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GENERAL ABSTRACT 

 

The importance of climatic and geologic factors as drivers of population differentiation and speciation in the 

Neotropical region has long been appreciated. However, many questions remain regarding their roles underlying 

the processes and patterns of diversification. Studies conducted in distinct regions containing a suite of 

geological and ecological conditions constitute ideal scenarios to assess the role of Pleistocene climatic changes, 

rivers, and mountain building as historical diversification mechanisms. In chapters 1 and 2, I used an integrative 

approach combining molecular phylogenetics, phylogeography and population genetics to elucidate the 

importance of climatic and geological factors as engines of diversification. I focused on the South American 

fire-eye antbirds (genus Pyriglena), which occur in forested areas in southeastern Amazonian basin, Pantanal 

basin, Andes and Atlantic Coast.  

 

My study suggests that fire-eyes represent a young and rapid diversification in South America. It is conceivable 

that the origin of the major clades in this group trace back to the formation of the modern course of large rivers 

in the Amazonian basin and Atlantic Forest, with subsequent diversification fostered by more recent Pleistocene 

climatic oscillations creating opportunities for range expansion and geographic isolation in the Andes, Pantanal 

and Atlantic Forest. However, the role of large rivers as historical barriers to dispersal was apparently stronger 

in the Amazon basin relative to western South America (western lowlands and Andes) and Atlantic Forest. On 

the other hand, climatic oscillations seemed less important in creating opportunities for geographic 

differentiation within the Amazon comparative to the other regions. Fire-eyes seemed to have a complex history 

of diversification, involving large-scale geological and climatic processes acting over regional and continental 

scales during the last ~ 2.5 Mya.  

 

In chapter 3, I examined in detail how songs varied across the range of Atlantic Forest fire-eye antbirds, and I 

tested several different hypotheses of the origin of song divergence in an attempt to explain their current vocal 

variation. Genetic differentiation and introgressive hybridization seemed to explain the overall song variation 

and geographic structuring in fire-eyes better than alternative factors such as body size, bill morphology and 

ecology.
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CHAPTER 1 
 
Gene trees and historical demography of fire-eye antbirds (Pyriglena) of the 
Amazon basin: a test of the river and refuge models of biological diversification 
 
 
1. Introduction 

The role of historical factors in establishing patterns of geographic variation in diversity 

has been of interest for some time (Ricklefs & Schluter 1993; Rosenzweig 1995; Ricklefs 

2006a). The latitudinal diversity gradient is the most striking example and various 

mechanisms have been proposed to explain the peak of species diversity in tropical 

regions (reviewed in Mittelbach et al. 2007), including regional differences in net 

diversification rates (Ricklefs 2006b; Weir & Schluter 2007). The tropics are considered 

to have higher diversification rates compared to temperate regions apparently because of 

higher rates of speciation in tropical regions (Mittelbach et al. 2007), although exceptions 

to this pattern have been reported (Weir & Schluter 2007). Unclear, however, are the 

relative roles of ecological, geological and climatic processes that might have elevated 

origination rates in tropical species lineages. 

In the tropics, biological diversity is high in the Amazonian lowlands (Myers et 

al. 2000) and several hypotheses have been put forward to account for the origin 

(historical and biogeographical processes) and maintenance (ecological processes) of this 

diversity (Colinvaux 1996; Colinvaux et al. 1996; Haffer 1997a; Bates 2001). These 

ecological and historical hypotheses include the river (Wallace 1852; Sick 1967), 

refugium (Haffer 1969), gradient (Endler 1977; 1982), disturbance-vicariance (Colinvaux 

1996; Colinvaux et al. 1996), and the palaeogeography hypothesis (mountain uplift and 

marine transgressions; Chapman 1917; Bates 2001). The relative importance of these 
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hypotheses in explaining diversification of Amazonian organisms is contentious; the 

main criticisms stem from the fact that the same biogeographic patterns can be equally 

well explained by more than one hypothesis (Endler 1977; 1982; Tuomisto & 

Ruokolainen 1997) and because few contrasting predictions are available for, or can be 

derived from, the alternative hypotheses of speciation (Patton & Silva 1998; Moritz et al. 

2000). One way to overcome this difficulty is through the application of integrative 

approaches that combine gene genealogies with analytical methods in the areas of 

population genetics and coalescent theory, which has allowed the falsification of certain 

hypotheses for some Amazonian lineages (e.g. Silva & Patton 1998; Lessa et al. 2003; 

Aleixo 2004; Cheviron et al. 2005).   

Geographic mechanisms of speciation in Amazonia were first proposed in the 

19th century (Wallace 1852) based on the observation that ranges of several closely 

related primates are separated by major Amazonian rivers (hereafter the river hypothesis). 

Modern versions of this hypothesis hold that ancestral populations were continuous 

across Amazonia and were spatially subdivided by the formation of large Amazonian 

rivers, with subsequent reduction or interruption of gene flow, leading, occasionally, to 

subspecific or specific differentiation of populations on opposite river banks (Capparella 

1988; 1991; Haffer 1992; 1997). Several phylogeographic studies carried out in the 

Amazon basin have provided mixed support for this hypothesis. For example, studies 

carried out in western Amazonia have rejected the role of rivers as a significant barrier to 

gene flow among vertebrate populations (Patton et al. 1994; Lougheed et al. 1999; 

Aleixo 2004; Funk et al. 2007). In contrast, other studies have shown a south-north axis 

of genetic differentiation congruent with the position of rivers in this same region (Cohn-
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Haft 2000; Aleixo 2004; Armenta et al. 2005; Cheviron et al. 2005) and a west-east 

phylogeographic break abutting large southeastern Amazonian rivers (Aleixo 2004), 

implying that rivers may be effective barriers to gene flow.  

Geographic differences in the “river effect” were related to distinct geological 

histories and to topographic constraints in different parts of the Amazon Basin. For 

example, it has been postulated that extensive meandering of Amazonian tributaries that 

originate in the Andean slopes of western Amazonia could result in less of an isolation 

effect, compared to the rather straight eastern Amazonian rivers that flow down relatively 

steep slopes of the geologically stable Guianan and Brazilian shields (Raasanen et al. 

1987; 1995; Webb 1995; Gascon et al. 2000; Haffer & Prance 2001; Aleixo 2004). 

Although it is clear that Amazonian geological history differs regionally, many questions 

remain regarding its reconstruction (Rosseti et al. 2005; Aleixo & Rossetti 2007; Rosseti 

& Toledo 2007). A recent geomorphological model (Rossetti & Valeriano 2007) 

proposed, for example, that the Tocantins River, one of the largest rivers in southeastern 

Amazonia, has had a recent dynamic geological history. This evidence suggests that a 

generalization on the role of rivers as drivers of vertebrate diversification in the 

Amazonian basin is still premature and requires additional consideration.  

An alternative to the river hypothesis is the Pleistocene refuge hypothesis (Haffer 

1969).  It suggests that populations with continuous distributions became subdivided 

following forest contraction into multiple refugia during glacial maxima, leading to 

lineage splitting and species formation. Subsequently, these populations would have 

experienced range expansions during the warmer and more humid interglacial periods 

(Haffer 1969; 1997; Haffer & Prance 2001). Many aspects of the refuge model have been 
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challenged in the Amazon region; some of the criticisms derive from studies that show 

forests may not have been as fragmented as hypothesized (Bush 1994; Colinvaux 1996; 

Mayle et al. 2004), that populations did not undergo suggested demographic changes 

(Lessa et al. 2003; Aleixo 2004), that estimates of the time since divergence among sister 

taxa predate the Pleistocene period (e.g. Hackett 1993; Hackett & Rosenberg 1990; 

Mustrangi & Patton 1997), and that a high degree of phylogeographic structure exhibited 

by some organisms over a relatively small geographic area (Patton et al. 1994) is 

inconsistent with an expected population expansion from a reduced forest refuge area 

(Lessa et al. 2003). At the same time, the influence of Pleistocene climatic changes as a 

diversification force were suggested to have been more pervasive on Neotropical 

mountain areas than in the lowlands (Weir 2006), but whether this a consistent pattern or 

merely an artifact of taxonomic biases has yet to be clarified (Bates & Demos 2001; see 

also Tobias et al. 2008). Despite the weak support for the refuge model, it is surprising, 

given its importance for the development of Amazonian biogeography, that only a few 

studies have explicitly tested the predictions of this hypothesis in a spatial-temporal 

framework (but see Lessa et al. 2003; Aleixo 2004). 

In this paper, we used mtDNA sequence data to examine the genetic structure 

within White-backed Fire-eye (Pyriglena leuconota; hereafter referred to simply as fire-

eyes) populations along the Tocantins River valley and to address two main questions 

concerning the evolutionary history of these populations. First, can either the river or 

refuge model explain the patterns of genetic variation observed in these populations? 

Second, do the patterns of genetic variation and the gene genealogies of these populations 

reflect the recently detected shift in the course of the Tocantins River?  
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1.1 Study System: study area and geological and palaeoenvironmental history  

The Tocantins River is a long watercourse that spans a straight-line distance of over 

2,000 km from the central high Brazilian plateaus near the city of Brasilia north to its 

junction with the Atlantic Ocean, near the city of Belém. Several smaller rivers and 

streams that constitute the headwaters are either bordered by gallery forests situated 

within the cerrado phytogeographic domain or are bordered by dry forests; lowland 

humid Amazonian forests are present along most of its middle and lower course. The area 

encompassing the Tocantins River valley is a good system for testing the river and refuge 

models of diversification because: (i) the Tocantins River is one of largest rivers in the 

Amazon basin; (ii) this river has been considered an important barrier for the dispersal of 

several bird species (Haffer 1992); (iii) forest refuges are hypothesized to have persisted 

on opposite banks of the Tocantins River during the last glacial maximum (Haffer 1969; 

Figure 1); (iv) this river delimits Amazonian lowland areas of endemism to the west 

(Belém) and to the east (Xingu) (Silva et al. 2005); and (v) the region in which the 

Tocantins River is located constitutes one of the few areas in the Amazonian basin that 

has been well documented from geological and sedimentological perspectives (Rossetti & 

Valeriano 2007). Therefore, the Tocantins provides a unique spatial and temporal 

framework to test the role of Amazonian river dynamics on genetic structure of vertebrate 

populations. In addition, the study area is characterized by a complex geological and 

climatic history. Geomorphological data demonstrate that the Tocantins River shifted its 

course to the northeast in response to tectonic reactivation, probably during the 

Pleistocene-Holocene (Rossetti & Valeriano 2007). From a palaeoenvironmental 

perspective, data indicate forest-savanna shifts during the last 30,000 years as a 
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consequence of cycles of humid-dry periods in a central area of the Tocantins-Xingu 

interfluvium (Siffedine et al. 2001).  

 

1.2 Predictions of Alternative Diversification Hypotheses 

 River hypothesis - Studies designed to test the river hypothesis have been criticized 

because of their failure to determine whether rivers had a primary role in the 

diversification of organisms or if they acted only as points of secondary contact (Patton & 

Silva 1998). The geographic distribution of Pyriglena fire-eye antbirds, with populations 

occurring in southeastern Amazon basin as well as in forests flanking the Amazon basin 

(Pantanal, Andes and Atlantic Forest), allows one to make this distinction.  Fire-eyes 

constitute an ideal model to test the river hypothesis for two reasons. First, they have a 

widespread distribution in terra-firme forests in southeastern Amazonia. Second, a 

phylogenetic analysis based on a comprehensive geographic sampling of all populations 

of the entire genus revealed that fire-eye populations separated by the Tocantins River 

form a well-supported clade that is sister to a clade composed of the northeastern Atlantic 

Forest populations, whereas the population occurring in the Xingu-Tapajós interfluvium 

(P. l. similis) is sister to all western South America Pyriglena populations (Maldonado-

Coelho et al. in prep.). Thus, we can rule out the possibility that fire-eyes studied here 

diversified in interfluvia other than the Tocantins. Accordingly, we can test three 

predictions of the river hypothesis (Haffer 1997a; Patton and Silva 1998; Cheviron et al. 

2005; Funk et al. 2007) for the Amazonian populations of Pyriglena (Table 1): (1) 

haplotypes in opposite river banks will be reciprocally monophyletic, (2) genetic 

differentiation will be larger across the river rather than within the same interfluvium, 
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taking into account the effect of geographic distance, and (3) if the Tocantins river had a 

primary role in subdividing fire-eye populations, the populations geographically close or 

bordering the river should not show evidence of demographic expansion.   

Refuge hypothesis - This study covers populations inside one proposed large refuge area 

east of the Tocantins River (the Belém refuge; Figure 1 populations 10-13) and 

populations in areas outside both this refuge and a narrow and small unnamed refuge area 

along the eastern bank of the middle Xingu River (Figure 1; populations 1-9 and 14-

18;see Figure 5 of Haffer 1969 for refuge locations), which was not sampled in the 

present study. If the current population genetic structure of fire-eyes was affected by 

fragmentation of forests into Pleistocene refuges as proposed by Haffer (1969), we would 

predict that (Table 1): (1) populations occurring in the Belém refuge area should possess 

higher levels of genetic diversity compared to populations in non-refuge areas (Figure 1). 

This prediction derives from theoretical (Nichols & Hewitt 1994; Ibrahim et al. 1996) 

and empirical (reviewed in Hewitt 2004a,b) studies, which show that episodes of range 

expansion have dramatic effects on the spatial pattern of genetic diversity; (2) divergence 

time congruent with the duration of the last glacial period (i.e. not older than 80,000 yrs. 

bp; Hooghiemstra et al. 2000) and shallow levels of genetic divergence representing 

isolation of populations in two refuge areas during the last glaciation (Hewitt 2004a); and 

(3) a signature of recent demographic expansion with a time corresponding to the period 

of forest expansion after the last glacial maximum (i.e. during the last 20,000 years; 

Hewitt 1996; Haffer 1997a). Importantly, if the magnitude of population bottlenecks 

were proportional to the size of the two postulated refuges, the population size increment 

should be larger on the western river bank (Figure 1).  
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Here, the criterion adopted to reject a hypothesis is whether there is a 

correspondence between biogeographical events and population processes.  In other 

words, we will consider the hypothesized geological (river course shift) and climatic 

(forest fragmentation and expansion) processes to be consistent with the historical 

demographic processes (population subdivision and changes in population size) if they 

have overlapping confidence intervals.   

 

2. Materials and methods 

2.1 Geographical Sampling and Laboratory Molecular Procedures 

We sampled one outgroup taxon (P. leuconota pernambucensis) and a total of 32 

individuals from the eastern bank and 52 individuals from the western bank of the 

Tocantins River. From one to 16 individuals were sampled per site (for details on 

sampling locations, population sample size and voucher information see Figure 1, Table 3 

and Appendix A).  

Mitochondrial DNA from tissue and dry skin samples of specimens collected 

during the last 25 years was extracted using a Qiagen tissue extraction kit (QIAGEN, 

Inc.). Contamination risk of the museum samples was taken into account by extracting 

the DNA in a different room reserved for handling only bird skin samples and by always 

performing PCRs with negative controls. For all the tissue and some museum samples, 

we sequenced all or most of the NADH dehydrogenase subunit 2 (ND2; 1041 bp)  in two 

fragments by using the primer pairs L5219/H5766 and L5758/H6313 (Johnson & 

Sorenson 1998). The ND2 gene from degraded skin samples was amplified in four 

fragments using the primer pairs described below, or by a nested PCR process. DNA 
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amplification via nested PCR was performed by first sequencing the whole ND2 using 

the primers L5219 and H6313 followed by a second PCR using the product of the first 

PCR as a template. In this second PCR, we used primer pairs that included some internal 

primers, designed specifically for this project, to amplify shorter fragments: L5219 and 

HND2P1A (5’-GGTGGGTGAGTTGGGTAATG-3’) or HND2P1B 

(5’GCACCTTGGAGAACTTCTGG-3’); H5766 and LND2P2A 

(CATCGAGGCCACAACAAAAT) or LND2P2B (5’-

AAAATCTCACCACCCACGAG-3’); L5758 and HND2P3 (5’-

GGCAATGATTGTTGCTGTTG-3’); H6313 and LND2P4 

(5’CTCCATTAACGGGCTTTCTG-3’). 

PCR profiles included an initial 2 min denaturation cycle at 95°C, followed 

denaturation at 94°C for 45s, annealing varying from 46 to 52°C for 45 s, with a final 

extension of 1 min at 72°C. This was followed by 39 cycles of denaturation at 94°C for 

45 s, annealing varying from 46 to 52°C for 45 s and extension at 72°C for 1 min, 

finishing with an additional extension at 72°C for 10 minutes. When multiple DNA bands 

were obtained, products were electrophoresed in low-melting point agarose gels stained 

with ethidium bromide, excised from the gels, and purified using QiaQuick PCR Kit 

(Qiagen, Inc.). Clean products were used as templates for sequencing both light and 

heavy strands. DNA sequencing was carried out with BigDye v 3.0 Dye Terminator 

Cycle Sequencing Kit (Applied Biosystems, Inc.), and the same primers used for 

amplification. Cycle sequencing reactions were purified with an ethanol-sodium acetate 

solution and run on an ABI 3100 automated sequencer. Sequences were assembled and 

edited using the program SeqMan (DNAstar) and aligned by eye. The following 
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measures were taken to ensure that the amplified DNA fragments did not include 

pseudogenes of nuclear origin: 1) inspection for deletions, insertions and stop codons that 

would result in a nonfunctional protein, 2) confirming a high transition rate at third codon 

positions and 3) confirming a high transition to transversion substitution ratio 

characteristic of mitochondrial DNA (Arctander 1995; Sorenson & Quinn 1998). 

 
2.2 Phylogenetic Analyses 
 
Phylogenetic relationships among unique haplotypes based on the ND2 mtDNA gene 

were assessed with maximum parsimony (MP) and maximum likelihood (ML) using 

PAUP v4.0 (Swofford 2002) and Bayesian inference using MrBayes v3.1.2 (Huelsenbeck 

& Ronquist 2001; Ronquist & Huelsenbeck 2003). Maximum parsimony analyses were 

performed using a heuristic search, 100 random addition replicates and tree-bisection-

reconnection (TBR) branch-swapping algorithm. Nodal support was assessed using non-

parametric bootstrap (Felsenstein 1985) with 1,000 replicates. The best-fit model of 

nucleotide substitution for ML and Bayesian analyses was selected using Modeltest v3.7 

(Posada & Crandall 1998) and MrModeltest v2.22 (Nylander 2004), respectively, based 

on the Akaike Information Criteria (AIC). The K81uf + G + I (Kimura model with 

gamma distributed rate variation among sites and a proportion of invariant sites) model 

was selected for the ND2 gene data. Bayesian analyses were performed with four heated 

and one cold Markov chains for 6,000,000 generations, with the first 100,000 generations 

discarded as a burn-in. 

 

2.3 Population Genetic Analyses 
 
2.3.1 Haplotype network, AMOVA and patterns of genetic diversity 
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Given the problems associated with reconstructing relationships among recently diverged 

haplotypes (Posada & Crandall 2001), we also inferred the relationships among 

haplotypes through networks using the statistical parsimony program TCS v.1.2.1 

(Clement et al. 2000). Ambiguous connections among haplotypes in the network were 

solved following coalescent theory predictions as outlined in Crandall and Templeton 

(1993).  

We tested for the effect of the Tocantins River on the structure of genetic 

variation of fire-eyes populations that contained more than one individual using an 

Analysis of Molecular Variance (AMOVA; Excoffier et al. 1992) as implemented in 

Arlequin (version 3.1, Schneider et al. 2000). Apportionment of the genetic variation was 

broken down among three hierarchical levels: among populations from opposite river 

banks, among populations on the same river bank and among individuals within 

populations. Significance tests were based on 10,000 random permutations of the data 

set. 

Haplotypic (h) and nucletotide (π) diversity were calculated for population 

samples that contained more than one individual as described in Nei and Kumar (2000), 

using Arlequin (Schneider et al. 2000). Uncorrected pairwise distances among haplotypes 

are presented as mean ± SD. 

 

2.3.2 Historical Demography 

Because simulation studies have shown that the Fs (Fu 1997) and R2 (Ramos-Onsins & 

Rozas 2002) tests are statistically more powerful than other tests (Ramos-Onsins & Rozas 

2002), we use these tests to assess whether the populations would fit a population-
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stationary or a population-expansion scenario using DnaSp (Rozas et al. 2003). Estimated 

values for these tests were compared to an empirical distribution based on 10,000 

coalescent simulations assuming an infinite-sites model and a large population size. 

Significant P values (<0.05) were taken as evidence for departure from a model of 

constant population size in favor of an alternative scenario of demographic expansion. 

The generalized non-linear least-squares approach of Schneider and Excoffier (1999) 

implemented in Arlequin, was used to estimate the parameters of past demographic 

expansion from the mismatch distribution (Rogers & Harpending 1992) for those 

populations that showed significant departures from the null hypothesis of constant size. 

The estimated parameters were: Ө0, the theta value before population expansion (where Ө0 

= 2Neu, where Ne is the female effective population size and u is the mutation rate); Ө1, 

the theta value after population expansion and τ (where τ=2ut, where t is the time since 

the expansion in generation units). Confidence intervals (95%) were estimated for the 

parameters Ө0, Ө1, and τ through a parametric bootstrap with 10,000 re-samplings.  

The estimated values of the tau (τ) parameter were converted into years-before-

present by solving t = τ/2u, where u is the mutation rate per sequence per generation 

(Rogers & Harpending 1992; Rogers 1995). Here, we used two mutation rates: the widely 

assumed mutation rate of 2.1 % per site per million years (reviewed in Weir & Schluter 

2008) and the mutation rate estimate of 4.0% per site per million years of mitochondrial 

ND2 from the Galapagos mockingbirds (Arbogast et al. 2006). We assumed a generation 

time of 2.33 years, determined as T = α + [s/(1 – s)], where α refers to the age at which 

first breeding of females occurs and s is the expected adult survival rate (Sæther et al. 

2005). One year was used for α as suggested for fire-eyes by Willis (1981) and 0.57 was 
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used for s based on the average annual survival rate across ten typical antbird species in 

lowland Ecuador (Blake & Loiselle 2008).  

Although Fu’s Fs and R2 statistics provide evidence of historical changes in 

population size, these methods only provide point estimates that average out the whole 

history of the population and, therefore, do not allow inferences of population size 

fluctuations through time. Thus, we constructed Bayesian Skyline plots in BEAST v1.4.6 

(Drummond & Rambaut 2007) to estimate historical changes in population size over 

time. This method uses Markov Chain Monte Carlo (MCMC) sampling techniques to 

estimate the posterior distribution of effective population size given a set of aligned DNA 

sequences and a model of molecular evolution, taking into consideration uncertainty in 

the genealogical process (Drummond et al. 2005). We used the best-fit model of 

molecular evolution selected by Modeltest. This analysis was run for 2 x 108 generations 

with model parameters and genealogies sampled every 1,000 generations under a strict 

molecular clock, of which the first 10% were discarded as a burn-in. Skyline plots were 

constructed using Tracer v1.4 (Rambaut & Drummond 2007).  

 

2.3.3 Divergence Time and Migration Rates 

We estimated divergence time between populations of fire-eyes west and east of the 

Tocantins River using two different approaches. First, we estimated time-to-most-recent-

common-ancestor (TMRCA) using a Bayesian approach incorporated in the program 

BEAST. This analysis samples the TMRCA values from the posterior density distribution 

generated by MCMC simulations. Since substitution rate variation among lineages can be 

substantial, independent of the divergence time frame under consideration (Arbogast et 
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al. 2002), we first estimated divergence times using a relaxed clock. This method infers 

the date of origin for the lineages without relying on a molecular clock and considers 

uncertainty in branch length and tree topology (Drummond et al. 2006). Our preliminary 

runs estimated that the coefficient of variation of the mean branch rate variation was 

larger than one, indicating substantial rate variation among branches (Ho et al. 2005; 

Drummond et al. 2006; 2007). For comparative purposes, however, we estimated 

divergence times between fire-eye populations of western and eastern riverbanks 

assuming both a relaxed and strict molecular clock. We ran the MCMC under the K81uf 

+ G + I model of nucleotide substitution and assuming a constant population size. 

Overestimation of divergence can potentially occur when interspecific mutation rates are 

used to estimate intraspecific divergence events (Ho 2007); thus we employed here both 

the interspecific rate of 2.1% (1.0 x 10-8 substitutions per site per lineage per year) and 

the intraspecific rate of 4.0 % (2.0 x 10-8 s/s/y) divergence per MYA to estimate time of 

divergence. A total of four analyses were performed and each analysis consisted of one 

model type (clock constrained or unconstrained) and one mutation rate (two types). For 

each analysis, the three independent runs of 10,000,000 steps were combined to obtain an 

estimate of the posterior distribution. For each model type and mutation rate analysis, 

three independent runs were performed and combined, using 10,000,000 generations, 

discarding the first 1,000,000 as burn-in, and sampling parameter values every 1,000 

generations. Populations on opposite river banks were constrained as monophyletic in 

this analysis (see Shimodaira-Hasegawa test below). In each independent run, we 

inspected for convergence of the chain to the stationary distribution using the program 

Tracer.  
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Second, we used the Bayesian coalescent method developed by Hey and Nielsen 

(2007) implemented in the program IMa to simultaneously estimate population 

divergence time (t = Tu; where T is time in units of years and u is the mutation rate per 

gene) and migration rate (M = 2Nm; where m is the migration rate per gene copy). IMa is 

able to distinguish between the retention of ancestral polymorphism and recent gene flow 

assuming no further population subdivision within the diverging groups of populations. 

We ran multiple initial runs assuming different priors to assess whether convergence in 

the modes of posterior distribution was being reached. Three final runs with identical 

conditions and different random seeds were performed using prior distributions 

empirically obtained from the initial runs and always choosing upper bounds values that 

were not included in the flat tail of the initial distributions (Won & Hey 2005). We ran 

each run for 2 x 107 generations with a burn-in of 200,000 steps, always checking during 

and at the end of each run the autocorrelation values, absence of trends in trendline plots 

and that effective sample sizes (ESS) among parameter values are at least 50 throughout 

the run (Hey & Nielsen 2004; Hey 2007). The peaks of the posterior distributions were 

taken as the estimates of the parameter values. Here, we estimated divergence time using 

the divergence rates of 2.1% and 4% per million years.  

 

2.4 Partial Mantel Test 

If the Tocantins River were a long-term historical barrier to gene flow, genetic distances 

between populations on opposite river banks would be greater than genetic distances 

between populations on the same side of the river. However, ongoing geographically-

structured gene flow, as predicted by an isolation-by-distance model (IBD; Hutchison & 
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Templeton 1999), could also account for genetic variation among fire-eye populations 

and would potentially confound evaluation of this historical model. Here, we use partial 

Mantel tests (Legendre & Legendre 1998; Manly 2007), to decompose the relative 

contributions of the long-term historical effect of the Tocantins River versus IBD in 

explaining the genetic structure of fire-eye populations. In addition, we also evaluated the 

interaction between the historical and IBD processes (Telles & Diniz-Filho 2005). These 

analyses were performed considering the historical and IBD processes as predictors of 

genetic distance both separately, in simple Mantel tests, and combined in a multiple 

Mantel regression design, using the three following matrices: 1) a matrix of pairwise 

corrected genetic distances, 2) a matrix of pairwise geographic distances as a surrogate 

for IBD and 3) a pairwise binary matrix coding the position of populations relative to the 

river as reflecting the historical hypothesis (populations located on the same river side as 

0 and populations on different river sides as 1). Geographic distances were measured as 

straight-line distances between populations. Geographic distances were log-transformed 

prior to the analyses because the relationship between genetic distance and geographic 

distance was not linear.  

We estimated genetic distances among populations correcting for within-

population sequence divergence using the standard function pAB(corrected) = pAB - 

0.5(pA + pB), where pAB is the mean sequence divergence between populations A and B 

and pA and pB are the mean sequence divergences within populations A and B (Avise & 

Walker 1998). We used Arlequin to estimate the corrected pairwise genetic distances. 

Significance values of the partial Mantel correlations were obtained by 10,000 

permutations, using the software FSTAT (Goudet 1995).  
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3. Results 

3.1 DNA Sequence Variation 
Ingroup mtDNA base frequencies were similar to those found in other bird species, with 

an overall deficit of guanines (Johnson & Sorenson 1998): A = 0.318, C = 0.309; G = 

0.091; T = 0.282. A total of 17 and 14 unique haplotypes were recovered from the 

western and eastern sides of the Tocantins River, respectively; none of the haplotypes 

were shared between eastern and western banks of the river. A total of sixteen (1.5%) 

characters were parsimony informative.  

 

3.2 Phylogenetic Analyses, Haplotype Network and Genetic Structure in Fire-eyes  
The ML analyses for the ND2 data set produced a moderately supported clade composed 

uniquely of haplotypes from the western bank of the Tocantins River, while the 

relationships among haplotypes recovered from the eastern river bank could not be 

resolved (Figure 2). The MP tree (not shown) was similar to the tree generated by the ML 

analysis. The relationships between all the eastern and western haplotypes could not be 

resolved by the Bayesian analysis (not shown). To test if the reciprocal monophyly 

scenario predicted by the river hypothesis could be rejected, a Shimodaira-Hasegawa 

(SH) test (Shimodaira & Hasegawa 1999) with full optimization and 10,000 bootstrap 

replicates was performed in PAUP between the recovered ML tree (-lnL = 1790.6) and 

the most-likely tree from a search in which haplotypes in either river bank were 

constrained as monophyletic (-lnL = 1794.0). The SH test indicated that the reciprocal 

monophyly scenario cannot be rejected (P = 0.323).  

Results from the statistical parsimony network show that haplotypes from 

opposite river banks separate in two distinct groups (Figure 3). Haplotypes from these 
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two groups were separated by two mutational steps, and many haplotypes found on the 

same river bank were recovered in multiple populations, indicating a lack of strong 

within-basin phylogeographical structure (Figures 1 and 3). The mean pairwise 

uncorrected sequence divergence among unique haplotypes recovered on the western side 

of the river was 0.0033 ± 0.0014 (range 0.00096-0.0064) and similar to the value 

estimated for the eastern side (0.0031 ± 0.0013; range 0.00096-0.0058).  Mean pairwise 

uncorrected distances were, however, larger when unique haplotypes from opposite river 

banks were compared (0.0076 ± 0.0016; range 0.0039-0.0110). AMOVA showed that 

most of the variation (71%) in mtDNA observed in populations of fire-eyes along the 

Tocantins River valley was partitioned among eastern and western riverbanks (Table 2). 

The indices of haplotype diversity were generally low and uniform for fire-eye 

populations sampled throughout the Tocantins River valley. Indices of nucleotide 

diversity also had low values but varied considerably geographically (Table 3).  

