalpies of whiskey lactone at 298.15 K were found to be 

(68±2) kJmol
-1 

and (69±2) kJmol
-1 

for cis (4S,5S)-4-methyl--octalactone and trans 

(4S,5R)-4-methyl--octalactone, respectively.  These values compared favorably to the 

estimated value of 67.2 kJmol
-1

.  The vaporization enthalpies of menthalactone at 298.15 

K were found to be (73±2) kJmol
-1

 and (74±2) kJmol
-1

 for (-)-mintlactone and (+)-

isomintlactone respectively.  The vapor pressures at 298.15 K of cis (4S,5S)-4-methyl--

octalactone and trans (4S,5R)-4-methyl--octalactone were calculated to be (1.5±0.09) 

Pa and (2.0±0.1) Pa respectively.  The vapor pressures at 295.15 K of (-)-mintlactone and 

(+)-isomintlactone were calculated to be (0.33±0.02) Pa and (0.26±0.012) Pa 

respectively.  The vaporization enthalpies calculated from the vapor pressures were in 
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good agreement with the ones calculated from the vaporization enthalpies and enthalpies 

of transfer from the condensed phase to the gas phase of the standards. 

 Aliphatic aldehydes were found to correlate well for the purposes of calculating 

vaporization enthalpies.  Aromatic aldehydes, however, did not correlate with the 

aliphatic data.  Vaporization enthalpies were calculated for trans-2-hexenal (45±2 kJmol
-

1
); 2,6-dimethyl-5-heptenal (53±2 kJmol

-1
); 2,6-nonadienal (57±2 kJmol

-1
); trans-2-

nonenal (57.3±0.8 kJmol
-1

); trans,trans-2,4-decadienal (63.6±0.9 kJmol
-1

); and 2-butyl-

2-octenal (66.0±0.9 kJmol
-1

).  Calculation of vapor pressure data for the aldehydes was 

not possible due to the lack of a good correlation in the ln(p/p°) vs 

ln(to/ta) plots. 

The vaporization enthalpy and vapor pressure of R,S-Fenoprofen at 298.15 K 

were evaluated to be 125.6±1.2 kJmol
-1

 and 10
4
pl/Pa = (0.19±0.06) respectively.  The 

vaporization enthalpies evaluated for S Ibuprofen and S Naproxen were calculated to be 

in agreement with literature values.   Sub-cooled liquid vapor pressures for S Ibuprofen 

and S Naproxen were found to be 10
4
pl/Pa = (19±14) and (0.05±0.03) respectively at 

298.15 K.  A method to approximate heat capacity of liquid crystals for use as CGC 

standards was explained.  The vapor pressure of crystalline S Ibuprofen was estimated by 

using vapor pressures of alkylbenzoic acid standards and other thermodynamic 

properties.   

 A patchouli oil sample from India was examined and its constituent compounds 

were identified by GC-MS using a NIST/EPA/NIH MS library.  The compounds were 

compared to those identified by Restek®.  A retention index of RI = 1633 was measured 

for patchouli alcohol to further establish its identity.  Initial CGC runs using primary 
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alcohols, a secondary alcohol, and a polycyclic tertiary alcohol as standards were 

performed to see the feasibility of using primary n-alcohols as standards for polycyclic 

alcohols in the absence of reliable vaporization enthalpy data for polycyclic standards.  

The n-alcohols proved to work for calculating vaporization enthalpy; however, their 

reported vapor pressures did not correlate well enough to evaluate the corresponding 

vapor pressures. 
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APPENDIX: SUPPORTING DATA 

