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Abstract 

As with most domains where machine learning methods are applied, correct feature 

engineering is critical when developing deep learning algorithms for solving the protein 

folding problem. Unlike the domains such as computer vision and natural language 

processing, feature engineering is not rigorously studied towards solving the protein 

folding problem. A recent research has highlighted that input features known as precision 

matrix are most informative for predicting inter-residue contact map, the key for building 

three-dimensional models. In this work, we study the significance of the precision matrix 

feature when very deep residual networks are trained. Using a standard dataset of 3456 

proteins, known as the DeepCov set, we trained multiple deep residual networks and tested 

our models on an independent test dataset of 150 proteins. On this test dataset, we find that 

precision matrix features deliver 3.7% more precise long-range contacts than the 

benchmark covariance matrix features in our recently published method DEEPCON. In 

addition to validating the findings that precision matrix is more informative, we also find 

that the significance of precision matrix is reduced when deeper residual network models 

are trained. Our method, DEEPCON-PRE, i.e. DEEPCON with precision matrix as input 

feature, is available at https://github.com/nachammai779/Deepcon_Precision. 
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Chapter 1 

Introduction 

Deep learning is a subfield of machine learning. It is a mathematical framework to learn 

new representations of data. New increasingly meaningful representations from data are 

learned incrementally in every new successive layer. These layered representations are 

learned via models called neural networks. Neural networks transform the input data into 

representations that are increasingly different from the original data and increasingly 

informative about the final result.  The deep learning networks typically perform automatic 

feature extraction without human intervention unlike most traditional machine-learning 

algorithms. Prior to the boom of the deep learning practices, feature extraction step was 

needed to manually engineer good layers of data representations. But these manual feature 

engineering methods take time for the scientists to get their input data ready. This method 

did not prove to be very successful particularly for image data because it was difficult to 

manually extract all the relevant features needed for the accurate classification. When 

training using unlabeled data, each node in a layer of a deep network learns features 

automatically by repeatedly trying to reconstruct the input from which it draws its samples, 

attempting to minimize the difference between the network’s guesses and the probability 

distribution of the input data. In the process, these deep neural networks learn to recognize 

correlations between certain relevant features and the actual output. They draw connections 

between feature signals and what those features represent. The process of recognizing 

correlations between relevant features and true output makes deep neural network 
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algorithms more useful compared to prior practices. In this work, we predict protein inter-

residue contacts using standard two-dimensional convolutional neural networks, 

commonly used for image classification problems.  

 

1.1 What is protein folding? 

Protein folding is the process by which a protein structure assumes its functional shape or 

conformation. All protein molecules are heterogeneous unbranched chains of amino acids. 

By coiling and folding into a specific three-dimensional shape they can perform their 

biological function. Protein structure prediction is the inference of the three-dimensional 

structure of a protein from its amino acid sequence—that is, the prediction of its folding 

and its secondary and tertiary structure from its primary structure.  

Scientists from multiple fields including machine learning, biology, physics, chemistry, 

and mathematics have combined their ideas and have come up with innovative solutions 

for protein structure prediction. One such idea is using the multiple sequence alignment 

files as input and predicting the residues in the proteins using different kinds of predictors. 

A multiple sequence alignment is a sequence alignment of three or more biological 

sequences, generally protein, DNA, or RNA. Multiple sequence alignments can be helpful 

in many circumstances like detecting historical and familial relations between sequences 

of proteins or amino acids and determining certain structures or locations on sequences. 

An amino acid is made up of a few different parts, connected to each other. The parts of an 

amino acid are an amine group, a carboxylic acid group, and the residue. The amine and 
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carboxylic acid groups give the name ‘amino acid,’ and these two parts are identical to 

those of other amino acids. The residue is the part that is unique among each of the 20 

amino acids. Think of the generic definition of residue as something leftover. An amino 

acid residue is what's left over when you take away all the identical parts of the amino acid. 

Amino acid residues are important because they are the unique portion of an amino acid. 

They are the part that gives the amino acid its unique identity. When amino acids are lined 

up to form a protein, they’ll arrange themselves so that hydrophilic residues are exposed to 

water, and hydrophobic residues are hidden from water. This can cause the protein to form 

into an alpha-helix, which is a coiled-up shape, or to form into a beta pleated sheet, which 

is a zig-zag shape. The shape a protein takes is incredibly important for its function. Amino 

acid residues can also link pieces of a protein together. This is another way protein get its 

specific shape.  

 

1.2 Inter-residue contact-map prediction 

A protein contact map represents the distance between all possible amino acid residue pairs 

of a three-dimensional protein structure using a binary two-dimensional matrix. For two 

residues if the element of the matrix is 1 then the two residues are closer than a 

predetermined threshold or 0 otherwise. If they are close to each other in the true output, 

then the predicted residues must reflect the same. Typically, residues are defined to be in 

contact when the distance between their β-carbon atoms (or α-carbon for the amino acid 

glycine) is smaller than 8 Å (Moult, Fidelis, Kryshtafovych, Schwede, & Tramontano, 

2018) (Monastyrskyy, D’Andrea, Fidelis, Tramontano, & Kryshtafovych, 2016). The 
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ability to make these predictions about the residues can assist researchers by providing 

information about the native structure and other physical properties of that protein. 