 

3.3 Historical Demographic Analyses  

The Ramos-Onsins & Rozas’ (2002) R2 test did not detect evidence of historical changes 

in population size for fire-eyes throughout the Tocantins River valley, although a 

signature of historical population expansion was detected by Fu’s (1997) test in two 

western river bank localities (localities 5 and 7; Table 3, Figure 1). For these localities, 

the generalized non-linear least-squares approach of Schneider & Excoffier (1999) 

yielded distinct estimates of mean dates of population expansion time (τ) for the two 

mutation rates (Table 4). These point estimates correspond to historical demographic 

expansion in years before present of about 12,804 and 26,950 for locality 5, and 16,752 
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and 35,260 for locality 7 (Table 4). The effective sample sizes (ESS) for each of the two 

Bayesian Skyline Plots were larger than 200, suggesting that the MCMC mixed properly 

and that the number of generations was sufficient to infer historical size changes of fire-

eye populations on both river sides. Although the credibility intervals of the Bayesian 

estimates were wide, the analyses showed trends that indicate either growth or stable 

population sizes. However, these trends were not consistent with the expectation of a 

large population increase in the western river bank after the onset of humid periods as 

would be predicted by the refuge hypothesis (Table 1, Figure 4).   

 

3.4 Divergence time and Migration Rates 

 Coalescent simulations implemented in the program BEAST to estimate the TMRCA 

under relaxed and strict clock models resulted in proper mixing of the MCMC chains, as 

determined by the program Tracer. Assuming a strict molecular clock, the initial 

divergence of fire-eyes across the Tocantins River seems to have occurred during the 

Pleistocene (0.01-1.8 mya). TMRCA estimates were 0.476 million years ago (mya) (95% 

HPD: 0.298-0.834) and 0.272 mya (95% HPD: 0.148-0.416), assuming mutation rates of 

2.1% and 4% per million years, respectively. Estimated values for the relaxed clock were 

substantially larger, and placed the initial divergence across the Tocantins River in the 

late Pliocene and early Pleistocene, as divergence time and associated credibility interval 

values were 2.58 mya (95% HPD: 0.266-7.044) and 1.16 mya (95% HPD: 0.146-3.154), 

corresponding to divergence rates of 2.1% and 4%, respectively.  

Posterior distribution for population divergence time (Figure 5a) and migration 

(Figure 5b) across the Tocantins River were estimated from IMa. The posterior 
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distribution of population divergence time t peaked at 1.86 (95% HPD: 0.89-8.94), 

resulting in divergence estimates across the river of 0.179 mya (95% HPD: 0.085-0.859 

mya) and 0.083 mya (95% HPD: 0.040-0.399 mya), assuming the divergence rates of 

2.1% and 4% per million years, respectively. These estimates suggest that population 

divergence across the river occurred during the late-Pleistocene. A migration rate of zero 

into both east and west sides of the river cannot be rejected, indicating that no or 

negligible gene flow occurs across the river. Indeed, likelihood ratio tests applied to 

evaluate the fit of nested models within the full IMa model could not reject models 

assuming no gene flow across the river (results not shown).   

 

3.5 Partial Mantel Test  

The results of the partial Mantel test show that the Tocantins River has been an effective 

historical barrier to gene flow for fire-eye antbirds. We found that 89.3% of the variation 

in corrected pairwise genetic distances can be explained by the combined effects of long-

term historical isolation on opposite river banks and isolation-by-distance (IBD). 

However, after separating the effects of these two processes, 71.9% of genetic variation 

among fire-eye populations was due to the historical (river) effect, independent of IBD, 

while only 0.02% of the variation can be explained by IBD alone, independent of long-

term historical processes. There was no correlation between corrected genetic distances 

and geographic distances (Figure 6), as would be predicted by the IBD model. Rather, for 

similar geographical distances among populations, opposite river bank comparisons 

always had a higher corrected genetic distance than comparisons from the same river 

bank.  
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4. Discussion 

Evolutionary biologists have long been interested in unraveling the historical and 

ecological factors underlying the elevated biological richness of the Neotropical region, 

factors that are central to explaining patterns of species diversity at a regional and global 

scale. This issue is especially relevant in the Amazon basin, where species diversity is 

high but where few adequate tests of hypotheses have been put forward to explain this 

diversity. In this study, we tested predictions of the river and refuge hypotheses, two of 

the main evolutionary processes that have been proposed as engines of diversification for 

Amazonian vertebrate fauna. Despite the controversy surrounding these hypotheses, the 

population genetics framework adopted here allow us to draw with confidence some 

conclusions and reject predictions of these hypotheses.    

 

Testing the Predictions of the River Hypothesis 

We proposed to test three key specific predictions of the river hypothesis. Our data 

partially supported predictions 1 and 3 and fully support prediction 2 (Table 1). 

Prediction 1 is partially supported since the recovered ML tree is not statistically 

incongruent with the presence of two sister clades across the river. However, paraphyly 

of eastern river bank haplotypes relative to western haplotypes cannot be discounted. In 

fact, population splitting across the river seems to be a recent event and thus we are 

unable at the moment to provide a complete distinction of competing phylogenetic and 

historical hypothesis (e.g. Neigel & Avise 1986; Patton & Smith 1994, Patton & da Silva 

2005). Thus, a paraphyletic scenario could be reconciled with either an over water 

dispersal into the western Tocantins river bank or by an eastward Pleistocene shift in the 
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river course (as recently proposed by Rossetti & Valeriano 2007). Over water dispersal 

is, however, less likely since some populations in the western river bank show no 

signature of demographic expansion (see below). 

Prediction 2 is supported by the AMOVA, the migration estimates in IMa and the 

presence of eastern and western river bank haplotype groups in the statistical parsimony 

network, indicating that the Tocantins River was an important historical factor shaping 

the phylogeographical structure in fire-eye populations. This prediction is also supported 

by the results of the partial Mantel test, implying that clinal patterns of gene flow among 

populations cannot explain the observed genetic variation. All results of R2 and some of 

the Fu’s Fs did not show any signature of historical demographic change (prediction 3), 

as would be expected if the river was merely a secondary barrier. However, the Fu’s Fs 

test for one locality geographically close to the river (locality 5) did not reject a scenario 

of recent population expansion and, therefore, is inconsistent with the river hypothesis. 

The view that large rivers act as effective barriers to dispersal of vertebrates 

inhabiting opposite river banks in the Amazonian lowlands was suggested long ago 

(Wallace 1852). For many parts of Amazonia, however, the influence of rivers on gene 

flow and speciation of many taxa has been challenged (e.g. Sick 1967; Haffer 1992; 

Patton & Smith 1998). In fact, results from previous studies indicate that no 

generalization about the role of rivers as primary drivers of diversification for the 

vertebrate fauna in the whole Amazon basin is tenable. In western Amazon, for example, 

several phylogeographic studies have shown that some rivers are significant barriers to 

gene flow for terrestrial vertebrates (Cohn-Haft 2000; Aleixo 2004; Armenta et al. 2005; 

Cheviron et al. 2005; Funk et al. 2007) although exceptions to this pattern have been 
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found (Patton et al. 1994; Patton and Silva 1998; Lougheed et al. 1999; Aleixo 2004). In 

southeastern Amazonia, major lineage splits of a passerine bird coincide with both 

Tapajós and Xingu rivers, but not with the Tocantins River (Aleixo 2004), and a study in 

the headwater of the Tapajós River found a significant river effect for some but not all 

forest bird species considered (Bates et al. 2004). Genetic divergence across the 

Tocantins River was detected for one monkey species (Vallinoto et al. 2006), but a 

primary role of this river for population differentiation cannot be claimed, given the gene 

phylogeny. Although we cannot determine whether the Tocantins River imposed itself on 

an ancestral fire-eye geographic range (concordant with a reciprocal monophyletic 

scenario) or if an episode of across-river transfer of fire-eyes individuals took place at 

some point in time (concordant with a paraphyletic scenario), our study suggests that this 

river had an important historical role on fire-eye population differentiation.  

 

Testing the Predictions of the Refuge Hypothesis 

We tested three predictions derived from the refuge hypothesis. We found no support for 

predictions 1 and only partial support for predictions 2 and 3 (Table 1). Prediction 1 was 

not supported since variation in genetic diversity was not geographically structured as 

predicted by this hypothesis. However, this prediction relies on the assumption that range 

expansion was rapid with frequent long distance dispersal events, a process that would 

involve bottleneck events and lead to a reduction of genetic diversity (Ibrahim et al. 

1996; Hewitt 1996). Modes and rates of dispersal for fire-eyes are unknown and a further 

evaluation of this assumption should wait for additional data.  
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Shallow levels of genetic divergence were found and some population divergence 

times and IMa estimates between the two main haplotype groups recovered in the 

haplotype network are consistent with the temporal scenario posited by the refuge model 

(prediction 2). Assuming that glacial periods lasted approximately 60,000 years 

(Hooghiemstra et al. 2000), divergence estimates based on the assumed mutation rate of 

4% (Arbogast et al. 2006) could be reconciled with the timing predictions of the refuge 

hypothesis. 

In spite of some support for the refuge hypothesis, the pattern of historical 

demographic stability of sampled populations in the western bank of the river (localities 

1, 2 and 4) as given by the Fu’s Fs test, the lack of any signal of historical demographic 

change detected by the Ramos-Onsins & Rozas’ R2 test and the absence of a population 

expansion of the magnitude of the refuge area hypothesized for the western river side, 

refute the refuge hypothesis (prediction 3). However, confidence intervals of Schneider & 

Excoffier’s (1999) method supports partially prediction 3, as the timing to expansion of 

some populations outside refuge areas on the western river bank were congruent with the 

onset of warmer periods following the last glacial maximum.  

 Studies based on fossil pollen records (Colinvaux et al. 2000; Bush & Oliveira 

2006) and molecular data (Lessa et al. 2003; Aleixo 2004) have challenged the view that 

the Amazonian biota evolved in response to isolation in forest refuges during the late 

Pleistocene. Recent opinion holds that most of central Amazonia remained forested 

during the last glacial maximum (reviewed in Mayle et al. 2004). In the Tocantins River 

valley, Haffer (1969) suggested that forest populations contracted into a large refuge area 

east of the river and into a small refuge area along the eastern bank of the middle Xingu 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

28 

River as a result of the expansion of dry climates during the last glacial maximum (Figure 

1). Although some of the methods employed here cannot reject the hypothesis of 

population expansion, our analyses do reject the key prediction of population decline 

derived from Haffer’s hypothesis. This decline in population size would be expected 

mainly on the eastern bank, given the hypothesized small forest refuge area. Thus, the 

null hypothesis that populations have been stable or even growing cannot be rejected in 

favor of the hypothesis that they have experienced drastic reduction in their effective 

population size, as would have been expected if range contraction into forest refuges 

occurred.  

 

Estimated Divergence Times 

Population divergence times based on the IMa estimate assuming mutation rates of 2.1%, 

and 4% per million years indicate divergence across the Tocantins River of 0.179 mya 

and 0.083 mya (i.e. not earlier than the late Pleistocene). For the TMRCA, estimates 

varied from as young as 0.272 mya to as old as 2.58 mya from BEAST. Our estimates, 

however, are not compelling since these coalescent methods rendered divergence time 

estimates with substantial uncertainty. Thus, it would be difficult to specify any particular 

event as being the underlying cause of fire-eye population differentiation. For example, it 

is possible to reconcile the temporal pattern of divergence documented here for fire-eyes 

across the Tocantins River with a geological scenario recently proposed for the formation 

of the modern Tocantins River, whereby it shifted its course eastward during the 

Pleistocene or Holocene (Rosseti & Valeriano 2007). However, confidence intervals of 

the BEAST relaxed clock estimate assuming a mutation rate of 2.1% per mya cannot 
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discard the possibility that differentiation of fire-eye populations initiated during or since 

the formation of an ancient Plio-Pleistocene Tocantins River course west of its modern 

course (Rosseti & Valeriano 2007).  

Part of the uncertainty of our divergence time estimates likely reflects the 

limitations inherent to inferring population history from recent biogeographic events and 

from a single locus. This may be the case in our study, as the splitting pattern between 

western and eastern populations is very shallow and TMRCA estimates invariably 

surpass population divergence time (Tpop) estimates. Increasing the number of loci in the 

analysis might allow an assessment of how much of the total gene divergence between 

populations actually results from divergence since population separation (Edwards & 

Beerli 2000; Arbogast et al. 2002; Knowles and Maddison 2002, Carstens & Knowles 

2007), which may decrease uncertainty in the estimates and allow the rejection of 

alternative biogeographic scenarios with more confidence. However, nuclear loci show 

larger effective population size and deeper coalescent times (Palumbi et al. 2001) and, 

thus, represent a major difficulty for inferring shallow population history with 

confidence.  

 

Evidence for the River-Refuge Model of Diversification? 

Although we have shown that it is unlikely that fire-eye populations have undergone a 

population decline through range contractions into refuge areas, as envisioned by Haffer 

(1969), regional and local fluctuations in population size might still have been of 

historical importance in southeastern Amazonia, likely involving populations 

geographically close to the southern edges of the forest. Our analysis suggests that 
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population bottlenecks of the magnitude predicted by the refuge model do not seem to 

have occurred over the fire-eye history, but is not entirely clear that population expansion 

did not occur. This lack of clarity is a result of conflicts among different historical 

demographic estimators and wide confidence intervals in coalescent inferences. If 

population expansion is to be confirmed, it could imply that regional range expansion 

could have occurred recently to limited extent, most likely in the southern edge of the 

forest. Thus, support for an additional model of diversification, not necessarily mutually 

exclusive of the refuge and river models, would be provided. 

Both the river and refuge models propose that genetic divergence can originate by 

geographical isolation due to geological (rivers) or climatic-vegetational (refuges) 

processes. However, the possibility that geological features and climatic oscillation can 

simultaneously promote diversification in Amazonia remains untested. An alternative 

model that includes both types of processes and that could potentially lead to 

diversification is the river-refuge hypothesis (Ayres & Clutton-Brock 1992; Haffer 1992; 

1997). This hypothesis proposes that cladogenesis can occur by a combination of 

geographic isolation on opposite sides of the lower courses of Amazonian rivers and by 

forest retraction northwards, from the headwater regions toward the lower courses of the 

rivers during Pleistocene glacial periods (Haffer 1992; 1997). This scenario would lead to 

an additional prediction of recent population expansion southward following the onset of 

forest re-expansion since the last glacial period (last 20,000 years; Haffer 1997a). 

However, this model would be validated only if the retraction of populations on northern 

fronts during the glacial maxima was temporally congruent with the onset of the isolation 

effect due to the river, an arguable prediction since glacial periods are characterized by 
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lower water levels on the Amazon River basin (Irion et al. 1995; 1997; Vital & Stattegger 

2000), a period in which the isolation effects of large Amazonian rivers on terra firme 

forest biota are presumably smaller.  

 Given this scenario, can our data support the river-refuge model? For populations 

closer to the southern edge of Amazonia (localities 5 and 7), the Fu’s Fs test detected a 

signature of demographic expansion indicating that fire-eye populations may have 

expanded into these areas following the end of the last glacial period.  Point estimates of 

dates of population expansion for the two localities sampled in our study fall in the late 

Pleistocene and Holocene periods, independent of the mutation rate employed. The 

detected signal of demographic expansion in the western Tocantins River localities may 

suggest that small magnitude episodes of forest regression and expansion during the late 

Pleistocene and Holocene could have impacted populations of fire-eyes, at least at a 

regional scale. It is noteworthy that our data could provide some support for the model of 

regional forest replacement by open vegetation at the Carajás site (locality 5, Figure 1; 

Ledru et al. 2001; Siffedine et al. 2001; but see Bush & Oliveira 2006). Despite the wide 

confidence intervals of some estimates of the time to the population expansion, they 

coincide with the proposed time of forest expansion at this locality (last 30,000 yrs; 

Ledru et al. 2001; Siffedine et al. 2001) and with another area from the southern border 

of Amazonia (last 3,000 yrs; Mayle et al. 2000; Burbridge et al. 2004).  

Although a full test of the river-refuge model will require a more complete 

geographic sampling in the eastern river bank, the presumable isolation effect of the 

Tocantins River, initiating before or roughly at the same time as population expansion 

events (Table 4), and the signature of demographic stability and expansion recovered for 
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some populations in the lower (localities 1, 2 and 4) and medium (localities 5 and 7) 

course of the western river bank may allow us to reconcile our data with the predictions 

of this model. Future phylogeographic sampling and palynological studies along the 

edges and central parts of the Amazonian forest are crucial not only for testing the 

predictions of the river-refuge model as proposed here, but also for an accurate definition 

of headwaters regions of Amazonian rivers, a challenging task given the influence of both 

contemporary and historical factors (Bates et al. 2004).  

 

Conclusions 

The pattern of mtDNA variation observed for fire-eye populations provides little support 

for the view that populations were isolated in glacial forest refuges as proposed by Haffer 

(1969). Episodes of population demographic expansion are not entirely ruled out; 

therefore there may be effects of demographic processes induced by climatic changes; 

however, our data provide stronger support for the predictions of the river hypothesis. 

These results add to mounting evidence that, regardless of its popularity as a main 

process driving speciation in the Amazonian biota, climatic oscillations throughout the 

Pleistocene period do not seem to have played a substantial role in the diversification of 

many taxa in this region. Instead, our results agree with previous studies that have shown 

that physiographic events (Patton & da Silva 2005; Aleixo & Rossetti 2007) may have 

had a primary role in vicariance events.  

Future studies should be designed to test whether climatically driven range 

contractions could have occurred along the southern edge of the forest, hence promoting 

an intensification of the isolating effect of large Amazonian Rivers. It has long been 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

33 

shown that Amazonian rivers can be significant ecological barriers to animal dispersal in 

the Amazon basin (Wallace 1852; Sick 1967; Haffer 1992; 1997a,b), yet a primary role 

of rivers in phyletic splitting of lineages has been contentious; our study adds another 

piece of information to this discussion by showing that, although a recent event (i.e. late 

Pleistocene), the Tocantins River has likely been an important historical barrier for fire-

eye antbirds. It is also noteworthy that the ML and MP trees might suggest that the 

postulated river channel shift could have promoted across-river transfer of individuals, as 

would have been expected from meandering river episodes (Salo et al. 1986; Patton et al. 

1994; Peres et al. 1997; Colwell 2000). Finally, the difficulty in obtaining precise and 

accurate dating for recent biogeographic events in Amazonian lowlands represents a 

major obstacle to implementing robust tests of predictions about the timing of speciation 

derived from alternative diversification scenarios.  
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Table 1 Predictions and evidence for the river and refuge hypotheses of diversification for 
fire-eye (Pyriglena leuconota) in the Tocantins River Valley. See text for details  
 
Hypothesis                         Predictions             Prediction supported? 
River (1) haplotypes on opposite river banks will 

be reciprocally monophyletic; 
(2) genetic differentiation will be greater 
across the river rather than within 
individual interfluvia, after controlling for 
the effect of geographic distance;  
(3) populations geographically close to the 
river should not show evidence of 
demographic expansion. 
 

(1) partial support. The reciprocal monophyly 
scenario cannot be rejected in a maximum-
likelihood framework;  
(2) yes. Several tests indicated higher genetic 
divergence among populations across the river 
than within the same interfluvium;  
(3) partial support. No evidence of 
demographic expansion for most populations 
geographically close or bordering the river. 

Refuge (1) lower genetic variability in non-refuge 
areas;  
(2) timing of population divergence and 
shallow levels of genetic divergence 
representing isolation in refuge areas;  
(3) recent demographic expansion from 
refuge areas following the onset of humid 
periods. The magnitude of range expansion 
will be significantly larger in the western 
river bank. 
 

(1) no. Variation in genetic diversity was not 
geographically structured;  
(2) yes. Shallow levels of divergence found 
and some population splitting and TMRCA 
estimates consistent with temporal prediction; 
(3) partial support. The Fu’s Fs test cannot 
reject population growth for two populations, 
but Rozas’ R2 and the Bayesian analyses show 
no signature of a large population expansion in 
the western river bank.  

 

 

 

 

 

Table 2 AMOVA analysis for fire-eye (Pyriglena leuconota) 
populations grouped into western vs. eastern banks of the Tocantins 
River   
Source of variation d.f. Percent of variation 
Among population from opposite river 
banks 

1 70.96** 

Among populations from the same river 
bank 

16 3.96* 

Within populations 65 25.08** 
Total 82  
*P < 0.01; **P < 0.001. 
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Table 3 Sample size, number of haplotypes, haplotype diversity (h), nucleotide diversity (π), and 
historical demographic analyses (Fu’s Fs and Ramos-Onsins and Rozas’ R2 tests) for the 18 
populations of fire-eye (Pyriglena leuconota) on opposite banks of the Tocantins River 
No.  Sample 

size 
Number of 
haplotypes 

Haplotype 
diversity 

Nucleotide 
diversity (x10-3) 

Fu’s Fs R2 

 Western Bank  52 17 0.83 ± 0.04      7.0 ± 4.1 -12.07*** 0.11** 
1 Senador José Porfírio  5 3 0.70 ± 0.21 4.2 ± 3.7 -0.19 0.29 
2 Altamira region  7 2 0.48 ± 0.17 1.3 ± 1.4  0.59 0.27 
3 Caraipé Valley  3 2 0.67 ± 0.31 4.7 ± 4.8       -       - 
4 Region of Jacunda  7 5 0.90 ± 0.10 6.1 ± 4.6 -1.89 0.23 
5 Serra dos Carajás  16 8 0.83 ± 0.07 5.0 ± 3.5 -4.00** 0.16 
6 Ourilândia do Norte  2 2 1.0 ± 0.5 11.8 ± 13.1       -       - 
7 Santana do Araguaia  12 6 0.85 ± 0.07 5.4 ± 3.9 -2.09* 0.18 
        
 Eastern bank  33 14 0.88 ± 0.04 5.3 ± 3.2 -11.16*** 0.12 
8 Santa Bárbara  3 3 1.0 ± 0.27 3.9 ± 4.0       -       - 
9 Peixe-Boi  1 1       -       -       -       - 
10 Moju  1 1       -       -       -  
11 Tailândia  5 3 1.0 ± 0.27 10.0 ± 8.8 -0.08 0.20 
12 Paragominas  2 2 1.0 ± 0.5 3.4 ± 2.7        -       - 
13 Canoal  1 1       -       -       -       - 
14 Açailândia  9 4 0.75 ± 0.11 5.9 ± 7.2 -0.72 0.21 
15 Amarante  2 2 1.0 ± 0.5 2.8 ± 3.9       -       - 
16 Grajaú  6 2  0.33 ± 0.21  0.9 ± 1.2  -0.00 0.31 
17 Porto Franco  1 1       -       -       -       - 
18 Feira Nova  2 2  1.0 ± 0.50  8.8 ± 10.1       -       - 
 * P < 0.05; ** P < 0.01; *** P < 0.001. The Fu’s test was considered as significant at the 5% level if its P 
value was below 0.02 (Fu 1997).  
 
 

Table 4 Population estimates of Ө0, Ө1, τ and estimated time since the population 
expansion in y.b.p for fire-eye (Pyriglena leuconota) populations, assuming three 
mitochondrial mutation rates (2.1% and 4.0%). Western and eastern bank samples of the 
Tocantins River were pooled to estimate global population expansion in either river side. 
Sampling localities numbered as in Figure 1  

Sampling locality Ө0 Ө1 Τ                Time of expansion 
    2.1% 4.0% 
Western bank 0.00 

(0.00-0.028) 
99,999 
(9.859-
99,999) 

0.834 
(0.447-
1.410) 

18,096 
(9,698-30,594) 

8,596 
(4,608-14,536) 

Eastern bank 0.454 
(7.708-99,999) 

787.500 
(7.708-
99,999) 

1.836 
(1.277-
3.389) 

39,838 
(27,708-
73,538) 

18,938 
(13,164-
34,938) 

Serra dos Carajás 
(Locality 5) 

0.000 
(0.0-0.014) 

9,999 
(1.899-9,999) 

1.242 
(0.604-
2.295) 

26,950 
(13,106-
49,798) 

12,804 
(6,226-23,658) 

Santana do 
Araguaia 
(Locality 7) 

0.000 
(0.0-0.369) 

9,999 
(2.608-9,999) 

1.625 
(0.547-
2.932) 

35,260 
(11,868-
63,620) 

16,752 
(5,638-30,226) 
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Fig. 1 Sampling localities of fire-eye (Pyriglena leuconota) antbird populations along the 
Tocantins River Valley, southeastern Amazon, Brazil. Gray shaded areas on the western and 
eastern river banks indicate respectively the location of an unnamed and the Belém glacial forest 
refuges, following Haffer (1969).  
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Fig. 2 Phylogram of unique haplotypes using the ML tree search. Numbers and letters in the 
terminals represent the haplotype number. The geographic origin (western or eastern river bank) 
of haplotypes is indicated by vertical bars. The fifty-percent majority-rule consensus tree obtained 
using the equally weighted MP search in PAUP produced a similar tree topology (not shown). 
The numbers above and below the western clade are the ML and MP bootstrap values, 
respectively.  
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Fig. 3 Statistical parsimony network among haplotypes of Amazonian fire-eye (Pyriglena 
leuconota) populations based on ND2 sequences. Each circle represents a different haplotype 
with size proportional to its relative frequency. Yellow and blue circles represent haplotypes 
recovered in the western and eastern banks of the Tocantins River, respectively. The numbers 
correspond to sampling localities labeled in Figure 1. 
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Fig. 4 Bayesian Skyline Plots depicting the demographic history of fire-eye (Pyriglena 
leuconota) populations in western (top figure) and eastern (bottom figure) banks of the 
Tocantins River, with time axis scaled to the mutation rate of 2.1% per MYA. The solid line 
represents the median value for the log of the effective population size and the gray area 
represents the upper and lower 95% credible intervals. Time zero is the present, with values 
indicating time increasing towards the past.  
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Fig. 5 IMa posterior distributions of population divergence time (A) and migration (B) 
between fire-eye (Pyriglena leuconota) populations on opposite banks of the Tocantins 
River.  

(B) 

(A) (A) 
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Fig. 6 Correlation of corrected genetic distances and geographical distances between fire-eye 
(Pyriglena leuconota) populations sampled in the same (dots) and on opposite (squares) 
banks of the Tocantins River. 
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Appendix A 

Collection locality, sample size, tissue or dry skin source, voucher number and 
GenBank accession number for specimens of White-back fire-eye (Pyriglena 
leuconota) sequenced in this study.  

Locality Sample size Tissue/Skin 
source 

Catalogue 
number 

Gen Bank 
accession nos. 

1. Pará:Senador José Porfírio, 
Eastern Bank of Xingu River; 
3º 331’47.2”S-51º 43’58.6”W 

5 MPEG UHE353, 
UHE356, 
55715, 55716, 
55717. 

 

2. Pará: Altamira, east Bank of 
Xingu River -  

7 USNM   

3. Pará: Rio Tocantins, west 
bank Tocantins River, 40 km 
north of Tucurui dawn.  

5 MPEG 35701, 36248, 
36246, 36247,  

 

4. Pará:West bank of Tocantins 
River, Jacunda 

8 MPEG 35925, 35926, 
35927, 35929, 
36094, 35928, 
35930, 35931 

 

5. Pará:Paraupebas, Serra dos 
Carajás; 5º48'S, 50º30'W 

17 MPEG, 
FMNH 

1565, 37251, 
38038, 38174, 
38180, 38181, 
38182, 38183, 
36776, 38184, 
38177, 38179, 
38178, 36175, 
53799, 53800, 
53801, 39147 

 

6. Pará: Ourilândia do Norte 2 MPEG DPN093, 
DPN143 

 

7. Pará: Santana do Araguaia, 
Fazenda Fartura 

13 MPEG 48920, 48766, 
48754, 48920, 
48754, 48755, 
48756, 48757, 
48762, 48763, 
48767, 48920 

 

8. Pará:Santa Bárbara 3 MPEG 55900, 58649, 
59091 

 

9. Pará:Peixe-Boi, Fazenda 
Monte Verde 

1 MPEG 50988  

10. Pará:Moju, Fazenda 
Latomix 

1 MPEG 51978  

11. Pará:Tailândia; 2º 31´48º 
47' 

  P2586, P2870, 
P2872, P2873, 
P2875  

 

12. Pará: Paragominas, 
Fazenda Rio Capim 

2 MPEG 54994, 68978  

13. Pará:Canoal 1    
14. Maranhão:Rio Itinga, 
Açailândia, BR 010 Km 21, 
Fazenda Cobrás 
 

10 MPEG 38487, 38488, 
38491, 38492, 
38493, 38494, 
38495, 38497, 
38489, 38490  

 

15. Maranhão:Amarante 2 MPEG 37865, 40859  
16. Maranhão:Grajaú 9 MPEG 37709, 37710, 

37711, 37712, 
37713, 37714, 
37715, 37716, 
37717 
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17. Maranhão:Porto Franco 1 MZUSP 76549  
18.Maranhão:Riachão, 
Povoado Feira Nova, Fazenda 
do Arroz 

2 MPEG 42322, 42323  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

51 

CHAPTER 2 
 
Phylogeny and phylogeography of a circum-Amazonian avian complex: the role of 
geological and climatic factors in the diversification process of fire-eye antbirds 
(Pyriglena)  
 
 
1. Introduction 

The importance of climate and landform as drivers of population differentiation and 

speciation has long been appreciated (Chapman 1917; Mayr 1942). In the Neotropical region, 

although both factors are thought to create barriers to gene flow and potentially lead to 

speciation, many questions remain regarding their influence on diversification. For example, 

previous studies on Neotropical organisms suggest that the effects of Pleistocene glaciation 

events on population differentiation differ with respect to latitude, habitat and topography 

and, therefore, their relative importance in the process of speciation varies regionally (e.g. 

Wüster et al. 2005; Noonan and Gaucher 2006; Weir 2006; Carnaval and Bates 2007). 

Similarly, the impacts of mountain building and the formation of river barriers on genetic 

divergence and speciation may vary geographically and over time  (e.g. Aleixo and Rosseti 

2007; Brumfield and Edwards 2007). Whereas several recent studies have tried to elucidate 

the importance of climatic and geological factors as engines of diversification in a limited 

geographic extent, few have made an attempt to clarify their relative roles on a continental 

scale. 

One major geological factor that profoundly influenced the ecology and evolution 

of South American plants and animals was the rise of the Andes (Haffer 1974; Hooghiemstra 

and van der Hammen 1998). This prolonged event created high-elevation forest and non-

forest habitats that were colonized by taxa from different regions (e.g. Fjeldså1985; Bates 

and Zink 1994; Hackett 1995; Peréz-Emán 2005), after which subsequent in situ 
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diversification likely occurred. The complex topography (e.g. deep inter-Andean valleys), 

coupled with glacial and interglacial shifts in vegetation belts, might have created many 

opportunities for colonization and allopatric differentiation for lowland and foothill forest 

organisms that became isolated on either slope of the mountains (Patterson et al. 1992; 

Brumfield and Caparella 1996; Ribas et al. 2005; Brumfield et al. 2008) or on different 

Andean ridges (Graves 1988; Patton and Smith 1992; Arctander and Fjeldså 1994). Although 

studies focusing exclusively on lowland organisms distributed on either side of the Andes or 

on organisms occurring along Andean foothills may provide insights into the role of some 

historical processes, studies of organisms composing both types of distribution may 

constitute opportunities to assess a more complete suite of diversification mechanisms acting 

within this region.  

