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FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG

MEMORY DEPENDENCE

ROSE WHEELER

Abstract. We examine the problem of estimating an underlying function from collected data. The

methods considered include parametric regression, density estimation, kernel estimation, wavelet re-

gression, and speci�c results from when our underlying function f (x) is a member of the Besov or the

Triebel spaces. Then we consider the problem of long memory error in several settings, including data

which is equally spaced, data which is unequally spaced, and data which is a member of the Holder

class and several other spaces. Ultimately we focus on three di�erent problems. The �rst involves using

linear interpolation or local averaging to account for the problem of irregularly spaced data. The second

involves using a function H to reorder the data in a more general space. The third involves solving the

problem in the matrix setting and considers the use of penalty functions. This method leads to general

equations which describe the Mean Square Error in terms of Oracle risk. All three of these problems

attempt to bound the Mean Integrated Square Error when the data is subject to long memory error.

Key words and phrases. Parametric regression, density estimation, kernel estimation, wavelet regression, Besov spaces,
Triebel spaces, irregularly spaced data, long memory error, matrix estimation, incomplete systems of equations.
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Part 1. Introduction and Brief History.

In this dissertation we give an overview of estimation of functions. The methods considered include

parametric regression, density estimation, kernel estimation, wavelet regression, and speci�c results

from when our underlying function f (x) is a member of the Besov or the Triebel spaces. We also

consider advanced recent papers dealing with the problem of recovering an underlying function under

the conditions of irregularly spaced data, long memory error, and in the matrix setting. The solutions

to all of these problems begin with the same assumption below.

Suppose we are given data of the form

yi = f (xi) + εi

with ε ∼ N
(
0, σ2

)
. We wish to estimate the value of the function f (xi). This problem appears

everywhere in statistics, and in almost any technical �eld.

The �rst part, Part 2, deals with many basic methods of function estimation as well as some advanced

techniques from the work of Donoho and Johnstone in [8].

There are many ways to approach a problem like this. One way is to assume that f(x) has some

form and solve for the parameters of this form. For example, one of the �rst methods statistics students

learn is linear regression. Students are told to look at a set of data, determine whether or not the points

�look� linear, and then proceed to �nd a line of best �t according to the mean square error. Data which

is periodic could perhaps be modeled with a sine curve. Similarly, one could do the same thing for

probability density functions. These methods are examined in Section 2.

The problem with this is that the assumption that f(x) has some pre-de�ned form is arti�cial. One

cannot just look at data and decide what form the underlying function has. Error distorts data and even

relationships which are truly linear do not produce data points which lie in a line. Often not much is

known about the underlying relationship between two quantities being modeled, only rarely when data

is already governed by some physical law is a predetermined form of f(x) known.

To solve this problem, one could take a non-parametric approach. Section 3 of this paper gives an

overview of methods for estimating f(x) which do not make any assumptions about its true form. A

good overview of this material is given in [23]. The simplest estimator for f(x) is a histogram. This

method computes f(x) by averaging the data points in equally spaced intervals. Unfortunately, this

estimator is discontinuous and the choice of intervals is arbitrary. One could �x this problem by de�ning

the naive estimator. This estimator puts every data point at the center of an interval and averages the

surrounding points. However, this function is still discontinuous.
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One could make an estimator which was continuous by using a kernel estimator. Kernels can be

thought of as smooth �bumps�. There are many di�erent ways to create an estimator out of kernels.

The simplest way is to create a weighted bump at each data point. This allows f(x) to inherit whatever

smoothness the kernel possesses. The kernel estimator can be made more sophisticated by making bumps

sharper in areas where data is denser and smoother where data is more sparse. That is the idea behind

the nearest neighbor method. This makes the tails �atter and the estimate �look� better.

Kernels are very useful in creating an estimator for f(x) which is smooth and has nice properties.

However, our choice of kernel is still an arti�cial one. Suppose we have an orthonormal basis for the

support of f(x). Then we can express f(x) as a linear combination of this basis. One could estimate

the coe�cients of this orthogonal series. We then either truncate the series or slowly decrease the later

coe�cients to zero. This de�nes our estimator.

There are other miscellaneous ways of estimating f(x). Another way to estimate f(x) would be to

try and optimize the maximum likelihood of an estimator with a penalty for the function's �roughness�.

Or, one could de�ne an estimator as a sum of generalized weight functions.

All of these estimators still cannot account for simple common problems with raw data. Suppose for

instance that data is only available for positive xi. For any of the methods of estimating f(x) there

would be errors near x = 0. Several methods of extending the data to account for this problem are

discussed.

The next section of this �rst part deals with the speci�cs of choosing a kernel and choosing the

window width for a function estimator. These are many methods for choosing this window width. One

could minimize mean square error or make underlying assumptions about the structure of f(x). Or, one

could use automatic methods to choose the window width. These include minimizing the square error

or maximizing the likelihood of an estimator. Many other technical ways of improving simple kernel

estimators are discussed in Subsection 3.2. Finally, the ultimate e�ectiveness of kernel estimators is

analyzed in several theorems.

All of these estimators except for the orthogonal series estimator require some assumptions about

the structure of f(x) or some choice of a kernel. There is an alternative to these choices. The mul-

tiresolution analysis MRA structure of wavelets combines the automatic method of orthogonal series

with the adaptability of piecewise estimators. In a sense, any arbitrarily small interval is broken into

its own orthogonal estimator. Also, because the wavelet coe�cients are computed by multiplying data

by an orthogonal matrix, normal noise in the data becomes normal noise in the coe�cients' estimators.

Section 4 gives a brief review of the structure of wavelets. Reviews of wavelets can be found in many

places, including [6, 25]. We begin by examining the continuous wavelet transform and then discuss the

discrete wavelet transform which would be applied to data.
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In Section 5, we deal with the problem of recovering a true signal from noisy data. Suppose now that

we estimate f(x) a signal. We express this f(x) as a vector of values. From this vector of values we

derive the wavelet coe�cients. The idea is that some of these wavelet coe�cients express the underlying

shape of the true signal and some of the wavelet coe�cients are just due to the noise in the signal.

Using a process called thresholding, we choose according to a rule which coe�cients to keep and which

coe�cients to discard. Section 5 discusses how by using the soft or hard thresholding operators we can

approach a �best case scenario� risk, called the oracle risk. We de�ne the oracle risk to be the best choice

of wavelet coe�cients in the sense of minimizing the risk. In fact, the thresholding risk is within a factor

of 2 log n of the oracle risk where n is the sample size. This method is explored in [8].

Lastly, in Section 6, we deal with this same problem only under the assumption that f(x) is a member

of either the Besov class of functions or the Triebel class of functions. This problem is explored in [9].

The coe�cients are dealt with in a way similar to that in the previous section. Here, the thresholding

risk is bounded by a constant factor times the ideal risk. Ultimately, the main theorem of this section

shows that wavelet methods either perform as well as linear methods or surpass them depending on the

initial conditions on f(x).

Next, we examine function estimation in a more recent and complex context in Parts 3, 4, 5 and 6.

Suppose now that we estimate f(x) a signal. We express this f(x) as a vector of values. From this

vector of values we derive the wavelet coe�cients. The idea is that some of these wavelet coe�cients

express the underlying shape of the true signal and some of the wavelet coe�cients are just due to the

noise in the signal. Using a process called thresholding, we choose according to a rule which coe�cients

to keep and which coe�cients to discard. In the work of Donoho and Johnstone by using the soft or hard

thresholding operators we can approach a �best case scenario� risk, called the oracle risk. We de�ne the

oracle risk to be the best choice of wavelet coe�cients in the sense of minimizing the risk. In fact, the

thresholding risk is within a factor of 2 log n of the oracle risk where n is the sample size. This method

is explored in [8].

Another thing that could be changed is the method of thresholding. One could use block thresholding.

Instead of thresholding each wavelet coe�cient, the numbers are divided into groups. These groups are

then either discarded or kept according to some rule. This method of thresholding approaches the true

function more quickly. The authors Hall and Picard in their paper [13] �rst examine this problem.

Within the structure of the wavelet problem, the integers j are divided among consecutive, nonoverlap-

ping blocks of length li, say Bik = {j : (k − 1)li + ν + 1 ≤ j ≤ kli + ν}. Let B̂ik be an estimator of the

average value of β2
ij for j ∈ Bij . Then groups of coe�cients are thresholded according to I

(
B̂ij > cn−1

)
.

Errors are considered to be independent.
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This problem was expanded several years later to the case of long memory error in the data. Before

the error was independent, that is E (εiεj) = 0. With long memory error E (εiεi+j) ∼ C |j|−α for some

α ∈ (0, 1]. In the paper [18], the authors Li and Xiao consider an estimator based on block thresholding.

They address the problem of long memory error with equally spaced data. We explore this method of

function estimation in Part 3. The estimator the authors use is listed below.

ĝ(x) =
∑

α̂i0jφi0j(x) +
∑∑∑

(ik)

β̂ijψij(x)

 I
(
B̂ik > δ

)

Here the B̂ik is as in [13] and the summation term (ik) means the sum over the de�ned blocks. The

structure of the Mean Integrated Square Error (MISE) between the actual function and the estimator

is divided up in the same way as in the work of Hall and Picard in [13]. This division is common in

all of the advanced works. By using Parseval's identity, one can split the error due to the mother and

father wavelets. This can be further split according to which wavelet coe�cients are kept and which are

�killed� by our thresholding rule. Coe�cients which are not large enough are discarded.

Another entirely separate problem is that of data which is not equally spaced. When wavelet coe�-

cients are computed from data it is required that the data be equally spaced. There are several methods

of dealing with this problem.

One method is presented in [11]. We examine this problem in Part 4. Here data which is irregularly

spaced is interpolated by a linear function. Let Y = {(Xm, Ym) , 1 ≤ m ≤ n} be the data, considered as

points. These are interpolated by

(0.1) Y (x) =
∑
m

wm(x)Ym for x ∈ (X−ν1 , Xn−ν2 ] .

for some weights w(x). This function is then used to compute the wavelet coe�cients b̂j =
´
J Y φj and

b̂ij =
´
J Y ψij . The authors, Hall and Turlach, then examine the Mean Integrated Square Error (MISE).

Still another solution to the problem of irregularly spaced data is presented in [1]. The authors

Antoniadis and Fan avoid the method of interpolation altogether and use matrices. They suppose that

the data set is incomplete and use matrices to solve the overdetermined system for the missing wavelet

coe�cients. We examine this problem in Part 5. They express the observed data as

(0.2) Yn = Aθ + ε, ε ∼ N
(
0, σ2In

)
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where ε is the noise vector. They wish to minimize

(0.3) 2−1 ‖Yn −Aθ‖2 + λ

N∑
i=1

p (|θi|)

for a given penalty function p and a regularization parameter λ > 0. This penalty function is a

marriage of the soft and hard thresholding rules of Donoho and Johnstone's work.

The solution (Rao 1973) is what is called the normalized method of frame whose solution is given by

θ = DAT
(
ADAT

)−1

fn,

where D = Diag
(
2−2sji

)
with ji denoting the resolution level with which θi is associated.

Another method for dealing with this problem of irregularly spaced data is presented in [4]. Here

the authors Cai and Brown assume that the data points xi = H−1 (i/n) for some cumulative density

function H on [0, 1]. We examine the solution to this problem in Part 6.

A rough outline of the procedure this paper describes is recorded below.

(1) Precondition the data by a sparse matrix.

(2) Transform the preconditioned data by the discrete wavelet transform.

(3) Denoise the noisy wavelet coe�cients via thresholding.

(4) Apply the inverse transform to the denoised coe�cients.

(5) Postcondition the data by a matrix to get the estimate at the sample points.

The wavelet coe�cients are computed in the following way.

α̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,φjk〉 , β̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,ψjk〉 .

This solution is restricted to functions which are members of the Holder class.

In Part 7, we attempt to solve the problems of long memory dependence and irregularly spaced data

points simultaneously. We consider a linear interpolation of the data and then analyze the MISE. Lastly,

we �nd the wavelet coe�cients and then threshold them.

In Part 8, we attempt to solve the problems of long memory dependence and irregularly spaced data

points by using the methods utilized in [4]. We use a function H as mentioned in Part 6 and consider

the MISE while considering the long memory error.

In Part 9, we compare and contrast the results from Parts 7 and 8, namely the di�erent spaces that

the results refer to as well as their convergence.
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Next, we try to consider long memory error in a matrix context. In Part 10 we apply the work of

Antoniadis and Fan to the long memory setting. We phrase the problem of incomplete data and long

memory error in terms of wavelets. Also, we extend on the work of Donoho and Johnstone and introduce

the necessary notation needed to consider oracle risk with long memory error.

We consider these problems because most real life data sets are not independent. Many data sets are

not equally spaced. Long memory situations include: hydrology, econometrics, tra�c modeling, spatial

data (�ooding, spread of disease, etc) and may other examples. Any of these could provide samples

which were unequally spaced. We extend several kinds of research to accommodate long memory error.

Part 2. A Survey on Methods of Function Estimation.

1. Introduction.

In this part we consider many di�erent methods of function estimation, including Parametric regres-

sion, density estimation, kernel estimation, wavelet regression, and estimating a function f (x) when

the function is a member of the Besov space or Triebel space. These early methods of estimation are

surprisingly e�ective, and several theorems are studied which analyze their overall e�ectiveness.

2. Parametric Regression.

Let us consider the problem of determining an expression for an underlying function f(x) parametri-

cally. We choose a form for f(x) and then determine using a variety of methods what the best parameters

of f(x) are. While the next part deals only with probability distributions, these methods can be used to

determine a from for any f(x). If a rescaling were applied to the data any methods which assume f(x)

is a probability density function could still be applied.

2.1. Method of Maximum Likelihood. Suppose f = f(x, θ) where f is a probability density function

and θ is a parameter it is dependent on. Also, let

Yi = f (xi) .

De�nition 1. Let Y1, Y2, ..., Yn be a random sample from a function f(x). The likelihood function is

the product of the probability function f(x, θ) evaluated at n data points. That is

L(θ) =

n∏
i=1

f(Xi, θ).

Furthermore, we have the following de�nition.
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De�nition 2. Let Y1, Y2, ..., Yn be a random sample from f(x, θ) and let L(θ) be the corresponding

likelihood function. Suppose L
(
θ̂
)
≥ L(θ) for all possible values of θ. Then θ̂is called the maximum

likelihood estimator or MLE for θ.

Note that maximizing the likelihood function is the same as maximizing the log-likelihood lnL(θ).

We now consider the following examples.

Example 3. Suppose k1,k2, ..., kn is a set of n observations representing the geometric probability model,

f (ki, p) = (1− p)ki−1p where ki = 1, 2, .... We wish to �nd the MLE for p.

L(p) =

n∏
i=1

(1− p)ki−1p = (1− p)
∑n
i=1 ki−npn.

Let k =
∑n
i=1 ki. Take the ln of L(p).

lnL(p) = (k − n) ln(1− p) + n ln p

Now di�erentiate with respect to p to �nd the maximum.

n− k
1− p

+
n

p
= 0

Solving this yields MLE p̂ = n
k .

This method can be applied to may di�erent forms of probability model.

Example 4. Suppose y1, y2, ..., yn is a set of measurements representing an exponential probability

density function with an unknown parameter θ. That is, f (yi, θ) = e−(yi−θ) for y ≥ θ and θ > 0. We

�nd the MLE for θ.

L(θ) =

n∏
i=1

e−(yi−θ) = e−
∑n
i=1 yi+nθ

We cannot use the log-likelihood because the derivative of this log-likelihood is n and never 0. We

note that L(θ) is maximized when the exponent is as large as possible. This means that θ must be as

large as possible. Because y ≥ θ, θ can only be as large as the smallest yi. Thus, θ̂ = ymin.

An examination of MLEs might not be complete without examining the normal distribution.

Example 5. Suppose a random sample of size n is drawn from the two parameter normal probability

distribution.

f
(
x, µ, σ2

)
=

1√
2πσ

e−
1
2 ( y−µσ )

2

, −∞ < y <∞, −∞ < µ <∞, σ2 > 0
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We �nd L(θ).

L
(
µ, σ2

)
=

n∏
i=1

1√
2πσ

e−
1
2 ( yi−µσ )

2

=
(
2πσ2

)−n/2
e−

1
2

∑n
i=1(

yi−µ
σ )

2

Then

lnL
(
µ, σ2

)
= −n

2
ln
(
2πσ2

)
− 1

2

n∑
i=1

(
yi − µ
σ

)2

.

Also

∂ lnL
(
µ, σ2

)
∂µ

= −
n∑
i=1

(
yi − µ
σ

)(
− 1

σ

)

and

∂ lnL
(
µ, σ2

)
∂σ2

= −n
2
· 1

2πσ2
· 2π − 1

2

n∑
i=1

(yi − µ)
2

(
−1

σ4

)
.

Setting each of these equations to 0 yields µ̂ = 1
n

∑n
i=1 yi and σ̂

2 = 1
n

∑n
i=1 (yi − ȳ)

2
.

Next we consider the method of moments.

2.2. Method of Moments. Let us now de�ne f = f (x, θ1, θ2, ..., θk) where the θ1, θ2, ..., θk are param-

eters of f . De�ne the �rst k moments of f as below.

E
(
Y j
)

=

ˆ ∞
−∞

yjf (y, θ1, θ2, ..., θk) dy, j = 1, 2, ..., k

We then �nd the k parameters by computing the �rst k moments and solving the resulting system of

equations.

Example 6. Suppose that

f(y, θ) = θyθ−1, 0 ≤ y ≤ 1.

Then

E(Y ) =

ˆ 1

0

y · θyθ−1dy = θ · y
θ+1

θ + 1

∣∣∣∣1
0

=
θ

θ + 1
.

Setting E(Y ) = ȳ we obtain θ̂ = ȳ
1−ȳ .

This method can be applied to many di�erent distributions.
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2.3. Method of Least squares. We now move away from regression on probability distributions and

consider a di�erent kind of problem. Suppose we have data (x1, y1) , (x2, y2) , ..., (xn, yn) and we wish to

�nd a polynomial of degree m which is closest in the sense of least squares to the data. We write the

polynomial p(x)below.

p(x) =

m∑
k=0

βkx
k

The quantity we wish to minimize is

L =

n∑
i=1

[yi − p (xi)]
2
.

As an example, lets consider the case where m = 2.

Example 7. We wish to �nd the quadratic function y = β0 + β1x+ β2x
2 which minimizes L.

L =

n∑
i=1

[
yi − β0 − β1xi − β2x

2
i

]2
.

We take the derivatives to optimize L.

∂L

∂β2
=

n∑
i=1

(−2)x2
i

[
yi − β0 − β1xi − β2x

2
i

]
∂L

∂β1
=

n∑
i=1

(−2)xi
[
yi − β0 − β1xi − β2x

2
i

]
∂L

∂β0
=

n∑
i=1

(−2)
[
yi − β0 − β1xi − β2x

2
i

]
Setting these derivatives to 0 yields the following system.

(β0) (n) + (β1)

(
n∑
i=1

xi

)
+ (β2)

(
n∑
i=1

x2
i

)
=

n∑
i=1

yi

(β0)

(
n∑
i=1

xi

)
+ (β1)

(
n∑
i=1

x2
i

)
+ (β2)

(
n∑
i=1

x3
i

)
=

n∑
i=1

xiyi

(β0)

(
n∑
i=1

x2
i

)
+ (β1)

(
n∑
i=1

x3
i

)
+ (β2)

(
n∑
i=1

x4
i

)
=

n∑
i=1

x2
i yi

We can solve these equations for β0, β1, β2.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 17

This polynomial regression is somewhat limited but can be applied to any data which can be trans-

formed into a polynomial form. Suppose we assume that our data is of the form y = β0e
β1x. We can

transform this by taking the ln of both sides of this equation.

ln y = lnβ0 + β1x

We could solve for these parameters using the method of least squares and then put them back into

the original equation.

This method can be more generally applied to many di�erent forms. However, for every example

considered within this part we have assumed that the true form of f(x) is known and have proceeded to

estimate the parameters of f(x) based on that assumption. While this is useful in many situations, it

is not practical in many others. The following part explores many di�erent methods of estimating f(x)

nonparametrically based on the assumption that the function is a probability distribution.

Later we will return to the problem presented in this section in Parts 5 and 6.

3. Density Estimation.

In this part we examine many di�erent methods of estimating a function f(x). These methods are

applicable to any set of data and do not make assumptions about the structure of f(x) except in places

where the text explicitly says so. Occasionally f(x) will be assumed to be the normal distribution and

further conclusions about particular problems will be drawn. The �rst section deals with several di�erent

methods of estimation.

The second section addresses the problem of optimizing our choice of estimation under di�erent

criteria. We consider choices of window width several di�erent ways. We could chose window widths

which minimize the Mean Square Error, maximize the Maximum likelihood, or by using least squares

cross validation. The window width is only a part of the problem of estimating f(x). One could

choose kernels with many di�erent properties according to whether the estimator needs to be smooth,

di�erentiable, or any other number of conditions. Other estimators can be derived from the Fourier

transform of f(x).

These methods do not use wavelets, but are still practical and also easy to apply.

3.1. Probability Density Estimators. The information in this section comes directly from [23]. We

wish to consider the problem of estimating a probability density function from data. Recall that

ˆ b

a

f(x)dx =P (a < x < b)

for all a < b. We estimate P (a < x < b) from the data to �nd f(x).
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Our approach is the parametric one. We assume f(x) has a certain form, for example the form of a

normal distribution, then estimate µ and σ2. However, this approach makes assumptions on the data

which may not be true.

Density estimates provide indication of features of the data, such as skewness and multimodality.

(A preexisting assumption of data with a normal distribution would suppress these properties.) Also,

density estimates are comparatively easy to understand.

We assume we have a sample of n real observations x1, ..., xn whose underlying density we wish to

estimate. f̂ will denote this estimator.

3.1.1. Histograms. The oldest density estimator is the histogram. Given an origin x0 and a bin width

h, de�ne the bins to be the intervals [x0 +mh, x0 + (m+ 1)h) for m ∈ Z. Then

f̂(x) =
1

nh
(number of xi in the same bin as x).

We must choose the origin and the bin width. The bin width is the de�ning choice. Large widths

conceal features of the graph, while small widths make the picture look too much like the data.

Histograms give us a general overview of things, but their discontinuities make them not very valu-

able if we need to use derivatives. Also, the choice of bin origin can change the picture substantially.

Histograms are often hard to read in trivariate or multivariate data, and the problems with choosing h

and x0 are multiplied over a grid.

3.1.2. The Naive Estimator. One way of solving this problem is by using the naive estimator. Note that

f(x) = lim
h→0

P (x− h < x < x+ h)/ (2h) .

We can estimate P (x − h < x < x + h) by the proportion of the sample falling into (x − h, x + h).

Choose

f̂(x) =
1

2hn
(number of xi in (x− h, x+ h)) .

We can also write this estimator in a form similar to that of kernels. De�ne

w(x) =
{

1
2 if |x|<1 0 otherwise.

We can write

f̂(x) =
1

n

n∑
i=1

1

h
w

(
x− xi
h

)
.
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We can see that the naive estimate can be seen to be an attempt to construct a histogram where

every point is the center of a sampling interval, thus freeing the histogram from a choice of bin positions.

Note however that f̂(x) is not continuous but has jumps at the points xi ± h and has zero derivative

everywhere else.

3.1.3. Kernels. We now wish to generalize the naive estimator to �x the problems with discontinuity.

Replace w with a kernel function k which satis�es

ˆ ∞
−∞

k(x)dx =1.(3.1)

Usually, k is a symmetric probability density function. Now

f̂(x) =
1

nh

n∑
i=1

k

(
x− xi
n

)
.

The naive estimator can be considered as a sum of boxes, the kernel estimator as a sum of bumps.

If the kernel is everywhere non-negative and satis�es 3.1, then f̂ will be a probability density function.

Furthermore, f̂ inherits the continuity and di�erentiability of k. The only major disadvantage in using

kernels to estimate density functions is that they sometimes produce noise in the tails of estimates.

3.1.4. Nearest Neighbor Method. This method attempts to account for the local density of data. Suppose

the density at t is f(t). Then with a sample size of n, we would expect 2rnf(t) observations in an interval

[t− r, t+ r]. De�ne d(x− y) = |x− y| and for each t de�ne

d1(t) ≤ ... ≤ dn(t)

to be the distance from t to the points in the sample. The kth nearest estimate is de�ned by

f̂(t) =
k − 1

2ndk(t)
.

This is obtained by letting r = k−1 in the interval [t−dk(t), t+dk(t)]. The nearest neighbor estimate

is not continuous. Note that dk(t) is continuous, but its derivative is discontinuous at 1
2 (xj + xj+k). It

does not provide a probability density since d does not integrate to 1.

Let
´
k(x) = 1. The generalized kth nearest neighbor estimate is de�ned

f̂(t) =
1

ndk(t)

n∑
i=1

k(
t− xi
dk(t)

).
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3.1.5. Variable Kernel Method. Rather then the uniform heights of regular kernel estimation, the height

of the bumps at each x varies from data point to point. De�ne dj,k to be the distance from xj to the

kth nearest point in the set of the other n− 1 data points. Let h be the smoothing parameter.

f̂(t) =
1

n

n∑
j=1

1

hdj,k
k

(
t− xj
hdj,k

)
.

There are many ways to chose this smoothing parameter. The idea is that data points in sparser

regions will get �atter bumps.

3.1.6. Orthogonal Series Estimators. All of the previous estimation techniques have been related under

the idea of kernels. Orthogonal series estimators would estimate a function by �nding the coe�cients of

f with respect to an orthogonal basis. Let us consider the Fourier basis and estimate f on the interval

[0, 1] by its Fourier coe�cients. De�ne φv(x) by

φ0(x) = 1 φ2r−1(x) =
√

2 cos 2πrx φ2r(x) =
√

2 sin 2πrx

for r = 1, 2, .... Then almost everywhere f(x) =
∑∞
v=0 fvφv, where for each v ≥0,

fv =

ˆ 1

0

f(x)φv(x)dx.

Suppose X is a random variable with density f . Then

fv =Eφv(x).

Hence a natural unbiased estimator of fv based on a sample X1, ..., Xn from f is

f̂v =
1

n

n∑
i=1

φv(Xi).

However, the sum
∑
f̂vφv will not be a good estimate of f , but will converge to a sum of delta

functions of the observations. To see this, let

w(x) =
1

n

n∑
i=1

δ(x− xi).

Then for each v,

f̂v =

ˆ 1

0

w(x)φv(x)dx.
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These f̂v are the Fourier coe�cients of the function w(x). We must somehow smooth this to get a

useful estimate. One way to do this is by truncating the expansion. Choose an integer k. Then let

f̂(x) =

k∑
v=0

f̂vφv(x).

Another way would be to use a sequence of weights λvwhich satisfy λv → 0 as v →∞.

f̂(x) =

∞∑
v=0

λv f̂vφv(x).

We can use other orthonormal basis as well. Suppose a(x) is a weighting function and {ψv} is a series

satisfying for u, v ≥ 0

ˆ ∞
−∞

ψu(x)ψv(x)a(x)dx =

{
1 if u = v

0 otherwise.

Then

f̂v =
1

n

∑
i

ψv(xi)a(xi)

and

f̂(x) =

k∑
v=0

f̂vψv(x) or =

∞∑
v=0

λv f̂vψv(x).

The properties of these estimates will match the properties of whatever orthonormal series we use.

f̂ (x) inherits the continuity and di�erentiability of the functions {ψv}.

3.1.7. Maximum Penalized Likelihood Estimators. The likelihood of a curve g as a density underlying a

set of identically independent distributed observations is given by

L(g|X1, ..., Xn) =

n∏
i=1

g(xi).

This quantity has no �nite maximum over all densities. Let f̂n be the naive estimator with window

width 1
2h. Then f̂n(xi) ≥ 1

nh . So ∏
f̂n(xi) ≥n−nh−n →∞ as h→ 0.

Our method is to de�ne R(g), a function which quanti�es the roughness of g.
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R(g) =

ˆ ∞
−∞

(g′′)2

De�ne the penalized loglikelihood by

lα(g) =

n∑
i=1

log g(xi)− αR(g)

where α is a positive smoothing parameter. This function represents the con�ict between smoothness

and goodness of �t to the data. Here R(g) is the smoothness, and
∑

log g(xi) measures the �t. We

would wish to maximize the likelihood lα(g) over
´∞
−∞ g = 1, g(x) ≥ 0, and R(g) <∞.

3.1.8. General Weight Function Estimates. Let w(x, y) be our weight with

ˆ ∞
−∞

w(x, y)dy = 1 w(x, y) ≥ 0 f̂(t) =
1

n

n∑
i=1

w(xi, t).

Many of the methods discussed earlier can be expressed in this more general framework, including

the orthonormal function estimate. For example, letting

w(x, y) =
1

h
k

(
y − x
n

)

yields the kernel estimator. Letting

w(x, y) =

k∑
v=0

φv(x)φv(y)

yields the orthogonal series estimator.

3.1.9. Bounded Domains and Directional Data. There are several situations where we may have extra

conditions on our estimator f̂ . We may wish for our estimator to always be positive, or we may only

wish to �nd an estimator for certain subsets of x. We will examine what may be done in some of these

cases.

Sometimes we wish for our f̂ to be zero for negative x. There are many practical situations where

this may be important. We could only calculate f̂ for positive x, and then set f̂(x) = 0 for x ≤ 0. This

presents several problems. The estimator may not integrate to one afterwards. Also, data points near 0

will be overweighted. Another solution would be to adopt some orthonormal functions to the half-line.
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One way to deal with the overweighted data points near 0 would be to transform the data for positive

x by taking the logarithm of it. This maps our data to the real line. If the density estimated from the

logarithms of the data is ĝ, then

f̂(x) =
1

x
ĝ(log x) for x > 0.

Lastly, one could extend the data set by adding re�ections. Suppose we perform an even extension

{X1,−X1, ..., Xn,−Xn}. Construct a kernel estimate f∗ for this. Then

f̂(x) =
{

2f∗(x) x ≥ 0 0 x < 0 .

This corresponds to a general weight function

w(x, y) =
1

h

[
k

(
y − x
h

)
+ k

(
y + x

h

)]
or we could use a negative re�ection, thus yielding the estimator

f̂(x) =
1

nh

n∑
i=1

[
k

(
x− xi
h

)
− k

(
x+ xi
h

)]
.

One could also extend the data periodically. Later, when we study wavelet transforms, we will require

that the data be of size 2n where n is an integer. These last methods of extension, and also a method

of extending data so that it is continuous are all commonly used methods of making data the right size

to do wavelet decomposition and reconstruction.

3.2. Properties of the Estimator Derived via the Kernel. Suppose that {X1, ..., Xn} is an iden-

tically independent sample with a probability function f that we wish to estimate. f̂ will be the kernel

estimate with kernel k and window width h. There are many di�erent criteria for choosing h.

Suppose we wish to estimate h by minimizing the Mean Square Error (MSE).

MSEx(f̂) =E{f̂(x)− f(x)}2 = {Ef̂(x)− f(x)}2 + varf̂(x)

We call the �rst term of the right side of the equation above the bias, and the second term the

variance. One can see that there is a trade-o� between minimizing the bias and the variance, which is

adjusted by changing the smoothness of the estimate.

Consider the Mean Integrated Square Error (MISE).

MISE(f̂) =E

ˆ
{f̂(x)− f(x)}2dx =

ˆ
E{f̂(x)− f(x)}2dx(3.2)
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=

ˆ
MSEx(f̂)dx =

ˆ
{Ef̂(x)− f(x)}2dx+

ˆ
varf̂(x)dx.

Suppose

f̂(t) =
1

n

n∑
i=1

w(xi, t),

the general weight function estimate. Recall that this method encompasses the kernel estimate. Then

Ef̂(t) =

ˆ
w(x, t)f(x)dx

and since the Xi are independent,

varf̂(t) =
1

n
varw(xi, t) =

1

n

[ˆ
w(x, t)2f(x)dx− {

ˆ
w(x, t)f(x)dx}2

]
.

Note that the bias does not depend on the sample size n, only on the weight function. Let h = h(n)

and

w(x, y) =
1

h
k

(
y − x
h

)
and we have the kernel estimator where

Ef̂(x) =

ˆ
1

h
k

(
x− y
h

)
f(y)dy.

When (3.2) can be computed, we can minimize it with respect to h to �nd the optimal window width.

3.2.1. Approximate Properties of the Estimator from the Kernel. Suppose the kernel k is a symmetric

function satisfying

ˆ
k(t)dt = 1

´
tk(t)dt = 0

ˆ
t2k(t)dt = k2 6= 0(3.3)

and f has continuous derivatives of all required orders.

The bias in estimation of f(x) does not depend directly on the sample size n, but it does depend on

h, the window width. If h = h(n), then the bias will depend on n.

biash(x) = Ef̂(x)− f(x) =

ˆ
h−1k

(
x− y
n

)
f(y)dy − f(x).

Let y = x− ht. Then dy = −hdt. Then since
´
k(t)dt = 1,
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ˆ
k(t)f(x− ht)dt− f(x) =

ˆ
k(t) (f(x− ht)− f(x)) dt.

We examine the Taylor series expansion of f(x− ht).

f(x− ht) =f(x)− htf ′(x) +
1

2
h2t2f ′′(x) + ...

biash(x) =− hf ′(x)

ˆ
tk(t)dt+

1

2
h2f ′′(x)

ˆ
t2k(t)dt+ ...

Then by (3.3),

=
1

2
h2f ′′(x)k2 +O(h3).(3.4)

Then

ˆ
biash(x)2dx ≈1

4
h4k2

2

ˆ
f ′′(x)2dx.(3.5)

A similar calculation yields

varf̂(x) ≈n−1h−1f(x)

ˆ
k(t)2dt

so that ˆ
varf̂(x)dx ≈n−1h−1

ˆ
k(t)2dt.(3.6)

To minimize the MISE, we wish to choose an h which will make (3.5) and (3.6) small. One can now

see more clearly the trade-o� between these two errors.

3.2.2. Ideal Window Width and kernel. We wish to minimize

1

4
h4k2

2

ˆ
f ′′(x)2dx+ n−1h−1

ˆ
k(t)2dt(3.7)

with respect to h. Then by using calculus

hopt =k
− 2

5
2

{ˆ
k(t)2dt

} 1
5
{ˆ

f ′′(x)2dx

}− 1
5

n
1
5 .(3.8)

Note h does depend on f, but also that as n increases, h decreases. Putting hopt into (3.7) shows

MISE ≈5

4
C(k)

{ˆ
f ′′(x)2dx

} 1
5

n−
4
5
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C(k) =k
2
5
2

{ˆ
k(t)2dt

} 4
5

.

So, to further decrease the MISE, we would like to choose a k with a small C(k).

If k2 6= 1, replace the kernel with k
− 1

2
2 k(k

− 1
2

2 t). Then minimizing C(k) is reducing

ˆ
k(t)2dt subject to

ˆ
k(t)dt =

ˆ
t2k(t)dt = 1.

This is solved by the Epanechnikov kernel below.

ke(t) =
{

3
4
√

5
(1− 1

5 t
2) −

√
5 ≤ t ≤

√
5 0 otherwise

De�ne the e�ciency of k to be

eff(k) =

{
C(ke)

C(k)

} 5
4

=
3

5
√

5

{ˆ
t2k(t)dt

}− 1
2 {
k(t)2dt

}−1
.

If we examine a table comparing e�ciencies, we can see that most commonly used kernels are much the

same in terms of e�ciency. So, often kernels are chosen based on other criteria such as di�erentiability

or the amount of computational e�ort required to implement them.

3.2.3. Choosing the Smoothing Parameter using assumptions on f(x). There are many di�erent ways to

chose the smoothing parameter h. The �rst and most obvious way is to just plot the data with di�erent

window widths and choose the �best looking� h.

Another way to chose h is by making some assumption about the distribution of f and then choosing

a value for
´
f ′′(x)2dx in the expression for window width (3.11) which is discussed later. For example,

one could assume that f(x) is normally distributed. In that case

ˆ
f ′′(x)2dx =σ−5

ˆ
φ′′(x)2dx =

3

8
π−

1
2σ−5.(3.9)

Using the Gaussian kernel, and putting (3.9) into (3.11) we obtain

hopt = (4π)
− 1

10
3

8
π−

1
2σn−

1
5

=

(
4

3

) 1
5

σn−
1
5 = 1.06σn−

1
5 .

Note that this only works if one assumes you have a normal distribution.

Alternately, using the innerquartile range R
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hopt =0.79Rn−
1
5 .

The best of both worlds can be obtained by using the minimum of these two things.

3.2.4. Least-squares Cross Validation. This method of choosing h is completely automatic.

ˆ (
f̂ − f

)2

=

ˆ
f̂2 − 2

ˆ
f̂f +

ˆ
f2

We have no control over the
´
f2 term, so we minimize

R
(
f̂
)

=

ˆ
f̂2 − 2

ˆ
f̂f.

We construct R
(
f̂
)
from the data, and then minimize it over h to get the window width. De�ne f̂−i

to be the estimate of f from all data except Xi.

f̂−i (x) = (n− 1)
−1
h−1

∑
j 6=i

k
(
h−1 (x−Xj)

)
.

De�ne

M0 (h) =

ˆ
f̂2 − 2n−1

∑
i

f̂−i (Xi) .

Note

En−1
∑
i

f̂−i (Xi) = Ef̂−n (Xn) =E

ˆ
f̂−n(x)f(x)dx = E

ˆ
f̂(x)f(x)dx,

so EM0(h) = ER
(
f̂
)
, and minimizing E (M0) is close to minimizingM0. Let k

(2) be the convolution

of the kernel with itself. We can write a simpler function M1(h) to minimize with M1(h) ≈M0(h).

M1(h) =n−2h−1
∑
i

∑
j

k∗
(
h−1 (Xi −Xj)

)
+ 2n−1h−1k (0)

where k∗ (t) = k(2)(t)− 2k (t).^

Stone's theorem from [24] gives us a strong large sample justi�cation of cross-validation. This theorem

says that if Is×v (X1, ...Xn) is the integrated square error of the density estimate constructed using the

smoothing parameter that minimizes M1(h) and Iopt (X1, ...Xn) is the minimum of
´ (

f̂ − f
)2

over all

h, and under mild conditions on the kernel with �xed data, then with probability 1,

Is×v
Iopt

→ 1 as n→∞.
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So, asymptotically, least squares cross-validation achieves the best possible choice of smoothing pa-

rameter, in the sense of minimizing the MISE.

However, there are some errors in cross-validation that we must consider. We must note that rounding

data can create serious errors in our estimates. In a data set X1, ...Xn let m be the number of pairs

i < j for which Xi = Xj . For example, if the data set is a histogram of counts kr,

m =
∑
r

1

2
kr (kr − 1) .

If a data set of size n is discretized to a grid of l points, then by Jensen's inequality

m

n
≥1

2
· n
l
− 1.

In fact, if m
n is larger than some threshold value β depending on k the kernel, then M1(h) → −∞

as h → 0. This means that our minimization technique will give us h = 0. One can compute β =

1
2k

(2) (0) /
{

2k (0)− k(2) (0)
}
. For the normal kernel β = 0.55.

It is dangerous to use least squares cross validation for discretized data. Small variations in the data

mean a small choice of h would be troublesome.

3.2.5. Likelihood Cross Validation. Suppose in addition to the original data set, an independent observa-

tion Y from f were available. Then the likelihood of f as the density underlying the observation Y would

be log f (Y ), with h the variable, X1, ...Xn �xed. Note that log f (Y ) would be the log likelihood of the

smoothing parameter h. The likelihood cross-validation choice of h is the value of h which maximizes

CV (h).

CV (h) =n−1
n∑
i=1

log f̂−i (Xi)

CV (h) yields a density estimate which is close to the true density in terms of the Kullback-Leibler

information de�ned below:

I
(
f, f̂

)
=

ˆ
f(x) log

(
f(x)

f̂(x)

)
dx.

Then we see

E {CV (h)} =E log f̂−n(Xn) = E

ˆ
f(x) log f̂n−1(x)dx

≈E
ˆ
f(x) log f̂(x)dx = −E

{
I
(
f, f̂
)}

+

ˆ
f log f.
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So up to a constant, this is an unbiased estimator of the Kullback-Leibler error. However, this only

works for very speci�c choices of f(x).

3.2.6. Test Graph Method. From [22] we have the following. Suppose that kernel k is symmetric and

satis�es certain conditions, and
´
x2k(x)dx is nonzero. Suppose f is uniformly continuous and |f ′′| <∞.

Now choose h = h(n) to ensure the most rapid possible convergence of sup |f̂ − f | → 0. Then using the

same h with n→∞
sup |f̂ ′′ − Ef̂ ′′|

sup |Ef̂ ′′|
→m(3.10)

where

m =
1

2

ˆ
|x2k(x)dx|

{ˆ
(k′′)

2
dx/

ˆ
k2dx

} 1
2

.