TABLE S1A  
Retention times for nepetalactone, Run 1 

Run  1 398.4 403.5 408.8 413.8 418.8 423.9 429.0 

to = 60 s    to/t    

CH2Cl2 0.501 0.504 0.508 0.510 0.510 0.517 0.517 

-Hexanolactone 1.535 1.395 1.286 1.191 1.107 1.044 0.985 

-Octanolactone 3.907 3.340 2.923 2.564 2.281 2.023 1.843 

δ-Octanolactone 4.386 3.743 3.258 2.847 2.517 2.229 2.012 

(4aS,7S,7aS)-Nepetalactone 6.342 5.376 4.615 3.988 3.466 3.046 2.690 

(4aS,7S,7aR) -Nepetalactone 7.350 6.202 5.302 4.559 3.950 3.448 3.037 

-Decanolactone 10.809 8.887 7.433 6.243 5.318 4.523 3.926 

-Undecanolactone 19.034 15.312 12.568 10.349 8.680 7.209 6.161 

δ-Undecanolactone 21.488 17.271 14.106 11.586 9.660 8.028 6.804 

-Dodecanolactone 33.542 26.490 21.343 17.270 14.284 11.619 9.777 

δ-Dodecanolactone 37.620 29.715 23.821 19.250 15.821 12.889 10.764 

 

TABLE S1B  
Retention times for nepetalactone, Run 2 

Run  2 398.3 403.5 408.5 413.7 418.8 423.8 429.0 

to = 60 s    to/t    

CH2Cl2 0.550 0.551 0.551 0.548 0.546 0.548 0.517 

-Hexanolactone 1.626 1.478 1.354 1.248 1.159 1.086 0.985 

-Octanolactone 4.029 3.469 3.008 2.637 2.328 2.076 1.843 

δ-Octanolactone 4.581 3.926 3.390 2.957 2.599 2.305 2.012 

(4aS,7S,7aS)-Nepetalactone 6.733 5.699 4.865 4.191 3.634 3.178 2.796 

(4aS,7S,7aR) -Nepetalactone 7.783 6.562 5.574 4.782 4.128 3.592 3.037 

-Decanolactone 11.307 9.321 7.736 6.495 5.490 4.681 3.926 

-Undecanolactone 19.743 15.983 12.997 10.71 8.885 7.431 6.161 

δ-Undecanolactone 22.742 18.342 14.896 12.21 10.103 8.416 6.804 

-Dodecanolactone 34.611 27.564 22.012 17.834 14.548 11.955 9.777 

δ-Dodecanolactone 39.591 31.392 25.066 20.229 16.448 13.474 10.764 
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TABLE S2A  
Retention times for whiskey lactone/ menthalactone, Run 3 

 

404.2 409.2 414.2 419.2 424.1 429.1 434.0 

to = 60 s 

   

 t/to 

   Acetone  0.457 0.445 0.460 0.470 0.464 0.480 0.488 

γ-Hexalactone 1.401 1.278 1.181 1.102 1.033 0.977 0.933 

trans-Whiskey lactone 3.855 3.325 2.895 2.547 2.265 2.034 1.832 

cis-Whiskey lactone 4.515 3.873 3.352 2.930 2.592 2.313 2.068 

γ-Nonalactone 5.543 4.704 4.036 3.488 3.064 2.713 2.395 

γ-Decalactone 9.258 7.696 6.476 5.480 4.717 4.101 3.539 

(-)-Menthalactone 10.960 9.130 7.710 6.533 5.634 4.911 4.227 

(+)-Isomenthalactone 12.292 10.233 8.594 7.278 6.242 5.405 4.660 

γ-Undecalactone 15.442 12.612 10.427 8.670 7.325 6.261 5.299 

γ-Dodecalactone 26.636 21.356 17.380 14.190 11.783 9.929 8.230 

 

TABLE S2B  
Retention times for whiskey lactone/ menthalactone, Run 4 

 

404.0 409.1 414.1 419.1 424.1 429.0 433.9 

to = 60 s 

   

t/to 

   Acetone  0.518 0.520 0.517 0.524 0.539 0.531 0.532 

γ-Hexalactone 1.554 1.416 1.298 1.210 1.141 1.064 1.003 

trans-Whiskey lactone 4.260 3.655 3.170 2.792 2.470 2.194 1.965 

cis-Whiskey lactone 4.985 4.251 3.668 3.210 2.820 2.492 2.218 

γ-Nonalactone 6.055 5.110 4.371 3.799 3.298 2.897 2.556 

γ-Decalactone 10.139 8.380 7.035 5.986 5.081 4.380 3.784 

(-)-Menthalactone
c
 12.114 10.034 8.454 7.215 6.114 5.297 4.574 

(+)-Isomenthalactone
d
 13.591 11.251 9.433 7.999 6.787 5.820 5.015 

γ-Undecalactone 17.348 14.065 11.606 9.701 8.056 6.846 5.805 

γ-Dodecalactone 29.352 23.422 19.018 15.618 12.753 10.650 8.882 

 

TABLE S3A  
Run 3 comparison of whiskey lactone isomer peak areas for isomer assignment. 

