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Abstract

The protein folding problem, also known as protein structure pre-

diction, is the task of building three-dimensional protein models

given their one-dimensional amino acid sequence. New methods

that have been successfully used in the most recent CASP chal-

lenge have demonstrated that predicting a protein’s inter-residue

distances is key to solving this problem. Various deep learning al-

gorithms including fully convolutional neural networks and residual

networks have been developed to solve the distance prediction prob-

lem. In this work, we develop a hybrid method based on residual

networks and capsule networks. We demonstrate that our method

can predict distances more accurately than the algorithms used in

the state-of-the-art methods. Using a standard dataset of 3420 train-

ing proteins and an independent dataset of 150 test proteins, we

show that our method can predict distances 51.06% more accurately

than a standard residual network method, when accuracy of all long-

range distances are evaluated using mean absolute error. To further

validate our results, we demonstrate that three-dimensional mod-

els built using the distances predicted by our method are more ac-

curate than models built using the distances predicted by residual

networks. Overall, our results, for the first time, highlight the po-

tential of capsule-residual hybrid networks for solving the protein

inter-residue distance prediction problem.
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Chapter 1

Introduction

Proteins are the building blocks of life. They are responsible for

many of our biological functions and structure. For example, the

Myosin proteins play an important role in our muscle tissue, allowing

it to contract (Lodish H, Berk A, Zipursky SL, et al., 2000). And

the perhaps more widely known Hemoglobin protein carries oxygen

through our bloodstream (Marengo-Rowe AJ, 2006). These are just

two examples of the huge variety of proteins that we know about

today. So what are these molecules made of and what makes them

different from each other?

The Central Dogma of Molecular biology states that “DNA makes

RNA makes protein” (Leavitt SA, 2010). What this means is that

our DNA contains instructions for how to build particular proteins.

This information is copied into RNA strands that, in turn, are used

to construct protein molecules. Each RNA strand represents a par-
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ticular protein. It does so by encoding the sequence of amino acids

needed to construct that protein.

Thus, proteins are composed of amino acids. There are approxi-

mately 20 amino acids in human biology (National Research Coun-

cil (US) Subcommittee on the Tenth Edition of the Recommended

Dietary Allowances, 1989). The specific sequence of amino acids

used to construct a protein makes it unique from all others. This

amino acid sequence can, in effect, serve as a unique identifier of

the protein. But a simple one dimensional strand of amino acids is

not particularly useful. In order for a protein to serve any kind of

interesting function, it must take on a three dimensional shape. This

process of converting a protein from a one dimensional strand (pri-

mary structure) to a three dimensional shape (tertiary structure) is

called protein folding (Alberts B, Johnson A, Lewis J, et al., 2002).

Protein folding is a very important and widely studied process. It is

extremely challenging to predict what a protein’s tertiary structure

will be given only its primary structure. Predicting the tertiary

structure of a protein given only its amino acid primary sequence is

termed de novo protein structure prediction. According to Science,

it is one of the top 100 unsolved problems in modern science (Science,

2005). Building a tool that can accurately perform de novo protein

structure prediction is the holy grail of protein folding research.
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Wet-lab experiments are the primary alternative to de novo protein

structure prediction when determining a protein’s tertiary structure.

These experimental methods include techniques such as X-ray crys-

tallography and nuclear magnetic resonance (NMR) spectroscopy.

Because de novo protein structure prediction methods are still far

from being perfected, wet-lab experiments have been used to dis-

cover the structure of most proteins for which we have true struc-

tures. However, wet-lab methods are expensive and can take months

to years to complete. The potential to overcome these limitations is

one of the key motivators driving protein folding research.

1.1 Protein Folding Methods & Deep Learning

The Critical Assessment of protein Structure Prediction (CASP) is a

community wide and world wide experiment for advancing the state

of the art in de novo protein structure prediction. CASP experiments

have occurred every 2 years since 1994.

During each CASP experiment, models are submitted by competing

teams from around the world. Each model predicts 3D structures

for a set of proteins whose true structures were previously unknown

(this eliminates any possibility of a model possessing foreknowledge

of the true structures and thereby gaining an advantage). After all

the submissions are complete, the new gold standard for de novo

10



protein structure prediction is revealed.

Most of the recent CASP models are built using the same underlying

pipeline. This standard pipeline consists of the following steps (see

Figure 1.1).

Given an amino acid sequence:

1. Generate multiple sequence alignments (MSA) and other fea-

tures.

2. Enhance this data by performing feature engineering.

3. Predict a matrix of contact/distance values for all residue

(amino acid) pairs in the protein.

4. Construct a 3D model using the contact map and other features.

Figure 1.1: Standard 3D model pipeline

Pipeline that predicts a 3D protein model given a sequence of
amino acids.

Predicting the residue pair contact map is one of the most impor-

tant steps in this pipeline. Much of the recent progress that has
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been made on the de novo protein folding problem stems from im-

provements to the contact map prediction step. The top performing

models in the most recent CASP13 (2018) challenge all used deep

learning architectures to produce these contact maps. In particu-

lar, all of these architectures were variants of convolutional neural

networks (CNNs) and residual neural networks (ResNets).