This m is a constant which depends only on the kernel. If k is the Gaussian kernel then m ≈ 0.4. We

try di�erent h's and pick the one that yields a f̂ which corresponds to (3.10). We would then choose the

h that gives us this ratio of noise to trend.

3.2.7. Internal Estimation of Density Roughness. Recall the formula for an optimal h.

hopt =k
−2
5

2

{ˆ
k(t)2dt

} 1
5
{ˆ

f ′′(x)2dx

}− 1
5

n
1
5 .(3.11)

Let

α(k) = k
− 2

5
2

{ˆ
k(t)2dt

} 1
5

β(f) =

{ˆ
f ′′(x)2

}− 1
5

n−
1
5 .

Then

hopt =α(k)β(f)n−
1
5 .

Let the estimate of β(f) be

β̂(h0) =

(ˆ
f̂ ′′20

)− 1
5

= β(f̂0).

Here f̂0 is the density estimate constructed with h0. For our new estimate, we would use

h1 =α(k)β̂(h0)n−
1
5 .

To avoid choosing an initial h0, one could use an iterative approach.
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hi =α(k)β̂(hi−1)n−
1
5

In practice, one would solve

h =α(k)β̂(h)n−
1
5

using Newton's method.

3.2.8. Finding estimators by using the Fourier Transform. Recall that the de�nition of the Fourier

transform is de�ned as

g̃(s) =(2π)−
1
2

ˆ
eistg(t)dt.

The discrete Fourier transform of the data is de�ned

u(s) =(2π)−
1
2n−1

n∑
j=1

exp {isXj} .

Let f̃n(s) be the Fourier transform of the kernel density estimate.

f̃n(s) =(2π)
1
2 k̃(hs)u(s).

We used here that the Fourier transform of h−1k
(
h−1t

)
is k̃(hs). One could then use the fast Fourier

transform to �nd u and then invert f̃n to �nd f̂ .

3.2.9. Bias Reduction Technique. Suppose we don't require that k is non-negative and choose a k that

satis�es

ˆ
k(t)dt = 1

ˆ
t2k(t)dt = k2 6= 0(3.12)

(3.13)

ˆ
t4k(t)dt = k4 6= 0

We use the Taylor expansion of f(x− ht) as before to get

biash(x) =
1

24
h4f4(x)k4 + o

(
h5
)
.

Here the h and h3 terms drop out because of the symmetry of k. The h2 term drops out because of

(3.12). Then the estimated MISE is
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(3.14)
1

576
h8k2

4

ˆ
f4(x)2dx+ n−1h−1

ˆ
k(t)2dt.

Then minimizing (3.14) yields

hopt =(72)
1
9 k
− 2

9
4

{
k(t)2dt

}{ˆ
f4(x)2dx

}− 1
9

n−
1
9 .

Substituting hopt into the MISE yields a minimum of

= C4(k)

{ˆ
f4(x)2dx

} 1
9

n−
8
9

with

C4(k) =9
8
9 2−

10
3 k

2
9
4

{ˆ
k(t)2dt

} 8
9

.

We now wish to use a kernel which makes C4(k) as small as possible. One choice is

k(y) =
{

3
8

(
3− 5y2

)
if |y| < 1 0 otherwise.

One could also make a more arti�cial choice. For any kernel k0(t), choose

k(t) =
k0(t)− c−3k0

(
c−1t

)
1− c−2

where k0(t) is some positive kernel. The new kernel k(t) satis�es (3.12) and (3.13).

One could further extend the requirements for the kernel toˆ
tjk(t)dt = 0 for 0 < j < 2m

ˆ
t2mk(t)dt 6= 0.

The bias for these requirements would be of order h2m, and the optimal MISE would be o
(
h−

4m
4m+1

)
.

The problem with this is that the kernel may be negative in more places, and may give f̂ odd properties.

f̂ would no longer be a probability density function as before.

3.2.10. Asymptotic properties of f̂ . Lastly, we report some properties of the convergence of f̂ to f . From

[21] we have the following.

Theorem 8. If k is a bounded Borel function and ifˆ
|k(t)|dt <∞,

ˆ
k(t)dt = 1(3.15)
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and

|tk(t)| → 0 as t→∞,

and

hn → 0 and nhn →∞ as n→∞

then if f is continuous at x

(3.16) f̂(x)→ f(x) in probabilty as n→∞.

We note that the conditions (3.15) are satis�ed by almost any conceivable kernel.

In other words,

P (|f̂(x)− f(x)| > ε)→ 0.

We also have the following theorem.

Theorem 9. Suppose k is bounded, has bounded variation, satis�es (3.15), and has Lebesque measure

zero. Suppose f is uniformly continuous on (−∞,∞) and

hn → 0 and nhn (log n)
−1 →∞ as n→∞.

Then

(3.17) sup
x
|f̂(x)− f(x)| → 0 as n→∞.

Lastly, we have a theorem which requires no assumptions on f(x).

Theorem 10. Assume k is a non-negative Borel Function which integrates to one. Then if

hn → 0 and nhn →∞ as n→∞,

ˆ
|f̂(x)− f(x)|dx→ 0

with probability 1 as n→∞.

In other words,

P

(ˆ ∣∣∣f̂(x)− f(x)
∣∣∣ dx = 0

)
→ 1 as n→∞.
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3.2.11. Conclusion. We can see from the theorems above that under fairly lax conditions we can achieve

a closeness between f̂(x) and f(x) in several di�erent senses. However, we do not have information

about the Mean Square Error, and in the strongest theorem above we require that f(x) be continuous.

This requirement is not practical in many situations. We also have no information about the speed of

converge to 0 as n→∞. We answer this question in Part 4. This motivates our study of wavelets.

4. A brief introduction to Wavelets.

Because of the spatial adaptability of wavelets and their ability to model arbitrarily small intervals

they are a powerful tool in modeling data. As we will see in later sections, because of their structure

wavelets perform better than linear methods in some situations, and always as well as linear methods.

It is for this reason that we study the continuous wavelet transform and the discrete wavelet transform.

4.1. A brief wavelet review.

4.1.1. The continuous wavelet transform and multiresolution analysis. The material in this section was

taken from [6, 25].

In very general terms, wavelet analysis on a signal means separating a signal into low and high

frequency components. In discrete terms, this amounts to convolving our digital signal with a �lter.

We can de�ne wavelets in terms of a multiresolution analysis, or MRA. Suppose f ∈ L2(R), that is,

(ˆ ∞
−∞
|f(x)|2dx

) 1
2

<∞.

An MRA will de�ne a sequence of spaces Vj , Vj+1 such that the projections of f onto these spaces

give �ner and �ner approximations (as j →∞) of f .

De�ne Tng(x) = g(x − n) and D2jg(x) = 2
j
2 g
(
2jx
)
. We present a framework for constructing

functions ψ(x) ∈ L2(R) such that

{ψj,k(x)}j,k∈Z =
{

2
j
2ψ
(
2jx− k

)}
j,k∈Z

= {D2jTk(ψ(x))}j,k∈Z

is an orthonormal basis on R.

De�nition 11. The collection {Tng(x)}n∈Z is called an orthonormal system of translates.

This collection is an orthonormal basis for

span {Tng(x)} .

That is, f ∈ span {Tng(x)} if and only if f(x) =
∑
n 〈f, Tng〉Tng(x).
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Within the set of translations, we see that a dilation performed on the set would make functions �ner

and �ner until all of R was covered.

De�nition 12. A MRA on R is a sequence of subspaces {Vj}j∈Z of functions L2 on R such that

(1) For all j ∈ Z, Vj ⊆ Vj+1.

(2) If f(x) is C0
c (that is, compact and continuous) on R, then f(x) ∈ span {Vj}j∈Z.

(3)
⋂
j∈Z Vj = {0}.

(4) f ∈ V0 i� D2jf(x) ∈ Vj .

(5) There exists a function ϕ(x) ∈ L2(R) called the scaling function such that the collection {Tnϕ(x)}

is an orthonormal system of translates and V0 = span {Tnϕ(x)}.

We form an MRA by �rst de�ning V0 and then letting

Vj = {f(x) : f(x) = D2jg(x), g(x) ∈ V0} .

De�nition 13. ϕj,k(x) = 2
j
2ϕ
(
2jx− k

)
= D2jTkϕ(x).

We also de�ne the following operators.

De�nition 14. De�ne the approximation and detail operators as follows.

Pjf(x) =
∑
k

〈f, ϕj,k〉ϕj,k(x)

Qjf(x) = Pj+1f(x)− Pjf(x).

Note that {ϕj,k(x)}j,k is an orthonormal basis for Vj .

Lemma 15. There exists an l2 sequence of coe�cients {h(k)} such that

ϕ(x) =
∑
k

h(k)2
1
2ϕ(2x− k).

This is true because {ϕj,k(x)} is a basis.

ϕ(x) =
∑
k

〈ϕ,ϕ1,k〉 2
1
2ϕ(2x− k)

Therefore, h(k) = 〈ϕ,ϕ1,k〉.

We have discussed the scaling function, we can now construct a wavelet orthonormal basis given an

MRA.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 35

Theorem 16. Let {Vj} be an MRA and ϕ(x) be a scaling function with �lter h(k). De�ne a wavelet

�lter

g(k) = (−1)kh(1− k).

Then we have wavelet

ψ(x) =
∑
k

g(k)2
1
2ϕ(2x− k).

Then {ψj,k(x)}j,k∈Z is a wavelet orthonormal basis in R. In other words, given any J ∈ Z

{ϕJ,k(x)}k∈Z
⋃
{ψj,k(x)}j≥J,k∈Z

is an orthonormal basis on L2(R).

This is a very powerful theorem. It allows us to examine signals at certain levels of detail and perform

wavelets transform to describe certain subsets of details.

De�nition 17. For each j ∈ Z the wavelet subspace Wj is de�ned

Wj = span {ψj,k(x)}k∈Z .

Lemma 18. If there exists ψ(x) ∈ V1 such that

a) {Tnψ(x)} is orthonormal

b) {Tnψ, Tmϕ} = 0 for all n,m ∈ Z

c) Given f(x) ∈ C0
c (R), Q0f(x) ∈ span {Tnψ(x)} = W0.

Then {ψj,k(x)}j,k∈Z =
{

2
1
2ψ
(
2jx− k

)}
j,k∈Z

is a wavelet orthonormal basis on L2(R).

Note that Vj+1 = Vj ⊕Wj and L2(R) = Vj0 ⊕∞j=j0 Wj . So if f ∈ L2(R),

f = Pj0f +

∞∑
j=j0

Qjf

=
∑
k

〈f, ϕj0,k〉ϕj0,k +

∞∑
j=j0

∑
k

〈f, ψj,k〉ψj,k.

We require here that
´
ϕ(x) = 1 and

´
ψ(x) = 0.

One important property of wavelets is that of vanishing moments.

De�nition 19. Suppose that ψ(x) has N vanishing moments. Then

ˆ
R
xpψ(x)dx = 0

for p = 0, ..., N − 1.
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If ψ(x) has N vanishing moments then any polynomial of degree N − 1 can be reproduced exactly by

the scaling function.

4.1.2. The discrete wavelet transform. In statistical papers dealing with discrete data, we wish to apply

wavelet transforms to collections of numbers which are not continuous functions. We want to perform

a discrete wavelet transform or DWT. The information in this section follows the lines of [25]. Suppose

we have a signal or data {c0(k)}k∈Z. In order to analyze the data, we assume

c0(k) = 〈f, ϕ0,k〉 .

This allows the MRA construction to work, but we had to make an interesting (and incorrect) as-

sumption. The idea is that the basis functions needed to represent c0(k) exactly have such small support

that they can be considered to be the delta function. Thus, co(k) ∈ V0.

If h(n) and g(n) are the re�nement sequences of ϕ and ψ respectively.

(4.1) cj(k) = 〈f, ϕ−j,k〉 =
∑
n

cj−1(n)h(n− 2k)

(4.2) dj(k) = 〈f, ψ−j,k〉 =
∑
n

cj−1(n)g(n− 2k)

P−jf(x) =
∑
n

cj(n)ϕ−j,n(x)

Q−jf(x) =
∑
n

dj(n)ψ−j,n(x)

P−jf(x) = P−j−1f(x) +Q−j−1f(x).

Thus,

(4.3) cj(k) =
∑
n

cj+1(n)h(k − 2n) +
∑
n

dj+1(n)g(k − 2n).

The key object in the DWT is the scaling �lter h(k) and not ϕ(x) the scaling function. This scaling

function must satisfy (4.1) and (4.2) to be inverted by (4.3). These are called the Quadrature Mirror

Filter or QMF conditions.

Theorem 20. Let {Vj} be an MRA with scaling �lter h(k) and wavelet �lter g(k) = (−1)kh(1− k).

a)
∑
n h(n) =

√
2

b)
∑
n g(n) = 0

c)
∑
k h(k)h(k − 2n) =

∑
k g(k)g(k − 2n) = δ(n)

d)
∑
k g(k)h(k − 2n) = 0 for all n ∈ Z and
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e)
∑
k h(m− 2k)h(n− 2k) +

∑
k g(m− 2k)g(n− 2k) = δ(n−m).

We note here that some authors divide out the factor of
√

2 from the re�nement sequence, thus making

a) into
∑
n h(n) = 1.

De�nition 21. Let c(n) be a signal

a) The downsampling operator ↓ is de�ned

(↓ c)(n) = c(2n).

b) The upsampling operator ↑ is de�ned

(↑ c)(n) =
{
c
(
n
2

)
n even 0 n odd.

We have the following operators which are the analogues of the P and Q operators from the last

section.

De�nition 22. De�ne the approximation operator H and detail operator G by

(Hc)(k) =
∑
n

c(n)h(n− 2k)

(Gc)(k) =
∑
n

c(n)g(n− 2k).

We de�ne their adjoints by

(H ∗ c)(k) =
∑
n

c(n)h(k − 2n)

(G ∗ c)(k) =
∑
n

c(n)g(k − 2n).

Note that

(1) H and G can be thought of as convolution with the �lters h(n) = h(−n) and g(n) = g(−n)

followed by downsampling.

(Hc)(n) =↓ (c ∗ h)(n)

(Gc)(n) =↓ (c ∗ g)(n).

(2) H∗ and G∗ can be thought of as upsampling followed by convolution with h and g.

(H∗c)(n) = (↑ c) ∗ h(n)

(G∗c)(n) = (↑ c) ∗ g(n).

(3) H∗ and G∗ are formal adjoints of H and G.
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Then the c, d and e conditions of Theorem 20 can be reformulated as

HH∗ = GG∗ = I

HG∗ = GH∗ = 0

H∗H +G∗G = I

respectively.

We can now de�ne formally the DWT for signals.

De�nition 23. Let h(k) satisfy the QMF conditions. De�ne g(k) = (−1)kh(1 − k) and let H, G, H∗

and G∗ be as just de�ned. Fix J ∈ N. The DWT of a signal c0(n) is the collection of sequences

{dj(k) : 1 ≤ j ≤ J ; k ∈ Z}
⋃
{cJ(k) : k ∈ Z}

where

cj+1(n) = (Hcj) (n) and dj+1(n) = (Gcj) (n).

The inverse transform is de�ned by

cj(n) = (H∗cj+1) (n) + (G∗dj+1) (n).

We notice that the sums used to de�ne the DWT are in�nite despite the fact that we are working

with a �nite signal. There are two common methods used to deal with the problem. The �rst method is

the zero-padding method. One pads the signal on either side with zero entries. This can create problems

at the ends of the signal. The second method is periodization. This method of extension lessens the

discontinuities at the ends, but also distorts the data.

Fact 24. Suppose c(n) is a 2N periodic signal. Then (Hc)(n) and (Gc)(n) are 2N−1 periodic and

(H∗c) (n) and (G∗c) (n) are 2N+1 periodic.

We now note that the DWT of a period M = 2N signal is a transform taking the M vector

c0 =
[
c0(0) c0(1) ... c0(M − 1)

]
into the M vector

d = [d1|d2|...|dJ |cJ ]

where

dj =
[
dj(0) dj(1) ... dj

(
2−jM − 1

) ]
.

This linear transformation from Rm to Rm can be represented by an M ×M matrix W such that

Wc0 = d.
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In fact, for M = p,

Wp =

(
Hp

Gp

)
and

W ∗pWp =

(
Hp

Gp

)∗(
Hp

Gp

)
=
(
H∗p G∗p

)( Hp

Gp

)
= H∗pHp +G∗pGp = Ip

by the rewritten QMF conditions. Thus we see that Wp is an orthogonal matrix.

So, when performing a DWT, the �rst step is

WMc0 =

(
d1

c1

)
the second step is (

IM
2

0

0 WM
2

)(
d1

c1

)
=

 d1

d2

c2


and the jth step is

(
I(1−2−j)M 0

0 W2−jM

)
d1

...
dj−1

cj−1

 =


d1

...
dj−1

dj
cj

 .

Lastly, we note that the rows ofW form an orthonormal basis for Rm called the discrete wavelet basis.

These vectors can be calculated by taking the inverse DWT of ei in Rm. This concludes our review of

the properties of wavelets.

5. Estimating f(x) with no requirements on the underlying function.

Donoho and Johnstone in [8] introduce the concept of an oracle, which is an imaginary device which

makes the best choice of estimator for a given f under certain circumstances. For instance, when one

samples wavelets coe�cients, one may decide just to keep these coe�cients or �lter them according to

their size. An oracle would chose the �best� combination of coe�cients to keep in terms of minimizing

the risk. In [8] Donoho and Johnstone show that by using soft and hard thresholding with a derived

�universal threshold�, one can guarantee a risk which can be expressed in terms of the oracle risk.

This estimator comes only from the data and performs better than piecewise polynomials in terms of

convergence to f .
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5.1. Other methods of Estimation and Notation.

5.1.1. Notation. Suppose the data we are working with is

(5.1) yi = f (ti) + ei i = 1, ..., n

where ti = i
n and the ei are independently distributed as N

(
0, σ2

)
. Let f(·) be the function we wish

to estimate and f̂(·) be the estimator. We measure the closeness of the estimator to f(·) in terms of

quadratic loss
(
f̂(t)− f(t)

)2

. Speci�cally, let f = (f (ti))
n
i=1 and f̂ =

(
f̂ (ti)

)n
i=1

be the vectors of true

and estimated values. Recall ‖x‖22,n =
∑n
i=1 x

2
i is the squared l

2
n norm for vectors. Then the risk is

(5.2) R
(
f̂ , f

)
= n−1E‖f̂ − f‖22,n.

We wish to minimize this risk.

5.1.2. Other reconstruction Methods. We de�ne some other estimates for f with the notation

f̂(·) = T (y, d(y)) (·).

Here T (y, δ) is a reconstruction formula with �smoothing� parameter δ and d(y) is a data-adaptive choice

of that δ.

5.1.3. Piecewise Constant Reconstruction. Here δ is a list of L numbers de�ning a partition (I1, ..., IL)

of [0, 1] such that

I1 = [0, δ1), I2 = [δ1, δ1 + δ2), ..., IL = [δ1 + ...+ δL−1, δ1 + ...+ δL]

so that
∑L
i=1 δi = 1. Here L is variable.

TPC(y, δ)(t) =

L∑
i=1

Ave (yi : ti ∈ Ii) 1Ii(t)

Recall that 1(condition(t)) means

1(condition(t)) =

{
1 if the condition is met

0 otherwise.

5.1.4. Piecewise Polynomial Reconstruction. Here δ is the same as in (5.1.3), only reconstruction uses

polynomials of degree D.

TPP (D)(y, δ)(t) =

L∑
i=1

p̂l(t)1Ii(t)
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where p̂l(t) =
∑D
k=0 akt

k is determined by minimizing the least square error below.∑
ti∈Ii

{p̂l (ti)− yi}2

5.1.5. Variable-knot splines. This estimator is the same as (5.1.4), except we require that the estimator

be continuous and have continuous derivatives up to order D − 1. If tl is the left endpoint of Il (l =

1, ..., L), (
dk

dtk
s

)(
t−l
)

=

(
dk

dtk
s

)(
t+l
)
.

Subject to this constraint minimize the quantity below.

n∑
i=1

{s (ti)− yi}2

5.1.6. Ideal Adaption with Oracles. We wish to study ideal adaption. This is the performance which can

be achieved from smoothing with the aid of an oracle. This oracle does not tell us what the true f is,

but it does give us the best choice of δ for the true f . In (5.1.3), (5.1.4), and (5.1.5) this would be the

true division of the partition. We de�ne the ideal risk as

Rn,σ(T, f) = inf
δ
R(T (y, δ), f).

For a kernel estimator, this would be the best smoothing parameter. It is dependent on a selection of

∆(f) which satis�es

R(T (y,∆(f)) =Rn,σ(T, f).

This ideal is unattainable.

5.1.7. Wavelet Reconstruction Preliminaries. Suppose we have data y = (yi)
n
i=1 with n = 2J+1. Let M

be the number of vanishing moments, S be the support width, and j0 be the low-resolution cuto�. We

may construct an n× n matrix W which is the �nite wavelet transform matrix.

This matrix gives a vector w of wavelet coe�cients with w = Wy. Since W is an orthogonal matrix,

y = WTw.

The vector w has 2J+1 elements. We index them dyadically n− 1 = 2J+1 − 1 following

wj,k
(
j = 0, ..., J k = 0, ..., 2j − 1

)
and the remaining element we label w−1,0. Let Wj,k denote the (j, k)th row of W . Then

yi =
∑
j,k

wj,kWj,k(i).
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We call the Wj,k wavelets. The plot of the vector Wj,k looks like a localized wiggle. This is where the

name 'wavelet' comes from.

For j and k with j0 ≤ j < J − j1 and S < k < 2j − S,

n
1
2Wj,k(i) ≈ 2

j
2ψ
(
2jt− k

)
for t =

i

n

where ψ is a �xed wavelet in the sense of the usual wavelet transform on R. Information on this can

be found in [19, 5]. This relation improves as n and j increase. Therefore, wj,k is localized to spatial

positions near t = k2−j and frequencies near 2j . There are two important properties that we need.

1) Wj,k has vanishing moments up to order M if j ≥ j0.
n−1∑
i=0

ilWj,k(i) = 0
(
l = 0, ...,M ; j ≥ j0; k = 0, ..., 2j − 1

)
2) Wj,k is supported in

[
2J−j(k − s), 2J−j(k + s)

]
if j ≥ j0.

Because of the spatial localization of wavelet basis, the wavelet coe�cients allow one to determine if

there is a signi�cant change near t by looking at the wj,k with j = j0, ..., J near k and k2−j ≈ t. If these

are large, then there is a signi�cant change. Given a �nite list δ of (j, k) pairs de�ne Tsw (y, δ) by

(5.3) Tsw(y, δ) = f̂ =
∑

(j,k)∈δ

wjkWjk.

We reconstruct by choosing only a subset of the empirical wavelet coe�cients. The 'sw' stands for

selective wavelet reconstruction. We do this because every empirical wavelet coe�cient contributes noise

of variance σ2, but only a few wavelet coe�cients contribute signal.

For risk (5.2), the ideal risk is de�ned

Rn,σ (sw, f) = inf
δ
Rn,σ (Tsw (y, δ) , f)

with optimal spatial parameter δ = 4(f), namely a list of indexes attaining

Rn,σ (Tsw(y,4(f), f) =Rn,σ (sw, f) .

Suppose we have f =
∑n
i=1 pi(t)1Ii(t) where f is a piecewise polynomial of degree D, and we have a

wavelet basis with parameter M ≥ D. Then (5.1.7) and (5.1.7) imply that the wavelet coe�cients for f

are all zero except for

i) coe�cients at the coarse levels 0 ≤ j ≤ j0

ii) coe�cients at j0 ≤ j ≤ J whose associated interval
[
2−j(k − s), 2−j(k + s)

]
contains a breakpoint

of f .
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The number of coe�cients that satisfy i) is �xed, and at each resolution level j
(
θjk, k = 0, ..., 2j − 1

)
contains at most (# breakpoints)×(2s+ 1) which satisfy ii). If L is the number of pieces then

# {(j, k) : θjk 6= 0} ≤2j0 + (J + 1− j0) (2s+ 1)L.

Let δ∗ = {(j, k) : θjk 6= 0} . Then because of the orthogonality of the (wjk),
∑

(j,k)∈δ∗ wjkWjk is the

least squares estimate of f and

(5.4) R (T (y, δ∗) , f) = n−1 {# (δ∗)}σ2 ≤ (C1 + C2J)Lσ2/n

for all n = 2J+1 with C1 and C2 depending linearly on s but not on f . Also note that

Rnσ(sw, f) =o

(
σ2 log n

n

)
.

5.1.8. Results about coe�cient estimation. Suppose we are given observations w = (wi)
n
i=1 with

(5.5) wi = θi + εzi

where i = 1, ..., n, and the zi are iid as N(0, 1). Here ε > 0 is the known noise level and θ = (θi) is

the true value. We de�ne the risk

(5.6) R
(
θ̂, θ
)

= E‖θ̂ − θ‖22,n.

Our oracle is based on a family of diagonal linear projections

TDP (w, δ) = (δiwi)
n
i=1

where δi ∈ {0, 1}. These estimators either keep or discard a coordinate based on whether or not it

is big enough. Suppose we knew the perfect choice of coordinates to keep to minimize the risk. These

ideal coe�cients are δi = 1(|θi|>ε). This yields the ideal risk

Rnσ(DP, θ) =

n∑
i=1

min
(
|θi|2, ε2

)
.

Though this ideal risk cannot be attained, with a simple choice of estimator we can approximate it.

De�ne the soft and hard thresholding operators by

ηH(w, λ) =w · 1 {|w| > λ}

ηS(w, λ) =sgn(w) (|w| − λ)+

respectively. For the soft thresholding operator we have the following.
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Theorem 25. Assume (5.5) and (5.6). The estimator

θ̂µi =ηS

(
wi, ε (2 log n)

1
2

)
i = 1, ..., n

satis�es

E‖θ̂µ − θ‖22,n ≤(2 log n+ 1)

{
ε2 +

n∑
i=1

min
(
θ2
i , ε

2
)}

or

R
(
θ̂µ, θ

)
≤(2 log n+ 1)

{
ε2 +Rε(DP, θ)

}
for all θ ∈ Rn.

We can gain a better understanding of the choice of λn by examining the aysmptotics below.

Theorem 26. Assume (5.5) and (5.6). Let

(5.7) Λ#
n = inf

λ
sup
µ

ρST (λ, µ)

n−1 + min (µ2, 1)

(5.8) λ∗n = the largest λ attaining Λ∗n above.

Then

(5.9) θ̂∗i = ηS (wi, λ
∗
nε) i = 1, ..., n

satis�es

E‖θ̂ − θ‖22,n ≤Λ∗n

{
ε2 +

n∑
i=1

min
(
θ2
i , ε

2
)}

.(5.10)

Furthermore

Λ∗n ∼ 2 log n, λ∗n ∼ (2 log n)
1
2 .

We have a similar result for the hard thresholding operator.

Theorem 27. With (ln) a thresholding sequence su�ciently close to (2 log n)
1
2 in the following sense

(1− γ) log log n ≤ l2n − 2 log n ≤ o (log n)

the hard thresholding estimator

θ̂+
i = wi · 1 {|wi| > lnε}

satis�es for ln ∼ 2 log n the inequality

R
(
θ̂+, θ

)
≤ ln

{
ε2 +

n∑
i=1

min
(
θ2
i , ε

2
)}
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for all θ ∈ Rn and γ > 0.

The proofs of these theorems will be given later.

5.1.9. Results applied to function estimation. We apply the previous results to function estimation. Let

n = 2J+1 and W be the wavelet coe�cient matrix. This is an orthogonal transformation of Rn into Rn.

If f = (fi) and f̂ =
(
f̂i

)
are two n-vectors and (θjk) and

(
θ̂jk

)
are their W transforms, we have the

Parseval relation

(5.11) ‖f − f̂‖2,n = ‖θ − θ̂‖2,n.

If (yi) is the data as in model (5.1) and w = Wy is its discrete wavelet transform then with ε = σ

wjk = θjk + εzjk
(
j = 0, ..., J ; k = 0, ..., 2j − 1

)
.

Recall the selective wavelet reconstruction TSW (y, δ) via (5.3) discussed earlier.

TSW = WT ◦ TDP ◦W

Because of (5.11)

E‖TSW (y, δ)− f‖22,n = E‖TDP (w, δ)− θ‖22,n.

If θ̂∗ denotes the nonlinear estimator from (5.9) and f̂∗ = WT θ̂∗W then

E‖f̂∗ − f‖22,n = E‖θ̂∗ − θ‖22,n.

This gives us the following result.

Corollary 28. For all f and all n = 2J+1

R
(
f̂∗, f

)
≤ Λ∗n

{
σ2

n
+Rn,σ(sw, f)

}
.

Moreover no estimator can satisfy a better inequality then this for all f and all n in the sense that Λ∗n

cannot be replaced by {2− ε+ o(1)} log n. A similar inequality holds for the hard thresholding operator.

Lastly we note that piecewise polynomials are not more powerful than wavelets.

Theorem 29. Let D ≤ M and n = 2J+1. Then with constants C1 and C2 depending on the wavelet

transform alone,

Rn,σ(sw, f) ≤ (C1 + C2J)Rn,σ(PP (D), f)

for all f and all σ > 0.

So, the ideal risk of wavelets is better than that of polynomials.
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5.1.10. Variations on the choice of oracle. An alternative to the keep or kill TDP estimators is given by

the diagonal shrinkers

ΓDS(w, δ) = (δiwi)
n
i=1 δi ∈ [0, 1].

Here di�erent coordinates are shrunk di�erently. An oracle ∆DS(θ) for this family of estimators

provides the ideal coe�cients (δi) =
(

θ2i
θ2i+ε2

)n
i=1

and would yield an ideal risk

Rε(DS, θ) =

n∑
i=1

θ2
i ε

2

θ2
i + ε2

.

This gives us another oracle inequality.

Theorem 30. The soft thresholding estimator θ̂∗ with threshold λ∗n satis�es

R
(
θ̂∗, θ

)
≤ Λ̃n

{
ε2 +

n∑
i=1

θ2
i ε

2

θ2
i + ε2

}

for all θ ∈ Rn, with Λ̃n ∼ 2 log n.

5.1.11. Proofs of the theorems.

1.8.1 Proof of Theorem 25.

Proof. We consider the univariate case. Let X ∼ N(µ, 1) and ηt(x) = sgn(x) (|x| − t)+. [8] shows that

for all δ ≤ 1
2 and with t =

(
2 log δ−1

) 1
2

(5.12) E {ηt(x)− µ}2 ≤
(
2 log δ−1 + 1

) (
δ + µ2 ∧ 1

)
.

This follows directly from the fact that

E {ηt(x)− µ}2 = 1− 2prµ (|x| < t) + Eµx
2 ∧ t2

≤ 1 + t2 ≤
(
2logδ−1 + 1

)
(δ + 1)

E {ηt(x)− µ}2 ≤ 2prµ (|x| ≥ t) + µ2.

We need to verify

g(µ) = 2prµ(|x| ≥ t) ≤ δ
(
2 log δ−1 + 1

)
+
(
2 log δ−1

)
µ2.

Since g is symmetric about 0, by examining the Taylor series expansion we know

(5.13) g(µ) ≤ g(0) +
1

2
(sup |g′′|)µ2.
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Using calculus,

g(0) = 2pr0 (|x| ≥ t) = 4pr(x > t) = 4φ(−t) ≤ δ
(
2 log δ−1 + 1

)
.

sup |g′′| ≤ 4 sup |xφ(x)| ≤ 4 log δ−1

for δ ≤ 1
2 . Together with (5.13) this gives us (5.12). We see that putting our new information into

(5.13) yields

δ
(
2 log δ−1 + 1

)
+

1

2
4 log d−1µ2 + µ2 = δ

(
2 log δ−1

)
+ δ + µ2(2 log δ−1) + µ2

≤
(
2 log δ−1 + 1

) (
δ + µ2 ∧ 1

)
.

�

1.8.2 Proof of Theorem 26.

Proof. Suppose we have a single observation Y ∼ N(µ, 1). De�ne ρST (λ, µ) = E {ηS(Y, λ)− µ}2. We

will list properties of this quantity as they are needed. Recall (5.7) and (5.8). The inequality

E‖θ̂µ − θ‖22,n ≤ (2 log n+ 1)

{
ε2 +

n∑
i=1

min
(
θ2
i , ε

2
)}

follows below. Set ε = 1 and θ̂∗i = ηST (wi, λ
∗
n). Then

E‖θ̂∗ − θ‖22 =

n∑
i=1

ρST (λ∗n, θi) ≤
n∑
i=1

Λ∗n
{
n−1 + min

(
θ2
i , 1
)}

= Λ∗n

{
1 +

n∑
i=1

min
(
θ2
i , 1
)}

.

If ε 6= 1 then for θ̂∗i = ηST (wi, λ
∗
nε) we get

E‖θ̂∗ − θ‖22 =
∑

ρST

(
λ∗n,

θi
ε

)
ε2 ≤ Λ∗nε

2
n∑
i=1

{
n−1 + min

(
θ2
i

ε2
, 1

)}

= Λ∗nε
2 +

n∑
i=1

min
(
θ2
i , ε

2
)
.

This gives us (5.10). Now we must consider the asymptotics. We wish to analyze

inf
λ

sup
µ

ρST (λ, µ)

n−1 + min (µ2, 1)
.
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We consider

(5.14) Λ0
n = inf

λ
sup

µ∈{0,∞}

ρST (λ, µ)

n−1 + min (µ2, 1)

where λ0
n is the largest λ attaining Λ0

n.

We would like to show that the quantity

L
(
λ0
n, µ

)
= sup

µ

ρST
(
λ0
n, µ

)
n−1 + min (1, µ2)

attains it maximum at either µ = 0 or µ =∞. Note

ρST (λ, µ) =

(5.15) 1 + λ2 +
(
µ2 − λ2 − 1

)
{Φ(λ− µ)− Φ(−λ− µ)} − (λ− µ)φ(λ+ µ)− (λ+ µ)φ(λ− µ)

For µ ∈ [1,∞], ρST
(
λ0
n, µ

)
is monotone increasing. As µ→∞, ρST

(
λ0
n, µ

)
≤ 1 + λ2. Note that

(5.16) ρST (λ, 0) = 1 + λ2 −
(
1 + λ2

)
(Φ(λ)− Φ(−λ))− 2λφ(λ)

(5.17) ρST (λ,∞) = 1 + λ2.

We de�ne a quantity

(5.18) ρn(λ) = (n+ 1)ρST (λ, 0)− ρST (λ,∞).

As we will show later, this quantity will de�ne our λ0
n. For now, we take this assumption on faith and

note that ρn

(
n−

1
2

)
≥ 0 for n=3. This implies λ0

n ≥ n−
1
2 . Then

nρST
(
λ0
n, 0
)

=

{
1 +

(
λ0
n

)2}
1 + n−1

≥
1 +

(
n−

1
2

)2

1 + n−1
= 1.

Applying (5.19) yields

L
(
λ0
n, µ

)
≤
ρST

(
λ0
n, 0
)

+ µ2

n−1 + µ2
≤ nρST

(
λ0
n, 0
)
.

Thus L attains its maximum over µ ∈ [0, 1] at 0. This establishes what we needed to show.

Now examine (5.17) and (5.18). Note that ρST (λ,∞) is increasing in λ and ρST (λ, 0) is decreasing in

λ. This means that

L(λ, 0) = L(λ,∞)

ρST (λ, 0)

n−1
=
ρST (λ,∞)

n−1 + 1
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(n+ 1)ρST (λ, 0) = ρST (λ,∞).

λ0
n is the root of ρn(λ) = (n + 1)ρST (λ, 0) − ρST (λ,∞). We can see that this function ρn(λ) is

continuous. It has one zero on [0,∞) in λ.

ρn(λ) =
(
1 + λ2

)
{2(n+ 1)Φ(−λ)− 1} − 2(n+ 1)λφ(λ)

for λ ≥ 0. Note that if the quantity inside the brackets is negative, then the entire expression is

negative on [λ,∞). Apply Φ(−λ) ≤ λ−1φ(λ). This yields λ = (2 log n)
1
2 . Consider

2(n+ 1)λ−1φ(λ)− 1 = 2(n+ 1)
1

(2 log n)
1
2

e−
2 logn

2 − 1 =
2(n+ 1)

n

1

(2 log n)
1
2

− 1.

Note that

2(n+ 1)

n(2 log n)
1
2

≤ 1

when n ≥ 3. This implies the zero λ0
n of ρn is less than (2 log n)

1
2 .

Now we de�ne λη,n for large n via

λ2
η,n = 2 log(n+ 1)− 4 log log(n+ 1)− log 2π + η.

Then ρn (λη,n) converges to ∞ or −∞ according to η > 0 or η < 0 respectively. We are concerned

with whether

2(n+ 1)λ−1φ(λ) ≤ 1.

2(n+ 1)
1

(2 log n− 4 log log(n+ 1)− log 2π + η)
1
2

e−
1
2 (2 log(n+1)−4 log log(n+1)−log 2π+η)

2(n+ 1)
1

(2 log n− 4 log log(n+ 1)− log 2π + η)
1
2

(
1

n+ 1
(log(n+ 1))2(2π)

1
2

)
e−

η
2

2(log(n+ 1))2(2π)
1
2 e−

η
2

(2 log n− 4 log log(n+ 1)− log 2π + η)
1
2

If η < 0 this quantity is less than 1, and ρn(λη,n) is negative. If η > 0, then ρn(λη,n) is positive.

Lastly, ρST (λ0
n,∞) = 1 + (λ0

n)2 yields

Λ0
n =

(
λ0
n

)2
+ 1

1 + n−1
∼ 2 log n

as n→∞. �
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1.8.3 Proof of Theorem 27.

Proof. Let

L(λ, µ) =
ρ(λ, µ)

n−1 + µ2

µ2+1

with ρ either ρST or ρHT . We show

L(λ, µ) ≤ (2 log n) (1 + δn)

uniformly in µ as long as

c log log n ≤ λ2 − 2 log n ≤ εn log n.

Here δn → 0 and depends on εn and c. For ρST , c < 5 and for ρHT , c < 1. It has been shown by [2]

that

(5.19) ρ(λ, µ) ≤

 λ2 + 1 µ ∈ R, λ > c1
µ2 + 1 µ ∈ R

ρ(λ, 0) + c2µ
2 0 < µ < c3.

For soft thresholding (c1, c2, c3) = (0, 1,∞). For hard thresholding (1, 1.2,∞). For µ = 0

(5.20) ρST (λ, 0) ≤ 4λ−3φ(λ)
(
1 + 1.5λ−2

)
(5.21) ρHT (λ, 0) ≤ 2φ(λ)(λ+ 1) if λ > 1.

For µ ∈
[
(2 log n)

1
2 ,∞

]
, the numerator is bounded via (5.19) by 1 + λ2.

ρ(λ, µ)

n−1 + µ2

µ2+1

≤ 1 + λ2

µ2

µ2+1

≤ 1 + λ2

2 logn
2 logn+1

≤ (2 log n)(1 + o(1)).

For µ ∈
[
1, (2 log n)

1
2

]
apply (5.19)

ρ(λ, µ)

n−1 + µ2

µ2+1

≤ µ2 + 1
µ2

µ2+1

= µ−2
(
1 + µ2

)2
=

1

2 log n
(1 + 2 log n)2 ≤ (2 log n)(1 + o(1)).

For µ ∈ [0, 1] apply (5.19)

ρ(λ, µ)

n−1 + µ2

µ2+1

=
ρ(λ, 0) + ρ(λ, µ)− ρ(λ, 0)

n−1 + µ2

µ2+1

≤ ρ(λ, 0)

n−1
+
ρ(λ, µ)− ρ(λ, 0)

µ2

µ2+1

≤ nρ(λ, 0) +
c2µ

2

µ2

µ2+1

≤ nρ(λ, 0) + 2c2.
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If λn(c) = (2 log n− c log log n)
1
2 then nφ (λn(c)) = φ(0)(log n)

c
2 .

ne−
1
2 (2 logn−c log logn) = nelog 1

n elog(logn)
c
2 = n

1

n
(log n)

c
2 = (log n)

c
2 · 1 = φ(0)(log n)

c
2 .

Then by (5.20) and (5.21) nρ(λ, 0) is o(log n). Thus the theorem is proved. �

1.8.4 Proof of Theorem 29.

Proof. Suppose ∆f is the partition supplied by an oracle for piecewise polynomial reconstruction. Sup-

pose this partition has L elements. Let s be the least squares �t using this partition to the noiseless

data. Then the ideal risk is the bias squared plus the variance.

(5.22) R
(
TPP (D)(y,∆f), f

)
= n−1‖f − s‖22,n + (D + 1)Lσ2/n.

