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 Contribution of the Mnr2 Protein to Magnesium Homeostasis 

in Saccharomyces cerevisiae 

 

Nilambari P. Pisat 

ABSTRACT 

Magnesium (Mg2+) is an essential divalent cation involved in many important 

cellular functions. All cells regulate their intracellular Mg2+ concentration to maintain key 

biological processes, despite the importance of this process, relatively little is known 

about the regulation of Mg2+ homeostasis in eukaryotes. The goal of this work was to 

characterize a homolog of the bacterial CorA protein from the yeast Saccharomyces 

cerevisiae that was suspected to be involved in mineral nutrient homeostasis. 

 Mnr2 is a close homolog of the Alr1 and Alr2 proteins, which are known to 

mediate Mg2+ influx across the plasma membrane in yeast. Mnr2 inactivation was 

associated with increased sensitivity of yeast to divalent cations such as Mn2+, Ca2+, and 

Zn2+. I also observed an increase in the Mg2+ content of an mnr2 mutant strain suggesting 

that Mnr2 plays a role in Mg2+ homeostasis. The effect of mnr2 mutation on Mg2+ content 

was most pronounced under Mg2+-deficient conditions (1 µM), and was associated with a 

growth defect. The higher Mg2+ content of the mnr2 mutant strain was not due to an 

increase in the rate of Mg2+ uptake, but occurred as a consequence of an inability to 

deplete intracellular Mg2+ content to support growth in deficient conditions. These results 

suggested that Mnr2 was a Mg2+ transporter responsible for regulating access to Mg2+ 

stored within an intracellular compartment. Supporting this hypothesis, I used two 

independent techniques to determine that the majority of Mnr2 was associated with the 

vacuolar membrane. In addition, combining mnr2 with the tfp1 mutation (which 

inactivates the vacuolar H+-ATPase) suppressed the high Mg2+ content phenotype 

associated with the mnr2 mutation, providing genetic evidence for a role of Mnr2 in 

vacuole function.  

My results also demonstrate that the function of Mnr2 to release Mg2+ from the 
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vacuole is dependent on the activity of the Alr1 and Alr2 proteins, which are required to 

supply excess Mg2+ to the cytosol, enabling vacuolar storage of this cation. Furthermore, 

I observed that when overexpressed, Mnr2 was mislocalized to the plasma membrane. 

This Mnr2 overexpression suppressed the growth defect of an alr1 alr2 strain in low 

Mg2+ conditions, suggesting that Mnr2 was capable of mediating Mg2+ uptake when 

present at the plasma membrane. Although the overexpression of Mnr2 did not restore the 

Mg2+ content of the alr1 alr2 to normal levels, it did allow yeast to maintain a basal level 

of Mg2+ content while dramatically stimulating growth, consistent with supplying the 

minimal Mg2+ required for growth. These results also indicate that Mnr2 can function 

independently of the Alr proteins to mediate Mg2+ transport. Overall, these data support a 

role for Mnr2 in directly mediating Mg2+ transport over the vacuole membrane.  

I also investigated the effect of the mnr2 mutation and Mg2+ deficiency on the 

regulation of the plasma membrane Mg2+ transport system, Alr1. The mnr2 mutation 

caused an increase in the steady-state level of Alr1 protein accumulation, but had no 

effect on ALR1 promoter activity. I also identified an effect of the mnr2 mutation on the 

gel mobility of the Alr1 protein, suggesting that this mutation affects the post-

translational modification of Alr1. This modification was dependent on Mg2+ supply, 

consistent with the mnr2 mutation limiting access to intracellular Mg2+ stores. 

In conclusion, this work is the first description of a transporter or ion channel that 

regulates Mg2+ homeostasis by controlling access to an intracellular Mg2+ store. The 

results of this research provide a revised model for Mg2+ homeostasis in yeast and 

suggest that Mg2+ storage may play a role in Mg2+ homeostasis in higher eukaryotes.  
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Chapter 1 Introduction  

1.1  Mg2+ in biology 

Magnesium (Mg2+) is essential for all life, ranging from unicellular bacteria to 

complex multi-cellular plants and animals. Mg2+ is required for a variety of functions in 

the cell, serving as a cofactor for many different enzymes, and providing structural 

stability to ribosomes, proteins and nucleic acids. All living organisms must regulate the 

concentration of various ions and nutrients to maintain normal cellular functions, and 

Mg2+ is no exception. Since Mg2+ is required for so many different biological processes, 

imbalance of Mg2+ could have severe physiological consequences. For this reason, cells 

are required to maintain an appropriate Mg2+ concentration in the cytosol and organelles. 

Key components of this homeostatic regulation are the transporters and channels that 

have evolved to move charged Mg2+ ions across hydrophobic membranes. Mg2+ 

accumulation by cells is regulated primarily by control of influx, sequestration in 

organelles and efflux from the organelle and/or the cell. Since these processes require 

specific channels and transporters, much research has been directed towards identifying 

novel proteins that can mediate Mg2+ transport. For this reason, in the past decade many 

novel Mg2+ transporters have been identified and characterized. However, in many cases, 

the details of how cells utilize these transporters to respond to environmental challenges 

remain unclear.  

The research presented in this dissertation involves the application of a 

combination of genetic, biochemical and molecular techniques to characterize a potential 

Mg2+ transporter (Mnr2) from Saccharomyces cerevisiae (Baker’s yeast). My work 

suggests that the Mnr2 protein functions to buffer against cytosolic Mg2+ deficiency by 

releasing Mg2+ from an intracellular storage compartment. The organization of this 

document is as follows: Chapter 1 provides a general introduction to Mg2+ as an element 

and its importance in health and agriculture, followed by a synopsis of the current 

knowledge of Mg2+ transporter proteins across the kingdoms of life. Chapter 2 describes 

the general experimental methodology used to conduct this research. Chapter 3 focuses 

on determining the role of Mnr2 protein in Mg2+ homeostasis and its characterization. 

Chapter 4 analyzes the effect of mnr2 mutation on the expression and modification of 
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the Alr1 protein, a related Mg2+ channel. Lastly, Chapter 5 provides a summary of my 

findings and describes the significance of this work, as well as describing possible 

avenues for future research in this area. 

1.2  Chemistry and biochemistry of Mg2+  

After potassium, Mg2+ ion is the second most abundant intracellular divalent cation 

[reviewed in (Maguire, 2006)]. Its small ionic size, high charge density, octahedral 

geometry and strong ionic interaction with water and other ligands makes the Mg2+ ion 

unique within the biologically important cations (Maguire & Cowan, 2002). Mg2+ forms 

ionic bonds with negatively charged molecules such as phosphate and carboxylate ions 

(Cowan, 2002; Maguire & Cowan, 2002), and can form semi-covalent bonds with 

nitrogen atoms of porphyrin rings (for example, in chlorophyll) [reviewed in (Maguire, 

2006)]. Furthermore, in aqueous solution, Mg2+ binds strongly to waters of hydration, 

which can interact in turn with other ligands or ions [reviewed in (Maguire & Cowan, 

2002) and (Maguire, 2006)]. As a consequence, the majority of intracellular Mg2+ in cells 

is bound to biological ligands, and less than 1% exists as free ionized ([Mg2+]i) in the 

cytoplasm (Millart et al, 1995). 

 The difference between the ionic and hydrated radii of the Mg2+ atom is 400 fold, 

by far the largest amongst all the cations. While both Mg2+ and Ca2+ are hexacordinate 

cations with octahedron geometry, the coordination sphere of Ca2+ is relatively flexible 

compared to that of Mg2+. This difference has been suggested to have influenced the 

biological roles played by these individual cations. Within cells, Ca2+ primarily serves as 

a second messenger for signal transduction pathways, and its concentration is normally 

maintained at a very low level in the cytosol. Ca2+ mediates its effect on physiology by 

binding to a variety of ligands, in order to trigger conformational changes within 

signaling factors. In contrast, the intracellular concentration of Mg2+ is normally high, 

and the Mg2+ atom tends to function as an essential cofactor, binding and holding water 

other molecules in a specific position within the active sites of enzymes, e.g. ATP, or as a 

stabilizing factor cross-linking the subunits of protein and RNA complexes. Mg2+ is a 

ubiquitous cofactor for more than 300 enzymatic reactions (Sreedhara & Cowan, 2002). 

For example, Mg2+ is required for the enzymes that catalyze phosphate ester hydrolysis, 
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phosphoryl transfer reactions (Wolf & Cittadini, 2003), nucleic acid metabolism, and cell 

signaling (Cowan, 2002; Sreedhara & Cowan, 2002). Mg2+ also plays an important role 

in ensuring the structural stability of ribosomes (Cowan, 1995), chlorophyll (Maguire, 

2006) and nucleoprotein complexes (Gregan et al, 2001b). Additionally, Mg2+ has an 

indirect effect on the cell physiology of other ions by modulating the activity of ion 

channels and transporters (Benz & Kohlhardt, 1991; Petit-Jacques et al, 1999; Tang et al, 

2000; Wei et al, 2002).  

1.3  Mg2+ in human health 

Mg2+ has been implicated in a variety of processes related to vertebrate health. 

Mg2+ is required for active immunological responses such as granulocyte oxidative burst, 

lymphocyte proliferation, and endotoxin binding to monocytes [reviewed in (Johnson et 

al, 1980; Tong & Rude, 2005)]. Additionally, several studies have demonstrated that 

Mg2+ deficiency is correlated with an increase in interleukin-1, tumor necrosis factor-α, 

interferon-γ and substance P, some of the factors involved in key processes such as 

immune defense, inflammation, regulation of immune cell biology, and apoptosis 

(Weglicki et al, 1994; Weglicki & Phillips, 1992; Weglicki et al, 1992). Furthermore, 

Mg2+ homeostasis also influences smooth muscle tone, and is thus implicated in critical 

illnesses such as acute myocardial infarction, acute cerebral ischemia and asthma 

(Laurant & Touyz, 2000).  

The normal Mg2+ content of an adult human body is 25 g [reviewed in (Elin, 

1987; Tong & Rude, 2005; Wallach, 1988)]. About 53% of total Mg2+ is stored in bone, 

27% in muscle, 19% in soft tissues, 0.5% in erythrocytes and only 0.3% in the serum 

(Elin, 1987). Small bowel, kidney, and bone are responsible for Mg2+ homeostasis in 

humans (Rude, 1993). About 90% of intestinal absorption of Mg2+ occurs along the 

jejunum and ileum by a passive paracellular mechanism (Brannan et al, 1976; Kerstan, 

2002). Due to its role in reclaiming Mg2+ from the urine, the kidney forms the primary 

organ of homeostasis (Sutton & Domrongkitchaiporn, 1993). The three distinct locations 

of Mg2+ reabsorption in the kidney are the proximal tubule, the thick ascending loop 

(TAL) of Henele, and the distal tubule. Most reabsorption of Mg2+ (65% to 75%) occurs 

in the TAL (Cole & Quamme, 2000; Quamme & de Rouffignac, 2000). When whole 
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body Mg2+ stores are depleted, the systems responsible for Mg2+ reabsorption are 

induced, increasing the efficiency of reclamation from the urine (Dai et al, 2001). 

Mg2+ deficiency and defective Mg2+ homeostasis are commonly associated with 

human disease. Surveys conducted in intensive care units have reported that 20-65% of 

patients are Mg2+-deficient (Deheinzelin et al, 2000; Reinhart & Desbiens, 1985; Ryzen 

et al, 1985) and that such patients have mortality rates 2 to 3 times higher than those who 

are not Mg2+ deficient (Fiaccadori et al, 1988). Vomiting, acute and chronic diarrhea, and 

malabsorption syndromes due to mucosal damage from radiation therapy or pancreatitis 

are some of the leading causes of Mg2+ deficiency resulting from gastrointestinal 

disorders [reviewed in (Tong & Rude, 2005)]. Renal Mg2+ loss can also occur due to 

osmotic diuresis, hypercalcemia, alcohol consumption, and following administration of 

drugs such as diuretics, antibiotics, and those used in cancer therapy. Additionally, 

metabolic acidosis due to starvation, diabetes, and chronic alcoholism, along with some 

rare renal diseases, contribute to Mg2+ deficiency [reviewed in (Tong & Rude, 2005)].  

Low intake of Mg2+ is associated with the development of risk factors for fatal 

cardiovascular diseases, stroke, type II diabetes mellitus and hypertension [reviewed in 

(Seelig & Rosanoff, 2003)].There is an increasing concern that citizens of developed 

countries do not routinely obtain the recommended daily allowance (RDA) of dietary 

Mg2+. Many processed foods are depleted of Mg2+ during manufacturing, and most are 

not fortified with Mg2+ as they are for some other essential nutrients and vitamins. In 

addition, many modern crop varieties are relatively nutrient poor. Due to their bulky 

nature, even one-a-day vitamin and mineral supplement do not provide the RDA of Mg2+ 

(Seelig & Rosanoff, 2003). Dietary supplementation with large amounts of inorganic 

Mg2+ sources can have unpleasant side effect making such supplementation more 

difficult to achieve than for other nutrients. 

Severe Mg2+ deficiency often occurs as a consequence of a disease condition, and 

maybe exacerbated by the drugs administered for the condition [reviewed in (Tong & 

Rude, 2005)]. Some of the clinical manifestations of moderate to severe Mg2+ deficiency 

include electrolyte abnormalities (hypokalemia, hypocalcemia), neuromuscular (tetany, 

seizures) and cardiovascular symptoms (dysrhythmias, hypertension), asthma (smooth 

muscle constriction, increased mucous production and plugging) and preeclampsia 
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(hypertension, proteinuria, edema and multi-organ failure). Patients suffering from 

moderate to severe Mg2+ deficiency can be administered intravenous Mg2+ to correct the 

deficiency [reviewed in (Rude et al, 1978; Ryzen et al, 1985; Tong & Rude, 2005)]. 

However, diagnosing Mg2+ deficiency is not simple, as serum Mg2+ content does not 

provide an accurate indication of Mg2+ status [reviewed in (Tong & Rude, 2005)], and 

more sophisticated assays have yet to be developed. 

1.4 Mg2+ in agriculture 

As a consequence of its position as the central atom in the chlorophyll porphyrin 

ring, Mg2+ is critical to plant life. Insertion of Mg2+ in chlorophyll allows this molecule to 

absorb a much broader range of light wavelengths, consequently capturing more energy 

for photosynthesis. Plants grown under Mg2+ deficient conditions exhibit severe 

interveinal chlorosis (leaf yellowing) on fully expanded leaves (Deng et al, 2006; 

Hermans & Verbruggen, 2005). Mg2+ deficiency affects crop productivity and is a 

common agricultural problem (Bennett, 1997). The major strategy for the correction of 

Mg2+ deficiency in soil is the addition of lime, although this intervention may not be 

economically feasible in underdeveloped countries. 