1.2 Contact Maps and Distance Maps

Residue pair contact maps and residue pair distance maps (which we

will henceforth refer to as contact maps and distance maps, respec-

tively) store information about the relative position of a protein’s

residues in its tertiary structure. Contact maps and distance maps

are both n×n matrices of numbers, where n is the number of residues

in the protein. However, these two structures differ in terms of the

numbers that they store.

Contact maps store binary integer values, 1s and 0s, that indicate

whether or not each pair of residues are in contact in the protein’s

tertiary structure. Distance maps, on the other hand, store continu-

ous non-negative decimal values that indicate the shortest distance

between each pair of residues in the protein’s tertiary structure. As

12



such, distance maps store more information than contact maps.

Given a contact map M , residue i is said to be in contact with residue

j if Mij = 1. Note that contact maps and distance maps are always

symmetric matrices. That is, they are mirrored over their diagonal

and remain unchanged after being transposed. Note also that the

unit used in distance maps is typically the Angstrom (Å), which is

equal to 0.1 nanometers.

1 0 1
0 1 1
1 1 1

 0.0 8.2 7.9
8.2 0.0 6.1
7.9 6.1 0.0


Figure 1.2: Contact map and distance map

A contact map on the left and distance map on the right. Note
that the diagonal of the contact map is composed entirely of 1s.
This is because each diagonal element represents whether or not a
particular residue is in contact with itself. And note that the
diagonal of the distance map is composed of 0s. This is because the
distance from any given residue to itself is 0.

Figure 1.2 contains an example contact map and distance map for

the same imaginary protein. This protein contains 3 residues (note

that real proteins are usually composed of hundreds of residues). In

this example, we consider two residues to be in contact if their dis-

tance in the protein’s tertiary structure is less than 8Å. Our example
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protein has two pairs of residues in contact (pairs 1,3 and 2,3) and

one pair that is not (pair 1,2).

Most deep learning models used for de novo protein structure pre-

diction have been designed to predict contact maps. One reason for

this is that deep learning models tend to perform better on classifi-

cation tasks than regression tasks. However, recent work in the field

(Xu, 2018) (Andrew S, John J, Demis H, 2018) has shown that the

performance of protein folding pipelines can be improved by utilizing

deep learning models that predict distance maps rather than contact

maps.

1.3 Goals

The intent of this work is to investigate the potential of capsule

networks (Sara S, Nicholas F, Geoffrey H, 2017) (Rodney L, Ulas

B, 2018) to improve upon existing inter-residue distance prediction

methods. In particular, we aim to discuss the characteristics of cap-

sule networks that make them appealing candidates for contact map

and distance map prediction. We also aim to identify the major

roadblocks that have prevented their immediate adoption and pro-

pose methods to overcome them. Finally, after reviewing our results,
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we will suggest opportunities for future research on this topic.
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Chapter 2

Background

2.1 Residual Networks

Many deep learning models used in protein folding pipelines are

based on the residual network architecture (Xu, 2018) (Adhikari,

2019a). Residual networks make use of skip connections to allow

certain layers in the network to jump over other layers. This is

in contrast to more traditional deep learning network architectures

that simply stack each layer on top of the previous one, feeding each

layer’s output into the subsequent layer’s input.
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2.2 Capsule Networks

Capsule networks were introduced in 2011 by Hinton et al. (G. E.

Hinton, A. Krizhevsky, S. D. Wang, 2011) and improved in 2017 by

Sabour et al. (Sara S, Nicholas F, Geoffrey H, 2017). They have

been successfully used in a wide variety of contexts, including clas-

sification of MNIST digits, estimating depth in UAV images (Sunil

Prakash, Gaelan Gu, 2018), and segmenting images from CT lung

scans (Rodney L, Ulas B, 2018). Capsule layers are novel in that

they learn to model various properties of an entity (such as size,

orientation, and skew) rather than the simple fact of its presence or

absence, as in traditional convolutional and residual layers.

We believe that these characteristics of capsule layers make them

highly applicable to the protein distance prediction problem. Pro-

teins are composed of subunits called secondary structures. These

structures assemble together to form the full 3D structure of a pro-

tein. The orientation and size of these secondary structures play a

key role in determining the structure of the protein. Capsule lay-

ers are designed to learn and recognize these geometric properties.

As such, they should be able to use this knowledge to produce bet-

ter distance maps than more traditional deep learning models built

without capsule layers (see Figure 2.1).
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Figure 2.1: Capsules learn geometric properties

Capsules learn the relative orientation (angle) of individual objects
to classify them. For example, classifying whether two objects form
a house or a boat (left). Protein tertiary structures are composed
of secondary structure units helices, coils, strands, and beta-sheets
whose relative orientation is what makes the structures different
(right). Capsules can learn this relative orientation of secondary
structures.

Capsule networks are able to capture these geometric properties by

storing neuron-level information in the form of vectors, rather than

scalars as in traditional neural networks. A scalar value is only

able to represent a single property. The magnitude of a neuron-

level scalar typically represents the presence or absence of an entity.