A second major geological factor in South America has been the formation of major 

river systems that can be effective dispersal barriers even for birds. The palaeo-drainage of 

South American rivers started to be formed in the late Oligocene, but it was not until late 

Miocene and Pliocene that the present-day pattern of most river systems began to be 

established (Martin et al. 1993; Potter 1997; Lundberg et al. 1998, Ribeiro 2006). The role of 

rivers in delimiting the spatial distribution of Neotropical terrestrial vertebrates has been 

contemplated since earliest naturalists started to explore the region (Wallace 1852). 

Subsequent studies based on distributions of organisms in different parts of South America 

indeed suggested that some rivers might serve as dispersal barriers (e.g. Hershkovitz 1990; 

Haffer 1992; Vielliard 1996; Hayes and Sewlal 2004). Similarly, some molecular studies of 

Neotropical organisms have provided evidence that rivers restrict gene flow effectively 

(Capparela 1988; 1991; Aleixo 2004; Bates et al. 2004; Armenta et al. 2005; Pellegrino et al. 
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2005) although other studies find weak or no effects (Patton et al. 1994; Lougheed et al. 

1999; Aleixo 2004; Bates et al. 2004; Funk et al. 2007; Cabanne et al. 2008). This implies 

that research in distinct biogeographic regions containing a suite of geological and ecological 

conditions will be required to provide a complete picture of the relative role of rivers as a 

historical diversification mechanism in the Neotropical region.  

Pleistocene glacial events during the last 2.4 My are thought to have influenced the 

genetic structure and geographic distribution of populations in temperate regions (reviewed 

in Hewitt 2000; 2004), but their influence on the spatial distribution and geographic 

differentiation of populations in the Neotropics remains less well understood (but see Noonan 

and Gaucher 2006; Carnaval and Bates 2007; Rull 2006, 2008). Previous studies suggest that 

the influence of Pleistocene refuges on the genetic structure and range dynamics of forest 

organisms may have been more pervasive in highlands (e.g. Andean forests; Weir 2006; 

Ribas et al. 2007, Koscinski et al. 2008) and at higher latitudes (e.g. southern Brazilian 

Atlantic Forest; Behling 1995, 2002; Cabanne et al. 2007; Martins et al. 2007) than in the 

Amazonian lowlands (e.g. Lessa et al. 2003, Aleixo 2004). Thus, organisms that occur in 

different biogeographic regions, that possess broad latitudinal geographic distributions, and 

that are present in both lowlands and highlands are best suited to elucidate the role of 

Pleistocene climatic changes on processes of population colonization and differentiation.  

Given their broad geographic distribution, with populations occurring in forested 

areas in southeastern Amazonian basin, Pantanal floodplain basin, Andes and the Pacific and 

Atlantic Coasts, the South American fire-eyes, Thamnophilid antbirds of the genus Pyriglena 

(hereafter referred to as fire-eyes) provide a model system to investigate the influence of 

geological and climatic processes on patterns of diversity. The genus as a whole, and 
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populations within species, extend across rivers, glacial refuges, and mountains, providing a 

link between genetic diversification and historical processes.  The geographic extent of our 

sampling (see below) allows us to distinguish whether potential barriers to dispersal (i.e. 

rivers, mountains, and dry habitats) were primary sites of diversification or secondary 

meeting points for populations that diversified elsewhere (Patton and da Silva 1998, 2005). In 

addition, because dispersal capabilities presumably do not vary across the geographic range 

of Pyriglena, among-region differences in phylogeographic patterns can be assigned with 

confidence to historical processes as opposed to evolved differences in life-history traits. 

Finally the geographical distribution of fire-eyes conforms to a partial circum-Amazonian 

pattern (sensu Remsen et al. 1991) that is shared by a number of South American avian and 

plant groups (Remsen et al. 1991, Prado and Gibbs 1993, Bates 1997, Pennington et al. 2000, 

Lovette 2004), suggesting that the processes underlying the evolutionary patterns in this 

group may have been shared among other circum-Amazonian taxa.  

In this study, we provide a densely sampled survey spanning the geographic 

distribution of South American fire-eyes and place the history of these populations in the 

context of geology and past climate change. Specifically, we ask whether the spatial and 

temporal patterns of diversification within and among distinct biogeographic regions can be 

explained by geological factors, Pleistocene climate change, or by an interplay between both. 

To address this question, we first test whether potential barriers to dispersal, such as the uplift 

of the Andes, formation of modern river systems in Amazon, Pantanal and Atlantic Forest, 

and the presence of dry inter-Andean valleys, correlate with genetic differentiation of fire-eye 

populations. Second, we investigate whether climatic fluctuations and refuges proposed by 

palynology (e.g. Behling 1997, 2002; Behling and Negrelle 2001), geomorphic features (e.g. 
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Auler et al. 2004; Wang et al. 2004) and historical climatic modeling (Carnaval and Moritz 

2008) can explain patterns of genetic differentiation among and within each biogeographic 

region.  

 

The fire-eyes study system: synopsis of current taxonomy and distribution  

The fire-eye genus Pyriglena, as currently recognized, includes three species: the Fringed-

backed Fire-eye (P. atra), the White-backed Fire-eye (P. leuconota), and the White-

shouldered Fire-eye (P. leucoptera) (Willis and Oniki 1982; Ridgely and Tudor 1994; 

Zimmer and Isler 2003); although different authors have considered Pyriglena to comprise 

one (Zimmer 1931) or four (Chapman 1923) species. Notably complicated is the taxonomic 

status of P. atra, which between the geographic ranges of P. leuconota and P. leucoptera. 

Willis and Oniki (1982) suggested that the relationship of P. atra is uncertain, given its 

intermediate vocal and plumage characters in relation to P. leuconota and P. leucoptera. 

Equally enigmatic is P. leuconota, which is currently considered to include 10 parapatrically 

or allopatrically distributed subspecies (Figures 1and 2). One subspecies (P. l. 

pernambucensis) is isolated in the coastal areas of northeastern Brazil, north of the São 

Francisco River. Three other subspecies occur in the Amazonian region south of the Amazon 

River and east of the Tapajós River. Six subspecies occur from western lowlands of Brazil 

across central Bolivia and north along the eastern slopes of the Andes to central Colombia. In 

western Andes, another isolated population occurs in the Tumbesian center of endemism in 

northwestern Peru and western Ecuador (Willis and Oniki 1982; Parker et al. 1995). Finally, 

the monotypic P. leucoptera occurs in parapatry with P. atra in the northern Brazilian 

Atlantic Forest (Figure 1B). The relationships, boundaries and monophyly of the species, 
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subspecies and populations have never been rigorously examined. Several authors have 

questioned the interpretation of a single widely distributed species of P. leuconota (Ridgely 

and Tudor 1994; Parker et al. 1995; Zimmer and Isler 2003), whereas morphological 

intermediates between P. leucoptera and P. atra in eastern Brazil (Willis and Oniki 1982) 

raise the possibility of hybridization and introgression between these phenotypically distinct 

forms.   

 

2. Methods 

Geographic sampling and data collection 

Most of samples used in our study were vouchered and were obtained during fieldwork 

throughout South America or were borrowed from museums (see Appendix 1). We lack 

vouchers of P. atra, an endangered taxon from coastal Brazil; only blood samples were 

collected. Since we were unable to obtain tissue samples from the Peruvian endemic P. l. 

picea, we extracted DNA from several old specimens housed at the AMNH. The DNA was 

too degraded for most of the P. l. picea specimens, and we could obtain sequences from only 

a single individual (Appendix 1).  

We conducted our sequencing analyses using two strategies to perform historical 

demographic estimates and to establish evolutionary relationships among taxa and 

populations at distinct hierarchical levels. To explore phylogeographic and phylogenetic 

variation within and among biogeographic regions, we used complete mtDNA NADH 

dehydrogenase subunit II (ND2; 1041 bp) from 442 samples spanning the entire taxonomic 

and geographic distribution of the fire-eyes (Appendix 1). Although the analyses of the ND2 

sequences revealed highly divergent, geographically structured mtDNA clades, relationships 
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within and among regions could not be fully resolved using this data set (results not shown). 

We thus sequenced three other mitochondrial genes and one nuclear gene from a subset of 74 

individuals to further explore phylogeographic structure and to resolve relationships. The 

second dataset included the mtDNA ND2, NADH dehydrogenase subunit III (ND3; 351 bp), 

cytochrome b (cyt b; 1045 bp), ATP-synthase 6 and 8 (ATPase; 776 bp) and the nuclear 

intron beta-fibrinogen 5 (BF5; 535 bp). To amplify and sequence samples yielding low 

quality DNA, we designed external primers for ATPase6 and ATPase8 and internal primers 

for ND2 that permitted us to sequence fragments of 300-400 bp (Table 1).  For amplification 

and sequencing we used the following primers: ND2, L5219, H5766, L5758 and H6313 

(Johnson and Sorenson 1998); ND3, primers L10755 and H11151 (Chesser 1999); cyt b 

L14990, H16065, cytb.intf and cytb.intr (Brumfield and Edwards 2007); BF5, FIB5L and 

FIB5H (Brumfield et al. 2007). 

Total genomic DNA was extracted from frozen tissues, blood, and dry skin samples 

of specimens collected during the last 25 years using a Qiagen tissue extraction kit 

(QIAGEN, Inc.). Contamination risk of the museum samples was minimized by extracting 

the DNA in a different room reserved for handling only bird skin samples and by always 

performing PCRs with negative controls. PCR profiles were designed for each primer set and 

included in general an initial 2 min denaturation cycle at 95°C, followed denaturation at 94°C 

for 45s, annealing varying from 46 to 52°C for 45 s, with a final extension of 1 min at 72°C. 

This was followed by 39 cycles of denaturation at 94°C for 45 s, annealing varying from 46 

to 52°C for 45 s and extension at 72°C for 1 min, finishing with an additional extension at 

72°C for 10 minutes. DNA sequencing was carried out with BigDye v 3.0 Dye Terminator 

Cycle Sequencing Kit (Applied Biosystems, Inc.) and the same primers used for 
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amplification. Cycle sequencing reactions were purified with an ethanol-sodium acetate 

solution and run on an ABI 3100 automated sequencer. Sequences of both BF5 and mtDNA 

genes were assembled and edited using the program SeqMan (DNAstar) and aligned by eye. 

The following measures were taken to ensure that amplified fragments from the mitochondria 

coding genes did not include pseudogenes of nuclear origin: 1) inspection for deletions, 

insertions and stop codons that would result in a nonfunctional protein, 2) confirming a high 

transition rate at third codon positions and 3) confirming a high transition to transversion 

substitution ratio characteristic of mitochondrial DNA (Arctander 1995; Sorenson and Quinn 

1998).  

 

Phylogenetic analyses  

We first analyzed a terminal data set comprising the four mtDNA sequences (hereafter 

mtDNA data set; 3213 bp total) for one to twelve individuals per taxon. Second, we analyzed 

a subset of these individuals with the addition of the nuclear intron (hereafter full data set; 

3748 bp total). In the intron data set, double peaks in the chromatograms were inferred as 

heterozygous sites and coded as polymorphic using the standard IUPAC degeneracy codes. 

No more than one heterozygous site was recovered in any BF5 individual. Phylogenetic 

relationships among individuals based on the mtDNA data set and the full data set were 

assessed with maximum parsimony (MP), maximum likelihood (ML) using PAUP v4.0 

(Swofford 2002), and Bayesian inference in MrBayes v3.1.2 (Huelsenbeck and Ronquist 

2001; Ronquist and Huelsenbeck 2003). All MP analyses were performed using a heuristic 

search, 100 random addition replicates and tree-bisection-reconnection (TBR) branch-

swapping algorithm with all the characters equally weighted. Nodal support was assessed 
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using non-parametric bootstrap (Felsenstein 1985) with 100 replicates. The best-fit model of 

nucleotide substitution for ML and Bayesian analyses was selected using Modeltest v3.7 

(Posada and Crandall 1998) and MrModeltest v2.22 (Nylander 2004), respectively. 

MrModeltest was selected for the Bayesian analyses because it only considers models of 

nucleotide substitutions that were implemented in MrBayes v3.04b (Ronquist and 

Huelsenbeck 2003). We used the Akaike Information Criteria (AIC) for model selection 

because of its advantages over hierarchical likelihood-ratio tests (Posada and Buckley 2004). 

The Trn + I + G and K81 + I + G models of molecular evolution were selected for the 

mtDNA and full data sets, respectively, in Modeltest. MP and ML analyses were performed 

on the Beowulf Cluster at the University of Missouri-St Louis.  

Data sets composed of multiple genes, as in this study, contain partitions (e.g. 

codon positions and nuclear and mitochondrial genes) that may evolve under different 

models of evolution. In these situations, simulations and empirical studies have shown that 

using a single model of evolution for the entire data set may not capture the complexity in 

nucleotide substitution for different codon positions and genes. This might potentially affect 

various aspects of the phylogenetic reconstruction, such as accuracy of posterior probability 

values (Huelsenbeck and Rannala 2004, Castoe et al. 2004, Brandley et al. 2005), tree 

topology (Nylander et al. 2004, Castoe and Parkinson 2006), branch lengths (Lemmon and 

Moriarty 2004) and resolution of deeper nodes (Castoe et al. 2004, Brandley et al. 2005). The 

issue of model complexity is more decisive with highly divergent sequences where 

homoplasy due to multiple substitutions becomes a serious issue (Huelsenbeck and Rannala 

2004, Lemmon and Moriarty 2004). One way to overcome this problem is by employing 
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independent models of nucleotide evolution for each partition in the data set (Nylander et al. 

2004). 

In this study, we used mixed-model Bayesian analyses in which the concatenated 

data sets were partitioned by codon position according to their adequate model of molecular 

evolution (except the intron gene that had a distinct model). Bayesian analyses were 

performed with flat Dirichlet distribution for base frequencies and estimation of nucleotide 

substitution and default values for all other parameter estimations. Codon partitions and 

parameters were allowed to vary independently by unlinking partitions. We used the Akaike 

Information Criteria (AIC) for model selection in MrModeltest and the HKY + I + G, HKY + 

I, GTR + I + G, and HKY + I models of molecular evolution were selected for the first, 

second and third mtDNA positions, respectively, and for BF5. We ran three independent 

analyses with different seed numbers. In each analysis, we implemented four heated and one 

cold Markov chains for 4,000,000 and 10,000,000 generations for the mtDNA and full data 

set, respectively. Stationarity of each individual analysis was confirmed in three ways. First, 

we visually inspected plots of likelihood scores against generation time. Second, we checked 

whether the average standard deviation of split frequencies was <0.005 and third, we 

assessed whether the three independent runs converged in similar tree topology and 

associated posterior probabilities. The first 500,000 generations were discarded as a burn-in 

for both data sets. Once we verified that the three independent runs had converged on similar 

posterior distributions, we presented our results based on a single run. Choice of outgroup 

taxa was based primarily on a recently published antbird phylogeny (Brumfield et al. 2007), 

with the inclusion of the Slender Antbird (Rhopornis ardesiacus), which has been suggested 
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as closely related to Pyriglena based on behavior and voice (Willis and Oniki 1981, Ridgely 

and Tudor 1994, Zimmer and Isler 2003).  

 

Assessing the conflict between traditional classification and mtDNA variation 

Our phylogenetic analyses indicated that some relationships were contrary to those implied 

by traditional classifications. We thus assessed the robustness of conflicting placement of 

taxa recovered in our maximum-likelihood tree with those alternate topological placements 

of taxa implied by traditional classifications. To do this, we conducted a number of 

constrained ML searches in PAUP using the combined mitochondrial genes data set and 

contrasted their likelihood scores with the one obtained from of the unconstrained ML search 

employing the Shimodaira-Hasegawa tests (S-H, Shimodaira-Hasegawa 1999), with full 

optimization and 1,000 bootstrap replicates.  

 

Mantel tests - Rivers as historical barriers 

If South American rivers were a long-term historical barrier to gene flow, genetic distances 

between populations on opposite river banks would be greater than genetic distances between 

populations on the same side of the river. To test whether large rivers have had an important 

role in shaping the phylogeographic structure in fire-eyes, patterns of genetic variation 

between and within populations spanning major river systems across the South American 

continent were examined (Figure 1). When possible, partial Mantel tests with 10,000 random 

permutations were performed between a matrix of corrected pairwise genetic distances and a 

binary matrix (the river barrier) after controlling for geographic distance (see Chapter 1 for 

details).  
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Phylogeography and historical demography - Climatic changes and population history 

We assessed the effects of Pleistocene climatic changes on timing of population 

differentiation, genetic diversity and population demography, contrasting our genetic data 

with previous knowledge of vegetation history of the different regions based on 

palynological, geomorphic and historical modeling approaches. In Atlantic Forest, an 

historical model for the distribution of moist forest during the last glacial maximum has been 

proposed (Carnaval and Moritz 2008). Specifically, these authors have hypothesized that 

most of the forest south of the Doce River had been replaced by savanna-like vegetation 

during the last glacial period, whereas two forest refuges persisted north of the river: i) a 

large area stretching from the southern bank of the Doce River northward to the southern 

border of the São Francisco River (hereafter “Bahia refuge”) and ii) a smaller refugium north 

of the São Francisco River (hereafter “Pernambuco refuge”). If the current population genetic 

structure of fire-eyes was affected by fragmentation of forests into refuges during the last 

glacial maximum as proposed, we would predict that populations occurring in the areas 

where forest did not persist should present: i) a signature of recent population growth 

corresponding to the period of forest expansion after the last glacial maximum (i.e. during the 

last 20,000 years; Hewitt 1996; Haffer 1997a); ii) reduced genetic diversity relative to refuge 

areas. This prediction derives from theoretical (Nichols & Hewitt 1994; Ibrahim et al. 1996) 

and empirical (reviewed in Hewitt 2004a,b) studies, that show that episodes of range 

expansion into previously unoccupied areas have dramatic effects on the spatial pattern of 

genetic diversity; and iii) the set of populations in this area should not exhibit a regional 

pattern of isolation-by-distance because populations in recently colonized regions would not 

have existed long enough for the drift-mutation-gene flow equilibrium to have been achieved 
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(reviewed in Hutchison and Templeton 1999). As such, measures of genetic distance between 

populations should not increase as a function of geographic distances separating the 

populations. One of the predictions of the refugium hypothesis is that we should recover 

shallow levels of genetic divergence representing isolation of fire-eye populations in the 

Bahia and Pernambuco refuges (Hewitt 2004); however, the test of this prediction is not 

tenable in our study because populations in the Pernambuco refuge are sister to eastern 

Amazonian populations (see below). We also ask whether Atlantic Forest fire-eyes (P. 

leucoptera) show evidence of range expansion towards the headwaters of the Paraguaçu 

River in response to Pleistocene climatic changes. Pyriglena leucoptera and P. atra occur 

parapatrically along the northern middle bank of this river (Figure 1B), where evidence of 

past gene flow and introgression has been recovered (see below).  

Haplotypic (h) and nucletotide (π) diversity were calculated for population samples 

that contained more than one individual as described in Nei and Kumar (2000), using 

Arlequin (Schneider et al. 2000). We also inferred the relationships among haplotypes 

through networks using the statistical parsimony program TCS as outlined in Chapter 1.  

In order to define geographic regions of large genetic changes, a spatial analysis of 

molecular variance (SAMOVA version 1.0; Dupanloup et al. 2002) was performed. This 

analysis was restricted to Atlantic Forest, where our sampling was most dense. SAMOVA 

defines a posteriori groups of populations that are geographically and genetically 

homogeneous and maximally differentiated from each other and, as a by-product, allows the 

identification of genetic barriers between these groups of populations. A simulated annealing 

procedure is used to maximize the proportion of total genetic variance due to differences 

between groups of geographically homogeneous populations. The analysis was based on 
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pairwise differences for a varying number of groups (K). The final number of groups was 

based on the largest total genetic variance due to differences between groups of populations. 

For each grouping number, the simulated annealing process was repeated 100 times.  

Tajima’s D (1989), Fs (Fu 1997), and R2 (Ramos-Onsins and Rozas 2002) tests 

were used to assess whether the populations would fit a population-stationary or a 

population-expansion scenario using DnaSP (Rozas et al. 2003). Estimated values for these 

tests were compared to an empirical distribution based on 10,000 coalescent simulations 

assuming an infinite-sites model and a large population size. Significant P values (<0.05) 

were taken as evidence for departure from a model of constant population size in favor of an 

alternative scenario of demographic expansion. The generalized non-linear least-squares 

approach of Schneider and Excoffier (1990) implemented in Arlequin, was used to estimate 

the parameters of past demographic expansion from the mismatch distribution (Rogers and 

Harpending 1992) for those populations that showed significant departures from the null 

hypothesis of constant size. The estimated parameters were: Ө0, the theta value before 

population expansion (where Ө0 = 2Neu, where Ne is the female effective population size and 

u is the mutation rate); Ө1, the theta value after population expansion and τ (where τ=2ut, 

where t is the time since the expansion in generation units). Confidence intervals (95%) were 

estimated for the parameters Ө0, Ө1, and τ through a parametric bootstrap with 10,000 re-

samplings.  

The estimated values of the tau (τ) parameter were converted into years-before-

present by solving t = τ/2u, where u is the mutation rate per sequence per generation (Rogers 

and Harpending 1992; Rogers 1995). Here, we used two mutation rates: the widely assumed 

mtDNA mutation rate of 2.1 % per site per million years (reviewed in Weir and Schluter 
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2008) and the mutation rate estimate of 4.0% per site per million years of mitochondrial ND2 

from the Galapagos mockingbirds (Arbogast et al. 2006). We assumed a generation time of 

2.33 years, as determined in Chapter1. 

We constructed Bayesian Skyline plots in BEAST v1.4.6 (Drummond and Rambaut 

2007) to estimate historical changes in population size over time. This method uses Markov 

Chain Monte Carlo (MCMC) sampling techniques to estimate the posterior distribution of 

effective population size given a set of aligned DNA sequences and a model of molecular 

evolution, taking into consideration uncertainty in the genealogical process (Drummond et al. 

2005). We used the best-fit model of molecular evolution selected by Modeltest. This 

analysis was run for 3 x 108 generations with model parameters and genealogies sampled 

every 1,000 generations under a strict molecular clock, of which the first 10% were discarded 

as a burn-in. Skyline plots were constructed using Tracer v1.4 (Rambaut and Drummond 

2007).  

Here, the criterion adopted to reject a hypothesis was a lack of correspondence 

between biogeographical events and population processes.  In other words, we will consider 

the hypothesized geological (e.g. river course shift and mountain building) and climatic 

(forest fragmentation and expansion) processes to be consistent with the historical 

demographic processes (population subdivision and changes in population size) if they have 

overlapping confidence intervals.   

 

Dating Historical Events 

In order to validate the application of the 2.1% corrected sequence divergence per My for cyt 

b in birds (Weir and Schluter 2008) for our entire mtDNA data set, we compared pairwise 
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model corrected genetic distances of the cyt b mtDNA gene alone with the genetic distances 

of the three remaining mtDNA genes, excluding the cyt b. In this comparison, we employed 

the GTR-I model for corrected distances (Weir and Schluter 2004), and the corrected genetic 

distances between cyt b only when the other mtDNA samples were strongly and significantly 

correlated (r2 = 0.95; P < 0.001). In this case, we used the 2% rate of divergence to estimate 

divergence times.   

We estimated the dates of origin of all fire-eye clades and sub-clades using a 

Bayesian statistical approach incorporated in the program BEAST. This analysis samples the 

time-to-most-recent-common-ancestor (TMRCA) values from the posterior density 

distribution generated by MCMC simulations. We estimated divergence times using an 

uncorrelated lognormal relaxed clock. This method infers the date of origin for the lineages 

without relying on a molecular clock and considers uncertainty in branch length and tree 

topology (Ho et al. 2005; Drummond et al. 2006; 2007). When estimating divergence times 

between species or populations, it is necessary to assume either a Yule tree prior or a 

coalescent tree prior, depending on whether coalescent events are completely relevant. Here, 

we estimated divergence times assuming a Yule tree prior for the well-supported clades and 

sub-clades identified in the phylogenetic analyses described above. We used a reduced data 

set, which included one individual from each phylogeographic lineage of fire-eyes. To 

incorporate evolutionary information specific to each codon position, we performed 

partitioned analyses in BEAST after having inferred the appropriate nucleotide substitution 

model for each codon position in MODELTEST. Two independent MCMC analyses were 

run for 60,000,000 generations, discarding the first 6,000,000 as burn-in, and sampling 

parameter values every 1,200 generations. The two independent runs were combined to 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

67 

obtain an estimate of the posterior distribution. In each independent run, we inspected for 

convergence of the chain to the stationary distribution using the program Tracer. This 

strategy ensured that the TMRCAs were well sampled (ESS values > 200). 

 

3. Results 

Phylogenetic relationships within fire-eyes 

The Bayesian, ML and MP analyses based on the four mitochondrial genes and seven 

outgroup taxa recovered fire-eyes as a monophyletic group with high support (Figure 2). 

Within fire-eyes, all three phylogenetic methods identified the same three major, well-

supported clades. The first clade was composed of the two Atlantic Forest species P. 

leucoptera and P. atra. Haplotypes recovered from these two species were not reciprocally 

monophyletic for any of the distinct analyses (Figures 2, 3 and 5). As revealed by the S-H 

test, enforcing reciprocal monophyly of P. leucoptera and P. atra haplotypes produced a 

significantly worse explanation of the data than produced by the optimal tree we recovered, 

in which those two species were not monophyletic (Table 2). Relationships and geographical 

variation in mtDNA within this clade are discussed in detail below, based on a more 

comprehensive geographical sampling of populations (see population history).  

The second clade was formed by the populations of P. leuconota from northeastern 

Atlantic Forest and from southeastern Amazon east of the Xingu River (Figures 1A, 1B and 

2). Samples from northeastern Atlantic Forest (subspecies P. l. pernambucensis), as well as 

from populations in opposite sides of the Tocantins River (subspecies P. l. leuconota and P. 

l. interposita), each form well-supported monophyletic groups in all three analyses. Samples 

from populations on opposite sides of the Tocantins River appeared as reciprocally 
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monophyletic in all analyses, a result moderately supported by the Bayesian search (0.78 

posterior probability), but less so by ML and MP (52% bootstrap for both). The third clade 

consists of the P. leuconota population occurring between the Xingu and Tapajós rivers 

(subspecies P. l. similis) and all other western South American fire-eye populations. Within 

this group, a well-supported basal division (1.00 Bayesian posterior probability and 100% 

ML and MP bootstrap) separates the Amazonian P. l. similis from all the western populations 

(Figure 2).  

Further sub-clades can be described within this third clade, according to tree 

topology and geographical distribution of populations. All analyses recovered a well-

supported (1.00 Bayesian posterior probability and 100% ML and MP bootstrap) separation 

between a clade formed by populations in the eastern foothills of the southern Andes and 

southwestern lowlands and a clade composed by populations in the central Andes (central 

Peru north) and the trans-Andean subspecies P. l. pacifica. Relationships within the first 

clade are discussed in detail below. Within the latter clade, all analyses revealed that defined 

subspecies do not correspond well with the recovered mtDNA clades. The subspecies P. l. 

castanoptera is paraphyletic with respect to both the southern subspecies P. l. picea and the 

trans-Andean P. l. pacifica, a result strongly supported in Bayesian (1.00 posterior 

probability), ML and MP (100% bootstrap for both) analyses. More specifically, the northern 

samples of P. l. castanoptera and P. l. pacifica are grouped together with high nodal support 

and a second well-supported clade was formed by a single northern sample of P. l. 

castanoptera and all southern P. l. castanoptera plus an individual of P. l. picea. A ML 

search in which the monophyly of P. l. castanoptera was enforced provided a significantly 

worse explanation of the mtDNA data, as shown by S-H tests (Table 2). 
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The phylogenetic analyses did not resolve the early branching events in fire-eyes 

with strong support. Although a sister relationship between populations south of the São 

Francisco River in Atlantic Forest (P. atra and P. leucoptera) and the populations of western 

South America (including the Amazonian P. l. similis) was recovered in Bayesian searches 

with relatively high posterior probability values (0.90) for the mtDNA data set, this 

relationship was not recovered in both ML and MP bootstrap analyses. Instead, ML and MP 

bootstrap consensus trees collapsed the three major clades in a basal polytomy. Constraining 

the topology by enforcing P. leuconota as monophyletic also could not be rejected under a 

maximum-likelihood framework (Table 2). 

Analyses performed with the combined analyses of mitochondrial and nuclear 

sequences (Figure 3) resulted in similar tree topologies to those produced by the 

mitochondrial data set. The nuclear BF5 sequences did not provide further resolution in the 

basal relationships within the fire-eyes, as low nodal supports were recovered in both 

Bayesian (0.60 posterior probability), ML (75% bootstrap) and MP (63% bootstrap) analyses. 

Although the information content in the BF5 was limited, the Bayesian analysis resulting 

from the combined data set increased support for the sister relationship between Amazonian 

populations separated by the Tocantins River from 0.76 posterior probability for mtDNA 

only to 0.94 posterior probability for the combined data set.  

 

Tempo of diversification of fire-eyes 

The age estimate of node A, the TMRCA for the genus Pyriglena, suggests diversification 

began during the early Pleistocene, approximately 2.5 My (Figure 4 and Table 3). Because 

the basal relationships within fire-eyes could not be resolved unambiguously, we estimated 
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two combinations of the TMRCA for the three major clades (Table 3). Forcing monophyly 

between the major clades 1 and 3 rendered a TMRCA estimate (2.20) slightly larger relative 

to the TMRCA estimate (2.12) of clades 2 and 3. Sub-clades in clade 2 are estimated to have 

begun diverging approximately 0.49 My (node B), with the separation of northeastern 

Atlantic Forest from southeastern Amazon. Shortly after this, a cladogenic event splitting 

populations across the Tocantins River is estimated to have occurred around 0.34 My (but 

see first Chapter 1 for alternative time estimates). The earlier branching event in clade 3, 

representing the separation between the Amazonian P. l. similis and all western South 

American populations, was approximately 1.66 My (node E). After this, the southern 

Andean-western lowlands sub-clade separated from the central Andean sub-clade at about 

0.67 My (node F). Within the central Andean sub-clade, north-south divergence is estimated 

to have occurred around 1.06 My. Finally, divergence between the population west of the 

Andes and the eastern Andean populations appears to have begun approximately 0.37 My 

(node H).  