Let θ = Ws be the wavelet transform of s. Then as s is a piecewise polynomial, most of the wavelet

coe�cients are zero. Let δ∗ = {(j, k) : θj,k 6= 0}, the set of coe�cients which do not vanish. Then

# (δ∗) ≤ (C1 + C2J)L

as in (5.4). Thus

R (TSW (y, δ∗) , f) ≤ n−1‖f − s‖22,n + # (δ∗)σ2/n.

Compare this with (5.22) to get

R (TSW (y, δ∗) , f) ≤ {1 + (C1 + C2J) /(D + 1)}R
(
TPP (D)(y,∆f), f

)
.

The theorem follows from the assumption

Rn,σ(PP (D), f) = R
(
TPP (D)(y,∆f), f

)
and the de�nition

Rn,σ(SW, f) ≤ R (TSW (y, δ∗) , f) .

Now lets consider splines. Let s̃ be the optimal variable knot spline s̃ of order D. Then

‖f − s‖2 ≤ ‖f − s̃‖2.

The risk associated with splines depends on L unknown parameters and has variance 1
D+1 times that

of (5.22). Thus

Rn,σ(PP (D), f) ≤ (D + 1)Rn,σ(spl(D), f)

and we have the theorem. �
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6. Estimating f(x) where the function is a member of the Besov or Triebel space.

In this last part, we will see that if f(x) is bounded in a certain special way then the risk associated

with wavelet shrinkage is within a constant factor of the minimax risk. This is a very powerful result in

comparison to the last section, where the di�erence was a factor of 2 log n. However, it does limit our

choices of f(x) to the spaces mentioned.

6.1. Estimating f(x) where the function is a member of the Besov or Triebel space, details.

In the �rst Donoho and Johnstone paper we examined, we only used the data and the assumption that

the noise was normal to derive a bound dependent on n for the ideal risks. With just one additional

assumption about the function underlying the data, namely that the function is a member of either the

Besov or Triebel spaces, one can �ne a bound which is not dependent on n, and is in fact a real number.

Suppose we have n samples of a function f .

(6.1) yi = f (ti) + zi

where i = 1, ..., n, ti = i
n , and the zi are identically independent distributed as N

(
0, σ2

)
. We want

to estimate f depending on y1, ..., yn with risk R
(
f̂ , f

)
= E‖f̂ − f‖22 = E

´ 1

0

(
f̂(t)− f(t)

)2

.

We begin by assuming f is a member of the Besov space. This represents a very large collection of

spaces, for example, the Bump Algebra and the L2Sobolev Space. The method derived in this paper [9]

performs better that any linear method. Below is the important result of the paper.

Corollary 31. Let F be a ball in the Besov space Bσp,q with σ > 1
p and 1 ≤ p, q ≤ ∞. Let R(n,F)

denote the minimax risk from (6.1) and let RL(n,F) denote minimax risk when estimators are linear in

data (yi). Then as n→∞

R(n,F) ∼ n−r

RL(n,F) ∼ n−r
′

with

r =
2σ

2σ + 1
and r′ =

σ +
(

1
p̂ −

1
p

)
σ + 1

2 +
(

1
p̂ −

1
p

)
where p̂ = max(p, 2).

We can see that if p < 2, the minimax risk approaches 0 faster than the linear estimator. If p ≥ 2 the

performance is the same.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 53

6.1.1. Some Notations. Consider the interval [0, 1]. De�ne the dyadic subintervals

Ij,k =

[
k

2j
,
k + 1

2j

]
for j ≥ 0 and k = 0, ..., 2j − 1. Let I denote the collection of all Ij,k and Ij denote the collection of all

2j intervals with length 2−j . Individual subintervals may be denoted by I, I ′ or Ij,k. Then the wavelet

ψ is denoted

ψI(t) = 2
j
2ψ
(
2jt− k

)
and ψI is supported in I =

[
k
2j ,

k+1
2j

]
. The scaling function is written φI(t). Suppose f ∈ L2[0, 1].

Then

βl,k =

ˆ 1

0

f(t)φI(t)dt

αI =

ˆ 1

0

f(t)ψI(t)dt

f =
∑
k∈K

βl,kφl,k +
∑
I∈J

αIψI .

Here K is all k from −∞ to ∞. Here J is the collection of all dyadic intervals of length |I| < 2−l. By

Parseval's relation

‖f̂ − f‖2L2[0,1] =
∑
k∈K

(
β̂l,k − βl,k

)2

+
∑
I∈J

(α̂I − α)
2
.

The functions φl,k describe the gross structure behavior of f and the functions ψI describe the details

localized to I.

We say that such a wavelet analysis has a regularity of r if the functions in the analysis are of compact

support and have r continuous derivatives. The coe�cients of a regular wavelet analysis can measure

function smoothness very precisely if r > 1.

From [16] we know that if f is locally Holderian at x0 with exponent δ then αI = o
(

2−( 1
2 +δ)j

)
for

every sequence (I) with |I| → 0 for x0 ∈ I From [19] we have that if f is di�erentiable at x0 then

αI = O
(

2−
3
2 j
)
for every sequence (I) with |I| → 0 for x0 ∈ I. These results have near converses. This

motivates our study of the wavelet coe�cients.

Now we wish to de�ne the Besov seminorm in terms of wavelet coe�cients. De�ne the rth di�erence

∆(r)
n f =

r∑
k=0

(
r

k

)
(−1)kf(t+ kh).
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De�ne the rth modulus of smoothness as

wr,p(f ;h) = ‖∆(r)
n f‖Lp[0,1−rh].

Then the Besov seminorm of index (σ, p, q) de�ned for r > σ

|f |Bσp,q =

(ˆ 1

0

(
wr,p(f ;h)

hσ

)q
dh

h

) 1
q

if q <∞ and

|f |Bσp,q = sup
0<h<1

wr,p(f ;h)

hσ

if q =∞. Then a Besov space Bσp,q is the set of all functions f : [0, 1]→ R with f ∈ Lp, that is,

(ˆ 1

0

|f(x)|pdx
) 1
p

<∞

and |f |Bσp,q <∞. De�ne the following norm in terms of the wavelet coe�cients.

|α|b̃sp,q =

 ∞∑
j≥l

2js

∑
Ij

|αI |p
 1

p


q

1
q

Theorem 32. From [20] we have for α = α(f) and β = β(f)(
‖f‖p + ‖f‖Bσp,q

)
m
(
‖βk‖lp + |α|b̃sp,q

)
for every f ∈ Lp[0, 1] where s = σ + 1

2 −
1
p . Here the m means that the ratios of the two sides are

bounded by a c and a C depending on (ψ, φ, p, q, r, σ) but not on f .

So by using a wavelet analysis we have a transformation from the continuous function space to a

sequence space with two important properties.

(1) If f̂ and f are two functions,

‖f̂ − f‖2 =
∑
k∈K

(
β̂k − βk

)2

+
∑
j≥l

∑
Ij

(α̂I − αI)2
.

(2) Let Θ denote the collection of all wavelet expansions
(
(βk)k∈K , (αI)I∈J

)
of functions in the ball

F de�ned by ‖f‖Bσp,q ≤ 1. Let Θ0 = R#(K) and let Θ̃s
p,q(C) denote the collection of (αI)I∈J

satisfying |α|b̃sp,q ≤ C. Then for positive constants c and C,

{0} × Θ̃s
p,q(c) ⊂ Θ ⊂ Θ0 × Θ̃s

p,q(C).
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6.1.2. Estimation in the Sequence Space. Our data is of the form

(6.2) yI = θI + zI

for I ∈ I. Here the zI are identically independent and distributed as N
(
0, σ2

)
. The unknown quantity

θ = (θI) is the one we wish to estimate. We assume that ‖θ‖bsp,q ≤ C where

‖θ‖bsp,q =

∑
j≥0

2js

∑
Ij

|θI |p
 1

p


q

1
q

.

Denote this convex set as Θs
p,q(C) =

{
θ : ‖θ‖bsp,q ≤ C

}
We call this set a Besov Body and often

abbreviate it as Θs
p,q = Θs

p,q(C).

De�ne the minimax risk

R∗
(
ε,Θs

p,q

)
= inf

θ̂
sup
Θsp,q

E‖θ̂ − θ‖22.

De�ne the minimax linear risk

R∗L
(
ε,Θs

p,q

)
= inf
θ̂ linear

sup
Θsp,q

E‖θ̂ − θ‖22.

The '∗′ always denotes minimax risk.

We can connect estimation in the sequence space with the regression model (6.1). If F is a class of

functions on the interval and Θ is the set in the sequence space of the wavelets coe�cients of functions

in F , (1) and (2) have the following consequences.

(1) The minimax risk from sampled data is asymptotically equivalent to the risk in the sequence

space.

R(n,F) ∼ R∗
(
σ/
√
n,Θ

)
, n→∞

RL(n,F) ∼ R∗L(σ/
√
n,Θ), n→∞

(2) If F is a Besov class, the body Θ is risk-equivalent to a Besov Body.

R∗(ε,Θ) m R∗
(
ε,Θs

p,q

)
, ε→ 0

R∗L(ε,Θ) m R∗L(ε,Θs
p,q), ε→ 0

Thus, an understanding of minimax estimation in the sequence model will allow us to understand the

function model.
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6.1.3. Minimax Bayes Estimation. To solve the minimax problem for a Besov Body, we relax the con-

straint of boundedness that we have imposed so far and consider a weaker condition which will allow us

to analyze the risk di�erently. We assume our observed (θI) are random variables which are arbitrary

except for the constraint that

‖τ‖bsp,q ≤ C

where τ is a moment sequence de�ned by

τI = (E|θI |p∧q)
1
p∧q

for I ∈ I. (Note that if p ∧ q =∞ we put τI = sup |θI |.) De�ne the minimax Bayes risk

(6.3) B∗
(
ε; Θs

p,q

)
= inf

θ̂
sup

τ∈Θsp,q

E‖θ̂ − θ‖2.

Since this constraint is weaker than ‖θ‖bsp,q ≤ C, B
∗ ≥ R∗.

We present the main results of the paper. First, we see that the minimax estimator for B∗ are

separable nonlinearities.

Theorem 33. A minimax estimator for B∗(ε) has the form

θ̂∗I = δ∗j (yI)

for I ∈ I, where δ∗j (y) is a scalar nonlinear function of the scalar y. In fact there is a 3-parameter

family δ(τ,ε,p) of nonlinear functions of y from which the minimax estimator is built:

δ∗j = δ(t∗j ,ε,p∧q)

for j = 0, 1, ... for a sequence
(
t∗j
)∞
j=0

which depends on s, p, q, C and ε.

Next we have a result about the asymptotics of B∗. Below p ∧ q means min {p, q}.

Theorem 34. Let p, q > 0 and s+ 1/p > 1/(2 ∧ p ∧ q); then B∗(ε) <∞ and as ε→ 0

B∗
(
ε,Θs

p,q

)
∼ γ(ε)C2(1−r)ε2r,

where

r =
s+ 1

p −
1
2

s+ 1
p

,

and γ(ε) = γ(ε;C, s+ 1/p, p ∧ q, q) is a continuous, periodic function of log2(ε/C) de�ned later on.

Last, we demonstrate the asymptotic equivalence of R∗ and B∗.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 57

Theorem 35. For s+ 1/p > 1/2, s, p, q > 0 and ε > 0

(6.4) R∗
(
ε; Θs

p,q

)
≥ γ̃(ε)C2(1−r)ε2r − ε2

where r is as above, and γ(ε) = γ(ε;C, s+ 1/p,∞, q) is a continuous, periodic function of log2(ε/C).

If q ≥ p, then

(6.5) R∗
(
ε; Θs

p,q

)
= B∗(ε) (1 + o(1)) ,

ε→ 0.

Combining these theorems together we have for p ≤ q that the estimator θ̂∗ which will be de�ned

later is asymptotically minimax with respect to R∗ for ε→ 0. If p > q, the Bayes-Minimax estimator is

within a constant factor of minimax.

6.1.4. Properties of the Risk Function of a Single Variable. Let us brie�y consider the scalar problem.

Observe

(6.6) v = ξ + z.

Here ξ is a random variable and z is independent of ξ and distributed as N
(
0, ε2

)
. We assume that

(Eπ|ξ|p)
1
p ≤ τ . We estimate ξ relative to square-error loss. De�ne the minimax Bayes risk

(6.7) ρp(τ, ε) = inf
δ

sup

(Eπ|ξ|p)
1
p≤τ

EπEξ (δ(y)− ξ)2
.

We report several properties of this quantity analyzed in [7].

(6.8) ρp(τ, ε) = ε2ρp(τ/ε, 1)

(6.9) ρp(aτ, ε) ≤ a2ρp(τ, ε), a > 1

(6.10) ρp(τ, 1) ∼

{
τ2 p ≥ 2

τp (2 log (τ−p))
2−p
2 p < 2

as τ → 0. The function ρp is continuous, is monotone increasing in τ, is concave in τp and has

ρp(τ, ε)→ ε2 as τε→∞.

6.1.5. Properties of the Besov Space, Separable Rules are Minimax. Here are two structural facts about

Besov Bodies which allow us eventually to �nd a prior distribution and begin to analyze the minimax

Bayes problem.
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(1) For q < ∞, Jsp,q(τ) = ‖τ‖qbsp,q is a convex functional of the moment sequence τ =
(
τp∧qI

)
. For

q =∞, the functional Jsp,∞(τ) = ‖τ‖bsp,∞ has nested convex level sets. (Recall a convex function

has the property that for any t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).)

(2) If (τI) is an arbitrary positive sequence, and we set τ̄p∧qI = AveI∈Ij
(
τp∧qI

)
, then

(6.11) ‖τ̄‖bsp,q ≤ ‖τ‖bsp,q .

We prove Theorem 33 by working out the statistical implications of these facts.

Proof. Proof of Theorem 33.

Let Ms
p,q =

{
µ : Jsp,q (τ (µ)) ≤ Cq

}
denote the set of prior measures µ which would be feasible in

(6.3). By (1),Ms
p,q is convex. It is also weakly compact for weak convergence of probability measures;

and the l2 loss yields lower-semicontinuous risk functions. Thus we can apply the Minimax Theorem of

Statistical Decision Theory from [17]. This theorem implies that the Bayes rule of a least favorable prior

is a minimax rule. This least favorable prior is what we hope to �nd.

Let β(µ) denote the Bayes risk for estimating (θI) with squared l2 loss from data (6.2). If µ∗ is least

favorable then by de�nition

(6.12) β(µ∗) = sup
{
β(µ) : µ ∈Ms

p,q

}
.

We will now use (2) to show that a least favorable distribution makes the coordinates of (θI) indepen-

dent. Suppose µ is an arbitrary distribution for the vector (θI). Let µI denote the prior distribution of

each scalar component θI . From this prior we will derive another prior µ̄ which makes the coordinates

(θI) independent random variables. Set µ̄j = AveIj (µI). Then this quantity is the average of all the µI

on one level j. This prior makes the θI identically independent within one resolution level, with j �xed.

This prior µ̄ is less favorable than µ. The Bayes risk of µ is the sum of coordinate-wise risks:

(6.13) β(µ) =
∑
I∈I

Eµ
(
E
(
θI | (yI′)I′∈I

)
− θI

)2
.

Note that (yI′)I′∈I gives us more information about θI than just yI . Thus

Eµ
(
E
(
θI | (yI′)I′∈I

)
− θI

)2 ≤ Eµ (E (θI |yI)− θI)2
.

Let b(π) denote the Bayes risk in the scalar problem of estimating ξ from data. Here v = ξ + z with

z ∼ N
(
0, σ2

)
and ξ ∼ π. Then the right side of (6.13) is b (µI) and

(6.14) B(µ) ≤
∑
I∈I

b (µI) .
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We can examine (6.7) and consider it as a function of the distribution π to con�rm that this scalar

Bayes risk is concave. This means

AveI∈Ij (b (µI)) ≤ b
(
AveI∈Ij (µI)

)
.

We conclude

β(µ) ≤
∑
j

2jb (µ̄j) = β(µ̄).

This means exactly that µ̄ is less favorable than µ because its Bayes risk is bigger. Lastly, we note

that the moment sequence of µ̄ is given by:

Eµ̄j |θIj,k |p∧q = AveI∈Ij (EµI |θI |p∧q) = AveI∈Ij
(
τp∧qI

)
= τ̄p∧qI .

Hence we can apply (6.11) and

µ ∈Ms
p,q =⇒ µ̄ ∈Ms

p,q.

So from any given candidate µ for a least favorable prior we derive µ̄ which is less favorable but

still satis�es (6.12). In short, (2) implies we may �nd a least favorable measure within the subclass of

measures having coordinates which are identically independent within each resolution level.

For any given prior π on the scalar ξ obeying Eπ|ξ|p∧q ≤ τp∧q we have by (6.7) (that is, the fact that

this risk is minimax)

b(π) ≤ ρp∧q(τ, ε).

Then by (6.14)

(6.15) β(µ) ≤
∑
I

ρp∧q (τI , ε) .

This means that no prior inMs
p,q can obtain a larger Bayes risk than

(6.16) sup

{∑
I

ρp∧q (τI , ε)

}
subject to τ ∈ Θs

p,q.

We show later that this supremum is �nite when s+p−1 > (2∧p∧ q)−1 or when p = q = 2, s = 0; the

supremum is attained by a sequence called τ∗. We have equality in (6.15) if the prior on coordinate I

is chosen to be least-favorable for ρp∧q (τI , ε). Choosing coordinate priors in this way from the sequence

τ∗ yields a sequence prior µ∗which is least favorable.

The Bayes rule for u∗ is

θ̂∗I = δ(τ∗I ,ε,p∧q)
(yI) , I ∈ I.

These τ∗I are all equal within one resolution level by construction and Theorem 26 is proved. �
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6.1.6. A Dyadic Renormalization.

Proof. Proof of Theorem 34.

We now need to prove 34. By formula (6.16) we have B∗
(
ε,Θs

p,q

)
= val (Pε,C) where we de�ne (Pε,C)

to be the optimization problem

(Pε,C) sup

∞∑
j=0

2jρ (tj , ε) subject to

∞∑
j=0

(
2sj
(
2jtpj

) 1
p

)q
,

with just boundedness if p =∞ or q =∞. Here ρ = ρp∧q.

De�ne the optimization problem (Qε,C) on the space of bilateral sequences T =
{

(tj)
j=∞
j=−∞

}

(6.17) (Qε,C) sup

∞∑
j=−∞

2jρ (tj , ε) subject to

∞∑
j=−∞

(
2βjtj

)q ≤ Cq.
Set β = s+ 1

p . We can see that this problem is very similar to (Pε,C). If a unilateral sequence (tj)
∞
j=0

is solution for the unilateral problem (Pε,C) then the extension to a sequence which is a solution to

(Qε,C), call it t̃j is de�ned by setting t̃j = 0 for j < 0 and t̃j = tj for j > 0. We conclude that

val (Pε,C) ≤ val (Qε,C)

for all ε > 0 and C > 0. On the other hand, if a sequence (tj) is a solution to (Qε,C), then the sequence

t̃j formed by dropping the j < 0 portion from (tj) is a solution to (Pε,C). Moreover, the part of the

objective function lost in dropping the negative indexes is bounded by ε2. This is because ρp (tj , ε) ≤ ε2

implies
∑
j<0 2jρ (tj , ε) ≤

∑
j<0 2jε2 = 1 · ε2 = ε2. Hence

val (Qε,C) ≤ val (Pε,C) + ε2

for all ε > 0 and C > 0. This ε2 is asymptotically negligible. Thus val (Pε,C) ∼ val (Qε,C) as ε→ 0. We

must show the following to prove the theorem. �

Fact 36. If β > 1/(2 ∧ p ∧ q) then

(6.18) val (Qε,C) = γ(ε, C)C2(1−r)ε2r

for ε > 0, where r = β−1/2
β > 0 and γ(ε, C) is a continuous, periodic function of log2(ε, C).

We set

Jρ,ε(t) = ε2
∞∑
−∞

2jρ (tj/ε, 1)
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and

Jρ,β(t) =

( ∞∑
−∞

2jβqtqj

) 1
q

.

Because of the properties of the risk (6.8), we have

val (Qε,C) = sup Jρ,ε(t) subject to Jq,β(t) ≤ C.

Let (Ua,ht)j = atj−h. Note that

Jρ,ε (Uε,ht) = ε22hJρ,1(t),

and also,

Jq,β (Uε,ht) = ε2βhJq,β(t).

These scaling relations imply that if ε = εh = 2−βh for h an integer, and if (tj) is a solution to the noise-

level 1 problem (Q1,C), then the sequence t̃ = Uε,ht is a solution to the noise-level ε problem (Qε,C).

Furthermore,

val (Qεh,C) = Jρ,ε
(
t̃
)

= ε2h2hJρ,1(t) =
(
ε2h
)r
val (Q1,C) .

This is because ε2h2h =
(
ε2h
)r
. Recall r = β−1/2

β , then

(
ε2h
)r

=
(
2−2βh

) β−1/2
β =

(
2−2(β−1/2)h

)
=
(
2−2βh2h

)
= ε2h2h.

More generally for any ε > 0 and h an integer,

(6.19) val (Qε,C) = ε22hval
(
Q1,Cε 2−βh

)
.

Choose the integer h = h(ε, C) so that C
ε 2−βh exceeds 1 by as little as possible:

C

ε
2−βh = 2βη ∈

[
1, 2β

)
.

Solving this for h one gets h =
⌊
β−1 log2(C/ε)

⌋
, where η is the corresponding fractional part and

ε22h = ε2(C/ε)β
−1

2−1. Combining this with (6.19) and noting that 2− β−1 = 2r yields

val (Qε,C) = ε2rC2(1−r)2−ηval
(
Q1,2ηβ

)
.

Now (6.19) shows that 2−xval
(
Q1,2βx

)
= 2k−xval

(
Q1,2β(x−k)

)
for each integer k, so

γ(ε;C, β, p, q) = 2−η(ε,C)val
(
Q1,2ηβ

)
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is a periodic function of η and hence of log2(C/ε) for �xed β. To prove Theorem (34) we now only need

continuity. Finiteness and continuity follow from the following fact.

Fact 37. Let TC denote the class of bilateral sequences (tj) such that Jq,β(t) ≤ C. If β · (2∧ p∧ q) > 1,

then the class of sequences
{(

2jρ (tj)
)

: t ∈ TC
}
is a compact subset of l1; the maximum

∑∞
−∞ 2jρ (tj)

over t ∈ TC is �nite, and the maximum is attained by some t ∈ TC . The maximum value of J1,ρ over

TC is continuous in C.

This is proved by using the asymptotics (6.9) and (6.10). Because Jq,β(t) ≤ C, the sum
∑∞
−∞ 2jρ (tj)

is bounded in l1. Let's examine the case where p ≥ 2. Consider

∞∑
−∞

2jρ (tj) ∼
∞∑
−∞

2jt2j =

∞∑
−∞

∣∣2jt2j ∣∣ ≤ ∞∑
−∞

2jβqtqj ≤ C
q.

Clearly the set of sequences is closed and totally bounded. The maximum of this sequence is bounded

by Cq. This quantity is continuous in C.

6.1.7. Asymptotic Equivalence. Now we prove Theorem (35). Firstly, note that we have not considered

that case where either p =∞ or q =∞. By the de�nition of minimax risk, R∗
(
ε; Θs

p,q

)
is the supremum

of Bayes risks for the priors supported in Θs
p,q. Let τ ∈ Θs

p,q. Consider the prior de�ned by letting each

coordinate of the prior be the one which attains the minimax risk ρ∞ (τI , ε) in the scalar bounded normal

mean problem. This prior is supported in Θs
p,q and has Bayes risk

∑
I ρ∞ (τI , ε). This coordinate-wise

minimax risk is a lower bound on the minimax risk. We �nd the best bound of this form by solving the

optimization problem

sup

{∑
I

ρ∞ (τI , ε) : τ ∈ Θs
p,q

}
.

This problem is the same as (6.16) except we have ∞ instead of p ∧ q. Thus we have the risk bound

of Theorem (35), equation (6.4) by the same arguments as last section. We must now prove (6.5). This

assertion is the same as saying that there exist priors which are almost least favorable for the enlarged

minimax problem. The phrase 'almost least favorable' is embodied in (6.20). We will show that for

each η > 0 we may construct a sequence of priors v(h), h = 1, 2, ... such that along specially dyadically

generated sequences with

εh = 2−h(s+1/p),

h = 1, 2, ... we have for large enough h that

(6.20) B
(
v(h)

)
≥ B∗ (εh;C) (1− η).
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These priors will be supported in Θs
p,q (C · (1 + η)). We can conclude that

R∗ (εh;C · (1 + η)) ≥ B∗ (εh;C) (1− η),

as h→∞. Recall that in the requirements of the theorem s+ 1/p > 1/2. Then since r = s+1/p−1/2
s+1/p ,

r > 0 always. Also, r < 1. Then the quantity r(1− r) > 0, and (1 + η)r(1−r) > 1. Then as h→∞ note

(1 + η)r(1−r)R∗(εh, C) ∼ (1 + η)
r(1−r)

(
γ̃(εh)Cr(1−r)ε2h − ε2h

)
≥ γ̃(εh)Cr(1−r)(1 + η)r(1−r)ε2h − ε2h

= R∗ (εh, C(1 + η)) ≥ B∗(εh, C)(1− η) ∼ γ(εh)Cr(1−r)ε2rh (1− η).

Divide this inequality on both sides by (1 + η)r(1−r) to get

R∗(εh, C) ≥ B∗(εh, C)
1− η

(1 + η)r(1−r)

or

R∗ (εh, C) ≥ B∗ (εh, C) (1 + o(1)) .

The argument for dyadic sequences c · 2−h(s+1/p) where c 6= 1 is similar to the above argument. Thus

we have Theorem 35. We know that

val (Qεh,C) = val (Q1,C)
(
ε2h
)r
.

Consider (Q1,C). The last section implicitly de�ned a countable sequence of prior distributions µ̄j

which satis�es
∑∞
−∞ 2jb1 (µ̄j) = val (Q1,C), where b1 stood for the Bayes risk in the ε = 1 scalar problem

v = ξ+z with z standard normal. We can renormalize the constant which attains (Qεh,C) for h = 1, 2, ....

We must now establish the earlier assertions of the section. For η > 0 we can �nd a near solution to

(Q1,C) with certain additional support properties. We can �nd �nite positive integers J and M so that

(1) For −J ≤ j ≤ J there is a prior distribution µj for a scalar random variable ξ.

(2) Each µj is supported in [−M,M ].

(3) The moment sequence tp∧qj = Eµj |ξ|p∧q obeys
∑J
−J 2jβqtqj ≤ Cq.

(4) The coordinate-wise Bayes risks obey
∑J
−J 2jb1 (µj) ≥ val (Q1,C) · (1− η).

De�ne for −J ≤ j ≤ J an in�nite sequence of random variables (Xj,k)
∞
k=0 with Xj,k identically indepen-

dent distributed as µj . Suppose h > J and de�ne random variables (θI) by

θI = εh ·Xj,k,
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with I ∈ Ij+h, for −J ≤ j ≤ J , and θI = 0 otherwise. Denote µ(h) as the distribution of the sequence

(θI) just de�ned.

When estimating (θI) from the sequence data, the independence of θI and zI makes the Bayes risk

add coordinate-wise.

(6.21) B
(
µ(h)

)
= ε2h

J∑
−J

2j+hb1 (µj) =
(
ε2h
)r J∑
−J

2jb1 (µj) ≥
(
ε2h
)r · val (Q1,C) (1− η)

Here we have applied (4). This prior above is then almost least favorable. Also, this prior is almost

supported in θsp,q (C · (1 + η)) in the following sense.

Fact 38. De�ne the event

Aη =
{
‖θ‖bsp,q ≤ C (1 + η)

}
.

Then

µ(h) (Aη)→ 1, h→∞.

Proof. We prove this for p, q <∞. De�ne random variables

Lj,h = 2(j+h)s

2j+h−1∑
k=0

|θj+h,k|p
 1

p

.

Thus, the event Aη is equivalent to
{(∑

j L
q
j,h

)
≤ C · (1 + η)

}
by the properties of the Besov norm.

Note that εh2hs = 2−
h
p . Then let

V pj,h = Ave0≤k<2j+h |Xj,k|p =
1

2j+h

2j+h∑
k=0

|Xj,k|p .

Thus, Lj,h = 2j(s+1/p)Vj,h. Now the Xj,k are bounded random variables and therefore Vj,h is the

mean of bounded random variables, thus

Prob
{
V pj,h > E

(
V pj,h

)
+ ηj

}
→ 0, h→∞

for any positive constant ηj > 0. Note E
(
V pj,h

)
= Eµj |Xj,k|p, and one of our properties of (µj), the

distribution of Xj,k, was that

J∑
j=−J

2j(s+1/p)q
(
Eµj |Xj,k|p

) q
p = Cq.
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Here we have just used the assumption p ≤ q to set p ∧ q = p. Then by setting ηj small, we conclude

Prob


∑

j

Lqj,h

 1
q

≤ C(1 + η)

→ 1, h→∞.

�

We now show that this implies the theorem. We let ν(·) = µ(·|A). Then provided µ (Ac) is small, ν

and µ have almost the same Bayes risks. The phrase almost the same is clari�ed in the Fact below.

For the rest of the section, let π be a prior distribution for the vector parameter ξ = (ξ0, ξ1, ...) and let

β(π) denote the Bayes risk for the problem of estimating ξ0 with squared error loss from data vi = ξi+zi,

i = 0, 1, 2, 3, ... where zi ∼ N(0, 1) and are identically independent.

Fact 39. Let ξ0 be a bounded Random Variable with |ξ0| ≤M . Let ω be the conditional prior distribution

ω(·) = π (·|A)

where A is an event. Then

|β(ω)− β(π)| ≤ 8M2 · π (Ac) .

Proof. What we have here are two di�erent Bayes risks for a quantity X both based on di�erent priors.

Note that the Bayes rules (estimators) are bounded almost everywhere by M and that their squared

errors are bounded almost everywhere by (2M)
2
. The Bayes risks are thus expectations of squared

errors that are bounded almost everywhere by (2M)
2
. The L1 distance between π and ω is P (Ac).

The expectation of an almost everywhere bounded random variable under two di�erent measures has

a di�erence that is controlled by L1 distance between the measures, times the bound on the random

variable. �

We can now apply these Facts to prove the theorem. Let ν(h) = µ(h) (·|Aη). Then by the de�nition

of Aη, ν
(h) is supported in Θs

p,q (C (1 + η)). The Bayes risk is

B
(
ν(h)

)
=

J∑
−J

2J+h∑
k=0

b̃j,k

where

b̃j,k = inf
θ̂
Eν(h)

(
θ̂(y)− θIj,k

)2

.

We now do a renumbering of the dyadic intervals in order to apply the Fact above. Let Jj,k(i),

i = 0, 1, 2, ... be an enumeration of the dyadic intervals beginning with Jj,k(0) = Ij,k. We can do this
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because the dyadic intervals are a countably in�nite set. Let ξ0 = θIj,k/ε and ξi = θJj,k(i)/ε. It does

not matter which ξi goes with which θJj,k(i), it only matters that there is a one to one correspondence

between the two. Let πj,k be the prior induced on ξ by the prior µ on θ; and let ωj,k be the prior induced

on ξ by ν(h). Then since θI = εh ·Xj,k,

b̃j,k = ε2hβ (ωj,k)

where

ωj,k(·) = πj,k
(
·|θ ∈ Θs

p,q

)
.

Apply Fact 39.

β (ωj,k) ≥ β (πj,k)− 8M2µ(h)
(
Acη
)

Now since coordinates are independent and identically independent within one level of the prior µ,

β (πj,k) = b1 (µj) ,

for 0 ≤ k < 2j+h. It follows that

β (ωj,k)→ b1 (µj) ,

as h → ∞ uniformly in 0 ≤ k < 2j+h. Combining the above with ε2h2h =
(
ε2h
)r

and ηh → 0, (6.21)

gives

B
(
ν(h)

)
≥ ε2h

J∑
−J

2j+hb1 (µj) (1 + o(1)) =
(
ε2h
)r J∑
−J

2jb1 (µj) (1 + o(1))

≥
(
ε2h
)r · (val (Q1,C) (1− η)) (1 + o(1)).

This is true for each η > 0, so we get (6.20).

6.1.8. Near-Minimax Threshold Estimates. Donoho and Johnstone have now derived an asymptotically

minimax estimator for Θs
p,q built out of a coordinate-wise nonlinear minimax estimator. Unfortunately,

like the oracle risks of [8], these nonlinearities are not available to us in a closed form. We must

approximate them by using soft or hard thresholding. Let

δλ(y) = sgn(y) (|y| − λ)+

denote the soft thresholding operator for this section. Recall that this operator is continuous and

Lipschitz. Also de�ne

δµ(y) = y1{|y|≥µ}.

This operator is discontinuous.
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Suppose our data are of the form yI = θI + zI . Here the θI satisfy the moment constraint τ ∈ Θs
p,q.

We threshold coordinate-wise. Set λ = (λI) and

θ̂λI = δλI (yI) , I ∈ I.

The minimax risk for soft-threshold estimates is de�ned

B∗λ(ε,Θ) = inf
(λI)

sup
τ∈Θ

E
∥∥∥θ̂λ − θ∥∥∥2

2
.

For hard thresholds θ̂µI = δµI (yI) we de�ne the minimax risk B∗µ(ε,Θ) similarly. Here we establish

the following theorem.

Theorem 40. There are constants Λ(p) and M(p) both �nite with

B∗λ
(
ε,Θs

p,q

)
≤ Λ(p ∧ q)B∗

(
ε,Θs

p,q

)
B∗µ
(
ε,Θs

p,q

)
≤M(p ∧ q)B∗

(
ε,Θs

p,q

)
.

The thresholds which achieve these performances have the form

λI = ε · l
(
tλj , ε, p

)
µI = ε ·m

(
tµj , ε, p

)
for I ∈ I with certain functions l and m and sequences tλ and tµ.

In order to show this, we must reconsider the sequence experiment where we found a thresholding

sequence component-wise. We are estimating θ when the measure µ is known to lie in Ms
p,q. Suppose

we are using thresholds λ = (λI). Denote r (λ, π) = Eπ (δλ(ν)− ξ)2
of the estimator δν in the scalar

problem ν = ξ+ z with ξ ∼ π and z ∼ N
(
0, ε2

)
. We can then rewrite the risk of the threshold estimator

as

L (λ, µ) =
∑
l

r (λI , µI) ,

and the minimax threshold risk is

B∗λ
(
ε; Θs

p,q

)
= inf

λ
sup

µ∈Ms
p,q

L (λ, µ) .

In order to calculate this, we need the following theorem.

Theorem 41. We have

(6.22) inf
λ

sup
µ∈Ms

p,q

L (λ, µ) = sup
µ∈Ms

p,q

inf
λ
L (λ, µ) .
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Proof. We set the infλ r (λ, µ) = ρ∗(π) and letting λ∗(π) denote the minimizing threshold λ. Hence

infλ L(λ, µ) =
∑
I ρ∗ (µI) and the right side of (6.22) is equal to

sup

{∑
I

ρ∗ (µI) : µ ∈Ms
p,q

}
.

This supremum is attained by some measure µ∗, which is a least favorable prior. There is a corre-

sponding sequence λ∗ = (λ∗ (µ∗I)) of thresholds which are optimal if µ∗ is the real prior.

We claim (λ∗, µ∗) is a saddlepoint of L. Let lI (µI) = r (λ∗I , µI). Then

L (λ∗, µ) =
∑
I

lI (µI) .

We have �xed λ∗I , thus µI only plays a role in the expected value part of lI (µI). Thus, lI is a�ne in

µI .

lI (µI) = lI (µ∗I) + l̇I (µI − µ∗I)

where l̇I is a linear function. We have

(6.23) L (λ∗, µ) = L (λ∗, µ∗) +
∑
I

l̇I (µI − µ∗I) .

Let m (µI) = ρ∗ (µI). Then infλ L(λ, µ) =
∑
I m (µI). Because µ∗ is least favorable for thresholds,

we may write ∑
I

m (µ∗I) = sup
µ∈Ms

p,q

∑
I

m (µI) .

If we follow a path along (1 − t)µ∗ + tµ away from µ∗ towards µ ∈ Ms
p,q, the quantity m (µI) must

decrease. This means that the pathwise derivative must decrease. With ṁI the directional derivative of

m at µ∗I ,

(6.24)
∑
I

ṁI (µI − µ∗I) ≤ 0.

Comparing (6.23) with (6.24) shows that if

l̇I (µI − µ∗I) ≤ ṁI (µI − µ∗I)

for I ∈ I, we would have

L (λ∗, µ) ≤ L (λ∗, µ∗) .

The authors prove this by considering the quantity Γ (π1, π2) = r (λ∗ (π1) , π2) and its directional

derivatives. �
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6.1.9. Near Minimaxity among all estimates. De�ne the following quantities in terms of the scalar situ-

ation. Let

ρλ,p(τ, ε) = inf
λ∈[0,∞]

sup

(E|ξ|p)
1
p≤τ

E (δλ(ν)− ξ)2

and

ρµ,p(τ, ε) = inf
µ∈[0,∞]

sup

(E|ξ|p)
1
p≤τ

E (δµ(ν)− ξ)2

for the soft (λ) and hard (µ) thresholding operators respectively. To compare these estimates with

the Bayes Minimax estimates we de�ne

Λ(p) = sup
τ,ε

ρλ,p(τ, ε)

ρp(τ, ε)
, M(p) = sup

τ,ε

ρµ,p(τ, ε)

ρp(τ, ε)
.(6.25)

Donoho and Johnstone show in [7] that for p ∈ (0,∞], Λ(p) <∞ andM(p) <∞. Brie�y summarizing

the proof of this result, the quantities ρλ,p(τ, ε) and ρµ,p(τ, ε) are the same continuous quantities from

[8]. These quantities are bounded. Also, Λ(p),M(p) > 1. In [7], the following theorem is proved.

Theorem 42. We have
ρλ,p(τ,ε)
ρp(τ,ε) and

ρµ,p(τ,ε)
ρp(τ,ε) → 1 as n→ 0 and ∞.

Because all quantities involved are bounded, these ratios are bounded. In fact, numerical experiments

performed by the authors indicate these quantities are smaller than 2.22 for all p ≥ 2.

Denote

rλ,p(λ, τ ; ε) = sup
E|θ|p≤τp

E (δλ(ν)− θ)2
.

This denotes the worst case risk of using threshold λ under our given conditions. [7] shows this

function to be concave in τp for each �xed λ and ε. Also, let

l(τ, ε, p) = arg min
λ
rλ,p(λ, τ ; ε)

stand for the minimax threshold. The quantities rµ,p and m(τ, ε, p) from Theorem 40 are de�ned

similarly.

Combining this section and the last we can derive the near-minimaxity of thresholds among all

estimates. Let τ∗ = (τ∗I ) be the moment sequence associated with µ∗. As µ∗ ∈ Ms
p,q, τ

∗ ∈ θsp,q. By

construction, it must be true that

ρ∗ (µ∗I) ≤ rλ,p∧q (τ∗I , ε) .

Because µ∗I is the optimizing quantity, equality holds. Hence

B∗λ
(
ε,Θs

p,q

)
=
∑
I

ρ∗ (µ∗I) by (6.22)



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 70

=
∑
I

ρλ,p∧q (τ∗I , ε) ≤ Λ(p ∧ q)
∑
I

ρp∧q (τ∗I , ε) by (6.25)

≤ Λ(p ∧ q)B∗
(
ε; Θs

p,q

)
by (6.16).

This is the proof for soft thresholds, the proof for hard thresholds is similar to the above.

6.1.10. Minimax Linear Risk. We now wish to show that for p < 2, linear methods are unable to perform

as well as the minimax rate of convergence described above.

We follow the lines of [10]. We will need the de�nition of a quadratic hull. Let Θ be a set of sequences.

Let Θ2
+ be the set of sequences θ2 =

(
θ2
I

)
I∈I arising from θ ∈ Θ. Then

QHull(Θ) =
{
θ : θ2 ∈ Hull

(
Θ2

+

)}
.

[10] has shown that

QHull
(
Θs
p,q

)
= Θs

max(p,2),max(q,2)

R∗L (ε; Θ) = R∗L (ε,QHull(Θ))

and

R∗ (ε;QHull(Θ)) ≤ R∗L (ε;QHull(Θ)) ≤ 5

4
R∗ (ε;QHull(Θ))

for a general class of sets Θ.

These facts mean that linear methods can attain only suboptimal rates of convergence when p < 2.

For example, suppose p ≤ q < 2. Then we have

R∗L
(
ε,Θs

p,q

)
= R∗L

(
ε,QHull

(
Θs
p,q

))
= R∗L

(
ε,Θs

2,2

)
l R∗

(
ε,Θs

2,2

)
∼ Const

(
ε2
)r′

as ε→ 0. Here r′ = r′(s, p, q) = r(s, 2, 2). As r(s, 2, 2) < r(s, p, q) for p < 2, linear estimators cannot

attain the optimal rate of convergence.