However, vectors are able to represent much more information. Each

element of a vector can learn to represent specific properties of an en-

tity. And the magnitude of the vector as a whole can itself represent

an additional derivative property. In capsule networks, the magni-

tude of a capsule’s vector output typically represents the presence or

absence of an entity (as determined by its constituent properties).

18



2.3 Convolutional Capsules

The capsule layers described by Sabour et al. (Sara S, Nicholas F,

Geoffrey H, 2017) have a couple of critical limitations that prevent

them from being used for distance map prediction. First, distance

map prediction is a regression task. But these capsule layers are

constrained to classification tasks due to the squashing function. The

squashing function is a nonlinear activation function that is used to

push each capsule’s length towards 0 or 1. Second, distance maps

are relatively large, consisting of 256× 256 matrices for our training

samples. This necessitates equally large input features. However,

these capsule layers can only operate on relatively small inputs on

the order of 32× 32 (the dimensions of the MNIST dataset used by

Sabour et al.).

The first issue, that of using capsule layers for regression tasks, will

be addressed later in this work. However, the second issue can be

resolved by using convolutional capsule layers. These layers were

introduced by Rodney et al. for the SegCaps architecture (Rodney

L, Ulas B, 2018). SegCaps is a state-of-the-art image segmentation

network. It is able to support CT scan images of size 512×512 as in-

put (much larger than our 256×256 inputs). In addition, it achieves

top performance in the image segmentation field while reducing the

19



number of parameters in the network by up to 95.4%, compared to

other top performing architectures (Rodney L, Ulas B, 2018).

20



Chapter 3

Methods

3.1 Dataset

We use the dataset provided by the IEEE ICMLA 2019 - Protein

Inter-Residue Distance Prediction Challenge (Adhikari, 2019c) to

train and evaluate our models. This dataset provides input features

in the shape of 256× 256× 13 input volumes. The output labels are

256 × 256 matrices of real numbers, where each matrix represents

the distance map for a protein.

The 256×256×13 input features are the result of substantial prepro-

cessing of the original amino acid sequence. The PIDP Challenge’s

feature engineering pipeline starts by consuming a Multiple Sequence
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Alignment (MSA) file as input. It then proceeds to enhance this in-

put by running it through six different tools:

1. PSIPRED (McGuffin LJ, Bryson K, Jones DT, 2000) - gener-

ates three 1D features that represent secondary structure pre-

dictions. There are 3 state predictions for each residue of the

input sequence. They indicate whether each amino acid will be

part of a helix, beta-strand or coil in the final model.

2. PSISOLV (McGuffin LJ, Bryson K, Jones DT, 2000) - gen-

erates one 1D feature that represents solvent accessibility pre-

dictions. These are binary predictions of hydrophobicity for

each residue. They indicate whether each amino acid will be

‘exposed’ to water or not.

3. CCMpred (Lab, 2018) and FreeContact (Kaján, László and

Hopf, Thomas A. and Kalaš, Matúš and Marks, Debora S. and

Rost, Burkhard, 2014) - each generates one 2D feature that rep-

resents coevolutionary signal predictions. These features cap-

ture the strength of covariance between all pairs of residue po-

sitions. These predictions can be considered as independent

contact or distance predictions.

4. Shannon Entropy Sum (Jones DT, Singh T, Kosciolek T,

Tetchner S, 2015) - generates one 1D feature that represents

Shannon entropy of the alignment column.
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5. pstat pots (Jones DT, Singh T, Kosciolek T, Tetchner S, 2015)

- generates one 2D feature that represents calculated contact

potentials.

Thus, in total, these tools produce 3+1+1+1+1+1 = 8 features for

each protein in our dataset. Of these 8 features, 5 are 1D vectors and

3 are 2D matrices. However, our models are designed to accept only

matrices as input. As such, before we can use these features to train

our models we must convert the 5 vector features into matrices. We

accomplish this by tiling each vector feature both horizontally and

vertically. This operation maps each vector feature to two matrix

features.

After mapping the 5 vector features to matrices, we possess (3 · 2) +

(1 ·2)+(1 ·2)+1+1+1 = 13 channels of data for each protein in our

dataset. Each 13 channel input matrix is conceptually comparable

to an input image having 13 channels instead of the typical 3 (red,

green, and blue).

Each of the 13 features is a square matrix of shape L × L, where

L is the length of the corresponding protein’s amino acid primary

structure. Before we use this data to training our model, we cap all

features to size 256 × 256, as some proteins in our dataset have a

23



primary structure length greater than 256.

In accordance with deep learning best practice, we split our data into

a training set, a validation set, and an independent test set. The

training set consists of 3284 proteins, the validation set contains 136

proteins, and the test set consists of 150 proteins.

3.2 Capsule Activation Functions

Many capsule networks use the squashing function introduced by

Sabour et al. (Sara S, Nicholas F, Geoffrey H, 2017) to force the

length of each capsule’s output vector into the range between 0 and

1. This works well for classification tasks where each capsule must

learn to produce a vector whose length indicates the presence or

absence of an entity.