Many studies have suggested that Mg2+ deficiency may also exacerbate 

Aluminium (Al3+) toxicity in plants (Matsumoto, 2000; Silva et al, 2001a; Silva et al, 

2001b; Silva et al, 2001c). Al3+ toxicity is a major factor limiting crop productivity in 

acidic soils (pH < 5.0), which constitute about 40% of the world’s arable land (Delhaize 

& Ryan, 1995). The high concentration of Al3+ in acidic soils inhibits root growth, thus 

negatively impacting crop yield. Mg2+ was hypothesized to compete with Al3+ for binding 

to root cells (Grauer UE, 1992; Kinraide & Parker, 1987). Work in yeast suggested that 

Al3+ inhibited Mg2+ uptake over the plasma membrane, possibly by competitive 

inhibition of the Mg2+ transport system (MacDiarmid & Gardner, 1996). Subsequent 

work identified two membrane proteins (Alr1 and Alr2) that could confer Al3+ tolerance 

to yeast when overexpressed (MacDiarmid, 1997; MacDiarmid & Gardner, 1998). The 

Alr proteins are related to the CorA family of Mg2+ transporters from bacteria, and 

genetic studies indicated that they perform the same function in yeast. Alr1 protein 

overexpression was suggested to overcome Al3+ toxicity by increasing the capacity for 
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Mg2+ uptake in the presence of this inhibitor. CorA homologs also exist in plants, and 

several of them have been shown to mediate Mg2+ transport (Drummond et al, 2006; 

Gardner, 2003; Li et al, 2001b). Although the role that Mg2+ transport plays in the 

phenomenon of Al3+ toxicity in plants is not yet fully understood (Yang et al, 2007), 

increased expression of plant Mg2+ transporters has been shown to successfully alleviate 

Al3+ toxicity (Deng et al, 2006), suggesting that at least in some plant species, the 

mechanism of Al3+ toxicity is similar to that proposed for yeast.  

1.5 Yeast as a eukaryotic model system for Mg2+ homeostasis 

Saccharomyces cerevisiae (Budding yeast or Bakers' yeast) is a versatile 

eukaryotic model organism for biochemical and genetic studies. Due to its ability to 

propagate as both haploid and diploid strains, yeast provides an opportunity to determine 

the phenotypes of recessive alleles and also to study allelic interactions. Additionally, the 

ability to perform efficient homologous recombination permits easy manipulation of 

genes, either by introducing point mutations or by the complete elimination of a 

particular gene. Mating or transformation processes allow rapid generation of strains 

carrying a genotype of interest. Transformation with independently replicating plasmids 

is another easy method of introducing genes into yeast strains. By employing different 

plasmid replication origins to vary plasmid copy number, and employing differentially 

regulated promoters, we can specifically modify gene expression in yeast.  

Another advantage of the yeast model system is that with the yeast genome 

completely sequenced, it is possible to identify homologs of genes from higher 

eukaryotes based on conservation and then conduct reverse genetic studies to determine 

their function. Additionally, homologs of yeast genes from higher eukaryotes can be 

cloned and expressed in mutant yeast strains to determine if any functional overlap exists. 

For example, the AtMRS2-1 gene in Arabidopsis thaliana was identified based on its 

homology to the yeast MRS2 gene, which encodes a protein responsible for Mg2+ 

transport into mitochondria. Overexpressing AtMRS2-1 in a yeast mrs2 deletion strain 

showed that this protein complemented the yeast mutation (Schock et al, 2000). A 

quicker route to the identification of yeast genes homologs in higher eukaryotes is by 

functional complementation, which was used to independently isolate the AtMGT10 gene 
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via complementation of a yeast alr1 alr2 mutant strain (Li et al, 2001b). 

Yeast is an excellent model system to conduct biochemical analysis of 

transporters and other enzymes. For example, the role of putative ion transporter genes 

can be studied by measuring changes in the metal content of strains in which these genes 

are overexpressed or deleted, and by screening for metal-ion associated tolerance or 

sensitivity phenotypes. The rapid development of simple genetic screens for transport and 

regulatory mutants is one reason why transporters and regulatory factors involved in 

eukaryotic zinc (Zn2+), iron (Fe3+), copper (Cu2+), and phosphate (P) metabolism were 

first identified in this organism (Eide, 1998; Persson et al, 2003). For the same reasons, 

yeast is the organism in which eukaryotic Mg2+ homeostasis is best understood (Gardner, 

2003), and why it was chosen as the model system used to perform the work described in 

this dissertation.  

1.6 Regulation of cytosolic Mg2+ 

As previously discussed, the diverse roles played by Mg2+ make it critical for a 

cell to regulate cytosolic Mg2+ concentration correctly. The cytosolic [Mg2+]i has been 

estimated to range from 0.5-1.0 mM in various cell types (Grubbs, 2002). Perhaps as a 

reflection of the relative abundance of Mg2+ in the cytosol, Mg2+ ions interact relatively 

weakly with their binding sites in proteins (Ka < 105 M-1) (Cowan, 2002). For this reason, 

small variations in [Mg2+]i can have large effects on physiology, and maintaining a 

consistent [Mg2+]i is important for cell function. This regulation is achieved by the action 

of specific Mg2+ transporters that mediate the influx or efflux of Mg2+ from the cell, or 

sequester Mg2+ within organelles (Nelson, 1999).  

Cation transport mechanisms can be classified as either active or passive. Influx 

of Mg2+ via specific channels is a passive process driven by the electrochemical gradient 

(Dai & Quamme, 1991). Efflux of protons (in bacteria, plants, and fungi) or Na+ (in 

animal cells) by ATP-driven pumps in the plasma membrane generates a negative charge 

of the cytosol. In animal cells, Mg2+ efflux is one of the most important processes 

regulating cytosolic Mg2+ concentration. The efflux of Mg2+ requires energy to overcome 

the electrical potential gradient driving Mg2+ influx. In mammalian cells, Mg2+ efflux is 

coupled to Na2+ influx via the action of a Na+/Mg2+ exchanger (Romani & Scarpa, 1992; 
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Romani & Scarpa, 2000). This system was first characterized in erythrocytes (Ferreira et 

al, 2004; Flatman & Smith, 1990; Flatman & Smith, 1996). In several cell types, removal 

of extracellular Na+ resulted in a significant increase in [Mg2+]i, indicating that Mg2+/Na+ 

exchange plays a general role in vertebrate Mg2+ homeostasis (Handy et al, 1996; Tashiro 

& Konishi, 1997). 

The accumulation of excess Mg2+ in organelles also is likely to contribute to 

cytosolic Mg2+ homeostasis. In yeast, for example, the average concentration of Mg2+ 

within organelles is 14-fold higher than in the cytosol (Okorokov et al, 1978; Okorokov 

et al, 1980). Increasing the medium Mg2+ concentration from 50 µM to 50 mM increased 

the Mg2+ content of yeast cells four-fold, but had little effect on growth rate (Beeler et al, 

1997) suggesting that the cytosolic Mg2+ levels are tightly regulated. The ability of yeast 

to accumulate much more Mg2+ than the minimum required implies the existence of an 

intracellular storage compartment. Recent studies indicate that the yeast vacuole (the 

equivalent of the mammalian lysosome) is a site for Mg2+ sequestration. Accumulation of 

vacuolar polyphosphate, a linear polymer of inorganic phosphate, is required for 

substantial Mg2+ accumulation by yeast (Beeler et al, 1997; Nishimura et al, 1999). 

Polyphosphate has been shown to bind Mg2+ with high affinity (Beeler et al, 1997), and 

could act as a sink for Mg2+ ions in the vacuole (Beeler et al, 1997; Nishimura et al, 1999; 

Okorokov et al, 1975). More direct evidence comes from recent studies using X-ray 

microanalysis, which have identified the vacuole as a site of Mg2+ accumulation in yeast 

cells (Simm et al, 2007). In these studies, Mg2+ and P were found associated with the 

vacuole, and P and Mg2+ content were strongly correlated, suggesting that regulation of P 

and Mg2+ content is interrelated. Using the same technique, vacuolar accumulation of 

Mg2+ was also observed in eukaryotic microbes such as Leishmania (LeFurgey et al, 

1990; Scott et al, 1997). Changes in cytosolic Mg2+ in response to hormonal stimuli 

suggest that intracellular sequestration of Mg2+ also may occur in mammalian cells 

(Romani et al, 1993; Zhang & Melvin, 1992; Zhang & Melvin, 1994; Zhang & Melvin, 

1996; Zhang & Melvin, 1997), although it is not yet clear which organelle is responsible. 

In addition to a role in removal of excess cytosolic Mg2+, intracellular 

compartments potentially provide a reservoir of Mg2+ that could be used to buffer the 

cytosolic Mg2+ concentration. In yeast, the intracellular Mg2+ store accumulated during 
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growth in replete conditions was sufficient to support a 3.5-fold increase in cell number 

in the absence of external Mg2+ (Beeler et al, 1997). The yeast vacuole can store and 

release other essential metal ions to offset deficiency (MacDiarmid et al, 2000; 

MacDiarmid et al, 2003). In mammalian cells, the release of Mg2+ from an intracellular 

compartment was stimulated by exposure to muscarine (which mimics the action of the 

neurotransmitter acetylcholine) (Zhang & Melvin, 1996). The regulated release of Mg2+ 

stores could potentially play a role in modulating signal transduction pathways, or may 

buffer against changes in extracellular Mg2+ supply, such as might occur under conditions 

of dietary Mg2+ deficiency. 

1.7 Bacterial Mg2+ transporters 

1.7.1 CorA  

Mg2+ transport activity in E. coli was first reported in 1969 (Silver, 1969), and it 

was noted that Mg2+ and Co2+ could be accumulated by the same system. To isolate 

mutants that lacked activity of this transport system, researchers took advantage of the 

lack of specificity of the transporter by selecting for strains that were unable to 

accumulate Co2+ ions (Park et al, 1976; Silver, 1969). By 1985, the gene encoding the 

Co2+ transport system (corA for Cobalt Resistant) was cloned from the enteric bacteria 

Salmonella typhimurium (Hmiel et al, 1986). The corA gene is constitutively expressed in 

S. typhimurium, and its promoter does not respond to changes in Mg2+ availability. 

Additionally, corA gene expression is also independent of growth phase and/or type of 

growth media (Smith & Maguire, 1998; Tao et al, 1998). CorA thus represents a 

"housekeeping" system for the routine acquisition of Mg2+ by bacteria. The influx of 

Mg2+ via CorA is dependent on membrane potential, and this system resembles a Mg2+-

selective ion channel (Froschauer et al, 2004; Maguire, 2006). The CorA protein has a 

high affinity for Mg2+ (15µM), but it can also transport other divalent cations such as 

Co2+ and Ni2+ with lower affinity (Hmiel et al, 1986; Payandeh & Pai, 2006; Snavely et 

al, 1989a). Although CorA can transport divalent cations other than Mg2+, there is no 

evidence that it is required for the homeostasis of other cations (Maguire & Cowan, 

2002). 
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1.7.1.1 Structural Features of CorA 

Structurally CorA protein can be divided into two general regions: a long, weakly 

conserved hydrophilic amino (N) terminal end located in the cytosol, and a short, well-

conserved, hydrophobic carboxy (C) terminal domain embedded in the membrane 

(Figure 1.1). Although substantial variation exists at the level of primary amino acid 

sequence, CorA proteins of any origin can be identified by two distinct features. First, 

CorA proteins always have two transmembrane domains (TMD) close to the C terminal 

end. The relatively low number of these domains suggests that coordination of several 

monomers is required to form a Mg2+ transporting structure, a prediction confirmed by 

recent crystallographic studies (Eshaghi et al, 2006; Lunin et al, 2006; Payandeh & Pai, 

2006). Second, CorA proteins have a single characteristic glycine-methionine-asparagine 

(GMN) motif at the C terminal end of the penultimate TMD. The GMN motif is critical 

for Mg2+ transport, as mutation of any of the residues in this sequence eliminated Mg2+ 

transport (Knoop et al, 2005; Worlock & Smith, 2002). A small number of CorA proteins 

show some variation in the sequence of the GMN motif. This change may alter ion 

specificity, since at least one of these variants was shown to transport divalent cations 

other than Mg2+ [e.g., Zn2+, (Knoop et al, 2005; Worlock & Smith, 2002)].  

Several different 

groups recently determined 

the X-ray structure of the 

CorA protein using a 

homolog from the 

thermophilic Gram-negative 

bacteria Thermotoga 

maritima (Eshaghi et al, 

2006; Lunin et al, 2006; 

Payandeh & Pai, 2006). As 

seen in the resulting 

structure (Figure 1.1), CorA 

forms a funnel-shaped 

homo-pentamer with two 

 

Figure 1.1 Structure of CorA from Thermotoga maritima 
(Payandeh & Pai, 2006). Left: The CorA homopentameric complex 
forms a funnel shaped structure in the cytoplasm. Each monomer 
subunit is colored differently. Right: Monomer of CorA, showing two 
transmembrane domains embedded in the membrane, and a long 
"stalk helix" extending into the cytoplasm. The inner face of this 
helix forms the inside of the funnel shown in a. 
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membrane-embedded domains per monomer. In the homo-pentamer, the first TMD of 

each CorA monomer combines to form part of the metal ion translocation channel. The 

second TMD lies perpendicular to the membrane and is present on the periphery of the 

first TMD. The large N terminal end extends from the bottom of the first TMD into the 

cytoplasm as a long  α-helix called the stalk helix, which forms the inner face of the 

funnel-like N-terminal domain.  

The crystal structure also revealed the presence of an apparent Mg2+-binding site 

between the aspartate residues present at the bottom of the stalk helix, and the 

〈−−〈 domain of the adjacent monomer. The intracellular location of the Mg2+ binding 

sites suggests a model for the regulation of Mg2+ transport by the cytoplasmic Mg2+ 

concentration. The model predicts that the intracellular availability of Mg2+ ions 

determines the mobility of the long stalk helix of each monomer with respect to its 

adjacent monomer. The mobility of the stalk helix in turn determines the opening or 

closing of the ion translocation pore at the membrane, thus regulating the influx of Mg2+ 

ions (Payandeh & Pai, 2006). Thus, CorA proteins form Mg2+-gated channels, the activity 

of which is regulated by feedback inhibition. Subsequent studies have provided further 

genetic and physiological evidence supporting this general model (Payandeh et al, 2008; 

Schindl et al, 2007).  

1.7.2 MgtA, B and C 

During the early investigations of Mg2+ transport by E. coli and S. typhimurium, it 

was recognized that as corA mutants of E. coli still exhibited robust Mg2+ uptake activity, 

bacteria expressed alternative systems for Mg2+ acquisition from the environment (Hmiel 

et al, 1989; Park et al, 1976). Further genetic studies revealed the presence of another 

system in E. coli (the mgt gene) (Park et al, 1976), and two more systems in S. 

typhimurium (encoded by the mgtA and mgtB genes) (Hmiel et al, 1989). Loss of all three 

systems in S. typhimurium rendered the cells unable to grow except in the presence of a 

much higher Mg2+ concentration then was normally present in growth medium. Tracer 

uptake studies showed that each system had a distinct cation specificity and kinetic 

characteristics (Snavely et al, 1989a). Both MgtA and MgtB can transport Ni2+, but are 

inhibited by Co2+. However, the two proteins show differences in their ability to transport 
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Zn2+, Ca2+ and Mn2+, and in their temperature dependence [reviewed in (Maguire, 2006)].  

The mgtA and mgtB genes were cloned from S. typhimurium by complementation 

of the Mg2+ deficient growth phenotype of a corA mgtA mgtB mutant, which required 

supplementation with 10-100 mM Mg2+ for growth [reviewed in (Maguire, 2006; Snavely 

et al, 1989b)]. The MgtA/B proteins were found to be members of the P-type ATPase 

superfamily. Generally, P-type ATPases function to move cations from the cytoplasm to 

the extracellular environment or into organelles against an electrochemical gradient. The 

discovery that the MgtA and MgtB proteins were P-type ATPases was a surprise, as Mg2+ 

influx is driven by the electrochemical gradient, and was not believed to require 

additional energy input [reviewed in (Maguire, 2006)].  