6.1.11. Function Estimation in White Noise. Up to now we have been considering minimax and near-

minimax estimation in terms of the sequence model by using the wavelet coe�cients. We can now

consider the correspondence with Nonparametric Regression. We consider the problem of estimation in

the white noise model. We observe the stochastic process Y (t), t ∈ [0, 1] where

(6.26) Y (dt) = f(t)dt+ εW (dt)
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with W a standard Wiener process, and f the function of interest. We estimate f on the basis of

these data and the foreknowledge that f ∈ F a convex class of functions. We de�ne the minimax risk

R (ε;F) = inf
f̂

sup
F
E
∥∥∥f̂ − f∥∥∥2

2

and the minimax linear risk

RL(ε;F) = inf
f̂ linear

sup
F
E
∥∥∥f̂ − f∥∥∥2

2
.

We relate this problem to the data later. Now we show the asymptotic equivalence of the function

space risks with the sequence space risks.

Let's consider general classes of smooth functions, as in the Besov spaces.

Theorem 43. Let the wavelet basis be of regularity r > σ. Let F denote the class of all functions with

|f |Bσp,q [0,1] ≤ 1. There exist c and C so that

(6.27) R∗
(
ε,Θs

p,q(c)
)

(1 + o(1)) ≤ R(ε,F) ≤ R∗
(
ε,Θs

p,q(C)
)

(1 + o(1)).

Moreover, an estimator nearly attaining the minimax risk for the sequence problem yields an estimator

nearly attaining the risk in the function problem.

We de�ne

xk =

ˆ 1

0

φl,kY (dt)

yI =

ˆ 1

0

ψIY (dt)

for k ∈ K and I ∈ J . Then

xk = βl,k + εzk

and

yI = αI + εzI .

Let Θ denote the collection of inhomogeneous wavelet expansions
(
(βl,k)k∈K , (αI)I∈J

)
arising from

functions f ∈ F . The Parseval relation gives us

R(ε,F) = R∗(ε,Θ).

We now apply (2). By additivity of coordinate risks and Independence of noise, if Θ0 = R#(K) then

R∗ (ε,Θ0 ×Θ1) = R∗ (ε,Θ0) +R∗ (ε,Θ1) = #(K)ε2 +R∗ (ε,Θ1) .
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Thus

R∗
(
ε, Θ̃s

p,q(c)
)
≤ R∗(ε,Θ) ≤ #(K)ε2 +R∗

(
ε, Θ̃s

p,q(C)
)
.

We have

{0} × Θ̃s
p,q(C) ⊂ Θs

p,q(C) ⊂ R2l × Θ̃s
p,q(C).

So

R∗
(
ε, Θ̃s

p,q

)
≤ R∗

(
ε,Θs

p,q

)
≤ R∗

(
ε, Θ̃s

p,q

)
+ 2lε2.

Combining these inequalities and noting that the terms O
(
ε2
)
are negligible asymptotically yields

(6.27).

We attain this risk asymptotically by shrinking wavelet coe�cients using the minimax Bayes estimator

for the sequence model; speci�cally

β̂l,k = xk

α̂I = δ∗j (yI)

for k ∈ K and I ∈ J .

6.1.12. Triebel Spaces. We note here that all the results derived for the Besov spaces can also be applied

to the Triebel spaces. Let χj,k denote the indicator function of
[
k/2j , (k + 1)/2j

]
. We de�ne the norm

for this space in terms of the wavelet coe�cients.

|α|f̃sp,q =

∥∥∥∥∥∥
(∑
J

(
2js|αI |χI

)q) 1
q

∥∥∥∥∥∥
Lp[0,1]

The seminorm on functions f with wavelet coe�cients α = α(f) via

|f |F̃σp,q = |α|f̃sp,q .

This class of functions includes the Sobolev spaces, which are not a subset of the Besov spaces.

All of the properties necessary for the proofs of this part are also properties of the Triebel spaces.

The most interesting of these are the following.

(1) We know Jsp,q(τ) = ‖τ‖p
f̃sp,q

is a convex functional of the moment sequence τp∧qI (p, q <∞).

(2) If (τj,k) is an arbitrary positive sequence, and we set τ̄p∧qI = AveI∈Ij
(
τp∧qI

)
, then

‖τ̃‖f̃sp,q ≤ ‖τ‖f̃sp,q .
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These properties are the ones which allow us to �nd a least favorable prior and set the whole sequence

of proofs in motion. The �rst property is evident by inspection. To prove the second we consider p ≤ q

and p ≥ q separately.

In the case p ≤ q, de�ne fj =
∑
Ij

2jspτpI χI . Then with r = q/p ≥ 1 we have

‖τ‖p
f̃sp,q

=

ˆ 1

0

∑
j≥0

frj

1/r

dt.

As fj ≥ 0 and tr is convex,

ˆ 1

0

∑
j≥0

fj(t)
r

1/r

dt ≥

∑
j≥0

(ˆ 1

0

fj(t)dt

)r1/r

.

Now

ˆ 1

0

fj(t)dt = 2jspAveI∈Ij (|τI |p) = 2jsptpj

say. The average measure µ̄ has moment sequence τ̄I = tj , so

‖τ̄‖p
f̃sp,q

=

∑
j≥0

(
2jsptpj

)r1/r

and the second property follows by combining the inequalities.

In the case q ≤ p de�ne fj =
∑
Ij

2jspτ qI χI and set r = p/q ≥ 1. Then

‖τ‖p
f̃sp,q

=

ˆ 1

0

∑
j≥0

fj

r

dt.

As fj ≥ 0 and tr is convex, Jensen's inequality gives

ˆ 1

0

∑
j≥0

fj(t)

r

dt ≥

ˆ 1

0

∑
j≥0

fj(t)dt

r

.

Now

ˆ 1

0

fj(t)dt = 2jspAveI∈Ij (|τI |q) = 2jsqtqj
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say. The average measure µ̄ has moment sequence τ̄I = tj , so

‖τ̄‖p
f̃sp,q

=

∑
j≥0

2jsptqj

r

and the second property follows by combining the inequalities.

This eventually leads us to a theorem parallel to the one for the Besov spaces. We let Φsp,q denote

the Triebel space in the sequence space, and Φsp,q(C) denote a set of bounded sequences just as in the

de�nitions of Θs
p,q(C) from before.

Theorem 44. Let the wavelet basis be of regularity r > m and let 1 < p < ∞. Let F denote the class

of f with
∥∥f (m)

∥∥
Lp[0,1]

≤ 1. There exist c and C, depending on the wavelet basis, so that

R∗
(
ε,Φmp,2(c)

)
(1 + o(1)) ≤ R(ε,F) ≤ R∗

(
ε,Φmp,2(C)

)
(1 + o(1)).

Moreover, an estimator attaining the minimax risk for the sequence problem yields an estimator

attaining the minimax risk in the function problem.

This particular subset of the Triebel space is the Sobolev space.

6.1.13. Nonparametric Regression and White Noise. We can now �nally connect our results to the non-

parametric regression model (6.1). De�ne the regression process {Yn(t) : t ∈ [0, 1]} via t0 = 0, Yn(0) = 0

and

Yn (ti) =
1

n

∑
t≤ti

yi,

for i = 1, ..., n with interpolation between the ti by independent Brownian BridgesW0,i: for ti ≤ t ≤ ti+1

set

Yn(t) = Yn (ti) + (t− ti) yi+1 +
σ

n
W0,i (n (t− ti)) .

De�ne the step function

fn(t) =

n∑
i=1

f (ti) 1{ti−1≤t<ti}.

Then

Yn(dt) = fn(t)dt+ εW (dt)

where W is a Wiener process and ε = σ
n . In a probability space the di�erence between Y and Yn is

the same as the distance between f and fn.
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In [3], Brown and Low study the degree of the approximation of the experiments (Yn,F) by (Y,F).

Set

Dn(F) = sup
F

∥∥∥f̂ − fn∥∥∥2

2
.

They show that if Dn = o( 1
n ), then the experiments (Yn,F) and (Y,F) are indistinguishable by any

statistical tests. Consequently, if l is any bounded function and f̂ is any measurable estimator the worst

case risk

sup
F
E

(
l

(
nr
∥∥∥f̂ − f∥∥∥2

2

))
has the same asymptotic limit in both experiments. In other words, results in the nonparametric

regression model are identical to those in the white noise model. [9] presents two theorems without

proof. First we give the result for the lower bound.

Theorem 45. Let F consist of all function in a Bsp,q ball or an F
σ
p,q ball, σ > 0. Then

R(n,F) ≥ R∗( σ√
n
,F)(1 + o(1))

as n→∞.

Now we present the result for the upper bound.

Theorem 46. If F is a Besov or Triebel ball with either σ > 1/p, or with σ = 1, p, q ≤ 1; or if F is a

ball of functions of bounded variation, then

R(n,F) ≤ R∗( σ√
n
,F)(1 + o(1))

as n→∞.

Thus we see that the result are the same for the approximation and the white noise model and this

method is applicable.

7. Conclusion.

We have now considered many di�erent methods of approximating f(x). These methods are powerful,

but also somewhat limited. The methods of Part 2 are easy to apply, but we see that they give weak

convergence to the true f(x).

The most diverse method of estimation studied in this paper is the one in Part 4. This method works

for any f(x), but the bound of 2 log n can still become large. The risk derived in Part 5 is bounded by

a constant but requires that f(x) be a member of a very special space. Also, the thresholding of Parts
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4 and 5 is applied coordinate-wise. Deriving the appropriate threshold could take too much computing

time.

These methods can be improved upon by something called block thresholding. In this method the

wavelet coe�cients are grouped into blocks and are thresholded as one object. A norm is de�ned for

each block of values. This method requires less computing time, and the risk associated with block

thresholding is comparable to the one associated with coordinate-wise thresholding.

Another problem with the methods above is that they all deal with data that has error which is

distributed normally and is identically independent. In many real-life situations this is not practical.

For instance, one might consider the phenomenon of long memory. Intuitively, one might consider a

riverbank. Suppose every 1 foot square patch of ground by a river is assigned an x value. Then if a

patch of ground xj is next to a �ooded patch of ground xi, it is much more likely that xj would be

�ooded. This is called long memory dependence. It is expressed by

E (εiεi+j) ∼ C0|j|−α

where

yi = f (xi) + εi

and the εi are long memory Gaussian errors and α ∈ (0, 1]. Bounding thresholding operators with this

type of error is discussed in [18]. This is only one example of the many di�erent types of errors some of

which have yet to be examined with respect to this method.

Another problem which we encounter is with the orthonormal wavelet basis we use to perform the

wavelet transform. The problem is that if the wavelets have compact support, then their duals have

unbounded support. This makes computation costly timewise and not practical. To understand this,

let us recall w = Wy, where w is the vector of wavelet coe�cients, y is the vector of data, and W is

the transform matrix of Part 3. Since W is an orthogonal matrix, y = WTw. Now suppose W is a

bandlimited matrix as below.

W =



# # # 0 0 0 0
# # # # 0 0 0
# # # # # 0 0
0 # # # # # 0
0 0 # # # # #
0 0 0 # # # #
0 0 0 0 # # #


This means that W will have zeros on the edges and have a band of nonzero entries in the center.

The inverse of such a matrix would have global support, or very few zeros. This means that data

reconstruction takes a very long time. We can address this problem by considering the use of tight

frames. We relax the condition that our wavelets are orthogonal and allow redundancy in our basis for



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 77

the space. This means we may have linear dependence within our set of frames. Using these frames

means our dual matrix will have compact support.

Another area which has not been discussed here is that of nonstationary data. All of the data we

have considered has been equally spaced. This is rarely the case in real-life data. Data points are spread

unevenly. Theory using nonstationary wavelets has not yet been applied to soft or hard thresholding.

We may also use nonstationary tight frames to analyze data. Nonstationary tight frames have been

constructed from B-splines in [14, 15]. The re�nement matrices are based on adding knots to an initial

sequence of knots.

Therefore, we can see that there are many potential areas of study left to explore within the topic of

function estimation.

Part 3. Summary of the work of Li and Xiao in [18].

8. Preliminaries and Notations.

In this part we give a summary of the work of Li and Xiao in [18]. This paper analyzed data which

is equally spaced but has long memory error. It also uses block thresholding. We consider the non-

parametric regression

(8.1) Ym = g (xm) + εm, m = 1, 2, ..., n

where xm = m/n ∈ [0, 1] and ε1, ..., εn are errors. The function g, which is supported in [0, 1] belongs

to the class of functions H used in [11].

De�nition 47. H is the class of functions g such that for any i ≥ 0 there exists a set of integers Si for

which the following is true: card (Si) ≤ C32iγ and

For each j ∈ Si there exist constants a0 = g
(
j/2i

)
, a1, ..., aN−1 such that

∣∣∣∣∣g(x)−
N−1∑
i=0

al
(
x− 2−ij

)l∣∣∣∣∣ ≤ C12−is1 for all x ∈
[
j/2i, (j + ν)2i

]
.

For each j /∈ Si there exist constants a0 = g
(
j/2i

)
, a1, ..., aN−1 such that

∣∣∣∣∣g(x)−
N−1∑
i=0

al
(
x− 2−ij

)l∣∣∣∣∣ ≤ C22−is2 for all x ∈
[
j/2i, (j + ν)/2i

]
.

Here the errors are not normal and identically independent. Instead the errors εm are long memory

dependent. There exist two constants C0 > 0 and α ∈ (0, 1] such that

(8.2) r(j) = E (ε1ε1+j) ∼ C0 |j|−α
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where aj ∼ bj means that aj/bj → 1 when j →∞.

We have the same standard wavelet properties. Let φ(x) and ψ(x) be the mother and father wavelets.

Also let

φij(x) = 2i/2φ
(
2ix− j

)
ψij(x) = 2i/2ψ

(
2ix− j

)
.

And

αij =

ˆ
f(x)φij(x)dx βij =

ˆ
f(x)ψij(x)dx.

The work of Li and Xiao uses the Coi�ets. It lists these wavelets as having the property that

ˆ
xkφ(x)dx =

ˆ
xkψ(x)dx = 0 for k = 1, ..., N − 1.

The wavelet expansion of g(x) is

(8.3) g(x) =

2i0−1∑
j=0

αi0φi0j(x) +
∑
i≥i0

2i−1∑
j=0

βijψij(x)

where

αij =

ˆ 1

0

g(x)φij(x)dx βij =

ˆ 1

0

g(x)ψij(x)dx.

We assume the sample size is n = 2i. We de�ne a function h(n) so that 2i(n) ≈ h(n) means 2i(n) ≤

h(n) < 2i(n)+1.

These coe�cients are going to be block-thresholded. This means that they will be thresholded in

groups. At each level i, the integers {0, 1, ..., 2i − 1} are divided into blocks of length l.

Γik = {j : (k − 1)l + 1 ≤ j ≤ kl}

Here −∞ < k <∞.

The convergence rates of the Mean Integrated Square Error (MISE) are di�erent for α ∈ (0, 1) and

for α = 1.

We de�ne

Ĝi1(x) = n−1/2
n∑

m=1

Ymφi1m(x).

The n−1/2 is a part of the standard assumptions while performing wavelet decompositions. Also note

ProjVi0

(
Ĝi1

)
=

2i0−1∑
j=0

α̂i0jφi0j and ProjWi

(
Ĝi1

)
=

2i−1∑
j=0

β̂ijψij .
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We put B̂ik = l−1
∑

(ik) β̂
2
ij where

∑
(ik) denotes summation over j ∈ Γik and l denotes the block length.

For α ∈ (0, 1) our estimator is de�ned

(8.4) ĝ(x) =

2i0−1∑
j=0

α̂i0jφi0j(x) +

i1−1∑
i=i0

∞∑
k=−∞

∑
(ik)

β̂ijψij(x)

 I
(
B̂ik > δi

)

where 2i0 ' nα/(2N+α), the block length is l = (log n)
θ
with θ > 1/α and δi (i0 ≤ i < i1) are the

level-dependent thresholds satisfying δi = 48τ2
i with τ2

i = C4n
−α2−i(1−α) where C4 > 0 is de�ned by

(8.5) C4 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy.

Similarly, for α = 1, the estimator is de�ned

ĝ1(x) =

2i0−1∑
j=0

α̂i0jφi0j(x) +

i1−1∑
i=i0

∞∑
k=−∞

∑
(ik)

β̂ijψij(x)

 I
(
B̂ik > δi

)

where the smoothing parameter is chosen to satisfy 2i0 ' n1/(2N+1), the block length l = (log n)
θ

with θ > 1 and δi (i0 ≤ i < i1) are the level dependent thresholds satisfying δi = 48ξ2
i with ξ2

i =

2C0n
−1 log

(
n2−ie

)
. The only di�erence for α = 1 is in the threshold δi.

9. The main result of the paper.

Below is the main theorem of the paper.

Theorem 48. Let the wavelets φ and ψ, and the estimators ĝ and ĝ1 be given as before. Then there

exists a constant C5 = C (s1, s2, γ, C1, C2, C3, N, ν) > 0 such that the following hold:

(i) When α ∈ (0, 1),

sup
g∈H(s1,s2,γ,C1,C2,C3,N,ν)

E

ˆ
(ĝ − g)

2 ≤ C52−2s2α/(2s2+α).

(ii) When α = 1,

sup
g∈H(s1,s2,γ,C1,C2,C3,N,ν)

E

ˆ
(ĝ − g)

2 ≤ C5

(
log n

n

)2s2/(2s2+1)

.

Now we examine the proof.
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10. Summary of the proof of the main result.

We split the mean square error into parts and bound each part. Observe that orthogonality implies

E ‖ĝ − g‖22 = T1 + T2 + T3 + T4,

where

T1 =

∞∑
i=i1

2i−1∑
j=0

β2
ij ,

T2 =

2i0−1∑
j=0

E (α̂i0j − αi0j)
2

= E
∥∥∥ProjVi0 (Ĝi1 − g)∥∥∥2

2
,

T3 =

i1−1∑
i=i0

∞∑
k=−∞

E

I (B̂ik > δi

)∑
(ik)

(
β̂ij − βij

)2

 ,

T4 =

i1−1∑
i=i0

∞∑
k=−∞

P
(
B̂ik ≤ δi

)∑
(ik)

β2
ij .

We will need the following result.

Proposition 49. For every g ∈ H (s1, s2, γ, C1, C2, C3, N, ν) and our selected coi�ets,

|βij | ≤ ‖ψ‖1 C12−i(s1+1/2) if j ∈ Si

|βij | ≤ ‖ψ‖1 C22−i(s2+1/2) if j /∈ Si∣∣∣αij − 2−i/2g
(
j/2i

)∣∣∣ ≤ ‖φ‖1 C12−i(s1+1/2) if j ∈ Si

(10.1)
∣∣∣αij − 2−i/2g

(
j/2i

)∣∣∣ ≤ ‖φ‖1 C22−i(s2+1/2) if j /∈ Si

Note: these next lines are exactly the same in Hall 1999. As in Hall 1999 pg. 42, there exist real

numbers ri1m (m = 1, ..., n) which are small when n is large, such that

(10.2) αi1m =

ˆ
g(x)φi1m(x)dx = n−1/2

ˆ
g
(m
n

+
y

n

)
φ(y)dy ≡ n−1/2g

(m
n

)
− ri1m.

Thus we can write (8.4) as

Ĝi1(x) =

n∑
m=1

(αi1m + ri1m)φi1m(x) + n−1/2
n∑

m=1

εmφi1m(x).
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We can write then for any integer 0 ≤ i < i1

ProjWi

(
Ĝi1

)
=

2i−1∑
j=0

(βij + uij + Uij)ψij(x),

ProjVi0

(
Ĝi1

)
=

2i−1∑
j=0

(αi0j + νi0j + Vi0j)φi0j(x).

Since ProjVi1 (g) =
∑
j αi1jφi1j(x) we have for 0 ≤ i < i1, ProjWi

(g) = ProjWi

(
ProjVi1 (g)

)
. Now

ProjWi
(g) =

∑
j βijψij(x). Thus

βij =

n∑
m=1

αi1m 〈φi1m, ψij〉 .

We examine these decompositions. We have

(10.3) uij =

n∑
m=1

ri1m 〈φi1m, ψij〉 , νi0j =

n∑
m=1

ri1m 〈φi1m, φi0j〉 ,

and

(10.4) Uij =
1√
n

n∑
m=1

εm 〈φi1m, ψij〉 , Vi0j =
1√
n

n∑
m=1

εm 〈φi1m, φi0j〉 .

Recall that 〈f, g〉 =
´
fg, the inner product in L2([0, 1]). From Parseval's identity we have

i1−1∑
i=i0

2i−1∑
j=0

u2
ij +

2i0−1∑
j=0

ν2
i0j =

n∑
m=1

r2
i1m.

From (10.1) and (10.2) and our choice of γ in (47), we have

(10.5)

n∑
m=1

r2
i1m ≤ C1C3n

−(2s1+1−γ) + C2n
−2s2 ≤ Cn−2s2/(2s2+1).

Because our wavelets have compact support, there are at most 2i1−i non-zero terms of 〈φi1m, ψij〉,

m = 1, 2, ..., n. Moreover,

|〈φi1j , ψij〉| ≤ 2i/2−i1/2 ‖ψ‖∞ ‖φ‖1 and |ri1l| ≤ (C1 ∨ C2) 2−i1(s1+1/2).

Hence we have for all i ≥ i0

(10.6) |uij | ≤ C2i1−i2−i1(s1+1/2)2i/2−i1/2 ≤ C2−i(s1+1/2).
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Now we calculate the variance of Uij . Since EUij = 0 we have

Var
(
U2
ij

)
=

1

n

n∑
m=1

E
(
ε2m
)
〈φi1m, ψij〉

2
+

1

n

n∑
m=1

∑
k 6=m

E (εmεk) 〈φi1m, ψij〉 〈φi1k, ψij〉

(10.7) =
σ2

n
+

1

n

n∑
m=1

∑
k 6=m

r(m− k) 〈φi1m, ψij〉 〈φi1k, ψij〉 ≡
σ2

n
+ I1.

Recall n = 2i1 . By a change of variables we may write

I1 = 2i
n∑

m=1

∑
k 6=m

r(m− k)

ˆ ˆ
φ
(
2i1x−m

)
φ
(
2i1y − k

)
ψ
(
2ix− j

)
ψ
(
2iy − j

)
dxdy

(10.8) =

ˆ ˆ
φ(u)φ(v)


n∑

m=1

∑
k 6=m

r(m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

 dudv.

We consider the case where α ∈ (0, 1). From (8.2) and as n→∞,

n∑
m=1

∑
k 6=m

r(m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

∼ C0n
−α

n∑
m=1

∑
k 6=m

∣∣∣∣mn − k

n

∣∣∣∣−α ψ(2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

∼ C0n
−α
ˆ 1

0

ˆ 1

0

|x− y|−α ψ
(
2ix− j

)
ψ
(
2iy − j

)
dxdy

(10.9) = C0n
−α2(α−2)i

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy

uniformly for all u and v in the support φ. Combining (10.8) and (10.9) we have

(10.10) I1 ∼ C4n
−α2−i(1−α) as n→∞,

where C4 is the constant de�ned by (8.5). Thus

(10.11) Var (Uij) ∼ C4n
−α2−i(1−α) as n→∞.

Similarly we have EVi0j = 0 and for any �xed integer i

(10.12) Var (Vi0j) ∼ C6n
−α2−i0(1−α) as n→∞,
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where C6 > 0 is the constant given by

C6 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α φ(x)φ(y)dxdy.

A similar proof appears for α = 1. A log function appears because of the factor of |x− y|−α.

We are now in a position to bound the intervals T1, T2,T3, T4.

10.1. Bound for T1. Since g ∈ H, we use Proposition 49 to derive

T1 =

∞∑
i=i1

∑
j∈Si

+
∑
j /∈Si

β2
ij ≤ C

∞∑
i=i1

2iγ2−i(2s1+1) + C

∞∑
i=i1

2i2−i(2s2+1)

≤ Cn−(2s1+1−γ) + Cn−2s2 ≤ Cn−2s2/(2s2+1).

We have T1 ≤ Cn−2s2α/(2s2+α) when α ∈ (0, 1) and T1 ≤ C
(
n−1 log n

)2s2/(2s2+1)
when α = 1.

10.2. Bound for T2. From the de�nition of α̂i0j , (10.5) and (10.12), we have for α ∈ (0, 1),

T2 =

2i0−1∑
j=0

v2
i0j +

2i0−1∑
j=0

EV 2
i0j ≤ Cn

−2s2/(2s2+1) + C2i0n−α2−i0(1−α)

≤ Cn−2s2α/(2s2+α)

where this last inequality follows from (8.4).

When α = 1, T2 ≤ C
(

logn
n

)2s2/(2s2+1)

.

10.3. Bound for T3. We will need the following lemma to bound T3.

Proposition 50. Let Uij be the Gaussian random variables de�ned from (10.4). Let τ2
i = C4n

−α2−i(1−α)

and ξ2
i = 2C0n

−1 log
(
n2−ie

)
.

(i) If α ∈ (0, 1), then for all integers i, k, and for all real numbers λ ≥ 4lτ2
i ,

P

∑
(ik)

U2
ij ≥ λ

 ≤ exp

(
− λ

C7l1−ατ2
i

)

where C7 > 0 is an absolute constant.

(ii) If α = 1, then for all real numbers λ ≥ 4lξ2
i

P

∑
(ik)

U2
ij ≥ λ

 ≤ exp

(
− λ

C8ξ2
i log l

)
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where C8 > 0 is an absolute constant.

To bound T3, we write it as

T3 =

i1−1∑
i=i0

∞∑
k=−∞

E

I (B̂ik > δi

)∑
(ik)

(uij + Uij)
2


≤ 2

i1−1∑
i=i0

∑
k

E

I (B̂ik > δi

)∑
(ik)

U2
ij

+ 2

i1−1∑
i=i0

∑
k

E

I (B̂ik > δi

)∑
(ik)

u2
ij


(10.13) ≡ 2T ′3 + 2T ′′3.

From (10.5) we have

T ′′3 ≤
i1−1∑
i=i0

∑
k

∑
(ik)

u2
ij ≤

i1−1∑
i=i0

∑
j

u2
ij ≤ Cn−2s2/(2s2+1).

We only need to concern ourselves with T ′3. Let

Ai = {blocks at level i containing at least one coe�cient βij with indices in Si} ;

A′i = {blocks at level i containing no coe�cients βij with indices in Si} .

We split T ′3 into several parts

T ′3 =

is∑
i=i0

∑
k

E

I (B̂ik > δi

)∑
(ik)

U2
ij


+

i1−1∑
i=is+1

∑
k∈Ai

E

I (B̂ik > δi

)
I (Bik > δi/2)

∑
(ik)

U2
ij



+

i1−1∑
i=is+1

∑
k∈A′i

E

I (B̂ik > δi

)
I (Bik > δi/2)

∑
(ik)

U2
ij



+

i1−1∑
i=is+1

∑
k

E

I (B̂ik > δi

)
I (Bik ≤ δi/2)

∑
(ik)

U2
ij


≡ T31 + T32 + T33 + T34.

Each of these is bounded by applying Lemma 49 and (10.11) and (10.12).
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10.4. Bound for T4. We now decompose T4.

T4 ≤
i1−1∑
i=i0

∑
k∈Ai

P
(
B̂ik ≤ δi and Bik ≥ 2δi

)∑
(ik)

β2
ij

+

is∑
i=i0

∑
k∈A′i

P
(
B̂ik ≤ δi and Bik ≥ 2δi

)∑
(ik)

β2
ij

+

is∑
i=i0

∑
k

P
(
B̂ik ≤ δi and Bik < 2δi

)∑
(ik)

β2
ij

+

i1−1∑
i=is+1

∑
k∈Ai

P
(
B̂ik ≤ δi and Bik < 2δi

)∑
(ik)

β2
ij

+

i1−1∑
i=is+1

∑
k∈A′i

P
(
B̂ik ≤ δi

)∑
(ik)

β2
ij

≡ T41 + T42 + T43 + T44 + T45.

Each of these is bounded by using Proposition 49 and Proposition 50.

11. Important notes about this paper.

This is a paper that describes a method for dealing with data that is long memory dependent and

equispaced. To do this, it uses coi�ets, a special kind of wavelets with high vanishing moments for

the scaling function and the wavelets. This assumption is key to bounding the MISE and provides the

bounds in Lemma 49. Also, this paper uses block thresholding, not component-wise.

Part 4. Summary of the work of Hall, Turlach and Berwin in [11].

12. Preliminaries and Notations.

In this paper we are dealing with irregularly spaced data. There are many di�erent ways to deal with

this problem. This paper reassigns the data set by performing a linear interpolation on the data. From

this linear interpolation, new equispaced data points are drawn and used to interpolate the function.

Let Y = {(Xm, Ym) , 1 ≤ m ≤ n} be generated by the model Y (Xm) = g (Xm) + ξm for 1 ≤ m ≤ n,

where the design sequence X = {Xm, 1 ≤ m ≤ n} represents the ordered values of a random sample

from a distribution with density f having support J = [0, 1], and the ξm's are independent but not

necessarily identically distributed random variables. We could reorder this data set according to the
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Xm's. We may denote the reordered data as (Xmn, Ymn) since the rank of the data point depends on

how many points n there are in the set, but usually drop this notation and assume the data are in order.

Let wm, 1 ≤ m ≤ n, denote weight functions depending on the Xm's but not on the Ym's and such

that for integers ν1, ν2 satisfying ν1 < 0 ≤ ν2 we have wj = 0 unless ν1 ≤ j ≤ ν2. De�ne the interpolant

(12.1) Y (x) =
∑
m

wm(x)Ym for x ∈ (X−ν1 , Xn−ν2 ] .

This paper uses horizontal extrapolation on the other intervals, Y (t) ≡ Y (X−ν1) on [0, X−ν1 ] and

Y (t) ≡ Y (Xn−ν2) on (Xn−ν2 , 1]. We consider two rules, local averaging and local linear interpolation.

Assuming x ∈ (Xl, Xl+1], in the �rst rule we de�ne wm(x) = (2v)−1 if −v + 1 ≤ m − l ≤ v, and

wm(x) = 0 otherwise. In the second rule

wm(x) =

 v−1 (X2l−m+1 − x) / (X2l−m+1 −Xm) , if − v + 1 ≤ m− 1 ≤ 0,
v−1 (x−X2l−m+1) / (Xm −X2l−m+1) , if 1 ≤ m− l ≤ v

0, otherwise.

Substituting these weights into (12.1) we obtain for x ∈ (Xl, Xl+1]

(12.2) Y (x) = (2v)−1
v∑

m=−v+1

Yl+m

(12.3) Y (x) = v−1
v∑

m=1

(
x−Xl−m+1

Xl+m −Xl−m+1
Yl+m +

Xl+m − x
Xl+m −Xl−m+1

Yl−m+1

)
.

We write φ and ψ for the mother and father wavelets respectively. Let p = p(n) be the primary

resolution level and de�ne pi = 2ip for i ≥ 0 and let φj(x) = p1/2φ(px+j) and ψij(x) = p
1/2
i ψ (pix+ j) be

the functions that form the orthonormal basis of a wavelet expansion. Put bj =
´
J gφj and bij =

´
J gψij .

We assume ψ is of order r, meaning that r ≥ 1 is the smallest integer such that
´
xiψ(x)dx is nonzero.

Our estimators of bj and bij are b̂j =
´
J Y φj and b̂ij =

´
J Y ψij respectively. This leads to the empirical

wavelet transform

(12.4) ĝ =
∑
j

b̂jφj +

q−1∑
i=0

∑
j

b̂ijI
(∣∣∣b̂ij∣∣∣ ≥ δ)ψij .
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We may approximate these to arbitrary accuracy on a dyadic grid. Taking N = 2k for an integer

k ≥ 1, we may de�ne

b̃j = N−1
N∑
m=1

Y (m/N)φj(m/N) and b̃ij = N−1
N∑
m=1

Y (m/N)ψij(m/N).

The resulting estimator is g̃, which we obtain by replacing b̂j and b̂ij with b̃j and b̃ij respectively.

What we are doing is replacing the given data set Y with Y ′ = {m/N, Y (m/N), 1 ≤ m ≤ N}. Provided

that N/n→∞, the �rst-order asymptotics of g̃ are identical to ĝ.

13. Conditions (C).

Assume that g has r piecewise continuous derivatives, in the sense that there exist constants 0 = a1 <

a2 < ... < ak = 1 such that g has r continuous derivatives on each interval (al, al+1) for 1 ≤ l ≤ k−1, with

left and right-hand limits at al and al+1, respectively. We assume of f that is is piecewise continuous in

this sense, possibly with a di�erent k and di�erent ai's, and it is bounded away from zero on J = [0, 1].

We assume of φ and ψ that they are compactly supported and Holder continuous. Then for some r ≥ 1,

κ 6= 0, all integers i ∈ [0, r] and j ∈ (−∞,∞),

ˆ
ψ2 = 1,

ˆ
xiψ(x)dx = κ (r!)

−1
δir,

ˆ
φ = 1,

ˆ
φ(x)φ(x+ j)dx = δ0j,

where δjk is the Kronecker delta. Assume of the tuning parameters p, pi and q in the de�nition of ĝ,

that for some u > 0 and ε > 0

(13.1) p−1 = o
{(
n−1 log n

)1/(2r+1)
}
, p−1

q = o
(
n−2r/(2r+1)

)
, pq = O

(
nmin(u+1/(2r+1),1)−ε

)
;

and of errors ξm = ξnm that they may be written as ξmn = σ (Xnm) ξ
′

nm, where σ is a piecewise-

continuous function on J , ξ′1m, ..., ξ
′

nm are stochastically independent of one another and of X1, ..., Xn,

and each ξ
′

nm has for 1 ≤ m ≤ n <∞, the distribution of ξ
′
, with E

(
ξ
′
)

= 0, E
(
ξ
′2
)

= 1, E
∣∣∣ξ′ ∣∣∣2(1+u)

<

∞ and u as in (13.1).

Note that these assumptions are equivalent to assuming what space the function g is contained in.
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14. The main results.

Note that condition 13.1 and the assumption E
∣∣∣ξ′ ∣∣∣2(1+u)

< ∞ are satis�ed if we take p equal to a

constant multiple of n1/(2r+1), q equal to the integer part of (1− ε) log2 n for some 0 < ε < 2r/(2r+ 1),

and u = 2r/(2r + 1); and if E
∣∣∣ξ′ ∣∣∣4 < ∞. This is clear by substitution. It will follow from the next

theorem that p is optimal.

We assume the interpolation rule is given by either (12.2) or (12.3). Many other approaches could be

used. In the case of the rule at (12.2), put dv ≡ 1 + (2v)
−1
, and for the rule at (12.3), let

dv ≡ (2v)
−2
E


−1∑
l=−v

Zl

(
2

l−1∑
r=2l+1

Zr + Zl

)( −1∑
r=2l+1

Zr

)−1

+

v−1∑
l=0

Zl

(
2

2l∑
r=l+1

Zr + Zl

)(
2l∑
r=0

Zr

)−1


2

,

where {Zr,−∞ < r <∞} are independent exponentially distributed random variables. For this def-

inition, d1 = 3/2 and dv = 1 +O
(
v−1

)
as v →∞.

These bounds come directly from the fact that the Zi are exponential variables.

We construct ĝ using parameters p, q satisfying (13.1), and employing the threshold δ =
(
Dn−1 log n

)1/2
,

where the constant D satis�es

(14.1) D > 2udv sup
(
σ2/f

)
and u is as in (13.1). De�ne D1 = dv

´
σ2f−1 and D2 = κ2

(
1− 2−2v

)−1 ´ (
g(r)
)2
.

Examining the proof closely we can see that these constants come from bounding each interval of the

MISE.

Theorem 51. Under conditions (C),

(14.2)

ˆ
E (ĝ − g)

2
= D1n

−1p+D2p
−2r + o

(
n−1p+ p−2r

)
.

15. Outline proof of Theorem 51.

The authors give an outline of the proof only in the case where f is uniformly continuous on J = [0, 1]

and the function σ2 is a constant. Recall that f is the density function of the Xm's, the g is the function

that we are trying to estimate. The authors say an additional argument would take care of the jump

discontinuities in f and a varying σ2. As in the Li and Xiao paper [18],

ˆ
(ĝ − g)

2
= A1 +A2 +A3 +A4,
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where

A1 =
∑
j

(
b̂j − bj

)2

, A2 =

q−1∑
i=0

∑
j

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
,

A3 =

q−1∑
i=0

∑
j

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ) , A4 =

∞∑
i=q

∑
j

b2ij .

15.1. Moderate deviations. Let v1, ..., vn denote weights, which we shall take to be nonrandom, and

suppose that for some 0 ≤ ε1 < 1/20 they satisfy

(15.1) |vn| ≤ C1n
ε1 , n−1

n∑
m=1

v2
m ≥ C2 > 0.

Let ξ1, ..., ξn be independent and identically distributed random variables satisfying

(15.2) E (ξ1) = 0, E
(
ξ2
1

)
= σ2 > 0, E |ξ1|C3+2 ≤ C4

for some C3 > 4ε1/ (1− 2ε1). De�ne Sn = n−1/2
∑
m vmξm and τ2 = n−1σ

∑
m v

2
m.

We will need the following lemma.

Lemma 52. Assume (15.1) and (15.2). Then for each ε2 > 0 there exist C5, C6 > 0 depending on ε1,

ε2 and C1, ..., C4, such that

E
{
S2
nI (Sn ≥ z)

}
≤ C5

[
exp

{
− (1− ε2) z2/

(
2τ2
)}

+ n2ε1+ε2−C3(1/2−ε1)
]

uniformly in 0 ≤ z ≤ nC6 for all n.

Proof. This is proved by citing Bernstien's and Bennett's inequalities, both of which of available in

Hoe�ding (1963). To state these results, let Z1, ..., Zn denote independent random variables with zero

means and satisfying |Zm| ≤ b < ∞ for each 1 ≤ m ≤ n. Put τ ′2 ≡ n−1
∑
mE

(
Z2
m

)
and Tn ≡

n−1/2
∑
m Zm, and for z > 0 de�ne η = η(z) = bz/

(
n1/2τ ′2

)
. Then

(15.3) P (Tn > z) ≤ exp

(
−1

2
b−2z2

)
for all z ≥ 0,

(15.4) P (Tn > z) ≤ exp
[
−
(
n1/2z/b

){(
1 + η−1

)
log (1 + η)− 1

}]
for all 0 ≤ z ≤ b.

By rearranging the constants we obtain the required result. �
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15.2. The wavelet coe�cients. Observe that b̂ij = bij+Bij+ξ̂ij , whereBij =
´
J

∆ψij , ξ̂ij = n−1/2Sij ,

Sij ≡ (pi/n)
1/2
∑
m

vij;mξm, τ2
ij ≡ pin−1

n−v∑
m=v+1

v2
ij;m,

∆ ≡ E (Y |X )−g and vij;m ≡
(
n/p

1/2
i

) ´
wmψij . This expresses the relationship between the weights

and the scaling properties of wavelet functions. If one observes the de�nition of vij;m, one can see that

this is so. We are really examining the error ξm adjusted by a constant derived from the support of ψij .

Properties of spacings of order statistics are used to prove that

(15.5) E
(
|Bij |k

)
=

 O

{(
p

1/2
i /n

)k
nη
}
, uniformly in j ∈ Ji(ε),

O
(
nη−k

)
, uniformly in j /∈ Ji(ε).

This set is just a small neighborhood of the integer i. One can apply Lemma 52 to show that if

E |ξl|2(1+t)+η
< ∞ for some t, η > 0, then for each ε > 0 and for the interpolation rules we have

speci�ed,

(15.6) sup
i,j

E
(
S2
ijI
[
|Sij | >

{
2t(1 + ε)dvσ

2
(
sup f−1

)
log n

}1/2
])

= O
(
n−t
)
.

We can check this for each pair (i, j) by substitution.

15.3. Calculation of E (A1). De�ne vj;m ≡
(
n/p1/2

) ´
wmφj and also

Bj ≡
ˆ
J

∆φj , ξ̂j ≡ n−1/2Sj , Sj ≡ (pi/n)
1/2
∑
m

vj;mξm.

Then b̂j = bj + Bj + ξ̂j . Let [−c, c] be a compact interval containing the support of ψ, and let

J (ε) denote the set of indexes j such that, for some x that is a point of discontinuity of g, px + j ∈(
−c− pnε−1, c+ pnε−1

)
. Then the analogue of (15.5) for Bj is, for all ε, η > 0,

E
(
|Bj |k

)
=

{
O
{(
p1/2/n

)k
nη
}
, uniformly in j ∈ J (ε),

O
(
nη−k

)
, uniformly in j /∈ J (ε).