 

Population history and mitochondrial variation in Atlantic Forest 

We recovered 76 distinct mtDNA ND2 haplotypes from 266 individuals of P. leucoptera 

and P. atra. The haplotype network reveals three main features (Figure 5). First, there is an 

extensive haplotype sharing between P. leucoptera and P. atra along the parapatric zone 

(i.e. along the Paraguaçu River, Figure 1B). The lack of reciprocal monophyly between 

haplotypes recovered from the two species may suggest both gene flow and incomplete 

lineage sorting (see discussion). Second, clusters of haplotypes from different regions of 

Atlantic Forest are segregated in different parts of the network and connected by as few as 
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one fixed substitutional change. Despite this shallow divergence, the network depicts a 

pattern of significant geographical association of haplotypes, with clusters of haplotypes 

spanning a south-north axis (blue and red colors in Figure 5). In the lower and left side of 

the network, the first haplotype cluster includes populations sampled mostly in the 

southernmost region of Atlantic Forest south of the hypothesized Bahia refuge, although 

the most common haplotype in this cluster also has been recovered in two individuals in the 

northern populations (localities 35 and 39, Figures 1 and 5). Other clusters of haplotypes 

include populations in the central and northern part of Atlantic Forest, respectively (Figure 

5). The network shows that some localities in the central (e.g. localities 17 and 23) and 

northern parts (e.g. localities 33 and 34) of Atlantic Forest harbor haplotypes from different 

haplotype clusters. The third important feature is the connection between the group of 

haplotypes shared by P. leucoptera and P. atra to the southernmost group of haplotypes, 

rather than to geographically nearer haplotypes, revealing a biogeographical knot (Figure 

5).  

SAMOVA did not recover an unambiguous grouping number because the FCT 

values increased as the number of groups (K) increased (Figure 6). For all values of K ≥ 4, 

some groups defined by SAMOVA were made of a single population, implying that group 

structure could have disappeared. Although retaining the grouping pattern corresponding to 

K = 4 would be considered valid by some (e.g. Heuertz et al. 2004), we consider such a 

decision arbitrary. Our SAMOVA results failing to identify distinct groups may be related to 

i) the presence of isolation-by-distance along Atlantic Forest (see below), a fact that could 

lead to an incorrect identification of groups of populations in the absence of real genetic 

barriers and ii) the fact that only one locus was used, which could have added a large 
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stochastic component due to the coalescent process. Under these conditions, SAMOVA can 

return unreliable results (Dupanloup et al. 2002). We thus will neither draw conclusions 

based on SAMOVA nor discuss its results further.  

 Mantel tests revealed that fire-eye populations south of the Bahia refuge exhibit 

no association between geographic distance and genetic distance (r = 0.09, P > 0.05; Figure 

7a), whereas populations inside the Bahia refuge were consistent with the predictions of an 

isolation-by-distance model either including (r = 0.84, P < 0.05; Figure 7b) or excluding (r 

= 0.84; p < 0.001; Figure 7c) areas south of the parapatric zone of P. leucoptera and P. 

atra. The nucleotide diversity showed a trend of decreasing values southward and outside 

the Bahia refuge, whereas no prominent geographic variation was detected for haplotype 

diversity values (Figure 8). 

 Populations from the hypothesized Bahia refuge show no signature of 

demographic change as detected by the Ramos-Onsins and Rozas’ (2002) R2, Tajima’s D 

(1989) and Fu’s (1997) test. The only exception is the locality in the southernmost part of 

this refuge, which presented a signature of historical population expansion as given by the 

R2 test (Table 4). For populations south of the Bahia refuge, we only detected historical 

changes in population size for the southernmost localities (sites 1, 5 and 7, Figure 1B). 

Although the credibility intervals of the Bayesian skyline estimates were wide, the analysis 

showed trends that indicate stable population sizes inside the Bahia refuge during the last 

glacial maximum (ca. 0.020 My) followed by a short period of population decline during 

the last 2-3 thousand years (Figure 9a). By contrast, population expansion in the area south 

of this refuge was inferred during the last 30 thousand years, which roughly coincide with 

the onset of humid periods following the last glacial maximum (Figure 9b).   
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Population history and mitochondrial variation in southwestern South America 

Our results from the statistical parsimony network show that haplotypes from the 

southwestern South American group (the “maura group”) separate into two or three distinct 

groups (Figure 10). One cluster of haplotypes, recovered from individuals in the Brazilian 

Pantanal floodplain and along the mid-Guaporé River Valley, was separated from a second 

group by one mutational step. Haplotypes from this second group consisted mostly of 

individuals in the eastern Andean foothills together with a single individual from the upper 

reaches of the Guaporé River. Further north, we recovered another group of haplotypes 

present in southern Peruvian Andean foothills that was separated by two steps from the 

second group. Based on the larger mtDNA data set (Figure 2), the easternmost group still 

appears monophyletic with respect to the two western groups but a separation of the latter 

in two distinct groups is not supported by this analysis. We detected a signature of 

population expansion for both eastern and western groups analyzed separately (Table 5). 

Assuming mutation rates of 2.1% and 4%, point estimates correspond to historical 

demographic expansion in years before present of 11,211 and 21,317 for the eastern group, 

and of 6,951 and 13,239 for the western group.  

 

Population history and mitochondrial variation in central Andes 

The statistical parsimony network recovered a complex pattern of relationships among fire-

eye populations in the central part of the Andes. Our analysis shows that haplotypes from 

the central Andes constitute possibly four distinct groups separated from each other by 

several mutational steps (Figure 11). One cluster of haplotypes from P. l. castanoptera was 
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recovered from individuals in southeastern Ecuador and northern Peru north of the 

Marañón River. This analysis corroborates the sister relationship between this northern 

group of P. l. castanoptera and the trans-Andean P. l. pacifica (Figure 2). Two other 

distinct clusters of haplotypes also can be identified. One comprises haplotypes of P. l. 

castanoptera collected in Huánuco and Pasco in central Peru, with one haplotype in this 

cluster identical to the haplotype sequenced from a single P. l. picea individual from the 

department of Junín, whereas the other cluster includes haplotypes from Zamora-Chinchipe 

in southeastern Ecuador. This latter cluster of haplotypes is closely allied to the cluster 

comprising the southernmost sampled populations rather than those from the haplotype 

cluster that includes samples from the same population and from geographically closer 

populations.  

 

Rivers as historical barriers 

For the Brazilian Atlantic Forest and the Pantanal floodplain, the results from the partial 

Mantel tests show that some rivers do not constitute primary barriers to diversification (Table 

6). This contrasts with the pattern found in the Amazon region, where the Tocantins River 

has been shown to restrict gene flow in fire-eyes (see Chapter 1).  

 

4. Discussion 

Geological and Climatic Processes and Fire-eye Diversification 

Identifying historical factors that underly the diversification of organisms is recognizably 

difficult. This issue is especially relevant in the Neotropics, where biological diversity is the 

highest in the world but where only few large-scale studies have been conducted to test 
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primary factors causing population differentiation. Despite the controversy surrounding the 

alternative mechanisms of speciation in this region (e.g. Endler 1982; Tuomisto and 

Ruokolainen 1997, Patton and Silva 1998; Moritz et al. 2000), our dense geographical 

sampling and the phylogenetic and population genetic approaches employed here provide 

insights into the relationship between spatial and temporal expectations of climatic and 

geological scenarios that are relevant to diversification processes in this region.  

 

Phylogenetics and biogeography of fire-eyes 

Owing to weak nodal support, the basal relationships within fire-eyes could not be resolved 

with certainty by any of the three phylogenetic methods. This lack of resolution for the early 

branching events in fire-eyes might reflect rapid or simultaneous diversification that occurred 

in the early evolutionary history of the group. A rapid cladogenesis hypothesis is consistent 

with the completely unsupported basal branch, and by the fact that the three major clades are 

approximately equally divergent from each other. The apparently rapid differentiation of fire-

eyes precludes strong inference about the geographic context of differentiation at this 

phylogenetic level. However, it is unlikely that fire-eyes have attained their current 

distribution and remained undifferentiated through gene flow over long periods. Rather, we 

suggest that the current geographical distribution of fire-eyes originated by rapid colonization 

from a single geographical origin, most likely from an Amazonian source (see below) and 

that several populations became evolutionarily independent (i.e. phenotypically and 

genetically differentiated) relatively soon after their continental spread. Thus, our results 

suggest that fire-eyes may have diversified in South American forests in a relatively short 

time and that even a fast evolving molecule like mtDNA might not have accumulated 
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sufficient phylogenetic signal to resolve relationships among major clades. The possibility 

that populations classified as P. leuconota form a monophyletic group could not be rejected 

based on S-H tests (Table 2). In this case, however, the common ancestral lineage in which 

the male plumage characters arose must have originated and persisted for only a short period 

before the two major leuconota mtDNA lineages separated from each other.  

A comparison of the fire-eye results with another circum-Amazonian avian group, 

the Phaeothlypis wood-warbler complex (Lovette 2004), shows concordance in the lack of 

phylogenetic resolution at the basal nodes and a temporal congruence in the deeper splitting 

events. Assuming a molecular clock calibration of 1.6% per million years, Lovette estimated 

that the separation of the five basal wood-warbler lineages was between 3.0 and 3.8 My. 

Adopting either the same calibration rate of 1.6% My for fire-eyes (not shown) or the 

BEAST 95% HPD age intervals based on the 2.1 % rate (nodes A and B, Figure 4), reveals a 

temporal pattern of divergence for the deepest nodes in the fire-eye phylogenetic tree slightly 

younger but in general agreement with the wood-warbler estimates. Relative to fire-eyes and 

wood-warbler complexes, divergence ages of South American forest plant taxa exhibiting 

geographic and ecological distributions common to these and other avian circum-Amazonian 

groups (compare maps in Prado and Gibbs 1993, Pennington et al. 2000 with Remsen et al. 

2001, Bates 1997) were primarily older, reaching ca. 18 My for earlier splitting events 

(Pennington et al. 2004). However, Pennington et al.’s analysis also uncovered younger 

divergence events of Pleistocene age and concluded that a combination of ancient and young 

separation events best explains diversification in these plant taxa. Only further studies will 

reveal whether the generality of this temporal pattern also applies to avian circum-

Amazonian groups. 
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Nevertheless, the fire-eye and the wood-warbler historical patterning may suggest 

that the initial phylogenetic divisions among lineages in circum-Amazonian avian taxa may 

have originated rapidly and during a similar time period, and that this likely reflects a set of 

underlying evolutionary processes that are common to avian groups exhibiting this 

distribution pattern. However, whether rapid diversification is a pattern only occurring in 

circum-Amazonian groups or if it represents only a general pattern resulting from a common 

set of processes acting in a wide-spread Neotropical avifauna, has yet to be determined. The 

fact that poorly supported nodes have been also found in other Neotropical forest avian 

groups (i.e. montane birds; Peréz-Emán 2005, Cadena et al. 2006), suggests that rapid 

diversification might be indeed a widespread historical phenomenon in this region.  

Despite low support for early branches, several tip nodes are well-supported by all 

three phylogenetic methods, which allows us to make inferences about the mode and tempo 

of diversification in fire-eyes. We make such inferences below for two of the three main 

clades recovered in our phylogenetic analyses. Diversification in clade 1 is discussed in detail 

in the population history section based on a denser geographic sampling (see below).  

 

Diversification in clade 2 

Our phylogenetic analyses indicate that the first separation within clade 2 was between 

northeastern Atlantic Forest and southeastern Amazonia, with subsequent divergence across 

the Tocantins River. The sister relationship between the populations across the Tocantins 

River is  supported by all tree-building methods for the mtDNA data set, but with low 

bootstrap and posterior probability support. Although a sister relationship between the 

Northeastern Atlantic Forest (subspecies P. l. pernambucensis) and populations on the 
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eastern bank of the Tocantins River (subspecies P. l. leuconota) cannot be rejected under a 

maximum-likelihood framework for the mtDNA data set (Table 2), additional evidence 

supports the sister relationship across the river. First, the reduced data set (mtDNA plus BF5) 

support for this relationship was high for both Bayesian and ML analyses. Second, a 

haplotype network clearly places the populations across the river as sister with respect to the 

northeastern Atlantic Forest population (results not shown). Third, plumage analyses show 

diagnosable differences of female plumage in northeastern Atlantic Forest whereas 

populations across the Tocantins River are not distinguishable (M. Maldonado-Coelho pers. 

obsv.).  

Our BEAST dating estimates suggest that the separation events that led to the origin 

of the three well-supported lineages in clade 2 are recent and occurred in a nearly 

simultaneous fashion. BEAST estimates suggest a diversification origin for this clade during 

the middle/late Pleistocene, with the divergence between Atlantic Forest and Amazonian fire-

eyes followed shortly by the separation across the Tocantins River in southeastern Amazonia 

(Table 3). The Atlantic Forest of northeastern of Brazil is currently geographically isolated 

from Amazonia to the west by the semiarid Caatinga biome and from the rest of Atlantic 

Forest to the south by the São Francisco River. Geomorphic evidence based on travertine and 

speleothem deposits indicate that various wet pulses occurred in the currently semi-arid 

region of Caatinga during the last 0.210 My but also that moist phases extended back to 0.40 

and 0.90 My (Auler et al. 2004, Wang et al. 2004). This evidence confirms earlier 

impressions based on palynological (de Oliveira et al. 1999) and fossil (Cartelle and Hartwig 

1996, Hartwig and Cartelle 1996) data that moist forests had expanded into the dry Caatinga 

region during humid periods of the Pleistocene. Using the temporal framework of wet/dry 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

79 

cycles proposed by this geomorphic data, Carnaval and Bates (2007) found molecular 

divergence between frog populations in naturally isolated enclaves of moist forests within the 

semi-arid Caatinga and in coastal Atlantic Forest consistent with drier intervals between wet 

phases during the last 0.210 My. Our divergence time estimate between fire-eye populations 

in northeastern Atlantic Forest and southeastern Amazon is also consistent with a dry but 

earlier time interval (ca. 0.5 My) following one of the pluvial maxima estimated from the 

geomorphic data during the middle Pleistocene (0.4 My, Wang et al. 2004). Our data thus 

identify Pleistocene climate oscillations as the likely underlying vicariant mechanism for 

divergence of fire-eye populations between Amazonian and northeastern Atlantic Forest and 

comparisons with recent studies in this region (Carnaval and Bates 2007) suggest that 

vertebrate lineages (in this case birds and frogs) have responded differently to Pleistocene 

effects in forest distribution. 

The Atlantic Forest of northeastern Brazil has been identified as an area of 

endemism for animals and plants (“the Pernambuco centre of endemism”; Brown 1982, 

Prance 1982, Costa et al. 2000, Silva et al. 2004). For birds, its biogeographical affinities 

seem complex as some taxa and populations appear to be more closely related to 

taxa/populations in Amazonian Forest while others are related to populations in southern 

Atlantic Forest (Teixeira and Gonzaga 1983a,b, Teixeira et al. 1986, Teixeira 1986, Vielliard 

1996). Our results clearly indicate that northeastern Atlantic Forest fire-eyes share a common 

history with southeastern Amazonia and confirm the occurrence of a past forest connection 

between the two regions. Also, the presence of a well-supported clade of fire-eyes restricted 

to this region supports the notion that forest taxa have been evolving in isolation in 

northeastern Atlantic Forest. Further comparative phylogeographical studies are necessary to 
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elucidate the historical relationships of the Pernambuco center of endemism to other 

Neotropical forests and to assess whether or not there are other unique evolutionary lineages 

in other organisms. Detail on the evolutionary dynamics of fire-eyes in southeastern 

Amazonia along the Tocantins River valley is provided in Chapter 1.  

 

Diversification in clade 3 

Detailed discussion of phylogeographic patterns in the sub-clade “maura group” is provided 

below (see population history), and we discuss now only the general patterns in clade 3. The 

basal split in clade 3 separates the population in the Xingu-Tapajós interfluvium from all 

western fire-eye populations. A plausible link to this vicariant event can be established with 

the uplift of the Guimarães Plateau, a tableland that separates the Amazonian fire-eye 

populations from the Paraguay River Drainage populations. A BEAST estimate indicates that 

this divergence occurred between 2.2 and 1.2 My, a period consistent with the uplift event 

that culminated with the separation of the two drainage systems that has also been cited as 

important for Cercomacra antbirds (Silva 1992). All the subsequent diversification events 

within Pyraglena clade 3 appear driven by Pleistocene climatic oscillations, since they 

bracket a time scale that postdates suitable elevations and habitats to fire-eyes in southern and 

central parts of the Andes. Fossil floras (Gregory-Wodzicki et al. 1998, Graham et al. 2001, 

Gregory-Wodzicki 2002) and geological evidence (Gregory-Wodzicki 2000, Hartley 2003, 

Gosh et al. 2006) indicate that habitats favored by fire-eyes throughout their range (cloud 

forest and subtropical dry forest) and altitudes at which they presently occur in the Eastern 

Andean Cordillera (ca. 1000-2200 m a.s.l.) were already present long ago (ca. 10 My). 

Geological dating suggests the Bolivian Altiplano had risen to near its modern altitude (3700 
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m a.s.l.) by the late Miocene (ca. 6 My, Gosh et al. 2006). At these times, BEAST estimates 

(nodes F, G and H in Figure 4) suggest that diversification of fire-eyes in the Central Andean 

region had not commenced, which refutes entirely a scenario linking their divergence to 

vicariance via mountain building.  

Instead, diversification events driven by shifts in the distribution of vegetation belts 

(Van der Hammen 1974, Hooghiemstra 1995) is a more plausible causal mechanism 

underlying fire-eye diversification in this region. The divergence time between trans and cis-

Andean fire-eye populations (between 0.59 and 0.18 My, node H in Figure 4) suggest that 

range expansion to the western side of the Andes from the eastern slope may have occurred 

during a warmer/wetter time period with subsequent isolation and commencement of 

differentiation during a more cold/drier period during the late Pleistocene. A past connection 

between opposite slopes of the Central Andes could have been facilitated by the presence of a 

low Andean pass in the Marañón River valley in northern Peru, which has been suggested as 

an important dispersal corridor for birds and other vertebrates (Chapman 1926, Parker et al. 

1985, Patterson et al. 1992). Importantly, molecular divergence based on mtDNA suggests 

that another trans-Andean endemic to the Tumbesian region (the antshrike Thamnophilus 

zarumae), may also have been derived from a cis-Andean ancestor that dispersed across the 

Andes (Brumfield and Edwards 2007). Separation between this species and its eastern 

Andean relatives, however, is suggested to have occurred at an earlier time (between 1.1 and 

3.1 My) relative to the estimated separation between fire-eye lineages on opposite Andean 

slopes. The comparatively recent dating of cis and trans-Andean disjunction in our study also 

contrasts to earlier dates reported for birds and other vertebrates [(birds - 5.5-8.2 My for 

curassows, Pereira and Baker 2004; 6.95-8.69 My for Pionopsitta parrots, Ribas et al. 2005); 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

82 

(mammals - around 6.8 My for Alouatta monkeys, Cortes-Ortiz et al. 2003)], which 

suggested a direct effect of mountain uplifting in the separation of lineages east and west of 

the Andes in these studies. Also noteworthy is the basal split between cis and trans-Andean 

lineages recovered in the latter studies, in contrast with the splitting across the Andes near the 

tip of the phylogeny identified in our study. These contrastiong patterns emphasize that the 

role of the Andes as a geographical barrier during the evolutionary history of vertebrate 

lineages is variable.  

 This is not to say that the uplift of the Andes had no influence on the process of 

fire-eye diversification; distributions of morphologically and genetically distinct lineages 

fire-eyes that are restricted to different parts of the humid eastern Andean foothills and to the 

western slope of the Andes show a strong effect of Andean geography on population 

differentiation. However, our dating of divergence events suggests that all the differentiation 

took place more recently than would be expected if the Andean uplift had a direct causal 

relationship, as suggested earlier (e.g. Pereira and Baker 2004; Ribas et al. 2005, 2007). Our 

results suggest instead that the Andes had a dispersal rather vicariance effect on the 

diversification of fire-eyes; the complex topography of the region in combination with glacial 

and interglacial shifts in the vegetation distribution may have created opportunities for 

colonization and geographical differentiation in this group. In fact, divergence time estimates 

in Mionectes flycatchers west and east of the Andes suggest that at least two cross-Andean 

dispersal events post-date Andean uplift (Miller et al. 2008). Taken together, these findings 

indicate that both landscape evolution via mountain building and climate history resulting in 

vegetation shifts played important roles in the regional diversification of fire-eyes and other 

avian lineages in western South America.  
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Our mtDNA phylogeny also indicates that evolutionary relationships among 

Andean populations are more complex than suggested by current taxonomy. The subspecies 

P. l. castanoptera, which has a wide distribution in the eastern flanks of the Andes from 

southern Peru to central Colombia, is paraphyletic; haplotypes recovered from the southern 

populations of P. l. castanoptera (locality 75 in Figures 2 and 11) grouped with the southern 

subspecies P. l. picea, whereas some northern populations form a clade that is sister to the 

trans-Andean subspecies pacifica. This surprising result that P. l. pacifica is nested within the 

mitochondrially diverse P. l. castanoptera suggests a complex biogeographical scenario of 

diversification, in which P. l. pacifica likely derived from northern P. l. castanoptera 

populations that could have been geographically isolated from more southern castanoptera 

by the Marañón River valley (see population history below).  

The grouping of haplotypes of P. l. castanoptera with the southern P. l. picea 

suggests introgressive hybridization or incomplete lineage sorting. Secondary contact with 

hybridization is more likely since likely intermediates between these two subspecies have 

been collected in the department of Huánuco, southern Peru. These intermediate birds, 

identified by D. Stotz in the Field Museum of Natural History (personal commucation), have 

the underparts prominently black, as in the more northerly P. l. castanoptera, but have olive 

feathers confined to the belly and flank regions, a character typical of the southern P. l. picea. 

However, the only sequenced individual of P. l. picea in this study presented no intermediate 

plumage (Maldonado-Coelho pers. obs.). Although we cannot rule out that this southern 

clade of P. l. castanoptera represents a north-south phylogeographic split within this 

subspecies, the pattern found may represent introgression of the southern P. l. picea into P. l. 

castanoptera, or that the P. l. castanoptera mtDNA has introgressed southwards. 
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Unfortunately, our sparse geographical sampling in this region sheds little light on this issue 

and further study is necessary to clarify the direction of introgression in both mtDNA and 

plumage traits. 

 

Population History  

Atlantic Forest - In contrast to the fire-eye populations that occur inside the Bahia refuge, the 

Tajima’s D, Fu’s Fs, R2 and the Bayesian skyline plot detected signatures of population size 

changes for populations sampled south of the Bahia refuge, which may imply a scenario of 

population expansion into deforested areas with the onset of more humid periods following 

the last glacial maximum. Moreover, the presence of few high-frequency ancestral 

haplotypes and various recently derived low frequency haplotypes in the southernmost 

populations is also consistent with theoretical expectation of a signature of recently expanded 

populations (Figure 5, Slatkin and Hudson 1991). Although confidence intervals of 

Schneider and Excoffier’s (1999) estimates are wide, the timing of expansion of some 

populations south of the Bahia refuge is in general agreement with the idea of expansion 

when the assumed mutation rate of 4% (Arbosgat et al. 2006). 

Additional evidence indicates that fire-eye populations have had different histories 

in the hypothesized Bahia refugium area relative to the southern region during the last glacial 

maximum: i) acceptance of the isolation-by-distance model for populations inside the Bahia 

refuge and its lack of support for southern populations and ii) there is a decrease in 

nucleotide diversity in the southern Atlantic Forest relative to populations sampled inside the 

Bahia refugium. Evidence for environmental instability and forest replacement by more open 

vegetation types in southern Atlantic Forest also is provided by palynological surveys (e.g. 
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Behling 1997, 2002; Behling and Negrelle 2001) as well as by other phylogeographic studies 

of birds (Cabanne et al. 2008), mammals (Tchaicka et al. 2007) and herps (Grazziotin et al. 

2006, Carnaval et al. 2009), which detected similar signals of historical demographic change 

in this region.  

However, our findings support the notion that forests likely persisted in the southern 

region of Atlantic Forest as shown by i) the presence of two distinct clusters of haplotypes 

geographically restricted mostly to this region that could reflect isolation in one or two 

refugia (Cruzan and Templeton 2000, Hewitt 2000) and ii) a signature of historical 

demographic changes for some but not all populations in the region south of the Bahia 

refugium, as given by Tajima’s D, Fu’s Fs, and R2 tests. Phylogeographic discontinuities in 

different parts of Atlantic Forest have also been detected in other recent studies; including 

evidence for geographic isolation and genetic differentiation in putative glacial refuges in 

southern Atlantic Forest (e.g. Martins et al. 2007, Tchaicka et al. 2007, Cabanne et al. 2008).  

Collectively, our results are consistent with the idea that the central and northern 

parts of Atlantic Forest have had distinct histories, with higher forest stability during the last 

Pleistocene glaciation in the northern relative to the southern region of Atlantic Forest as 

previously suggested (Carnaval and Moritz 2008, Carnaval et al. 2009), but also underscore 

the idea that genetic signatures detectable in modern populations may help to gain insights 

into the existence of refuges, which often cannot be identified using traditional 

palaecological or climate modeling approaches (see discussions in Cruzan and Templeton 

2000, Hewitt 2000, Carnaval and Moritz 2008).  

In the Neotropical region, topographically complex regions and areas along large 

river courses are thought to provide suitable habitats for persistence of forest organisms 
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during cooling periods of the Pleistocene (Brown 1987, Brown and Ab’Saber 1979, Fjeldså 

et al 1999, García-Moreno and Fjeldså 2000). Although current phylogeographic data from 

southern Atlantic Forest are too limited to identify unambiguously potential forest refugia, 

our data corroborate these earlier proposals by pinpointing that some areas south of the 

hypothesized Bahia refuge, such as the foothills of Espinhaço and Mantiqueira mountain 

ranges and the valleys of large rivers such as the Paraná and the Paraíba do Sul (Table 4, 

Figures 1 and 5), could have retained mesic characteristics during the last glacial period and, 

thus, could have supported forests and forest-dependent taxa such as fire-eyes. However, we 

further suggest that fire-eye populations were able to maintain large population sizes in these 

putative southern refuges as no bottleneck episodes were detected in the Bayesian Skyline 

Plot (Figure 9b). One possibility is that these refuges were large and suitable enough to 

maintain large populations of forest-dwelling organisms such as fire-eyes. This scenario 

could be supported by our data, given large declines in female effective population sizes 

were not detected. We also cannot rule out the possibility that fire-eyes (and other Atlantic 

Forest taxa) persisted in the matrix that supposedly replaced the humid forest during the last 

Pleistocene glacial period. Palynological records and the modern fragmented distribution of 

seasonally dry forests indicate that this form of dry-adapted vegetation may have spread 

widely and replaced humid vegetation types during the last glacial period in South America 

(Pennington et al. 2000, Naciri et al. 2006, but see Mayle 2006); this, combined with the fact 

that fire-eyes and several other Atlantic Forest birds do occur in some forms of dry-forests in 

eastern Brazil (Maldonado-Coelho pers. obs.), may suggest a scenario in which Atlantic 

Forest fire-eyes also persisted in the matrix surrounding humid pockets of forest and thus 

were able to maintain large effective population sizes.  
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Connection between southern and northern populations of fire-eyes in Atlantic Forest 

The haplotype network uncovered an intriguing and surprising pattern of relationships among 

fire-eye populations within the Atlantic Forest. The southern cluster of haplotypes is closely 

allied to the haplotype cluster recovered for populations in the contact zone between P. 

leucoptera and P. atra as well as to clusters of haplotypes in the central part of Atlantic 

Forest (Figure 5). Interestingly, a similar pattern of sister relationship between southern and 

northern populations was recovered in a recent phylogeographic study of another Atlantic 

Forest bird species, the Xiphorhynchus fuscus woodcreeper (Figure 4 in Cabanne et al. 2008). 

Although the sister relationship among these populations of X. fuscus is not well supported, it 

is intriguing that populations existing in distant geographical areas appear to be closely allied 

in the same fashion as the fire-eyes.  

The disjunct pattern observed in our study may involve either 1) a scenario of range 

expansion northward that proceeded through two independent routes, one inland and one 

along the coast, or 2) extinction of the intervening populations of a formerly widespread 

lineage, followed by a secondary colonization in the central part of Atlantic Forest from 

southern populations. An expansion northwards could be now evidenced by the connection 

between the northern and southernmost haplotype clusters and a second expansion by the 

connection between the southernmost haplotype cluster and the cluster of haplotypes 

recovered in populations from the central part of Atlantic Forest. Although we cannot fully 

distinguish between these alternative scenarios in light of the available evidence, an inland 

biogeographic connection between northern and southern Atlantic Forest may have existed 

through central Brazil, which is supported by contemporaneous populations of Atlantic 
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Forest birds in gallery forests far inland (Silva 1996), including populations of X. fuscus not 

sampled in Cabanne et al. (2008). That haplotype clusters in our study are approximately 

equally divergent from each other (not shown), and divergence time estimates among the X. 

fuscus clades are apparently indistinguishable (Table 4 in Cabanne et al. 2008), provide some 

support for two independent biogeographic connections. At any rate, our results indicate a 

rapid and nearly simultaneous separation among lineages of fire-eyes and woodcreepers in 

Atlantic Forest and that a common set of evolutionary processes likely underlie this pattern. 

Similar phylogeographic information from additional taxa would help determine whether 

consistent patterns are observed in multiple lineages.  

Assuming that the second biogeographical scenario is true, southern fire-eye 

populations should have invaded northern Atlantic Forest prior to the establishment of a 

climatically stable area (i.e. the Bahia refugium) in the central part of Atlantic Forest. The 

pattern recovered in the network in combination with a signature of population expansion in 

the region of the Bahia refugium prior to the last glacial maximum as indicated in the 

Bayesian Skyline Plot (Figure 9), provides some support for this hypothesis, that is, that a 

colonization wave from the southern part of Atlantic Forest into this region may have 

occurred at about 0.09-0.06 My. It also indicates that the isolation-by-distance pattern 

detected in the Bahia refugium was established recently (during the last 0.05 My) and 

illustrates the potential for more complex climatic history and historical changes in the 

geographic distribution of Atlantic Forest populations than envisioned by earlier studies (e.g. 

Carnaval and Moritz 2008), with a history of instability and oscillation over a larger spatial-

temporal span that resulted in multiple shifts in the distribution of forest and forest-dependent 

taxa.  
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Gene flow and introgression between P. atra and P. leucoptera 

The mitochondrial data provide evidence that P. leucoptera and P. atra have not evolved 

entirely independently of each other. This was not unexpected given that a hybrid and a 

likely introgressed P. leucoptera individual have been reported previously (Willis and Oniki 

1982). In Atlantic Forest, P. leucoptera extends to the middle reaches of the north bank of 

the Paraguaçu River, and it occurs in more deciduous and dry forests relative to more humid 

habitat present along the coast where it is geographically replaced by P. atra. Current 

geographic isolation between the two species seems not to exist, although the area of contact 

has largely been cleared (see below).   