While CorA is constitutively expressed, the mgt genes are repressible, and these 

proteins are only expressed in Mg2+-deficient cells (Snavely et al, 1989a). The expression 

of both Mgt proteins is regulated by a two-component signal transduction system (PhoP-

PhoQ) (Garcia Vescovi et al, 1996). PhoQ is a membrane sensor-kinase, while PhoP is a 

transcription factor (Miller et al, 1989). In the presence of 100 µM or greater Mg2+, PhoQ 

binds Mg2+ and changes its conformation, leading to the dephosphorylation of its 

cytosolic domain. Conversely, when external Mg2+ is low, PhoQ is activated and auto-

phosphorylates its cytosolic domain, which activates the associated PhoP protein. PhoP 

then binds to the promoters of regulated genes (including mgtA and mgtB) to induce their 

expression (Tao et al, 1998; Tao et al, 1995).  

Interestingly, well before the realization of their role in Mg2+ homeostasis, the 

phoPQ genes were known to be required for virulence and the regulation of 

pathogenicity-related genes in S. typhimurium and other pathogenic bacteria (Gunn & 

Miller, 1996). For this reason, it was somewhat surprising to learn that Mg2+ was the 

environmental signal that regulated the activity of the PhoP/PhoQ pathway (Garcia 

Vescovi et al, 1996; Groisman, 2001; Vescovi et al, 1997). In accordance with this model 

however, it was found that the mgt genes were induced upon entry of S. typhimurium into 

macrophages and epithelial cells (Miller, 1991; Miller & Mekalanos, 1990) and also 

during infection of mice (Heithoff et al, 1999; Mahan et al, 1993). Currently it is believed 

that the intracellular environment of the macrophage is Mg2+-deficient, providing a 

convenient signal for the induction of pathogenicity-related genes. 
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Analysis of the mgtB operon in S. typhimurium revealed a second gene, mgtC, 

which is required for intra-macrophage survival of S. typhimurium and pathogenicity in 

mice (Blanc-Potard & Groisman, 1997; Lawley et al, 2006). Similar to mgtB, mgtC is 

regulated by the PhoPQ two-component system, and is required for growth in low Mg2+ 

environments (Blanc-Potard & Groisman, 1997; Blanc-Potard & Lafay, 2003; Buchmeier 

et al, 2000). Initially, MgtC was suggested to represent a fourth Mg2+ transporter in S. 

typhimurium, but a later study showed that expression of MgtC in a corA mgtA mgtB 

mutant had only a minor effect on growth of the mutant strain, and did not promote any 

detectable increase in Mg2+ uptake (Moncrief & Maguire, 1998). Additionally, 

expression of MgtC in Xenopus laevis oocytes failed to promote Mg2+ uptake suggesting 

that MgtC does not directly transport Mg2+ (Gunzel et al, 2006). Currently, the role of 

MgtC in pathogenicity and Mg2+ homeostasis remains unclear.  

1.7.3 MgtE  

The first member of the MgtE family of transporters was unexpectedly cloned 

from Bacillus firmus OF4 (Smith et al, 1995) and Providencia stuartii (Townsend et al, 

1995) by complementation of a triple mutant corA mgtA mgtB strain with genomic 

libraries constructed from these species. Homologs of MgtE are found both in Eubacteria 

and Archaea, but eubacterial species carry both CorA and MgtE genes, whereas Archaea 

primarily use MgtE alone. In general, much less is known about the physiological role of 

the bacterial members of this family than for the bacterial CorA and the Mgt proteins. 

However, the recognition of higher eukaryotic homologs of MgtE has generated some 

recent interest in this family of proteins (Goytain & Quamme, 2005b). Recently Hattori 

and coworkers (2007) determined the crystal structure of MgtE from Thermus 

thermophilus. The MgtE transporter forms a homodimer with the five TMDs contributed 

by the C terminus of each subunit forming a pore in the membrane. Four putative Mg2+ 

ions were found bound at the interface between the connecting helices between the 

cystathionine-β-synthase (CBS) domains and the TMDs, while a fifth Mg2+ ion was 

bound to a conserved residue within the pore. The model suggested that MgtE activity 

was regulated by its cytosolic sensor domain: the authors proposed that binding of Mg2+ 

to the interface of the connecting helices in the cytosolic domain generated a movement 
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in the connecting helices that triggered the reorganization of the TMDs to close or open 

the pore, thus regulating channel activity. Thus, the structures of MgtE and CorA reveal 

some interesting similarities in the mechanism by which these transporters respond to 

changes in cytosolic Mg2+ concentration. 

1.8 The CorA superfamily of Mg2+ channels in eukaryotes 

1.8.1 CorA family members in yeast and fungi 

1.8.1.1 Alr1 and Alr2 

The first eukaryotic Mg2+ transporter proteins to be identified were the Alr1 and 

Alr2 proteins from S. cerevisiae (MacDiarmid & Gardner, 1998) (Figure 1.2). The ALR 

genes (ALuminum Resistance) were 

identified as a consequence of their 

ability to confer increased tolerance to 

Al3+ when overexpressed. Al3+ 

toxicity to yeast was maximal under 

conditions of reduced Mg2+ supply 

(MacDiarmid & Gardner, 1996), 

suggesting that Al3+ inhibits a system 

required for Mg2+ uptake. The Alr 

proteins were suggested to represent 

this system. Both Alr1 and Alr2 are 

plasma membrane proteins (Graschopf 

et al, 2001), consistent with a role in 

Mg2+ uptake. Genetic studies showed that alr1 mutants had a growth defect that was 

suppressed by adding excess Mg2+ to the medium (MacDiarmid & Gardner, 1998). In 

contrast, deletion of the ALR2 gene had no effect on growth, indicating that this gene 

made only a minor contribution to homeostasis under normal conditions. When 

overexpressed however, Alr2 suppressed the Mg2+ requirement phenotype of an alr1 

strain, suggesting that Alr1 and Alr2 are redundant in function (MacDiarmid & Gardner, 

1998). Subsequent studies have indicated that the relatively minor contribution of ALR2 

 

Figure 1.2 Yeast CorA Proteins. Alr1 and Alr2 
proteins are expressed on the plasma membrane and 
responsible for Mg2+ influx into the cell. Mrs2 and 
Lpe10 form a heteromeric complex on inner 
mitochondrial membrane and function to transport  
Mg2+ into the mitochondria. 
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in these studies may have been due to a combination of low expression in the yeast 

strains used (MacDiarmid, 1997), combined with a mutation that reduces its activity 

relative to Alr1 (Graschopf et al, 2001). 

Relatively little is known about the specificity and activity of the Alr proteins. The 

overexpression of Alr1 in yeast allowed the detection of Mg2+- dependent inward currents 

by patch clamping, and the large magnitude of these currents was consistent with Alr1 

functioning as a cation channel (Liu et al, 2002). Indirect evidence suggests that Alr1 has 

broad substrate specificity, even in comparison with the bacterial CorA proteins. 

Overexpression of Alr1 or Alr2 dramatically increased the sensitivity of yeast to a variety 

of divalent cations including Co2+, Zn2+, Ni2+, Mn2+ and Ca2+ (MacDiarmid & Gardner, 

1998). Alr1 overexpression also increased the rate of accumulation of 57Co2+ isotope. 

Preliminary kinetic studies demonstrated that Alr1 could mediate Co2+ uptake with a Km 

of 100 µM, suggesting that Alr1 has a relatively low affinity for substrates other than 

Mg2+ (MacDiarmid, 1997). Several studies have provided evidence for the existence of 

low affinity divalent cation transport systems in yeast with Km values within this general 

range, including those for Mn2+ (Fuhrmann & Rothstein, 1968; Gadd & Laurence, 1996), 

Ni2+ (Joho et al, 1991) and Co2+ (Joho et al, 1991). Many of these reports indicate that 

transport is inhibited by Mg2+ ions (Fuhrmann & Rothstein, 1968; Gadd & Laurence, 

1996; Joho et al, 1991; Ross, 1995), consistent with a role for a CorA-like system in this 

process. 

1.8.1.2 Mrs2 and Lpe10 

Two more CorA-related proteins from yeast, Mrs2 and Lpe10, have been shown to 

play a role in Mg2+ homeostasis within the mitochondria (Figure 1.2). The Mrs2 protein 

is encoded by a nuclear gene and accumulates on the inner mitochondrial membrane. 

MRS2 is essential for the splicing of mitochondrial group II introns (Wiesenberger et al, 

1992), and the yeast mrs2 mutant shows a "petite" phenotype (an inability to use non-

fermentable carbon sources), along with a mitochondrial cytochrome deficiency. These 

phenotypes of the mrs2 yeast strain may be due to a defect in mitochondrial Mg2+ 

homeostasis. Consistent with this model, these phenotypes were partially suppressed by 

the overexpression of the bacterial CorA protein in yeast (Wiesenberger et al, 1992).  
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The Lpe10 protein is an ortholog of Mrs2 that is also found in the inner 

mitochondrial membrane. An lpe10 mutant showed similar phenotypes as the mrs2 

mutant, including lower mitochondrial Mg2+ content (Gregan et al, 2001a). However, the 

two proteins cannot substitute for each other, suggesting that Lpe10 cooperates with 

Mrs2 to transport Mg2+ into the mitochondria, possibly through the formation of a 

heteromeric complex (Gregan et al, 2001a). Consistent with this mode, the Mrs2/Lpe10 

complex formed a high capacity ion channel in the inner mitochondrial membrane 

(Kolisek et al, 2003). 

A fifth CorA family protein (Ykl064w), which is closely related to the Alr proteins, 

was also identified in yeast (MacDiarmid, 1997). Inactivation of the YKL064w gene 

conferred sensitivity to Mn2+ ions, leading it to be termed Mnr2 (for Manganese 

resistance). mnr2 mutant strains showed no obvious growth defect, but did show altered 

sensitivity to several divalent cations (including Mn2+, Ca2+ and Zn2+). When I began this 

work, the physiological role of Mnr2 had yet to be determined, and an analysis of its 

potential role in Mg2+ homeostasis is the major focus of this dissertation. 

1.8.2 CorA family members in eukaryotic microbes 

With an aim to identify proteins important for parasitic virulence, Zhu and 

coworkers searched the Leishmania genome database for potential Mg2+ transporters 

(Zhu et al, 2009). Leishmaniasis is a complex disease caused by the Leishmania major 

parasite, which affects at least 12 million people globally. Survival of L. major within 

macrophages is dependent on their tolerance to Mg2+ deficient conditions, which 

provoked interest in Leishmania Mg transporters (Lanza et al, 2004). Two proteins 

(MGT1 and MGT2) were identified and characterized as the first potential Mg2+ 

transporters in Leishmania. The C-terminus of MGT1 and MGT2 shared 42% and 26% 

identity respectively with CorA from T. maritima. Functional complementation assays 

conducted by overexpressing MGT1 and MGT2 in E. coli lacking CorA demonstrated 

that only MGT1 restored Co2+ sensitivity, suggesting that (like bacterial CorA), this 

protein was capable of mediating Co2+ uptake. Both MGT1 and MGT2 were localized to 

an ER compartment in Leishmania parasites. Gene disruption studies showed that single 

mutants of mgt1 had no growth defect and were associated with a gain of initial 
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infectivity compared to the wild type.  In contrast, mgt2 mutation induced much slower 

growth compared to the wild type and a significant loss of virulence. These results 

suggested that MGT1 functions as a Mg2+ transporter, while MGT2 is important for 

virulence, and that both MGT1 and MGT2 function as regulators of the life cycle of 

Leishmania. 

1.8.3 CorA family members in plants  

Schock and coworkers (2000) identified two homologs of the yeast Mrs2 protein 

in Arabidopsis thaliana and named them as AtMRS2-1 and AtMRS2-2. Although similar 

in sequence, AtMRS2-2 was predicted to contain only one TMD, compared to the two 

TMDs at the C-terminus of most CorA homologs. Functional characterization of the two 

gene products demonstrated that only AtMRS2-1 was able to suppress the phenotypes of 

the mrs2 mutation. Based on the protein sequences of AtMRS2-1 and AtMRS2-2, eight 

more homologs of MRS2 were identified in A. thaliana (Schock et al, 2000).  

Li and colleagues independently reported the identification of the same gene 

family (10 members) in A. thaliana, initially by functional complementation of an alr1 

alr2 yeast strain. They named the family members AtMGT (for Arabidopsis thaliana 

magnesium transporter). The AtMRS2-1 and AtMRS2-2 genes were named AtMGT2 and 

AtMGT9 respectively (Li et al, 2001b). Expression of AtMGT10 suppressed the growth 

defect of a yeast alr1 alr2 mutant, and expression of AtMGT1 suppressed the growth 

defect of a S. typhimurium corA mgtA mgtB mutant, indicating that AtMGT10 and 

AtMGT1 were functional homologs of the Alr proteins and bacterial CorA respectively. 

Sub-cellular localization studies of AtMGT1 (Li et al, 2001b) and AtMGT10  (AtMRS2-

11) (Drummond et al, 2006) showed that AtMGT1 and AtMGT10 were localized to the 

plasma membrane and the chloroplast membrane respectively. In addition, the subtle 

differences in the tissue specificity of AtMGT expression suggested that the different 

members of this large gene family perform different roles within Arabidopsis. 

Uptake studies using 63Ni2+ as a tracer demonstrated that AtMGT1 could mediate 

Mg2+-sensitive Ni2+ uptake when expressed in bacteria (Li et al, 2001b). Mg2+ uptake by 

AtMGT1 was also inhibited by Cobalt (III)-hexamine, which has been demonstrated to 

be a potent inhibitor of CorA (Kucharski et al, 2000), highlighting functional similarities 
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between the AtMGT proteins and CorA (Smith et al, 1998). In addition to Co (III)-

hexamine, the AtMGT1, AtMGT10 and CorA proteins were inhibited by low 

concentrations of aluminum ion (Al3+) (Li et al, 2001b), as were the Alr1 and Alr2 

proteins (MacDiarmid, 1997). These observations suggest that Al3+ ions compete strongly 

for the Mg2+ binding site within the pore of CorA-type channels. They also raise the 

possibility that Al3+ toxicity to plants (a major agricultural problem) may be mediated 

through its effect on Mg2+ channel activity, and that the overexpression of plant Mg2+ 

transporters may alleviate toxicity, as is the case in yeast (MacDiarmid, 1997; 

MacDiarmid & Gardner, 1996; MacDiarmid & Gardner, 1998).  

Another study investigating the in vivo function of Mg2+ transporters in A. 

thaliana reported that AtMGT5 is important for male gametophyte vitality (Li, 2008). 

AtMGT5 is a Mg2+ transporter localized in the mitochondrial membrane. In a S. 

typhimurium corA mgtA mgtB mutant, AtMGT5 mediated Mg2+ influx under low external 

Mg2+ availability, but mediated Mg2+ efflux in the presence of Mg2+ concentrations above 

100µM. Supporting this model, a higher rate of Ni2+ efflux was observed for a AtMGT5-

expressing strain, compared to those expressing AtMGT1 or AtMGT10. A previous study 

had suggested that AtMGT5 transcripts were only expressed in flowers (Li et al, 2001b). 

Detailed studies confirmed that AtMGT5 transcripts accumulated in the early stages of 

flower development, and were exclusively expressed in anthers. Consistent with this 

anther-specific pattern, homozygous T-DNA insertional mutants of AtMGT5 had inviable 

pollen, indicating an essential role of AtMGT5 in male gametophyte development.  