Protein contact prediction problem is gaining momentum in the scientific community. The 

Critical Assessment of protein Structure Prediction (CASP) experiments aim at 

establishing the current state of the art in protein structure prediction. Their goal is to help 

advance the methods of identifying protein structure from sequence. They conduct 

biannual protein structure prediction competitions. In the most recent CASP13 experiment 

(Moult et al., 2018) DeepMind’s Alphafold topped in predicting the protein structures. The 

key idea of AlphaFold's approach is that a distribution over pairwise distances between 

residues corresponds to a potential that can be minimized using gradient descent after being 

turned in to a continuous function (Jinbo Xu & Wang, 2019). Before the widespread use 

of machine learning methods, contacts were predicted from protein sequence alignments 

based on the principle that evolutionary pressures place constraints on the sequence 

evolution over generations(Marks et al., 2011). In recent past the most successful methods 

are those that combine the predicted features and the convolutional neural network model. 

Convolutional neural networks have proved to be of vital importance because of their 

inherent nature to perform cross-correlation operations to learn more features. Similarly, 

DNCON2 (Adhikari, Hou, & Cheng, 2018)  uses two-level deep convolutional neural 

network and arrives at better prediction of protein contacts. It consists of six convolutional 

neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, 

and the last one uses these five predictions as additional features to predict final contact 

maps. PSICOV (Jones, Buchan, Cozzetto, & Pontil, 2012) uses deeper and wider first-
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stage network architecture composed of two hidden layers of 160 ReLU units and make 

contact map predictions.  

 

1.3 Features for protein contact prediction 

In the past decade many attempts to feature engineer the predicted multiple sequence 

alignments using different kinds of matrices have been successful. Pair-frequency matrix 

and covariance matrix computed from the sequence alignments are two examples. A 

covariance matrix is one where the off-diagonal elements contain the covariances of each 

pair of variables. The diagonal elements of the covariance matrix contain the variances of 

each variable. The variance measures how much the data is scattered about the mean. Thus, 

the covariance matrix can only capture marginal correlations among variables. An example 

of a contact prediction method that uses covariance matrix is DEEPCON (Adhikari, 2019). 

It uses covariance matrix and residual neural network architecture with dilation and 

dropout (RDD) to make contact map predictions. Residual neural networks use short cuts 

also known as skip connections to allow very deep neural networks to learn efficiently 

without hurting the performance of the model. This is achieved by taking the activation 

from one layer and feeding it into another much deeper layer in the neural network. This 

unit is called the residual block. DEEPCON uses dilated convolution in order to capture 

global view of the input. This increases the receptivity of the network and captures more 

contextual information (Onvolutions, 2016). Dropout is a technique to randomly drop units 

(along with their connections) from the neural network during training. This prevents units 

from co-adapting too much. This helps to reduce overfitting of the models that is common 
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when we train very deep neural networks that typically have large number of parameters 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

In a recent study, authors demonstrate that precision matrix are more informative than 

covariance matrix (Li, Hu, Zhang, Yu, & Zhang, 2019). This ResPRE method uses 

precision matrix and ResNet architecture to predict contact maps. ResNet is a deep neural 

network architecture introduced by Microsoft in their winning entry in the ILSVRC 

ImageNet challenge (He, Zhang, Ren, & Sun, 2016).  The inverse covariance matrix, or 

the precision matrix, displays information about the partial correlations of variables. With 

the covariance matrix one observes the unconditional correlation between a variable i, to a 

variable j by reading the (i,j)th index. It may be the case that the two variables are correlated, 

but do not directly depend on each other and another variable k explains their correlation. 

But if one will condition on the variable k, then the two variables i and j become partially 

correlated. A partial correlation describes the correlation between variable i and j once you 

condition on all other variables. If i and j are conditionally independent then the (i,j)th 

element of the precision matrix will equal zero. So, the inverse covariance matrix (or 

precision matrix) is best used to describe the conditional independent relationships among 

all variables.  
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1.4 Contact prediction is computationally intensive 

Conceptually, the protein contact prediction problem is like the depth prediction problem 

in computer vision. In the depth prediction problem, the input is an image of dimensions 

H x W x C, where H is height, W is width, and C is number of input channels, and output 

is a two dimensional matrix of size H x W whose values represent the depth 

intensities(Eigen, Puhrsch, & Fergus, 2014).  Similarly, in the protein contact prediction 

the length of a protein in a multiple sequence alignment file is L and there are N input 

channels. Hence the input is protein features of dimension L x L x N and the output is a 

contact probability map (matrix) of size L x L. Computer vision problems have three 

channels (red, green, and blue or hue, saturation, and value) while the latter, contact 

prediction problem, has much higher number of channels like 441 (Jones & Kandathil, 

2018). For a given pair of amino acid types, pair frequencies or covariances are composed 

as an m × m matrix, where m is the number of columns in the sequence alignment. 

Considering 20 amino acid types and possible gaps, there are (20+1) × (20+1) = 441 such 

matrices for a given alignment. These 441 matrices are presented (in image recognition 

terms) as feature channels in the input to the convolutional neural networks. As the number 

of channels increase, the input volume becomes large and this leads to longer training 

times. Another unique feature of the contact prediction problem is that the protein 

sequences are of varying length, unlike fixed size input images in computer vision 

problems. Consequently, the input features are of varying sizes. Since every bit (amino 

acid) of the raw MSA file is fixed at that position, there is no possibility to rearrange or 
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alter or augment their sequence. This further complicates the training process where a deep 

learning model expects a fixed size input volume.  