The general lack of mtDNA differentiation between P. leucoptera and P. atra could 

be explained by two different historical hypotheses. One alternative is that these two species 

diverged so recently and rapidly that there has not been enough time for lineage sorting to 

produce significant and complete differentiation in neutral genetic markers (Niegel and Avise 

1986). A second possibility is that the haplotype sharing and the genetic similarity of P. 

leucoptera and P. atra are due to past or ongoing hybridization and introgression of neutral 

markers across population and species boundaries. Different lines of evidence argue that both 

incomplete sorting and hybridization could account for the observed pattern. First, two 

haplotypes of P. atra group within a lineage of P. leucoptera haplotypes recovered from 

individuals sampled at localities geographically distant from the contact zone (Figure 5), 

which may indicate retained ancestral polymorphisms. The hybridization hypothesis is 

consistent with patterns of plumage and mtDNA variation along the contact zone, where we 

found plumage-based introgressed males of both P. leucoptera and P. atra. Importantly, one 

male collected during the 18th century (Museu Paraense Emilio Goeldi #32017) and 
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identified as P. leucoptera, clearly represents a hybrid between the two species. This 

specimen has the entire interscapular patch with a pattern typical of P. atra, while the two 

white bands on the wings are characteristic of P. leucoptera. Unfortunately, we were unable 

to precisely determine where this individual was collected, as the label indicates only 

“Bahia” (see also Willis and Oniki 1982). Introgression and geographically restricted gene 

flow are implied by the fact that haplotype sharing between these two species is mostly 

restricted to the parapatric zone. Moving south from the Paraguaçu River, only 2% of 

leucoptera individuals had haplotypes identical to or clustering with P. atra haplotypes.  

Collectively, the evidence suggests that hybridization may have taken place in the 

history of these species and that bidirectional introgression of plumage traits as well of 

introgression of maternally inherited neutral markers occurs along the contact zone. 

However, defining the direction of the introgression in neutral markers will remain difficult 

until further sampling is conducted along the contact zone and in the northern range of P. 

atra. Despite an intensive survey along the Paraguaçu River valley, the hybrid zone was not 

found, most likely because of extensive forest clearing (S. Sampaio pers. obsv.).  

 

Southwestern South America - Both haplotype network and phylogenetic analyses revealed a 

possible western-eastern axis of phylogeographic differentiation in the maura group (Figure 

10). Members of an eastern and a western group come close to each other along the upper 

and medium reaches of the Guaporé River, where they have been collected within 250 km of 

one another. Their existence, together with the signature of historical demographic 

expansion, may represent evidence of range fragmentation followed by population 

expansion, with the Mamoré-Guaporé river interfluvium possibly representing an area of 
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secondary contact. However, a recent study in the same region observed a cline in mtDNA 

genetic variation for Bolivian populations of Thamnophilus antshrikes (Brumfield 2005), and 

we cannot rule out the possibility that these two groups also are the extremes of a cline in 

genetic differentiation that we have failed to detect because of sparse sampling. In any event, 

our demographic expansion results are temporally coincident and consistent with the long-

suspected effects of drier climates during the Pleistocene Epoch in the Brazilian Pantanal 

floodplain (Ab’Saber 1986, Assine and Soares 2004) and in the Andean foothills 

(Vuilleumier 1971, Prance 1982) and with previous phylogeographic studies of vertebrates 

that showed pronounced post-glacial increase in population sizes in both regions (Marquez et 

al. 2006, Lopes et al. 2006, Koscinski et al. 2008).  

 

Central Andes - A detailed analysis of the geographical variation in mtDNA depicted in the 

network (Figure 11) not only corroborates the idea that vicariance, dispersal and apparent 

introgressive hybridization all have played an important role in the diversification of central 

Andean fire-eyes, but also reveals a complex process of geographic differentiation not 

entirely apparent in the phylogenetic analysis (see diversification on clade 3 above). 

Although the geographical sampling in this region was relatively sparse, it is striking that 

some lineages separated by hundreds of kilometers are more closely allied to each other 

relative to populations geographically closer or to samples collected at the same localities. 

Genetic distances between geographically distant central and northern Andes of P. l. 

castanoptera are ca. 0.5% divergent, whereas divergences among nearer P. l. castanoptera 

populations in northern Peru or from the same locality reach ca. 1.3 %. The documentation of 
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representatives of two distantly related haplotype groups in the same locality south of the 

Marañón River valley suggests that this region might constitute an area of secondary contact.  

It is also intriguing that representatives of the divergent haplotype clusters on the 

opposite sides of the network have been recorded south and north of the Marañón River 

valley and that within each of these groups no identical haplotypes were shared across this 

geographic barrier. We suggest that this complex pattern of geographic variation in mtDNA 

documented in our study likely originated through a series of multiple independent dispersal 

events following isolation and divergence mediated by a combined historical barrier to 

dispersal effect imposed by the Marañón River valley (Vuilleumier 1975; Parker et al. 1985) 

and shifts in the montane forest distribution driven by past climatic oscillations (Van der 

Hammen 1974, Hooghiemstra 1995). If this scenario were true, it would represent further 

evidence of the effect of the complex topography of the Andes on changes in geographic 

distributions and in promoting diversification (see also Cadena et al. 2006, Dingle et al. 

2006). More specifically, it would reveal an undocumented interchangeable effectiveness and 

permeability of the Marañón River valley during respectively dry and wet periods as a 

historical barrier to gene flow in forest organisms (see García-Moreno et al. 1998; Miller et 

al. 2007, Weir et al. 2008). 

 

The role of rivers on the diversification of fire-eyes 

Andes and Pantanal - Although several studies have shown that the Marañón River valley 

represents an important geographic barrier to both Páramo and cloud-forest birds based on 

distributional (Vuilleumier 1975; Parker et al. 1985) and phylogenetic (García-Moreno et al. 

1998; Miller et al. 2007, but see Weir et al. 2008) evidence, our study shows that this river 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

93 

has not been an impermeable barrier to gene flow in fire-eyes (see above, Figure 11). The 

Apurímac River in southern Peru has also been considered a major geographic barrier to 

distribution limits (Weske 1985, but see Schuchmann and Zuchner 1997) and coincides with 

phylogenetic breaks (García-Moreno et al. 1998, Weir et al. 2008) of some Central Andean 

bird species and subspecies. We are unable to determine whether this river is a barrier to gene 

flow in fire-eyes as we lack samples of P. l. picea from the Cordillera Vilcabamba (AMNH 

specimens examined by M. Maldonado-Coelho) on the eastern bank of the this river. The 

effect of this barrier on the genetic structure of P. l. picea and the geographic barrier that 

caused the divergence between the clade including northern subspecies P. l. picea, P. l. 

castanoptera and P. l. pacifica from the southern Andean clade, await further investigation.  

 In the Pantanal basin, the Paraguay River does not impose a strong barrier for fire-

eyes, as we recovered shared haplotypes among populations in opposite banks of this river. 

Although we lack other phylogeographic studies in this region, distributional limits of other 

birds also do not correlate with this river (Hayes 1995).  

 

Atlantic Forest and Amazon - Along the Atlantic coastal forests, large rivers have been 

suggested to form geographical barriers to dispersal in many forest organisms. Major rivers 

have shown to correlate with distribution limits of birds (i.e. São Francisco, Doce and Paraíba 

do Sul Rivers; Silva and Straube 1996; Vielliard 1996, Silva et al. 2004), mammals (Costa et 

al. 2000) and with phylogenetic breaks in a lizard (Pellegrino et al. 2005). In this study, 

phylogeographic breaks in P. leucoptera did not correlate with any river barriers in central 

and southern Atlantic Forest. Likewise, genetic breaks in the Lesser Woodcreeper 

(Xiphorhynchus fuscus, Cabanne et al. 2007; 2008) did not coincide with these large river 
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valleys. However, based on a previous work of Lacerda et al. (2007), Cabanne et al. (2008) 

suggested that one large river in the central part of the Atlantic Forest (the Jequitinhonha 

River) could have acted as a barrier to the genetic differentiation in Thamnophilus antshrikes. 

This claim is, however, incorrect given is the presence of a phylogeographic leak in the upper 

reaches of this river (localities 13 and 15 in Lacerda et al. 2007). Instead, the genetic break 

apparently occurs along the Araçuaí River, the major southern tributary of the Jequitinhonha 

River.  

In northern Atlantic Forest, P. leucoptera and P. atra form a narrow contact zone 

along the Paraguaçu River where likely introgression of mitochondrial (Figure 5) and 

plumage (Maldonado-Coelho pers. obsv.) characters was observed. Assuming a model of 

allopatric differentiation, one possible and yet untested speciation scenario is that the 

ancestor of both forms was isolated across the lower Paraguaçu River, where differentiation 

by drift or divergent selection may have taken place. Later, population expansion northward 

following the onset of forest re-expansion during recent times, likely after the last glacial 

period, could have resulted in a zone of secondary contact as currently observed. This model 

would be validated if populations of P. leucoptera and P. atra along the coast exhibited a 

signature of demographic stability while populations in newly colonized headwater areas 

presented evidence of demographic expansion. Although Fu’s Fs, Tajima’s D and Ramos-

Onsins and Rozas’ R2 show no evidence of demographic changes for all the populations 

along the coast in the area of parapatry, a signature of demographic expansion in the 

headwaters of the Paraguaçu River (locality 27) was detected by Tajimas’s D test, which 

would provide partial support to this model.  
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It is intriguing that the deeper phylogenetic events in fire-eyes correspond to the 

position of the modern course of large rivers in the Amazon basin and in Atlantic Forest. For 

example, our results shown that the geographical distribution of members of clade 2 are 

bounded by the Xingu River to the west in the Amazon basin and by the São Francisco River 

in northeastern Atlantic Forest (Figures 1 and 2). It is conceivable that an “ancient” barrier 

effect of these two large rivers has been of primary importance in the origin of this clade, 

followed by further divergence within the region bounded by these rivers. Although we lack 

precise dating estimates of the placement of the modern course of the Xingu River, 

geomorphological evidence indicates that the São Francisco River once was a tributary of the 

Tocantins River in the Amazon basin and shifted its course southwards to its modern position 

in northeast Atlantic Forest (Barreto et al. 2002), probably during the Pleistocene (K. Suguio 

pers. com.). Importantly, confidence intervals of the BEAST relaxed clock estimate assuming 

a mutation rate of 2.1% per My (1.79-2.48 My) cannot reject the possibility that clade 2 

originated during or since the formation of the modern course of the São Francisco River 

(Barreto et al. 2002).  

 

Regional differences in the “River effect”- Factors that could determine whether river valleys 

act as effective barriers to population differentiation in some regions (e.g. Amazonia) but not 

in others (e.g. southern Atlantic Forest) for fire-eyes (and possibly to other vertebrates) can 

be related to factors such as their spatial stability as a barrier (i.e. geological history), strength 

(i.e. river width), spatial distribution of habitats (i.e. presence of suitable habitat in the 

headwaters) and natural history of organisms (i.e. habitat breadth). We suggest that one 

reason why Amazonian rivers represent stronger barriers to the dispersal for fire-eyes than 
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most Atlantic Forest rivers is due to the fact that they are significantly wider (e.g. 3.0 and 1.3 

km for the Madeira and Tocantins rivers, Ayres and Clutton-Brock 1992) than most Atlantic 

Forest rivers (Maldonado-Coelho pers. obs.). A second factor is the presence of suitable 

habitat (i.e. montane evergreen or semideciduous forests) and of fire-eyes (and other Atlantic 

forest birds) in the headwaters of most Atlantic Forest Rivers, where rivers are less wide and 

hence constitute weaker barriers to dispersal. In contrast, Amazonian fire-eyes seem not to 

occur in the upper reaches of the large southeastern Amazonian rivers (Xingu and Tocantins), 

where streams that constitute the headwaters are either bordered by gallery forests situated 

within the cerrado phytogeographic domain or are bordered by dry forests, habitats in which 

Amazonian fire-eyes do not occur (M. Maldonado-Coelho and L. F. Silveira pers. obsv.).  

 

A digression on the causes and evolution of the circum-Amazonian pattern of geographic 

distribution 

The circum-Amazonian pattern of distribution is defined as one in which sister taxa are found 

in montane forested areas on the humid slopes of the Andes and the coastal range of 

Venezuela or the Tepui region as well as in lowland forests south and east of the Amazon 

basin (Remsen et al. 1991). However, extensive non-overlapping parts of the distributions of 

several circum-Amazonian species also occur, which led Remsen et al. to further distinguish 

between a “complete” pattern and a “partial” pattern (see also Bates 1997). What explains the 

variations in circum-Amazonian distribution patterns? What are the historical and ecological 

factors underlying the origin and maintenance of these patterns? Answers to these questions 

and a clearer picture of the ecological and evolutionary determinants of the circum-

Amazonian pattern of geographic distribution will become fully apparent only with further 
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studies. However, we feel that a discussion at this stage on the potential causes underlying 

this distribution pattern, although highly speculative, may provide insights into its origins and 

maintenance, and highlight approaches for future research. 

Because fire eyes and several other taxa exhibiting the circum-Amazonian 

distribution pattern occur in the southern part of lowland Amazonia basin or in areas 

encircling this region, we argue that circum-Amazonian distributions possibly reflect 

evolutionary interactions between birds and their enemies (i.e. competitors, predators or 

pathogens), that is, the origin of this distribution pattern might be largely unrelated to factors 

of the physical environment (i.e. niche conservatism) at the regional scale. It was suggested 

that the distribution of fire-eyes was shaped by their dependence on foraging following 

antswarms and their interactions with potential competitors over this foraging resource 

(Willis 1981). Because fire-eyes are behaviorally subordinate over antswarms, it has been 

hypothesized that they are geographically excluded in western Amazon by more aggressive 

and dominant antbird species (antbirds of the genera Rhegmatorhina, Gymnopithys and 

Pithys; Willis 1981). Support for Willis’ insight can be found in a recent analysis of species 

density maps for ant-swarm antbird followers, which show a higher co-occurrence of 

dominant antbird species in western Amazonia (Brumfield et al. 2007). One alternative 

hypothesis to competitive exclusion is niche conservatism, that is, that fire-eye populations 

preferred elevations or habitats that originated prior to the geographical contact with 

competitors. It could be argued that this hypothesis is plausible as fire-eyes populations in the 

southwestern lowlands and along the Andean slopes belong to distinct evolutionary mtDNA 

lineages with respect to the ones from the Amazon basin that, in turn, could not expand their 

ranges into western and the northern regions of the Amazon basin due to the strong effect of 
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larger rivers as historical barriers to dispersal. Although this hypothesis is plausible based on 

the evidence that larger Amazonian rivers seems to represent historical barriers to dispersal 

for fire-eyes (see Chapter 1), it is unlikely that larger rivers are impediments to range 

expansion into western Amazonia for members of clade 3 in Figure 2 (except the Amazonian 

P. l. similis). The fact that populations belonging to this clade exist in the lowland headwater 

regions of the Madeira River in western Amazonia (subspecies P. l. maura), but have not 

been able to colonize western Amazonia, minimize the possibility that niche conservatism is 

driving the circum-Amazonian distribution in fire-eyes. Also, one could argue that if 

members of a clade have distinct elevational distributions, it is less parsimonious to assume 

evolutionary stasis in elevational distributions. Members of clade 3 are present in the 

Amazonian basin (subspecies P. l. similis) and in the lowlands southward (subspecies P. l. 

maura), are restricted to the Andean foothills (ca. 1000-2300 m) from northern Bolivia to 

southern Colombia (subspecies P. l. marcapatensis, P. l. picea and P. l. castanoptera), and 

shift back to lowlands in the pacific Andean slope (subspecies P. l. pacifica). This 

demonstrates that elevational distributions differ among lineages of fire-eyes, but also implies 

that they do change over time. In other words, it is tempting to infer that physiological 

constraints probably have not have been of historical importance involving the circum-

Amazonian distribution in fire-eyes.   

Geographical exclusion due to competition over ant-swarms does not explain the 

absence of other circum-Amazonian species with distinct ecologies in some parts of the 

Amazon basin or in its entirety. The plain antvireo (Dysithamnus mentalis) is one of the 

forest taxa showing a complete circum-Amazonian pattern of distribution (Remsen et al. 

1991), but is not a regular ant-swarm follower (Maldonado-Coelho pers. obsv.). This taxon 
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exists in the lowlands around the upper reaches of the large southeastern Amazonian rivers as 

the Tocantins and Madeira Rivers as well as in the lowlands of the northeastern coast of 

Brazil to the eastern bank of the Tocantins River (Zimmer and Isler 2003). Because 

populations of the plain antvireo are present in the lowlands but do not exist in the central 

parts of the Amazonian basin, it is suggestive that its biogeographic history has been 

influenced by biotic interactions rather than as consequence of characteristics of the physical 

environment. 

Although a shared common evolutionary history to the members of the circum-

Amazonian distribution pattern can be inferred based on their overlapping ranges, the fact 

that extensive non-overlapping portions to their distributions also exist indicates that 

differences in ecology and evolutionary history also have to be invoked (Bates 1997). We 

agree with this statement, but further suggest that if the causes underlying the circum-

Amazonian pattern were solely or mostly determined by the conditions of the physical 

environment, such broad discrepancies in the geographic ranges would not be so apparent. 

Instead, we suggest forest habitats around the periphery of the Amazon could represent long-

term ecological opportunities for colonization and adaptation, and that biotic interaction, such 

as interspecific competition with taxa in lowland Amazonia and other forest regions, may act 

as a sorting mechanism with considerable variation in its strength among taxa at the regional 

scale. This would explain, for example, variation in the extent of lowland Amazonian forest 

present in the geographical range of circum-Amazonian taxa. This is not to say that the 

factors of the physical environment such as climate were irrelevant in shaping the 

evolutionary history and distribution of these taxa: the fact that local distributions of circum-

Amazonian taxa seem to be tightly associated with individual tolerances to local 
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environmental conditions (Maldonado-Coelho pers. obsv.) as well as the high likelihood that 

climate oscillations have had an important role in geographic differentiation and in present-

day disjunct distributions observable in fire-eyes and other circum-Amazonian taxa (Remsen 

et al. 1991, Bates 1997), offer evidence to the contrary. Rather, we argue that it appears 

unlikely that the physical environment has played out a larger role than ecological 

interactions in the origin of circum-Amazonian distributions. 

The geographical origin of circum-Amazonian taxa is difficult to identify 

unambiguously in light of available information for most taxa, but we suspect that at least 

two taxa might have been derived from distinct regional stocks. Willis (1981) considered 

“fire-eyes to be primitive or moderately modified former Amazonian birds that cannot 

compete well with crowded present-day ant-following guilds there.” He proposed that fire-

eyes could have been derived from an Amazonian ancestor since they are behaviorally alike 

to antbirds of the genera Myrmeciza and Percnostola (and also to the Atlantic Forest endemic 

Rhopornis). Although Rhopornis was lacking in the survey of Brumfield et al (2007), their 

phylogenetic analysis of representatives of the antbird assemblage confirmed that fire-eyes 

are nested in a clade with taxa represesntative of Myrmeciza and Percnostola gnera restricted 

to the Amazon basin. This could imply an Amazonian ancestry of fire-eyes followed by 

subsequent colonization of peripheral forest regions. However, sister relationships of other 

circum-Amazonian taxa likely reside outside the Amazon basin. For example, all congeners 

of the circum-Amazonian plain antvireo (genus Dysithamnus) are endemic to the periphery of 

Amazonian lowlands areas. This suggest that the geographical origin as well as secondary 

expansions have taken place from within the circum-Amazonian areas for this group and 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

101 

indicates that circum-Amazonian taxa may have originated from ancestors belonging to 

distinct geographical and ecological settings.  

 

Conclusions 

Our phylogenetic reconstructions and Bayesian dating estimates suggest that fire-eyes 

represent a rapid diversification in South America. It is conceivable that the origin of the 

three major clades recovered in our study trace back to older events, such as the formation of 

the modern course of the Amazon, Tapajós, Xingu and São Francisco Rivers, with 

subsequent diversification fostered by more recent events, such as the creation of the modern 

Tocantins River course (Chapter 1) and by Pleistocene climatic oscillations creating 

opportunities for range expansion and geographic isolation in the Andes, Pantanal, and 

Atlantic Forest. However, as demonstrated here and in Chapter 1, the role of large rivers as 

historical barriers to dispersal is apparently stronger in the Amazon basin relative to western 

South America (western lowlands and Andes) and Atlantic Forest. In contrast, climatic 

oscillations seem less important in creating opportunities for geographic differentiation 

within the Amazon compared to the other regions. Also, favorable climate conditions for 

population expansions following the last glacial maximum apparently extended across all of 

South America, as shown by consistent timing of expansions (Figure 12). If this scenario is 

correct, then fire-eyes have a complex history of diversification, involving large-scale 

geological and climatic processes acting over regional and continental scales during the last ~ 

2.5 My. We suggest that factors underlying the circum-Amazonian distribution pattern could 

be dependent of evolutionary change in relation to the physical environment (e.g. climate) at 

a regional scale; however, it is conceivable that adaptations to local ecological conditions 
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influenced by the balance of evolutionary relationships of circum-Amazonian taxa with other 

organisms are of larger importance.  
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Table 1. Primers designed for PCR amplification and cycle sequencing.  
Gene Primer Sequence (5’∏ 3’) 
ND2 ND2pyrintH1 GGTGGGTGAGTTGGGTAATG 
ND2 ND2pyrintL2 CATCGAGGCCACAACAAAAT 
ND2 ND2pyrintH3 GGCAATGATTGTTGCTGTTG 
ND2 ND2pyrintL4 CTCCATTAACGGGCTTTCTG 
ATPase ATPasepyrH CATAGGCTTGAATTATGGCGAC 
ATPase ATPasepyrL GCCTTTTAAGCTAGAGAAAGAGG 

 
 
 
 
Table 2.  Results of Shimodaira-Hasegawa tests for comparison of alternative phylogenetic 
hypotheses. The likelihood of the maximum-likelihood estimate of phylogeny for the four 
combined mitochondrial genes (-lnL=1406.443) was compared with those of trees recovered 
in maximum-likelihood analyses in which alternative topologies were enforced. 
Enforced topology Constrained tree -lnL p-value 
Monophyly of P. leuconota 14907.496 0.402 
Monophyly of P. l. castanoptera 14959.883 0.006 
Monophyly of P. leucoptera and P. atra 14968.974 0.002 
Monophyly between P. l. pernambucensis and P. l. leuconota 14906.863 0.420 

 
 
 
 
Table 3. Estimates of divergence dates (TMRCA) and the 95% highest posterior density 
values inferred for each node in Figure 4. Dates are in million years (My) before present. 
Node Mean (My) 95% Highest posterior density 
  Lower (My) Upper (My) 
A 2.5 1.81 3.27 
B 0.49 0.26 0.77 
C 0.34 0.15 0.56 
D* 2.20 (2.12)  1.58 (1.79) 2.8 (2.48) 
E 1.66 1.20 2.20 
F 1.06 0.72 1.46 
G 0.67 0.41 0.97 
H 0.37 0.18 0.59 

              * numbers between brackets represent the TMRCA for the divergence time and 95% highest  
posterior density values between clades 2 and 3 in Figure 4. 
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Table 4. Sample size, number of haplotypes, and historical demographic analyses (Tajima’s D, Fu’s Fs 
and Ramos-Onsins and Rozas’ R2 tests) for populations of Atlantic Forest fire-eyes (Pyriglena 
leucoptera and P. atra) with sample size larger than five individuals. Locality numbers as in Figure 1. 
Samples of some populations geographically close were pooled to increase sample size in the analyses. 
No. Geographic region and 

locality 
Sample 
size 

Number of 
haplotypes 

Tajimas’s D Fu’s Fs R2 

 Atlantic Forest      
1 Iguacu region 19  -1.47* -3.46** 0.09 

10 Morro Grande 28  -1.71* -6.25*** 0.06*** 
14 Morro do Diabo 8  -1.54* -1.53* 0.34 
16 Itatiaia 8  1.44 0.97 0.28 
19 Cantagalo 8  0.45 -0.73 0.21 
20 Itacolomi 7  -0.73 -1.45 0.14 
21 Arcos 7  1.24 0.69 0.23 
24 Santa Tereza 8  -0.44 -0.48 0.19*** 
25 Serra Piedade 14  -1.24 -2.41 0.10 
26 Sooretama 5  1.12 1.22 0.25 
31 Monte Pascoal 6  1.12 2.51 0.26 
32 Porto Seguro 9  0.69 0.70 0.21 
28 Mata Escura 6  -0.93 -1.91 0.18 
29 Duas Barras 9  -1.00 -1.25 0.15 
30 Limoeiro 10  0.50 1.45 0.19 
33 Fazenda Santana 7  0.19 1.14 0.18 
35 Ouricana 9  0.01 0.72 0.16 
36 Sao Roque do Paraguaçu 8  -0.08 -1.58 0.23 

37, 38, 39 Paraguaçu Headwaters 21  -2.13*** -0.87 0.13 
43 Campina 10  0.02 1.52 0.18 
44 Lontra 7  -1.36 -0.24 0.24 

 Bahia refuge 64 21 -1.34 -9.35** 0.07 

 
South of the Bahia 
refuge 

127 43 -2.46*** -27.78*** 0.02*** 

 Pernambuco Refuge 14 8 0.62 -4.50** 0.18 
       

 
Southwestern South 
America 

     

 Western group 17 9 -0.94 -4.56** 0.10 
 Eastern group 22 8 -1.59* -3.61** 0.08* 
       
 Central Andes      
 Oxapampa 9 3 0.156*** -3.106*** 0.194 
 Marañón River Valley 12 6 -0.54 -2.979** 0.155 

*P < 0.05; ** P < 0.01; *** P < 0.001. The Fu’s test was considered as significant at the 5% level if its P value was below 
0.02 (Fu 1997).  
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Table 5. Population estimates of Ө0, Ө1, τ and estimated time since the population expansion in y.b.p for 
fire-eye populations in South America, assuming two mitochondrial mutation rates (2.1% and 4.0%). 
Samples south of the Bahia refugium, from the Pernambuco refugium, from southern Andean foothills 
and from western lowlands were pooled into their respective groups to estimate global population 
expansion. Sampling localities numbered as in Figure 1.  
Biogeographic 
Region and 
Sampling 
Locality 

Ө0 Ө1 τ        Time of expansion 

     
    2.1% 4.0% 
Atlantic Forest      
Bahia refuge 0.00  

(0.00-1.659) 
6.891  
(3.64-99,999) 

4.539  
(0.938-8.254) 

45,563  
(9,436-83,038) 

23,977  
(4,962-43,602) 

South of the 
Bahia refuge 

0.401  
(0.00-3.42) 

2.32  
(0.175-99,999) 

2.889 
(0.00-5.725) 

29,056 
(0-50,725) 

15,254 
(0-30,228) 

Foz do Iguaçu 
(Locality 2) 

0.594  
(0.00-3.746) 

2.245  
(0.00-99,999) 

1.832 
(0-4.549) 

18,430 
(0-45,774) 

9,693 
(0-24,074) 

Morro do Diabo 
(Locality 14) 

0.00  
(0.00-0.00) 

0.186  
(0.00-99,999) 

3.0 
(0.570-3.500) 

30,181 
(5,734-35,211) 

15,847 
(3,015-18,518) 

Morro Grande 
(Locality 10) 

0.004  
(0.00-2.34) 

3.37  
(0.297-99,999) 

3.13 
 (0.672-
5.543) 

31,480  
(6,758-55,750) 

16,527  
(3,548-29,268) 

Santa Tereza 
(Locality 24) 

0.00  
(0.00-0.004) 

99,999  
(4.342-99,999) 

0.877  
(0-2.736) 

8,822  
(0-27,526) 

4,640  
(0-14,453) 

Headwaters of 
Paraguaçu 

  3.00  
(0.410-3.127) 

30,173  
(4,123-31,450) 

15,840  
(2,164-16,511) 

Pernambuco 
refuge 

0.005  
(0.00-4.437) 

5.953  
(0.370-99,999) 

2.281  
(0.00-6.008) 

22,347  
(0.00-60,362) 

12,049  
(0.00-31,746) 

      
Southwestern South America (the “maura group”)   
Western group 0.021  

(0.00-0.977) 
12.310  
(0.00-99,999) 

2.119  
(0.406-3.939) 

21,317  
(4,084-39,627) 

11,211  
(2,148-20,341) 

Eastern group 0.009  
(0.00-0.946) 

99,999  
(1.451-99,999) 

1.316 
 (0.00-2.727) 

13,239 
 (0.00-27,364) 

6,951  
(0.00-14,428) 

Central Andes      
Oxapampa 
(Locality 75) 

0.004 
(0.0-0.004) 

99999,00 
(99869,00-99999,00) 

0.543 
 (0.262-
1.230) 

5,461  
(2,635-12,371) 

2,867  
(1,383-6,494) 

Marañón River 
Valley 
(Localities 77, 78 
and 79) 

0.012  
(0.00-0.026) 

6.187  
(1.67-99999,00) 

1.52  
(0.586-4.682) 

15,287  
(0,589-47,090) 

8,026  
(3,094-24,722) 

 
 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

117 

Table 6. Role of South American rivers in the diversification of fire-
eyes. The Mantel tests were performed for three river basins in this 
study**. r = partial correlation between the corrected genetic matrix and 
the binary matrix (the river barrier) after controlling for geographic 
distance. 

 
 

                         *P<0.0001; ** data from Chapter 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

River Geographic Region Historical Role       r 
Paraíba do Sul Atlantic Forest none 7.84 
Doce Atlantic Forest none 17.45 
Jequitinhonha Atlantic Forest none 28.78 
Tocantins** Amazon Forest primary 89.36* 
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Figure 1. Sampling localities of fire-eye antbirds (genus Pyriglena) across South 
America. 1.A) Southeastern Amazon; 1.B) Atlantic Forest. The dark grey shaded area 
depicts the Bahia Pleistocene refuge (after Carnaval and Moritz 2008); 1.C) Southwestern 
South America (the “maura group”); 1.D) Central Andes. Rivers and River names are 
depicted in light blue. Light shaded gray indicates areas above 1000 m a.s.l.  
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Figure 2. Maximum-likelihood phylogram showing relationships among fire-eye 
populations and taxa based on combined analyses of 3213 aligned base pairs of four 
mitochondrial. Numbers following taxa names represent localities as in Figure 1. 
Numbers on branches indicate Bayesian posterior probabilities and bootstrap values 
obtained under maximum-likelihood and maximum-parsimony. Lower clades represent 
outgroups used to root the fire-eye phylogenetic tree. 
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Figure 3. Maximum-likelihood phylogram showing relationships among fire-eye 
populations and taxa based on combined analyses of 3748 aligned base pairs of four 
mitochondrial and one nuclear gene. Numbers on branches indicate Bayesian posterior 
probabilities and bootstrap values obtained under maximum-likelihood and maximum-
parsimony. Lower clades represent outgroups used to root the fire-eye phylogenetic tree. 
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Figure 4. Bayesian chronogram of fire-eyes diversification inferred using the 2.1% mutation 
rate. The blue bars represent the 95% credibility intervals for the TMRCAs estimated in 
BEAST. See Table 3 for Bayesian estimation of TMRCA’s values for each node.  
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Figure 5. Statistical parsimony network among the haplotypes of the Atlantic Forest P. 
leucoptera and P. atra populations based on ND2 sequences. Each circle represents a different 
haplotype with size proportional to its relative frequency. The numbers correspond to sampling 
localities labeled in Figure 1B. Colours correspond to i) blue: area south of the Bahia refuge; ii) 
red: area inside the Bahia refuge; iii) green: haplotypes recovered in P. atra individuals. See text 
for details. 
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Figure 6. Fixation indices (F) as a function of grouping number (K). FCT, genetic 
differences among groups of populations, FST genetic differences among populations and 
FSC genetic differentiation among population within groups obtained with the SAMOVA. 
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Figure 7. Relationship of geographic distances and corrected genetic distances. A) south 
of the Bahia refuge, B) inside the Bahia refuge and C) inside the Bahia refuge including 
the P. leucoptera population along the contact zone with P. atra (see text for details).  