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(3.1)

Squashing Function

Where:

• vj is the output vector of the jth capsule

24



• sj is the jth capsule’s input vector

However, predicting distance maps necessitates an activation func-

tion capable of performing regression. Thus the activation function

must output a continuous value and cannot simply trend towards

binary activations. To this end, we first tried removing the squash-

ing function entirely. However, the capsule activation function is

an important source of nonlinearity for the network. Removing it

altogether is not ideal.

Rather than simply removing the squashing function, we experi-

mented with using elementwise ReLU (Xavier Glorot, Antoine Bor-

des, Yoshua Bengio, 2011) in its place. ReLU is commonly used in

traditional neural network layers where it often works well for re-

gression layer outputs. Our application of ReLU to capsule layer

activations is novel and is a key contribution of this work.

vj = max(0, sj|i) (3.2)

ReLU Function

Where:

• vj is the output vector of the jth capsule

• sj|i is each element of the jth capsule’s input vector

25



3.3 Cost Functions

Cost functions are used to evaluate the predictions of machine learn-

ing models. All deep learning networks require a cost function to be

trained. The choice of cost function used to train distance prediction

models is very important, as it is a key determinant of the model’s

performance. It is important to choose a cost function that capital-

izes on the unique characteristics of the protein distance prediction

problem.

We experimented with a few different cost functions to see what

impact they would have on the performance of our models. Since our

network’s final output is a matrix of real numbers, our cost functions

must be defined such that they accept a matrix of actual values and

a matrix of predicted values. Each cost function must then return a

single real number denoting the distance (or error) between the two

input matrices.

The first cost function we tried was Mean Absolute Error (MAE).

This is a very commonly used cost function that simply measures the

average distance between two continuous variables. MAE is useful

when the prediction error is equally important for all elements of the

input.
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MAE(y, ŷ) =

n∑
i=1

|yi − ŷi|

n
(3.3)

MAE Function

Where:

• y is a vector of actual distances

• ŷ is a vector of predicted distances

Next, we tried the LogCosh cost function. LogCosh first computes

the distance between the actual and predicted values. LogCosh is

then defined as the logarithm of the hyperbolic cosine of this differ-

ence. It behaves similarly to mean squared error (MSE) but is not

affected as strongly by occasional wildly incorrect predictions.

LogCosh(y, ŷ) =

n∑
i=1

log(cosh(yi − ŷi))

n
(3.4)

LogCosh Function

Where:

• y is a vector of actual distances

• ŷ is a vector of predicted distances

27



Finally, we tried a novel cost function that we designed specifically

for the protein inter-residue distance prediction problem. We call

this cost function LogCoshInv, as it is a modified version of the

LogCosh function. We designed LogCoshInv to treat errors in small

quantities as more important than errors in large quantities.

This is a useful characteristic for distance map prediction models, be-

cause when evaluating a predicted distance map against the ground

truth, we care more about the accuracy of distances predicted for

residue pairs that are close to one another in the true 3D structure

than for residue pairs that are relatively far apart. This is because

the accuracy of predicted distances for residue pairs that are rela-

tively close to one another has a larger impact on the accuracy of

3D models generated using these predictions than residue pairs that

are relatively far apart.

LogCoshInv is defined as the LogCosh of the inverse of the predicted

and actual values, each multiplied by 100. We chose to multiply by

100 because protein inter-residue distances usually range between 3.9

and 100 Angstroms. We also add a small value, ε, to the denominator

of each inverse to prevent division by zero.
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LogCoshInv(y, ŷ) =

n∑
i=1

log(cosh( 100
yi+ε
− 100

ŷi+ε
))

n
(3.5)

LogCoshInv Function

Where:

• y is a vector of actual distances

• ŷ is a vector of predicted distances

For clarity of exposition, in equations 3-5, we defineMAE, LogCosh,

and LogCoshInv such that they operate on two input vectors. How-

ever, for our purposes, we must redefine each of these cost functions

to operate on the matrices that constitute our distance maps. In

equations 6-8, Y denotes a matrix of actual distances and Ŷ denotes

a matrix of predicted distances.

MAE(Y, Ŷ ) =

n∑
i=1

m∑
j=1

|Yij − Ŷij|

n ·m
(3.6)

MAE for Matrices
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LogCosh(Y, Ŷ ) =

n∑
i=1

m∑
j=1

log(cosh(Yij − Ŷij))

n ·m
(3.7)

LogCosh for Matrices

LogCoshInv(Y, Ŷ ) =

n∑
i=1

m∑
j=1

log(cosh( 100
Yij+ε

− 100
Ŷij+ε

))

n ·m
(3.8)

LogCoshInv for Matrices

3.4 Baseline Model

In order to experimentally determine the effect of using capsule lay-

ers in our distance map prediction model, it is necessary to have a

baseline to compare against. For our baseline model, we create a

deep residual network consisting of 32 residual blocks. The output

of the final layer is the predicted distance map. This baseline model

architecture is depicted in Figure 3.1.

We chose to use 32 residual blocks in our baseline model because we

found it to be a reasonable trade-off between maximizing the accu-

racy of our predicted distance maps and minimizing model training
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time and consumption of our limited computational resources.