In this work, we aim to investigate the significance of the precision matrix features 

compared to the covariance matrix feature and validate the findings of the ResPRE methods 

using a different DeepCov dataset, particularly when very deep models such as DEEPCON 

is trained. We calculate our precision matrix using a ridge predictor (Li et al., 2019). Ridge 

regression (Hoerl, A.E. and Kennard, R. (1970)) uses a type of shrinkage estimator called 

a ridge estimator. Shrinkage estimators theoretically produce new estimators that are 

shrunk closer to the “true” population parameters. The ridge estimator is especially good 

at improving the least-squares estimate when multicollinearity is present. Multicollinearity 

exists whenever an independent variable is highly correlated with one or more of the other 

independent variables in a regression equation. Multicollinearity is a problem because it 

undermines the statistical significance of an independent variable. Ridge regression is a 

linear regression model whose coefficients are estimated by the ridge estimator, is biased 

and has lower variance than the least squares estimator. The lower variance of the ridge 

estimators results in better predictive models. In order to validate our results, we repeat our 

contact prediction training and testing experiments for the two input features (covariance 

and precision matrix) each derived using two implementations (DEEPCON and ResPRE). 
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Chapter 2  

Materials and Methods 

2.1 Datasets 

In our experiments we used publicly available DeepCov dataset consisting of 3456 proteins 

(Jones & Kandathil, 2017) publicly available at https://github.com/psipred/DeepCov. 

Following the recent practice of setting aside validation sets from the training examples, 

we use the first 130 proteins, when the PDB IDs are sorted alphabetically, in the dataset as 

our validation set. The remaining set of proteins were used for training. We trained and 

validated our models using the DeepCov dataset and tested the models on an independent 

dataset known as PSICOV dataset consisting of 150 representative proteins (Jones et al., 

2012). Figure 2.1 summarizes our experimental setup. 

 

Figure 2.1: In our experiments, we train and validate using the DeepCov dataset, where each input protein 

is an L*L*441 matrix, and test using the PSICOV 150 proteins. 
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2.2 Contact evaluation 

We followed the definition and categorization of contact predictions as per the 

conventional criterions in CASP experiments (Moult et al., 2018). A residue pair whose 

Euclidean distance between two C-beta (Ca for Glycine) atoms is smaller than 8 Angstroms 

is considered as a contact. Residue pairs in contact and separated by at least 24 residues in 

the sequence are long-range contacts, whereas those with a sequence separation between 

12 and 23 or 6 and 11 are considered as medium- or short-range contacts, respectively. In 

this work, we evaluate the precision of top L/5, L/2 and L (the length of the protein 

sequence) for three different types of contacts (short-, medium- and long range) as the 

major evaluation metrics. This same evaluation metric is used on other standard methods 

such as MetaPSICOV, ResPRE, and DEEPCON. Occasionally, we also evaluate the 

precision of all medium- and long-range contacts. We calculate the precision of top X 

contacts (PX) using the following technique. We first rank all the predicted contacts in a 

contact map by the predicted probability score and select X number of top contact pairs. 

Precision is then the percentage of the correct predictions among these X predicted contact 

pairs. Similarly, for evaluating the precision of all medium- and long-range contacts (PALL-

MLR) for a protein with total NLR number of medium- and long-range contacts, we first 

round the top NLR medium- and long-range predicted probabilities (after ranking the 

probabilities). Precision is then calculated as the ratio of ‘the number of matches between 

predicted and true matrix’ and NLR.  
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2.3 Three-dimensional model evaluation 

We use TM-score (Jinrui Xu & Zhang, 2010) to evaluate predicted models. TM-score is a 

metric for measuring the similarity of two protein structures. It is designed to solve two 

major problems in traditional metrics such as root-mean-square deviation (RMSD): (1) 

TM-score measures the global fold similarity and is less sensitive to the local structural 

variations; (2) magnitude of TM-score for random structure pairs is length-independent. 

TM-score has the value in (0,1), where 1 indicates a perfect match between two structures. 

Following strict statistics of structures in the PDB (protein data bank), scores below 0.17 

correspond to randomly chosen unrelated proteins whereas structures with a score higher 

than 0.5 assume generally the same fold. 

 

2.4 Input features 

We generate covariance matrix and precision matrix using two techniques – extension of 

the DEEPCON implementation and extension of the ResPRE implementation. The first 

method of generating the covariance and precision matrix involves extending the Python 

version of the ‘cov21stats’ program in the DeepCov package (Jones & Kandathil, 2017) 

available in the DEEPCON package. From the input multiple sequence alignment, at first 

the probabilities of observing every pair of the 20 amino acids are calculated, with gap 

characters considered as an additional amino acid category. Frequencies for unobserved 

residue pairs are estimated with a pseudo count of 1. Sequence clusters are weighted based 

on a 62% sequence identity clustering threshold. Using the marginal and pair frequencies 
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for each pair of amino acids as described above, the covariance between every pair of 

residues at every pair of sites is calculated. For a given pair of amino acid types, covariance 

matrix will be of the shape n*n, where n is the number of columns in the sequence 

alignment file. Considering that 20 amino acid types plus a category for gap, there are 

21*21=441 such matrices for a given sequence alignment file. These 441 matrices are 

presented as feature channels as the input to the convolutional neural networks. 

Calculating a precision matrix involves taking the inverse of the covariance calculations. 

Since matrices could be singular because the determinant values tend to be zero, this results 

in non-invertible matrices. When this is the case there could theoretically be infinite correct 

solutions, in other words there isn’t a closed form solution, hence we need to use an 

estimator such as ridge regularized estimator to solve this problem. Linear estimators like 

least squares is too sophisticated for the input data that we have at hand. This is because 

our input data is non-linear and multi-dimensional by nature. The task of regularization is 

to constrain the learning to prevent overfitting the data. By constraining the learning 

algorithm to select ‘simpler’ hypotheses (prediction) from a possible set of hypotheses, we 

sacrifice a little bias for a significant gain in the variance. We estimate the precision matrix 

through the maximum likelihood approach (Friedman, Hastie, & Tibshirani, 

2008)(Kuismin, Kemppainen, & Sillanpää, 2017)(Van Wieringen & Peeters, 2016). 