A 

B 

C 
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Figure 8. Relationship of (A) haplotype diversity and (B) nucleotide diversity with 
latitude in Atlantic Forest. Red and blue dots represent localities sampled inside and 
outside the Bahia refuge, respectively.  
 
 

A 
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Figure 9. Bayesian Skyline Plots depicting the demographic history of fire-eye (Pyriglena 
leucoptera) populations A) inside and B) south of the Bahia refuge in Atlantic Forest, with time 
axis scaled to the mutation rate of 2.1% per MY. The solid black line represents the median 
value for the log of the effective population size and the blue lines represent the upper and lower 
95% credible intervals. Time zero is the present, with values indicating time increasing towards 
the past.  
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Figure 10. Statistical parsimony network among the haplotypes of southwestern South 
American fire-eye populations (the “maura” group) based on ND2 sequences. Each circle 
represents a different haplotype with size proportional to its relative frequency. The numbers 
correspond to sampling localities labeled in Figure 1C. Colours correspond to i) red: lowlands 
of Brazil and Bolivia; ii) yellow: lowlands of Bolivia and foothills of Bolivian and Peruvian 
Andes; iii) green: foothills of Peruvian Andes. See text for details. 



                 Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

128 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Statistical parsimony network among the haplotypes of Central Andean fire-eye 
populations based on ND2 sequences. Each circle represents a different haplotype with size 
proportional to its relative frequency. The numbers correspond to sampling localities labeled in 
Figure 1D. Colours correspond to i) red: trans-Andean P. l. pacifica; ii) blue: south bank of the 
Marañón  River valley; iii) green: north bank of Marañón  River valley and iv) yellow: P. l. 
picea. See text for details. 
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Figure 12. Estimated time since the population expansion in y.b.p using the generalized non-linear 
least-squares approach of Schneider and Excoffier (1999) for fire-eye populations in South America, 
assuming the 2.1% mitochondrial mutation rate. Bars represent 95% confidence intervals. Geographic 
localities are in Amazonian basin (AM1 = Serra dos Carajás; AM2 = Santana do Araguaia), Atlantic 
Forest (AF1 = Pernambuco refuge; AF2 = Headwaters of Paraguaçu; AF3 = Santa Tereza (24); AF4 = 
Morro do Diabo (14); AF5 = Morro Grande (10); AF6= Foz do Iguaçu (2)), Western South America 
(W1 = eastern group in Figure 10, W2 = western group in Figure 10) and Central Andes (CA1= 
Oxapampa (75), CA2=populations in the Marañón River Valley (77, 78 and 79). Number between 
brackets represent sampling localities numbered as in Figure 1.  
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Appendix 1 
 
Localities, sample size and geographic coordinates for samples of Pyriglena included in phylogeographic and phylogenetic analyses. Voucher numbers will be 
provided in future publications.   

Number Taxon  Country Locality Sample Size Lat. Lon. 
1 Pyriglena leucoptera Paraguay Cord. de Caaguazú, Department of Caaguazú                    7 -26.117 -55.733 

         1b Pyriglena leucoptera Argentina Missiones, Department of San Ignacio 5 -27.250 -55.540 
2 Pyriglena leucoptera Brazil Iguaçu National Park, State of Paraná 9 -25.934 -54.478 
3 Pyriglena leucoptera Brazil Quatro Barras, Corvo, State of Paraná 1 -25.333 -49.131 
4 Pyriglena leucoptera Brazil Serra do Mar State Park, Núcleo Caboclos, State of São Paulo 3 -24.587 -48.595 
5 Pyriglena leucoptera Brazil Monte Alegre Farm, Telêmaco Borba, State of Paraná 4 -24.056 -50.693 
6 Pyriglena leucoptera Brazil Serra do Mar State Park, Núcleo Curucutu, State of São Paulo 3 -23.985 -46.743 
7 Pyriglena leucoptera Brazil Pinhalão, State of Paraná 1 -23.967 -50.050 
8 Pyriglena leucoptera Brazil Juqitiba, State of São Paulo 1 -23.932 -47.087 
9 Pyriglena leucoptera Brazil Buri, State of São Paulo 2 -23.717 -48.567 

10 Pyriglena leucoptera Brazil Morro Grande, State of São Paulo 31 -23.700 -46.983 
11 Pyriglena leucoptera Brazil Piedade, State of São Paulo 2 -23.711 -47.419 
12 Pyriglena leucoptera Brazil Boracéia, State of São Paulo 2 -23.633 -45.867 
13 Pyriglena leucoptera Brazil Ubatuba, State of São Paulo 1 -23.435 -45.070 
14 Pyriglena leucoptera Brazil Morro do Diabo State Park, State of São Paulo 9 -22.699 -52.247 
15 Pyriglena leucoptera Brazil Gaupimirim, State of Rio de Janeiro 2 -22.521 -43.010 
16 Pyriglena leucoptera Brazil Itatiaia National Park, State of Rio de Janeiro 7 -22.489 -44.726 
17 Pyriglena leucoptera Brazil Bela Vista Farm, Cordeiro, State of Rio de Janeiro 4 -22.034 -42.302 
18 Pyriglena leucoptera Brazil Mata da Cambraia, Itumirim, State of Minas Gerais 5 -21.217 -44.783 
19 Pyriglena leucoptera Brazil Fazenda Henrique Bohn, Cantagalo, State of Rio de Janeiro 4 -22.057 -42.662 
20 Pyriglena leucoptera Brazil Itacolomi State Park, Ouro Preto, State of Minas Gerais 8 -20.435 -43.764 
21 Pyriglena leucoptera Brazil Faroeste Farm, Arcos, State of Minas Gerais 7 -20.264 -45.556 
22 Pyriglena leucoptera Brazil Barreiro Rico, State of São Paulo 1 -20.683 -48.100 
23 Pyriglena leucoptera Brazil Santa Bárbara, State of Minas Gerais 4 -19.960 -43.414 
24 Pyriglena leucoptera Brazil Augusto Ruschi Biological Reserve, Santa Tereza, State of Espírito Santo 7 -19.925 -40.613 
25 Pyriglena leucoptera Brazil Serra Piedade, Caeté, State of Minas Gerais 13 -19.815 -43.678 
26 Pyriglena leucoptera Brazil Sooretama Biological Reserve, Sooretama, State of Espírito Santo 6 -19.009 -40.116 
27 Pyriglena leucoptera Brazil Onofre Sandina Farm, Leme do Prado, State of Minas Gerais 4 -17.065 -42.502 
28 Pyriglena leucoptera Brazil northern bank of Jequitinhona River, Mata Escura, Jequitinhonha, State of Minas Gerais 5 -16.434 -41.003 
29 Pyriglena leucoptera Brazil southern bank of Jequitinhona River, Duas Barras Farm, State of Minas Gerais 6 -16.421 -40.069 
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Number Taxon  Country Locality Sample Size Lat. Lon. 
30 Pyriglena leucoptera Brazil northern bank of Jequitinhona River, Limoeiro Farm, Almenara, State of Minas Gerais 11 -16.206 -40.703 
31 Pyriglena leucoptera Brazil Monte Pascoal National Park, Itamaraju, State of Bahia 5 -16.745 -39.533 
32 Pyriglena leucoptera Brazil Pau Brazil National Park, Porto Seguro, State of Bahia 9 -16.503 -39.283 
33 Pyriglena leucoptera Brazil northern bank of Jequitinhona River, Fazenda Santana, Salto da Divisa, State of Minas Gerais 7 -16.045 -40.041 
34 Pyriglena leucoptera Brazil northern bank of Jequitinhona River, Fazenda Palmeiras, Itapebi, State of Bahia 3 -16.156 -39.872 
35 Pyriglena leucoptera Brazil Serra da Ouricana, Boa Nova, State of Bahia 8 -14.506 -40.349 
36 Pyriglena leucoptera Brazil southern bank of Paraguaçu River, São Roque do Paraguaçu, State of Bahia 7 -13.023 -39.098 
37 Pyriglena leucoptera Brazil southern bank of Paraguaçu River, Andaraí, State of Bahia 7 -12.950 -41.539 
38 Pyriglena leucoptera Brazil northern bank of Paraguaçu River, Lençóis, State of Bahia 10 -12.433 -41.363 
39 Pyriglena leucoptera Brazil northern bank of Paraguaçu River, Bonito, State of Bahia 2 -11.913 -41.215 
40 Pyriglena leucoptera Brazil northern bank of Paraguaçu River, Boa Vista do Tupim, State of Bahia 3 -12.663 -40.607 
41 Pyriglena leucoptera Brazil northern bank of Paraguaçu River, Ibiquera, State of Bahia 1 -12.648 -40.939 
42 Pyriglena atra Brazil Serra do Curió, State of Bahia 1 -12.511 -38.461 
43 Pyriglena atra Brazil Campina, State of Bahia 12 -12.448 -38.408 
44 Pyriglena atra Brazil Lontra, State of Bahia 11 -12.255 -37.971 
45 Pyriglena atra Brazil Jandaíra, State of Bahia 6 -11.624 -37.648 
46 Pyriglena leuconota pernambucensis Brazil Timbaúba, State of Pernambuco 3 -7.505 -35.318 
47 Pyriglena leuconota pernambucensis Brazil Serra do Espelho, Jaqueira, State of Pernambuco 2 -8.727 -35.793 
48 Pyriglena leuconota pernambucensis Brazil Ibateguara, Engenho Ceimba, Usina Serra Grande, State of Alagoas 10 -8.973 -35.939 
49 Pyriglena leuconota pernambucensis Brazil Mata do Estado, State of Pernambuco 2 -7.617 -35.500 
50 Pyriglena leuconota leuconota Brazil Porto Franco, State of Maranhão 1 -6.341 -47.407 
51 Pyriglena leuconota leuconota Brazil Moju, State of Pará 6 -1.885 -48.765 
52 Pyriglena leuconota leuconota Brazil Paragominas, State of Pará 1 -2.997 -47.353 
53 Pyriglena leuconota interposita Brazil Ourilândia do Norte, State of Pará 2 -6.749 -51.081 
54 Pyriglena leuconota interposita Brazil Serra dos Carajás, State of Pará 3 -5.800 -50.500 
55 Pyriglena leuconota interposita Brazil right bank of Tapajós River, Altamira, State of Pará 2 -3.650 -52.367 
56 Pyriglena leuconota similis Brazil ca 30 km SW Castelo dos Sonhos, Jamanxin Farm, Altamira, State of Pará 3 -8.399 -55.386 
57 Pyriglena leuconota similis Brazil Loanda Farm, Sinop, State of Mato Grosso 1 -11.434 -55.367 
58 Pyriglena leuconota maura Brazil Vale da Bênção, Chapada dos Guimarães, State of Mato Grosso 7 -15.417 -55.833 
59 Pyriglena leuconota maura Brazil Pirizal, Nossa Senhora do Livramento, State of Mato Grosso 2 -14.917 -55.683 
60 Pyriglena leuconota maura Brazil Cáceres, State of Mato Grosso  3 -16.067 -57.683 
61 Pyriglena leuconota hellmayri Bolivia San Jose, Department of Santa Cruz 2 -19.165 -60.878 
62 Pyriglena leuconota maura Bolivia W Bank Rio Paucerna, 4 km upstream from Rio Itenez, Velasco, Department of Santa Cruz 3 -13.533 -61.100 
63 Pyriglena leuconota maura Bolivia Parque Nacional Noel Kempff Mercado 60 km ESE of Florida, Velasco, Department of Santa Cruz 4 -14.683 -61.017 
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Number Taxon  Country Locality Sample Size Lat. Lon. 
64 Pyriglena leuconota hellmayri  Bolivia 126 km ENE San Jose de Chiquitos, Mina Don Marie, Department of Santa Cruz 1 -17.333 -59.683 
65 Pyriglena leuconota hellmayri  Bolivia Prov. Florida, 23.2 km E Samaipata, Department of Santa Cruz 4 -18.278 -63.674 
66 Pyriglena leuconota maura  Bolivia 50 km ESE Florida, Arroyo del Encanto, Velasco, Department of Santa Cruz   1 -14.567 -60.667 
67 Pyriglena leuconota hellmayri Bolivia ca 37 km SE Samaipata, Chuchial, Department of Santa Cruz                    1 -18.383 -63.617 
68 Pyriglena leuconota hellmayri Bolivia Prov. Chapare, San Onofre, ca. 43 km W. Villa Tunari, Department of Cochabamba 4 -17.146 -65.767 
69 Pyriglena leuconota hellmayri Bolivia Prov. B. Saavedra, 83 km by road E. Charazani, Cerro Asunta Pata, Department of La Paz 1 -15.183 -69.000 
70 Pyriglena leuconota hellmayri Bolivia Prov. Nor. Yungas, near the Rio Elena, Department of La Paz 3 -16.250 -67.667 
71 Pyriglena leuconota marcapatensis Peru Abra de Maruncunca, 10 km SW San Juan del Oro, Department of Puno 1 -14.000 -69.000 
72 Pyriglena leuconota marcapatensis Peru Cuzco, Consuelo 3 -13.000 -71.000 
73 Pyriglena leuconota marcapatensis Peru Cuzco, San Pedro 1 -13.083 -71.917 
74 Pyriglena leuconota picea Peru Utcuyacu, Department of Junín 1 -11.200 -75.467 
75 Pyriglena leuconota castanoptera Peru ca 9km SSE of Oxapampa, Santa Cruz, Department of Pasco 8 -10.917 -75.667 
76 Pyriglena leuconota castanoptera Peru Playa Pampa, ca 8 km NW Cushi on trail to Chaglla, Department of Pasco 2 -9.472 -75.695 
77 Pyriglena leuconota castanoptera Peru ca 3km NNE San Jose de Lourdes, Department of Cajamarca                    2 -5.067 -78.967 
78 Pyriglena leuconota castanoptera Peru Nuevo Peru, 16 km NE junction Rios Tabacomas and Chinchipe, Department of Cajamarca 2 -5.283 -78.652 
79 Pyriglena leuconota castanoptera Peru ca 24 km ENE Florida, Department of San Martin 3 -5.686 -77.754 
80 Pyriglena leuconota castanoptera Ecuador Numbala-Bajo, Zamora-Chinchipe Province                    1 -4.367 -79.050 
81 Pyriglena leuconota castanoptera Ecuador Panguri, NE of San Francisco del Vergel Ecuador, Province of Zamora-Chinchipe 2 -4.617 -78.967 
82 Pyriglena leuconota castanoptera Ecuador La Chonta, Rio Mayo 1 -4.949 -79.089 
83 Pyriglena leuconota castanoptera Peru Cordillera del Condor, Picorana, Department of Cajamarca 7 -4.983 -78.967 
84 Pyriglena leuconota castanoptera Ecuador west slope of Cordillera del Cutucu on trail from Lagrono to Yaupi-Yapitya, Morona Santiago Province 1 -2.667 -77.850 
85 Pyriglena leuconota pacifica Ecuador Guayas, Cerro Colonche 1 -2.200 -80.033 
86 Pyriglena leuconota pacifica Ecuador Machalilla National Park, Cerro San Sebastian  5 -1.583 -80.667 
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CHAPTER 3 
 

Geographic variation in songs of Atlantic Forest fire-eye antbirds: assessing the 

influence of stochastic and deterministic processes 

 

1. Introduction 

Investigations on the variation of mating signals throughout the range of a taxon are 

fundamental for an understanding of evolutionary forces underlying the process of 

geographic divergence. Particularly important are studies on the geographic divergence 

of signals that are involved in mate recognition and in reproductive isolation and that 

might, therefore, contribute to the speciation process (Foster and Endler 1999, Irwin et al. 

2001, Pröhl et al. 2006, Price 2008). Bird vocalizations, for example, because of their 

importance to mate selection (Baker and Baker 1988, Searcy and Yasukawa 1996, Patten 

et al. 2004) and species recognition (Payne 1986, Baker and Baker 1990, Martens 1996), 

have been suggested to play a key role in the development of pre-mating reproductive 

barriers during the speciation process (Grant and Grant 1997, Irwin and Price 1999, Irwin 

et al. 2001, Haavie et al. 2004, Patten et al. 2004, Edwards et al. 2005, Price 2008). 

In this study, we examine in detail how vocalizations vary across the range of two 

suboscine species, the Atlantic Forest fire-eye antbirds Pyriglena atra and P. leucoptera, 

and we test whether different hypotheses for the origin of song divergence could explain 

their current vocal variation. We first define the hypotheses tested according to the 

highlighted processes and then describe our study system.  

Stochastic factors - The first set of hypotheses underscores the importance of stochastic 

processes, as their role in the evolution of geographic variation in songs has gained 
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support (Irwin 2000, Koetz et al. 2007, Podos and Warren 2007, Irwin et al. 2008). One 

process is song drift. Song drift is sampling variation that occurs between successive 

generations or sampling errors during the learning process or during colonization of new 

areas; this new variation in learned song characteristics (Grant and Grant 1995, Baker 

1996, Podos and Warren 2007) can become fixed in different populations due to chance 

events (Lynch 1996, Podos et al. 2004b, Price 2008). The effect of drift on song variation 

may also result from the same processes that drive variation in neutral molecular traits; 

that is, songs may evolve in response to random changes in the genetic loci underpinning 

their expression (Koetz et al. 2007, Podos and Warren 2007). As such, songs can diverge 

as a consequence of random process due to the cessation of gene flow when populations 

are geographically isolated or due to accumulation of small differences when gene flow is 

more frequent among neighbor populations (i.e. isolation-by-distance). If random drift is 

driving vocal divergence in fire-eyes in the absence of selection, we should expect a 

correspondence between neutral genetic and vocal variation. Alternatively, if the 

concordance between patterns of variation in vocal traits and presumably neutral genes is 

low, it suggests that something other than drift must be affecting variation in this 

character. For example, if divergence in vocal traits exceeds that of neutral genes, it 

would indicate that geographic variation in selection pressures, environmental 

heterogeneity or cultural evolution (i.e. song learning) may be playing a role in 

promoting population differentiation. On the other hand, a pattern of variation in neutral 

genes exceeding that of vocal traits may imply selective constraints on among-population 

character divergence (see below).  
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 Even if drift is unimportant, song features may still vary geographically due to 

stochastic factors. Acoustic features such as songs play a key role in mate choice and 

male-male competition and are, therefore, likely to evolve rapidly in response to sexual 

selection (Lande 1981, West-Eberhard 1983, Schluter and Price 1993, Andersson 1994). 

Stochasticity can occur during the evolution of sexually selected traits because, under 

Fisherian runaway selection, the direction and extent of trait change can be highly 

unpredictable (Lande 1981, Kirkpatrick 1982). In oscine songbirds, empirical evidence 

indicates that females choose more complex vocal patterns (Hasselquist et al. 1996, 

Searcy and Yasukawa 1996, McGraw et al. 2001, Parker et al. 2003, but see Hill and 

McGraw 2004). Spatial variation in female preferences for mating signals (Lande 1981, 

Kirkpatrick 1982, Endler 1992, Endler and Houde 1995, Searcy et al. 1997) could 

potentially lead to rapid and prominent geographic differentiation in sexually selected 

traits (Irwin 2000, Price 2008), without major genome-wide differentiation (West-

Eberhard 1983, Zink 1996, Uy and Borgia 2000, Panhui et al. 2001).  

Sexual selection may also be a driving force of geographic variation in songs of 

Neotropical antbirds. For example, song duetting in the warbling antbird (Hypocnemis 

cantator) possibly results from intersexual conflict whereby females respond to male 

songs to prevent themselves from being displaced from the partnership by another female 

(Seddon and Tobias 2006, Tobias and Seddon 2009a). The same behavior may apply to 

other antbirds that have female songs that overlap male songs. Moreover, previous 

studies with antbirds have shown that rate of mate switching can be high (Morton et al. 

2000) and that occasional polygamy can occur (Tobias and Seddon 2009a, but see 

Fleischer et al. 1997); these are both indicators that sexual selection may be operating in 
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antbird mating systems (Anderson 1994, Anderson and Iwasa 1996). In fact, sexual 

selection has been invoked to explain sexual dimorphism in songs and plumage in 

antbirds (Seddon et al. 2008, Tobias and Seddon 2009b). All this evidence suggests that 

patterns of geographic variation in songs of male antbirds may be driven by sexual 

selection exerted by females, and so one would predict that males should exhibit more 

geographic variation in songs than females. 

 Alternatively, sexual selection could also act distinctively on songs of males and 

females throughout a species’ geographic range. For example, geographic variation in 

plumage traits of antbirds is often notable in females whereas males exhibit no or only 

subtle differences among allopatric forms, a pattern referred to as “heterogynism” 

(Hellmayr 1929). No mechanism has been proposed to explain this pattern and whether 

the same selective forces underlying geographical variation in plumage also lead to 

acoustic diversification in antbirds is unknown; if they do, one would expect more 

accentuated geographical variation in songs of female antbirds than in songs of males. 

Larger geographic variation in songs of females relative to variation in songs of males 

may imply that evolutionary forces are operating in a similar fashion in vocal and 

plumage sexual signals.  

 

Deterministic factors  - The second set of hypotheses highlights the importance of 

processes responsible for song divergence among populations in specific and predictable 

ways. It is widely acknowledged that directional selection can promote divergence in 

song traits among populations and taxa that occur in habitats that are spatially 

heterogeneous in signal transmissions and background noise (Ryan and Brenowitz 1985, 
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Handford and Lougheed 1991, Badyaev and Leaf 1997, Brown and Handford 2000, 

Slabbekoorn and Smith 2002a), despite substantial gene flow (Slabbekoorn and Smith 

2002b). Indeed, several studies suggest that intraspecific divergence may result when the 

distribution of a species covers multiple habitats in which transmission properties select 

for different accoustic designs (Slabbekoorn and Smith 2002b, Nicholls and Goldzien 

2006, Ruegg et al. 2006, Dingle et al. 2008). For example, birds with slow-paced and 

low-frequency songs are typical of denser habitats, supposedly because songs with those 

features attenuate and degrade less rapidly than faster and higher-frequency songs, due to 

reflections and reverberations on tree branches and leaves (Morton 1975, Marten and 

Marler 1977, Wiley 1991, Slabbekoorn and Smith 2002b, Slabbekoorn et al. 2002). 

Higher frequency songs also attenuate faster than lower frequency songs, and attenuation 

by absorption is greater as temperature increases and is reduced with increasing humidity 

(Wiley and Richards 1982, Slabbekoorn 2004). Consequently, birds living in denser 

habitats should use songs with (i) lower frequency, (ii) longer elements and (iii) slower 

pace (i.e. songs with longer intervals between notes) relative to more open habitats, 

whereas hot and dry environments should favor lower-frequency songs.  

Another important source of environmental selection on acoustic signals is 

ambient noise (Morton 1975, Ryan and Brenowitz 1985). In this context, songs of 

populations in regions with similar rainfall patterns may converge as a consequence of 

habitat-dependent ambient noise characteristics, because acoustic competition by abiotic 

ambient noise can lead populations in habitats with similar ambient noise to spectrally 

occupy less competitive parts of the frequency range (Slabbekoorn and Smith 2002b, 

Dingle et al. 2008). Thus, if vocal variation of fire-eyes has evolved as a response to 
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environmental selection, we should expect a strong correlation between ecological 

variables of the habitat, such as forest cover and the climatic setting, and the spectral and 

temporal elements of their vocalizations. Moreover, if habitat-dependent selection 

pressures have shaped acoustic characteristics of fire-eye populations, similarity of songs 

across the fire-eyes’ range should reflect similarity in acoustic transmission properties of 

the environment.  

Geographic variation in song traits can also be shaped and limited by constraints. 

This is because over the evolutionary history of a lineage, voice diversification is 

expected to be tempered by limits of mechanical possibility (Podos 1997, 2001, Podos et 

al. 2004a,b, Ballentine 2006). One example is song frequency, which varies negatively 

with body size (Ryan and Brenowitz 1985, Palacios and Tubaro 2000), implying that 

upper limits on syrinx size constrain the production of songs with low fundamental 

frequency. Selection on beak form and function also may drive, as a secondary 

consequence, patterns of song frequency and vocal performance. For example, birds with 

longer, deeper and wider beaks increase the volume of the vocal tract and consequently 

produce songs with significantly lower frequency patterns (Palacios and Tubaro 2000, 

Ballentine 2006, Huber and Podos 2006). Thus, we predict that fire-eyes with both larger 

body and beak sizes will sing songs with lower frequencies. If song variation is driven by 

morphology, we expect that fire-eye populations with similar morphologies (i.e. in size 

and beak dimensions) experience similar constraints on song production and should 

produce similar songs.  

We also should expect that the balance between evolutionary forces should 

change when one contrasts patterns of geographic variation in a trait of a species that 
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occupies regions with distinct histories (Kaneshiro 1989, Irwin 2000, Tregenza et al. 

2001). For example, acoustic traits can be highly correlated with geographic distance in a 

region ecologically stable over the last thousand years due to the influence of isolation by 

distance, whereas isolation into refugia during glaciations and subsequent range 

expansions could not only lead to differentiation in acoustic traits but also to eliminate 

the influence of geography (i.e. distance) in ecologically unstable areas. Thus, we predict 

a shift in the influences of isolation by distance on loudsong variation of fire-eyes 

between the southern and the northern Atlantic Forest, as these regions seemingly present 

different evolutionary histories (see study system below).    

Finally, we investigate here the likely influences of hybridization and 

introgression on the variation of vocalizations along the zone of contact between two 

Atlantic Forest fire-eye species. The resulting potential for evolutionary change and the 

ecological, phenotypic and genetic consequences of hybridization and introgression have 

been of interest for some time (Grant and Grant 1992, Seehausen 2004, Baack and 

Rieseberg 2007). It is common wisdom that populations from hybrid zones can present 

higher phenotypic variability, as they often include hybrid and backcrossed (i.e. 

introgressed) individuals with novel or extreme phenotypes relative to pure parental 

populations (Parsons et al. 1993, Grant and Grant 1994, Rieseberg et al. 1999, Chiba 

2005). For quantitative traits, this is possibly due to the increased and combined effects of 

heterozygosity and new linkage relations in hybrid populations or even due to nongenetic 

environmental variance if developmental stability is diminished in hybrids (Barton and 

Gale 1993). Importantly, introgression of genes through hybridization can potentially 
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increase genetic variation and phenotypic variability in the neighboring (i.e. parapatric) 

recipient populations.  

We examine the potential of introgression as a source of enhanced vocal variation 

along the parapatric zone between the Atlantic Forest fire-eye species, Pyriglena atra and 

P. leucoptera (see study system below). These two species can be discriminated clearly 

on the basis of male plumage, but less so by songs (Willis and Oniki 1982). Although 

poorly distinguishable vocally along the parapatric zone, populations of these two species 

distant from the zone of contact can be discriminated in a multivariate space (see results). 

On the basis of male plumage pattern, introgressed individuals of both species are found 

in populations along the parapatric zone (pers. obs.; see also Willis and Oniki 1982). 

Moreover, a study of mitochondrial (mtDNA) variation throughout the range of these 

species has uncovered an elevated level of haplotype sharing along, and restricted to, the 

parapatric zone in northern Atlantic Forest. Although the hybrid zone has not been found, 

this pattern of phenotypic and genetic variation, combined with the presence of likely 

hybrids (of unknown geographic origin) in museums (pers. obs.; see also Willis and 

Oniki 1982), has been interpreted as reflecting hybridization and introgression among 

populations of these two species (see Chapter 2).  

Hybridization is a rare phenomenon in suboscine birds, supposedly due to the 

absence of learning and the effectiveness of prezygotic behavioral isolation mechanisms 

such as acoustic signals (Graves 1992, Cadena et al. 2007). In fact, acoustic divergence 

accompanying geographic isolation and genetic differentiation is thought to lead to 

prezygotic isolation in this group (Seddon and Tobias 2007). Thus, fire-eyes provide a 

very good opportunity to investigate acoustic change as a consequence of hybridization 
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and introgression. Whether hybridization and introgression can lead to more variable 

vocal phenotypes is unknown in suboscine birds. If we assume that suboscine voices are 

heritable (Zimmer and Isler 2003), we should expect enhancement of vocal variation in 

populations containing hybrids and introgressed individuals. Thus, if introgression of 

vocal traits along the parapatric zone has occurred during the history of fire-eye 

populations and if it is geographically restricted as for plumage traits and mtDNA, we 

should expect that vocal variability in populations along the parapatric zone will be larger 

relative to parental populations in other parts of the range.  

Here, we adopt an integrative approach to assess the influence of stochastic and 

deterministic processes on the geographic variation and divergence of fire-eye 

vocalizations across their range in the Brazilian Atlantic Forest. Although these 

hypotheses are not mutually exclusive because they may very well work in concert, we 

argue that by contrasting their predictions with the patterns of variation in songs, one can 

provide important insights into the ecology and evolution of songs of a poorly studied 

group as the Neotropical suboscine antbirds. More specifically, we aim to (i) describe 

general patterns of geographic variation in songs from several localities for both males 

and females, (ii) test the predictions derived from the stochastic and deterministic 

hypotheses by combining acoustic, molecular, morphological and ecological variation 

and (iii) assess if song variability is enhanced in populations along the parapatric zone of 

P. atra and P. leucoptera.  

 

The system - The fire-eye antbirds (genus Pyriglena) form a species complex endemic to 

South America; species occur in a broad variety of forest habitats. Males and females 
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sing duets and both sexes engage in nest-building, incubation, and feeding of nestlings 

and fledglings (Willis 1981). In the Atlantic Forests, three species can be found: 

Pyriglena leuconota, which occurs north of the São Francisco River, and P. atra and P. 

leucoptera, which occur in parapatry along the Paraguaçu River in the northern Brazilian 

Atlantic Forest (Figure 1). Pyriglena atra and P. leucoptera constitute good models to 

examine the influence of stochastic and deterministic factors on vocal variation and 

divergence for several reasons.  