Hence, for all ε, η > 0,

(15.7) E
(
b̂j − bj

)2

=

{
O
{
E
(
ξ̂2
j

)
+ pnη−2

}
, uniformly in j ∈ J (ε),

O
(
nη−k

)
, uniformly in j /∈ J (ε).
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Take the following sup(1) over j such that Jj = (−(c + j)/p, (c − j)/p) ⊆ J , and the sup(2) over j

such that Jj ∩ J is nonempty. It may be proved that

sup
(1)

∣∣∣E (ξ̂2
j

)
− n−1σ2dvf(−j/p)−1

∣∣∣ = o
(
n−1

)
and

lim sup sup
(2)

E
(
ξ̂2
j

)
≤ n−1σ2dv sup f−1.

Combining the results from (15.7) down we conclude for all η > 0

(15.8) E (A1) =
∑
j

E
(
b̂j − bj

)2

∼ n−1pσ2dv

ˆ
f−1.

15.4. Bound for E (A2). LetKi1 denote the set of indexes j that are contained in an interval (pix− 2c, pix+ 2c)

for at least one of the discontinuity points x of at least one of the functions g(0), ..., g(r), and let Ki2 be

the set of all other j's. Write A2 = A21 +A22, where

A2k =

q−1∑
i=0

∑
j∈Kik

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
.

From the formula b̂ij = bij +Bij + ξ̂ij we may prove that for η > 0,

E (A21) = O

{
q sup

0≤i≤q−1,j∈Kik
E
(
b̂ij − bij

)2
}

= O
(
qnη−1

)
;

Note that there are q data points, and then apply (15.7).

By applying (15.9) to bound E
{
ξ̂2
ijI
(∣∣∣ξ̂ij∣∣∣ > (1− ε)δ

)}
and P

(∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
, and assuming that

the threshold satis�es

(15.9) δ >
{

2t(1 + ε′)dvσ
2
(
sup f−1

)
n−1 log n

}1/2

for some ε′ > 0, and that E |ξ1|2(1+t)+ε′′
for some ε′′ > 0; then

E (A22) = O

(
q−1∑
i=0

pin
−(t+1)

)
= O

(
pqn
−(t+1)

)
.

Combining these bounds we have that

(15.10) E (A2) = O
(
qn−1 + nη−1 + pqn

−(t+1)
)
.
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15.5. Calculation of E (A3). Write E (A3) = E (A31) + E (A32), where

A3k ≡
q−1∑
i=0

∑
j∈Kik

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ) .

Since b2ij ≤ 2

{(
b̂ij − bij

)2

+ b̂2ij

}
, and since the number of elements of Ki1 is uniformly bounded,

then we have for all η > 0,

E (A31) = O

[
q−1∑
i=0

{
sup
j∈Ki1

E
(
b̂ij − bij

)2

+ δ2

}]
= O

(
qnη−1

)
.

Now, bij = κp
−(2r+1)/2
i g(r) (−j/pi) + o

(
p
−(2r+1)/2
i

)
since g(r) is piecewise continuous. Therefore,

E (A32) = κ2
(
1− 2−2r

)−1
p−2r

´ (
g(r)
)2

+ o
(
p−2r

)
. Combining these results we deduce that

(15.11) E (A3) = κ2
(
1− 2−2r

)−1
p−2r

ˆ (
g(r)
)2

+ o
(
p−2r

)
+O

(
qnη−1

)
.

15.6. Bound for E (A4). Divide the series into two portions, E (A4) = E (A41) + E (A42), where

A4k ≡
∞∑
i=q

∑
j∈Kik

b2ij .

Since |bij | = O
(
p−1
i

)
uniformly in j ∈ Ki1, and the number of such j's is uniformly bounded, then

A41 = O
(∑

i≥q p
−1
i

)
= O

(
p−1
q

)
. Furthermore, |bij | = O

(
p
−(2r+1)/2
i

)
uniformly in j ∈ Ki2, and the

number of such j's for which bij does not vanish equals O (pi). Hence, A42 = O
(∑

i≥q p
−2r
)

= O
(
p−2r
q

)
.

Combining these bounds we deduce that

(15.12) A4 = O
(
p−1
q

)
.

16. Conclusion.

Combining (15.8), (15.10), (15.11), and (15.12), we deduce that for all η > 0,

(16.1)

ˆ
E (ĝ − g)

2
= D1n

−1p+D2p
−2r + o

(
n−1p+ p−2r

)

+O
(
pqn
−(t+1) + qnη−1 + p−1

q

)
.

By taking t = u− ζ, where u > 0 is an in condition (13.1) and ζ > 0 is su�ciently small, we see from

conditions (C) imposed in Theorem 51 that E |ξ1|2(1+t)+η
< ∞ for some η > 0 and that (15.9) holds
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for some ε′ > 0. Furthermore, for such a t it follows from 13.1 that the O(...) remainder term on the

right-hand side of (16.1) equals o
(
n−2r/(2r+1)

)
, and so may be incorporated into the o

(
n−1p+ p−2r

)
term. Result 14.2 follows immediately.

17. Important notes about this paper.

This paper uses a similar decomposition of the MISE as [18]. The bounds of these pieces follow

directly from the assumptions about the space that the function g comes from, namely the Conditions

(C) outlined in Section 13. The unique thing about this work is the linear interpolation used to deal with

the irregularly spaced data. No long memory error is present in this paper. In Part 7 we will attempt

to combine the analysis of long memory error from [18] with the linear interpolation of [11].

Part 5. Summary of the work of Antoniadis and Fan in [1].

18. Preliminaries and Notations.

In this part we study the work of Antoniadis and Fan in [1]. This paper deals with an incomplete

set of dyadic data. A system of equations governing the wavelet coe�cients can be found using this

incomplete data. Suppose we have noisy data at irregular design points {t1, ..., tn}:

Yi = f (ti) + εi, εi ∼ N
(
0, σ2

)
where the εi are identically and independently distributed and the f is an unknown regression to be

estimated from the noisy sample. Assume f is de�ned on [0, 1]. Assume further that ti = ni/2
J for some

ni and some resolution level J . Let f be the underlying regression function collected at all dyadic points{
i/2J , i = 0, ..., 2J − 1

}
. Let W be a given wavelet transform and θ=Wf be the wavelet transform of

f . Because W is an orthogonal matrix, f = WT θ.

For f in the Besov space, the wavelet representation is sparse. The unknown signals are modeled by

N = 2J parameters. This model is over-parametrized.

Denote the sampled data vector by Yn. Let A be n × N matrix whose ith row corresponds to the

row of the matrix WT for which the signal f (ti) is sampled with noise. We express the observed data

as

(18.1) Yn = Aθ + ε, ε ∼ N
(
0, σ2In

)
where ε is the noise vector. We wish to minimize

(18.2) 2−1 ‖Yn −Aθ‖2 + λ

N∑
i=1

p (|θi|)
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for a given penalty function p and a regularization parameter λ > 0. The penalty function is usually

nonconvex on [0,∞) and irregular at point zero to produce sparse solutions.

19. Regularization of Wavelet Approximations.

19.1. Regularized Wavelet Interpolations. Assume for this section that the signals are observed

with no noise ε = 0. Being given signals only at the nonequispaced points {ti, i = 1, ..., n} necessarily

means that we have no information at other dyadic points. Let

fn = (f (t1) , ..., f (tn))
T

be the observed signals. Then

(19.1) fn = Aθ.

This is an underdetermined system of equations, so there are many di�erent solutions for θ. For

the minimum Sobolev solution, we chose the f that interpolates the data and minimizes the weighted

Sobolev norm of f .

(19.2) ‖θ‖2s =
∑
j

22sj ‖θj·‖2

where θj· is the vector of the wavelet coe�cients at the resolution level j. We can then restate the

problem as a wavelet-domain optimization problem: Minimize ‖θ‖2s subject to the constraint (19.1). The

solution (Rao 1973) is what is called the normalized method of frame whose solution is given by

θ = DAT
(
ADAT

)−1

fn,

where D = Diag
(
2−2sji

)
with ji denoting the resolution level with which θi is associated.

19.2. Regularized Wavelet Estimators. The traditional regularization problem can be formulated

in the wavelet domain as follows. Find the minimum of

(19.3) 2−1 ‖Yn −Aθ‖2 + λ ‖θ‖2s .

We could replace the Sobolev norm with other penalty functions, leading to minimizing

(19.4) l(θ) = 2−1 ‖Yn −Aθ‖2 + λ
∑
i≥i0

p (|θi|)

for a given penalty function p (·) and given value i0. To facilitate the discussion, we change the

notation θjk from a double array sequence into a single array sequence θi.
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19.3. Penalty Functions and Nonlinear Wavelet Estimators. If n = 2J , then A becomes the

inverse wavelet transform matrix WT . In this case, (19.4) becomes

(19.5) 2−1
n∑
i=1

(zi − θi)2
+ λ

∑
i≥i0

p (|θi|) ,

where zi is the ith component of the wavelet coe�cient vector z = WYn.

These regularized wavelet estimators are extensions of the soft and hard thresholding rules of Donoho

and Johnstone. Let pλ denote λp. For the L1 penalty

(19.6) pλ (|θ|) = λ |θ| ,

the solution is the soft-thresholding rule. When the penalty function is given by

(19.7) pλ (|θ|) = λ2 − (|θ| − λ)
2
I (|θ| < λ) ,

the solution is the hard-thresholding rule. This can be con�rmed by putting the penalty into l(θ) and

then �nding the derivative. Many other penalties are suggested.

20. Oracle Inequalities and Universal Thresholding.

20.1. Characterization of Penalized Least Squares Estimators. Let p(·) be a nonnegative, non-

decreasing, and di�erentiable function on (0,∞). Minimize with respect to θ

(20.1) l(θ) = (z − θ)2/2 + pλ (|θ|)

for a given penalty parameter λ. This is a component-wise minimization problem of (19.5). Note

that the function above tends to in�nity as |θ| → ∞. Thus, minimizers do exist. Let θ̂(z) be a solution.

Then we have the following.

Theorem 53. Let pλ(·) be a nonnegative, nondecreasing, and di�erentiable function in (0,∞). Further,

assume that the function −θ− p′λ(θ) is strictly unimodal on (0,∞). Then we have the following results.

1. The solution to the minimization problem (20.1) exists and is unique. It is antisymmetric: θ̂(−z) =

−θ̂(z).

2. The solution satis�es

θ̂(z) =

{
0 if |z| ≤ p0,

z − sgn(z)p′λ

(∣∣∣θ̂ (z)
∣∣∣) if |z| > p0.

where p0 = minθ≥0 {θ + p′λ(θ)}. Moreover,
∣∣∣θ̂(z)∣∣∣ ≤ |z|.
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3. If p′λ(·) is nonincreasing, then for |z| > p0, we have

|z| − p0 ≤
∣∣∣θ̂(z)∣∣∣ ≤ |z| − p′λ (|z|) .

4. When p′λ(θ) is continuous on (0,∞), the solution θ̂(z) is continuous if and only if the minimum

of |θ|+ p′λ (|θ|) is attained at point zero.

5. If p′λ (|z|)→ 0, as |z| → +∞, then

θ̂(z) = z − p′λ (|z|) + o (p′λ (|z|)) .

We examine the implications of these results. When p′λ(0+) > 0, p0 > 0. Thus, for |z| ≤ p0, the

estimate is thresholded to 0. For |z| > p0, the solution has a shrinkage property. The amount of shrinkage

is sandwiched between the soft and hard thresholding estimators, as we see from result 3. Recall that

we are expanding the soft and hard thresholding operators to an entire family of penalty functions. Also

note that a di�erent estimator θ̂ may require a di�erent p0. The amount of shrinkage tapers o� as |z|

gets large when p′λ(|z|) goes to zero.

20.2. Risks of Penalized Least Squares Estimators. We now study the risk function of the penal-

ized least squares estimator θ̂ that minimizes (20.1). Assume Z ∼ N(θ, 1). Let

Rp (θ, p0) = E
{
θ̂(Z)− θ

}2

.

The thresholding parameter p0 is equivalent to the regularization parameter λ. We have the following

theorem.

Theorem 54. Suppose p satis�es conditions in Theorem 53 and p′λ(0+) > 0. Then

1. Rp (θ, p0) ≤ 1 + θ2.

2. If p′λ(·) is nonincreasing, then

Rp (θ, p0) ≤ p2
0 +

√
2/πp0 + 1.

3. Rp (0, p0) ≤
√

2/π
(
p0 + p−1

0

)
exp

(
−p2

0/2
)
.

4. Rp (θ, p0) ≤ Rp(0, θ) + 2θ2.

These four properties are comparable with the properties of soft and hard thresholding rules given

in Donoho and Johnstone (1994). The improvement here is that these results hold for a larger class of

penalty functions.
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20.3. Oracle Inequalities and Universal Thresholding. Following Donoho and Johnston (1994),

we have an ideal oracle estimator θ̂o = ZI (|θ| > 1), which attains the ideal L2-risk min
(
θ2, 1

)
. Let n

be the sample size.

When p0 =
√

2 log n, the universal threshold, by property 3 of Theorem 54, we need to add an amount

cn−1 for some constant c to the risk of the oracle estimator, because it has no risk at point θ = 0.

De�ne

Λn,c,p0(p) = sup
θ

Rp (θ, p0)

cn−1 + min (θ2, 1)

and denote Λn,c,p0(p) by Λn,c(p) for the universal thresholding p0 =
√

2 log n. Then Λn,c,p0(p) is a

sharp risk upper bound for using the universal thresholding parameter p0.

(20.2) Rp (θ, p0) ≤ Λn,c,p0(p)
{
cn−1 + min

(
θ2, 1

)}
.

As in Donoho and Johnstone, we also de�ne

Λ∗n,c(p) = inf
p0

sup
θ

Rp (θ, p0)

cn−1 + min (θ2, 1)

and

pn = the largest constant attaining Λ∗n,c(p).

Then, the constant Λ∗n,c(p) is the sharp risk upper bound using the minimax optimal thresholding pn.

Necessarily,

(20.3) Rp (θ, pn) ≤ Λ∗n,c (pn)
{
cn−1 + min

(
θ2, 1

)}
.

By Theorem 54, property 2, if p0 ≤
√

2 log n we have

(20.4) Rp (θ, p0) ≤ 2 log n+
√

4/π (log n)
1/2

+ 1

The extra log n term is necessary because thresholding estimators create biases of order p0 at |θ| ≈ p0.

The risk in [0, 1] can be bounded by using this lemma.

Lemma 55. If the penalty function satis�es conditions of Theorem 53 and p′λ(·) is nonincreasing and

p′λ (0+) > 0, then

Rp (θ, p0) ≤
(

2 log n+ 2 log1/2 n
){

c/n+ min
(
θ2, 1

)}
for the universal thresholding

p0 =
√

2 log n− log (1 + d log n), 0 ≤ d ≤ c2,

with n ≥ 4, c ≥ 1 and p0 > 1.14.
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The authors suggest using d = 256 and c = 16. A table is given which demonstrates the e�ectiveness of

this constant. It performs very well when compared to initial constants given by Donoho and Johnstone.

20.4. Performance of Regularized Wavelet Estimators. These oracle inequalities can be directly

applied to the estimators de�ned via (19.4) when the sampling points are equispaced and n = 2J .

Suppose the data are collected from model (18.1) and σ = 1. Then the wavelet coe�cients Z = WYn ∼

N (θ, In). Let

Rp

(
f̂p, f

)
= n−1

n∑
i=1

{
f̂p (ti)− f (ti)

}2

be the risk function of the regularized wavelet estimator f̂p. Let R
(
f̂o, f

)
be the risk of the oracle

wavelet thresholding estimator, which selects a term to estimate depending on the value of unknown

wavelet coe�cients. So, f̂o is the inverse wavelet transform of he ideally selected wavelet coe�cients

{ZiI (|θi| > 1)}. This is an ideal estimator and serves as a benchmark for our comparison. We assume

io = 1.

Theorem 56. With the universal thresholding p0 =
√

2 log n, we have

Rp

(
f̂p, f

)
≤ Λn,c(p)

{
cn−1 +R

(
f̂o, f

)}
.

With the minimax thresholding pn, we have the sharper bound:

Rp

(
f̂p, f

)
≤ Λ∗n,c(p)

{
cn−1 +R

(
f̂o, f

)}
.

This risk can be computed. Assume that the signal f is in a Besov Ball. We can characterize this

space by its wavelet coe�cients. De�ne the Besov space ball Brp,q(C) as

(20.5) Brp,q(C) =

f ∈ Lp :
∑
j

(
2j(r+1/2−1/p) ‖θj·‖p

)q
< C

 ,

where θj· is the vector of wavelet coe�cients at the resolution level j. Here, r indicates the degree of

smoothness of the underlying signal f . Note here that the reason why the Besov space is such a natural

way to extend the results in [1] is because its norm is written in terms of the wavelet coe�cients.

Theorem 57. Suppose the penalty function satis�es the conditions of Lemma 55 and r+ 1/2−1/p > 0.

Then the maximum risk of the penalized least squares estimator f̂p over the Besov ball Brp,q(C) is of

rate O
(
n−2r/(2r+1) log n

)
when the universal thresholding

√
2n−1 log n is used. It achieves the rate of

convergence O
(
n−2r/(2r+1) log n

)
when the minimax thresholding pn/

√
n is used.
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Thus, we always arrive at a risk which if within a factor of logarithmic order.

21. Penalized Least Squares for Nonuniform Designs.

21.1. Regularized One-Step Estimator. We take advantage of the orthonormality of the wavelet

matrix W. Let us again consider (18.1) and let us collect the remaining rows of the matrix WT that

were not collected into the matrix A into matrix B of size (N−n)×N . Then the penalized least squares

(19.4) can be written as

l(θ) = 2−1
∥∥Y∗ −WT θ

∥∥2
+
∑
i≥i0

pλ (|θi|) ,

where Y∗ =
(
YT
n , (Bθ)

T
)T

. By orthonormality

(21.1) l (θ) = 2−1 ‖WY∗ − θ‖2 +
∑
i≥i0

pλ (|θi|) .

We could solve this iteratively.

We could use our Sobolev wavelet interpolators to produce an initial estimate for θ and hence for Y∗.

Recall that
ˆ

θ = DAT
(
ADAT

)−1

Yn. Let

Ŷ∗0 =

(
YT
n ,
(
Bθ̂
)T)(T )

be the initial synthetic data. We see that

(21.2) θ̂∗ = WŶ∗0 ∼ N
(
θ∗, σ2V

)
,

where

V = DAT
(
ADAT

)−2

AD and θ∗ = DAT
(
ADAT

)−1

Aθ

is the vector of wavelet coe�cients. Call the components of WŶ∗0 the empirical synthetic wavelet

coe�cients. Let θ̂∗1 be a component-wise thresholded θ̂∗. Then we could use

Ŷ∗1 =

(
YT
n ,
(
Bθ̂1

)T)T
.

Then one could minimize

(21.3) l (θ) = 2−1 ‖WY∗1 − θ‖
2

+
∑
i≥i0

pλ (|θi|)

component-wise. This procedure is called the ROSE.
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21.2. Thresholding for Nonstationary Noise. The variances for the wavelet coe�cients are no

longer identical. However, we do know their covariance matrix V up to a constant. If vi is the ith

diagonal element of the matrix V. Then the ith synthetic wavelet coe�cient, denoted Z∗i is distributed

(21.4) Z∗i ∼ N
(
θ∗i , viσ

2
)
.

Apply the threshold

(21.5) pi =
√

2vi log nσ

to each coe�cient Z∗i (also known as λi). Then

(21.6) E
(
θ̂i − θ∗i

)2

≤
(

2 log n+ 2 log1/2 n
)
×
[
cσ2vi/n+ min

(
θ∗2i , σ

2vi
)]
.

21.3. Sampling Properties. De�ne

Rp(f) = n−1
n∑
i=1

E
{
f̂p (ti)− f (ti)

}2

.

In fact,

(21.7) Rp(f) = n−1E

{∥∥∥Aθ̂1 −Aθ
∥∥∥2
}

= n−1E

{∥∥∥Aθ̂1 −Aθ∗
∥∥∥2
}
≤ n−1E

∥∥∥θ̂1 − θ∗
∥∥∥2

.

By (21.6), the mean square errors are bounded as follows.

Theorem 58. Assume that the penalty function p satis�es the condition in Lemma 55. Then, the NRSI

with coe�cient-dependent thresholding satis�es

Rp(f) ≤ n−1
(

2 log n+ 2 log1/2 n
)
×
[
cσ2tr(V)/n+

∑
min

(
θ∗2i ;σ2vi

)]
,

where tr(V) is the trace of the matrix V.

Lastly, we have the following convergence result.

Theorem 59. Suppose that the penalty function satis�es the conditions of Lemma 55 and r+1/2−1/p >

0. Then, the maximum risk of the nonlinear regularized Sobolev interpolator over a Besov ball Brp,q is of

rate O
(
n−2r/(2r+1) log n

)
when the universal thresholding rule is used. It achieves the rate of convergence

O
(
n−2r/(2r+1) log n

)
when the minimax thresholding pn/

√
n is used.
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22. Important notes about this paper.

This paper translates bounding the MISE into the wavelet setting. Here the problem is not irregularly

spaced data, but data which is dyadic but incomplete. The authors address the problem of nonstationary

noise and pave the way for expansion into long memory error. Also, the authors relate their results to

those of Donoho and Johnstone in [8]. They write the MISE in terms of oracle risk, which makes it easy

to relate the error to more general spaces.

Part 6. Summary of the work of Cai and Brown in [4].

23. Preliminaries and Notations.

In this part we study the work of Cai and Brown in [4]. Here we have irregularly spaced data. We

will use a function H, to be de�ned later to reorder the data and make it equally spaced. Eventually we

analyze the Mean Integrated Square Error. Suppose we are given data:

(23.1) yi = f (ti) + εzi

where i = 1, 2, ..., n, 0 < t1 < t2 < ... < tn = 1 and the zi are independently and identically distributed

as N(0, 1). These data points are not equally spaced.

We wish to construct an estimate f̂ which minimizes the risk

R
(
f̂ , f

)
= E

ˆ 1

0

(
f̂(t)− f(t)

)2

dt.

The authors formulate the data as follows:

yi = f (ti) + εzi

with i = 1, 2, ..., n where n = 2J . Here ti = H−1(i/n) for some cumulative density function H on [0, 1].

These design points are assumed to be �xed, not drawn randomly from H.

A rough outline of the procedure this paper describes is recorded below.

(1) Precondition the data by a sparse matrix.

(2) Transform the preconditioned data by the discrete wavelet transform.

(3) Denoise the noisy wavelet coe�cients via thresholding.

(4) Apply the inverse transform to the denoised coe�cients.

(5) Postcondition the data by a matrix to get the estimate at the sample points.

We also need some standard properties of wavelets. Suppose the father and mother wavelets φ and ψ

are compactly supported. Assume supp(φ) = supp(ψ) = [0, N ]. Also assume
´
φ = 1. A wavelet ψ is
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r-regular if it has r vanishing moments and r continuous derivatives. Let

φjk(t) = 2j/2φ
(
2jt− k

)
, ψjk(t) = 2j/2ψ

(
2jt− k

)
and denote the periodized wavelets

φpjk(t) =
∑
l∈Z

φjk(t− l), ψpjk(t) =
∑
l∈Z

ψjk(t− l) for t ∈ [0, 1].

This paper uses these periodized wavelets as the basis for the paper. The collection
{
φpj0k, k = 1, ..., 2j0 ; ψpjk, j ≥ j0, k = 1, ..., 2j

}
constitutes an orthonormal basis of L2[0, 1]. From now on the p will be suppressed for convenience.

Recall that wavelets have an associated multiresolution analysis. Let Vj and Wj be the closed linear

subspaces generated by
{
φjk, k = 1, ..., 2j

}
and

{
ψjk, k = 1, ..., 2j

}
respectively. Then:

(1) We have Vj0 ⊂ Vj0+1 ⊂ ... ⊂ Vj ⊂ ...

(2) Also ∪∞j=j0Vj = L2 ([0, 1]).

(3) We have Vj+1 = Vj ⊕Wj .

For a given square integrable function f on [0, 1], denote

ξjk = 〈f, φjk〉 , θjk = 〈f, ψjk〉 .

This function can be expanded into a wavelet series:

(23.2) f(x) =

2j0∑
k=1

ξj0kφj0k(x) +

∞∑
j=j0

2j∑
k=1

θjkψjk(x).

The functions in this work belong to the following class.

De�nition 60. A piecewise Holder class Λα(M,B,m) on [0, 1] with at most m discontinuous jumps

consists of functions f satis�es the following conditions

1. The function f is bounded by B, that is, |f | ≤ B.

2. There exist l ≤ m points 0 ≤ α1 < ... < αl ≤ 1 such that, for all αi ≤ x, y < αi+1, i = 0, 1, ..., l

(with α0 = 0 and αl+1 = 1),

(i) |f(x)− f(y)| ≤M |x− y|α if α > 1.

(ii)
∣∣f (bαc)(x)− f (bαc)(y)

∣∣ ≤M |x− y|α′ and |f ′(x)| ≤ B if α > 1.

where bαc is the largest integer less than α and α′ = α− bαc.

This function class contains all functions which are piecewise Holder with the number of discontinuities

bounded by m.
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24. Important Lemmas.

We have the following bounds for wavelet coe�cients in the Holder class.

Lemma 61. Let f ∈ Λα(M,B,m). Suppose that the wavelet function ψ is r-regular with r ≥ α. Then:

(i) If supp (ψjk) does not contain any jump points of f , then

(24.1) θjk ≡ |〈f, ψjk〉| ≤ C2−j(1/2+α).

(ii) If supp (ψjk) contains as least one jump point of f , then

(24.2) θjk ≡ |〈f, ψjk〉| ≤ C2−j/2.

We now have the following Lemma.

Lemma 62. Suppose f ∈ Λα(M,B,m). Let ξJk = 〈f, φJk〉 and s(α) = min(α, 1). Then:

(i) If supp (φJk) does not contain any jump points of f , then

(24.3)
∣∣∣n−1/2f(k/n)− ξJk

∣∣∣ ≤ Cn−(1/2+s(α)).

(ii) If supp (φJk) contains jump points of the function f , then

(24.4)
∣∣∣n−1/2f(k/n)− ξJk

∣∣∣ ≤ Cn−1/2.

This means that we can use fn(t) =
∑n
k=1 n

−1/2f(k/n)φJk(t) as an approximation of the true function

f .

25. The nonequispaced procedure.

Suppose we observe the data {yi} as in (23.1) and we wish to recover the function f . Let g̃(t) =

n−1/2
∑n
i=1 yiφJi(t) and let

f̃J(t) = ProjVj g̃ (H(t)) = n−1/2
2j0∑
k=1

ξ̃j0kφj0k(t) +

J−1∑
j=j0

2j∑
k=1

θ̃jkψjk(t),

where

(25.1) ξ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,φjk〉 , θ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,ψjk〉 .

These coe�cients can be regarded as estimators of the true coe�cients ξj0k and θj0k. The function

H maps whatever points H−1 (i/n) that are given to us into the data. We let

(25.2) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+
.
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We obtain a soft threshold estimator for f by using these coe�cients.

(25.3) f̂∗n(t) = n−1/2
2j0∑
k=1

ξ̂j0kφj0k(t) +

J−1∑
j=j0

2j∑
k=1

θ̂jkψjk(t).

Similarly, one can obtain a hard-thresholding operator by setting the coe�cients as

(25.4) ξ̂j0k = ξ̃j0k θ̂j0k = I
(∣∣∣θ̃jk∣∣∣ > λjk

)
,

with the same threshold λjk as in (25.2).

Note that the coe�cients ξ̂jok contain the gross structure of f and so we do not threshold these

coe�cients.

26. Approximation.

Now the authors explain why the estimation method makes sense. Denote by Λ1(h) the collection of

Lipschitz functions f satisfying

|f(x)− f(y)| ≤ h |x− y| for x, y ∈ [0, 1].

Suppose we are given a sampled function
{
f (ti) , i = 1, 2, ..., n

(
= 2J

)}
with ti = H−1(i/n), where H

is a strictly increasing cumulative density function on [0, 1] and H−1 ∈ Λ1(h) for some constant h.

If the ti were equispaced, it follows from Lemma 61 and Lemma 62 that fn(t) =
∑n
k=1 n

−1/2f (tk)φJk(t)

is a good approximation with no extra work involved. When the ti are nonequispaced, one can �rst ap-

proximate f
(
H−1(t)

)
by gn(t) =

∑n
k=1 n

−1/2f (tk)φJk(t), then use the projection of gn (H(t)) onto the

multiresolution space VJ as the approximation of f . More speci�cally, let

(26.1) ξ
′

Ji = n−1/2
2J∑
k=1

f (tk) 〈φJk ◦H,φJi〉

and let

(26.2) fn(t) =

2J∑
i=1

ξ
′

JiφJi(t)

be an approximation of f . Note fn ∈ Vj . We have the following bound on the approximation error.

Theorem 63. Suppose that a sampled function
{
f (ti) , i = 1, 2, ..., n

(
= 2J

)}
is given with ti = H−1(i/n),

where H is a strictly increasing cumulative density function on [0, 1] and H−1 ∈ Λ1(h). Let the wavelet



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 105

function ψ be r-regular with r > α. Let ξ
′

Ji and fn be given as in (26.1) and (26.2) respectively. Then

the approximation error ‖fn − f‖2 satis�es

(26.3) sup
f∈Λα(M,B,m)

‖fn − f‖22 = o
(
n−2α/(1+2α)

)
,

where the maximum number of jump discontinuities m = Cnγ with constants C > 0 and 0 < γ <

1/(1 + 2α).

27. The Threshold.

We must know the noise levels of the coe�cients before we can threshold them. The function H−1 is

strictly increasing, so H−1 is di�erentiable almost everywhere. Denote by h̃(t) the derivative of H−1(t).

Then

0 < h̃(t) ≤ h for almost all t ∈ [0, 1].

We can see from (25.1) that

σ2
jk = var

(
θ̃jk

)
= n−1ε2

n∑
i=1

(〈φJi ◦H,ψjk〉)2

(27.1) ≤ n−1ε2
ˆ
ψ2
jk(t)h̃(H(t))dt ≡ u2

jk.

This inequality is asymptotically sharp, σjk → ujk as n→∞. We set the threshold

(27.2) λjk = ujk (2 log n)
1/2

.

This is our threshold.

28. Optimality results.

We have the following results. The theorem below describes global rates of convergence.

Theorem 64. SSuppose we observe
{

(ti, yi) , i = 1, 2, ...n
(
= 2J

)}
as in (23.1) with ti = H−1(i/n),

where H is a strictly increasing cumulative density function on [0, 1] and H−1 ∈ Λ1(h). Let f̂∗n be either

the soft-thresholded or hard-thresholded wavelet estimator of f given in (25.3) and (27.2). Suppose that

the wavelet function ψ is r-regular. Then the estimator f̂∗n is near optimal:

(28.1) sup
f∈Λα(M,B,m)

E
∥∥∥f̂∗n − f∥∥∥2

2
≤ C(log n/n)2α/(1+2α)(1 + o(1))

for all 0 < α < r and all m ≤ Cnγ with constants C > 0 and 0 < γ < 1/(1 + 2α).

The next theorem describes convergence rates at a single point.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 106

Theorem 65. For any �xed t0 ∈ [0, 1], let f̂∗n(t) be given as in (25.3) and (27.2). Under the conditions

given in Theorem 64, we have

(28.2) sup
f∈Λα(M,B,0)

E
(
f̂∗n (t0)− f (t0)

)2

≤ C(log n/n)2α/(1+2α)(1 + o(1))

for all 0 < α < r.

This theorem apples as long as the jump points are away from a �xed neighborhood of t0.

29. Discussion.

We can choose a more convenient threshold as follows. In (27.2), we set the threshold λjk =

uij(2 log n)1/2, where ujk =
(
n−1ε2

´
ψ2
jk(t)h̃ (H(t)) dt

)1/2

. We see that

(29.1) u2
jk ≤ n−1ε2hjk,

where hjk = sup
{
h̃(t) : t ∈

[
H−1

(
2−jk

)
, H−1

(
2−j (k +N)

)]}
.

We may replace the threshold λjk by

(29.2) λ
′

jk = ε
(
2hjkn

−1 log n
)1/2

.

The optimality results from before still hold with this new threshold, which is easier to compute.

30. Proofs.

Here we have the proofs of the results of the paper.

Proof. Proof of Theorem 63.

Let g(t) = f
(
H−1(t)

)
. Denote s(α) = min(α, 1) and M ∨ B = max(M,B). We see that g ∈

Λs(α)(hs(α)M ∨B,B,m). Now fn = ProjVjgn ◦H. It follows from Lemmas 61 and 62 that

‖fn − f‖22 ≤
∥∥∥ProjVj (gn ◦H − g ◦H)

∥∥∥2

2
+
∥∥∥ProjVjf − f∥∥∥2

2

≤ Cn−2s(α) + Cmn−1 = o
(
n−2α/(1+2α)

)
.

�

We now preliminaries for proving Theorems 64 and 65. Let y ∼ N
(
θ, σ2

)
be a normal variable with

known variance σ2. We estimate the true mean θ with the thresholding operator. Let λ = aσ with

a ≥ 1. We label the hard and soft threshold operators θ̂hλ and θ̂sλ respectively. Recall the following

lemma. (Note: These are from Nonparametric function estimation via wavelets. Do I need this paper?)
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Lemma 66. SSuppose y ∼ N
(
θ, σ2

)
. Let θ̂hλ and θ̂sλ be the hard and soft thresholding operators,

respectively. Let λ = aσ with a ≥ 1. Then

(30.1) (i) E
(
θ̂sλ − θ

)2

≤
(
a2 + 1

)
σ2 ∧

(
2θ2 + exp

(
−a2/2

)
σ2
)
,

(30.2) (ii) E
(
θ̂hλ − θ

)2

≤
(
2a2 + 2

)
σ2 ∧

(
2θ2 + 2a exp

(
−a2/2

)
σ2
)
.

The proofs for the following theorems are only given for the soft thresholding operator.

Proof. Proof of Theorem 64.

Let g(t) = f
(
H−1(t)

)
and g̃(t) = n−1/2

∑n
i=1 yiφJi(t) and let f̃(t) = g̃(H(t)). Then

f̃(t) = n−1/2
n∑
i=1

f (ti)φJi(H(t)) + n−1/2ε

n∑
i=1

ziφJi(H(t))

= f(t) + ∆(t) + r(t),

where ∆(t) = n−1/2
∑n
i=1 f (ti)φJi(H(t))−f(t) is the approximation error and r(t) = n−1/2ε

∑n
i=1 yiφJi(H(t)).

Now project f̃ onto the multiresolution space VJ and decompose the orthogonal projection f̃J(t) =

ProjVj f̃(t) into three terms:

(30.3) f̃J(t) = fJ(t) + ∆J(t) + rJ(t),

where fJ = ProjVJ f , ∆J = ProjVJ∆ and rJ = ProjVJ r respectively. Theorem 63 yields

(30.4) ‖∆J‖22 = o
(
n−2α/(1+2α)

)
.

(Note: This is because the noise in the data is neglected in this term.) Denote θ̃jk =
〈
f̃J , ψjk

〉
. Just

as in (30.3), we decompose this into three parts.

θ̃jk = θjk + djk + rjk for k = 1, ..., 2j , j = j0, ..., J − 1,

where θjk = 〈f, ψjk〉 is the true wavelet coe�cient of f , djk = 〈∆J , ψjk〉 is the approximation error

and rjk = 〈rJ , ψjk〉 is the noise. Similarly separate ξ̃j0k =
〈
f̃J , φj0k

〉
into three terms:

ξ̃j0k = ξj0k + d
′

j0k + r
′

j0k for k = 1, .., 2j0 .

Let ξ̂j0k and θ̂jk be given as in (25.2). Then because of Parseval's relation

(30.5)

2j0∑
k=1

(
d
′

j0k

)2

+

J−1∑
j=j0

2j∑
k=1

d2
jk = ‖∆J‖22 = o

(
n−2α/(1+2α)

)
.
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By the orthogonality of the wavelet basis, we have the isometry between the L2 function norm and

the l2 wavelet sequence norm:

E
∥∥∥f̂∗n − f∥∥∥2

=

2j0∑
k=1

E
(
ξ̂j0k − ξj0k

)2

+

J−1∑
j=j0

2j∑
k=1

E
(
θ̂jk − θjk

)2

+

∞∑
j=J

2j∑
k=1

θ2
jk

≡ S1 + S2 + S3.

From (27.1) we can see

(30.6) S1 ≤ 2j0n−1ε2h+

2j0∑
k=1

(
d
′

j0k

)2

= o
(
n−2α/(1+2α)

)
.

At each resolution level j denote

Gj ≡
{
k : supp (ψjk) =

[
2−jk, 2−j(N + k)

]
contains at least one jump point of f

}
.

Then card (Gj) ≤ N(m + 2) (counting two end points 0 and 1 as jump points as well). Lemma 61

yields

(30.7) |θjk| ≤ C2−j(1/2+α) for k /∈ Gj ,

(30.8) |θjk| ≤ C2−j/2 for k ∈ Gj ,

where C is a constant not depending on f . Therefore,

S3 =

∞∑
j=J

∑
k∈Gj

θ2
jk +

∞∑
j=J

∑
k/∈Gj

θ2
jk

≤
∞∑
j=J

N(m+ 2)C22−j +
∞∑
j=J

2j∑
k=1

C22−j(1+2α)

(30.9) = o
(
n−2α/(1+2α)

)
.

Now we consider S2. Note from (27.2) that σjk ≤ ujk and λjk = ujk(2 log n)1/2, so aij = λjk/σjk ≥

(2 log n)1/2. From (30.1) it follows that

(30.10) E
(
θ̂jk − θjk

)2

≤ (4 log n+ 2)hε2n−1 ∧
(
8θ2
jk + 2hε2n−2

)
+ 10d2

jk

Write

S2 =

J−1∑
j=j0

∑
k∈Gj

E
(
θ̂jk − θjk

)2

+

J−1∑
j=j0

∑
k/∈Gj

E
(
θ̂jk − θjk

)2
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≡ S21 + S22.

Since card (Gj) ≤ N(m+ 2), it follows from (30.10) that

(30.11) S21 ≤
J−1∑
j=j0

N(m+ 2)
[
(4 log n+ 2)hε2n−1 + 10d2

jk

]
= o

(
n−2α/(1+2α)

)
.

Now let J1 be an integer satisfying 2J1(1+2α) = n/ log n. (Note: If this integer doesn't exist, choose

J1 = b1/ (1 + 2α) log2(n/ log n)c.) From (30.10) we have

(30.12) E
(
θ̂jk − θjk

)2

≤ 5ε2n−1 log n+ 10d2
jk for j0 ≤ j ≤ J1 − 1, k /∈ Gj ,

(30.13) E
(
θ̂jk − θjk

)2

≤ 8C22−j(1+2α) + 2hε2n−2 + 10d2
jk for J1 ≤ j ≤ J − 1, k /∈ Gj .

Therefore,

S22 ≤
J1−1∑
j=j0

∑
k/∈Gj

5ε2n−1 log n+

J−1∑
j=J1

∑
k/∈Gj

(
8C22−j(1+2α) + 2hε2n−2

)

+10

J−1∑
j=j0

2j∑
k=1

d2
jk

(30.14) = C(log n/n)2α/(1+2α)(1 + o(1)).

Putting (30.6), (30.9), (30.11), and (30.14) together yields

(30.15) E
∥∥∥f̂∗n − f∥∥∥2

2
≤ C(log n/n)2α/(1+2α)(1 + o(1)).

�

I now give a brief summary of the proof of Theorem 65.

Proof. Proof of Theorem 65. We use the inequality below.

Let Xi be random variables, i = 1, ..., n. Then

(30.16) E

(
n∑
i=1

Xi

)2

≤

(
n∑
i=1

(
EX2

i

)1/2)2

.

Applying this inequality yields

E (f∗n (t0)− f (t0))
2

= E

 2j0∑
k=1

(
ξ̂j0k − ξj0k

)
φj0k (t0) +

∞∑
j=j0

2j∑
k=1

(
θ̂jk − θjk

)
ψjk (t0)

2
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≤

 2j0∑
k=1

(
E
(
ξ̂j0k − ξj0k

)2

φ2
j0k (t0)

)1/2

+

J−1∑
j=j0

2j∑
k=1

(
E
(
θ̂jk − θjk

)2

ψ2
ij (t0)

)1/2

+

∞∑
j=J

2j∑
k=1

|θjkψjk (t0)|

2

≡ (Q1 +Q2 +Q3)
2
.

Lastly, each of these terms is bounded using the same sort of properties and lemmas used in the last

proof. �

30.1. Important notes about this paper. This paper uses the Holder class, which is the class of

functions which are Holder continuous expect form discontinuities. It deals with data which is identically

independent and has no long memory error. It uses a function H to adjust the irregularly spaced data

and �nd the wavelet coe�cients.

Part 7. Using linear interpolation on irregularly spaced long memory data.