Estimates obtained from classical machine learning approaches will be accurate based on 

the important principle that the input variables come from independently and identically 

distributed data. Based on this assumption the precision matrix (𝜃) is calculated by 

minimizing the regularized log-likelihood function of  
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G = tr (S𝜃) − 𝑙𝑜𝑔|𝜃| + 𝑅(𝜃) 

The first two terms are the negative log likelihood of θ under the assumption that the data 

follows the gaussian multivariate distribution, tr(Sθ) is the trace of matrix Sθ, where S is 

the covariance matrix; log|𝜃| is the log determinant of θ; R(θ) is the regularization function 

over θ to avoid overfitting. Regularization parameter used is e-6. G is the convex function 

we want to minimize. To do this the derivative of G is taken and equated to zero and we 

derive an equation for the covariance matrix in terms of precision matrix. 

S – θ-1 + 2𝜌 θ = 0 

The covariance matrix S has the same eigen vectors and eigen values as θ-1 + 2𝜌 θ. Eigen 

decomposition is performed on both sides of the above equation to arrive at a ridge 

regularized solution. This method is adapted based on ResPRE (Li et al., 2019). Precision 

matrix features are richer features because they describe the conditional independent 

relationships among all variables(Li et al., 2019). 441 precision features (channels) were 

thus calculated. As our second method for generating covariance matrix and precision 

matrix, we extended the ResPRE’s implementation at https://github.com/leeyang/ResPRE. 

For obtaining the dimensionality of the covariance matrix from this implementation, we 

implemented an appropriate conversion of our LxLx441 dimension matrix to a matrix of 

dimensions Lx21 by Lx21. 

 

https://github.com/leeyang/ResPRE
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2.5 Residual Neural network architecture 

As our deep neural network we used the existing implementation of the DEEPCON method 

(Adhikari, 2019). This convolutional neural network architecture has an input layer, many 

2D convolutional layers with batch normalization or dropouts, residual connections and 

rectified linear units (ReLU) activations. The final layer is a convolutional layer with one 

filter of size 3x3 followed by a ‘sigmoid’ activation to predict contact probabilities.  

Figure 2.2 visualizes our network architecture. To increase the stability of a neural 

network, batch normalization layers normalizes the output of a previous activation layer 

by subtracting the batch mean and dividing by the batch standard deviation. In order to 

train deep neural networks, an activation function is needed that looks and acts like a linear 

function, but is, in fact, a nonlinear function allowing complex relationships in the data to 

be learned. This is unlike the ‘tanh’ and ‘sigmoid’ activation functions that learn to 

approximate a zero output, e.g. a value very close to zero, but not a true zero value. This 

means that negative inputs can output true zero values allowing the activation of hidden 

layers in neural networks to contain one or more true zero values. This is called a sparse 

representation and is a desirable property in representational learning as it can accelerate 

learning and simplify the model. 

The rectified linear activation function is a piecewise linear function that will output the 

input directly if it is positive, otherwise, it will output zero. The intermediate layers will 

use ReLU as their activation function, and the final layer will use a sigmoid activation so 

as to output a probability (a score between 0 and 1,indicating how likely the sample is to 
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have the target “1”: how likely the review is to be positive). A rectified linear unit is a 

function meant to zero out negative values, whereas a sigmoid “squashes” arbitrary values 

into the [0, 1] interval, outputting something that can be interpreted as a probability. 

 

Figure 2.2 The DEEPCON residual network architecture used in our experiments. The last layer in the 

block is a dilated convolutional layer with dilation rate of 1, 2 and 4 at alternating blocks. 

In the convolutional layers of our architecture, the variables are the numbers and size of 

filters at each layer, and dilation rate when dilated convolutional layers are used. All the 

CNN filters in the first layer convolve through the input volume of 256 x 256 x N producing 

batch normalized and ReLU activated outputs passed as input to the subsequent layers. The 

number of channels N is 441. We stop training the model if the validation accuracy does 

not improve for 20 epochs and reduce the learning rate by 0.5 when the loss does not 

improve for 10 epochs. Error is computed using binary cross entropy calculated as −(y 

log(p)+(1−y) log(1−p)), where p is the output of the sigmoid activation of the last layer for 

each residue pair, and y is 1 if the residue pair are in contact in the experimental structure 
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or else is 0. There are different loss functions in deep learning models. But crossentropy is 

usually the best choice when we are working  with models that output probabilities.  

Binary cross entropy is used as the loss function. Crossentropy is a quantity from the field 

of information theory that measures the distance between probability distributions or, in 

this case, between the ground-truth distribution and the actual predictions. Although the 

input length of our training proteins to 256, after training the model can make predictions 

for a protein of any length. Since contact matrix is symmetrical, we average the prediction 

of either triangle to generate final predictions. The residual block consisting of two 

convolutional layers, each preceded by a batch normalization layer and ReLU activation. 

Fixing the total number of convolutional filters in each layer to 64, the second batch 

normalization layer is replaced with a dropout layer and the second convolutional layer is 

replaced with a dilated convolution layer at alternating dilation rates of 1, 2, and 4.  