1.8.4 CorA proteins in mammals 

The only mammalian member of the CorA family (hsaMrs2L) and the first 

vertebrate Mg2+ channel to be identified is most closely related in sequence to yeast 

Mrs2. The expression of hsaMrs2L in an mrs2 mutant could partially reverse the 

respiratory defect of this strain, and hsaMrs2L was localized to the mitochondrial inner 

membrane in human cells (Zsurka et al, 2001). A genetic investigation of the role of 

hMrs2L in mitochondria was recently reported (Piskacek et al, 2008). An hsaMrs2L 

conditional knock-out strain generated by expression of shRNA in HEK293 cells showed 

lower levels of mitochondrial free Mg2+ and slower mitochondrial Mg2+ uptake, 
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indicating that hsaMrs2 is an essential mitochondrial Mg2+ transport system in 

vertebrates. Consistent with this idea, constitutive expression of shRNA directed to 

hsaMRS2L resulted in loss of respiratory complex I, decreased mitochondrial membrane 

potential, and eventual cell death. These results clearly establish an important role of 

hsaMRS2L in mitochondrial function. 

1.9 Novel mammalian Mg2+ channels 

1.9.1 TRPM6 and TRPM7  

TRPM6 and 7 (Nadler et al, 2001) are members of the transient receptor potential 

melastatin (TRPM) ion channel family [reviewed in (Schlingmann et al, 2007)]. 

Members of this family mediate divalent cation influx and monovalent cation efflux from 

the cell (Kozak & Cahalan, 2003; Nadler et al, 2001). A unique feature of TRPM6 and 7 

is the presence of an unusual α-kinase domain at the C-terminal end, leading them to be 

termed "Chanzymes" (Montell, 2003; Riazanova et al, 2001; Runnels et al, 2001).  

TRPM6 was first identified by positional cloning of a mutant gene responsible for 

the rare genetic disease primary hypomagnesemia with secondary hypocalcemia (HSH) 

(Schlingmann et al, 2002; Walder et al, 2002). HSH patients show severe 

hypomagnesemia, or Mg2+ deficiency, often manifested as cerebral convulsions in early 

infancy. The trait is associated with a defect in the intestinal absorption of Mg2+ 

(Lombeck et al, 1975; Milla et al, 1979), combined with an excess loss of Mg2+ in urine, 

a consequence of impaired Mg2+ reabsorption in the distal convoluted tubule (DCT) 

(Walder et al, 2002). TRPM6 has subsequently been shown to be essential for renal and 

intestinal Mg2+ absorption (Voets et al, 2004). Consistent with its proposed function, 

TRPM6 is expressed in the small intestine, colon, kidney, lung and testis (Chubanov et al, 

2004; Groenestege et al, 2006) where it could participate in transepithelial reabsorption 

of Mg2+. Although closely related in sequence to TRPM6, TRPM7 may perform a more 

general role in Mg2+ uptake (Chubanov et al, 2004; Schmitz et al, 2005). Deletion of 

TRPM7 in a DT40 chicken derived cell-line resulted in depletion of cytosolic Mg2+ and 

subsequent growth arrest unless the cells were supplemented with high levels of Mg2+. 

This finding provided strong evidence that TRPM7 was critical for Mg2+ influx (Schmitz 

et al, 2003). Unlike the restricted expression of TRPM6, TRPM7 is ubiquitously 
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expressed suggesting a more general role in Mg2+ homeostasis. As suggested by this 

distribution, TRPM6 and 7 proteins appear to be non-redundant. When TRPM6 was 

heterologously expressed in a TRPM7 mutant cell line, it was unable to mediate Mg2+ 

transport (Schmitz et al, 2005). For this reason, TRPM6 function was suspected to 

depend on the presence of TRPM7, and the two proteins were suggested to form a 

heteromeric complex (Chubanov et al, 2004; Schmitz et al, 2005). The importance of 

TRPM6 and TRPM7 heteromultimer formation is supported by the observation that when 

TRPM6 alone was expressed in cells lines, it was unable to reach the cell surface 

(Chubanov et al, 2004; Schmitz et al, 2005). In addition, loss-of-function mutations in 

TRPM6 in HSH patients prevented the formation of heteromultimers (Chubanov et al, 

2004). Unlike TRPM6, TRPM7 can function independently, and forms functional 

homomultimeric complexes (Li et al, 2006). 

Influx of cations through TRPM6 and TRPM7 is regulated by the ratio between 

cytosolic free Mg2+ and Mg-ATP (Schlingmann et al, 2002). In the presence of high 

intracellular Mg2+, TRPM7 activity is negatively regulated by a feedback mechanism 

(Schmitz et al, 2003). Mg2+ driven currents in TRPM6 were also sensitive to intracellular 

Mg2+ concentration in the physiological range (0.5 mM). Research efforts have also 

focused on the role of the kinase domain and its potential regulatory functions. Since 

phosphotransferase activity of the kinase domain is required for TRPM7 to regulate 

intracellular Mg2+, TRPM7 was speculated to serve a dual role as both a Mg2+ channel 

and a Mg2+ sensor (Schmitz et al, 2004; Schmitz et al, 2003; Takezawa et al, 2004). 

However, truncation of TRPM7 or TRPM6 before the kinase domain either inactivates 

the channel (for TRPM7) or suppresses ion channel activation (for TRPM6), and 

therefore the role of the kinase domain is still unclear (Schlingmann et al, 2002; Schmitz 

et al, 2003). 

1.9.2 Mg2+-regulated transporters  

Since differential gene expression has been shown to be a major contributor in the 

conservation of Mg2+ in epithelial cells, one group has followed a strategy of identifying 

novel genes that show Mg2+-dependent expression (Goytain et al, 2007; Goytain & 

Quamme, 2005b; Goytain & Quamme, 2005c; Goytain & Quamme, 2005d). This 
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approach has identified several potential transporter genes, including MagT1 (Goytain & 

Quamme, 2005d), NIPA1 and NIPA2 (Goytain et al, 2007), MMgT1 and MMgT2 

(Goytain & Quamme, 2008), and ACDP2 (Goytain & Quamme, 2005a). 

Electrophysiological characterization of cell lines or oocytes heterologously expressing 

these proteins provided evidence for a role in Mg2+ transport. Although several promising 

candidate genes have been identified and characterized, in general, their role in Mg2+ 

homeostasis remains unclear. Some details on these proteins are listed below. 

The first of these proteins identified (MagT1) showed both Mg2+-regulated 

mRNA and protein expression (Goytain & Quamme, 2005d). The MagT1 protein is 

homologous to the yeast Ost3 and Ost6 proteins, which encode regulatory subunits of the 

endoplasmic reticulum oligosaccharyltransferase complex (Knauer & Lehle, 1999). 

Xenopus laevis oocytes expressing MagT1 protein exhibited a voltage dependent, highly 

selective Mg2+transport activity. The subcellular location of the protein was not 

determined, and its function remains unclear (Goytain & Quamme, 2005d).  

The NIPA1 and NIPA2 proteins were also identified as potential transporters via 

their Mg2+ regulated expression (Goytain et al, 2007; Goytain et al, 2008). Four members 

of the NIPA family (NIPA1-NIPA4) are present in mouse and human genomes. 

Previously, NIPA1 and NIPA2 were implicated in Prader-Willi syndrome, a complex 

developmental disorder that affects newborns (Butler, 1990; Chai et al, 2003). Functional 

characterization of NIPA1 by expression of mouse cRNA in Xenopus oocytes, and 

measurement of Mg2+-evoked currents revealed that Mg2+ influx was concentration-

dependent, saturable and reversible (Goytain et al, 2007). Both NIPA1 and NIPA2 are 

principally localized to the early endosome and the cell surface, suggesting that the 

proteins can translocate between these two locations. As yet, the link between the genetic 

disorders associated with NIPA gene mutations and Mg2+ homeostasis is unclear.  

Another apparent Mg2+ transporter, MMgT1, mediated Mg2+ transport when 

expressed in X. laevis oocytes (Goytain & Quamme, 2008). Two MMgT homologs are 

found in mouse, but only one in humans. An increase in the expression of both MMgT 

genes was observed in Mg2+ deficient conditions (Goytain & Quamme, 2008). When 

expressed in Xenopus oocytes, both MMgTs proteins drove saturable Mg2+ transport. The 

MMgT proteins are the first mammalian Mg2+ transporters to be localized to the Golgi 
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complex (Goytain & Quamme, 2008), but again, little is known of their physiological 

role. 

Mouse ACDP2 transcript was detected in kidney, brain, and heart, and its 

expression was found to upregulated under Mg2+ deficient conditions (Goytain & 

Quamme, 2005a). The ACDP proteins have homology to the CorC protein of S. 

typhimurium that functions as a Mg2+efflux protein (Gibson et al, 1991). When ACDP2 

was expressed in X. laevis oocytes, it generated a rheogenic, voltage-dependent and 

saturable Mg2+ uptake activity.  

The SLC (Solute carriers) proteins are the most recent to be identified as potential 

Mg2+ transporters, and may represent the best candidate transporters thus far identified. 

Three members of the SLC41 family include two domains that share 40% sequence 

homology with the integral membrane protein of the prokaryotic MgtE Mg2+ transporters 

(Wabakken et al, 2003). The SLC41A1 transcript was upregulated in the kidney, colon 

and heart of mice in response to Mg2+ deficiency (Goytain & Quamme, 2005b). 

Heterologous expression of mouse SLC41A1 cRNA in Xenopus oocytes evoked large 

Mg2+ currents (Goytain & Quamme, 2005b). When expressed in Xenopus oocytes, 

SLC41A1 was permeable to several divalent cations, suggesting that it may be a 

nonselective divalent cation transporter (Goytain & Quamme, 2005b). Although a second 

group failed to detect any large Mg2+-dependent currents when human SLC41A1 was 

overexpressed in HEK293 cells, the expression of hSLC41A1 in a corA mgtA mtgB 

mutant of S. enterica was found to complement the Mg2+ dependent growth-deficient 

phenotype of this strain, suggesting that hSLC41A1 can mediate Mg2+ uptake (Kolisek et 

al, 2008). Interestingly, these same researchers observed that the incubation of 

hSLC41A1 overexpressing HEK293 cells in Mg2+ free medium led to a significant 

decrease in the intracellular Mg2+ concentration, suggesting that SLC41A1 could mediate 

Mg2+ efflux (Kolisek et al, 2008). This report thus identified SLC41A1 as the first 

molecular candidate for a Mg2+ efflux system in eukaryotes (Kolisek et al, 2008).  

The closely related SLC41A2 protein also allowed transport of Mg2+ when 

heterologously expressed in Xenopus laevis oocytes (Goytain & Quamme, 2005b). Mg2+ 

uptake by mouse SLC41A2 was a saturable, voltage driven process, suggesting that this 

protein can function as a Mg2+ channel. In contrast to this report however, Mg2+-
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dependent inward currents were not detected in a TRPM7 knockout cell line expressing 

SLC41A2 (Sahni et al, 2007). However, use of the stable 26Mg2+ isotope to follow Mg2+ 

uptake revealed that expression of SLC41A2 did allow Mg2+ uptake, a conclusion that 

was supported by complementation of the growth defect exhibited by TRPM7 mutant 

cells in the absence of supplemental Mg2+ (Sahni et al, 2007).  

1.10  Regulation of Mg2+ transporter expression in eukaryotes 

Compared to bacterial Mg2+ transporters, much less is known about how Mg2+ 

transporter expression is regulated in eukaryotes. The expression of the yeast Alr1 protein 

was induced by Mg2+ deficiency (Graschopf et al, 2001). Semi-quantitative RT-PCR 

indicated that the ALR1 mRNA was strongly expressed in cells grown with 5 µM vs 1 

mM Mg2+, suggesting a role for transcriptional regulation in this process. Protein 

expression was also regulated, as the accumulation of Alr1 increased when yeast were 

cultured in deficient conditions (5 µM vs 1 mM Mg2+). This regulation was partly post-

translational, because transfer of Mg2+-deficient cells to replete conditions (1 or 10 mM 

Mg2+) decreased the stability of the Alr1 protein. The authors proposed that Mg2+ 

stimulated the ubiquitination of Alr1, which triggered rapid endocytosis and the transfer 

of Alr1 to the vacuole for degradation. This model was based on four observations: i) in 

cycloheximide-treated cells, Alr1 protein stability was substantially reduced after 

exposure to 10 mM Mg2+; ii) the end3 mutation, which inhibits endocytosis, (Raths et al, 

1993) reduced the rate of degradation; iii) the rsp5 mutation, which inhibits the activity 

of an E3 ubiquitin ligase necessary for the addition of ubiquitin (Ub) to membrane 

proteins (Hein et al, 1995), also inhibited degradation; and iv) the pep4 mutation, which 

inactivates vacuolar proteinases (Zubenko et al, 1983), caused Alr1 to accumulate in the 

vacuole.  

In vertebrates, Mg2+ deficiency increases the efficiency of Mg2+ conservation by 

the kidney, due to the increased activity of Mg2+ transport systems (de Rouffignac & 

Quamme, 1994). Adaptation to Mg2+ deficiency in cultured cells requires transcription, 

suggesting transporter activity is regulated at the level of gene expression (Dai & 

Quamme, 1991; Ritchie et al, 2001). As detailed above, the mRNA abundance of many 

candidate Mg2+ transporters and channels is upregulated by Mg2+ deficiency, including 
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SLC41A1 (Goytain & Quamme, 2005b), ACDP2 (Goytain & Quamme, 2005a) and 

MagT1 (Goytain & Quamme, 2005d), suggesting that these proteins may play a role in 

regulating the efficiency of Mg2+ conservation. At the cellular level, it is also reasonable 

to assume that the cytosolic concentration of Mg2+ ions must be maintained within a 

certain range. Many different processes depend on Mg2+ ions, and either an increase or 

decrease in Mg2+ availability could have a negative effect on these crucial processes. By 

analogy with other metal ion regulatory systems (and the model suggested for Alr1 

regulation), it may be that some transcriptional activator is responsible for sensing Mg2+ 

availability and adjusting the expression of various transporters in order to maintain 

cytosolic Mg2+ concentration. In addition, post-translational regulation of protein 

accumulation or transporter activity could play a role. As yet however, there is no clear 

understanding of how gene expression is regulated by Mg2+ availability, even in simple 

eukaryotes like yeast. 

1.11 Objectives of this research 

As of this report, four yeast homologs of the CorA protein have been 

characterized in detail (Alr1, Alr2, Mrs2 and Lpe10). All were found to contribute to 

Mg2+ homeostasis via their function in Mg2+ transport. The objective of this study is to 

determine the function of the fifth yeast CorA protein, Ykl064w (Mnr2). Preliminary 

studies of this protein suggested that it too participated in ion homeostasis, as inactivation 

of the MNR2 gene increased sensitivity to several toxic divalent cations, including Mn2+ 

(MacDiarmid, 1997). Although the high degree of homology between the Alr proteins 

and Mnr2 (34%) strongly suggested that these proteins perform similar functions, the 

previous study provided no specific evidence to implicate Mnr2 in Mg2+ transport 

(MacDiarmid, 1997). A major goal of my work was to test the hypothesis that Mnr2 is 

required for Mg2+ homeostasis. To do this, I focused on achieving the following goals: i) 

to determine the effect of inactivating the MNR2 gene on simple measures of Mg2+ 

homeostasis, such as the ability of yeast to tolerate conditions of low Mg2+ availability 

and to maintain cellular Mg2+ content; ii) to investigate the effect of inactivating various 

proteins important to Mg2+ homeostasis in tandem with Mnr2, to determine the degree to 

which these proteins overlapped in function; iii) to determine the location of Mnr2 in the 
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cell, and if associated with an organelle, to investigate its role in the function of that 

organelle; and iv) to perform simple biochemical assays to directly investigate the ion 

transport activity and substrate specificity of the Mnr2 protein. The results of these 

studies led me to conclude that the Mnr2 protein is a Mg2+ transporter or channel located 

in the vacuolar membrane, where it mediates the release of vacuolar Mg2+ stores under 

Mg2+-deficient conditions. The evidence for this model is described in Chapter 3. 