(i) Fire-eyes belong to one of the most numerically significant and vocally diverse 

groups of Neotropical birds, the suboscine thamnophilid antbirds. Recent studies of 

geographic variation of members of this group have revealed a previously unrecognized 

high level of vocal diversity (Isler et al. 1998, 1999, 2001, 2002). Thus, results of this 

study may have implications for a better understanding of vocal geographical variation 

and evolution in other members of the antbird assemblage.  

(ii) Fire-eyes have a wide distribution in Atlantic Forest and occur across a range 

of habitat types, from coastal lowland and montane moist forests to dry inland forests, 

and thus are a useful model to examine the relationships between vocalizations and 

characteristics of the habitat. These Atlantic Forest types are floristically and structurally 

different and possess distinct levels of leaf deciduousness that are strongly correlated 

with rainfall and temperature regimes. Coastal forests typically have higher precipitation 

and trees maintain their leaves year round; deciduous and dry inland forests have 

significantly lower precipitation and lose some of their leaves during the dry season 

(Oliveira-Filho and Fontes 2000, Maldonado-Coelho pers. obs.).  
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(iii) Unlike oscine songbirds, fire-eye females (as with other antbird females) sing 

frequently (Zimmer and Isler 2003), which allows investigation of both male and female 

vocal geographic variation.  

(iv) Fire-eye songs are relatively simple (Figure 1) and vocal landmarks can be 

easily established and compared among populations. Moreover, available evidence 

suggests that the evolution of antbird vocal signals has been influenced by the acoustic 

environment (Nemeth et al. 2001, Seddon 2005), sexually selective forces (Tobias and 

Seddon 2009b) and by patterns of genetic differentiation (Isler et al. 2005), implying a 

great potential for acoustic environments, spatial differences in mating preferences, and 

population history to shape geographic variation of fire-eye songs at large geographic 

scales.  

(v) Songs of Atlantic Forest fire-eyes can be interpreted in terms of a historical 

scenario. Atlantic Forest fire-eye populations are genetically structured with a pattern of 

phylogeographic variation uncovered in a mitochondrial DNA (mtDNA) study likely 

congruent with events of geographic vicariance, isolation by distance and range 

expansion (Chapter 2). Results from this phylogeographic study showed that populations 

that occur in the northern Atlantic Forest region follow a pattern of isolation by distance 

that suggests long-term spatial stability in a putative Pleistocene forest refuge (hereafter 

Bahia refuge). In contrast, mitochondrial variation of southern populations shows no 

correspondence with geographic distance among populations and strong evidence of 

population expansion, likely reflecting isolation in one or more local refuges followed by 

population expansion episodes; these patterns may reflect heterogeneity in the historical 

stability of forests in the northern and southern parts of Atlantic Forests, as suggested by 
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previous analyses (Carnaval and Moritz 2008, Carnaval et al. 2009, Chapter 2). (vi) 

Finally, the presence of hybrids and plumage-introgressed individuals along the 

parapatric zone between these species implies historical role of hybridization that shape 

the evolutionary history of these two forms and allows us to investigate the influence of 

gene flow and introgression on geographic patterns of vocal variation in fire-eyes.  

 

2. Methods 

Sampling - We tape-recorded vocalizations at 38 locations across the ranges of P. 

leucoptera and P. atra in Atlantic Forest (Table 1, Figure 1). Because the birds were not 

marked, we adopted three strategies to avoid recording the same bird twice. First, we 

always tried to voucher our genetic and vocal samples by collecting the singing 

individuals of P. leucoptera; as P. atra is a endangered taxon, only blood samples were 

obtained. Second, we marked territories where we had recorded individuals that we could 

not collect. Third, we moved continuously and away from the previous recording 

location. To increase sample sizes at localities we sampled, and to augment the 

geographic scope of the study, we obtained recordings made by other researchers (see 

Acknowledgments). At some localities, we used playbacks to attract birds closer in order 

to record vocalizations of better quality or to increase sample size. Fire-eyes did not alter 

their song when responding to playbacks (i.e. when compared to unstimulated songs; not 

shown).  

 

Vocal analyses - Throughout this study, we followed song nomenclature described by 

Willis (1981) and Willis and Oniki (1982), the most complete and detailed work on 
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natural history of Pyriglena vocalizations. Although three types of songs are described 

for Pyriglena (Willis 1981), we restricted our analysis to loudsongs because this is the 

more frequently delivered song type by fire-eyes and because it is the only one we were 

able to sample satisfactorily. Loudsongs are a series of loud and clear notes, which 

possibly are used in mate attraction and territory defense.  

Only good quality recordings were used. We attempted to minimize problems 

caused by the sound environments in which recordings took place, such as reverberation 

and attenuation, and only used undistorted spectrograms for the analyses. Spectrograms 

were made using the program Raven 1.2.1 (Charif et al. 2004) on default settings. We 

defined and measured 22 loudsong characters (hereafter loudsong elements, Table 2) in 

238 male and 92 female loudsongs. For some loudsong elements measured (numbers 3 to 

6 below), we included the first four notes and the last note. The measurements consisted 

of: (1) number of notes (note defined as an unbroken trace on a spectogram), (2) pace 

(defined as the number of notes per second and computed as the ratio between the time 

interval including the beginning of the first note to the beginning of the last note and the 

total number of notes excluding the last one), (3) length of the note (measured as the time 

interval between the beginning and the end of a note), (4) space of the note (measured as 

the time interval between the end of a note and the beginning of the following note), (5) 

high frequency of the note, and (6) maximum power frequency of the note (frequency at 

which maximum power occurs in the note; see Charif et al. 2004). Measurement units are 

presented in the scatterplots and more complete descriptions of antbird vocal measures 

are described elsewhere (Isler et al. 1998, 1999).  
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A discriminant function analysis showed that fire-eyes have sex-specific loudsong 

features (results not shown) and, therefore, males and females were analyzed separately 

during all vocal analyses. Females of several species of antbirds sing in coordinated duets 

with males (Zimmer and Isler 2003), and a recent study suggested that duetting in the 

warbling antbird (Hypocnemis cantator) may result from females jamming the songs of 

their own mates as a strategy to avoid cuckoldry or divorce (Tobias and Seddon 2009a). 

As jamming and jamming avoidance can potentially influence the temporal structure of 

the song (Tobias and Seddon 2009a), caution should be taken when analyzing songs of 

duetting antbirds. We performed a series of discriminant function analyses in fire-eye 

populations where we had a large number of vocalizations, in order to test whether 

loudsongs of males singing in coordinated duets differed from solo loudsongs; in all 

surveyed populations, loudsongs delivered in duets did not differ from solo loudsongs 

(results not shown). Thus, duet and solo loudsongs were combined in all subsequent 

analyses.  

 
Morphological analyses - In order to assess the geographic patterns of morphological 

variation and to test the effect of body size on loudsong frequency in Atlantic Forest fire-

eyes, we measured six morphometric characters from a total of 228 males and 150 

females, including individuals collected in this study and individuals housed in several 

Brazilian and North American museums. The characters measured represent body and 

bill dimensions that represent overall avian body size and bill dimensions (e.g. Rising and 

Somers 1989, Huber and Podos 2006). We measured six traits with dial calipers (to 0.01 

mm): bill depth (at its base), bill width (at its base), bill length (from the anterior end of 
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the nostril to the tip), tail length, tarsus length and wing chord length (unflattened, from 

bend of wing to longest primary).  

 

Ecological variables - We examined the correspondence between acoustic variation and 

seven ecological variables (Table 8) based on a 1-km resolution grid extracted from 

Worldclim (Hijmans et al. 2004), using the software DIVA-GIS. These variables include 

the remotely-sensed Normalized Difference Vegetation Index (NDVI), rainfall (e.g. 

annual precipitation) and temperature (e.g. temperature annual range, Table 8), which are 

factors thought to shape acoustic signal design (Slabbekoorn and Smith 2002b, 

Slabbekoorn 2004, Ruegg et al. 2006). NDVI represents the difference between the 

reflectance values in the near infrared and visible light spectrum, normalized over the sun 

on both readings (Parra et al. 2004). We performed analyses employing six different 

NDVI indices described in Parra et al. (2004); as all NDVI values produced similar 

results in correlation analyses, we used only the NDVI that reflects annual seasonality 

(see Parra et al. 2004 for calculation) in the Mantel tests (see below). We used NDVI data 

from one year (October 1982 - October 1983) in these analyses.  

 

Statistical analyses - We performed analyses on two data sets for both loudsongs and 

morphometric variables. The first data set included all populations from which we 

obtained loudsong recordings or morphometric measurements. We used these data sets to 

assess general patterns of geographic variation in loudsongs and morphometrics because 

of their broad geographic scope. The second data set included only populations that were 

sampled genetically; the Mantel correlations were then restricted to these populations 
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(see below). We used principal components analyses (PCA) on the correlation matrix of 

individual loudsong measurements to summarize predominant patterns of covariation 

among the 22 loudsong variables. PCA reduces the original dimensions of the 

multivariate data set to a set of new and fewer dimensions composed of linear 

combinations of the original variables. This analysis is adequate when the original 

variables are likely correlated, because it reduces these variables to new uncorrelated and 

independent variables. Principal component scores (PC scores) of individual loudsongs 

were used to calculate populations means and standard errors, which were used for 

further analyses. We plotted population mean score values versus latitude to explore 

broad patterns of geographic variation in loudsongs. Variation in the six morphometric 

variables was tested for geographic variation in the same fashion as loudsongs. Plots of 

principal components were visually inspected and statistical differences among the scores 

of geographical PC groups were assessed by nested ANOVAs with species as the highest 

nesting hierarchical factor.  

We determined if loudsong elements increased in variation toward the parapatric 

zone by (i) plotting coefficients of variation (CVs) as a function of latitude and (ii) 

comparing the distribution of variance ratios (F) between populations along the 

parapatric zone and populations outside the parapatric zone within a fire-eye species 

(both analyses restricted to males). Thus, P. atra populations sampled along the 

parapatric zone were compared to P. atra populations distant from the parapatric zone. 

For P. leucoptera, only the populations in the geographic neighborhood of the parapatric 

zone were included in this analysis; because inclusion and comparison of loudsongs from 

populations isolated by large distances would inflate the variance of loudsongs. The 
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range of variation in CVs of loudsong elements between populations along the parapatric 

zone and populations distant from the parapatric zone was tested using Mann-Whitney U-

test. The Bonferroni procedure was employed to adjust probabilities when necessary.  

We used partial Mantel tests (Legendre and Legendre 1998, Manly 2007) to 

decompose the relative influences of stochastic and deterministic processes on the 

loudsong variation of fire-eyes. Partial Mantel tests are appropriate in this study because 

the ability to reject hypotheses is increased when one simultaneously takes into account 

the influence of many potential explanatory factors that might or might not be 

intercorrelated, and that can contribute alone or in combination to the pattern of 

geographic variation in a given response variable (Thorpe 1996). Variables were first 

statistically normalized to have zero mean and unit variance and then the dissimilarity 

matrices of loudsong elements, morphometric characters and environmental variables 

were calculated using Euclidean distances between all pairwise population mean values 

of PC1 and PC2 scores for each of these variables. Straight-line geographic distances 

between sites were estimated using DIVA-GIS. The mtDNA ND2 was used to represent 

neutral DNA variation and to estimate genetic distances among Atlantic Forest 

populations in the same fashion as described in Chapter 2. We did not distinguish 

between P. atra and P. leucoptera as distinct historical groups in partial Mantels because 

a detailed geographical study of mtDNA variation revealed that they reflect no 

diagnosable units (Chapter 2). Significance values of the Mantel correlations were 

obtained by 10,000 permutations.  
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We used coefficients of variation (CV) to assess the geographic variation in 

loudsong elements in females versus males. The direction and magnitude of differences 

were tested using the Wilcoxon paired-sample test based on CVs of loudsong characters.  

Statistical analyses were performed using SPSS (SPSS Inc., Chicago, IL, USA) 

and FSTAT (Goudet 1995).  

 

3. Results 

Geographic variation in loudsongs - Patterns of geographic variation in male and female 

loudsongs were quantified in PC analyses, which were used to summarize the variation in 

22 loudsong variables. In general, males and females showed a similar pattern of 

geographic variation in loudsongs. For males, the three first PCs explained 49.5%, 22.7% 

and 13.6% of the variation in loudsong variables, while for females, the three first PCs 

explained 41.3%, 18.3% and 9.6% of the variation. PC1, which is largely an axis of 

loudsong complexity, increased with spectral parameters (higher frequency and 

maximum frequency) and number of notes, and decreased with temporal parameters (note 

length and space length) in both sexes. PC1 is higher northwards and to the east and 

lower southwards and to the west (i.e. inland, Figure 2, Tables 2 and 3). Geographic 

variation in most male and female individual loudsong elements showed a gradual change 

along the latitudinal axis in Atlantic Forest (Figures 3-6). One exception was the length 

and space of notes, which followed a distinct and more complex pattern (Figure 3). In 

males, these temporal elements of loudsongs increase in variation from outside (in the 

northernmost P. atra population) to the parapatric zone, where there are larger mean 

values and variation (see parapatric zone below), decrease in variation moving south and 
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away from the parapatric zone and then increase in a clinal fashion southwards. Females 

show a somewhat similar pattern, except that the northermost population of P. atra had 

more similar values relative to the parapatric zone. 

Although loudsong variation varied clinally throughout most of the range of  fire-

eyes in Atlantic Forest, a graph of PC2 against latitude reveals an abrupt change in 

loudsong complexity at about 20°S for males (Figure 7). Geographic variation in male 

loudsongs is further clarified when PC1 is plotted against PC2, in which positive values 

of PC2 for P. leucoptera essentially represent the southernmost populations (except three 

P. atra populations), whereas negative values represent all populations north of 20°S 

(Figure 8). Inspection of factor scores reveals a trend for southern male populations to 

have loudsongs with more widely spaced notes and a lower number of notes than male 

populations north of 20°S (see Figures 4 and 6). The distribution of factor scores along 

PC1 and PC2 axes differ significantly between the male groups north and south of 20°S 

(t-test = - 6.12, df = 225, p < 0.001 and t-test =12.64, df = 225, p < 0.001 for PC1 and 

PC2, respectively).  

Differentiation in a larger number of geographically distinct vocal groups was, 

however, recovered for females (Figures 7 and 8). The first group, as in males, consisted 

of populations south of about 20°S, while the second group was geographically 

distributed aproximately between 14°S and 20°S. The third group encompassed P. 

leucoptera populations in the parapatric zone with P. atra and finally, the fourth group 

was composed of two populations of P. atra, including the northermost sampled 

population. These groups are significantly different in the distribution of factor scores 

along PC1 and PC2 (nested ANOVA, F = 31.91, p < 0.001for PC1 and F= 6.38, p < 
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0.001 for PC2). Post-hoc tests indicate that only the group pair three-four was not 

significantly different in PC1, whereas only groups one-two and two-four were 

significantly different in PC2 (Tukey’s tests; not shown). 

 

Loudsong variation in the parapatric zone - Fire-eye populations sampled along the 

parapatric zone exhibited increased variability in PC1, PC2 and individual loudsong 

element means and standard error scores (Figures 2-7). Geographic variation in the 

coefficients of variation (CV) (Figures 9, 10) shows that, although populations from the 

parapatric zone did not exhibit significantly different levels of variation relative to 

populations distant from the parapatric zone (Mann-Whitney’s U-tests; not shown), a 

trend of increased CVs toward the parapatric zone is apparent for some populations (e.g. 

frequency of all five loudsong notes, Figure 10). For P. atra, variance of populations in 

the parapatric zone relative to the single population sampled outside of it was larger in 20 

loudsong elements (although only eight comparisons were significantly different by F-

ratio tests; Table 4). However, the pattern was different for the southern species P. 

leucoptera, as only 14 loudsong elements showed larger variance in the contact zone 

populations whereas the group of non-parapatric populations had higher variance in eight 

loudsong elements (although only three comparisons were significantly different by F-

ratio tests; Table 4).  

 

Loudsong differences between P. atra and P. leucoptera - The ordination of loudsong 

characters along the first two PCs show that P. atra loudsongs are nested within P. 

leucoptera loudsongs (Figure 8). Inspection of plots for males and females also reveals 
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that overlap in loudsongs between these two species is due mostly to loudsong 

similarities between P. atra and northern populations of P. leucoptera, as more southerly 

populations of the latter species presented a stronger segregation along both PC axes. 

However, the northernmost female population of P. atra was clearly separated from all 

other populations by the first two PCs, whereas the same pattern was not observed for 

males. Separation in male loudsongs betweeen the two species is better visualized by the 

ordination of PC1 and PC3 (Figure 11). Although some P. leucoptera populations from 

the parapatric zone overlap with P. atra, there is a trend for the latter species to segregate 

with high values of both PC1 and PC3. The loudsong element correlated with PC3 is note 

length (Table 2). 

These patterns suggest that hybridization and introgression along the parapatric 

zone may have influenced loudsong variation of P. atra and P. leucoptera. To further 

evaluate effects of these processes on loudsongs, we performed three distinct analyses 

using the distribution of PC scores: (i) we compared loudsong variation between all 

samples of P. leucoptera and all samples of P. atra; (ii) we compared loudsongs of P. 

atra and P. leucoptera, but including only P. leucoptera loudsongs recorded along the 

parapatric zone; and (iii) we contrasted the variation in the northernmost population of P. 

atra (population 1 in Figure 1) against a second group composed of P. atra populations 

along the parapatric zone and a third group of P. leucoptera populations along the 

parapatric zone. Results of these analyses suggests that when comparing all populations 

of P. atra and P. leucoptera, the distribution of factor scores is significantly different 

along PCs 1 and 3 (Table 5); however, this difference is likely due to the inclusion of the 

more geographically distant and vocally distinct southern P. leucoptera populations in the 
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analysis, as comparisons restricted to the parapatric zone showed no significant 

differences along PC scores between loudsongs of northern P. leucoptera and P. atra.  

 

Geographic variation in males versus females - CVs indicate that fire-eye females do 

exhibit significantly higher geographic variation in loudsong parameters relative to 

males. Variation in females was larger for 16 of the 22 loudsong characters measured 

(Wilcoxon paired-sample test T 0.05 (1), 22 = 75, p < 0.05; Table 6). The only loudsong 

elements with higher geographic variation in males relative to females were the lengths 

of the first, second and third notes and in the space between the first and the second note. 

Although females showed higher variation than males in most loudsong elements, only a 

small number of them differed greatly.  

 

Geographic variation in morphometrics - PCs reveal that differences across populations 

in Atlantic Forest involved shape as well as size. For males, the first three PCs explained 

29.4%, 23.2% and 17.0% of the variation (Table 7). PC1 was largely a shape axis, with 

negative loadings on both bill width and bill depth in northern Atlantic Forest fire-eye 

populations and positive loadings for wing length, tail length and tarsus length in 

southern populations. PC2 was largely a size axis, with all characters exhibiting positive 

loadings. PC3 was also a shape axis, with positive loadings for bill length and negative 

loadings for tail length. PC1 and PC2 are positively correlated with latitude, whereas PC3 

did not show such a relationship (Figures 12-14, Table 7). For females, the first and 

second axis explained 25.7% and 23.3% of the variation. PC1 is largely a size axis, with 

all characters loading positively, whereas PC2 is largely a shape axis, with some 
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characters loadings positively (bill depth and bill width) and others loading negatively 

(wing length and tail length). PC1 (but not PC2) is positively correlated with latitude 

(Figures 12 and 13, Table 7).  

 In the following correlation analyses, we used PC2 and PC1, respectively, for 

males and females as vectors of body size, since they were essentially a measure of body 

size in the morphometric PC analyses (Table 7). In order to obtain a vector of bill 

dimensions while minimizing the influence of body size, we regressed all three bill 

variables (log-transformed) against the first axis of a principal component analysis that 

included tarsus length, tail length and wing chord as a vector of body size for males and 

females (PC1 accounts for 59% and 46% of the variation for males and females in these 

three measures). The resulting residual values were used in a subsequent PC analysis to 

obtain a vector of bill dimensions, in which bill width and bill depth were correlated with 

each other in one PC and uncorrelated with bill length (which loaded heavily in another 

PC); thus, we used these two bill dimensions separately in the subsequent Mantel 

correlation analyses. In the Mantel analyses, Euclidean distances among populations were 

estimated using these PC scores. 

 

Mantel Correlations - Mantel tests show that for the total range of fire-eyes there is a 

significant relationship between genetic distances inferred from the mtDNA variation and 

geographic distance (r = 0.59, p < 0.001; see Chapter 2). Mantel correlations for males 

and females show that loudsongs were also strongly correlated with geography either 

including or excluding populations from the parapatric zone (Table 8). However, when 

other factors (e.g. genetics and body size) were used as covariates, partial Mantel tests 
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showed that there was still a strong and statistically significant correlation between 

loudsongs and geography for males but that this relationship was weaker for females 

(Table 8). Correlation coefficients across the total range between loudsongs and genetic, 

ecological and body size distances were also significant in both sexes. When controlling 

for all other factors, however, partial Mantel tests show that there remains a significant 

partial correlation only between loudsongs and body size in males when excluding 

populations from the parapatric zone, and loudsongs and genetics in females. In males, 

further analyses revealed that loudsong PC1 and morphological PC1 (a vector of body 

size) were negatively and significantly correlated (Spearman’s rank correlation r = - 0.53, 

p = 0.03); however, although there was a trend of a negative relationship between body 

size and loudsong note frequency as expected by theory (e.g. wing length vs. frequency 

of note 1; Spearman’s rank correlation, r = - 0.32, p = 0.20), the pattern was best 

explained by the strong correlation between body size and temporal loudsong elements 

(e.g. morphological PC1 vs. space of note 2; Spearman’s rank correlation, r = 0.63; p = 

0.005, see also the group outside of Bahia refuge below).  

 In the Bahia refuge group, a strong and significant Mantel correlation between 

geography and genetic distance was also observed (r = 0.84, p < 0.001). In this group, the 

same pattern observed for the entire range described above was also detected in Mantel 

tests for fire-eye female populations, except that we did not detect a significant partial 

correlation between loudsongs and geography when other factors were partialled out 

(Table 8). In males, although there is significant correlation between loudsongs and 

geographic, genetic, body size and bill dimension (width and depth) distances, there were 

no significant partial correlations between loudsongs and these factors in partial Mantel 
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tests (Table 8). However, although not significant, partial Mantel correlations between 

loudsong and genetic distances were stronger in both males and females when parapatric 

zone populations were excluded from the analysis.  

 In the group of populations outside the Bahia refuge, the Mantel test revealed that, 

in contrast to the other two groups above, there was no significant relationship between 

geographic distance and genetic distance (r = 0.09, p > 0.05). In males, Mantel 

correlations showed that loudsongs were significantly correlated with both genetic 

distance and body size, and partial Mantel tests revealed that these correlations were still 

significant even after controlling for the effect of other factors (Table 8). However, 

further analyses showed that no correlations between frequencies of individual loudsong 

notes with body size metrics (Spearman’s rank correlations, not shown) were observed in 

this group. Instead, and as for the entire range of fire-eyes, there was a positive 

association between body size and both note length and note space (Spearman’s rank 

correlations; not shown). For females, correlation coefficients between loudsongs and 

genetic, ecological and body size distances were significant, but loudsongs remained 

significantly correlated only with ecological distances in partial Mantel tests (Table 8). 

Additional analyses testing the association between female loudsong elements and 

environmental variables showed that both note space and note length were negatively 

correlated with NDVI (Spearman’s rank correlations; not shown), that is, populations in 

habitats with denser forest cover presented loudsongs that were faster paced and with 

shorter notes relative to populations in more open habitats. These results are opposite to 

expectations from theory.  
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Three other results were also noteworthy in our study. (i) Strong correlations and 

strong partial correlations between loudsongs and genetic distance were always detected 

in females independent of the geographical group whether populations from the 

parapatric zone were included or not. (ii) The correlations and partial correlations 

between loudsong distances and genetic distances were stronger for females relative to 

males when considering geographical groups of the entire range; in the Bahia refuge, the 

strength of Mantel correlations depended on whether populations from the parapatric 

zone were included in the analysis. (iii) Since genetic distance and geography are not 

significantly correlated for the group of populations outside the Bahia refuge, using 

geography as a covariate has less influence on the partial Mantel correlations in this 

group than in the two other groups.  

 

4. Discussion 

Loudsong variation in the parapatric zone - For a shift in variation of a trait to be 

attributed to the processes of hybridization and introgression, it should be shown that the 

two parental species or populations differ in this trait. In both sexes, results from the 

multivariate analysis showed that loudsongs between the northernmost population of P. 

atra and southern P. leucoptera were distinguishable.  

Larger variances of loudsong elements within the parapatric zone compared to the 

populations outside it for P. atra indicates that the increased loudsong variability in the 

parapatric zone may have arisen through introgressive hybridization between the two 

fire-eye species. Our results also reveal an increased variance in several individual 

loudsong elements for both males and females at 18-20° S. Indeed, geographic variation 
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in PC2 scores in both sexes indicate a major transition zone of loudsong variation (i.e. a 

steep cline) at 18°-20° S. This region has been shown to be an area of secondary contact 

between fire-eye populations following range expansion from putative Pleistocene 

refuges (see Chapter 2). This might indicate that hybridization and introgression were 

relatively recent in southern Atlantic Forest and that these were most likely the 

underlying mechanisms of the higher variability in loudsong characteristics of 

populations at 18°-20° S.  

How much variance arises in a hybrid population is contingent on the genetic 

basis of the character. Although the genetic architecture of vocalizations in suboscine 

birds is unknown, patterns of geographic covariation in antbird songs and genetic 

markers (Cohn-Haft 2000, Isler et al. 2005) provide support to earlier suggestions that 

learning may not be involved during song development and that vocal variation in this 

group may have a strong genetic basis (Kroodsma 1984, 1989, Kroodsma and Konishi 

1991). Thus, even if the increased variance in loudsongs within the parapatric zone and in 

the contact zone in southern Atlantic Forest were a consequence of reduced 

developmental stability of hybrid and introgressed individuals (e.g. in features of the 

vocal tract) and, hence, not directly related to the heritable nature of loudsongs, it is 

plausible that this pattern may have arisen due to additive genetic variance and linkage 

disequilibrium (Slatkin and Lande 1994, Templeton 2006).  

 

Convergence of loudsongs in the parapatric zone - Our results indicated that songs of P. 

leucoptera and P. atra converged along the parapatric zone. What are the likely 

mechanisms driving this pattern? Song convergence can arise due to (i) adaptive 
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interspecific territoriality in the presence (Cody 1969, Rainey and Grether 2007) or 

absence (Tobias and Seddon 2009c) of song learning and copying, (ii) non-adaptive song 

learning and copying (Irwin and Price 1999, Haavie et al. 2004), (iii) adaptation to 

habitats with similar acoustic transmission properties (Wiley and Richards 1982) and (iv) 

production of hybrids and back-crossed individuals with intermediate vocal traits that 

have a strong genetic component (de Kort et al. 2002). Although we cannot rule entirely 

out that fire-eye loudsongs have converged via social selection in sympatry, as suggested 

for Hypocnemis antbirds, and that this trait has subsequently spread into the parapatric 

populations through gene flow (Tobias and Seddon 2009c), there is no indication that the 

sound environment is shaping loudsong variation of fire-eyes in northern Atlantic Forest 

(see Mantel results). Our results allow us to draw two conclusions. First, the fact that 

introgression of plumage traits and mtDNA have been detected along the parapatric 

region (Maldonado-Coelho unplub. data) suggests that introgression may have driven the 

convergence of loudsongs of P. atra and P. leucoptera in the parapatric zone. Further 

sampling in the northernmost range of P. atra should provide definitive loudsongs 

diagnostic of this species and allow inference of the direction of vocal introgression.   

 

Vocal geographic variation in females versus males - Our results provide no support that 

sexual selection mediated by female choice lead to larger geographic variation in male 

fire-eye loudsongs relative to loudsongs of females. Although male fire-eye loudsongs 

differ across populations as do female loudsongs, sexes differ in the magnitude of 

geographic variation as would be predicted by theory. This was evidenced by the 

coefficients of variation in individual song elements and in the multivariate space, which 
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showed a more prominent variation for females. Rather, geographic variation in fire-eye 

loudsongs in Atlantic Forest parallels variation in plumage of females (but not males, 

unpubl. data) and is concordant with the phenomenon described long ago for antbirds, 

that is, females of closely related populations and species are often more strongly 

differentiated in plumage than males (including fire-eyes, Hellmayr 1929). To our 

knowledge, this is the first analysis to demonstrate heterogynism in vocal characters of a 

thamnophilid antbird.  

Why do sexes differ in the amount of loudsong geographic variation and what are 

the likely mechanisms underlying this pattern? We suggest that three not mutually 

exclusive possibilities may account for the pattern (but see Mennill and Rogers 2006 for 

different views). One possibility is that selective constraints on male loudsongs have 

shaped this pattern. For example, females could exhibit low geographical variance in 

preference for male loudsongs. Thus, geographical variation in male loudsongs could be 

the net result of the opposite forces of female selection that would tend to spread to 

fixation the preferred loudsong type across the fire-eye’s range and of mutation and drift, 

that create and spread to fixation new loudsong variants in local populations. Intersexual 

pressures on female loudsongs, on the other hand, could be weak or absent and hence 

new loudsong variants that arise by mutation would tend to spread to fixation by drift 

more often than in males.  

A second alternative is that, because antbird vocalizations seem to be genetically 

determined, larger population differences in females would arise if genes affecting 

antbird vocal characters evolve at a faster rate in this sex than in males. If so, one 

possibility is that antbird vocal traits are expressed by Z-linked genes as suggested for 
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songs and other sexually selected traits in birds (Price 2002, Wright et al. 2004), and 

genes expressed on the heterogametic sex would evolve faster that those expressed on the 

homogametic sex due to favorable or neutral recessive mutations that arise and become 

fixed more frequently in females (Orr 1997, Kirkpatrick and Hall 2004, Qvarnström and 

Bailey 2009). This is because the W chromosome is degenerate in most birds (Mizuno et 

al. 2002), and hence, recessive mutations on the Z chromosome would be masked in 

males, but expressed in females. Thus, Z-linked mutations arising in distinct populations 

could provide a mechanism for heterogynism not only for vocal but also for plumage 

characters in antbirds. The third possibility is that females are less likely to disperse 

across zones of secondary contact relative to males (i.e. due to Haldane’s rule), and 

higher mobility of males would have a greater homogenizing effect in this sex’s 

loudsongs. However, this hypothesis seems less likely as a general mechanism since 

many geographically isolated populations of antbirds with no evidence of hybridization 

do exhibit heterogynism in plumage traits. Future studies should be designed to clarify 

the underlying mechanisms behind sex differences in spatial variation on behavioral and 

morphological traits.  