 

2.6 Experiments 

To study the significance of precision matrix over covariance matrix we trained the 

DEEPCON model using precision matrix and covariance matrix obtained using our 

extension of the DEEPCON method and the ResPRE method. To obtain maximum 

precision for each of these four experiments we repeated some experiments by varying the 

number of residual blocks in our architecture. We used keras library (https://keras.io/) with 

TensorFlow (https://www.tensorflow.org/) backend for our training and testing. On a 

NVIDIA Quadro P6000 GPU with 24 GB GPU memory, one training experiment (32-45 

https://keras.io/
https://www.tensorflow.org/
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epochs) took about up to 24 hours. This training time could only be achieved with the use 

of Solid-State Drives (SSDs). 
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Chapter 3  

Results 

3.1 Precision matrix is more predictive 

As our first experiment, we investigated the performance gain in predicting protein inter-

residue contacts by replacing the covariance matrix with the precision matrix in the original 

DEEPCON method. To evaluate our DEEPCON-PRE method, we compare its 

performance against its own predecessor DEEPCON method that uses covariance matrix 

as input. Our results (see Figure 3.1) indicate the performance gain obtained while using 

the precision matrix calculations in place of covariance methods on the PSICOV150 test 

dataset. Few samples indicate extremely high prediction accuracy when using DEEPCON-

PRE. Best samples show 33.3%, 17.4% 15.6% improvement in prediction accuracy. The 

average improvement in prediction accuracy is 3.69% in DEEPCON-PRE as compared to 

DEEPCON when evaluation top L/5 long-range contacts.  
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Figure 3.1: Comparison of the performance of our DEEPCON-PRE method with the original DEEPCON 

method using the precision of top L/5, top L/2, and top L contacts as the evaluation metric. Scatter plot 

with more data points in the upper triangle demonstrate that our method performs better. 

To substantiate our findings, we repeated our experiments by generating covariance matrix 

and precision matrix calculations using the ResPRE implementation and train the same 

DEEPCON model. Our results on the independent test dataset of 150 proteins, the PSICOV 

set, show that the precision matrix delivers at least 3% more precise contacts when 

compared to covariance on all the three metrics – PL/5, PL/2 and PL (see Table 1). This 

clearly indicates that the precision matrix-based features outperform the covariance 

features. These results are also observed on the validation datasets (see Tables in the 

Appendix). 
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Table 1 Mean precision of top L/5, L/2, and L long-range contacts (PL/5, PL/2, and PL, respectively) on the 

150 protein in the PSICOV test dataset when covariance matrix and precision matrix features using the 

DEEPCON and ResPRE implementations are used as input for training. 

Implementation Input Feature PL/5 PL/2 PL 

DEEPCON Covariance Matrix 90.9 79.7 63.2 

DEEPCON Precision Matrix 93.3 83.3 66.9 

ResPRE Covariance Matrix 89.3 77.3 60.0 

ResPRE Precision Matrix 93.8 84.6 69.1 

 

3.2 Learning curves 

Next, we study how the change in the number of blocks in our network, i.e. network depth, 

affects the precision of precision matrix. For this, we trained our model using varying 

number of residual blocks such as 4, 8, 16, etc. up to 40. The maximum depth is set to 40 

as our GPU did not consistently support the training beyond 42 residual blocks. Figure 3.2 

shows how the precision of top L/5, L/2 and L long-range contacts improve over the 

training epochs. Consistent with general understanding in machine learning that training 

for more epochs yields better performance, we observe that the performance of both – 

covariance matrix and precision matrix – consistently increase for the first few epochs and 

decelerate afterwards. It is worth noting that the precision-matrix based model consistently 

outperforms the covariance-matrix based model. To verify our findings, we repeated the 

same experiments with ResPRE implementation of generating covariance matrix and 

precision matrix and observed the same trend. This extensive study leads us to conclude 

that precision matrix is consistently more informative than covariance matrix across all 

network depths and evaluation metrics. 
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Figure 3.2: Precision of top L/5 and top L long-range contacts (first two columns) and all medium- and long-

range contacts (last column) over the training epochs when covariance matrix and precision matrix are used 

as input feature using the DEEPCON implementation (top row) and ResPRE implementation (bottom row). 

Results are shown on the validation dataset. 

 

3.3 Improved contacts yield more accurate models  

For some selected proteins in the test dataset, we predicted contacts using the two methods 

- DEEPCON-PRE and DEEPCON and built three-dimensional protein models using the 

CONFOLD2 method (Adhikari & Cheng, 2018). It builds models using various subsets of 

input contacts to explore the fold space under the guidance of a soft square energy function, 

and then clusters the models to obtain the top five models. We visually compared the 

predicted models and evaluated them using TM-score. As an example, we pick the chain 

A of the protein ‘1k7j’ compare the model built using DEEPCON contacts and DEEPCON-
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PRE contacts(Figure 3.3). Here we choose an example where DEEPCON-PRE generates 

more accurate contacts in order to check if improved contacts lead to improved models. 

We find that the TM-score of the top models generated by DEEPCON and DEEPCON-

PRE are 0.19 and 0.29 respectively. For this protein the contact precision of top L long-

range contacts (PL) by DEEPCON and DEEPCON-PRE are 56.3 and 73.8.  

                                     

Figure 3.3: Top one models built using DEEPCON (blue-left) and DEEPCON-PRE (blue-right) contacts for 

the protein ‘1k7j’ superposed on the native structure (orange). TM-score/RMSD of the DEEPCON model 

and DEEPCON-PRE models are 0.19/17.3 and 0.29/5.9 respectively.  