I also intended to investigate the biological basis for the metal sensitivity 

phenotypes previously reported to be associated with the inactivation of MNR2. Initially, 

I believed that these studies might provide information on the substrate specificity of the 

Mnr2 transporter. However, these studies eventually led me to investigate the effect of 

the mnr2 mutation on the expression and activity of another Mg2+ transporter, Alr1, and 

the relationship between these two proteins. The results of these investigations are 

detailed in Chapter 4. 
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Chapter 2 Materials and Methods 

2.1 Buffers, solutions and enzymes 

TE buffer  10 mM Tris-Cl (pH 7.5), 1 mM Na-EDTA. 
Chloroform/iso-amyl alcohol Chloroform:iso-amyl alcohol (24:1) 
Phenol Phenol was equilibrated in TE buffer with desired pH by 

extracting phenol three times with new buffer. The 
phenol was stored at 4°C protected from light. 

Phenol/chloroform Phenol:chloroform:iso-amyl alcohol (25:24:1) 
Zymolyase 20T Zymolyase 20T (Seikagaku, Tokyo) (110 U/ml) was 

dissolved in 50 mM potassium phosphate buffer (pH 
7.4) with 50% glycerol, and stored at -20°C.  

2.2 Bacterial growth media and antibiotics 

LB (Luria-Bertani) broth: 1% Bacto Tryptone, 0.5% Bacto yeast extract, 172 mM 
NaCl, pH 7.0. 

LB + Ampicillin: 1% Bacto Tryptone, 0.5% Bacto yeast extract, 172 mM 
NaCl, pH 7.0, 100 µg/ml Ampicillin. 

SOB medium: 2% Bacto Tryptone, 0.5% Bacto yeast extract, 10 mM 
NaCl, 2.5 mM KCl, 10 mM MgCl2, and 10 mM MgSO4 
(pH 7.0). 

2.3 Bacterial and yeast plasmid vectors 

All the plasmids in this study were constructed using homologous recombination 

in yeast (Hua et al, 1997; Ma et al, 1987). This method provides a reliable, accurate and 

versatile strategy to insert new DNA fragments in a yeast shuttle vector. Briefly, the 

target shuttle vector is linearized using a restriction enzyme (sometimes introducing a gap 

via double digestion), and combined with a PCR product that is amplified using a high 

fidelity DNA polymerase (EasyA, Stratagene) to reduce the possibility of PCR-induced 

mutations. The PCR product is generated using primers designed to include at least 30 

bases of homology to the region of the target plasmid. A yeast strain is then co-

transformed with the vector and PCR product to create conditions suitable for 

homologous recombination between the plasmid and the PCR product. Recombinant 

clones generated by gap repair of the plasmid were selected by complementation of 

auxotrophic marker genes in the yeast strain by the WT gene in the plasmid (commonly 

the URA3 gene). To verify correct construction of the plasmid, DNA was extracted from 

yeast clones and the plasmid was rescued by electroporation-mediated transformation of 
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E. coli. Plasmids were routinely subjected to restriction digestion and sequencing to 

verify correct construction.  

2.4 Oligonucleotides  

Oligonucleotide sequences were selected using the ApE sequence editing 

software and tested using Amplify 3X software. All oligonucleotides were obtained from 

Sigma-Genosys. 

Table 2.1 Oligonucleotides used in this study 

Name Sequence (5’-3’) Purpose 
MNR2-3'-N GGAACAGCTATGACCATGATTACGCCA

AGCTTACAAGATCTCGCCAAGGA 
YCpMNR2 construction 

MNR2-5'-N CACGACGTTGTAAAACGACGGCCAGTG
AATTCGCAAAACGAAGATGAAGA 

YCpMNR2 construction 

3' pFL38 
polylinker 

ACGACAGGTTTCCCGACT YCpALR1-HA construction 

5' pFL38 
polylinker 

CGGGCCTCTTCGCTATTA YCpALR1-HA construction 

1267 alr1-his3 ko AATATCCCAAACCACCACGCGATACTG
GAAACCACTTGCCACCTATCA 

Construction of palr::his3 in 
pYES2 

633 alr1-his3 ko TATGAATTATTCAGGGGAGGTGAGCCA
ACACTATTGCTTTGCTGTGGG 

Construction of palr::his3 in 
pYES2 
 

cit-Mnr2 3' TTCATCCTTTTGTGAGTTATCAGTGCT
ATGTTTGTACAATTCATCCATAC 

Construction of YCpMNR2-cit 

cit-Mnr2 5' ATTTCTGAAGAGGACTTGAATTCAAGG
CCTATGTCTAAAGGTGAAGAATT 

Construction of YCpcit-MNR2 

ALR1-lacZ-1 CCGCCTCTCCCCGCGCGTTGGCCGATT
CATTCCCGGAAAGGGGGAGGATGAAGA
GA 

Construction of YEpALR1-
lacZ 

ALR1-lacZ-2 ACGGCGGGATCGCAAGCTTGGCTGCAG
GTCGACGGATCCATGGTAAAATGCTTT
TACG 

Construction of YEpALR1-
lacZ 

5'MNR2 His5 KO CGACCAGATCGATTCCTGGGGCATGCT
GCATGGCTAGGGATAACAGGGTA 

Construction of pmnr2SpHIS5 

3'MNR2 His5 KO CCCGAATCTTCTCTTAGTATACATATA
TGCAGTTCGAGCTCGTTTAAACT 

Construction of pmnr2SpHIS5 

MNR2-3' GAATTCCTTGGTCAAGCGTAGTCTGGG
ACGTCGTATGGGTTTAAAACCCGAATC
TTCTCT 

Construction of YEpGmyc-
MNR2 

MNR2-5 ATTTCTGAAGAGGACTTGAATTCAAGG
CCTTGTCGACATAGCACTGATAACTCA
CAAAAG 

Construction of YEpGmyc-
MNR2 

MNR2-myc tag 
transfer 1 

TGAGAAGTGTAGAGAAGAAAAAGATTA
AAAATCGATTTAAAGCTATGGAG 

Construction of YCpmyc-
MNR2 

MNR2-myc tag 
transfer 2 

CTGGATGTGGATTTGGAATT Construction of YCpmyc-
MNR2 
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MNR2-kan 3' TGCAGCTGATGCGACTAA Generation of the mnr2::KANR 
PCR product 

MNR2-kan 5' TGTTCAGGGCATAAGCAG Generation of the mnr2::KANR 
PCR product 

forward vma1 kan 
amp 

AAATTGGGGACGGCGAAG Generation of the tfp1::KANR 
PCR product 

Reverse vma1 kan 
amp 

ACGCGCTCTCGATCAATG Generation of the tfp1::KANR 
PCR product 

5'-yfpamp (+myc) CTGAAGAGGACTTGAATTCAAGGCCTT
GTCGAGGATCCATGTCTAAAGGT 

Amplification of YFP from 
YEpGcit-Alr1 (construction of 
YCpCit-Alr1) 

Alr1 seq primer 
reverse 

ACCATCGTGTTAGCCAGTGA Amplification of YFP from 
YEpGcit-Alr1 
(construction of YCpCit-Alr1) 

2.5 Polymerase chain reaction (PCR) 

PCR performed for routine analytical purposes utilized Taq polymerase prepared 

in the laboratory (Pluthero, 1993). A 50 µl PCR reaction contained 20 mM Tris-HCl pH 

8.4, 50 mM KCl, 0.5 mM MgCl2, 0.2 mM of each dNTP, 1 µM of each primer, 1-2 units 

of Taq polymerase, and approximately 1 ng of plasmid or 100 ng of genomic DNA 

template. Reactions were carried out in a MyCycler thermal cycler (Bio-Rad). Reactions 

were set for a 30 second denaturing step at 95°C, a 30 second annealing step at the 

appropriate annealing temperature of the primers, and extension at 72°C for 1 min/Kb of 

the expected product.  

PCR products required for cloning were generated using either Easy-A High 

Fidelity DNA polymerase (Stratagene) or Platinum Taq DNA Polymerase High Fidelity 

(Invitrogen) according to the manufacturer’s instructions. For subsequent cloning 

procedures, PCR products were purified using a Wizard-SV Gel and PCR Clean up 

system (Promega) according to manufacturer’s instructions, or precipitated using 3 M 

sodium acetate and isopropanol as described in Ch. 2.13. 

2.6 Plasmid constructs 

Construction of each of the plasmids used in this work is described below. 

palr2TRP1: A genomic clone of the ALR2 gene in pBC KS- (Stratagene) (pA8Δ6, 

(MacDiarmid, 1997) was digested with BglII to excise part of the ALR2 coding sequence, 

and a 0.8 kb BglII fragment of pFL45-S containing the TRP1 marker was ligated into the 
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pBC KS- vector using ligase enzyme. A KpnI fragment of the new construct containing 

the alr2::TRP1 deletion allele was excised before yeast transformation.  

YEpALR1-lacZ: The 5’ intergenic region of ALR1 including the start codon was 

amplified from genomic DNA with the ALR1-lacZ-1 and ALR1-lacZ-2 primers. The 

PCR product was inserted directly 5’ of the lacZ ORF in the shuttle vector YEp353 via 

gap repair.  

palr1HIS3: The HIS3 gene was amplified from yeast genomic DNA via PCR with 

the oligonucleotides 1267 alr1-his3 ko and 633 alr1-his3 ko. The ALR1 ORF in 

YEpGALR1 was gapped by digestion with BstXI and EcoRI restriction enzymes, and the 

amplified HIS3 PCR product was inserted via gap repair. The palr1HIS3 insert was 

excised with BlpI and EagI prior to yeast transformation.  

YCpMNR2: A 4.2 kb fragment containing the coding sequence and 5' and 3' 

flanking regions of the MNR2 gene was amplified from genomic DNA of DY1457 using 

the primers MNR2-3'-N and MNR2-5'-N. The PCR product was inserted in the multiple 

cloning site of the pFL38 shuttle vector by gap repair.  

pmnr2SpHIS5: The SpHIS5 gene was amplified from the pKT211 plasmid using 

the primers 5'MNR2 His5 KO and 3'MNR2 His5 KO. The YCpMNR2 plasmid was 

linearized by BamHI digestion, and the PCR product was inserted in the MNR2 ORF via 

gap repair. To inactivate MNR2 in yeast, the insert of pmnr2SpHIS5 was excised by 

digestion with EcoRI and HindIII prior to yeast transformation.  

YEpGmyc-MNR2: This plasmid was based on pMYC-Zap11-880 (Bird et al, 

2000). The MNR2 ORF was amplified from genomic DNA via PCR with the 

oligonucleotides MNR2-3' and MNR2-5. The PCR product was inserted in pMYC-

Zap11-880 via gap repair, replacing the ZAP1 ORF with MNR2. The second codon of the 

MNR2 ORF is fused to five repeats of the myc epitope tag, and expression is driven by 

the UAS of the GAL1 promoter fused to a minimal CYC1 promoter.  

YCpmyc-MNR2: The MNR2 ORF including the five myc tags at the 5' end was 

amplified from YEpGmycMNR2 using the oligonucleotides MNR2-myc tag transfer 1 

and MNR2-myc tag transfer 2. YCpMNR2 was digested with NarI and AvrII, and the 

PCR product was inserted into the gap via recombination in yeast.  

YCpcit-MNR2: A monomeric variant of YFP (yEmCitrine) was amplified from 
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the pKT211 vector using the oligonucleotides Cit-Mnr2 3' and Cit-Mnr2 5'. The product 

was inserted between the five myc-epitope tags and the 5’ end of MNR2 ORF in the 

YCpmyc-MNR2 plasmid via gap repair. The resulting protein retains four myc tags 

preceding the YFP ORF at the N-terminal end. 

YCpcit-ALR1: This plasmid was constructed by Frank Donovan and Lauren 

Stein) The oligonucleotides 5'-yfpamp (+myc) and Alr1 seq primer reverse were used to 

amplify a PCR product containing a YFP gene (citrine variant) fused to a portion of the 

N-terminal region of ALR1. The template for this reaction was a GAL1-promoter driven 

version of ALR1 with an N-terminal Citrine tag (constructed by Abhinav Pandey). The 

PCR product was inserted at the N-terminal end of the YCp-myc-Alr1 plasmid 

(constructed by Phaik Har Lim) that had been linearized with SalI. Gap repair in yeast 

reconstituted a plasmid in which five myc tags and the YFP gene are inserted between the 

ALR1 promoter and the Alr1 CDS. 

Table 2.2 Plasmids used in this study 

Plasmid Marker/ 
Replication origin 

Description Reference 

pFL38 URA3/CEN Low copy shuttle vector (Bonneaud et al, 
1991) 

pFL44-S URA3/2µ High copy shuttle vector (Bonneaud et al, 
1991) 

pKT211 SpHIS5/none YFP and SpHIS5 cassette (Sheff & Thorn, 
2004) 

YCpDCP1myc URA3/CEN myc-tagged DCP1 gene 
in shuttle vector 

(Sean 
Houshmandi)  

YIpALR1-HA URA3/none ALR1 tagged with triple 
HA epitope at C-
terminus 

(Graschopf et al, 
2001) 

YCpALR1 URA3/CEN ALR1 genomic clone in 
pFL38 

(MacDiarmid & 
Gardner, 1998) 

YEp353 URA3/2µ Promoter-less lacZ gene  (Myers et al, 
1986) 

YCpZRC1HA URA3/CEN ZRC1 with C-terminal 
triple HA tag 

(MacDiarmid et 
al, 2002) 
 

pMCZ-Y URA3/2µ UPRE-CYC1-lacZ 
reporter  

(Kawahara et al, 
1997) 

pLGΔ312 URA3/2µ CYC1-lacZ reporter (Guarente et al, 
1984) 
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pHAC1i LEU2/CEN Genomic clone of HAC1 
with intron deleted 

(Ellis et al, 2004) 

YCpMNR2 URA3/CEN MNR2 genomic clone in 
pFL38 

This study  

YCpmyc-MNR2 URA3/CEN Mnr2-N-terminal 5xmyc 
fusion in pFL38 

This study 

YCpcit-MNR2 URA3/CEN N-terminal fusion of 
citrine to Mnr2  

This study 

YEpGmyc-MNR2 URA3/2µ MNR2 tagged with five 
myc tags at N-terminus 

This study 

YEpALR1-lacZ URA3/2µ ALR1 promoter fused to 
lacZ ORF  

This study 

palr2TRP1 TRP1/none TRP1 deletion allele of 
ALR2 

This study 

palr1HIS3 URA3, HIS3/2µ HIS3 deletion allele of 
ALR1  

This study 

YCpcit-ALR1 URA3/CEN 5xmyc-Citrine-Alr1 
behind ALR1 promoter 

(Frank Donovan, 
Lauren Stein) 

 

2.7 Bacterial transformation  

2.7.1 Preparation of electrocompetent cells 

The E. coli strain DH10βTM [F- mcrA Δ (mrr-hsdRMS-mcrBC) φ 80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara, leu) 7697 galU galK λ-rpsL nupG] was 

transformed by electroporation. To prepare competent cells, 25 ml of Luria-Bertani (LB) 

broth was inoculated with a single colony of DH10β, and incubated overnight at 37°C 

with agitation (260 rpm). Ten ml of the overnight culture was added to 1 L of pre-

warmed LB media + 2% glucose, and returned to 37°C for incubated with agitation until 

the culture reached an A600 value of 0.6 (approximately two hours). The cells were then 

quickly chilled on an ice water bath and kept chilled for the remainder of the procedure. 