 

Mantel correlations and the influence of genetic divergence on loudsong geographical 

variation - The greater correspondence between loudsong and mtDNA variation in males 

(but also in females) inside the Bahia refuge when populations from the parapatric zone 

were removed from analysis, may be explained by differences in the amount of 

introgression of mtDNA and loudsongs between P. leucoptera and P. atra. On the one 

hand, mitochondrial haplotypes recovered in the parapatric zone clustered in a distinct 
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group relative to haplotypes recovered in populations south of the parapatric zone 

(Chapter 2). Loudsongs from the parapatric zone, on the other hand, were clustered 

together with loudsongs from populations south of the parapatric zone. This suggests that 

introgressive hybridization may have decoupled the association between vocal characters 

and mtDNA variation that was observed in males elsewhere across the fire-eyes’ range in 

Atlantic Forest. For populations inside the Bahia refuge, a gradual transition in 

mitochondrial haplotype frequencies across populations south of the parapatric zone 

could explain clinal variation in loudsong elements (e.g. in temporal and spectral song 

elements).  

In males, it is also possible that introgression influences the pattern of 

correspondence between loudsongs and mtDNA over the entire range in Atlantic Forest. 

For example, high variability in male loudsongs at 18°-20° S combined with steep 

transitions in haplotype frequency (Chapter 2) imply that this region might represent an 

area of secondary contact in southern Atlantic Forest; although the extension and nature 

of this contact zone in Atlantic Forest is still unknown, we suggest that asymmetry in the 

amount of introgression of vocal characters and mtDNA could also have disrupted the 

association between male loudsong and mitochondrial variation at this scale. Although it 

is difficult to explain the contrasting pattern between females and males on the 

association between loudsongs and mtDNA over the entire range, given available 

information, we suggest that two non-mutually exclusive hypothesis could account for 

this discrepancy. First, a larger amount of introgression in male songs relative to females 

could occur in fire-eyes, mainly if male loudsongs are associated with an increased 

reproductive success mediated by female choice or behavioral dominance as has been 
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found for sexually selected traits in avian hybrid zones (Pearson and Rowher 2000, 

McDonald et al. 2001, Stein and Uy 2006). Second, Haldane’s rule predicts sex-linked 

differential introgression in hybrid zones (Carling and Brumfield 2008, Saetre and 

Saether 2010), and because females are the heterogametic sex (ZW) in birds, female 

hybrids are expected to be less viable and more sterile than male hybrids (Graves and 

O’Neill 1997, Orr 1997, Price 2008). Thus, female-linked traits such as mtDNA and 

loudsongs would show reduced patterns of introgression compared to male-linked 

characters such as male-loudsongs and could provide an explanation for the greater 

association between vocalizations and mtDNA in females than in males across the total 

range of fire-eyes in Atlantic Forest.  

Thus, it seems that genetic differentiation explains part of the overall loudsong 

geographic structuring in both sexes in Atlantic Forest, which provides support for the 

role of stochastic factors in promoting vocal divergence in fire-eyes. Additional support 

for this conclusion is that part of the variation was clinal, which may be explained by 

gradual changes in the amount of introgression among geographically adjacent 

populations. Moreover, the association of vocal geographic clusters recovered in the 

multivariate analysis and mtDNA genetic groups found in a phylogeographic study 

(Chapter 2), suggest that these vocal groups could have originated due to genetic 

divergence following geographic isolation into Pleistocene forest refugia.  

  Alternative factors do not seem to explain satisfactorily the overall loudsong 

variation for males and females. Although partial Mantel correlations reveal that 

loudsongs sampled across the entire range (for males) and south of the Bahia refuge (for 

both sexes) were significantly correlated either with body size or with ecological factors, 



Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

165 

the associations do not correspond to theoretical expectations. If body size played a 

decisive role in the evolution of fire-eye vocalizations, we would expect a negative 

correspondence between this trait and loudsong frequency. Contrary to this prediction, 

we found that temporal elements (note width and note space) of loudsongs were the 

mostly strongly and the only significantly correlated vocal characters with the vector of 

body size. This association was unexpected and we have no clear explanation for this. 

One possibility, however, is that variation in temporal elements of male loudsongs is 

neutral and correlated with patterns of genetic differentiation, as indicated by partial 

Mantel tests. Turning to the ecological hypothesis, it is predicted, among other things, 

that song elements should be shorter and that repeated and identical song elements should 

be more spaced in denser habitats (Morton 1975, Wiley 1991, Slabbekoorn 2004, van 

Dongen and Mulder 2006). Our results were the opposite of these expectations as note 

length and note width were negatively correlated with NDVI values. One potential 

drawback with our study is that the vocal traits in fire-eyes could have been evolved in 

response to past acoustic environments that differ from contemporaneous habitat 

conditions. Although forest disturbance is well known to have occurred throughout 

Atlantic Forest over the past centuries, we suspect that, at a large scale, forest disturbance 

may not pose a problem to our study. This is because some aspects of forest structure that 

may affect acoustic transmission, such as forest leaf deciduoness and their climatic 

correlates (e.g. rainfall and temperature) may not have changed drastically at the biome 

scale. The influence of climate is perhaps more pervasive in morphometric traits, which 

vary in concert with the climate setting in Atlantic Forest, as body size in fire-eyes is 

positively correlated with temperature and latitude (i.e. follows the Bergman’s rule).  
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The ecological variables adopted in our study are only a few of numerous possible 

sources of selective factors that could promote vocal divergence. Future studies should 

evaluate the influence of other sources of background noise on song divergence, 

including the influence of spatial variation in animal acoustic communities (e.g. Ryan and 

Brenowitz 1985, Luther 2009).  
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Table 1. Localities, sample size and geographic coordinates for vocal samples of Brazilian Atlantic Forest 
fire-eyes included in this study.  
 

Number Taxon  Locality Sample Size       Lat.       Lon. 
   Male Female   

1 Pyriglena atra Santa Luzia do Itanhi, State of Sergipe 8 3 -11.260 -37.430 
2 Pyriglena atra Valentim, State of Bahia 0 1 -12.020 -37.920 
3 Pyriglena atra Jangada, State of Bahia 1 0 -12.090 -38.570 
4 Pyriglena atra Projeto Subaumirim, State of Bahia 1 1 -12.110 -37.890 
5 Pyriglena atra Lontra, State of Bahia 2 0 -12.255 -37.971 
6 Pyriglena atra Projeto Taimbé, State of Bahia, Brazil 0 1 -12.300 -38.420 
7 Pyriglena atra Cachoeira, State of Bahia 3 1 -12.360 -37.930 
8 Pyriglena atra Mata Fome, Icatu, State of Bahia 2 1 -12.060 -38.380 
9 Pyriglena atra Terra Nova, State of Bahia 2 0 -12.390 -38.610 

10 Pyriglena atra Pojuca, State of Bahia 1 0 -12.420 -38.370 
11 Pyriglena atra Fazenda Caboclo, State of Bahia 0 1 -12.820 -38.370 
12 Pyriglena atra Campina, State of Bahia 2 1 -12.448 -38.408 
13 Pyriglena atra Santo Amaro, State of Bahia 2 1 -12.530 -38.720 
14 Pyriglena atra Fazenda Jordão, Monte Gordo, State of Bahia 1 0 -12.640 -38.130 
15 Pyriglena atra Fazenda Araripe, Saubara, State of Bahia 1 0 -12.820 -38.810 
16 Pyriglena leucoptera northern bank of Paraguaçu River, Boa Vista do Tupim, State of Bahia 5 3 -12.663 -40.607 
17 Pyriglena leucoptera southern bank of Paraguaçu River, Andaraí, State of Bahia 10 6 -12.950 -41.539 
18 Pyriglena leucoptera southern bank of Paraguaçu River, São Roque do Paraguaçu, State of Bahia 5 2 -13.023 -39.098 
19 Pyriglena leucoptera Serra do Timbó, State of Bahia 7 3 -13.030 -39.610 
20 Pyriglena leucoptera Serra da Ouricana, Boa Nova, State of Bahia 11 1 -14.506 -40.349 
21 Pyriglena leucoptera Fazenda Duas Barras, State of Minas Gerais 4 0 -16.420 -40.070 
22 Pyriglena leucoptera Pau Brazil National Park, Porto Seguro, State of Bahia 9 6 -16.503 -39.283 
23 Pyriglena leucoptera Monte Pascoal National Park, Itamaraju, State of Bahia 6 3 -16.745 -39.533 
24 Pyriglena leucoptera Sooretama Biological Reserve, Sooretama, State of Espírito Santo 10 1 -19.009 -40.116 
25 Pyriglena leucoptera Serra Piedade, Caeté, State of Minas Gerais 9 3 -19.815 -43.678 
26 Pyriglena leucoptera Santa Tereza, State of Espírito Santo 4 0 -19.925 -40.613 
27 Pyriglena leucoptera Parque Natural do Caraça, State of Minas Gerais 4 0 -20.130 -43.500 
28 Pyriglena leucoptera Fazenda Faroeste, Arcos, State of Minas Gerais 6 3 -20.264 -45.556 
29 Pyriglena leucoptera Itacolomi State Park, Ouro Preto, State of Minas Gerais 20 12 -20.435 -43.764 
30 Pyriglena leucoptera Fazenda Henrique Bohn, Cantagalo, State of Rio de Janeiro 12 7 -22.057 -42.662 
31 Pyriglena leucoptera Itatiaia National Park, State of Rio de Janeiro 21 8 -22.489 -44.726 
32 Pyriglena leucoptera Gaupimirim, State of Rio de Janeiro 2 3 -22.521 -43.010 
33 Pyriglena leucoptera Morro do Diabo State Park, State of São Paulo 13 2 -22.699 -52.247 
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34 Pyriglena leucoptera Ubatuba, State of São Paulo 5 1 -23.435 -45.070 
35 Pyriglena leucoptera Fazenda Monte Alegre, Telêmaco Borba, State of Paraná 19 9 -24.056 -50.693 
36 Pyriglena leucoptera Iguaçu National Park, State of Paraná 26 8 -25.934 -54.478 

         37 Pyriglena leucoptera Itatiba do Sul, State of Rio Grande do Sul 1 0 -27.370 -52.450 
38 Pyriglena leucoptera Lagoa do Jacaré, State of Rio Grande do Sul 2 0 -29.330 -49.820 
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Table 2. Factor scores from a principal component analysis of loudsong 
variables and Spearman’s rank correlations of principal components 
against latitude and longitude for male fire-eyes of Atlantic Forest.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

*p<0.05;**p<0.001

Loudsong element PC1 PC2 PC3 PC4 

Number of notes 0.41 -0.57 0.26 0.66 

Pace  -0.06 -0.10 0.40 0.91 

Length of note 1 -0.50 0.32 0.61 -0.14 

Space of note 1 -0.51 0.70 -0.37 0.21 

Frequency of note 1 0.90 0.30 0.18 0.06 

Maximum frequency of note 1 0.83 0.42 0.02 0.1 

Length of note 2 -0.58 0.45 0.61 -0.07 

Space of note 2 -0.57 0.68 -0.40 0.16 

Frequency of note 2 0.92 0.30 0.18 0.03 

Maximum frequency of note 2 0.88 0.40 -0.03 0.06 

Length of note 3 -0.55 0.50 0.62 -0.05 

Space of note 3 -0.56 0.69 -0.39 0.13 

Frequency of note 3 0.92 0.30 0.17 0.02 

Maximum frequency of note 3 0.87 0.41 -0.04 0.04 

Length of note 4 -0.53 0.44 0.67 -0.01 

Space of note 4 -0.57 0.68 -0.38 0.15 

Frequency of note 4 0.91 0.35 0.14 -0.03 

Maximum frequency of note 4 0.85 0.45 -0.06 0.01 

Length of note 5 -0.55 0.44 0.60 -0.09 

Space of note 5 -0.58 0.63 -0.39 0.21 

Frequency of note 5 0.87 0.36 0.11 -0.09 

Maximum frequency of note 5 0.82 0.47 -0.11 -0.09 

Spearman’s rank correlation - latitude -0.72** 0.45* 0.33 -0.11 

Spearman’s rank correlation - longitude -0.62** 0.39* -0.34* -0.05 
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Table 3. Factor scores from a principal component analysis of loudsong 
variables and Spearman’s rank correlations of principal components 
against latitude and longitude for female fire-eyes of Atlantic Forest.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    *p<0.05; **p<0.001 
 
 
 
 
 

 

Loudsong element PC1 PC2 PC3 PC4 

Number of notes 0.50 -0.32 0.13 0.02 

Pace  0.03 -0.05 0.29 -0.10 

Length of note 1 -0.37 0.54 -0.48 -0.16 

Space of note 1 -0.69 0.49 0.34 -0.06 

Frequency of note 1 0.86 0.39 -0.08 0.10 

Maximum frequency of note 1 0.51 0.33 0.19 0.08 

Length of note 2 -0.45 0.60 -0.55 -0.13 

Space of note 2 -0.76 0.44 0.40 -0.08 

Frequency of note 2 0.87 0.87 0.39 -0.03 

Maximum frequency of note 2 0.67 0.49 0.20 0.04 

Length of note 3 -0.50 0.55 -0.60 -0.06 

Space of note 3 -0.76 0.44 0.43 0.00 

Frequency of note 3 0.91 0.34 -0.01 0.11 

Maximum frequency of note 3 0.79 0.36 0.21 0.08 

Length of note 4 -0.31 0.10 -0.07 0.93 

Space of note 4 -0.75 0.43 0.44 0.02 

Frequency of note 4 0.88 0.41 0.00 0.07 

Maximum frequency of note 4 0.61 0.21 0.13 -0.74 

Length of note 5 -0.54 0.48 -0.39 0.04 

Space of note 5 -0.72 0.43 0.42 0.06 

Frequency of note 5 0.61 0.43 -0.05 0.09 

Maximum frequency of note 5 0.75 0.44 0.16 0.06 

Spearman’s rank correlation - latitude -0.81** 0.32 0.39* -0.55* 

Spearman’s rank correlation - longitude -0.68** 0.42* 0.45* -0.33 
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Table 4. Distribution of variance of loudsong elements among fire-eye populations sampled along the parapatric zone and fire-eye 
populations sampled in regions distant from the parapatric zone. In this analysis, we defined as parapatric populations of P. atra and 
P. leucoptera as populations 2-19 and 16-19 in Figure 1, respectively. Populations 1 and 20-24 were chosen to represent non-
parapatric populations of P. atra and P. leucoptera, respectively. 

 Pyriglena atra Pyriglena leucoptera 

Loudsong element Parapapatric 

 populations 

Non-parapatric 

 populations 

 

F ratio  Group 

exhibiting 

large variance 

Parapatric 

populations 

Non-parapatric 

populations 

F ratio  Group exhibiting 

large variance 

Number of notes 1.56 0.55 2.84 parapatric 2.24 1.30 1.72 parapatric 

Pace  0.51 0.54 1.05 parapatric 0.11 0.06 1.85* parapatric 

Length of note 1 809.56 276.70 2.9 parapatric 695.23 532.67 1.30 parapatric 

Frequency of note 1 34667.50 17135.13 2.0 parapatric 27684.99 17261.96 1.60 parapatric 

Maximum frequency 

of note 1 

34483.59 12236.79 2.8 parapatric 27686.19 24870.06 1.11 parapatric 

Space of note 1 369.91 222.79 1.65 parapatric 27 36 1.33 non-parapatric 

Length of note 2 305.99 55.13 5.5* parapatric 279.16 360.33 1.29 non-parapatric 

Frequency of note 2 34912.04 8903.27 3.92* parapatric 25046.74 20243.16 1.24 parapatric 

Maximum frequency 

of note 2 

30851.47 14917.55 2.06 parapatric 27506.03 21498.93 1.28 parapatric 

Space of note 2 278.91 113.13 2.46 parapatric 181.42 230.31 1.27 non-parapatric 

Length of note 3 400.56 71.41 5.60* parapatric 299.62 362.97 1.21 non-parapatric 

Frequency of note 3 35663.14 8720.98 4.1* parapatric 29203.26 20436.87 1.43 parapatric 

Maximum frequency 

of note 3 

26605.78 8388.29 3.17 parapatric 30239.73 28358.50 1.48 parapatric 

Space of note 3 195.56 134.69 1.45 parapatric 94.60 229.83 2.43* non-parapatric 

Length of note 4 612.92 74.27 8.27* parapatric 237.71 388.49 1.64 non-parapatric 

Frequency of 

 note 4 

37096.37 7659.84 4.84* parapatric 28477.35 18430.29 1.55 parapatric 

Maximum frequency 

of note 4 

26824.56 5885.14 4.55 parapatric 27241.79 18423.85 1.48 parapatric 

Space of note 4 261.69 135.13 1.94 parapatric 131.87 257.64 1.96* non-parapatric 

Length of note 5 500.14 82.27 6.1* parapatric 229.72 408.09 1.78 non-parapatric 

Frequency of note 5 35745.43 14603.55 2.45 parapatric 28245.79 15851.40 1.73 parapatric 

Maximum frequency 

of note 5 

32017.29 10037.43 3.20 parapatric 28705.94 16195.00 1.77 parapatric 

Space of note 5 111.22 164.55 1.48 non-parapatric 236.88 193.28 1.22 parapatric 
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Table 5. Distribution of factor scores along the first four principal components for P. atra and P. 
leucoptera. 
Comparison and statistical test employed Sex Principal Components  

  PC1 PC2 PC3 PC4 

Between all populations of P. atra and all populations of P. 

leucoptera; t-test 

Male  5.19*** -1.80 3.98*** 1.42 

Female 4.47*** 0.49 -1.95 0.61 

      

Between all populations of P. atra and populations of P. 

leucoptera along the contact zone only; t-test 

Male  0.20 0.82 -0.82 2.04* 

Female 0.23 1.65 -0.09 -0.99 

      

Among (1) the northernmost population of P. atra, (2) 

populations of P. atra along the contact zone only, (3) 

populations of P. leucoptera along the contact zone only;  

nested ANOVA 

Male  1.26 0.38 4.9*a 2.55 

Female 0.75 2.53 0.004 0.96 

***p < 0.001; **p < 0.01; *p < 0.05 

a - 1-2 and 2-3 group comparisons were significantly different (Tukey post-hoc test, p < 0.05)  
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Table 6. Among-population coefficients of variation (CV) and global means ± SE 
for loudsong elements of fire-eyes males and females in Atlantic Forest.   
                   Male                   Female Sex exhibiting 

larger variation Loudsong element Mean SE CV Mean 

 

SE CV 

Number of notes 6.8 0.09 15.6% 4.9 0.23 24.0% Female 

Pace  1.8 0.02 10.4% 1.4 0.04 16.9% Female 

Length of note 1 146.1 1.65 14.0% 138.8 3.29 12.1% Male 

Frequency of note 1 2645.1 11.66 6.0% 2897.9 37.14 6.5% Female 

Maximum frequency of note 1 2513.1 11.29 5.4% 2663.1 41.07 7.9% Female 

Space of note 1 125.3 1.89 19.0% 131.2 4.67 18.2% Male 

Length of note 2 144.7 1.43 13.4% 143.1 3.44 12.2% Male 

Frequency of note 2 2656.7 11.56 5.9% 2884.2 36.41 6.4% Female 

Maximum frequency of note 2 2522.2 11.23 5.3% 2703.7 31.59 6.0% Female 

Space of note 2 128.0 1.89 18.8% 131.3 4.95 19.2% Female 

Length of note 3 148.4 1.49 14.1% 144.2 3.22 10.9% Male 

Frequency of note 3 2645.3 11.60 6.0% 2859.0 36.11 6.2% Female 

Maximum frequency of note 3 2503.6 11.11 5.0% 2706.5 30.57 5.5% Female 

Space of note 3 128.2 1.87 18.2% 130.0 5.89 22.2% Female 

Length of note 4 151.0 1.48 13.6% 158.6 10.97 35.3% Female 

Frequency of note 4 2616.7 10.97 5.6% 2824.0 31.11 5.6% Equal 

Maximum frequency of note 4 2476.2 10.34 4.7% 2670.3 28.51 5.4% Female 

Space of note 4 126.6 1.89 19.1% 129.3 5.22 20.6% Female 

Length of note 5 154.7 1.50 13.6% 155.0 4.51 14.8% Female 

Frequency of note 5 2516.3 10.65 5.7% 2690.3 30.08 5.7% Equal 

Maximum frequency of note 5 2369.5 9.87 4.9% 2540.1 25.14 5.1% Female 

Space of note 5 130.6 1.84 18.0% 129.5 5.11 20.1% Female 
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Table 7. Factor scores from a principal component analysis of 
morphological variables and Spearman’s rank correlations of 
principal components against latitude for male and female fire-eyes 
of Atlantic Forest.  
 Males Females 

Variable PC1 PC2 PC3 PC1 PC2 PC3 

Wing length 0.67 0.4 -0.13 0.58 -0.40 0.21 

Tail length 0.61 0.40 -0.41 0.57 -0.44 -0.37 

Tarsus length 0.40 0.48 0.25 0.62 -0.22 -0.13 

Bill length 0.05 0.39 0.86 0.42 0.20 0.82 

Bill depth -0.6 0.66 -0.11 0.49 0.64 -0.27 

Bill width -0.67 0.54 -0.19 0.30 0.74 -0.13 

Spearman’s rank correlation 0.40** 0.32* -0.72 0.57** -0.12n.s.  

* p < 0.05; ** p < 0.01; 
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Table 8. Correlation and partial correlation coefficients of Mantel tests between loudsong 
distance and geographic distance, genetic distance, ecological distance* and morphological 
distance (body size and bill dimensions) among the populations of fire-eyes in Atlantic Forest. 
Mantel tests were performed separately for each sex and for the total range, populations inside 
the Bahia refuge, and populations outside the Bahia refuge. Values in brackets represent Mantel 
correlations for male and female populations sampled over the total range and inside the Bahia 
refuge, excluding the parapatric zone. 
 
Group                R                    P 
 Correlation Males  Females Males Females  
Total range Loudsong vs geography 0.58 (0.68) 0.63 (0.69) <0.0001 (<0.0001) <0.0001 (<0.0001) 
 Loudsong vs genetic 0.42  (0.45) 0.70 (0.72) <0.0001 (<0.0001) <0.0001 (<0.0001) 
 Loudsong vs ecology 0.14 (0.09) 0.33 (0.38) 0.03 (0.29) <0.0001 (<0.0001) 
 Loudsong vs body size 0.26  (0.32) 0.48 (0.46) <0.001 (<0.0001) <0.0001 (<0.0001) 
 Loudsong vs bill culmen length -0.06 (-0.18) 0.07 (0.02) 0.38 (0.03) 0.38  (0.82) 
 Loudsong vs bill width and depth -0.03 (-0.02) -0.04 (-0.06) 0.63 (0.34) 0.65 (0.55) 
      
 Partial correlation     
 Loudsong vs geography 0.42 (0.54) 0.18 (0.27) <0.0001 (<0.0001) 0.03 (0.008) 
 Loudsong vs genetic 0.07  (0.05) 0.35 (0.36) 0.28 (0.56) <0.0001 (<0.001) 
 Loudsong vs ecology -0.12  (-0.17) 0.05 (0.12) 0.65 (0.05) 0.55 (0.26) 
 Loudsong vs body size 0.12  (0.17) 0.06 (-0.03) 0.05 (0.04) 0.45  (0.76) 
 Loudsong vs bill culmen length 0.00 (-0.03) 0.05 (0.13) 0.92 (0.72) 0.49 (0.20) 
 Loudsong vs bill width and depth 0.03  (0.04) -0.00 (0.00) 0.68 (0.65) 0.91 (0.96) 
      
Bahia refuge Correlation    
 Loudsong vs geography 0.55 (0.30) 0.85 (0.74) <0.0001 (0.40) <0.0001 (0.06) 
 Loudsong vs genetic 0.57 (0.61) 0.88 (0.78) <0.0001 (0.06) <0.0001 (0.05) 
 Loudsong vs ecology -0.00 (0.23) 0.72 (0.71) 0.98 (0.52) <0.0001 (0.70) 
 Loudsong vs body size 0.32 (0.08) 0.54 (0.07) 0.03 (0.83) <0.001 (0.90) 
 Loudsong vs bill culmen length 0.07 (-0.03) 0.54 (0.08) 0.65 (0.0.93) <0.001 (0.87) 
 Loudsong vs bill width and depth 0.34 (0.53) 0.58 (-0.24) 0.03 (0.11) <0.001 (0.63) 
      
 Partial correlation     
 Loudsong vs geography 0.22 (-0.05) 0.00 (-0.40) 0.15 (0.90) 0.97 (0.38) 
 Loudsong vs genetic 0.13 (0.45) 0.31 (0.42) 0.37 (0.20) 0.04 (0.34) 
 Loudsong vs ecology -0.16 (0.05) 0.26 (-0.11) 0.28 (0.90) 0.08 (0.83) 
 Loudsong vs body size -0.08 (0.24) -0.01 (-0.28) 0.60 (0.51) 0.93 (0.53) 
 Loudsong vs bill culmen length 0.12 (-0.27) 0.00 (0.31) 0.43 (0.50) 0.96 (0.48) 
 Loudsong vs bill width and depth 0.29 (0.30) -0.02 (0.04) 0.06 (0.40) 0.88 (0.94) 
      
      
Outside of Bahia refuge Correlation     
 Loudsong vs geography 0.20 0.12 0.09 0.41 
 Loudsong vs genetic 0.39 0.57 0.002 <0.001 
 Loudsong vs ecology 0.13 0.31 0.30 0.004 
 Loudsong vs body size 0.39 0.40 <0.001 0.007 
 Loudsong vs bill culmen length 0.01 0.02 0.91 0.88 
 Loudsong vs bill width and depth -0.02 0.12 0.90 0.45 
      
 Partial correlation     
 Loudsong vs geography 0.06 -0.29 0.64 0.05 
 Loudsong vs genetic 0.25 0.26 0.04 0.08 
 Loudsong vs ecology -0.03 0.34 0.82 0.02 
 Loudsong vs body size 0.32 0.25 0.01 0.09 
 Loudsong vs bill culmen length -0.07 -0.16 0.56 0.28 
 Loudsong vs bill width and depth 0.06 0.19 0.65 0.21 

*climatic variables used were temperature annual range, annual precipitation, temperature seasonality, precipitation seasonality, 
precipitation of the wettest month, precipitation of the wettest quarter and precipitation of the coldest quarter 
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Figure 1. Recording localities and examples of loudsongs of fire-eye antbirds (genus Pyriglena) 
across Atlantic Forest, Brazil. Black circles and red squares represent vocalizations sampled inside 
P. leucoptera and P. atra ranges, respectively. The dark grey shaded area depicts the Bahia 
Pleistocene refuge (after Carnaval and Moritz 2008) and the inset depicts the parapatric area 
between the two species along the Paraguaçu River valley. The populations 2-19 were considered as 
part of the parapatric area in the analyses. Spectrograms depict male (left) and female (right) 
loudsongs in the northernmost and southernmost sampling localities. Note that northern loudsongs 
have more notes, higher frequency, shorter notes and shorter space between notes relative to 
southern loudsongs. Spectrograms show frequency (kHz) in the y axes and time (seconds) in the x 
axes. Light shaded gray indicates areas above 1000 m a.s.l.  
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Figure 2. Latitudinal variation in loudsong PC1 scores among male (top figure) and 
female (bottom figure) fire-eye populations. Error bars represent standard error of the 
mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. Shaded area depicts the parapatric area between the two 
species.  
 



                                                               Maldonado-Coelho, M., 2010, UMSL, p. 
 

 

185 

 

 

 

 

 
 
Figure 3. Latitudinal variation in note length of loudsongs for male (left column) and for 
female (right column) fire-eyes in Atlantic Forest. Error bars represent standard error of 
the mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. See Figure 1 for location of the parapatric area between the 
two species. 
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Figure 4. Latitudinal variation in note space of loudsongs for male (left column) and for 
female (right column) fire-eyes in Atlantic Forest. Error bars represent standard error of 
the mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. See Figure 1 for location of the parapatric area between the 
two species. 
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Figure 5. Latitudinal variation in note frequency of loudsongs for male (left column) and 
for female (right column) fire-eyes in Atlantic Forest. Error bars represent standard error 
of the mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. See Figure 1 for location of the parapatric area between the 
two species. 
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Figure 6. Latitudinal variation in number of notes of loudsongs for male (top figure) and 
for female (bottom figure) fire-eyes in Atlantic Forest. Error bars represent standard error 
of the mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. See Figure 1 for location of the parapatric area between the 
two species. 
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Figure 7. Latitudinal variation among males (top figure) and female (bottom figure) fire-
eye populations in loudsong PC2 scores. Error bars represent standard error of the mean, 
using individuals as replicates. Localities without error bars had only one individual 
sampled. Red squares show populations of Pyriglena atra and black dots show 
populations of P. leucoptera. See Figure 1 for location of the parapatric area between the 
two species. 
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Figure 8. Principal components 1 and 2 depicting geographic variation in loudsongs of 
males (top figure) and females (bottom figure) in Atlantic Forest. Some localities have no 
error bars because only one individual was sampled. Red squares show populations of 
Pyriglena atra and black dots show populations of P. leucoptera. 
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Figure 9. Geographic variation in coefficients of variation (CVs) for space of notes (left 
column) and length of notes (right column) of fire-eye loudsongs in Atlantic Forest. See 
Figure 1 for location of the parapatric area between the two species. 
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Figure 10. Geographic variation in coefficients of variation (CVs) for frequency of notes 
(left column) and pace notes (number of notes, right column) of fire-eye loudsongs in 
Atlantic Forest. See Figure 1 for location of the parapatric area between the two species. 
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Figure 11. Principal components 1 and 3 depicting geographic variation in loudsongs of  
fire-eye males in Atlantic Forest. Some localities have no error bars because only one 
individual was sampled. Red squares show populations of Pyriglena atra and black dots 
show populations of P. leucoptera. 
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Figure 12. Latitudinal variation among male (top figure) and female (bottom figure) fire-
eye populations in morphometric PC1 scores. Error bars represent standard error of the 
mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra (not available for 
females) and black dots show populations of P. leucoptera.  
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Figure 13. Latitudinal variation among male (top figure) and female (bottom figure) fire-
eye populations in morphometric PC2 scores. Error bars represent standard error of the 
mean, using individuals as replicates. Localities without error bars had only one 
individual sampled. Red squares show populations of Pyriglena atra (not available for 
females) and black dots show populations of P. leucoptera.  
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Figure 14. Latitudinal variation in the six morphometric characters for male (left column) 
and female (right column) throughout the fire-eye range in Atlantic Forest. Error bars 
represent standard error of the mean, using individuals as replicates. Localities without 
error bars had only one individual sampled. Red squares show populations of Pyriglena 
atra (not available for females) and black dots show populations of P. leucoptera.  
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