31. Introduction.

This part deals with the problem of function estimation from data. Very many variations of the

problem are useful. Many real world problems which have been solved are very oversimpli�ed. In most

situations it is not reasonable to assume that data are independent. One example of this is the time

series. Here we have data which are dependent. We could use this new research to compare two time

series.

Another example of where this research is applicable is in the cause of spatially dependent data. For

instance: �ooding at certain points along the Nile river. Clearly if an area is �ooded, a nearby area would

be much more likely to be �ooded. Also, your data points would very likely be unequally spaced. This is

why we will try to address the problems of long memory data and unequally spaced data simultaneously.

In real world applications data could be equally spaced or unequally spaced. There many be more

than one data point for the same value. Error may or may not be independent. We consider the speci�c

variation where the data are irregularly spaced and the error is long memory dependent.

We organize the paper as follows. In Section 32 we give a basic presentation of the problem. In

Section 33 we de�ne a speci�c breakdown of the wavelet coe�cients which will allow us to more easily

�nd bounds for the MISE (mean integrated square error). In Section 34 we will separate this MISE and

bound each piece.

32. Basic Notation: Preliminaries.

32.1. Preliminaries. We have

(32.1) Ym = g (Xm) + εm for 1 ≤ m ≤ n
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where Y = {(Xm, Ym) , 1 ≤ m ≤ n} and X = {Xm, 1 ≤ m ≤ n}. These are the collected data. We

will assume that the X has been put in order of size, thus these are ranked data. The data X are ordered

values of a random sample from a probability distribution f having support I = [0, 1]. These Xi's are

independent.

Also signi�cant is that the fact that the sample size is not a factor of 2. We will de�ne speci�c

constants to deal with this later.

The εm are long memory dependent Gaussian variables with E (εm) = 0 and E
(
ε2m
)

= σ2 > 0. Long

memory means that the covariance has the following property. We de�ne

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Here aj ∼ bj means that aj/bj → 1 when j →∞. (We use this notation throughout

the paper.)

32.2. Interpolation Rules. To deal with the problem of nonequispaced data, we interpolate the data

as follows.

(32.2) Y (x) =
∑
m

wm(x)Ym for x ∈ (X−v1 , Xn−v2 ]

where v1 < 0 ≤ v2 and wj = 0 unless v1 ≤ j ≤ v2. At the ends of the interval (X−v1 , Xn−v2 ] Hall

and Turlach advocate the use of horizontal expansion. That is, let Y (t) ≡ Y (X−ν1+) on [0, X−ν1 ], and

Y (t) ≡ Y (Xn−ν2) on (Xn−ν2 , 1]. The authors also note that one could use quadratic expansion but that

this a�ects the error terms.

So we are interpolating among the data in Y to produce a process Y = Y (x) which satis�es E (Y ) ≈ g.

The values of wm(x) come from local averaging and linear interpolation. These wm's are dependent on

the Xm's but not on the Ym's. For local averaging we let

(32.3) wm(x) = (2v)
−1

if − v + 1 ≤ m− l ≤ v, 0 otherwise.

For linear interpolation we let

(32.4) wm(x) =

 v−1 (X2l−m+1 − x) / (X2l−m+1 −Xm) − v + 1 ≤ m− l ≤ 0
v−1 (x−X2l−m+1) / (Xm −X2l−m+1) 1 ≤ m− l ≤ v

0 otherwise.

From these weights come two rules for Y (x). For local averaging

(32.5) Y (x) = (2v)
−1

v∑
m=−v+1

Yl+m.
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The second rule for linear interpolation is

(32.6) Y (x) = v−1
v∑

m=1

(
x−Xl−m+1

Xl+m −Xl−m+1
Yl+m +

Xl+m − x
Xl+m −Xl−m+1

Yl−m+1

)
.

Both of these rules are for x ∈ (Xl, Xl+1]. We can see where this sum comes from by considering the

de�nition Y (x) =
∑
wm(x)Ym. For the �rst part of (49.4) we have

v∑
m−l=1

x−X2l−m+1

Xm −X2l−m+1
Ym.

Consider the substitution m = l+m′. Then m′ = m− l. Also 2l−m+ 1 = l+ l−m+ 1 = l−m′+ 1.

The sum then becomes

v∑
m′=1

x−Xl−m′+1

Xl+m′ −Xl−m′+1
Yl+m′

as required. For the second part of (49.4) we have

−v+1∑
m−l=0

X2l−m+1 − x
X2l−m+1 −Xm

Ym.

Consider the substitution m = l − m′ + 1. Then m − l = 1 − m′, and m′ = l + 1 − m. Also

2l −m+ 1 = l + l −m+ 1 = l +m′. We have

v∑
m′=1

Xl+m′ − x
Xl+m′ −Xl−m′+1

Yl−m′+1

as required.

The authors Hall and Turlach point out that other interpolation rules might be usable but that the

bounds for the weights require di�erent computations. Particular weights may be more adept at dealing

with the situation of long memory dependence. For instance, using the binomial coe�cients would more

heavily weight nearby points in the interpolation.

32.3. Wavelet structure. Now we discuss the structure of the wavelets. Write φ and ψ for the �father�

and �mother� wavelets.

We let p = p(n) be the resolution level of the wavelets. Denote pi = 2ip for i ≥ 0.

Let ψij(x) = p
1/2
i ψ (pix− j) and φj(x) = p1/2φ (px+ j). These will form the multiresolution analysis.

Here the collection {φj , ψij , i ≥ i0, j ∈ Z} is an orthonormal basis of L2 (R). We note here that our

function g is not in�nite, so the number of j's we estimate is �nite in the summation (65.1) below.
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We have the true wavelet coe�cients

(32.7) aj =

ˆ
I

gφj

(32.8) bij =

ˆ
I

gψij

We will assume that ψ is of order r. That is
´
xiψ(x) = 0 for i = 0, 1, ..., r − 1.

Then

g =
∑
j

ajφj +

∞∑
i=1

∑
j

bijψij .

We estimate these true coe�cients by computing

âj =

ˆ
I

Y φj b̂ij =

ˆ
I

Y ψij .

Then our new estimator is

(32.9) ĝ =
∑
j

âjφj +

q−1∑
i=0

∑
j

b̂ijI
(∣∣∣b̂ij∣∣∣ ≥ δ)ψij .

Here δ is a threshold parameter and q is the truncation point for the series. Note that this would

need to be further approximated by

ãi0j = n−1
n∑

m=1

Y
(m
n

)
φj

(m
n

)
and b̃ij = n−1

n∑
m=1

Y
(m
n

)
ψij

(m
n

)
.

We will also require of our wavelets that the quantities

C6? = C0

ˆ 1

0

ˆ 1

0

|x− y|−α φ(x)φ(y)dxdy

and

C6 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy

are bounded. We consider this is in Section 33.8. The truth of these statements is a direct result of

the functions φ and ψ being compactly supported.
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32.4. Other assumptions. We must remember the intrinsic ordering of the X = {Xm|1 ≤ m ≤ n}.

Strictly speaking they should be written Xnm to signify their dependence on n. A similar rule applies

to εm. We drop this notation as in [11] and hope that this ordering is understood.

We assume of the function g that it has r piecewise continuous derivatives, in the sense that there

exist constants 0 = a1 < a2 < ... < ak = 1 such that g has r continuous derivatives on each interval

[al, al+1] for 1 ≤ l ≤ k − 1. We assume the same of the density function f of the Xm's, possibly with

di�erent ai's and a di�erent k. Thus, the the function g and its derivatives have a bounded number of

discontinuities.

We assume that the functions φ and ψ are compactly supported and bounded as expressed in Section

33.3. We also assume that for some r ≥ 1 and κ 6= 0, and all integers i ∈ [0, r] and j ∈ (−∞,∞)

ˆ
ψ2 = 1,

ˆ
xiψ(x)dx = κ (r!)

−1
δir,

ˆ
φ = 1,

ˆ
φ(x)φ(x+ j)dx = δoj ,

where δjk is the Kronecker delta and κ is some constant.

We will note here that these requirements do not a�ect our choice of weights wm(x) because those

are piecewise polynomials, and therefore do not disappear in the integrals against ψij .

33. Breaking Down Coefficients and Bounding Error terms.

33.1. Initial breakdown. We recall I = [0, 1]. First we will break the scaling function coe�cients into

pieces.

âj =

ˆ
Y φj(x) =

ˆ (∑
m

wm(x)Ym

)
φj =

ˆ (∑
m

wm(x) (g (Xm) + εm)

)
φj

(33.1) =

ˆ (∑
m

wm(x)g (Xm)

)
φj +

ˆ (∑
m

wm(x)εm

)
φj .

For the �rst term, note that

E (Y|X ) =
∑
m

wm (x) g(Xm).

This is because the error term of Y = g (Xm) + εm would be gone because of the expected value, the

g (Xm)'s are constants, the only thing that varies is the wm(x) and it's linear, and E (εm) = 0. Note
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that

(33.2)

ˆ
I

(∑
m

wm(x)g (Xm)

)
φj =

ˆ
I

E (Y|X )φj −
ˆ
I

g(x)φj(x) +

ˆ
I

g(x)φj(x).

We can let

∆ = E (Y|X )− g.

Then (33.2)

(33.3) =

ˆ
I

∆φj(x) +

ˆ
I

g(x)φj(x)

(33.4) ≡ Aj + aj

For the second term, let

(33.5) vj;m =
(
n/p1/2

)ˆ
I

wm(x)φj(x).

Then the second term is

(33.6) Rj ≡ (p/n)
1/2
∑
m

vj;mεm.

We de�ne

χ̂j ≡ n−1/2Rj

Thus

(33.7) âj = aj +Aj + χ̂j = aj +Aj + n−1/2Rj .

Now I will break down these estimators of the wavelet coe�cients into pieces. Note that

b̂ij =

ˆ
Y (x)ψij(x) =

ˆ (∑
m

wm(x)Ym

)
ψij =

ˆ (∑
m

wm(x) (g (Xm) + εm)

)
ψij

(33.8) =

ˆ (∑
m

wm(x)g (Xm)

)
ψij +

ˆ (∑
m

wm(x)εm

)
ψij .

Then the �rst term is via (33.8).

(33.9)

ˆ
I

(∑
m

wm(x)g (Xm)

)
ψij =

ˆ
I

E (Y|X )ψij −
ˆ
I

g(x)ψij(x) +

ˆ
I

g(x)ψij(x).
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Then (33.2)

(33.10) =

ˆ
I

∆ψij(x) +

ˆ
I

g(x)ψij(x)

(33.11) ≡ Bij + bij

For the second term, let

(33.12) vij;m =
(
n/p

1/2
i

) ˆ
I

wm(x)ψij(x).

Then the second term is

(33.13) Sij ≡ (pi/n)
1/2
∑
m

vij;mεm.

We de�ne

ξ̂ij ≡ n−1/2Sij

Thus

(33.14) b̂ij = bij +Bij + ξ̂ij = bij +Bij + n−1/2Sij .

33.2. Bounds of Aj. By an argument identical to the one in Section 33.3, we obtain the bound

(33.15) E
(
|Aj |k

)
=

{
O
((
p1/2/n

)k
nη
)

for j ∈ J(ε)

O
(
nη−k

)
for j /∈ J(ε)

Here the J(ε) contains points where g(x) is discontinuous. Outside of J(ε) is where g(x) is continuous.

More speci�cally we let

x ∈ J(ε) =⇒ px+ j ∈
(
−c− pnε−1, c+ pnε−1

)
.

33.3. Bounds of Bij. We must show that

(33.16) E
(
|Bij |k

)
=

 O

((
p

1/2
i /n

)k
nη
)

for j ∈ Ji(ε)

O
(
nη−k

)
for j /∈ Ji(ε)

Here the Ji(ε) is were g(x) or one of its derivatives is discontinuous. We divide the entire support

of g(x) into intervals the size of Ji(ε). Outside of Ji(ε) is where these functions are continuous. We

still can make the same assumption of closeness, the Ji(ε) only distinguishes between continuity and

discontinuity. We let

x ∈ Ji(ε) =⇒ pix+ j ∈
(
−c− pinε−1, c+ pin

ε−1
)
.
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Suppose that x, y ∈ Ji(ε). Without loss of generality we assume that y > x. Then

−c− pinε−1 < pix+ j < piy + j < c+ pin
ε−1

−c− pinε−1 − j
pi

< x < y <
c+ pin

ε−1 − j
pi

We subtract these.

c+ pin
ε−1 − j
pi

− −c− pin
ε−1 − j

pi
=
c+ pin

ε−1 − j + c+ pin
ε−1 + j

pi

=
2c+ 2pin

ε−1

pi
= O

(
nε−1

)
.

sup
I(ε)

E
(
|∆|k

)
= O

(
nkε−k

)
= O

(
nη−1

)
for all k ≥ 1 and ε > 0, η = kε.

Noting that |ψij | = 1 shows that we have found the bound for Bij . Then |Bij |k = O
(
p
k/2
i nη−k

)
for

x, y ∈ Ji(ε). Note that this factor of pk/2i comes from the ψij within the integral, ψij(x) = p
1/2
i ψ (pix− j).

Now suppose x, y /∈ Ji(ε). In that case, g(x) is continuous, as are all of its derivatives, speci�cally

g′(x) is continuous. Thus

lim
x→y

|g(x)− g(y)|
|x− y|

= C = g′(x).

|g(x)− g(y)| < C |x− y|

and |x− y| < δ implies |g(x)− g(y)| < Cδ. We assume that x and y are close in the same way and

receive the result that |Bij |k = O
(
nη−k

)
for x, y /∈ Ji(ε)

33.4. Bound of vj;m. Following the lines of the next section we obtain exactly the bounds of vj . For

some 0 < ε1 < 1/20, or for some ε1 which is close to zero for local averaging

(33.17) |vj;m| ≤ nε1 sup |φ| .

For linear interpolation

(33.18) |vj;m| ≤ 2 · nε1 sup |φ| .

This means that for local averaging

(33.19) E
(
v2
j;m

)
≤ n2ε1 sup |ψ|2
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Also,

(33.20) E
(
v2
j;m

)
≤ 4n2ε1 sup |ψ|2

for linear interpolation.

These bounds should be the same for E (vj;kvj;m).

33.5. Bound of vij;m. We now examine

vij;m =
(
n/p

1/2
i

)ˆ
I

wmψij(x)dx

The problem we must overcome is that the sample data points X1, ...,Xn, which are later reordered

according to size may become very close together, thus making the vij;m large in the denominator.

Recall the weight formulas. We have the local averaging below.

(33.21) wm(x) = (2v)
−1

if − v + 1 ≤ m− l ≤ v, 0 otherwise.

Also we have the linear interpolation.

(33.22) wm(x) =

 v−1 (X2l−m+1 − x) / (X2l−m+1 −Xm) − v + 1 ≤ m− l ≤ 0
v−1 (x−X2l−m+1) / (Xm −X2l−m+1) 1 ≤ m− l ≤ v

0 otherwise.

De�ne event E1 as the event where Xl+1 and Xl are within nε1−1 of each other, where 0 < ε1 < 1. In

other words,

E1 : Xl+1 −Xl ≤ nε1−1.

We wish to examine P (E1). First we note the probability density functions of the ranked Xj . Recall

that f(x) is the pdf of the X1, ...,Xn, let F (x) denote the cumulative density function. Then P (E1) =

P
(
Xl+1 ≤ Xl + nε1−1

)
=

ˆ Xl+nε1−1

Xl
fXl+1

(x)dx ≤
ˆ Xl+nε1−1

Xl
sup
y
fXl+1

(y)dx

= C
[
Xl + nε1−1 −Xl

]
= Cnε1−1 = O

(
n−λ

)
for 0 < λ < 1. This means that

(33.23) P (Ec1) = 1−O
(
n−λ

)
.
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Now for the local averaging,

vij;m =
(
n/p

1/2
i

) ˆ
I

wmψ(x)dx

∣∣∣∣ˆ wmψij

∣∣∣∣ =

∣∣∣∣∣(2v)
−1

m+v+1∑
l=m−v

ˆ Xl+1

Xl
ψij

∣∣∣∣∣
2v · 1

2v

∣∣∣∣∣
ˆ Xl+1

Xl
ψij

∣∣∣∣∣ ≤ p1/2
i sup (Xl+1 −Xl) sup |ψ| .

Therefore

|vij;m| ≤ p1/2
i

(
n/p

1/2
i

)
nε1−1 sup |ψ|

(33.24) |vij;m| ≤ p1/2
i nε1/p

1/2
i sup |ψ| = nε1 sup |ψ| .

Now let's consider the linear interpolation.

∣∣∣∣ˆ wmψ

∣∣∣∣ =

∣∣∣∣∣
ˆ

1

v

(
0∑

l=−v+1

X2l−m+1 − x
X2l−m+1 −Xm

+

v∑
l=1

x−X2l−m+1

X2l−m+1 −Xm

)
ψij(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ

1

v

0∑
l=−v+1

X2l−m+1 − x
X2l−m+1 −Xm

ψij(x)dx

∣∣∣∣∣+

∣∣∣∣∣
ˆ

1

v

v∑
l=1

x−X2l−m+1

X2l−m+1 −Xm
ψij(x)dx

∣∣∣∣∣
Let's examine∣∣∣∣∣

ˆ Xl+1

Xl

1

v

0∑
l=−v+1

X2l−m+1 − x
X2l−m+1 −Xm

dx

∣∣∣∣∣+

∣∣∣∣∣
ˆ Xl+1

Xl

1

v

v∑
l=1

x−X2l−m+1

X2l−m+1 −Xm
dx

∣∣∣∣∣ .
Without loss of generality we assume that the �rst of these is greater than 0. Then

∣∣∣∣∣
ˆ Xl+1

Xl

x−X2l−m+1

X2l−m+1 −Xm
dx

∣∣∣∣∣ =

∣∣∣∣∣
ˆ Xl+1

Xl

X2l−m+1 − x
X2l−m+1 −Xm

dx

∣∣∣∣∣ =

ˆ Xl+1

Xl

X2l−m+1 − x
X2l−m+1 −Xm

dx

=
1

X2l−m+1 −Xm

[
X2l−m+1 · x−

x2

2

]Xl+1

Xl

=
1

X2l−m+1 −Xm

[
X2l−m+1 (Xl+1 −Xl)−

1

2

(
X 2
l+1 −X 2

l

)]

=
1

X2l−m+1 −Xm

[
X2l−m+1 (Xl+1 −Xl)−

1

2
(Xl+1 −Xl) (Xl+1 + Xl)

]



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 120

=
Xl+1 −Xl

X2l−m+1 −Xm

[
X2l−m+1 −

1

2
(Xl+1 + Xl)

]
The rest of this is bounded by realizing that the di�erence of two variables is exponentially distributed

as in [13]. Thus,

(33.25) |vij;m| ≤ 2 · p1/2
i

(
n/p

1/2
i

)
nε1−1 sup |ψ| = 2 · nε1 sup |ψ| .

What does this mean for the quantities we need to estimate?

E
(
v2
ij;m

)
=

ˆ
I

v2
ij;mfX2l−m+1

(x)fXm(x)dx

≤ n2ε1 sup |ψ|2

for local averaging. Also,

≤ 4n2ε1 sup |ψ|2

for linear interpolation.

These bounds should be the same for E (vij;kvij;m).

33.6. Bounds of
∑
S2
ij,
∑
R2
j and some probabilities. Let vij;1, ..., vij;n denote weights. Recall that

|vij;m| ≤ Cnε1 . We choose ε1 such that 0 ≤ ε1 < 1/20. Suppose n−1
∑n
m=1 v

2
ij;m ≥ C2 > 0.

We also suppose E (εi) = 0, E
(
ε2i
)

= σ2 > 0.

We need to bound

E
{
S2
ijI (Sij ≥ z)

}
.

We de�ne A =
{
a ∈ R1 : a2 = 1, a = ±1

}
.

Note that (
S2
ij

)1/2
= |Sij | = sup

a∈A
aSij .

So instead of considering P
(
S2
ij ≥ z

)
, we can consider P (supa∈A aSn ≥ u). Here we let z ≥ 4τ2

i∗ and

u ≥ 2τi∗ where we will de�ne these τi∗ later. Let

Z(a) = aSij .

We will need this Z(a), a Gaussian process, to apply an inequality to later. Then by the Cauchy-Schwartz

inequality and Jensen's inequality we have

E

(
sup
a∈A

Z(a)

)
≤ E

{(
S2
ij

)1/2} ≤ {E (S2
ij

)}1/2
.
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We will need to bound the E
(
Z(a)2

)
.

=
pi
n

n∑
m=1

a2E
(
ε2m
)
E
(
v2
ij;m

)
+
pi
n

n∑
m=1

∑
k 6=m

a2E (εmεk)E (vij;mvij;k)

=
pi
n

n∑
m=1

E
(
ε2m
)
E
(
v2
ij;m

)
+
pi
n

n∑
m=1

∑
k 6=m

E (εmεk)E (vij;mvij;k)

≡ J1 + J2

Now

J1 = pi
σ2

n

n∑
m=1

E
(
v2
ij;m

)
≤ pi

σ2

n
· n2ε1 sup |ψ|2 = piσ

2n2ε1−1 sup |ψ|2

for local averaging and

J1 = pi
σ2

n

n∑
m=1

E
(
v2
ij;m

)
≤ pi

σ2

n
· 4n2ε1 sup |ψ|2 = 4piσ

2n2ε1−1 sup |ψ|2

for linear interpolation. So

(33.26) J1 = O
(
piσ

2n2ε1−1
)
.

Now consider

J2 = pi
1

n

n∑
m=1

∑
k 6=m

E (εmεk)E (vij;mvij;k)

= pi
1

n

n∑
m=1

∑
k 6=m

r(m− k)E (vij;mvij;k)

Note that E(vij;mvij;k)is subject to the same upper bound as E
(
v2
ij;m

)
.

(33.27) ≤ pi
n∑

m=1

∑
k 6=m

C1n
2ε1−1r(m− k)

ˆ ˆ
pi/2ψ

(
pix− j

)
pi/2ψ

(
piy − j

)
dxdy

Now for a variable substitution. Let x = u+m
n and y = v+k

n . Then dx = 1
ndu and dy = 1

ndv. Then

=
p2
i

n2

n∑
m=1

∑
k 6=m

r(m− k)

ˆ ˆ
C1n

2ε1−1ψ

(
pi
u+m

n
− j
)
ψ

(
pi
v + k

n
− j
)
dudv.

Here C1 = 4 sup |ψ| for linear interpolation and C1 = sup |ψ| for local averaging.

≤
ˆ ˆ

C1n
2ε1−1×
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 p2
i

n2

n∑
m=1

∑
k 6=m

r(m− k)ψ

(
pi
u+m

n
− j
)
ψ

(
pi
v + k

n
− j
) dudv.

We consider just the second part of this equation.

(33.28)
p2
i

n2

n∑
m=1

∑
k 6=m

r(m− k)ψ

(
pi
u+m

n
− j
)
ψ

(
pi
v + k

n
− j
)

∼ C0
p2
i

n2

n∑
m=1

∑
k 6=m

n−α
∣∣∣∣mn − k

n

∣∣∣∣−α ψ(piu+m

n
− j
)
ψ

(
pi
v + k

n
− j
)

Let x = pi
u+m
n − j and y = pi

v+k
n − j. Here dx = pidu and dy = pidv. Then x− y = pi

u+m
n − pi v+k

n

and m
n −

k
n = p−1

i (x− y) + v−u
n .

(33.29) = C0
1

n2
n−α

n∑
m=1

∑
k 6=m

∣∣∣∣p−1
i (x− y) +

v − u
n

∣∣∣∣−α ψ(x)ψ(y)

Note that
∣∣p−1
i (x− y) + v−u

n

∣∣ ≤ ∣∣p−1
i (x− y)

∣∣+
∣∣ v−u
n

∣∣. Therefore, (33.29)
≤ C0n

−α−2pαi

ˆ ˆ
ψ(x)ψ(y)

|x− y|α
dxdy

(33.30) ≤ C0τ
2
i

where τ2
i = C6n

−α−2pαi . Here

(33.31) C6 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy.

Let τ2
i? = C1 · C6n

2ε1−1−α−2pαi = C7n
2ε1−α−3pαi .

J1 = O
(
piσ

2n2ε1−1
)

Let τ2
i∗ = C8pin

2ε1−1.

Thus, for 0 < α < 1 from (33.26) and (33.30) we have

(33.32) D2 ≡ sup
a∈A

E
(
Z(a)2

)
≤ τ2

i∗

or

(33.33) E
(
S2
ij

)
≤ sup
a∈A

E
(
Z(a)2

)
≤ n2ε1C6n

−α−2pαi ≤ C8pin
2ε1−1·
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More speci�cally

E
(
S2
ij

)
≤ 4piσ

2n2ε1−1 sup |ψ|2 + C7n
2ε1−α−3pαi .

Using a similar process we could derive that

(33.34) E
(
R2
j

)
≤ n2ε1C7?n

−α−2pα ≤ C8?pn
2ε1−1·

where

(33.35) C6? = C0

ˆ 1

0

ˆ 1

0

|x− y|−α φ(x)φ(y)dxdy.

More speci�cally

E
(
R2
ij

)
≤ 4pσ2n2ε1−1 sup |ψ|2 + C7?n

2ε1−α−3pα.

Here C7? = C1 ·C6? and C1? = 4 sup |φ| for linear interpolation and C1? = sup |φ| for local averaging.

We summarize these results in the following theorem.

Theorem 67. The bounds of S2
ij and R

2
j are as follows.

E
(
S2
ij

)
≤ 4piσ

2n2ε1−1 sup |ψ|2 + C7n
2ε1−α−3pαi .

E
(
R2
j

)
≤ 4pσ2n2ε1−1 sup |ψ|2 + C7?n

2ε1−α−3pα.

In the corresponding Li and Xiao notes here they reference Borell's inequality from Adler 1990 (p.

42).

Theorem 68. Let X be a centered Gaussian random variable with variance σ2. Then choosing

Ψ (λ) = (2π)
− 1

2

ˆ ∞
λ

e−
1
2x

2

dx

to denote the standard Gaussian distribution function,

P {X > λ} = Ψ (λ/σ) ≤
(
σ/
√

2π
)
λ−1e−

1
2λ

2/σ2

.

A consequence of this is the following theorem (p. 43).

Theorem 69. If we assume that {Xt}t∈T is a centered Gaussian process and that {Xt}t∈T has bounded

simple paths with probability one, then for all ε > 0 and large enough λ

(33.36) P

{
sup
t∈T

Xt > λ

}
≤ eελ

2− 1
2λ

2/σ2
T
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where

σ2
T ≡ sup

t∈T
EX2

t .

This result is true for any arbitrary ε, so we may drop the ελ2 term.

We can see that this correlates with exactly what we've been doing. Our Gaussian process supa∈A Z(a)

is not centered. Let µ̃ ≡ E (supa∈A Z(a)). We do not know what this quantity is but we do know that

it is bounded. Let u ≥ 2τi∗ and z ≥ 4τ2
i∗. Then u ≥ 2µ̃ and µ̃ ≤ 1

2µ

P

{
sup
a∈A

aSij ≥ u
}
≤ exp

(
− (u− µ̃)

2

2D2

)

Note that

− (µ− µ̃)
2 ≥ −

(
µ− 1

2
µ

)2

= −1

4
µ2

and

D2 ≤ τ2
i∗.

(33.37) P {Sij ≥ u} ≤ P
{

sup
a∈A

aSij ≥ u
}

= P
{
S2
ij ≥ z

}
≤ exp

(
− u2

8τ2
i∗

)
.

We must also consider the case where α = 1. The only di�erence arises when we go to estimate J2.

We would need to rebound the second part of J2. We begin from (33.28)

pi
n2

n∑
m=1

∑
k 6=m

r(m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)
.

∼ C0
p2
i

n2

n∑
m=1

∑
k 6=m

n−1

∣∣∣∣mn − k

n

∣∣∣∣−1

ψ

(
pi
u+m

n
− j
)
ψ

(
pi
v + k

n
− j
)

= C
pi
n

n∑
m=1

∑
k 6=m

∣∣∣∣pimn − pi kn
∣∣∣∣−1

ψ

(
pi
u+m

n
− j
)
ψ

(
pi
v + k

n
− j
)

(33.38) ≤ C 1

n

n∑
m=1

∑
k 6=m

∣∣∣∣pimn − pi kn
∣∣∣∣−1

sup |ψij |2 ≤ Cn−1
[
ln
(
np−1

i

)
+ 2
]
≤ Cn−1 log

(
np−1

i e
)
.
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We note that with a substitution this is similar to computing

n∑
i=1

∣∣∣∣ 1

i/n

∣∣∣∣ ≈ ˆ 1

1/n

1

x
dx

= lnx|11/n = ln 1− ln
1

n
= lnn.

This leads to another bound which is O
(
pin

2ε1−1 log
(
np−1

i e
))
. So, for α = 1,

(33.39) E
(
S2
ij

)
≤ Cpin2ε1−1 log

(
np−1

i e
)
·

Using a similar process we could derive that

(33.40) E
(
R2
j

)
≤ C?pin2ε1−1 log

(
np−1

i e
)
·

33.7. Bound of supij P (|Bij | > C). We �rst note that

aI (|x| > a) ≤ |x|

or

E (I (|x| ≥ a)) = aP (|x| ≥ a)

Thus

aP (|x| ≥ a) ≤ E (x) .

So we now consider P
(
|Bij | > εn−1/2

)
. Because of (33.16), we know that for j ∈ Ji(ε)

εn−1/2P
(
|Bij | > εn−1/2

)
≤ Cnη−1

(33.41) P
(
|Bij | > εn−1/2

)
≤ C

ε
nη−1/2 = O

(
n−λ

)
for 0 < λ < 1/2. Also, for j /∈ Ji(ε)

εn−1/2P
(
|Bij | > εn−1/2

)
≤ Cp1/2

i nη−1

We must use the fact that pi = O
(
n1−η) .

(33.42) P
(
|Bij | > εn−1/2

)
≤ C

ε
n−η/2 = O

(
n−λ

)
for λ > 0 and consequently, for 0 < λ < 1/2.
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33.8. The bound of C6 and C6?. We spend a moment considering the bound of

(33.43) C6 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy.

We let s = x− y. Then x = s+ y. We have

C0

ˆ ˆ
|s|−α ψ(s+ y)ψ(y)dsdy.

We have a discontinuity at s = 0 which would require us to split this integral into two pieces and

de�ne limits.

C0I (s > 0)

ˆ ˆ
s−αψ(s+ y)ψ(y)dsdy + C0I (s < 0)

ˆ ˆ
(−s)−α ψ(s+ y)ψ(s)dsdy

We consider the integral ˆ ˆ
s−αψ(s+ y)ψ(y)dsdy.

Let z = s−α+1

−α+1 . Then dz = s−αds.

ˆ ˆ
ψ
(

[(−α+ 1) z]
1

−α+1 + y
)
ψ (y) dzdy.

This integral is in�nite, but because the function ψ is compactly supported it converges . Thus C6 is

�nite. In a similar way, C6? is �nite.

34. Bounding the Mean Square Error.

We are now in a position to bound the mean square error. We split the mean square error in the

following way.

(34.1)

ˆ
(g − ĝ)

2
= A1 +A2 +A3 +A4

where

(34.2) A1 ≡
∑
j

(âj − aj)2

(34.3) A2 ≡
q−1∑
i=0

∑
j

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)

(34.4) A3 ≡
q−1∑
i=0

∑
j

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ)
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(34.5) A4 ≡
∞∑
i=q

∑
j

b2ij .

We will bound each of these in turn.

We note here that A1 is the error in the φ coe�cients, A2 represents the b̂ij which are large enough

to keep, A3 represents the b̂ij which we throw away and A4 represents the bij which were not estimated

due to truncation.

34.1. Bound for A1.

(34.6) A1 ≡
∑
j

(âj − aj)2

Then

(âj − aj)2
=

(ˆ
I

∑
m

wm(x)g (Xm)φj +

ˆ
I

∑
m

wm(x)εmφj −
ˆ
I

g(x)φj(x)

)2

=

(ˆ
I

∑
m

wm(x)g (Xm)φj −
ˆ
I

g(x)φj(x) +

ˆ
I

∑
m

wm(x)εmφj

)2

=
(
Aj + n−1/2Rj

)2

≤ 2A2
j + 2n−1R2

j .

Thus

E (âj − aj)2 ≤ 2E
(
A2
j

)
+ 2n−1E

(
R2
j

)
We also know that for α ∈ (0, 1]

E
(
R2
j

)
≤ C?pin2ε1−1 log

(
np−1

i e
)
·

Then if j ∈ Ji(ε),

E
(
â2
j − aj

)2 ≤ C (p1/2

n

)2

nη + n−1C?pin
2ε1−1 log

(
np−1

i e
)

= O
(
pnη−2 + n−1E

(
R2
j

))
.

We also have that if j /∈ Ji(ε),

E
(
â2
j − aj

)2 ≤ Cnη−2 + n−1C?pn
2ε1−1 log

(
np−1e

)
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= O
(
nη−2 + n−1E

(
R2
j

))
.

We can conclude that

(34.7) E (A1) =
∑
j

E (âj − aj)2
= O

(
pnη−2 + pin

2ε1−2 log
(
np−1

i e
))
.

34.2. Bound for A2.

(34.8) A2 ≡
q−1∑
i=0

∑
j

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
Recall that we have assumed that ψ is supported on (−c, c). For the next two sections we let Ki1

denote the set of indexes j that are contained in an interval (pix− 2c, pix+ 2c) for at least one of the

discontinuity points x of at least one of the functions g(0), ..., g(r) and let Ki2 be the set of all the other

j's. We write A2 = A21 +A22 where

A2k =

q∑
i=0

∑
j∈Kik

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
.

We know that (
b̂ij − bij

)2

≤ 2
(
B2
ij + n−1S2

ij

)
.

Now, for discontinuous indexes we have

(34.9) ≤ C
(
pin

η−1 + pin
2ε1−2 log

(
np−1

i e
))

= O
(
pin

η−1
)
.

Thus

E (A21) = O

{
q sup

0≤i≤q−1,j∈Ki1
E
(
b̂ij − bij

)2
}

= O
(
qpin

η−1
)

For continuous intervals we can come up with a better bound.

We note that
∣∣∣b̂ij∣∣∣ ≤ |bij |+ |Bij |+ ∣∣∣ξ̂ij∣∣∣. Suppose that |bij | ≤ εδ. Note that

I
(∣∣∣b̂ij∣∣∣ > δ

)
≤ I

(
|bij |+ |Bij |+

∣∣∣ξ̂ij∣∣∣ > δ
)
≤ I

(
|Bij |+

∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
.

Also note that I (|a|+ |b| > ε) ≤ I (|b| > ε). So

I
(
|Bij |+

∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
≤ I (|Bij | > (1− ε)δ)

I
(
|Bij |+

∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
≤ I

(∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
.
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Now since ε is close to zero, we know that 1− 3ε < 1− ε and also ε < 1− ε.

I
(
|Bij |+

∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
≤ I (|Bij | > εδ) .

I
(
|Bij |+

∣∣∣ξ̂ij∣∣∣ > (1− ε)δ
)
≤ I

(∣∣∣ξ̂ij∣∣∣ > (1− 3ε)δ
)
.

E

{(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)}
≤ 2

(
B2
ijP (|Bij | > εδ) + n−1S2

ijP
(∣∣∣ξ̂ij∣∣∣ > (1− 3ε)δ

))
.

These quantities are all bounded. Let's suppose that δ = O
(
n−1/2

)
. (A reasonable assumption

considering the bounds of bij . We will see in Section 34.4 that |bij | ≤ p−1
i .) We have

2

(
C

ε
nη−2n−λ + n−1C?pin

2ε1−1 log
(
np−1

i e
)

exp

(
− u2

8τ2
i∗

))
for 0 < λ < 1/2 and the τ2

i∗ from the earlier section. Here our bound is

E (A22) = O

(
C

ε
nη−λ−2

)
.

Thus

(34.10) E (A2) = O

(
qpin

η−1 +
C

ε
nη−λ−2

)
.

34.3. Bound for A3. We divide this portion of the sum in a similar way. Let A3 = A31 +A32 where

A3k =

q−1∑
i=0

∑
j∈Kik

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ) .

Note that b2ij ≤ 2

((
b̂ij − bij

)2

+ b̂2ij

)
. Since the number of elements in Ki1 is uniformly bounded

(this is by assumption on the beginning), then from (33.16)

E (A31) = O

[
q−1∑
i=0

{
sup
j∈Ki1

E
(
b̂ij − bij

)2

+ δ2

}]

= O
(
qnη−1

)
.

for all η > 0. By taking the Taylor expansion, we determine that

bij = p
−(2r+1)/2
i

g(r)
(
j
pi

)
r!

+ o
(
p
−(2r+1)/2
i

)
.
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We will do this in more detail in Section 34.4. This is true uniformly in Ki2 in (i, j). Thus

E (A32) =

q−1∑
i=0

∑
j∈Ki2

b2ijP
(∣∣∣b̂ij∣∣∣ ≤ δ)

∼
q∑
i=0

∑
j∈Ki2

b2ij

=

q∑
i=0

∑
j∈Ki2

p−(2r+1)
i

g(r)
(
j
pi

)
r!

2

+ o
(
p
−(2r+1)
i

)

=
(
1− 2−2r

)−1
p−2r
i

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
.

Combining all of this yields

(34.11) E (A3) =
(
1− 2−2r

)−1
p−2r
i

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r
i

)
+O

(
qnη−1

)
.

34.4. Bound for A4. We divide this portion as before into two pieces. Let A4 = A41 +A42 where

A4k =

∞∑
i=q

∑
j∈Kik

b2ij .

Note that |bij | = O
(
p−1
i

)
uniformly in j ∈ Ki1. The number of these discontinuous points is bounded.

This is because

bij =

ˆ
g(x)ψij(x)dx.

Because ψ is bounded on (−c, c), we have

−c ≤ pix− j ≤ c

−c+ j

pi
≤ x ≤ c+ j

pi
.

So

|bij | ≤ |g| |ψij |
2c

pi
= |g| 2c

pi
= O

(
p−1
i

)
.
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Therefore

A41 = O

 ∞∑
i=q

p−1
i

 = O
(
p−1
q

)
since pi = 2ip.

Now, also note that for j ∈ Ki2 where we have continuity, we can apply a Taylor expansion to g as

follows. We expand about j
pi
.

g (x) =
g(0)( jpi )

0!
+
g(1)

(
j
pi

)
1!

(
x− j

pi

)
+
g(2)

(
j
pi

)
2!

(
x− j

pi

)2

+ ...+
g(r)

(
j
pi

)
r!

(
x− j

pi

)r
+ ...

Because of the vanishing moments of ψ, almost all of these terms disappear except for the ones that

are at least o (xr).

bij =

ˆ xr g(r)
(
j
pi

)
r!

+ ...

 = p
−(2r+1)/2
i

g(r)
(
j
pi

)
r!

+ o
(
p
−(2r+1)/2
i

)
.

Thus for where we have continuity |bij | = O
(
p
−(2r+1)/2
i

)
. The number of such j's which don't vanish

is O (pi). Thus

A42 = O

 ∞∑
i=q

p−2r
i

 = O
(
p−2r
q

)
.

Together this means that

(34.12) A4 = O
(
p−1
q

)
.

34.5. Final bound of
´
E (ĝ − g)

2
.

Theorem 70. Suppose g is a function supported on [0, 1] with certain continuity properties established

before. Suppose that the data generated by this function g is long memory and irregularly spaced. Long

memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Suppose we let

(34.13) ĝ =
∑
j

âjφj +

q−1∑
i=0

∑
j

b̂ijI
(∣∣∣b̂ij∣∣∣ ≥ δ)ψij .
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where

âj =

ˆ
I

Y φj b̂ij =

ˆ
I

Y ψij .

and Y is some interpolation rule. Then combing (34.7), (34.10), (34.11) and (34.12) yields for α = 1

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−2 log
(
np−1

i e
))

+O

(
qpin

η−1 +
C

ε
nη−λ−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1

)
+O

(
p−1
q

)
That is

(34.14) =
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qpin

η−1 +
C

ε
nη−λ−2 + p−1

q

)
.

For α ∈ (0, 1)

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−1
)

+O

(
qpin

η−1 +
C

ε
nη−λ−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1

)
+O

(
p−1
q

)
That is

(34.15) =
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qpin

η−1 +
C

ε
nη−λ−2 + p−1

q

)
.

35. Important notes about this paper.

This work has applied linear interpolation to irregularly spaced data which is normally distributed

and has long memory error. The research could be used to compare two times series and be applied to

a number of real-life data sets.

Part 8. Applying long memory error to the work of Cai and Brown in [4].