Figure 3.1: Baseline residual network architecture

All successful methods in the most recent CASP challenge (CASP13)

use residual networks, including DeepMind’s AlphaFold (Andrew

S, John J, Demis H, 2018), ResPRE (Li Yang, Hu Jun, Zhang

Chengxin, Yu Dong-Jun, Zhang Yang, 2019) by Yang Zhang’s group

at the University of Michigan, and DeepMetaPSICOV (Kandathil

Shaun, Greener Joe, Jones David, 2019) from David Jones’ group at

University College London. This is why we chose a residual network

as our baseline.

3.5 CapsDist Model

All capsule network architectures begin with at least one convolu-

tional layer after the input volume and before the capsule layers.
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However, we wish to test the effect of using multiple convolutional

layers in front of the capsule layers. As such, our strategy was to iter-

atively replace the residual blocks of our baseline architecture with

capsule layers. This CapsDist architecture is depicted in Figure

3.2.

Figure 3.2: The proposed CapsDist architecture

Because capsules represent information at the neuron level as vectors

rather than scalars, the final capsule layer’s output is a volume of

the shape 256×256×16 (we use 16 element vectors in the CapsDist

model). However, the distance map must be of the shape 256×256×

1. This requires the final capsule layer’s output to be transformed

by the Capsule Lengths layer to convert the 16 dimensional vectors

into scalars. The Capsule Lengths layer does this by simply taking

the length of each vector, which is a standard mathematical vector

operation.
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3.6 Implementation

We built our models with Python using the Keras (https://keras.

io/) module with Tensorflow (https://www.tensorflow.org/) as

our backend. We trained and evaluated our models on Google’s

Cloud AI Platform (https://cloud.google.com/ai-platform/).

Our AI Platform project utilized 16 CPUs and 2 Nvidia V100 GPUs.

We also made use of the University of Missouri System’s HPC Lewis

(http://docs.rnet.missouri.edu/Services/hpc_compute) clus-

ter to build and evaluate 3D protein models.

3.7 Evaluation Metrics

We will evaluate the performance of our proposed CapsDist archi-

tecture against that of our baseline by comparing (a) the distance

maps they produce and (b) 3D protein models constructed using

these distance maps as input.

In order to compare a distance map produced by our baseline model

for a given protein against one produced by our CapsDist model for

the same protein, we must first score each distance map. We will

produce these scores by computing the MAE, which is defined in
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terms of a predicted distance map and a true distance map. The

MAE is defined as the mean absolute error of the predicted distance

map against the true distance map. Lower MAE scores are better.

Just as we must score distance maps to compare our CapsDist archi-

tecture against our baseline, we must also score 3D protein models.

We will do so using the following three metrics, each of which mea-

sures the similarity between two protein tertiary structures:

• Template modeling score (TM-score). All TM-scores are be-

tween 0 and 1. A score of 1 indicates a perfect match.

• Root-mean-square deviation (RMSD). RMSD scores are con-

tinuous values with a minimum of 0 and unbounded maximum.

Lower scores indicate greater similarity.

• Global distance test total score (GDTTS). GDTTS scores are

continuous values with a minimum of 0 and maximum of 100.

A score of 100 indicates a perfect match.
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Chapter 4

Results

4.1 Capsule Layer to Residual Block Ratio

We tested 32 different variations of our CapsDist architecture, each

with a different ratio of capsule layers to residual blocks. At each

iteration, we trained and evaluated the network to find its best MAE

score on the validation dataset. This allowed us to find the optimal

number of residual blocks and capsule layers. The scores at each

iteration are depicted in Figure 4.1.

From these results it is evident that networks built using a com-

bination of residual blocks and capsule layers perform better than
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Figure 4.1: Capsule layer to residual block ratio

The lowest MAE achieved on the validation set for each variation
of the CapsDist architecture. Note that the left-hand side of the
colon denotes the number of capsule layers, whereas the right-hand
side denotes the number of residual blocks. E.g. variation 14c:18r
contains 14 capsule layers and 18 residual blocks.

networks that use only residual blocks or only capsule layers. Most

networks with between 7 to 10 and 13 or 14 capsule layers perform

quite well. The best performing network has 14 capsule layers.

4.2 Activation Function Performance

We trained and tested two variants of the CapsDist architecture

with different capsule activation functions. One variant used the

ReLU activation function (Xavier Glorot, Antoine Bordes, Yoshua

Bengio, 2011) and the other used the identity function (equivalent
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to removing the activation function entirely).

We find that the CapsDist architecture performs best with the ReLU

activation function. Table 4.1 lists the scores achieved by CapsDist

with each of the activation functions.

Activation Function Best Validation MAE Test MAE
ReLU 3.21 1.61
Identity 3.37 1.68

Table 4.1: CapsDist performance by activation function

Performance of the CapsDist architecture with ReLU and Identity
capsule activation functions.