The cells were collected by centrifugation for 10 min at 5000g in a pre-chilled rotor using 

a Sorvall RC5B Plus refrigerated centrifuge. The supernatant was discarded and the cell 

pellet was gently resuspended in 50 ml of chilled sterile Millipore water with further 

addition of 450 ml chilled Millipore water. Cells were collected as described above. Cells 

were washed twice with 200 ml sterile Millipore water, twice with 50 ml water, and twice 

with pre-chilled 10% glycerol. The cell pellet was suspended in 2 ml of 10% glycerol and 

100 µl aliquots of cells were distributed into 1.5 ml Eppendorf tubes. The cells were 
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quick-frozen on a dry ice-ethanol bath and transferred to -80°C freezer for storage. 

2.7.2 Electroporation of competent cells 

Frozen electrocompetent cells were thawed on ice, and 25 µl of cells were 

transferred to a chilled 1.5 ml tube. Purified plasmid DNA (10 pg-1 ng), or yeast genomic 

DNA (10 ng) was added to the cells, and the cells were immediately transferred to a pre-

chilled electroporation cuvette (gap width 0.1 cm), which was placed in a Model 2510 

Electroporator (Eppendorf). After application of a voltage pulse of 1.8 kV to the cuvette, 

it was rapidly removed from the electroporator and 1 ml SOC media was added to the 

cells. The cells were transferred to a 15 ml tube and incubated at 37°C for 1 hour with 

agitation. Aliquots of the transformed cells were plated on the appropriate selective 

media and incubated overnight at 37°C.   

2.8 DNA isolation and purification  

2.8.1 Routine plasmid purification from E. coli (Method 1) 

For routine preparation of plasmid DNA, I used a modification of a previously 

described protocol (Sambrook, 1989). LB+Amp (5 ml) was inoculated with a single 

colony of transformed E. coli cells and incubated overnight at 37°C with agitation (260 

rpm). The cells were collected by centrifugation (5,000g for 10 min), and the cell pellet 

was resuspended in 200 µl of Solution I (25 mM Tris-Cl pH 8.0, 10 mM EDTA, 50 mM 

glucose). To lyse the cells, 400 µl of Solution II was added to the suspension, mixed 

gently, and incubated at room temperature for exact 5 min until clear suspension was 

observed. The lysate was neutralized by adding 300 µl of pre-chilled Solution III (3 M 

potassium acetate, adjusted to pH 4.8 with glacial acetic acid) and mixed until a white 

precipitate was formed. The tubes were incubated on ice for 20 min, and the white 

precipitate was separated from the mixture by centrifugation (12,000g for 10 min at 4°C). 

The supernatant was carefully removed and transferred to a new 1.5 ml Eppendorf tube. 

The plasmid DNA was precipitated from the supernatant by adding 600 µl of 

isopropanol, followed by incubation at room temperature for 10 min. The precipitated 

plasmid DNA was collected by centrifugation (12,000g for 10 min). The supernatant was 

discarded and pellet was washed with 1 ml of 80% ethanol by inverting the tube several 
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times. The pellet was dried in a Speed-Vac for 10 min, then redissolved in 300 µl of TE 

buffer. To degrade residual RNA, the preparation was treated with 2 µl of 1mg/ml RNase 

A and incubated at 65°C for 15 min. The mixture was extracted with 300 µl of 

phenol/chloroform, and the aqueous layer containing the plasmid DNA was recovered. 

Plasmid DNA was precipitated by addition of 1/10th volume of 3 M sodium acetate and 

one volume of isopropanol. The mixture was incubated at room temperature for 15 min 

and the plasmid DNA was collected by centrifugation (12,000g for 5 min at room 

temperature). The pellet was washed with cold 80% ethanol, dried, redissolved in 50 µl 

sterile Millipore water, and stored at -20°C. When a higher yield of plasmid DNA was 

required, the protocol was scaled up appropriately. 

2.8.2 Plasmid purification for DNA sequencing (Method 2) 

Plasmid DNA intended for inclusion in DNA sequencing reactions was purified 

using Wizard Plus SV Miniprep or Midiprep kits (Promega), following the 

manufacturer’s instructions.   

2.9 Restriction endonuclease digestion 

Plasmid DNA was digested with endonuclease enzymes by incubating the DNA 

with enzyme in the appropriate New England Biolabs buffer in the conditions specified 

by the manufacturer (usually 5 U of enzyme per µg DNA for 3 hours at 37°C).  

2.10 Yeast growth media 

2.10.1 Complex yeast media 

YP media was used to grow routine yeast culture. YP contained 1% yeast extract 

(Fisher), 2% peptone (Fisher) and 2% glucose (YPD) or 3% glycerol (YPGly) as the 

carbon source. For routine culture of alr1 mutant strains, 500 mM MgCl2 was added to 

YPD. For plates, YPD was gelled by addition of 1.5% agar. For preparation of high Mg2+ 

YPD plates, YPD + agar was prepared at 2X strength, autoclaved, and mixed with an 

equal volume of sterile 1M MgCl2 solution 

To select for yeast strains expressing the KANR marker, a sterile stock solution of 

Geneticin (Invitrogen) was added to YPD media to a final concentration of 150 mg/L. 
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2.10.2 Synthetic media 

2.10.2.1 Synthetic minimal media 

Yeast was grown in synthetic dextrose (SD) media in order to select for plasmids 

or genotype auxotrophic markers. SC media contained 6.7% of "Yeast Nitrogen Base 

with ammonium sulfate without Amino Acids" (YNB) (Q-Biogene), a carbon source (2% 

glucose or galactose, or 3% glycerol), 0.01% adenine, 0.01% uracil, 0.01% tryptophan, 

0.01% leucine, 0.01% lysine, 0.01% histidine, and 0.01% methionine. Nutrients were 

omitted as appropriate for marker selection. To grow alr1 mutant strains, SC medium 

was supplemented with 500 mM MgCl2. To select for uracil prototrophic strains, a 

simplified synthetic medium was routinely used (SC-ura). This medium contained 6.7% 

YNB, 0.01% Casamino acids (Difco), 0.01% adenine, and 0.01% tryptophan. As a 

carbon source, the medium contained 2% glucose or 2% galactose, or 3% glycerol.  

2.10.2.2 Low Magnesium Medium (LMM) 

In experiments requiring low Mg2+ concentrations, LMM was routinely used. 

LMM contained 0.628% "YNB w/o Amino Acids and Divalent Cations" (Q-Biogene), 5 

mM CaCl2, 5 µM CuCl2, 5 µM FeSO4, 5 µM MnCl2 and, 5 µM ZnCl2. Amino acids, 

bases, and carbon source were added as required for standard SD. To avoid leaching of 

Mg2+ from glass bottles into LMM, stock solutions and the medium itself were prepared 

and autoclaved in polycarbonate flasks that were washed using a metal-free acidic 

detergent (Citronox, Alconox). AAS analysis of LMM media revealed no detectable 

contamination by Mg2+. 

An alternative method used for LMM preparation from individual components is 

described below. Three stock solutions were prepared: 10X major salts without MgCl2 

(400 mM NH4SO3, 50 mM KCl, 20 mM NaCl, 1 mM CaCl2, 1 mM KH2PO4), 1000X 

trace elements (0.2 mM CuSO4, 2.5 mM MnSO4, 10 mM H3BO3, 0.5 mM KI, 1 mM 

Na2MoO4, 1.5 mM ZnSO4, 1 mM FeCl3), and 1000X vitamins (0.0002% Folic Acid, 

0.04% Niacin, 0.0002% Biotin, 0.04% Calcium pantothenate, 0.02% Riboflavin, 0.02% 

p-Aminobenzoic acid, 0.04% Pyridoxine Hydrochloride, 0.04% Thiamine 

hydrochloride). All solutions were autoclaved except for the 1000X vitamin stock, which 

was filter sterilized to avoid damage to heat sensitive components, then stored at 4°C. 
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The final medium was assembled from stock solutions, sterile water, and other nutrients 

and carbon sources added from sterile stocks as described above. MgCl2 was added to the 

LMM to the concentration required for the experiment. 

2.10.2.3 Low sulfate medium  

In order to prevent precipitation of calcium ions when added in high concentration 

to synthetic media, a low sulfate medium was used to make high Ca2+ plates. The 

medium contained 1.7% "YNB w/o ammonium sulfate, dextrose, and zinc" (Q-Biogene), 

2 µM ZnCl2, and 75 mM NH4Cl. Carbon source, amino acids, and nucleotide solutions 

were added as per the normal requirement.  

2.11 Yeast strains used in this study  

Saccharomyces cerevisiae strains used or generated for this study are detailed in 

Table 2.3.  

Table 2.3 Yeast strains  

Strain Relevant 
genotype 

Full genotype Genetic 
background 

Source/ 
Reference 

DY1456 Wild-type MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 

W303 (Dix et al, 
1994) 

DY1457 Wild-type MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  

W303 (Zhao & 
Eide, 1997) 

DY1514 Wild-type MATa/a ade2/+ ade6/+ can1-100oc/- 
his3-11,15/- leu2-3,112/- trp1-1/- 
ura3-52/- 

W303 David Eide  

BY4743 Wild-type MATa/a his3-Δ1/- leu2Δ0/-
met15Δ0/+ lys2Δ0/+ ura3Δ0/-  

S288C (Winzeler et 
al, 1999) 

BY4741 Wild-type MATa his3-Δ leu2Δ0 
met15Δ0  lys2Δ0 ura3Δ0  

S288C (Winzeler et 
al, 1999) 

YKL064w mnr2Δ MATa/α his3Δ1/- leu2Δ0/- met15Δ0/+ 
lys2Δ0/+ ura3Δ0/- mnr2::KANR/- 

S288C (Winzeler et 
al, 1999) 

tfp1Δ tfp1Δ MATa/α his3Δ1/- leu2Δ0/- 
met15Δ0/+ lys2Δ0/+ ura3Δ0/- 
tfp1::KANR/- 

S288C (Winzeler et 
al, 1999) 

DBY747 Wild-type MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289  

Unknown (Wiesenberger 
et al, 1992)  

mrs2Δ-2 mrs2Δ MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289 mrs2::SpHIS5 

Unknown (Bui et al, 
1999) 
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lpe10Δ-1 lpe10Δ MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289 lpe10::URA3 

Unknown (Gregan et al, 
2001a) 

NP103 mnr2Δ MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289 mnr2::KANR 

Unknown This study 

NP107 mnr2Δ 
lpe10Δ 

MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289 lpe10::URA3 mnr2::KANR  

Unknown This Study 

NP112 mnr2Δ 
mrs2Δ 

MATa his3-Δ1 leu2-3,112 ura3-52 
trp1-289 mrs2::SpHIS5  
mnr2::KANR 

Unknown This study 

NP4 mnr2Δ MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
mnr2::KANR  

W303 This study 

NP5 Mnr2Δ MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
mnr2::KANR 

W303 This study 

NP10 alr1Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
alr1::HIS3 

W303 This study 

NP26 alr2Δ MATa can1-100oc his3-11,15 leu2-
3,112 trp1-1 ura3-52  
alr2::TRP1 

W303 This study 

NP27 alr2Δ MATa can1-100oc his3-11,15 leu2-
3,112 trp1-1 ura3-52  
alr2::TRP1 

W303 This study 

NP14 alr1Δ 
alr2Δ 

MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
alr1::HIS3 alr2::TRP1 

W303 This study 

NP18 alr1Δ 
mnr2Δ 

MATa ade6 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
alr1::HIS3 mnr2::KANR 

W303 This study 

NP36 alr2Δ 
mnr2Δ 

MATa can1-100oc his3-11,15 leu2-
3,112 trp1-1 ura3-52  
alr2::TRP1 mnr2::KANR 

W303 This study 

NP20 alr1Δ 
alr2Δ 
mnr2Δ 

MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
alr1::HIS3 alr2::TRP1 mnr2::KANR 

W303 This study 

NP174 Wild-type MATα ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 

W303 This study 

NP180 mnr2Δ MATα ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
mnr2::SpHIS5 

W303 This study 

NP193 tfp1Δ MATα ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
tfp1::KANR 

W303 This study 
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NP201 mnr2Δ 
tfp1Δ 

MATα ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  
mnr2::SpHIS5 tfp1::KANR 

W303 This study 

CEY4 hac1Δ MATα ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 hac1:: 
KANR 

W303 (Ellis et al, 
2004) 

NP59 Wild-type MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52  

W303 This study 

NP61 Wild-type MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 

W303 This study 

NP63 mnr2Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
mnr2::SpHIS5 

W303 This study 

NP64 mnr2Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
mnr2::SpHIS5 

W303 This study 

NP68 hac1Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR 

W303 This study 

NP69 hac1Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR 

W303 This study 

NP70 hac1Δ 
mnr2Δ 

MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR mnr2::SpHIS5 

W303 This study 

NP71 hac1Δ 
mnr2Δ 

MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR mnr2::SpHIS5 

W303 This study 

NP88 hac1Δ 
mnr2Δ 

MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR mnr2::SpHIS5 

W303 This study 

NP89 hac1Δ 
mnr2Δ 

MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
hac1::KANR mnr2::SpHIS5 

W303 This study 

NP94 mnr2Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
mnr2::SpHIS5 

W303 This study 

NP97 mnr2Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
mnr2::SpHIS5 

W303 This study 

NP99 mnr2Δ MATa ade2 can1-100oc his3-11,15 
leu2-3,112 trp1-1 ura3-52 
mnr2::SpHIS5 

W303 This study 
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2.11.1 Construction of yeast mutant strains  

To construct NP4, the mnr2::KANR locus and flanking DNA was amplified from 

the genome of a diploid mnr2 mutant strain (ykl064w) (Winzeler et al, 1999), using the 

primers MNR2-kan 3' and MNR2-kan 5'. DY1457 was transformed with the PCR product 

and geneticin selection applied to isolate a haploid mnr2Δ strain. Deletion of the 

endogenous MNR2 location was confirmed by PCR. To construct the NP5, NP10, NP27, 

NP14, NP36, and NP20 strains, a diploid WT strain (DY1514) was sequentially 

transformed with the mnr2::KANR PCR product and the inserts of the palr1HIS3 and 

palr2TRP1 plasmids, with selection for the appropriate marker at each stage. Correct 

deletion of the three genes in the diploid was verified using PCR. The diploid was then 

transformed with a genomic clone of ALR1 to complement the alr1 mutation and allow 

more efficient sporulation. After sporulation, haploid clones were isolated by the random 

spore method described in Ch. 2.13. To genotype the spores, strains were replica plated 

to selective medium (SC-histidine, or SC-tryptophan, or YPD+geneticin). Strains 

carrying the alr1 mutation were then cured of the ALR1 plasmid by growth in YPD+500 

Mg2+ medium (to allow plasmid segregation and loss).  

The NP174, NP180, NP193, and NP201 strains were constructed as follows. The 

insert of pmnr2SpHis5 was used to transform the diploid WT strain DY1514 and HIS+ 

strains selected. The mnr2 deletion was verified by PCR and the resulting strain was then 

transformed with an tfp1::KANR PCR product, which was amplified from genomic DNA 

of YDL185W Open Genetics deletion strain (Winzeler et al, 1999) using the primers 

'forward vma1 kan amp' and 'reverse vma1 kan amp'. The double heterozygous mutant 

strain was sporulated, and clones with all possible combinations of the tfp1 and mnr2 

mutations were identified by genotyping on selective media.  