Temp (K) 
First Whiskey Lactone Peak Second Whiskey Lactone Peak 

Area Count Area % Area Count Area % 

434.0 655799 51.6% 614246 48.4% 

429.1 713705 50.5% 700774 49.5% 

424.1 763816 51.7% 712331 48.3% 

419.2 603907 51.3% 574105 48.7% 

414.2 693085 51.2% 661328 48.8% 

409.2 687311 51.7% 642530 48.3% 

404.2 697478 51.0% 670169 49.0% 

Average  51.3%  48.7% 
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TABLE S3B 
Run 4 comparison of whiskey lactone isomer peak areas for isomer assignment. 

Temp (K) 
First Whiskey Lactone Peak Second Whiskey Lactone Peak 

Area Count Area % Area Count Area % 

433.9 1173200 51.8% 1093280 48.2% 

429.0 792697 51.8% 738602 48.2% 

424.1 798204 52.2% 730709 47.8% 

419.1 858121 52.1% 787705 47.9% 

414.2 560679 52.0% 517256 48.0% 

409.1 920684 51.6% 863099 48.4% 

404.1 1085860 51.7% 1016460 48.3% 

Average  51.9%  48.1% 

 

TABLE S3C  
Run 3 comparison of menthalactone isomer peak areas for isomer assignment. 

Temp (K) 
First Menthalactone Peak Second Menthalactone Peak 

Area Count Area % Area Count Area % 

434.0 1283480 93.3% 92331 6.7% 

429.1 1808350 93.2% 132121 6.8% 

424.1 1462620 93.3% 104794 6.7% 

419.2 1279490 93.2% 93085 6.8% 

414.2 1532530 93.2% 111529 6.8% 

409.2 1349480 93.3% 97326 6.7% 

404.2 1579340 93.2% 115192 6.8% 

Average  93.2%  6.8% 

 

TABLE S3D 
Run 4 comparison of menthalactone isomer peak areas for isomer assignment.  

Temp (K) 
First Menthalactone Peak Second Menthalactone Peak 

Area Count Area % Area Count Area % 

433.9 2255930 93.3% 161237 6.7% 

429.0 1517560 93.3% 108535 6.7% 

424.1 1392940 93.3% 99262 6.7% 

419.1 1507880 93.4% 105885 6.6% 

414.2 996788 93.4% 70585 6.6% 

409.1 1798440 93.3% 129132 6.7% 

404.1 2148240 93.3% 154633 6.7% 

Average  93.3%  6.7% 
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TABLE S4A 
Retention times for aldehyde, Run 5 (low temp) 

 359.3 364.3 369.3 374.3 379.3 384.4 389.4 

to = 60 s 

   

t/to 

   CH2Cl2 2.130 2.198 2.203 2.201 2.205 2.230 2.235 

Hexanal 3.086 3.016 2.903 2.811 2.743 2.690 2.641 

trans-2-Hexenal 3.636 3.473 3.284 3.134 3.024 2.922 2.843 

Benzaldehyde 5.825 5.296 4.810 4.420 4.127 3.840 3.645 

Octanal 6.812 6.062 5.408 4.886 4.486 4.127 3.869 

2,6-Dimethyl-5-heptenal 8.948 7.784 6.805 6.025 5.427 4.886 4.512 

Nonanal 12.079 10.269 8.794 7.612 6.709 5.914 5.369 

trans,cis-2,6-Nonadienal 16.434 13.752 11.589 9.858 8.532 7.370 6.609 

trans-4-Decenal 21.468 17.648 14.627 12.237 10.411 8.854 7.807 

Decanal 22.706 18.624 15.418 12.854 10.884 9.250 8.118 

trans-Cinnamaldehyde 35.934 29.335 24.166 19.817 16.429 13.692 11.959 

 

TABLE S4B 
Retention times for aldehyde, Run 6 (low temp) 