4.3 Cost Function Impact

We trained our CapsNet architecture using 3 different cost functions:

MAE, LogCosh, and LogCoshInv. We find that models trained

using LogCosh perform better than those trained with MAE. How-

ever, models trained with LogCoshInv perform better than those

trained with either MAE or LogCosh. We hypothesize that this

is because LogCoshInv gives more weight to errors for long-range

residue pairs than for nearby ones. This is useful because the accu-

racy of predicted distances for long-range residue pairs is especially
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important when predicting how a protein will fold. Table 4.2 lists

the scores achieved by CapsDist with each of the cost functions.

Cost Function Best Validation MAE Test MAE
MAE 3.43 1.90
LogCosh 3.38 1.83
LogCoshInv 3.21 1.61

Table 4.2: CapsDist performance by cost function

Performance of the CapsDist architecture trained with MAE,
LogCosh, and LogCoshInv cost functions.

4.4 CapsDist vs. Baseline Comparison

We trained our CapsDist and baseline models on our training dataset

of 3284 proteins for 150 epochs. Our CapsDist model training job

took 11.6 hours to complete. Our baseline model, however, took

13.2 hours. This disparity in training time is due to the number

of trainable parameters in each model. Our CapsDist architecture

has 672,634 trainable parameters, whereas our baseline architecture

has 1,189,979. This helps to underscore the value of building models

with fewer parameters.

It is important to note that the parameter reduction we achieved

with our CapsDist architecture does not come at the price of accu-
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racy. In fact, our CapsDist model scores better than the baseline

model on both the validation and test datasets. See Table 4.3 for

the MAEs achieved by each model on the two datasets.

Architecture Best Validation MAE Test MAE
CapsDist 3.21 1.61
Baseline 4.16 3.29

Table 4.3: Performance of CapsDist and Baseline architectures
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4.5 3D Model Comparison

We used DISTFOLD (Adhikari, 2019b) to build 3D protein models

from distance maps produced by our CapsDist and baseline architec-

tures. For each of the 150 proteins in our test dataset, 21 candidate

models were produced, each with a TM-score, RMSD, and GDTTS.

For each protein, we selected the candidate with the highest TM-

score. We performed these steps once for each architecture. The

results are summarized in Table 4.4. See Table 5.1 in Appendix

B for a listing of the full results. See Appendix A for visualizations

of predicted 3D models for two of the proteins in the test dataset.

Model Avg TM-score Avg RMSD Avg GDTTS
CapsDist 0.49 10.35 41.86
Baseline 0.48 10.52 40.28

Table 4.4: Average 3D model scores

Average scores for the 3D protein models created using distance
maps produced from the CapsDist and baseline models.
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Chapter 5

Conclusion

We have shown that convolutional capsule layers using the ReLU ac-

tivation function improve the performance of deep learning networks

designed to predict protein residue pairwise distance maps. These

improved distance maps in turn enhance the overall performance of

protein folding pipelines. In addition, we developed a new cost func-

tion tailored specifically for the PIDP problem: LogCoshInv. We

have demonstrated that training networks with LogCoshInv pro-

duces better performing networks than those trained with the more

traditional MAE and LogCosh cost functions.

Capsule networks hold significant potential to improve upon state-

of-the-art deep learning networks in the field of protein modeling.

We believe that our work has only begun to explore this potential.
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Opportunities for future research include attempting to use multi-

ple capsule types per layer, adding a reconstruction output to the

network, and finding a way to increase the ratio of capsule layers to

residual blocks without sacrificing model performance.
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Appendix A

Figure 5.1 and Figure 5.2 depict 3D visualizations of protein mod-

els predicted by the Baseline and CapsDist networks. Each figure

contains two images (left and right), each of which contains two pro-

tein models (green and brown). In each image, the green model

represents the protein’s true structure. The brown models in the

left images represent the best prediction of the Baseline network for

each protein. The brown models in the right images represent the

CapsDist network’s best prediction for each protein.

The 3D visualizations in Figure 5.1 and Figure 5.2 were cre-

ated using UCSF Chimera (Pettersen EF, Goddard TD, Huang CC,

Couch GS, Greenblatt DM, Meng EC, Ferrin TE, 2004), developed

by the Resource for Biocomputing, Visualization, and Informatics at

the University of California, San Francisco, with support from NIH

P41-GM103311.
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Figure 5.1: Protein 1lo7A - 3D Models

0.44 Baseline TM-score (left). 0.63 CapsDist TM-score (right).
19% improvement.

Figure 5.2: Protein 1vmbA - 3D Models

0.40 Baseline TM-score (left). 0.65 CapsDist TM-score (right).
24% improvement.
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Appendix B

Protein Baseline

RMSD

CapsDist

RMSD

Baseline

TM-

score

CapsDist

TM-

score

TM-

score

% Impr.