The NP103, NP107 and NP112 strains were constructed from the DBY747 (WT), 

lpe10Δ-1 and mrs2Δ-2 strains obtained for this study from the laboratory of Rudolf 

Schweyen. To generate double mutants, these haploid strains were transformed with a 

mnr2::KANR PCR product, generated as described above. Deletion of the mnr2 gene was 

verified using PCR.  
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2.12 Yeast transformation 

Yeast strains were transformed with plasmids using a modification of a published 

protocol (Schiestl & Gietz, 1989). A 5 ml culture of a yeast strain in YPD media was 

incubated overnight at 30°C with agitation (250 rpm). Fresh YPD medium (50 ml) was 

inoculated with the saturated 5 ml overnight culture and incubated at 30°C in a shaker 

until the culture reached log phase (A600 of 0.5-0.7). The cells were collected by 

centrifugation (2,000g for 5 min in a Beckman GPR centrifuge) and washed with 50 ml 

sterile Millipore water. The cells were collected as described above, and the pellet was 

resuspended in 1mL of TE/LiOAc buffer (0.1 M LiOAc, 0.01 M Tris-Cl pH 7.5, 1 mM 

EDTA) and transferred to a 1.5 ml sterile Eppendorf tube. The cells were centrifuged at 

13,000 rpm for 1 min in a tabletop centrifuge and the supernatant was discarded. The 

pellet was resuspended in 1/3rd volume of TE/LiOAc buffer, and 50 µl aliquots of the cell 

suspension were distributed into sterile 1.5 ml Eppendorf tubes. Salmon sperm carrier 

DNA (2 mg/ml) concentration was boiled for 10 min and immediately cooled on ice. Ten 

µl of carrier DNA was added to each aliquot of yeast cells and immediately mixed to 

prevent gelling of the DNA. Plasmid DNA (1-2 µl) was added to the cells, followed by 

300 µl of PEG/TE/LiOAc buffer (40% Polyethylene glycol, 0.1 M Lithium Acetate, 0.01 

M Tris-Cl pH 7.5, 1 mM EDTA). The mixture was incubated at 30°C for 30 min, 

followed by a heat shock at 42°C for 15 min. The cells were collected by centrifugation 

at low speed (2,000g for 1 min) and the supernatant was removed. The cells were washed 

once with 1 ml of Millipore water, resuspended in 0.5 ml of Millipore water, and 200 µl 

aliquots plated on selective media. Plates were incubated at 30°C for 3-4 days.  

2.13 Genomic and plasmid DNA isolation from yeast 

To isolate yeast genomic or plasmid DNA, a 5 ml overnight culture was grown to 

saturation in synthetic medium (for plasmid isolation, the appropriate selection was 

applied). Cells were collected by centrifugation at 3,000g for 5 min, washed with 5 ml 

water, resuspended in 1 ml water, and transferred to a 1.5 ml Eppendorf tube. After 

centrifugation, the pellet was resuspended in 200 µl of genomic DNA buffer (2% Triton 

X-100, 1% SDS, 0.1 M NaCl, 1 mM EDTA, 1 mM Tris, pH 8.0). Phenol/chloroform 

(200 µl) and 0.3 g of glass beads (425-600 mesh size, Sigma) were added, and the cells 
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broken by vortexing for 10 min at 4°C. An aliquot of TE buffer (200 µl) was added, and 

the mixture centrifuged at 12,000g for 5 min to separate the phases. The aqueous layer 

was transferred to a new 1.5 ml Eppendorf tube, and the DNA was precipitated by 

addition of a 1/10th volume of 3 M sodium acetate and one volume isopropanol. The 

mixture was incubated at room temperature for at least 1 hour, then centrifuged to collect 

the DNA (12,000g for 10 min). The DNA pellet was washed twice with 1 ml 70% 

ethanol, dried in a Speed-Vac for 10 min, and redissolved in 200 µl TE buffer. One µg of 

RNAse A was added, and the DNA incubated at 65°C for 15 min to degrade residual 

RNA. After extraction with an equal volume of phenol/chloroform, the aqueous phase 

was transferred to a new 1.5 ml Eppendorf tube, and the DNA was precipitated by 

addition of a 1/10th volume 3 M sodium acetate and 1 V isopropanol. The DNA pellet 

was washed once with 1 ml of 70% ethanol, dried, and redissolved in 200 µl of sterile 

Millipore water.  

2.14 Sporulation and spore isolation 

Strains of the W303 genetic background were sporulated by the following 

method. YPD medium (5 ml) was inoculated with a single colony of a diploid strain and 

the culture grown to saturation at 30°C with agitation (260 rpm). Cells were collected by 

centrifugation (2,000g for 5 min) and washed twice with sterile Millipore water. 5 ml of 

sporulation medium (1% yeast extract, 10% Potassium acetate, 0.05% glucose, 0.01% 

adenine, 0.01% uracil, 0.005% arginine, 0.005% histidine, 0.005% tryptophan, 0.005% 

leucine, 0.005% lysine, 0.005% methionine, 0.005% phenylalanine) was inoculated with 

100 µl of the washed culture and the cells incubated at 30°C with agitation (260 rpm) for 

3-7 days. Sporulation was verified by examining a sample of the culture with a light 

microscope.  

To sporulate strains of the S288C genetic background, a diploid strain was 

patched to a fresh YPD plate and the plate incubated for one day at 30°C. The patches 

were replica plated to a freshly made GNA presporulation plate (5% glucose, 3% Difco 

nutrient broth, 1% Difco yeast extract, 2% Bacto agar), which was incubated for 1 day at 

30°C. The process was repeated once with a fresh GNA presporulation plate. A sample of 

cells was taken from a patch and used to inoculate 2 ml of supplemented liquid 
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sporulation medium (1% potassium acetate, 0.005% zinc acetate, 0.002% uracil, 0.004% 

histidine, 0.004% leucine). The suspension was incubated on a roller wheel for 5-10 days 

at room temperature, and then for 3-5 days at 30°C. Sporulation was checked with a light 

microscope.  

To isolate purified spores, I used a procedure that took advantage of the 

hydrophobic nature of the ascospore cell wall to separate spores from unsporulated 

mother cells and other debris. A sporulated culture was incubated in 200 µl softening 

buffer (10 mM DTT, 100 mM Tris-SO4, pH 9.4) for 10 min at 30°C with agitation (260 

rpm). The cells were collected by centrifugation (2,000g for 5 min) and resuspended in 2 

ml of spheroplasting buffer (2.1 M sorbitol, 10 mM potassium phosphate, pH 7.2) 

containing 10 mM DTT and 0.5% glucose. Zymolyase 20T (Seikagaku, Tokyo) was 

added at a concentration of 1U per A600 unit of the sporulated cells, and the mixture 

incubated at 30°C for 2 hours with agitation (260 rpm). The spores were collected by 

centrifugation (2,000g for 10 min) and the supernatant was discarded. The spores were 

resuspended in 200 µl sterile Millipore water, to which 0.1 g of glass beads were added, 

and the mixture incubated at 30°C for 1 hour with agitation (260 rpm). One ml of sterile 

Millipore water was then added to the suspension and the sample was vortexed at high 

speed for 2 min. A sample of the cell suspension was examined under a microscope to 

confirm that the spores were released from the tetrads. The glass beads were allowed to 

settle, and the spore suspension transferred to a new 1.5 ml Eppendorf tube, collected by 

centrifugation (5,000g for 5 min), and resuspended in 100 µl sterile Millipore water. The 

spore suspension was then vortexed at high speed for 2 min to allow the spores to stick to 

the walls of the tube. The liquid was removed, and the tube (with attached spores) was 

washed three times with 1 ml sterile Millipore water. To release the spores from the walls 

of the tube, 1 ml of sterile 0.01% NP40 was added to the tube, and the tube was sonicated 

for 1 min in a sonicator bath. The spore suspension was diluted appropriately in 0.01% 

NP-40 before aliquots were plated on YPD plates and incubated for 3 days to isolate 

spore clones.  

2.15 β-Galactosidase activity assay 

To measure the β-galactosidase activity of strains transformed with lacZ reporter 
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genes, 5 ml overnight cultures were grown in 15 ml polypropylene tubes. The cells were 

collected by centrifugation and washed once with ice-cold Z-buffer (0.06 M Na2HPO4, 

0.04 M NaH2PO4, 0.01 M KCl, 0.001 M MgSO4, pH 7.0). The cell pellet was 

resuspended in 5 ml of Z-buffer and placed on ice. To determine cell density, 50 µl of a 

cell sample was added to 40 µl of H2O in a microtiter plate, and A595 was recorded with 

an ELx800 Universal Microplate reader. To permeabilize the cells, chloroform (250 µl) 

and 0.1% SDS (250 µl) was added to each of the tubes. The cells were vortexed for 5 

seconds and stored on ice until use. For the assay, 20 µl of ONPG (4 mg/ml) was added 

in triplicate to the well of a conical-well polypropylene plate, and the plate placed at 

30°C. To start the assay, 100 µl of cell suspension was added to each well at 10-30 

seconds intervals. After appropriate color development was observed, the reactions were 

stopped sequentially by adding 60 µl of 1M Na2CO3 to the samples in the original order 

of addition. The plate was centrifuged to separate the chloroform layer from the cell 

suspension (2,000g for 5 min), and 90 µl of each sample was transferred to a new 

polystyrene 96-well plate. The optical density of each sample was recorded with the A415 

filter of an ELx800 Universal Microplate reader. β-galactosidase units were determined 

using the formula for Miller units (MU) = A415/volume of cells (ml) x time of assay (min) 

x A595 x 50.  

2.16 Measurement of Mg2+ content by Atomic Absorption Spectroscopy 
(AAS) 

Yeast cultures (5 ml) were grown to log phase in SC or YPD media and collected 

by centrifugation. The cells were washed twice with chilled 10 mM EDTA to remove 

external Mg2+, and twice with chilled Millipore water to remove EDTA. The final pellet 

was resuspended in 1 ml chilled Millipore water and cell density (A600) was recorded. A 1 

ml sample was transferred to a 13 ml glass tube followed by the addition of 1 ml of 

concentrated nitric acid and the sample was incubated for 16 hours at 95°C. Two ml of 

1X LaCl3 buffer (10 mM LaCl3, 240 mM HCl ) was added to each sample as a “releasing 

agent”, to prevent phosphate ions from interfering with the estimation of Mg2+ 

concentration. The final volume of the sample was adjusted to 4 ml with Millipore water. 

Samples were diluted 5 or 10-fold with 0.5X LaCl3 buffer before measurement of Mg2+ 
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concentration with a GBC 904AA AAS instrument. The instrument was calibrated using 

a set of MgCl2 standard solutions in 0.5 x LaCl3 buffer (0-60 µM MgCl2).  

To convert Mg2+ concentration values from AAS to mass of Mg2+ per cell, the 

concentration was multiplied by the dilution factor and total volume of the digested cells 

to obtain the total Mg2+ content of the sample, which was then divided by the number of 

cells in the suspension. A595 values for each cell sample were converted into cell number 

using a standard curve previously generated by comparing numbers of viable cells to cell 

density measurements.  

2.17 Measurement of yeast elemental content using ICP-MS 

The cells were processed for ICP-MS analysis using a previously described 

protocol (Salt, 2004), with some modifications. Aliquots of LMM were inoculated with 

yeast and grown at 30°C with agitation (260 rpm) until they reached an A595 of 0.5-1.0. A 

2.5 ml aliquot of each culture was filtered through a nitrocellulose filter (0.45 µm, 

Millipore, Billerica, MA, USA) under vacuum. The filter was washed twice with 5 ml of 

wash buffer (20 mM sodium citrate, 1 mM EDTA, pH 4.0) and once with 5 ml sterile 

Millipore water, then dried under vacuum. The filter was transferred to a 15 ml glass tube 

followed by the addition of 2.5 ml of concentrated HNO3 and the filter was digested for 4 

hours at 118° C. Each sample was transferred to a polypropylene tube and diluted to 16 

ml total volume with water. Elemental content was analyzed on a Thermo Elemental PQ 

Excell ICP-MS as previously described (Salt, 2004). The elemental content of the 

membrane was subtracted from the final values obtained (membrane-only controls were 

performed in parallel). 

2.18 Sucrose gradient fractionation of yeast organelles 

A modified protocol from one described previously (Perzov et al, 2000) was used 

to separate yeast organelles via differences in their buoyant density. Cultures for cell 

fractionation were grown in SC-ura media (500 ml), collected by centrifugation, washed 

twice with water, and resuspended in 10 ml of sorbitol buffer (10 mM potassium 

phosphate buffer pH 7.4, 1.2 M sorbitol) containing 10 mM DTT (added fresh). The 

density (A600) of the cells was measured and Zymolyase 20T (Seikagaku, Tokyo) was 
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added at a ratio of 1U/A600 unit of cells. Cells were incubated for 2 hours at 30°C with 

gentle agitation (100 rpm), and washed twice with ice-cold sorbitol buffer (25 ml) by 

gentle centrifugation (200g for 5 min). To prevent rupture, the spheroplast pellet was 

gently dispersed in 5 ml of buffer before addition of more buffer to wash the cells. After 

the last wash, residual buffer was removed with a pipette and the cells were resuspended 

in 2 ml of ice-cold cell lysis buffer (10 mM Tris-Cl, pH 7.6, 2 mM MgCl2, 10% sucrose, 

10 mM DTT). The suspension was homogenized using 20 strokes in a pre-chilled 7 ml 

Dounce homogenizer. The extent of lysis was checked using a light microscope. If lysis 

was incomplete, a 1/3rd volume of glass beads was added to the suspension and the 

mixture vortexed at high speed for 30 seconds. The lysate was centrifuged at low speed at 

4°C (200g for 3 min) to pellet unbroken cells and nuclei, and the supernatant containing 

the organelles was transferred to a new tube.  

A continuous 10 ml 20% - 60% sucrose gradient was prepared by using a gradient 

maker to mix equal volumes of 20% sucrose, 10 mM Tris-Cl pH 7.6, 10 mM DTT, and 

60% sucrose in the same buffer. One ml of the organelle suspension was layered on the 

top of the sucrose gradient and centrifuged at 95,000g for 2 hours at 4°C in the A629 

swingout rotor of an OTD70B Ultracentrifuge (Sorvall). One ml fractions of the gradient 

were collected drip-wise by puncturing the bottom of the tube. If the protein in the 

fractions was overly dilute, protein was precipitated using the trichloroacetic acid (TCA) 

method. A 20% solution of ice-cold TCA was added to the fraction and incubated on ice 

for 2-3 hours. Protein was collected by high speed centrifugation (16,000g for 30 min). 

To enable collection of protein precipitates from the heavier fractions of the gradient, 

these were diluted 3-fold with gradient buffer (no sucrose) before centrifugation. The 

protein pellet was washed twice with cold acetone (200 µl) to remove residual TCA, and 

dried in a speed-vac. Proteins were redissolved by adding 100 µl of protein buffer (Tris-

base, 3% SDS, 1 mM PMSF) followed by 5 min treatment at 100°C.  

2.19 Protein extraction and immunological detection 

2.19.1 Protein extraction using TCA 

To isolate protein, 5 ml of overnight culture was grown to the appropriate density 

(A600 of 0.5-1.0) in the appropriate media. The cells were collected by centrifugation 
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(2,000g for 5 min), washed once with 5 ml of 1 mM EDTA, and once with 1 ml of 1 mM 

EDTA (in a 1.5 ml tube). The cells were resuspended in 400 µl of ice-cold TCA 

extraction buffer (10% TCA, 20 mM Tris pH 8.0, 50 mM ammonium acetate, 2 mM 

EDTA, and 2 mM PMSF, added fresh from a 100 mM stock in ethanol). Three g of glass 

beads (Sigma) were added to the suspension and the tube was vortexed at high speed for 

10 min at 4°C in a cold room. The glass beads were allowed to settle and the supernatant 

was collected in a new 1.5 ml Eppendorf tube. An aliquot of TCA extraction buffer (200 

µl) was added to the glass beads, mixed and removed to pool with the original extract.  