 357.4 362.4 367.5 372.5 377.6 382.7 387.6 

to = 60 s 

   

t/to 

   CH2Cl2 2.200 2.194 2.218 2.225 2.232 2.243 2.254 

Hexanal 3.147 3.007 2.911 2.826 2.751 2.695 2.651 

trans-2-Hexenal 3.734 3.511 3.309 3.173 3.038 2.938 2.860 

Benzaldehyde 6.016 5.448 4.865 4.525 4.167 3.902 3.684 

Octanal 6.987 6.192 5.453 4.976 4.521 4.179 3.902 

2,6-Dimethyl-5-heptenal 9.209 8.010 6.869 6.112 5.485 4.978 4.562 

Nonanal 12.488 10.651 8.870 7.833 6.802 6.050 5.440 

trans,cis-2,6-Nonadienal 17.182 14.493 11.693 10.231 8.692 7.606 6.717 

trans-4-Decenal 22.286 18.470 14.729 12.648 10.595 9.119 7.923 

Decanal 23.554 19.450 15.500 13.265 11.079 9.506 8.238 

trans-Cinnamaldehyde 38.473 31.850 24.142 20.912 16.988 14.379 12.202 
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TABLE S4C  
Retention times for aldehyde, Run 7 

 
395.7 400.7 405.6 410.5 415.3 420.3 425.2 

to = 60 s 

   

t/to 

   CH2Cl2 2.289 2.330 2.332 2.361 2.365 2.381 2.375 

Hexanal 2.602 2.606 2.580 2.582 2.563 2.557 2.536 

Benzaldehyde 3.362 3.262 3.155 3.086 3.006 2.948 2.883 

2,6-Dimethyl-5-heptenal 3.949 3.749 3.560 3.426 3.292 3.189 3.087 

Tolualdehyde 4.521 4.243 3.993 3.806 3.622 3.475 3.343 

trans-2-Nonenal 5.486 5.026 4.634 4.331 4.055 3.831 3.639 

Decanal 6.362 5.742 5.219 4.815 4.459 4.171 3.924 

trans-Cinnamaldehyde 8.913 7.894 7.040 6.358 5.768 5.273 4.885 

trans, trans -2,4-Decadienal 10.317 8.983 7.893 7.029 6.300 5.700 5.220 

2-Butyl-2-octenal 12.901 11.051 9.567 8.392 7.415 6.613 5.977 

Lauric aldehyde 15.358 12.990 11.097 9.613 8.396 7.409 6.623 

Cyclamen aldehyde 20.169 16.939 14.346 12.301 10.639 9.269 8.204 

 

TABLE S4D 
Retention times for aldehyde, Run 8 

 
395.7 400.6 405.6 410.5 415.3 420.2 425 

to = 60 s 

   

t/to 

   CH2Cl2 2.307 2.325 2.335 2.344 2.358 2.371 2.378 

Hexanal 2.619 2.600 2.580 2.562 2.555 2.548 2.537 

Benzaldehyde 3.377 3.254 3.154 3.063 2.998 2.938 2.883 

2,6-Dimethyl-5-heptenal 3.963 3.740 3.559 3.402 3.284 3.179 3.087 

Tolualdehyde 4.536 4.229 3.991 3.774 3.616 3.468 3.341 

trans-2-Nonenal 5.499 5.009 4.630 4.296 4.049 3.824 3.635 

Decanal 6.371 5.724 5.214 4.784 4.451 4.163 3.922 

trans-Cinnamaldehyde 8.929 7.830 7.019 6.293 5.763 5.271 4.870 

trans, trans -2,4-Decadienal 10.324 8.932 7.874 6.974 6.294 5.696 5.208 

2-Butyl-2-octenal 12.894 10.998 9.549 8.332 7.410 6.612 5.963 

Lauric aldehyde 15.351 12.929 11.074 9.555 8.389 7.405 6.611 

Cyclamen aldehyde 20.155 16.813 14.307 12.219 10.633 9.271 8.179 
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TABLE S5A  
Retention times for Fenoprofen, Run 9 

 

464.2 

 

469.3 

 

474.4 

 

479.4 

 

484.5 

 

489.5 

 