Similarly, to check if the models built using the precision matrix obtained using the 

ResPRE implementation were better than the ones built using covariance matrix, we picked 

the chain A of the protein ‘1jbk’ from the test dataset(Figure 3.4). We find that the TM-

score of the top models generated by ResPRE-COV and ResPRE-PRE are 0.2047 and 

0.2017 respectively. For this protein the contact precision of top L long-range contacts (PL) 

by ResPRE-COV and ResPRE-PRE are 30.69 and 68.78. 
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Figure 3.4: Top one models built using ResPRE-COV (blue-left) and ResPRE-PRE (blue-right) contacts for 

the protein ‘1jbk’ superposed on the native structure (orange). TM-score/RMSD of the ResPRE-COV model 

and ResPRE-PRE models are 0.2047/17.0 and 0.2017/16.4 respectively. 

 

3.4 Deeper networks do not necessarily perform better  

Contrary to the findings by the authors of the ResPRE method, we find that deeper models 

do not necessarily favor the precision matrix features. While deeper networks generally 

performed better with covariance matrix as input, the models saturated at smaller depths 

when precision matrix is used as input. The overall trend we observed (see Figure 3.5) 

shows that the performance using precision matrix saturates at a depth less than the 

maximum depth we tested. This leads to many questions such as why a deeper residual 

network with more parameters performs more poorly than a shallower network with fewer 

parameters. Although such an investigation is out of scope for this work, we speculate that 

the input feature value distribution of a precision matrix is the cause. We believe that better 

ways to normalize the input precision matrix may resolve this issue allowing deeper models 

to perform better.  



24 

 

    

Figure 3.5: Plots showing the precision of top L/5 long-range contacts vs the network depth (number of 

residual blocks) when covariance matrix and precision matrix are used as input feature in the DEEPCON 

implementation (left) and ResPRE implementation (right).  
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Chapter 4  

Conclusions and future work 

We found that the features generated by the precision matrix performed better consistently 

than the covariance matrix features in our deep residual network architecture. Improved 

predictions were observed across all-range contacts. This increased performance of 

precision features was observed even when we used ResPRE-style methods for validating 

our findings. Our DEEPCON-PRE gave 3.7% improvement in prediction accuracy when 

compared to the original DEEPCON method. Similarly, our model showed a 9.04% 

improvement in prediction accuracy when the ResPRE implementation was used. This 

improved contact-map prediction also leads to improved three-dimensional models. We 

also find that our model’s prediction accuracy did not improve significantly in deeper 

neural networks. As a future work, we believe that improved batch normalization 

techniques may resolve the issue of performance saturation while training deep neural 

networks. This could be achieved by alternative ways to normalize the layer inputs (Ioffe 

& Szegedy, 2015). 
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Appendix 

Suppl. Table 1 Performance comparison between long-range, medium range and short-

range contacts when using DEEPCON implementation for generating covariance and 

precision matrix were used on the validation dataset. 

PL/5 Cov 74.4  

Pre 76.8  

PLR Cov 45.4  

Pre 47.0  

PMLR Cov 49.5 

Pre 51.1 

 

Suppl. Table 2 Performance comparison between long-range, medium range and short-

range contacts when using ResPRE implementation for generating covariance and 

precision matrix were used on the validation dataset. 

PL/5 Cov 74.7 

Pre 76.5 

PLR Cov 44.6 

Pre 48.0 

PMLR Cov 49.3 

Pre 51.8 

 

Suppl. Table 3 All-range contact-map predictions for 150 PSICOV test dataset in 

DEEPCON and DEEPCON-PRE evaluated using ConEVA. 



 

 