36. Introduction.

In this section we expand the work of Cai and Brown in [4] to include the error created by long memory

error. As stated before, the problem of long memory has many real-life applications. Often data sets

are not independent. In the previous section we addressed this problem with linear interpolation in the
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space of functions g which were r piecewise continuous. Now we generalize that to the Holder class and

use a function H to account for the irregularly spaced data. In Section 37 we examine some preliminaries

and notations. In Section 38 we examine the initial de�nitions and the boundedness obtained from the

coe�cients of the mother wavelets. In Section 39 we bound the variance of the wavelet coe�cients. In

Section 41 we provide the initial separation of the wavelet coe�cients into pieces. This is similar to the

breakdown of wavelet coe�cients in the Part 7 Section 33. Next, we provide the initial breakdown of

the MISE in Section 42. In Sections 43, 44 and 45 each of the pieces of the MISE are bounded. Finally,

we provide the overall bounds of the MISE in Section 46.

37. Preliminaries and Notations.

We are given data

(37.1) yi = f (ti) + εzi,

i = 1, 2, ..., n, 0 < t1 < t2 < ... < tn = 1, and zi are long memory distributed as N (0, 1) . These data

are not equally spaced. We assume that n = 2j0 .

Furthermore, long memory means that the covariance has the following property. We de�ne

(37.2) r(j) = E (εiεi+j) ∼ C0 |j|−α

for some constant C0.

Assume ti = H−1 (i/n) for some cumulative density function H on [0,1]. Here ε is the noise level. We

denote by Λ1(h) the collection of Lipschitz functions f satisfying

(37.3) |f (x)− f (y)| ≤ h |x− y| for x, y ∈ [0, 1].

We assume that H−1 ∈ Λ1(h) for some constant h.

38. Preliminary information.

We are dealing with the following space in this work, just as in [4].

De�nition 71. A piecewise Holder class Λα (M,B,m) on [0,1] with at most m discontinuous jumps

consists of functions f satisfying the following conditions:

1. The function f is bounded by B, that is, |f | ≤ B.

2. There exist l ≤ m points 0 ≤ α1 < ... < αl ≤ 1 such that, for all αi ≤ x, y < αi+1, i = 0, 1, ..., l

(with α0 = 0 and αl+1 = 1),

(i) |f(x)− f(y)| ≤M |x− y|α if α ≤ 1;

(ii)
∣∣f (bαc)(x)− f (bαc)(y)

∣∣ ≤M |x− y|α′ and |f ′(x)| ≤ B if α > 1

where bαc is the largest integer less that α and α′ = α− bαc.
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We will assume for this work that f ∈ Λβ (M,B,m). This is because we have used the α constant to

denote the boundedness that deals with long memory.

We assume of the wavelets that they have a multiresolution analysis which is set up in the usual

way. Let ψjk(x) = 2j/2ψ
(
2jx− k

)
and φj0k(x) = 2j0/2φ

(
2j0x− k

)
. These will form the multiresolution

analysis. Here the collection {φj0k, ψjk, j ≥ j0, k ∈ Z} is an orthonormal basis of L2 (R).

We also have a theorem that we must cite from [4]. The proof does not change for long memory

because this theorem does not take the error term εzi into account.

Theorem 72. Suppose that a sampled function
{
f (ti) , i = 1, 2, ..., n

(
= 2J

)}
is given with ti = H−1 (i/n),

where H is a strictly increasing cumulative density function on [0,1] with H−1 ∈ Λ1(h). Let the wavelet

function ψ be r-regular with r > α. Let ξ′Ji and fn be given as previously. Then the approximation error

‖fn − f‖22 satis�es

sup
f∈Λβ(M,B,m)

‖fn − f‖22 = o
(
n−2β/(1+2β)

)
,

where the maximum number of jump discontinuities m = Cnγ with constants C > 0 and 0 < γ <

β/ (1 + 2β).

Now some preliminary notation:

Let g̃(t) = n−1/2
∑n
i=1 yiφJi(t) and let

f̃J(t) = ProjVJ g̃ (H (t)) = n−1/2
2j0∑
k=1

ξ̃j0kφj0k(t) +

J−1∑
j=j0

2j∑
k=1

θ̃jkψjk(t),

where

ξ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,φjk〉 , θ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,ψjk〉 .

Here ξ̃j0k and θ̃jkare noisy observations of the true wavelet coe�cients ξj0k and θjk. We estimate θjk

by thresholding θ̃jk. Let

(38.1) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+

where the threshold λjk is derived later. This is derived from an estimate of the variance of the wavelet

coe�cients. We will use the upper bounds of the variance and the universal bounds from Donoho and

Johnstone as the thresholding coe�cients.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 135

We also have

fn(t) =

2J∑
i=1

ξ′JiφJi(t).

(We note here that when we examine this expression in light of Theorem 72, what the theorem actually

gives us in the bound of just the wavelet coe�cients in our expressions. This is what we will apply many

times in the later sections.)

39. Bounds of Variance and error.

We suppose that H−1 is strictly increasing. Therefore H−1 is di�erentiable almost everywhere.

Let

h̃(t) =
d

dt
H−1(t).

Then

0 < h̃(t) ≤ h

for almost all t ∈ [0, 1],by an assumption we make. We de�ne

σ2
jk = var

(
θ̃ij

)
=

(
n−1/2ε

n∑
i=1

zi 〈φJi ◦H,ψjk〉

)2

=
ε2

n

n∑
i=1

(〈φJi ◦H,ψjk〉)2
+
ε2

n

n∑
m=1

∑
m′ 6=m

zmzm′ 〈φJm ◦H,ψjk〉 〈φJm′ ◦H,ψjk〉

≡ J1 + J2.

We must bound each of there. Note that

E (J1) ≤ ε2

n

[ˆ
φJi (H (t))ψjk

]2

.

Note that ‖φJi‖ = 1.

E (J1) ≤ ε2

n

ˆ
ψ2
jk (t) h̃ (H (t)) dt ≤ ε2

n
· h.

The factor of h appears because of the assumption of boundedness that we have made on H in (37.3).

Now we must bound J2.

E (J2) = E

ε2
n

n∑
m=1

∑
m′ 6=m

zmzm′ 〈φJm ◦H,ψjk〉 〈φJm′ ◦H,ψjk〉
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Recall that

r(j) = E (εiεi+j) ∼ C0 |j|−α .

(39.1) E (J2) ∼ ε2

n

n∑
m=1

∑
m′ 6=m

r (m−m′) 〈φJm ◦H,ψjk〉 〈φJm′ ◦H,ψjk〉 ≡ I1.

Just as in Li and Xiao on page 2867 in [18] we have the following. We must bound 39.1).

(39.2)

I1 =
2iε2

n

n∑
m=1

∑
k 6=m

r (m− k)

ˆ ˆ
φ
(
H
(
2j0x−m

))
φ
(
H
(
2j0y − k

))
ψ
(
2ix− j

)
ψ
(
2iy − j

)
dxdy

We use the assumption that n = 2j0 .

(39.3)

=
2iε2

n

ˆ ˆ
φ (H (u))φ (H (v))


n∑

m=1

∑
k 6=m

r (m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

 dudv.

We �rst consider the case when α ∈ (0, 1). It follows from (50.2) that as n→∞,

n∑
m=1

∑
k 6=m

r (m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

∼ C0n
−α

n∑
m=1

∑
k 6=m

∣∣∣∣mn − k

n

∣∣∣∣−α ψ(2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

∼ C0n
−α
ˆ 1

0

ˆ 1

0

|x− y|−α ψ
(
2ix− j

)
ψ
(
2iy − j

)
dxdy

(39.4) = C0n
−α2(α−2)i

ˆ 1

0

ˆ 1

0

|x− y|−α ψ (x)ψ (y) dxdy.

uniformly for all u, v in the support of φ. Combining (39.2) and (39.4) we have

(39.5) I1 ∼ C4n
−α2−i(1−α) as n→∞.

We have the following bound.

≤
ˆ ˆ

ε2hφ(w)φ(v)×

{
2j

n

n∑
m=1

∑
m′=m

r (|m−m′|)ψ
(

2j
u+m

n
− k
)
ψ

(
2j
v +m′

n
− k
)}

dudv
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We represent the second half of this equation with a I2.

Now, just as in Li and Xiao's result in [18], we have

I2 ≤ Cτ2
j

where

τ2
j ≤ C4n

−α2−j(1−α)

and

C4 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy.

Thus, for all α ∈ (0, 1),

E (J2) ≤ ε2hCτ2
j .

Here we reproduce the Li and Xiao bounding in [18] for α = 1. We begin from (39.3). We consider

2i
n∑

m=1

∑
|m−k|>c

r (m− k)

ˆ ˆ
φ
(
2j0x−m

)
φ
(
2j0y − k

)
ψ
(
2ix− j

)
ψ
(
2iy − j

)
dxdy

∼ 2i
ˆ ˆ

φ (H (u))φ (H (v))


n∑

m=1

∑
|m−k|>c

r (m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

 dudv.

They apply an argument from Hall and Hart, 1990, p.350. We have

n∑
m=1

∑
|m−k|>c

r (m− k)ψ

(
2i
u+m

n
− j
)
ψ

(
2i
v + k

n
− j
)

1

n2

∼ C0n
−1

ˆ ˆ
|x−y|>c/n

|x− y|−1
ψ
(
2ix+ 2iu/n

)
ψ
(
2iy + 2iv/n

)
dxdy

∼ C0n
−12−1

ˆ ˆ
|p−q|>c2i/n

|p− q|−1
ψ (p)ψ (q) dpdq

= C0n
−12−i

ˆ
ψ (q)

ˆ
|y|>c2i/n

|y|−1
ψ (y + q) dydq

∼ C0n
−12−i2 log

(
n2−ie

) ˆ
ψ2 (q) dq

(39.6) = 2C0n
−12−i log

(
n2−ie

)
.

Now for α = 1, where we have in terms of the Li and Xiao paper, j = j′, as per equation (??),

I2 ≤ Cn−1 log
(
n2−ke

)
.
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Then

E (J2) ≤ ε2hCn−1 log
(
n2−ke

)
.

Then for α ∈ (0, 1),

var
(
θ̃ij

)
≤ ε2

n
h+ ε2hCτ2

j

=
ε2

n
h+ ε2hCC4n

−α2−k(1−α)

(39.7) = O
(
n−α

)
.

Now for α = 1,

var
(
θ̃ij

)
≤ ε2

n
h+

ε2

n
hC log

(
n2−ke

)

(39.8) = O

(
log
(
n2−ke

)
n

)
.

Thus, we have the bounds for the error terms. We summarize them in the theorem below.

Theorem 73. The bounds of the variance var
(
θ̃ij

)
are for α ∈ (0, 1),

=
ε2

n
h+ ε2hCC4n

−α2−k(1−α)

(39.9) = O
(
n−α

)
.

and for α = 1,

≤ ε2

n
h+

ε2

n
hC log

(
n2−ke

)

(39.10) = O

(
log
(
n2−ke

)
n

)
.

40. Other important notation.

We note that

σ2
jk = var

(
θ̃ij

)
=

(
n−1/2ε

n∑
i=1

zi 〈φJi ◦H,ψjk〉

)2

.
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I will denote

σ̂2
jk = var

(
ξ̃ij

)
=

(
n−1/2ε

n∑
i=1

zi 〈φJi ◦H,φj0k〉

)2

.

Note that the same bounds apply to this σ̂jk as to σjk.

41. Breakdown of Wavelet Coefficients

Let g(t) = f
(
H−1 (t)

)
and g̃(t) = n−1/2

∑n
i=1 yiφJi(t) and let f̃(t) = g̃ (H (t)) . Then

f̃(t) = n−1/2
n∑
i=1

f (ti)φJi (H (t)) + n−1/2ε

n∑
i=1

ziφJi (H (t))

= f(t) + ∆(t) + r(t),

where ∆(t) = n−1/2
∑n
i=1 f (ti)φJi (H (t))−f (t) is the approximation error and r (t) = n−1/2ε

∑n
i=1 ziφJi (H (t))

is the error due to the noise in the data. Now project f̃ onto the multiresolution space VJ and decompose

the orthogonal projection f̃J (t) = ProjVJ f̃ (t) into three terms:

f̃J (t) = fJ (t) + ∆J (t) + rJ (t) ,

where fJ = ProjVJ f, ∆J = ProjVJ∆ and rJ = ProjVJ r, respectively. Theorem 72 yields

‖∆J‖22 = o
(
n−2β/(1+2β)

)
.

Then we �nally have the decomposition. Denote θ̃jk =
〈
f̃J , ψjk

〉
.We decompose θ̃jk into three parts:

θ̃jk = θjk + djk + rjk for k = 1, ..., 2j , j = j0, ..., J − 1,

where θjk = 〈f, ψjk〉 is the true wavelet coe�cient of f , djk = 〈∆J , ψjk〉 is the approximation error and

rjk = 〈rJ , ψjk〉 is the noise. Similarly separate ξ̃j0k =
〈
f̃J , φj0k

〉
into three terms:

ξ̃j0k = ξj0k + d′j0k + r′j0k for k = 1, ..., 2j0 .

Lemma 74. Let ξ̂j0k and θ̂jk be given as in (66.3). Then

2j0∑
k=1

(
d′j0k

)2
+

J−1∑
j=j0

2j∑
k=1

d2
jk = ‖∆J‖22 = o

(
n−2β/(1+2β)

)
.

This Lemma will be very important in bounding each of the pieces of the MISE later.
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42. Breakdown of the MISE.

Recall that the MISE is measured by the global squared L2 norm risk:

E

ˆ 1

0

(
f̂ (t)− f (t)

)2

dt.

We break up the MISE as follows.

E
∥∥∥f̂∗n − f∥∥∥2

=

2j0∑
k=1

E
(
ξ̂j0k − ξj0k

)2

+

J−1∑
j=j0

2j∑
k=1

E
(
θ̂jk − θjk

)2

+

∞∑
j=J

2j∑
k=1

θ2
jk

≡ S1 + S2 + S3.

We will bound each of these below.

43. Bound of S1.

Recall that

S1 =

2j0∑
k=1

(
ξ̂j0k − ξj0k

)2

ξ̂j0k = ξ̃j0k = ξj0k + d′j0k + r′j0k

=

2j0∑
k=1

(
d′j0k + r′j0k

)2

≤ 2j0
[
bounds of σ̂2

j0k

]
+

2j0∑
k=1

(
d′j0k

)2
= 2j0

[
bounds of σ̂2

j0k

]
+O

(
n−2β/(1+2β)

)
.

This last line comes from Theorem 72 and the β comes from the de�nition of the space being examined.

44. Bounds of S3.

Recall that

S3 =

∞∑
j=J

2j∑
k=1

θ2
jk.

There are the wavelet coe�cients that we never estimate because we must have a truncation point

for the series. We de�ne

Gj =
{
k : supp [ψjk] =

[
2−jk, 2−j (N + k)

]
contains at least one jump point of f

}
.



FUNCTION ESTIMATION OF IRREGULARLY SPACED DATA WITH LONG MEMORY DEPENDENCE 141

Then card (Gj) ≤ N (m+ 2), here the m comes from the de�nition and the plus 2 comes from

including the 0 and the 1, the endpoints of the support.

We have a lemma:

Lemma 75. We have for the coe�cients θjk

|θjk| ≤ C2−j(−1/2+β) k /∈ Gj

|θjk| ≤ C2−j/2 k ∈ Gj .

Then

S3 =

∞∑
j=J

∑
k∈Gj

θ2
jk +

∞∑
j=J

∑
k/∈Gj

θ2
jk.

≤
∞∑
j=J

N(m+ 2)C22−j +

∞∑
j=J

2j∑
k=1

C22−j(1+2β)

= 2−J
∞∑
j=1

N(m+ 2)C22−j +

∞∑
j=1

2jC22−j2−j2β

= 2−JN(m+ 2)C2 + 2−J
∞∑
j=1

C22−j2β

2−JC2

[
N(m+ 2) +

1

1− 1
22β

]
= 2−JC2

[
N(m+ 2) +

22β

22β − 1

]

Recall that n = o
(
2J
)
. Each of these is bounded above by the following.

S3 = o
(
n−2β/(1+2β)

)
.

45. Bound of S2.

Recall that

S2 =

J−1∑
j=j0

(
θ̂jk − θjk

)2

.

We also have

θ̂jk = θjk + djk + rjk.

Recall that there are thresholded using the hard and soft thresholding operators. That means that

we can divide this S2 in four ways. By whether we are in or not in Gj , and by whether or not we keep

or kill the coe�cients.
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Let's begin by considering hard thresholding.

S2 =

J−1∑
j=jo

∑
k∈Gj

(
θ̂jk − θjk

)2 [
θ̂jk keep

]
+

J−1∑
j=jo

∑
k∈Gj

(
θ̂jk − θjk

)2 [
θ̂jk kill

]

+

J−1∑
j=jo

∑
k/∈Gj

(
θ̂jk − θjk

)2 [
θ̂jk keep

]
+

J−1∑
j=jo

∑
k/∈Gj

(
θ̂jk − θjk

)2 [
θ̂jk kill

]

=

J−1∑
j=jo

∑
k∈Gj

(djk + rjk)
2
[
θ̂jk keep

]
+

J−1∑
j=jo

∑
k/∈Gj

(djk + rjk)
2
[
θ̂jk keep

]

+

J−1∑
j=jo

∑
k∈Gj

θ2
jk

[
θ̂jk kill

]
+

J−1∑
j=jo

∑
k/∈Gj

θ2
jk

[
θ̂jk kill

]
.

S21 + S22 + S23 + S24.

We consider S21 + S22.

=

J−1∑
j=j0

2j∑
k=1

(djk + rjk)
2

= (J − j0) 2j
[
bounds of σ2

jk

]
+ o

(
n−2β/(1+2β)

)
.

Lastly we consider S23 + S24.

J−1∑
j=jo

∑
k∈Gj

θ2
jk +

J−1∑
j=jo

∑
k/∈Gj

θ2
jk ≤ N(m+ 2)

J−1∑
j=j0

C2−j/2 +

J−1∑
j=j0

2j∑
k=1

C2−j(1+2β)

N(m+ 2)

J−1∑
j=j0

C2−j/2 +

J−1∑
j=j0

2jC2−j(1+2β) = N(m+ 2)

J−1∑
j=j0

C2−j/2 +

J−1∑
j=j0

C2−j2β

Here we use a substitution, l = j − j0 + 1. Then if j = j0, l = 1. Also, if j = J − 1, l = J − j0. We

have

= CN(m+ 2)

J−j0∑
l=1

2−(l+j0−1)/2 + C

J−j0∑
l=1

2−2β(l+j0−1)

= CN(m+ 2)2(1−j0)/2

J−j0∑
l=1

2−l/2 + 22β(1−j0)

J−j0∑
l=1

2−2βl
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We will use the rule of in�nite sums for |x| < 1.

∞∑
m=1

xm =
1

1− x
.

≤ CN(m+ 2)2(1−j0)/2 1

1− 2−1/2
+ 22β(1−j0) 1

1− 2−2β
.

By recalling that n = 2J , we can see that this is

o
(
n−2β/(1+2β)

)
.

46. Overall Bounds.

Now we can compute the overall abounds of the MISE.

For α ∈ (0, 1),

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0
[
n−α

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
n−α

]

= o
(
n−α

)
+ o

(
n−2β/(1+2β)

)
.

For α = 1,

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
.

= o

(
log
(
n2−ke

)
n

)
+ o

(
n−2β/(1+2β)

)
.

We state this as a theorem below.

Theorem 76. Suppose f is a function supported on [0, 1] with f ∈ Λβ (M,B,m). Suppose that the data

generated by this function f is long memory and irregularly spaced. Long memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Let

(46.1) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+

where the threshold λjk is derived from an estimate of the variance of the wavelet coe�cients.
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For α ∈ (0, 1),

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0
[
n−α

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
n−α

]

= o
(
n−α

)
+ o

(
n−2β/(1+2β)

)
.

For α = 1,

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
.

= o

(
log
(
n2−ke

)
n

)
+ o

(
n−2β/(1+2β)

)
.

47. Important notes about this paper.

Here we have studied the MISE which arises from applying a function H to reorder irregularly spaced

data which is normally distributed and has long memory error. The bounds are similar to those obtained

in Part 7. We compare these two bounds and examine the implications in the following Part 9.

Part 9. Comparison of the results of Part 7 and Part 8.

48. Introduction.

In this section we compare the results in Parts 7 and 8. Ultimately, we compare the convergence of

the MISE in the two di�erent situations. Section 49 examines and summarizes the results from Part

7, and Section 50 examines and summarizes the results from Part 8. Finally, in Section 51 we give the

comparison of the two.

49. First space and Theorem.

49.1. Initial assumptions. We have

(49.1) Ym = g (Xm) + εm for 1 ≤ m ≤ n

where Y = {(Xm, Ym) , 1 ≤ m ≤ n} and X = {Xm, 1 ≤ m ≤ n}.

The εm are long memory dependent Gaussian variables with E (εm) = 0 and E
(
ε2m
)

= σ2 > 0. Long

memory means that the covariance has the following property. We de�ne

r(j) = E (εiεi+j) ∼ C0 |j|−α
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where α ∈ (0, 1]. Here aj ∼ bj means that aj/bj → 1 when j → ∞. Here we interpolate the data

with a function

(49.2) Y (x) =
∑
m

wm(x)Ym for x ∈ (X−v1 , Xn−v2 ] .

The weights are de�ned as follows.

For local averaging we let

(49.3) wm(x) = (2v)
−1

if − v + 1 ≤ m− l ≤ v, 0 otherwise.

For linear interpolation we let

(49.4) wm(x) =

 v−1 (X2l−m+1 − x) / (X2l−m+1 −Xm) − v + 1 ≤ m− l ≤ 0
v−1 (x−X2l−m+1) / (Xm −X2l−m+1) 1 ≤ m− l ≤ v

0 otherwise.

We make the following assumptions about g.

49.2. Assumptions on g. We assume of the function g that it has r piecewise continuous derivatives, in

the sense that there exist constants 0 = a1 < a2 < ... < ak = 1 such that g has r continuous derivatives

on each interval [al, al+1] for 1 ≤ l ≤ k − 1. We assume the same of the density function f of the Xm's,

possibly with di�erent ai's and a di�erent k. Thus, the the function g and its derivatives have a bounded

number of discontinuities.

49.3. Boundedness of our estimator of g. We come to the following theorem regarding the bound-

edness for our estimator of g. Below, ε1, η > 0 and close to 0, and 0 < λ < 1/2.

Theorem 77. Suppose g is a function supported on [0, 1] with certain continuity properties established

before. Recall that g has r piecewise continuous derivatives. Suppose that the data generated by this

function g is long memory and irregularly spaced. Long memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Suppose we let

(49.5) ĝ =
∑
j

âjφj +

q−1∑
i=0

∑
j

b̂ijI
(∣∣∣b̂ij∣∣∣ ≥ δ)ψij .

where

âj =

ˆ
I

Y φj b̂ij =

ˆ
I

Y ψij .
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and Y is some interpolation rule. Then for α = 1

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−2 log
(
np−1

i e
))

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1 + p−1

q

)

(49.6) +O(qpin
η−1 +

C

ε
nη−λ−2)

For α ∈ (0, 1)

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−1
)

+O

(
qpin

η−1 +
C

ε
nη−λ−2

)

(49.7) +
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1 + p−1

q

)
Let ε = max {2ε1, η, λ}. We rewrite our bounds.

For α = 1 ˆ
E (ĝ − g)

2
= O

(
pnε−2 + pin

ε−2 log
(
np−1

i e
))

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnε−1 + p−1

q

)

+O(qpin
ε−1 +

C

ε
nε−2).

For α ∈ (0, 1)

ˆ
E (ĝ − g)

2
= O

(
pnε−2 + pin

ε−1
)

+O

(
qpin

ε−1 +
C

ε
nε−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnε−1 + p−1

q

)
.

Now let's recall the properties of p, pi and q. These were used to de�ne the Multiresolution Analysis

of the wavelets within Part 7.

p−1 = o
{(
n−1 log n

)1/(2r+1)
}
, p−1

q = o
(
n−2r/(2r+1)

)
,
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pq = O
{
nmin{µ+1/(2r+1),1}−ε

}
where µ > 0 and ε > 0.

pi = 2ip.

Here q is the truncation point for the series. We adjust what we have according to these parameters.

Below is a reminder of big O and little o notations.

49.4. Little o versus Big O. We say that f (x) = O (g (x)) as x→∞ if and only if there is a positive

constant M such that for all su�ciently large values of x,

|f (x)| ≤M |g (x)| for all x > x0.

We say that f (x) = o (g (x)) if for every constant ε there exists an x0 such that

|f (x)| ≤ ε |g (x)| for all x > x0.

49.5. Continuing to simplify. We enter in the bounds of the p's and q's below.

For α = 1 ˆ
E (ĝ − g)

2
= O

(
pnε−2 + 2ipnε−2 log

(
n
(
2ip
)−1

e
))

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o

(((
n−1 log n

)1/(2r+1)
)2r
)

+O
(
qnε−1 + n−2r/(2r+1)

)

+O(q2ipnε−1 +
C

ε
nε−2).

For α ∈ (0, 1)

ˆ
E (ĝ − g)

2
= O

(
pnε−2 + 2ipnε−1

)
+O

(
q2ipnε−1 +

C

ε
nε−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o

(((
n−1 log n

)1/(2r+1)
)2r
)

+O
(
qnε−1 + n−2r/(2r+1)

)
.

We continue the simplifying by eliminating the lesser terms.

Theorem 78. Our new simpli�ed bounds are listed below. For α = 1

ˆ
E (ĝ − g)

2
= O

(
2ipnε−2 log

(
n
(
2ip
)−1

e
)

+ 2ipqnε−1 + n−2r/(2r+1)
)
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(49.8) +
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o

(((
n−1 log n

)1/(2r+1)
)2r
)
.

For α ∈ (0, 1)
ˆ
E (ĝ − g)

2
= O

(
2ipqnε−1 + n−2r/(2r+1)

)

(49.9) +
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o

(((
n−1 log n

)1/(2r+1)
)2r
)
.

This is the fully simpli�ed theorem. I have left the factor of p−2r in the term with the integral since

it is an exact term.

50. Second Space and Theorem

50.1. Initial assumptions. We are given data

(50.1) yi = f (ti) + εzi,

i = 1, 2, ..., n, 0 < t1 < t2 < ... < tn = 1, and zi are long memory distributed as N (0, 1) . These data

are not equally spaced. We assume that n = 2j0 .

Furthermore, long memory means that the covariance has the following property. We de�ne

(50.2) r(j) = E (εiεi+j) ∼ C0 |j|−α

for some constant C0.

Assume ti = H−1 (i/n) for some cumulative density function H on [0,1]. Here ε is the noise level. We

denote by Λ1(h) the collection of Lipschitz functions f satisfying

|f (x)− f (y)| ≤ h |x− y| for x, y ∈ [0, 1].

We assume that H−1 ∈ Λ1(h) for some constant h.

50.2. De�nition of the space.

De�nition 79. A piecewise Holder class Λα (M,B,m) on [0,1] with at most m discontinuous jumps

consists of functions f satisfying the following conditions:

1. The function f is bounded by B, that is, |f | ≤ B.

2. There exist l ≤ m points 0 ≤ α1 < ... < αl ≤ 1 such that, for all αi ≤ x, y < αi+1, i = 0, 1, ..., l

(with α0 = 0 and αl+1 = 1),

(i) |f(x)− f(y)| ≤M |x− y|α if α ≤ 1;
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(ii)
∣∣f (bαc)(x)− f (bαc)(y)

∣∣ ≤M |x− y|α′ and |f ′(x)| ≤ B if α > 1

where bαc is the largest integer less that α and α′ = α− bαc.

We will assume for this work that f ∈ Λβ (M,B,m). We now examine the �nal theorem for this work.

50.3. Preliminary notions. We have the following theorem.

Theorem 80. Suppose that a sampled function
{
f (ti) , i = 1, 2, ..., n

(
= 2J

)}
is given with ti = H−1 (i/n),

where H is a strictly increasing cumulative density function on [0,1] with H−1 ∈ Λ1(h). Let the wavelet

function ψ be r-regular with r > α. Let ξ′Ji and fn be given as previously. Then the approximation error

‖fn − f‖22 satis�es

sup
f∈Λβ(M,B,m)

‖fn − f‖22 = o
(
n−2β/(1+2β)

)
,

where the maximum number of jump discontinuities m = Cnγ with constants C > 0 and 0 < γ <

β/ (1 + 2β).

Let g̃(t) = n−1/2
∑n
i=1 yiφJi(t) and let

f̃J(t) = ProjVJ g̃ (H (t)) = n−1/2
2j0∑
k=1

ξ̃j0kφj0k(t) +

J−1∑
j=j0

2j∑
k=1

θ̃jkψjk(t),

where

ξ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,φjk〉 , θ̃jk = n−1/2
n∑
i=1

yi 〈φJi ◦H,ψjk〉 .

Here ξ̃j0k and θ̃jkare noisy observations of the true wavelet coe�cients ξj0k and θjk. We estimate θjk

by thresholding θ̃jk. Let

(50.3) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+

where the threshold λjk is derived from an estimate of the variance of the wavelet coe�cients.

50.4. Boundedness for our estimator of g. We have the following theorem.

Theorem 81. Suppose f is a function supported on [0, 1] with f ∈ Λβ (M,B,m). Suppose that the data

generated by this function f is long memory and irregularly spaced. Long memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α
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where α ∈ (0, 1]. Let

(50.4) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+

where the threshold λjk is derived from an estimate of the variance of the wavelet coe�cients.

For α ∈ (0, 1),

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0
[
n−α

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
n−α

]

= o
(
n−α

)
+ o

(
n−2β/(1+2β)

)
.

For α = 1,

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
.

= o

(
log
(
n2−ke

)
n

)
+ o

(
n−2β/(1+2β)

)
.

We see that this boundedness is slightly di�erent.

51. Comparison of the Two.

Notice that the �rst space is a subset of the second one. The second space allows for a �nite number

of discontinuities. The �rst space requires r piecewise continuous derivatives, the second only requires

boundedness. Thus, the results for the �rst space are for a much more speci�c situation. Therefore, the

bounds for the second space are much more general and could be applied in more situations.

The �rst theorem uses interpolation to correct the problem of unequally spaced data. We considered

two speci�c rules, that of local averaging and linear interpolation. It uses tuning parameters p and q to

de�ne the multi-resolution analysis. Details can be found in Part 7 Section 32.3.

The second uses an inverse function H to correct the problem of unequally spaced data. The mul-

tiresolution analysis in this case is de�ned as it usually is. Details can be found in Part 8 Section

38.

We �rst consider the case where α ∈ (0, 1).

The �rst error is either O
(
2ipqnε−1

)
or o

(
n−2r/(2r+1)

)
where ε > 0 and close to zero, whichever is

larger.

The second error is either o
([

2j0 + (J − j0) 2j
]
n−α

)
or o

(
n−2β/(1+2β)

)
, whichever is larger.
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The main di�erence between the two of these is the factor of nε−1 versus n−α. You can see minor

di�erences due to the tuning parameters used to de�ne the multiresolution analysis in the �rst paper.

The convergence for the �rst error is better, which is what is expected. Recall that here ε was close to

zero, which gives us the better convergence.

Next we consider the case where α = 1.

The �rst error is either O
(

2ipnε−2 log
(
n
(
2ip
)−1

e
)

+ 2ipqnε−1
)
or o

(
n−2r/(2r+1)

)
where ε > 0 and

close to zero, whichever is larger.

The second error is either o

(
2j0

log(n2−ke)
n

)
or o

(
n−2β/(1+2β)

)
, whichever is larger.

Again there are minor di�erences between these two bounds, partly because of the tuning parameters

p and q. Again we see that the bound for the �rst error is better, which is what was expected given the

circumstances. The �rst error has an extra factor of n−1 within the term with the logarithm.

Part 10. Writing long memory into a matrix context.

52. Introduction.

Here we consider data with long memory error viewed in terms of matrices. We assume that the

data is dyadic and that we have incomplete data. Also, we later try to expand the work of Donoho and

Johnstone to more readily incorporate long memory error.

53. Preliminaries and Notations.

Suppose that we have noisy data at irregular design points {t1, t2, ..., tn} :

Yi = f (ti) + εi, εi ∼ N
(
0, σ2

)
,

where f is an unknown regression to be estimated from the noisy sample. Assume f is de�ned on

[0, 1]. Assume further that ti = ni/2
J for some ni and some �ne resolution J that is determined by users.

Usually 2J ≥ n so that the approximation errors by moving nondyadic points to dyadic points are neg-

ligible. Let f be the underlying regression function collected at all dyadic points
{
i/2J , i = 0, ..., 2J−1

}
.

Let W be a given wavelet transform and θ = Wf be the wavelet transform of f . Because W is an

orthogonal matrix, f = WT θ.

Denote the sampled data vector by Yn. Let A be an n×N matrix whose ith row corresponds to the

row of the matrix WT for which the signal f (ti) is sampled with noise. Then the observed data can be

expressed as a linear model

(53.1) Yn = Aθ + ε ε ∼ N
(
0, σ2V

)
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where ε is the noise vector and V is the covariance matrix. The penalized least squares problem is to

�nd θ to minimize

(53.2) 2−1 ‖Yn −Aθ‖2 + λ

N∑
i=1

p (|θi|)

for a given penalty function p and regularization parameter λ > 0.

When n = 2J , the matrix A becomes a square orthogonal matrix WT . This corresponds to the paper

by Donoho and Johnstone [8]. We could then write (53.2) as

2−1 ‖WYn − θ‖2 + λ

N∑
i=1

p (|θi|) .

54. Solving the Problem with no noise.

Assume for this section that there is no noise, i. e. ε = 0 in (53.1). We only have signal at the

nonequispaced points {ti, i = 1, ..., n} which means we have no information at other dyadic points. Let

fn = (f (t1) , ..., f (tn))
T

be the observed signals. Then

(54.1) fn = Aθ.

There are many solutions to this equation. We choose the one that provides the minimum Sobolev

solution. We will use the double array sequence θj,k to denote the wavelet coe�cient at the jth resolution

level and the kth dyadic location
(
k = 1, ..., 2j−1

)
. A Sobolev norm of f with degree of smoothness s

can be expressed as

‖θ‖2s =
∑
j

22sj ‖θj·‖2 ,

where θj· is the vector of the wavelet coe�cients at the resolution level j.

We minimize ‖θ‖2s subject to the constraint (54.1).

The solution (Rao 1973) is what is called the normalized method of frame whose solution is given by

θ = DAT
(
ADAT

)−1
fn,

where D = Diag
(
2−2sji

)
with ji denoting the resolution level with which θi is associated. When

s = 0,θ = AT fn by orthogonality.
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The traditional regularization problem can be formulated in the wavelet domain as follows. Find the

minimum of

(54.2) 2−1 ‖Yn −Aθ‖2 + λ ‖θ‖2s .

One can replace the Sobolev norm by other penalty functions, leading to minimizing

(54.3) l (θ) = 2−1 ‖Yn −Aθ‖2 + λ
∑
i≥i0

p (|θi|) .

for a given penalty function p (·) and given value i0. This corresponds to penalizing wavelet coe�cients

above certain resolution level j0.

When the sampling points are equally spaced and n = 2J , the design matrix A in (54.1) becomes the

inverse transform matrix WT . In this case, (54.3) becomes

(54.4) 2−1
n∑
i=1

(zi − θi)2
+ λ

∑
i≥i0

p (|θi|) ,

where zi is the ith component of the wavelet coe�cient vector z = WYn. The solution to this problem

is a component-wise minimization problem.

We will denote λp as pλ. There are a variety of penalty functions to study. We give an outline of

these function in Section 62.

55. Dealing with p (·).

Let p (·) be a nonnegative, nondecreasing and di�erentiable function on (0,∞). We wish to minimize

with respect to θ

(55.1) l (θ) = (z − θ)2
/2 + pλ (|θ|)

for a given penalty parameter λ. This is a component-wise minimization of (54.4). The function

in (55.1) tend to in�nity as |θ| → ∞. Thus, minimizers do exist. Let θ̂ (z) be a solution. The next

theorem gives necessary and su�cient conditions for the solution to be thresholding, continuous, and

approximately unbiased when |z| is large.

Theorem 82. Let pλ (·) be a nonnegative, nondecreasing, and di�erentiable function in (0,∞). Further,

assume that the function −θ− p′λ (θ) is strictly unimodal on (0,∞). Then we have the following results.

(1) The solution to the minimization problem (55.1) exists and is unique. It is antisymmetric:

θ̂ (−z) = −θ̂ (z) .
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(2) The solution satis�es

θ̂ (z) =

{
0 if |z| ≤ p0

z − sgn (z) p′λ

(∣∣∣θ̂ (z)
∣∣∣) if |z| > p0

where p0 = minθ≥0 {θ + p′λ (θ)} . Moreover,
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| .
(3) If p′λ (·)is nonincreasing, then for |z| > p0, we have

|z| − p0 ≤
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| − p′λ (|z|) .

(4) When p′λ (θ) is continuous on (0,∞), the solution θ̂ (z) is continuous if and only if the minimum

of |θ|+ p′λ (|θ|) is attained at point zero.

(5) If p′λ (|z|)→ 0, as |z| → +∞, then

θ̂ (z) = z − p′λ (|z|) + o (p′λ (|z|)) .

These results implicate that when |z| ≤ p0, the estimate is thresholded to 0. For |z| > p0, the solution

has a shrinkage property. The amount of shrinkage is sandwiched between the soft-thresholding and

hard-thresholding estimators, as is shown in result 3.

We now consider the risk functions. Assume that E (Z) = θ and E
(
Z2
)
≤ 1. Denote by

Rp (θ, p0) = E
{
θ̂ (Z)− θ

}2

.

The thresholding parameter p0 is equivalent to the regularization parameter λ.

In the work of Antoniadis and Fan we have the following theorem which will be extended later.

Theorem 83. Suppose p satis�es conditions in Theorem 1 and p′λ (0+). Then

(1) Rp (θ, p0) ≤ 1 + θ2.

(2) If p′λ (·) is nonincreasing, then

Rp (θ, p0) ≤ p2
0 +

√
2/πp0 + 1.

(3) Rp (0, p0) ≤
√

2/π
(
p0 + p−1

0

)
exp

(
−p2

0/2
)
.

(4) Rp (θ, p0) ≤ Rp (0, θ) + 2θ2.

These rules are improvements on the rules given by Donoho and Johnstone [8] which incorporate the

new penalty functions.
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From the work of Donoho and Johnstone and by Theorem 2, property 2, for any penalized least

squares estimator, we have

Rp (θ, p0) ≤ 2 log n+
√

4/π (log n)
1/2

+ 1

if p0 ≤
√

2 log n.

56. Cast of Characters.

Recall our estimator

θ = DAT
(
ADAT

)−1
fn.

We have noisy data at irregular design points {t1, ..., tn}. We have

Yi = f (ti) + εi, εi ∼ N
(
0, σ2

)
.

Here the εi's have the following property:

E (εiεi+n) ∼ C0 |n|−α .

Let A be the n × N matrix whose ith row corresponds to the row of the matrix WT for which the

signal f (ti) is sampled with noise. We express the observed data as the linear model

Yn = Aθ + ε ε ∼ N
(
0, σ2V

)
.

where V is the covariance matrix. We wish to minimize

2−1 ‖Yn −Aθ‖2 + λ

N∑
i=1

p (|θi|)

for a given penalty function p and regularization parameter λ > 0. The function p has many properties

which will be examined later.

Note that fn is the vector of the signal values,

fn = {f (t1) , ..., f (tn)}T .

Then fn is an n× 1 matrix. The matrix D = Diag
(
2−2sji

)
where ji is the resolution level with which

θi is associated. The parameter s is a smoothing parameter to be discussed later.
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57. Dimensions of the matrix DAT
(
ADAT

)−1
.

We now examine the dimensions of this matrix. A is an n×N matrix. AT is an N × n matrix. D is

an N ×N matrix. So we have:

DAT
(
ADAT

)−1

N ×N ·N × n (n×N ·N ×N ·N × n)
−1

N × n · (n×N ·N × n)
−1

N × n · (n× n)
−1

N × n · n× n

N × n.

So, the result from these matrix multiplications is a N ×n matrix. We multiply this times our vector,

which is n × 1 and get a result which is N × 1, our θ. Note that all of these coe�cients are bounded

since they began as wavelet coe�cients and the sums that the matrix multiplications produce are �nite.

We introduce a de�nition:

Ā ≡ DAT
(
ADAT

)−1
=


ā11 ā12 ... ā1n

ā21 ā22 ... ā2n

... ... ... ...
āN1 āN2 ... āNn

 .
This will allow us to examine the variance of of error vector ε more carefully.

58. Finding an Expression for the Variance

It is worth mentioning here that

Āε =


ā11ε1 + ā12ε2 + ...+ ā1nεn
ā21ε1 + ā22ε2 + ...+ ā2nεn

...
āN1ε1 + āN2ε2 + ...+ āNnεn

 .
We can see here clearly that E

(
Āε
)

= 0.