494.5 

 

to = 60 s 

   

t/to 

   DCM/THF 2.296 2.354 2.366 2.394 2.410 2.418 2.528 

4-Methoxybenzoic acid 3.751 3.669 3.498 3.404 3.312 3.234 3.276 

4-Ethoxybenzoic acid 4.195 4.054 3.827 3.687 3.558 3.451 3.469 

4-Propoxybenzoic acid 5.100 4.846 4.478 4.251 4.042 3.874 3.843 

4-Hexyloxybenzoic acid 11.913 10.669 9.201 8.262 7.416 6.773 6.360 

Fenoprofen 16.725 14.717 12.519 11.040 9.743 8.758 8.076 

4-Octyloxybenzoic acid 23.935 20.728 17.149 14.887 12.862 11.354 10.259 

 

 

TABLE S5B 
Retention times for Fenoprofen, Run 10 

 

464.7 

 

469.6 

 

474.7 

 

479.6 

 

484.6 

 

489.4 

 

494.2 

 

to = 60 s 

   

t/to 

   DCM/THF 2.528 2.540 2.558 2.574 2.584 2.588 2.626 

4-Methoxybenzoic acid 3.989 3.817 3.677 3.552 3.453 3.362 3.330 

4-Ethoxybenzoic acid 4.423 4.185 3.990 3.820 3.684 3.563 3.507 

4-Propoxybenzoic acid 5.300 4.926 4.615 4.351 4.139 3.953 3.852 

4-Hexyloxybenzoic acid 11.802 10.306 9.058 8.066 7.257 6.578 6.139 

Fenoprofen 16.167 13.916 12.050 10.565 9.355 8.348 7.649 

4-Octyloxybenzoic acid 23.106 19.510 16.464 14.103 12.226 10.659 9.651 

 

 

 

TABLE S5C  
Retention times for Fenoprofen, Run 11 

 

464.8 

 

469.8 

 

474.7 

 

479.7 

 

484.6 

 

489.6 

 

494.5 

 

to = 60 s 

   

t/to 

   DCM/THF 2.489 2.521 2.577 2.569 2.578 2.594 2.597 

4-Methoxybenzoic acid 3.939 3.782 3.685 3.547 3.459 3.365 3.299 

4-Ethoxybenzoic acid 4.364 4.147 3.996 3.814 3.690 3.565 3.474 

4-Propoxybenzoic acid 5.266 4.906 4.637 4.356 4.166 3.956 3.825 

4-Hexyloxybenzoic acid 11.497 10.083 8.933 7.965 7.221 6.522 6.027 

4-Heptyloxybenzoic acid 16.116 13.842 11.977 10.466 9.321 8.226 7.486 

Naproxen 22.160 18.847 16.132 13.959 12.282 10.700 9.620 
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TABLE S5D 
Retention times for Fenoprofen, Run 12 

 

464.7 

 

469.6 

 

474.6 

 

479.6 

 

484.5 

 

489.4 

 

494.3 

 

to = 60 s 

   

t/to 

   DCM/THF 2.537 2.543 2.566 2.575 2.577 2.591 2.605 

4-Methoxybenzoic acid 3.960 3.814 3.668 3.541 3.444 3.378 3.302 

4-Ethoxybenzoic acid 4.383 4.178 3.979 3.807 3.676 3.578 3.476 

4-Propoxybenzoic acid 5.262 4.939 4.616 4.341 4.138 3.992 3.822 

4-Hexyloxybenzoic acid 11.427 10.106 8.926 7.915 7.158 6.588 6.011 

4-Heptyloxybenzoic acid 15.937 13.853 11.984 10.378 9.211 8.357 7.458 

Naproxen 21.904 18.859 16.151 13.840 12.120 10.887 9.581 

 

 

TABLE S5E  
Retention times for Fenoprofen alkyl/alkoxy standards, Run 13, on a 30 m DB-5MS column 

with 11 psi head pressure.  