1abaA 10.14 5.30 0.4151 0.4751 +6%

1kidA 21.78 22.15 0.3507 0.3925 +4%

1fcyA 21.51 25.13 0.4890 0.4927 +0%

1dsxA 8.33 10.22 0.3422 0.3310 -1%

1jbeA 5.62 4.71 0.5943 0.7274 +13%

1o1zA 9.90 6.53 0.4978 0.5976 +10%

1ctfA 3.02 3.10 0.6597 0.7071 +5%

1avsA 7.15 9.87 0.3994 0.4158 +2%

1jvwA 14.35 8.63 0.4641 0.4889 +2%

1bdoA 6.12 6.19 0.4045 0.4092 +0%

1hxnA 26.64 31.20 0.2064 0.2003 -1%

1ku3A 5.35 3.93 0.5082 0.5841 +8%

2phyA 17.40 14.64 0.2812 0.2372 -4%

1d1qA 4.78 4.11 0.6489 0.6853 +4%

1jyhA 9.74 9.21 0.3683 0.3770 +1%

1xdzA 10.52 12.82 0.4802 0.5841 +10%

1gzcA 20.45 16.32 0.3409 0.3684 +3%

1j3aA 9.63 9.29 0.4425 0.4975 +5%

2hs1A 17.08 18.00 0.2333 0.1921 -4%

1jo0A 10.29 7.86 0.4497 0.5069 +6%

1rybA 5.13 5.51 0.6950 0.6847 -1%

5ptpA 4.51 4.90 0.7493 0.7007 -5%

1t8kA 3.73 4.70 0.6312 0.6170 -1%

1atzA 4.99 4.38 0.5591 0.5476 -1%

1fk5A 6.93 6.85 0.5681 0.4718 -10%

1wjxA 9.67 6.84 0.4275 0.4968 +7%

1kq6A 15.95 16.13 0.4406 0.4187 -2%

1bsgA 12.42 12.61 0.5603 0.5224 -4%

1cjwA 14.06 13.15 0.4770 0.4645 -1%

1i1jA 19.76 18.65 0.2765 0.2538 -2%

1pkoA 10.35 12.13 0.3890 0.4722 +8%

1guuA 4.34 5.65 0.4940 0.5009 +1%

45



1tifA 9.43 6.71 0.3773 0.3469 -3%

1fx2A 10.98 8.81 0.5034 0.5527 +5%

1josA 7.63 8.27 0.5679 0.4996 -7%

1h98A 13.05 14.91 0.2627 0.2740 +1%

1bebA 12.45 11.77 0.3166 0.3354 +2%

1brfA 11.24 10.83 0.2432 0.3043 +6%

1vmbA 9.69 4.55 0.4085 0.6501 +24%

1dixA 20.41 23.20 0.3063 0.2791 -3%

1c44A 19.46 8.59 0.2973 0.3890 +9%

1aoeA 7.38 5.73 0.5510 0.6557 +10%

1gz2A 6.23 5.50 0.5839 0.5983 +1%

1jfxA 7.43 11.37 0.5506 0.4872 -6%

1roaA 11.67 12.21 0.3867 0.3513 -4%

1i71A 10.93 7.71 0.3003 0.3164 +2%

1tzvA 3.85 3.88 0.7216 0.7882 +7%

1lo7A 7.50 5.50 0.4438 0.6318 +19%

1behA 15.36 16.35 0.3329 0.3257 -1%

1lpyA 11.03 8.34 0.3983 0.4586 +6%

1ql0A 17.44 19.54 0.3683 0.3417 -3%

1g2rA 8.75 7.49 0.4631 0.4877 +2%

1ihzA 5.47 5.29 0.5464 0.5896 +4%

1jl1A 7.96 7.34 0.6713 0.5929 -8%

2cuaA 16.98 17.95 0.3784 0.3187 -6%

1lm4A 11.16 11.03 0.5629 0.5454 -2%

1ej0A 4.14 5.53 0.7053 0.6795 -3%

1whiA 10.61 14.36 0.3073 0.2689 -4%

1qf9A 8.29 6.76 0.5977 0.6553 +6%

1a6mA 3.77 6.20 0.7298 0.6807 -5%

1h0pA 8.15 11.05 0.6417 0.5886 -5%

1qjpA 10.43 11.42 0.3414 0.2873 -5%

1m8aA 9.37 9.52 0.2866 0.3002 +1%

2tpsA 8.26 7.82 0.5931 0.6751 +8%

1i58A 7.48 6.13 0.4413 0.5960 +15%

1xkrA 14.33 24.08 0.2958 0.2567 -4%

1svyA 13.09 8.49 0.3715 0.4166 +5%

1g9oA 5.37 4.94 0.4765 0.4896 +1%

1jfuA 12.23 11.62 0.3945 0.5871 +19%
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1vfyA 11.35 12.59 0.2772 0.2377 -4%