 DEEPCON DEEPCON-PRE 

PDB ID PL/5 PL/2 PL PL/5 PL/2 PL 

1a3aA 93.1 89.04 73.1 96.55 91.78 80.69 

1a6mA 100 89.47 72.19 100 90.79 74.17 

1a70A 100 87.76 69.07 100 95.92 80.41 

1aapA 90.91 71.43 48.21 100 85.71 60.71 

1abaA 100 81.82 60.92 100 88.64 70.11 

1ag6A 100 96 79.8 100 94 86.87 

1aoeA 81.58 77.08 63.54 89.47 77.08 65.62 

1atlA 97.5 74 59.5 75 60 46.5 

1atzA 100 92.11 77.33 100 94.74 73.33 

1avsA 87.5 56.1 32.1 75 58.54 33.33 

1bdoA 100 97.5 90 100 100 97.5 

1bebA 25.81 23.08 17.95 96.77 70.51 51.28 

1behA 97.3 89.13 66.85 97.3 89.13 67.93 

1bkrA 90.91 64.81 37.96 68.18 55.56 41.67 

1brfA 100 92.59 60.38 100 88.89 66.04 

1bsgA 96.23 89.47 68.8 98.11 90.98 76.69 

1c44A 100 96.97 71.21 100 90.91 74.24 

1c52A 100 90.32 66.67 100 91.94 68.29 

1c9oA 73.08 57.58 38.17 88.46 68.18 43.51 

1cc8A 100 94.44 84.72 100 100 83.33 

1chdA 92.5 83.84 77.78 100 94.95 88.38 

1cjwA 96.97 83.13 62.05 96.97 84.34 71.08 

1ckeA 90.48 79.25 65.57 100 89.62 73.11 

1ctfA 100 100 92.65 100 97.06 79.41 

1cxyA 93.75 78.05 58.02 100 87.8 67.9 

1cznA 94.12 87.06 79.29 100 97.65 85.21 

1d0qA 75 64.71 47.06 95 76.47 49.02 

1d1qA 96.88 90 79.25 96.88 93.75 88.68 

1d4oA 97.14 76.4 59.32 100 88.76 73.45 

1dbxA 83.33 73.68 66.45 100 93.42 83.55 

1dixA 95.24 75 54.81 97.62 78.85 52.4 

1dlwA 100 86.21 58.62 100 84.48 62.93 

1dmgA 100 89.53 65.7 100 88.37 70.35 

1dqgA 18.52 16.42 11.19 22.22 13.43 14.18 

1dsxA 88.24 70.45 48.28 100 72.73 47.13 

1eazA 95.24 63.46 45.63 80.95 61.54 48.54 

1ej0A 100 90 71.11 97.22 90 76.67 

1ej8A 64.29 55.71 46.43 82.14 68.57 57.14 

1ek0A 97.06 91.67 76.79 100 98.81 89.29 

1f6bA 88.57 81.82 65.91 88.57 85.23 68.75 

1fcyA 80.85 58.47 40.25 87.23 66.1 45.76 

1fk5A 63.16 53.19 39.78 68.42 59.57 41.94 

1fl0A 57.58 50 39.63 87.88 59.76 45.12 

1fnaA 100 100 73.63 100 97.83 75.82 

1fqtA 95.45 78.18 61.47 95.45 92.73 71.56 

1fvgA 97.37 93.75 74.48 86.84 84.38 78.12 

1fvkA 86.84 73.4 55.32 92.11 79.79 63.3 

1fx2A 100 85.71 55.36 100 87.5 57.14 

1g2rA 84.21 74.47 47.87 89.47 65.96 43.62 

1g9oA 100 91.3 74.73 100 97.83 82.42 



 

 

1gbsA 91.89 64.52 37.3 89.19 62.37 41.08 

1gmiA 100 97.06 86.67 100 98.53 89.63 

1gmxA 100 85.19 71.03 100 90.74 71.03 

1guuA 80 48 24 90 48 26 

1gz2A 96.43 89.86 71.01 75 81.16 65.94 

1gzcA 95.83 96.67 83.26 97.92 96.67 84.94 

1h0pA 100 98.9 75.82 100 98.9 82.42 

1h2eA 100 91.35 78.26 100 95.19 84.06 

1h4xA 95.45 85.45 76.36 100 87.27 70 

1h98A 66.67 56.41 40.26 73.33 64.1 45.45 

1hdoA 100 95.15 83.9 100 98.06 86.34 

1hfcA 100 78.48 57.32 100 79.75 56.69 

1hh8A 5.26 13.54 19.27 94.74 63.54 34.9 

1htwA 100 94.94 74.05 100 97.47 71.52 

1hxnA 40.48 24.76 17.62 26.19 22.86 18.57 

1i1jA 100 79.25 54.72 90.48 64.15 51.89 

1i1nA 95.56 80.36 62.95 95.56 86.61 72.32 

1i4jA 100 96.36 83.64 100 96.36 85.45 

1i58A 93.1 69.44 57.64 100 80.56 59.03 

1i5gA 86.84 65.26 56.08 89.47 73.68 59.79 

1i71A 94.12 73.81 51.81 82.35 71.43 53.01 

1ihzA 85.19 83.82 67.65 88.89 86.76 73.53 

1iibA 100 94.23 79.61 100 92.31 78.64 

1im5A 80.56 83.33 72.63 94.44 87.78 77.65 

1iwdA 83.72 71.3 60 97.67 84.26 68.37 

1j3aA 100 93.85 83.72 100 92.31 77.52 

1jbeA 100 93.65 80.95 100 93.65 80.95 

1jbkA 94.74 68.42 46.03 89.47 76.84 52.91 

1jfuA 88.57 86.36 71.59 97.14 81.82 72.73 

1jfxA 93.02 86.24 71.43 93.02 88.07 73.27 

1jkxA 100 97.14 79.9 100 94.29 80.38 

1jl1A 100 89.47 80.92 100 92.11 86.18 

1jo0A 100 85.71 67.01 100 85.71 65.98 

1jo8A 83.33 72.41 50 91.67 79.31 58.62 

1josA 100 94 74 100 88 72 

1jvwA 100 98.75 81.25 100 98.75 84.38 

1jwqA 100 96.67 88.83 100 97.78 94.97 

1jyhA 96.77 97.44 84.52 100 97.44 87.1 

1k6kA 100 87.32 68.31 96.43 95.77 73.94 

1k7cA 97.87 89.74 76.39 97.87 91.45 75.11 

1k7jA 90.24 67.96 56.31 92.68 85.44 73.79 

1kidA 97.44 89.69 75.65 92.31 77.32 68.91 

1kq6A 75 51.43 35.71 71.43 60 42.86 

1kqrA 81.25 73.75 50.62 87.5 68.75 39.38 

1ktgA 74.07 78.26 68.61 100 88.41 77.37 

1ku3A 83.33 58.06 39.34 83.33 67.74 45.9 

1kw4A 92.86 71.43 51.43 92.86 71.43 52.86 

1lm4A 89.47 67.37 48.15 78.95 66.32 51.85 

1lo7A 100 97.14 84.29 100 100 92.14 

1lpyA 75 49.38 35.19 75 54.32 35.8 

1m4jA 48.15 52.24 47.37 48.15 56.72 50.38 

1m8aA 66.67 38.71 26.23 66.67 41.94 34.43 



 

 