 
479.5 484.6 489.7 494.8 499.9 505.0 510.1 

to = 60 s 

   

t/to 

   DCM + THF 2.618 2.658 2.691 2.725 2.725 2.757 2.667 

4-Ethylbenzoic acid 3.460 3.411 3.372 3.337 3.279 3.256 3.108 

4-Methoxybenzoic acid 3.687 3.609 3.545 3.489 3.413 3.375 3.211 

4-Ethoxybenzoic acid 3.997 3.878 3.779 3.693 3.592 3.531 3.344 

s-Ibuprofen 4.828 4.592 4.397 4.229 4.059 3.938 3.689 

4-Hexylbenzoic acid 6.402 5.931 5.540 5.210 4.901 4.666 4.303 

α-Naphthaleneacetic acid 7.031 6.487 6.037 5.651 5.297 5.020 4.611 

Biphenyl-4-carboxylic acid 9.187 8.296 7.556 6.943 6.383 5.950 5.392 

4-Octylbenzoic acid 10.624 9.463 8.511 7.714 7.018 6.466 5.797 

Fenoprofen 11.948 10.578 9.476 8.507 7.690 7.035 6.277 

Naproxen 15.842 13.830 12.176 10.815 9.620 8.679 7.655 
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TABLE S5F  
Retention times for Fenoprofen alkyl/alkoxy standards, Run 14, on a 30 m DB-5MS column 

with 11 psi head pressure. 

 
479.5 484.7 489.7 494.8 499.9 505.0 510.1 

to = 60 s 

   

t/to 

   DCM + THF 2.530 2.627 2.644 2.697 2.700 2.615 2.651 

4-Ethylbenzoic acid 3.358 3.369 3.310 3.301 3.247 3.092 3.086 

4-Methoxybenzoic acid 3.582 3.563 3.480 3.452 3.380 3.206 3.187 

4-Ethoxybenzoic acid 3.887 3.828 3.710 3.653 3.557 3.354 3.318 

s-Ibuprofen 4.702 4.530 4.317 4.183 4.017 3.741 3.656 

4-Hexylbenzoic acid 6.251 5.841 5.434 5.149 4.852 4.435 4.261 

α-Naphthaleneacetic acid 6.875 6.390 5.923 5.587 5.244 4.773 4.565 

Biphenyl-4-carboxylic acid 8.996 8.157 7.406 6.860 6.333 5.664 5.327 

4-Octylbenzoic acid 10.402 9.299 8.334 7.615 6.948 6.149 5.729 

Fenoprofen 11.713 10.392 9.254 8.387 7.617 6.695 6.199 

Naproxen 15.549 13.573 11.908 10.663 9.549 8.271 7.548 

 

 

TABLE S6A 
Retention times for Patchouli Alcohol, Run 15 

 419.1 424.1 429.0 433.9 438.8 443.7 448.6 

to = 60 s 

   

t/to 

   DCM 0.452 0.450 0.452 0.454 0.485 0.482 0.505 

1-Adamantanol 2.112 1.869 1.704 1.539 1.508 1.397 1.326 

1-Undecanol 2.987 2.555 2.256 1.975 1.880 1.698 1.571 

2-Tetradecanol 8.500 6.935 5.862 4.892 4.442 3.841 3.378 

Patchouli alcohol 11.303 9.371 8.012 6.785 6.210 5.423 4.792 

1-Pentadecanol 19.402 15.395 12.649 10.265 9.057 7.623 6.504 

1-Hexadecanol 31.664 24.729 20.025 15.993 13.916 11.536 9.693 

 

 

TABLE S6B 
Retention times for Patchouli Alcohol, Run 16 

 419.1 424.1 429.0 433.9 438.8 443.7 448.6 

to = 60 s 

   

t/to 

   DCM 0.443 0.447 0.458 0.460 0.464 0.475 0.480 

1-Adamantanol 2.049 1.843 1.696 1.546 1.427 1.338 1.244 

1-Undecanol 2.898 2.517 2.242 1.982 1.778 1.623 1.472 

2-Tetradecanol 8.225 6.829 5.798 4.893 4.191 3.647 3.156 

Patchouli alcohol 10.968 9.235 7.943 6.788 5.870 5.149 4.486 

1-Pentadecanol 18.769 15.162 12.499 10.257 8.543 7.226 6.080 

1-Hexadecanol 30.534 24.334 19.759 15.963 13.101 10.914 9.055 
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