1f6bA 8.34 9.30 0.5958 0.5297 -7%

1fqtA 7.56 7.82 0.4731 0.4415 -3%

1tqgA 2.50 2.37 0.7735 0.8189 +5%

1fl0A 21.37 16.64 0.3131 0.3833 +7%

1xffA 7.99 5.75 0.5550 0.6616 +11%

1vhuA 7.05 7.43 0.6575 0.6629 +1%

1iibA 2.98 3.33 0.6875 0.6315 -6%

1cxyA 7.43 5.92 0.3364 0.3552 +2%

1i4jA 6.26 6.20 0.6101 0.5372 -7%

1fvkA 17.41 17.76 0.4656 0.4227 -4%

1k7cA 15.12 14.94 0.4754 0.4186 -6%

3dqgA 14.28 13.78 0.3166 0.3302 +1%

1tqhA 12.49 15.61 0.6081 0.6325 +2%

1rw7A 16.28 13.24 0.3967 0.5030 +11%

1h4xA 9.50 6.62 0.5338 0.5512 +2%

1a70A 16.95 11.10 0.3315 0.3165 -2%

1hdoA 8.53 6.95 0.6153 0.7445 +13%

1d0qA 5.51 9.08 0.5573 0.5266 -3%

2vxnA 4.31 4.34 0.7468 0.7572 +1%

1nb9A 8.42 9.21 0.5271 0.6070 +8%

1c9oA 9.13 9.17 0.3001 0.3369 +4%

1chdA 5.18 4.95 0.7285 0.7261 0%

1smxA 9.40 14.54 0.3254 0.2262 -10%

1m4jA 15.43 16.15 0.4183 0.3431 -8%

1cc8A 5.80 3.18 0.4752 0.6039 +13%

2arcA 19.51 28.95 0.3204 0.3110 -1%

1jwqA 3.51 3.13 0.7853 0.7783 -1%

2mhrA 11.22 8.36 0.6550 0.6104 -4%

1dqgA 34.04 20.31 0.1974 0.1704 -3%

1htwA 6.18 7.77 0.5865 0.5856 0%

1fvgA 20.25 19.75 0.5218 0.5639 +4%

1rw1A 4.69 4.84 0.6849 0.6132 -7%

1k7jA 7.78 10.47 0.6519 0.5665 -9%

1hfcA 8.11 11.35 0.4906 0.4019 -9%

1gmxA 4.84 5.93 0.6095 0.6917 +8%

1ny1A 23.41 23.73 0.4832 0.4916 +1%

47



1ej8A 11.15 8.42 0.2722 0.3638 +9%

1atlA 14.15 16.69 0.4345 0.3437 -9%

1kqrA 17.26 22.54 0.2939 0.2273 -7%

1ktgA 10.34 5.42 0.4876 0.5409 +5%

1aapA 6.74 7.92 0.3573 0.3818 +2%

1dbxA 5.02 7.18 0.6125 0.5749 -4%

1im5A 10.37 8.36 0.4295 0.6103 +18%

1fnaA 13.05 9.66 0.3835 0.3978 +1%

1ag6A 11.12 11.67 0.3830 0.3762 -1%

3borA 5.51 5.31 0.7009 0.7195 +2%

1mugA 9.08 9.82 0.4860 0.5003 +1%

1kw4A 5.72 5.32 0.4229 0.5077 +8%

1mk0A 10.88 13.72 0.4073 0.3450 -6%

1bkrA 3.82 4.21 0.6210 0.6095 -1%

1hh8A 28.46 25.99 0.2688 0.4226 +15%

1jo8A 7.54 13.43 0.2734 0.2882 +1%

1dmgA 18.48 18.09 0.3331 0.4020 +7%

1vjkA 7.34 7.18 0.3679 0.4648 +10%

1k6kA 2.94 2.87 0.7774 0.7568 -2%

1h2eA 9.70 7.97 0.5913 0.6951 +10%

1i1nA 11.61 9.40 0.5420 0.5858 +4%

1ckeA 8.29 13.62 0.5560 0.4082 -15%

1i5gA 12.39 12.38 0.3620 0.3812 +2%

1iwdA 7.69 6.97 0.5898 0.5916 +0%

1wkcA 8.28 5.77 0.6404 0.6329 -1%

1pchA 3.54 4.43 0.7098 0.6978 -1%

1cznA 11.56 6.94 0.5545 0.6091 +5%

1npsA 9.87 11.78 0.3583 0.2997 -6%

1gmiA 11.29 8.54 0.4262 0.4708 +4%

1ek0A 4.96 4.01 0.7139 0.7247 +1%

1dlwA 5.59 3.68 0.5967 0.6703 +7%

1w0hA 9.84 7.14 0.5196 0.6494 +13%

1c52A 14.84 16.63 0.3855 0.3639 -2%

1d4oA 9.93 8.48 0.4435 0.4836 +4%

1vp6A 12.64 12.40 0.4440 0.4933 +5%

1a3aA 4.13 4.89 0.6680 0.6312 -4%

1r26A 5.71 7.24 0.6481 0.5690 -8%
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1jkxA 8.48 8.33 0.6121 0.6837 +7%

1jbkA 8.06 11.08 0.4317 0.4040 -3%

1p90A 7.51 10.16 0.4786 0.3840 -9%

1eazA 5.88 6.23 0.4312 0.4833 +5%

1nrvA 10.63 10.74 0.2887 0.3635 +7%

1gbsA 23.94 27.27 0.4734 0.3496 -12%

1ne2A 21.33 18.18 0.3127 0.4403 +13%

Average 10.52 10.35 0.48 0.49 +1.45%

Table 5.1: Exhaustive 3D model scores

Complete list of TM and RMSD scores for the 3D models built
with CapsDist and Baseline models, for each of the 150 proteins in
our test dataset.
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