Recall that var
(
ATx

)
= ATvar (x)A. Thus, var

(
Āε
)

= Āvar (ε) ĀT . Note that

var (ε) =


ε21 ε1ε2 ... ε1εn
ε2ε1 ε22 ... ε2εn
... ... ... ...
εnε1 εnε2 ... ε2n

 .
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This is an n× n matrix. We begin by computing Āvar (ε) .
ā11 ā12 ... ā1n

ā21 ā22 ... ā2n

... ... ... ...
āN1 āN2 ... āNn

×


ε21 ε1ε2 ... ε1εn
ε2ε1 ε22 ... ε2εn
... ... ... ...
εnε1 εnε2 ... ε2n



=

 ā11ε
2
1 + ā12ε2ε1 + ...+ ā1nεnε1 ... ā11ε1εn + ā12ε2εn + ...+ ā1nε

2
n

... ... ...
āN1ε

2
1 + āN2ε2ε1 + ...+ āNnεnε1 ... āN1ε1εn + āN2ε2εn + ...+ āNnε

2
n

 .
We write this in terms of summations below.

∑n
i=1 ā1iεiε1

∑n
i=1 ā1iεiε2 ...

∑n
i=1 ā1iεiεn∑n

i=1 ā2iεiε1
∑n
i=1 ā2iεiε2 ...

∑n
i=1 ā2iεiεn

... ... ... ...∑n
i=1 āNiεiε1

∑n
i=1 āNiεiε2 ...

∑n
i=1 āNiεiεn

 = Āvar (ε) .

We must simplify this a bit. Let Cjk =
∑n
i=1 ājiεiεk. Then we can further write

Āvar (ε) =


C11 C12 ... C1n

C21 C22 ... C2n

... ... ... ...
CN1 CN2 ... CNn


We write explicitly

ĀT =


ā11 ā21 ... āN1

ā12 ā22 ... āN2

... ... ... ...
ā1n ā2n ... āNn

 .
We now �nd

(
Āvar (ε)

)
ĀT =


C11 C12 ... C1n

C21 C22 ... C2n

... ... ... ...
CN1 CN2 ... CNn

×

ā11 ā21 ... āN1

ā12 ā22 ... āN2

... ... ... ...
ā1n ā2n ... āNn

 .

=

 ā11C11 + ā12C12 + ...+ ā1nC1n ... āN1C11 + āN2C12 + ...+ āNnC1n

... ... ...
ā11CN1 + ā12CN2 + ...+ ā1nCNn ... āN1CN1 + āN2CN2 + ...+ āNnCNn

 .
We can write this as a summation.

=


∑n
k=1 ā1kC1k

∑n
k=1 ā2kC1k ...

∑n
k=1 āNkC1k∑n

k=1 ā1kC2k

∑n
k=1 ā2kC2k ...

∑n
k=1 āNkC2k

... ... ... ...∑n
k=1 ā1kCNk

∑n
k=1 ā2kCNk ...

∑n
k=1 āNkCNk

 .
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This is an N ×N matrix. We will write

Dlm =

n∑
k=1

āmkClk.

Then our result can be rewritten as

=


D11 D12 ... D1N

D21 D22 ... D2N

... ... ... ...
DN1 DN2 ... DNN

 .
These Dlm's are what we must bound. We begin by writing down exactly what Dlm stands for in

terms of sums.

Dlm =

n∑
k=1

āmkClk =

n∑
k=1

āmk

n∑
i=1

āliεiεk =

n∑
k=1

n∑
i=1

āmkāliεiεk =

n∑
k=1

āmkālkε
2
k +

n∑
k=1

n∑
i 6=k

āmkāliεiεk.

We have bounded this kind of quantity many times in the course of our studies. The key di�erence

between this and the other bounds that we have found are the ājk's. If we can show that the ājk's are

the same �size� as regular wavelet coe�cients, then we can apply the older results.

59. What size is ājk?

Recall that

Ā ≡ DAT
(
ADAT

)−1
.

Let

A =


a11 a12 ... a1N

a21 a22 ... a2N

... ... ... ...
an1 an2 ... anN

 .
Then

AT =


a11 a21 ... an1

a12 a22 ... an2

... ... ... ...
a1N a2N ... anN

 .
Recall D = Diag

(
2−2sji

)
and D is an N ×N matrix.

D =


2−2sj1 0 0 0

0 2−2sj2 0 0
0 0 ... 0
0 0 0 2−2sjN

 .
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We calculate DAT

=


2−2sj1a11 2−2sj1a21 ... 2−2sj1an1

2−2sj2a12 2−2sj2a22 ... 2−2sj2an2

... ... ... ...
2−2sjNa1N 2−2sjNa2N ... 2−2sjNanN

 .
Now we compute ADAT

=


a11 a12 ... a1N

a21 a22 ... a2N

... ... ... ...
an1 an2 ... anN

×


2−2sj1a11 2−2sj1a21 ... 2−2sj1an1

2−2sj2a12 2−2sj2a22 ... 2−2sj2an2

... ... ... ...
2−2sjNa1N 2−2sjNa2N ... 2−2sjNanN



=

 2−2sj1a2
11 + ...+ 2−2sjna2

1N ... 2−2sj1a11an1 + ...+ 2−2sjna1NanN
... ... ...

2−2sj1an1a11 + ...+ 2−2sjnanNa1N ... 2−2sj1a2
n1 + ...+ 2−2sjna2

nN

 .
So, �nally, we must examine DAT

(
ADAT

)−1
.

=


2−2sj1a11 2−2sj1a21 ... 2−2sj1an1

2−2sj2a12 2−2sj2a22 ... 2−2sj2an2

... ... ... ...
2−2sjNa1N 2−2sjNa2N ... 2−2sjNanN

×

 2−2sj1a2
11 + ...+ 2−2sjna2

1N ... 2−2sj1a11an1 + ...+ 2−2sjna1NanN
... ... ...

2−2sj1an1a11 + ...+ 2−2sjnanNa1N ... 2−2sj1a2
n1 + ...+ 2−2sjna2

nN

−1

.

We de�ne Eij =
∑N
k=1 2−2sjkaikajk. Then

ADAT =


E11 E12 ... E1n

E21 E22 ... E2n

... ... ... ...
En1 En2 ... Enn

 .
Recall That the determinant of an n× n matrix is de�ned as

det (G) =
∑
σ∈Sn

sgn (σ)

n∏
i=1

gi,σi .

There are n! permutations σ and n gi,σi 's in each of the n! terms in this sum.

Let

G−1 = det (G)H,
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so

H =
1

det (G)
G−1.

For each entry of H, there will be a sum with (n− 1)! terms, and each of the terms in the sum will

be a product of n− 1 entries of the original matrix. Speci�cally, for an entry of H,

hij = (−1)
i+j

Gij

where Gij is the minor of matrix G, which is de�ned as the determinant of the (n− 1) × (n− 1)

matrix which results in deleting the ith row and jth column of G. This can be veri�ed by examining

the formulas for inverse matrices.

Now we have a very speci�c idea of what the entries of this matrix look like.

We know that det (W ) is not zero, because it is a matrix of wavelet coe�cients. Consequently, we

know that the rows and columns of A are linearly independent, since A came from W . Therefore, we

know that
(
ADAT

)
is independent, since the aij 's are independent, no row of column of this matrix can

be made from the others. Therefore, we know that an inverse does exist, and we can express it with the

formulas above. We will denote

(
ADAT

)−1
=


F11 F12 ... F1n

F21 F22 ... F2n

... ... ... ...
Fn1 Fn2 ... Fnn

 .
Then we can write

DAT
(
ADAT

)−1
=


2−2sj1a11 2−2sj1a21 ... 2−2sj1an1

2−2sj2a12 2−2sj2a22 ... 2−2sj2an2

... ... ... ...
2−2sjNa1N 2−2sjNa2N ... 2−2sjNanN

×

F11 F12 ... F1n

F21 F22 ... F2n

... ... ... ...
Fn1 Fn2 ... Fnn

 .
The ijth entry of this matrix is

∑n
k=1 2−2sjiaikFkj . This is the quantity we must bound. We hope

that these are the same �size� as the wavelet coe�cients ajk.

60. Bounding
∑n
k=1 2−2sjiaikFkj.

This sum is equal to

n∑
k=1

2−2sjiaik

[
(−1)

i+j
det
(
kjth minor of ADAT

)
det (ADAT )

]

n∑
k=1

2−2sjiaik

[
n− 1 terms with n− 1 items in each term.

n terms with n items in each term.

]
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The items in each of these terms speci�cally are the Eij =
∑N
k=1 2−2sjkaikajk. These are a sum of N

terms which are o (ajkaj0k0) with a constant in the front which is some negative power of 2.

n∑
k=1

2−2sjiaik

[
(n− 1)! terms with n− 1 items with N terms which are the size of Eij

n! terms with n items with N terms which are the size of Eij

]

Note that

Eij ≤ N max
{

2−2sjkaikajk
}

= b

Then our sum is

≤
n∑
k=1

2−2sjiaik

[
(n− 1)! terms of bn−1

n! terms with n items with N terms which are the size of Eij

]

Now we must use the fact that the ajk are wavelet coe�cients. Many of these coe�cients will be

equal to zero. Let

C1 = the number of wavelet coe�cients which are nonzero

and

C2 = the number of Eij which are nonzero.

Also, note that the determinant has terms which are negative and terms which are positive. Further,

let

a = min
all Eij

{Eij − Ei1j1} .

Then our sum is

≤
n∑
k=1

2−2sjiaik

[
(n− 1)! terms of bn−1

(n− C2) (n− 1)! terms of an

]

≤ (C1) max
k

{
2−2sjiaik

} [ (n− 1)! terms of bn−1

(C2) (n− 1)! terms of an

]

We can see that this is about the same �size� as our wavelet coe�cients ajk. Thus, we can apply the

boundedness results from earlier work. We can see that these ājk are linear combinations of the original

ajk, and thus inherit wavelet properties from those coe�cients.
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61. What does this mean for the work in [1]?

What we have here is a general beginning for bounding the wavelet coe�cients found by this method.

As we have seen in earlier sections, the rest of the boundedness of the space depends on the space which

the function is associated with. For instance, if the function is within the Holder class, then the bounds

for each coe�cient are the same as those in Theorem 73.

If the function is bounded as in Part 7, then the bounds of the error are the same as those in Theorem

67. The same could be easily extended to other spaces, as the authors Antoniadis and Fan did with the

Besov space in [1].

What we have found are the errors associated with the coe�cients which were determined via

θ = DAT
(
ADAT

)−1
fn.

This does not represent a full set of wavelet coe�cients. The authors suggest the following process to

remedy this situation.

The authors take advantage of the orthonormal of W . Recall that an orthonormal matrix has the

property that

AT = A−1.

Also note that if W is orthonormal, so is A.

WWT = IN .

A term of WWT has the form

N∑
i=1

wjiwik = δ (j − k) .

Recall that A is an n × N matrix which is made by taking rows of W and collecting them together

as follows.

A =


wi11 wi12 ... wi1N
wi21 wi22 ... wi2N
... ... ... ...
win1 win2 ... winN


A term of AAT has the form

N∑
h=1

wijhwhik = δ (j − k) .

Thus, A is orthonormal as well.
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We collect the rows of WT not put into the matrix A into a matrix B of size (N − n)×N . Then the

penalized least squares in (54.3) can be written as

l (θ) = 2−1
∥∥Y ∗ −WT θ

∥∥2
+
∑
i≥i0

pλ (|θi|) ,

where Y ∗ =
(
Y Tn , (Bθ)

T
)T

. By the orthonormaility of the wavelet transform,

(61.1) l (θ) = 2−1 ‖WY ∗ − θ‖2 +
∑
i≥i0

pλ (|θi|) .

We can optimize this iteratively, though the authors Fan and Chen in (1999) point out that there is

no guarantee of convergence, but if the initial estimators of θ are �reasonably good�, then the one step

method is as e�cient as the fully iterative method. The key improvement here is in adding long memory

error to the matrix setting which already incorporates penalty functions.

We must discuss good initial estimators of θ. The authors suggest using Sobolev wavelet interpolators

to produce an initial estimate for θ and hence for Y ∗. Recall that θ̂∗ = DAT
(
ADAT

)
Yn was obtained

via wavelet interpolation. Let

Ŷ ∗0 =

(
Y Tn ,

(
Bθ̂
)T)T

be the initial synthetic data. Then

θ̂∗ = WŶ ∗0 ∼ N
(
θ∗, ε2V

)
where V = DAT

(
ADAT

)−2
AD, as analyzed before and θ∗ = DAT

(
ADAT

)−1
Aθ is the vector of

wavelet coe�cients.

62. Examining the Penalty Functions.

We now examine some of the penalty functions which satisfy the requirements set forth in Theorem

84. We use pλ to denote the penalty function λp in the following discussion.

For the L1-penalty

(62.1) pλ (|θ|) = λ |θ| ,

the solution is the soft-thresholding rule (Donoho 1992).

A clipped L1-penalty as below

(62.2) p (θ) = λmin (|θ| , λ)
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leads to a mixture of soft and hard thresholding rules (Fan 1997):

(62.3) θ̂j = (|zj | − λ)+ I {|zj | ≤ 1.5λ}+ |zj | I {|zj | > 1.5λ} .

When the penalty function is given by

(62.4) pλ (|θ|) = λ2 − (|θ| − λ)
2
I (|θ| < λ) ,

the solution is the hard-thresholding rule (Antoniadis 1997). This penalty function is smoother than

pλ (|θ|) = |θ| I (|θ| < λ) + λ/2I (|θ| ≥ λ) suggested by Fan (1997) and the entropy penalty pλ (|θ|) =

2−1λ2I {|θ| 6= 0}, which lead to the same solution.

Recall that the hard thresholding rule is discontinuous which is not always desirable. The soft thresh-

olding rule is continuous but it shifts the estimator by an amount of λeven when |zi| is far from the noise

level, which creates unnecessary bias when θ is large.

To improve on these two drawbacks, Fan (1997) suggests using the quadratic spline penalty, called

the smoothly clipped absolute deviate (SCAD) penalty

(62.5) p′λ (θ) = I (θ ≤ λ) +
(aλ− θ)+

(a− 1)λ
I (θ > λ)

for θ > 0 and a > 2 leading to the piecewise linear thresholding

(62.6) θ̂j =


sgn (zj) (|zj | − λ) when |zj | ≤ 2λ,

+
(a−1)zj−aλsgn(zj)

a−2 when 2λ < |zj | < aλ,

zj when |zj | > aλ.

This penalty function does not over-penalize large values of |θ|and hence does not create large biases

when the wavelet coe�cients are large.

Nikolova suggests the following transformed L1=penalty function

pλ (|x|) = λb |x| (1 + b |x|)−1
for some b > 0.

This function behaves similarly to SCAD. Other possible penalty functions include the Lp-penalty

introduce by Bouman and Sauer:

(62.7) pλ (|θ|) = λ |θ|p (p ≥ 0)

Note that the choice p ≤ 1 is necessary for the solution to be a thresholding operator, whereas p ≥ 1

is a necessary condition for the solution to be continuous in z. Thus, the L1-penalty function is the only

member in this family that yields a continuous thresholding solution.

Lastly, we note that the regularization parameter λ for di�erent penalty functions has a di�erent

scale.
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63. Results.

Below is the theorem from [1].

Theorem 84. Let pλ (·) be a nonnegative, nondecreasing, and di�erentiable function in (0,∞). Further,

assume that the function −θ− p′λ (θ) is strictly unimodal on (0,∞). Then we have the following results.

(1) The solution to the minimization problem (55.1) exists and is unique. It is antisymmetric:

θ̂ (−z) = −θ̂ (z) .

(2) The solution satis�es

θ̂ (z) =

{
0 if |z| ≤ p0

z − sgn (z) p′λ

(∣∣∣θ̂ (z)
∣∣∣) if |z| > p0

where p0 = minθ≥0 {θ + p′λ (θ)} . Moreover,
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| .
(3) If p′λ (·)is nonincreasing, then for |z| > p0, we have

|z| − p0 ≤
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| − p′λ (|z|) .

(4) When p′λ (θ) is continuous on (0,∞), the solution θ̂ (z) is continuous if and only if the minimum

of |θ|+ p′λ (|θ|) is attained at point zero.

(5) If p′λ (|z|)→ 0, as |z| → +∞, then

θ̂ (z) = z − p′λ (|z|) + o (p′λ (|z|)) .

Proof. Recall that

l (θ) = (z − θ)2
/2 + pλ (|θ|)

for a given penalty parameter λ. We note that this function tends to in�nity as |θ| → ∞, thus,

minimizers do exist.

Also note that

p0 = min
θ≥0
{θ + p′λ (θ)} .

When z = 0 , it is clear that θ̂ (z) = 0 is the unique minimizer. Without loss of generality we may

assume that z > 0. Then, for all θ > 0, l (−θ) > l (θ). Hence, θ̂ (z) ≥ 0. Note that for θ > 0,

l′ (θ) = θ − z + p′λ (θ) .

When z < p0, the function l is strictly increasing on (0,∞) because the derivative function is positive.

Therefore, θ̂ (z) = 0. When the function l′ (θ) is strictly increasing, there is at most one zero-crossing,

and hence the solution is unique.
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Therefore, we only need to consider the case that l′ (θ) has a valley on (0,∞) and z > p0. In this

case, there are two possible zero-crossings for the function l′ on (0,∞). The larger one is the minimizer

because the derivative function at that point is increasing. Hence, the solution is unique and satis�es

(63.1) θ̂ (z) = z − p′λ
(
θ̂ (z)

)
≤ z.

Thus, θ̂ (z) ≤ z−p′λ (z) when p′λ (·) is nonincreasing. Let θ0 be the minimizer of θ+p′λ (θ) over [0,∞).

Then, from the preceding argument, θ̂ (z) > θ0 for z > p0. If p
′
λ (·) is nonincreasing, then

p′λ (θ (z)) ≤ p′λ (θ0) ≤ θ0 + p′λ (θ0) = p0.

This and (63.1) prove result 3. It is clear that the continuity of the solution θ̂ (z) at the point z = p0 if

and only if the minimum of the function |θ|+ p′λ (|θ|) is attained at 0. The continuity at other locations

follows directly from the monotonicity and continuity of the function θ + p′λ (θ) in the interval (θ,∞).

The last conclusion follows directly from (63.1). �

Theorem 85. Suppose p satis�es conditions in Theorem 84 and p′λ (0+). Then

(1) Rp (θ, p0) ≤ c20 + θ2.

(2) If p′λ (·) is nonincreasing, then

Rp (θ, p0) ≤ p2
0 +

√
2/πp0c0 + c20.

(3) Rp (0, p0) ≤ c30
√

2/π
(
p0
c0

+ c0
p0

)
exp

(
− p20

2c20

)
.

(4) Rp (θ, p0) ≤ Rp (0, p0) +
(

1 + c0
√

2/π/2
)
θ2.

Proof. First, recall that

Rp (θ, p0) = E
{
θ̂ (z)− θ

}2

where z is normally distributed, E (z) = θ, and Var
(
z2
)

= c20 for some c0.

Note that Rp (θ, p0)is symmetric about 0 by Theorem 84 Result 1. Thus, we can assume without loss

of generality that θ ≥ 0. By Theorem 84, results 1 and 2,

(63.2) E
(
θ̂ − θ

)2

≤ E (z − θ)2
I
(
θ̂ /∈ [0, θ]

)
+ θ2P

(
θ̂ ∈ [0, θ]

)
≤ c20 + θ2.

To prove result 2, we note that

E
(
θ̂ − θ

)2

= E
((
θ̂ − z

)
− (θ − z)

)2

= E
(
θ̂ − z

)2

− 2E
((
θ̂ − z

)
(θ − z)

)
+ E (θ − z)2
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= E (θ − z)2
+ 2E

(
(z − θ)

(
θ̂ − z

))
+ E

(
θ̂ − z

)2

= c20 + 2E
(

(z − θ)
(
θ̂ − z

))
+ E

(
θ̂ − z

)2

.

For z > θ, we have θ̂ ≤ z by Theorem 84, result 3, which implies that (z − θ)
(
θ̂ − z

)
≤ 0. Similarly,

for z < 0, (z − θ)
(
θ̂ − z

)
≤ 0. Thus

c0 + 2E
(

(z − θ)
(
θ̂ − z

))
+ E

(
θ̂ − z

)2

≤ c0 + 2E
(

(z − θ)
(
θ̂ − z

))
I (0 ≤ z ≤ θ) + E

(
θ̂ − z

)2

.

Here we have excluded the parts which are less than zero. By Theorem 84, result 3,
∣∣∣θ̂ − z∣∣∣ ≤ p0.

Thus,

E
(
θ̂ − θ

)2

≤ c20 + 2p0E (θ − z) I (z ≤ θ) + p2
0 ≤ c20 + p0c0

√
2/π + p2

0.

This factor of
√

2/π comes from the centralized exact moment of the normal distribution, speci�cally

if X ∼ N (µ, σ),

(63.3) E (|X − µ|p) = σp (p− 1)!!

{ √
2/π if p is odd,
1 if p is even.

This establishes result 2.

Result 3 follows directly from the fact that

Rp (0, p0) ≤ E
(
z2
)
I {|z| ≥ p0} ≤ c2oI {|z| ≥ p0} .

Note that for a standard normal variable Z ∼ N (0, 1) (as in the work of fan),

P (|Z| ≥ p0) ≤
(
p0 + p−1

0

)
exp

{
−p2

0/2
}
.

Than for our variable z which has a variance of c0 and for this property a mean of θ = 0,

P (|z| ≥ p0) = P

(∣∣∣∣ zc0
∣∣∣∣ ≥ p0

c0

)
= P

(
|Z| ≥ p0

c0

)
≤
(
p0

c0
+
c0
p0

)
exp

(
− p2

0

2c20

)
.

Further noting that

I (|z| ≥ p0) = E (|z|)P (|z| ≥ p0)

and applying (63.3) gives us result 3.

To show result 4, using the fact that R′p (0, p0) = 0 due to symmetry, we have by the Taylor expansion

that

(63.4) Rp (θ, p0) ≤ Rp (0, po) +
1

2
sup

0<η<l
R′′p (η, p0) θ2

for θ ∈ [−1, 1] .
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We now compute the second derivative. Let φ (·) be the standard normal density. Then, by simple

calculation, we have

R′p (θ, p0) =

ˆ ∞
−∞

(
θ + z − 2θ̂

)
φ (z − θ) dz

= 2θ − 2

ˆ ∞
−∞

θ̂φ (z − θ) dz

and R′′p (θ, p0) = 2 + 2Eθ̂ (θ − z) . By using the same arguments as those in the proof of result 2, we

have for θ > 0

R′′p (θ, p0) ≤ 2 + 2Eθ̂ (θ − z) I (0 ≤ z ≤ θ) .

Noting that θ̂ = 0 for |z| ≤ p0, we have for p0 ≥ 1 R′′p (θ, p0) ≤ 2. For the general case, using the fact

that
∣∣∣θ̂∣∣∣ ≤ |z|, we have for θ ∈ [0, 1]

R′′p (θ, p0) ≤ 2 + 2θE (θ − z) I (0 ≤ z ≤ θ) = 2 + c0
√

2/πθP (0 ≤ z ≤ θ) ≤ 2 + c0
√

2/π.

By (63.4), result 4 follows for θ ∈ [−1, 1]. For θ outside this interval, 4 follows from (63.2). This

completes the proof. �

We will need the following Lemma.

Lemma 86. If the penalty function satis�es conditions of Theorem 84 and p′λ (·) is nonincreasing and

p′λ (0+) > 0, then

Rp (θ, p0) ≤
(

2c20 log n+
(
c20
√

4/π + c2o

)
log1/2 n

){
c/n+ min

(
1

2

(
1 + c0

√
2/π/2

)
θ2, c20

)}
or if c0 is reasonably small, ie c0

√
2/π/2 ≤ 1,

Rp (θ, p0) ≤ c20
(

2 log n+
(√

4/π + 1
)

log1/2 n
){

c/n+ min
(
θ2, c20

)}
for the universal thresholding

p0 = c0
√

2 log n− log (1 + d log n), 0 ≤ d ≤ c2,

with n ≥ 4 and c ≥ 1 and p0 > 1.14.

Proof. Note that by Theorem 85, property 2 we have

Rp (θ, p0) ≤ p2
0 +

√
2/πp0c0 + c20.

(63.5) Rp (θ, p0) ≤ 2c20 log n+ c20
√

4/π (log n)
1/2

+ c20 = c20

(
2 log n+

√
4/π (log n)

1/2
+ 1
)
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if p0 ≤ c0
√

2 log n where c20 = Var
(
z2
)
. For |θ| > c0, by (63.5) we have for n ≥ e

Rp (θ, p0) ≤ 2c20 log n+ c20
√

4/π (log n)
1/2

+ c20 (log n)
1/2

≤ 2c20 log n+
(
c20
√

4/π + c2o

)
(log n)

1/2
.

Note that this is because (log n)
1/2

is an increasing function if n > 1, as we can see from its derivative

1/
[
2n (log n)

1/2
]
≥ 0 for n ≥ e.

Thus, we need to show that the inequality holds for θ ∈ [0, c0]. First, by Theorem 85, result 4,

Rp (θ, p0) ≤ Rp (0, p0) +
(

1 + c0
√

2/π/2
)
θ2.

Let g (θ) =
(
Rp (0, p0) +

(
1 + c0

√
2/π/2

)
θ2
)
/
(
c/n+ 1

2

(
1 + c0

√
2/π/2

)
θ2
)
. If Rp (0, p0) ≤ 2c/n,

then g (θ) ≤ 2 ≤ 2 log n. Hence, the result holds.

When Rp (0, p0) > 2c/n, g (θ) is monotonically decreasing, as we can see from the derivative. Let

e =
(

1 + c0
√

2/π/2
)
. Then

g (θ) =
Rp (0, p0) + eθ2

c/n+ 1
2eθ

2
.

g′ (θ) =
2eθ

(
c/n+ 1

2eθ
2
)
− eθ

(
Rp (0, p0) + eθ2

)(
c/n+ 1

2eθ
2
)2 =

eθ
[
2c/n+ eθ2 −Rp (0, p0)− eθ2

](
c/n+ 1

2eθ
2
)2

=
eθ [2c/n−Rp (0, p0)](

c/n+ 1
2eθ

2
)2 ≤ 0

If Rp (0, p0) > 2c/n . Hence, g (θ) ≤ g (0) = c−1nRp (0, p0). By Theorem 85, result 3,

Rp (0, p0) ≤ c30
√

2/π

(
p0

c0
+
c0
p0

)
exp

(
− p2

0

2c20

)
we have

g (θ) ≤ c−1nc30
√

2/π

(
p0

c0

)(
1 +

(
p0

c0

)−2
)

exp

(
− p2

0

2c20

)

(63.6) ≤ 2π−1/2c−1c30

(
1 +

(
p0

c0

)−2
)

(log n)
1/2
(

1 + d1/2 (log n)
1/2
)
.
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This inequality a result of the following inequality in the work of [1].

(63.7) nc−1p0

(
1 + p−2

0

)√
2/π exp

(
−p2

0/2
)
≤ 2π−1/2c−1

(
1 + p−2

0

)
(log n)

1/2
(

1 + d1/2 (log n)
1/2
)
.

By using the fact that for p0c0 > 1.14, π−1/2

(
1 +

(
p0
c0

)−2
)
≤ 1, we conclude that g (θ) ≤ 2c−1c30d

1/2 (log n)+

2c−1c30 (log n)
1/2

. Thus, since 0 < d ≤ c2,

Rp (θ, p0) ≤ Rp (0, p0)+
(

1 + c0
√

2/π/2
)
θ2 ≤ 2c−1c30

(
c log n+ (log n)

1/2
) c

n
+

(
1 + c0

√
2/π/2

)
2

θ2

 .

�

Finally we have this last theorem. To bound the risk of the nonlinear estimator θ̂ (z) by that of

the oracle estimator θ̂0, we need to add an amount cn−1 for some constant c to the risk of the oracle

estimator, because it has no risk at point θ = 0. We introduce the quantity

Λn,c,p0 (p) = sup
θ

Rp (θ, p0)

cn−1 + min (θ2, c20)

and denote Λn,c,p0 (p) by Λn,c (p) for the universal thresholding p0 = c0
√

2 log n. Then, Λn,c,p0 (p) is

a sharp risk upper bound for using the universal thresholding parameter p0. That is,

(63.8) Rp (θ, p0) ≤ Λn,c,p0 (p)
{
cn−1 + min

(
θ2, c20

)}
.

Thus, the penalized least squares estimator θ̂ (z) performs comparably with the oracle estimator

within a factor of Λn,c,p0 (p). Likewise, let

Λ∗n,c (p) = inf
p0

sup
θ

Rp (θ, p0)

cn−1 + min (θ2, c20)

and

pn = the largest constant attaining Λ∗n,c (p) .

Then the constant Λ∗n,c (p) is the sharp risk upper bound using the minimax optimal thresholding pn.

Note then that

(63.9) Rp (θ, pn) ≤ Λ∗n,c (pn)
{
cn−1 + min

(
θ2, c20

)}
.

We have from Lemma 63.7

(63.10) Λ∗n,c (p) ≤ Λn,c (p) ≤ 2c20 log n+
(
c20
√

4/π + c2o

)
log1/2 n = c20

(
2 log n+

(√
4/π + 1

)
log1/2 n

)
.
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Theorem 87. With the universal thresholding p0 = c0
√

2 log n, we have

Rp

(
f̂p, f

)
≤ Λn,c (p)

{
cn−1 +R

(
f̂0, f

)}
.

With the minimax thresholding pn, we have the sharper bound:

Rp

(
f̂p, f

)
≤ Λ∗n,c (p)

{
cn−1 +R

(
f̂0, f

)}
.

Further, Λn,c (p) and Λ∗n,c (p) are bounded by (63.10).

Proof. This is a direct result of (63.9) and (63.10) where the oracle risk is the factor of min
(
θ2, c20

)
. �

64. Dealing with c0.

We have used the constant c20 to represent the variance of the wavelet coe�cients z. Now we must

include the boundedness of c0 and see what that means in terms of the work of Donoho and Johnstone.

The bounds of c0 depend on what the space is. It will be di�erent for every space and every interpolation

method used for dealing with incomplete or irregularly spaced data.

64.1. The Li and Xiao space of [18]. The bounds of the variance in this setting where ε is the noise

level in the original data, represented by Dlm are for α ∈ (0, 1),

≤ ε2

n
+ ε2CC4n

−α2−k(1−α) = O
(
n−α

)
.

Now we report the boundedness for α = 1.

≤ ε2

n
+
ε2

n
C log

(
n2−ke

)
= O

(
log
(
n2−ke

)
n

)
.

Here C represents the number of discontinuities that are in the signal. E (εiεi+j) ∼ C0 |j|−α and

C4 = C0

ˆ 1

0

ˆ 1

0

|x− y|−α ψ(x)ψ(y)dxdy.

Using the fact that these wavelets are compactly supported and several changes of variable, we �nd

C4 = C0

ˆ ˆ
ψ
(

[(−α+ 1) z]
1

−α+1 + y
)
ψ (y) dzdy.

We can see that both of these bounds for the variance are small.
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64.2. The bounds in Part 7. The bounds of the variance in this setting where ε is the noise level in

the original data and ε1 > 0 is close to 0, for α ∈ (0, 1),

≤ 4piε
2n2ε1−1 sup |ψ|2 + C7n

2ε1−α−3pαi .

For α = 1,

(64.1) ≤ Cpin2ε1−1 log
(
np−1

i e
)
·

Again, we see that the bounds for the variance are small.

64.3. The bounds in Part 8. The bounds of the variance in this setting where ε is the noise level in

the original data, represented by Dlm are for α ∈ (0, 1),

=
ε2

n
h+ ε2hCC4n

−α2−k(1−α)

for α = 1,

var
(
θ̃ij

)
≤ ε2

n
h+

ε2

n
hC log

(
n2−ke

)
Again, we see that the bounds for the variance are small.

64.4. Important notes about this paper. The bounds for the variance of the coe�cients are going

to vary for every space and every method that one uses. My work has examined two di�erent spaces

speci�cally which used two di�erent methods to �nd the variance. With the generalized equation which

stems from the work of Fan, Donoho and Johnstone, we have extended our ability to understand the

boundedness of the risk in terms of the oracle risk. We have created the framework for generally bounding

the risk in other spaces and settings.

Part 11. Summary of New Results and Theorems.

65. Theorems from Part 7.

Here we were considering long memory error with irregularly spaced data. We solve the problem of

irregularly spaced data by performing an interpolation with a function Y . The variance of the wavelet

coe�cients, de�ned by Sij and Rj in (33.13) and (33.6), is bounded as in the following theorem. A closer

look at these theorems and the de�nitions of the constants can be found in Section 33.

Theorem 88. The bounds of S2
ij and R

2
j are as follows.

E
(
S2
ij

)
≤ 4piσ

2n2ε1−1 sup |ψ|2 + C7n
2ε1−α−3pαi .
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E
(
R2
j

)
≤ 4pσ2n2ε1−1 sup |ψ|2 + C7?n

2ε1−α−3pα.

Below we have the theorem which bounds the MISE when using the estimator ĝ de�ned in (65.1).

Theorem 89. Suppose g is a function supported on [0, 1] with certain continuity properties established

before. Suppose that the data generated by this function g is long memory and irregularly spaced. Long

memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Suppose we let

(65.1) ĝ =
∑
j

âjφj +

q−1∑
i=0

∑
j

b̂ijI
(∣∣∣b̂ij∣∣∣ ≥ δ)ψij .

where

âj =

ˆ
I

Y φj b̂ij =

ˆ
I

Y ψij .

and Y is some interpolation rule. Then combing (34.7), (34.10), (34.11) and (34.12) yields for α = 1

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−2 log
(
np−1

i e
))

+O

(
qpin

η−1 +
C

ε
nη−λ−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1

)
+O

(
p−1
q

)
That is

(65.2) =
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qpin

η−1 +
C

ε
nη−λ−2 + p−1

q

)
.

For α ∈ (0, 1)

ˆ
E (ĝ − g)

2
= O

(
pnη−2 + pin

2ε1−1
)

+O

(
qpin

η−1 +
C

ε
nη−λ−2

)

+
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qnη−1

)
+O

(
p−1
q

)
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That is

(65.3) =
(
1− 2−2r

)−1
p−2r

ˆ g(r)
(
j
pi

)
r!

2

+ o
(
p−2r

)
+O

(
qpin

η−1 +
C

ε
nη−λ−2 + p−1

q

)
.

66. Theorems from Part 8.

Here we were considering long memory error with irregularly spaced data. We re-space the data using

a function H. The variance of the wavelet coe�cients, de�ned by var
(
θ̃ij

)
in Section 39, is bounded

as in the following theorem. A closer look at these theorems and the de�nitions of the constants can be

found in Section 39.

Theorem 90. The bounds of the variance var
(
θ̃ij

)
are for α ∈ (0, 1),

=
ε2

n
h+ ε2hCC4n

−α2−k(1−α)

(66.1) = O
(
n−α

)
.

and for α = 1,

≤ ε2

n
h+

ε2

n
hC log

(
n2−ke

)

(66.2) = O

(
log
(
n2−ke

)
n

)
.

We have the following theorem which bounds the MISE when using our estimator f̂∗n de�ned in (66.3).

Theorem 91. Suppose f is a function supported on [0, 1] with f ∈ Λβ (M,B,m). Suppose that the data

generated by this function f is long memory and irregularly spaced. Long memory means that

r(j) = E (εiεi+j) ∼ C0 |j|−α

where α ∈ (0, 1]. Let

(66.3) ξ̂j0k = ξ̃j0k, θ̂jk = sgn
(
θ̃jk

)(∣∣∣θ̃jk∣∣∣− λjk)
+

where the threshold λjk is derived from an estimate of the variance of the wavelet coe�cients.

For α ∈ (0, 1),

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0
[
n−α

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
n−α

]
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= o
(
n−α

)
+ o

(
n−2β/(1+2β)

)
.

For α = 1,

E
∥∥∥f̂∗n − f∥∥∥2

≤ 2j0

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
+ (J − j0) 2j

[
log
(
n2−ke

)
n

]
+ o

(
n−2β/(1+2β)

)
.

= o

(
log
(
n2−ke

)
n

)
+ o

(
n−2β/(1+2β)

)
.

67. Theorems from Part 10.

Here we expanded the problem of long memory error to the matrix setting and also expanded the

work of Donoho and Johnstone in [8].

The following theorem is directly from [1].

Theorem 92. Let pλ (·) be a nonnegative, nondecreasing, and di�erentiable function in (0,∞). Further,

assume that the function −θ− p′λ (θ) is strictly unimodal on (0,∞). Then we have the following results.

(1) The solution to the minimization problem (55.1) exists and is unique. It is antisymmetric:

θ̂ (−z) = −θ̂ (z) .

(2) The solution satis�es

θ̂ (z) =

{
0 if |z| ≤ p0

z − sgn (z) p′λ

(∣∣∣θ̂ (z)
∣∣∣) if |z| > p0

where p0 = minθ≥0 {θ + p′λ (θ)} . Moreover,
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| .
(3) If p′λ (·)is nonincreasing, then for |z| > p0, we have

|z| − p0 ≤
∣∣∣θ̂ (z)

∣∣∣ ≤ |z| − p′λ (|z|) .

(4) When p′λ (θ) is continuous on (0,∞), the solution θ̂ (z) is continuous if and only if the minimum

of |θ|+ p′λ (|θ|) is attained at point zero.

(5) If p′λ (|z|)→ 0, as |z| → +∞, then

θ̂ (z) = z − p′λ (|z|) + o (p′λ (|z|)) .

We also have the following theorem which comes from extending the work in [1].
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Theorem 93. Suppose p satis�es conditions in Theorem 92 and p′λ (0+). Then

(1) Rp (θ, p0) ≤ c20 + θ2.

(2) If p′λ (·) is nonincreasing, then

Rp (θ, p0) ≤ p2
0 +

√
2/πp0c0 + c20.

(3) Rp (0, p0) ≤ c30
√

2/π
(
p0
c0

+ c0
p0

)
exp

(
− p20

2c20

)
.

(4) Rp (θ, p0) ≤ Rp (0, p0) +
(

1 + c0
√

2/π/2
)
θ2.

We also have the following Lemma.

Lemma 94. If the penalty function satis�es conditions of Theorem 92 and p′λ (·) is nonincreasing and

p′λ (0+) > 0, then

Rp (θ, p0) ≤
(

2c20 log n+
(
c20
√

4/π + c2o

)
log1/2 n

){
c/n+ min

(
1

2

(
1 + c0

√
2/π/2

)
θ2, c20

)}

or if c0 is reasonably small, ie c0
√

2/π/2 ≤ 1,

Rp (θ, p0) ≤ c20
(

2 log n+
(√

4/π + 1
)

log1/2 n
){

c/n+ min
(
θ2, c20

)}
for the universal thresholding

p0 = c0
√

2 log n− log (1 + d log n), 0 ≤ d ≤ c2,

with n ≥ 4 and c ≥ 1 and p0 > 1.14.

The following theorem extends the work of Donoho and Johnstone to accommodate long memory in

terms of oracle risk.

Theorem 95. With the universal thresholding p0 = c0
√

2 log n, we have

Rp

(
f̂p, f

)
≤ Λn,c (p)

{
cn−1 +R

(
f̂0, f

)}
.

With the minimax thresholding pn, we have the sharper bound:

Rp

(
f̂p, f

)
≤ Λ∗n,c (p)

{
cn−1 +R

(
f̂0, f

)}
.

Further, Λn,c (p) and Λ∗n,c (p) are bounded by (63.10).

These are all the signi�cant new results from my work.
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Part 12. Conclusion.

We have examined many di�erent kinds of function estimation over the course of this dissertation.

We have made signi�cant advances in dealing with irregularly spaced data with long memory error. In

Part 7 we found the bounds associated with using a linear interpolation and local averaging interpolation

on the data. In Part 8 we used the more general method of interpolating the data with a function H.

Very many variations of the problem are useful. Many real world problems which have been solved

are very oversimpli�ed. In most situations it is not reasonable to assume that data are independent.

One example of this is the time series. Here we have data which are dependent. We could use this new

research to compare two time series.

Another example of where this research is applicable is in the cause of spatially dependent data. Also,

your data points would very likely be unequally spaced. This is why we will try to address the problems

of long memory data and unequally spaced data simultaneously.

We have also generalized the problem of long memory to the wavelet setting. The analysis indicates

that the method for dealing with incomplete data is still applicable in the case of long memory with a

mean square error that is relatable to the oracle risk.

Lastly, we have generalized equations dealing with oracle risk which can be used more generally to

�nd results about the Mean Integrated Square Error in di�erent spaces. This means that we can �nd

more results under di�erent assumptions about the function f (x).

Thanks: I would like to that Dr. Haiyan Cai for his help in my research. I would also like to thank

Dr. Ron Dotzel, Dr. Qingtang Jiang and Dr. Wenjie He for their suggestions and a careful reading of

my thesis.
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