1mk0A 100 83.67 59.79 100 75.51 52.58 

1mugA 96.97 84.34 69.7 100 92.77 73.94 

1nb9A 93.1 86.49 72.11 100 87.84 68.71 

1ne2A 97.14 73.86 43.75 94.29 80.68 47.16 

1npsA 100 95.45 75 100 90.91 70.45 

1nrvA 85 54 35 85 54 41 

1ny1A 95.74 91.53 77.45 97.87 89.83 81.7 

1o1zA 100 95.58 77.88 100 93.81 80.53 

1p90A 96 88.71 62.6 100 90.32 66.67 

1pchA 100 100 87.5 100 100 86.36 

1pkoA 100 96.77 80.65 100 95.16 82.26 

1qf9A 100 93.81 75.77 100 97.94 76.29 

1qjpA 100 88.41 61.31 100 95.65 72.99 

1ql0A 87.5 61.16 45.23 95.83 68.6 50.62 

1r26A 100 98.25 78.76 100 96.49 81.42 

1roaA 100 89.29 77.48 100 92.86 76.58 

1rw1A 100 73.68 57.89 100 91.23 70.18 

1rw7A 97.87 88.14 74.47 100 97.46 85.11 

1rybA 100 93.55 80.11 100 97.85 87.1 

1smxA 88.24 84.09 63.22 100 88.64 63.22 

1svyA 95 78.43 59.41 100 86.27 66.34 

1t8kA 100 92.31 61.04 100 94.87 59.74 

1tifA 93.33 73.68 55.26 93.33 73.68 48.68 

1tqgA 100 83.02 59.05 100 92.45 63.81 

1tqhA 100 94.21 76.03 95.83 90.08 79.75 

1tzvA 100 87.32 63.12 100 91.55 63.12 

1vfyA 76.92 61.76 40.3 92.31 61.76 40.3 

1vhuA 100 93.75 83.85 100 94.79 84.9 

1vjkA 100 97.73 87.5 100 90.91 77.27 

1vmbA 100 100 88.79 100 100 90.65 

1vp6A 100 98.51 84.96 100 100 89.47 

1w0hA 92.5 83 68 90 85 70.5 

1whiA 75 63.93 46.72 83.33 67.21 50 

1wjxA 100 80.36 65.18 100 80.36 66.07 

1wkcA 94.12 78.57 60.12 97.06 90.48 71.43 

1xdzA 97.92 87.39 80.67 97.92 93.28 82.77 

1xffA 100 86.55 78.15 100 99.16 88.24 

1xkrA 95.12 83.5 62.93 95.12 88.35 68.29 

2arcA 100 95.06 75.78 100 96.3 74.53 

2cuaA 100 95.08 80.33 100 95.08 80.33 

2hs1A 85 52 39.39 90 78 54.55 

2mhrA 95.83 71.19 46.61 75 74.58 50.85 

2phyA 40 25.4 20 40 30.16 24 

2tpsA 95.56 88.5 77.43 100 94.69 78.76 

2vxnA 88 76.8 67.87 88 84.8 73.9 

3borA 97.44 91.75 73.71 100 91.75 76.8 

3dqgA 93.33 83.78 63.51 96.67 87.84 67.57 

5ptpA 100 86.49 72.52 100 97.3 85.59 

 



 

 

Glossary of terms 

OLS: The method of least squares is about estimating parameters by minimizing the 

squared discrepancies between observed data, on the one hand, and their expected values 

on the other. 

L2 norm: L2-norm is also known as least squares. It is basically minimizing the sum of 

the square of the differences (S) between the target value (Yi) and the estimated values 

f(xi). 

L2 norm produces non-sparse coefficients. Sparsity refers to that only very few entries in 

a matrix is non-zero. In machine learning terms suppose the model has 100 coefficients but 

only 10 of them have non-zero coefficients, this is effectively saying that “the other 90 

predictors are useless in predicting the target values”.  

So L2 norm is a soft constraint that minimizes the occurrence of the zero coefficients but 

just reduces them to weak predictors. 

Non-invertible matrix: Any matrix with determinant zero is non-invertible. This is also 

called as singular matrix. 

Determinant: In linear algebra, the determinant is a scalar value that can be computed 

from the elements of a square matrix and encodes certain properties of the linear 

transformation described by the matrix. The determinant of a matrix A is denoted det(A), 

det A, or |A|. 



 

 

In the case of a 2 × 2 matrix the determinant may be defined as 

|A| = |
𝑎 𝑏
𝑐 𝑑

| = ad - bc 

Maximum likelihood estimation: Since the data points (X1, y1),......,(XN,yN) are 

independently generated, the probability of getting all the yn’s in the data set from the 

corresponding Xn’s would be the product 

𝛱 𝑃(𝑦𝑛|𝑥𝑛) for n =1 to N 

log likelihood function: The log-likelihood is the natural logarithm of the likelihood. 

Independent identical distribution: A collection of random variables is independent and 

identically distributed if each random variable has the same probability distribution as the 

others and all are mutually independent. This is abbreviated as i.i.d. 

Convex function: A function f : Rn → R is convex if its domain is a convex set and for all 

x, y in its domain, and all λ ∈ [0, 1], we have f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). 

Eigen vectors and Eigen Values: Eigen vector of a matrix A is a vector represented by a 

matrix X such that when X is multiplied with matrix A, then the direction of the resultant 

matrix remains same as vector X. Mathematically, above statement can be represented as: 

AX = λX, where A is any arbitrary matrix, λ are eigen values and X is an eigen vector 

corresponding to each eigen value. 



 

 

Eigen decomposition: One of the most widely used kinds of matrix decomposition is 

called eigen decomposition, in which we decompose a matrix into a set of eigenvectors and 

eigenvalues 
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