The broken cells were collected by centrifugation (12,000g for 5 min), and the 

pellet of broken cells and protein was washed twice with 1 ml acetone to remove excess 

TCA, and dried in a Speed-Vac. The pellet was then resuspended in SDS-protein buffer 

(100 mM Tris-base, 3% SDS, 1 mM PMSF) and boiled for 5 min to dissolve the protein. 

The suspension was centrifuged at high speed (12,000g for 1 min) to pellet insoluble 

debris, and the supernatant (protein solution) was removed and stored at -80°C.  

Protein concentration was measured by using a DC protein assay kit (Bio-Rad) 

according to the manufacturer’s instructions. Colorimetric reactions were quantified 

using an ELX800 Universal Microplate Reader at a wavelength of 750 nm. A standard 

curve was constructed using BSA to calculate protein concentration. 

2.19.2 SDS-Polyacrylamide Gel Electrophoresis (PAGE)  

SDS-PAGE was used to separate proteins based on their molecular weight. A 

resolving gel (375 mM Tris-Cl, pH 8.8, 0.1% SDS, 5-10% acrylamide mix [29.2 

acrylamide:0.8 bis-acrylamide], 0.1% ammonium persulfate, and 0.1% TEMED) was 

poured, overlain with butanol and allowed to set. The butanol was removed and the 

resolving gel was overlain with a 1 cm layer of stacking gel (125 mM Tris-Cl, pH 6.8, 

4.5% acrylamide mix, 0.1% SDS, 0.1% ammonium persulfate, and 0.1% TEMED), and a 

comb inserted. Electrophoresis was performed at 200 volts for approximately 25-35 min 

in a Mini-PROTEAN III gel rig (Bio-Rad), using Tris-glycine running buffer (25 mM 

Tris-base, 20 mM glycine, 0.1% SDS). Protein samples were boiled in loading buffer (25 

mM Tris-Cl, pH 6.8, 2% SDS, 5% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol 

blue) for 5 min prior to loading. Depending on application, 30-50 µg of protein was 



Pisat, Nilambari P. 2009, UMSL, 

 

p.46 

loaded per lane. If required, the gel was stained with Coomassie Brilliant Blue R250 

(Sigma) to visualize protein bands. The gel was immersed in an aqueous solution of 

0.025% Coomassie blue, heated for one minute in a microwave and allowed to cool. The 

gel was destained by heating for 1 min in destaining solution (40% methanol, 7% acetic 

acid), then allowing to destain for 30 min to 3 hours. A Kimwipe was included in the 

destain solution to accelerate this process. 

2.19.3 Electroblotting and immunodetection 

For the immunodetection of specific proteins, SDS-PAGE gels were blotted to 

Hybond-N-nitrocellulose membranes (Amersham Biosciences) by electrophoretic wet 

transfer in a Mini-Trans-Blot Electrophoretic Transfer Cell (Bio-Rad). A gel and 

membrane sandwich was assembled and inserted into an electrode module. The module 

was immersed in a transfer cell containing pre-chilled Western transfer buffer (50 mM 

Tris-base, 380 mM Glycine, 0.1% SDS, and 20% methanol). The blotting cell was placed 

on ice to prevent overheating, and transfer was performed for 3-4 hours at 63 volts. After 

disassembly, the nitrocellulose membrane was rinsed three times with 10 ml TBST buffer 

(50 mM Tris-Cl pH 8.0, 150 mM NaCl, 0.05% Tween 20) and rocked gently in 10 ml 

blocking buffer (TBST+1% fat free dried milk) overnight to block non-specific protein 

binding sites. The membrane was washed in 10 ml TBST (once for 20 min and twice for 

5 min). The membrane was then incubated with appropriate concentration of primary 

antibody for 2 hours at room temperature with rocking. Excess primary antibody was 

removed by washing the blot three times for 10 min each with 10 ml TBST. The 

membrane was incubated with 10 ml of horseradish peroxidase-conjugated secondary 

antibody in blocking buffer (usually a 1/5000 dilution) for 2 hours at room temperature. 

The membrane was then washed three times with TBST buffer as previously described to 

remove non-specifically bound antibodies. Horseradish peroxidase activity was detected 

using the ECL (Enhanced Chemiluminescence; Pierce) detection system according to the 

manufacturer’s instructions. After incubation in ECL solution, the membrane was placed 

between two sheets of cling-film, and light emission was detected by exposure to BioMax 

scientific imaging film (Kodak) for 5 seconds to 30 min depending on signal intensity. 

Exposed film was immersed in GBX developer (Kodak) for 5 min with gentle agitation 
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until bands appeared, washed for 5 min under running tap water for 5 min, then fixed for 

5 min with agitation in GBX fixer (Kodak). The film was then washed for 10 min under 

running tap water and allowed to air-dry. 

2.19.4 Indirect immunofluorescence 

Indirect immunofluorescence was used to detect the location of epitope-tagged 

proteins in whole yeast cells. Cells were grown in 25 ml of SC-ura media to an A600 of 

approximately 1.0, collected by centrifugation, and washed twice with 10 ml of 1x PBS 

(140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM NaH2PO4). Cells were fixed by 

treatment with (3%) formaldehyde for 2 hours at 30°C with agitation (260 rpm). The cells 

were collected by centrifugation, washed twice with ice-cold Solution A (100 mM 

KHPO4, pH 7.0, 1.2 M sorbitol) and resuspended in 2 ml of Solution A containing 10 

mM DTT. To remove the cell wall, Zymolyase 20 T enzyme was added (2 U/A600 unit of 

cells), and the cells incubated at 30°C for 2 hours with gentle agitation (100 rpm). The 

cells were collected by centrifugation (200g for 5 min), washed twice with 10 ml of 

Solution A, resuspended in cold methanol (chilled to -20°C) and stored at -20°C for one 

hour to render the cells permeable to antibodies. The cells were then collected by 

centrifugation, washed twice with 5 ml cold PBS, and resuspended in 100 µl cold PBS. 

The wells of microscope slides (Fluorescent Antibody Rite-on, Fisher # 3032) were pre-

treated with Poly-L-lysine (PLL) to bind cells. To prepare the slides, each well was 

treated with 40 µl of 0.1% PLL (Sigma P8920) for 10 min. The excess was removed, 

leaving a thin layer that was allowed to air-dry. The slides were washed with Millipore 

water and the excess PLL was removed by gently scrubbing with a Kimwipe. The slides 

were allowed to air-dry before use. To adhere the cells, a 40 µl aliquot of the cell 

suspension was applied to a well of the slide, and the slide was left on a wet Kimwipe 

inside a Petri plate for 1 hour at 4°C. The slides were then rinsed with 1X PBS to remove 

unbound cells.  

To detect the antigen, slides were covered with blocking buffer (1X PBS, 5% 

non-fat dried milk, 0.1% Tween-20) and incubated overnight at 4°C. Each well was filled 

with 20 µλ of primary antibody in blocking buffer and the antibody allowed to react at 

room temperature for 1 hour. The slides were given four 10-min washes with 1X PBS/1% 



Pisat, Nilambari P. 2009, UMSL, 

 

p.48 

Tween-20 with gentle agitation in a slide bath followed by incubation with appropriate 

fluorescently-labeled secondary antibody for one hour. The PBS/Tween 20 washes were 

repeated, and the wells were sealed with one drop (20 µl) of Mowiol solution and a cover 

slip (Mowiol was prepared by adding 2.4 g Mowiol [Calbiochem] to 6 g glycerol, 12 mM 

0.2 M Tris-Cl, pH 8.5, and 6 ml H2O and heating until dissolved; 1 ml aliquots of 

Mowiol were stored at -20°C). Slides were allowed to harden overnight at 4°C. Cells 

were viewed with a Zeiss Axioscope fluorescence microscope and images captured using 

the associated software. Image overlays were performed using Photoshop CS (Adobe). 
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Chapter 3 Role of Mnr2 in ion homeostasis 

3.1 Introduction 

The YKL064w reading frame (later designated as MNR2 for manganese 

resistance) was first identified during sequencing of yeast chromosome XI (Rasmussen, 

1994). Mnr2 is the fifth member of the CorA family in the yeast genome, and it shares 

approximately 34% protein sequence homology with Alr1 (MacDiarmid & Gardner, 

1998). However, unlike the alr1 mutation, there was no obvious growth defect associated 

with the mnr2 mutation, indicating that this gene is not essential in "normal" conditions 

(MacDiarmid, 1997). This observation suggested that the ALR and MNR2 genes might 

play distinct and non-overlapping roles in yeast. Further support for this hypothesis 

comes from a phylogenetic analysis of the CorA family, which indicated that a group of 

fungal Mnr2-like sequences cluster in a distinct branch of the family (Knoop et al, 2005). 

This chapter describes several observations that provide support for this model of related 

but distinct functions for the Alr1 and Mnr2 proteins. 

3.2 Effect of the mnr2 mutation on tolerance to biologically important 
metal ions 

Preliminary experiments suggested that Mnr2 is involved in divalent cation 

transport. The overexpression or inactivation of the MNR2 gene altered the sensitivity of 

yeast to divalent cations such as Ca2+, Mn2+, and Zn2+ (MacDiarmid, 1997). The previous 

study used an mnr2 mutant strain constructed in the S288C genetic background, which 

due to inefficient sporulation, is less suitable for genetic studies than the W303 

background. For this reason, I decided to determine if these observations could be 

duplicated using an mnr2 mutant strain constructed in the W303 background. To 

construct an mnr2 mutant strain, an inactivated allele of MNR2 (mnr2::KANR) was 

amplified from a commercially available diploid knockout mutant (Winzeler et al, 1999) 

and used to transform the haploid strain DY1457 (which is derived from W303). 

Complete deletion of the MNR2 coding sequence in this strain was verified using PCR 

(data not shown). To determine if the new mnr2 mutant was sensitive to divalent cations, 



Pisat, Nilambari P. 2009, UMSL, 

 

p.50 

I assayed growth on plates containing synthetic medium with a range of added metal ions 

(Figure 3.1). Serial dilutions of WT and mnr2 cultures were applied to the plates and 

incubated for three days to determine the effect of the metals on growth. Using this assay, 

I verified that the mnr2 mutation in the W303 genetic background conferred a strong 

sensitivity to Ca2+, Mn2+, and Zn2+ ions, and a slight sensitivity to Co2+ (Figure 3.1). The 

above result suggested that the mnr2 strain might accumulate higher intracellular levels 

of divalent cations, which might in turn inhibit 

growth. To test this hypothesis, I directly 

determined the elemental content of mnr2 and 

WT strains using inductively coupled plasma 

mass spectrometry (ICP-MS). The results of these 

investigations are shown in Figure 3.2. When 

supplied with a "standard" Mg2+ concentration (1 

mM), WT and mnr2 strains displayed relatively 

large increases in the content of Mg2+ and P, but 

little difference in the content of other elements 

measured (only those elements which could be 

reliably quantified are included in the data set 

shown).  

Since the major effect on elemental 

content seen in the mnr2 mutant was an increase 

in Mg2+ content, I determined the effect of 

reducing the Mg2+ concentration of the medium 

on this phenotype. Surprisingly, growth in Mg2+-

deficient conditions (1 µM Mg2+) exacerbated the 

difference in Mg2+ content between WT and mnr2 

(Figure 3.2). In addition, there was a larger difference in the content of P, K+, Ca2+, 

Mn2+, and Zn2+ when strains were grown under Mg2+ deficient conditions. Under both 

Mg2+-deficient and replete conditions however, the primary effect of the mnr2 mutation 

was an increase in Mg2+ content, implicating Mnr2 in the regulation of Mg2+ homeostasis.  

 

Figure 3.1 Divalent cation sensitivity 
of mnr2 mutant strains. WT (DY1457) 
and mnr2 strains were grown to 
saturation in SC media. The cultures 
were serially diluted 5-fold and aliquots of 
each dilution were applied to SC medium 
without any additional metals, SC media 
with Mn2+, Co2+, Zn2+ included to the 
indicated concentrations, and low sulfate 
SC medium with 500 mM added Ca2+. 
Plates were incubated at 30°C for 3 days 
before photography. 
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3.3 Effect of mnr2 mutation on growth and Mg2+ content 

To characterize the effect of the mnr2 mutation on Mg2+ homeostasis in more 

detail, I measured the growth and intracellular Mg2+ content of mnr2 and WT strains 

cultured in Low Magnesium containing Medium (LMM) containing a range of Mg2+ 

concentrations, from severely deficient to replete.  If Mnr2 played a role in Mg2+ 

homeostasis, the mnr2 mutation might be associated with a growth defect under Mg2+-

deficient conditions, as was observed for alr1 mutant strains. After 16 hours growth, the 

mnr2 strain showed a 

small but reproducible 

growth defect under 

Mg2+-deficient 

conditions (1-30 µM) 

(Figure 3.3A). The mnr2 

mutation reduced both 

the initial growth rate 

(Figure 3.3A, inset 

graph) and the final cell 

density achieved. This 

data implicated Mnr2 in 

Mg2+ homeostasis under 

deficient conditions. I 

then examined the effect 

of the mnr2 mutation on 

Mg2+ content under these conditions. As previously observed in Figure 3.1, compared to 

the WT, the mnr2 strain showed an increase in Mg2+ content under deficient conditions 

(1-30 µM) (Figure 3.3B). This difference was most pronounced under extreme Mg2+-

deficiency (the difference was approximately 4 fold in 1 µM Mg2+). Together, these 

results confirm that Mnr2 plays a role in Mg2+ homeostasis. The effect of the mnr2 

mutation contrasts with that of the alr1 mutation. While both mutations caused degrees of 

Mg2+-dependent growth, they had the opposite effect on Mg2+ accumulation (Graschopf 

et al, 2001; MacDiarmid & Gardner, 1998). These observations suggested that although 

 

Figure 3.2 Effect of the mnr2 mutation on content of biologically 
important elements. WT (DY1457) and mnr2 (NP4) cultures were 
grown in LMM containing either 1 µM or 1 mM media at 30°C and 
were assayed to determine the elemental content using inductively 
coupled plasma mass spectrometry (ICP-MS). Error bars indicate +/- 1 
SEM (three independent experiments). 
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both the ALR1 and MNR2 genes are required for Mg2+ homeostasis, they perform distinct 

functions.  

3.4 Effect of the mnr2 mutation on Mg2+ uptake 

The higher intracellular Mg2+ content observed in the mnr2 strain suggested that 

the rate of Mg2+ uptake might be elevated as a consequence of this mutation. To test this 

hypothesis, WT and mnr2 strains were grown in relatively Mg2+-deficient conditions 

(LMM + 30 µM Mg2+) to deplete intracellular stores of Mg2+. When WT cells are 

depleted of Mg2+ in this way, then resupplied with excess Mg2+, they accumulate Mg2+ 

until their normal content is restored (Graschopf et al, 2001; Lee & Gardner, 2006). 

When the same procedure was used to compare Mg2+ uptake by a WT and mnr2 mutant 

strain, the initial Mg2+ content of the mnr2 strain was twice as high as the WT  (Figure 

3.3C). When the mnr2 mutant was resupplied with Mg2+, the initial rate of Mg2+ 

accumulation was lower than observed for the WT. Thus, the high intracellular Mg2+ 

content in the mnr2 strain cannot be solely attributed to an increase in the rate of Mg2+ 

uptake (Figure 3.3C).  

 

Figure 3.3 Mnr2 plays a role in Mg2+ homeostasis. (A) WT (DY1457) and mnr2 (NP4) cultures 
were inoculated to a starting A595 of 0.01 in LMM containing a range of Mg2+ concentration. The 
cultures were grown for 16 hours at 30°C and the cell density was recorded. Data points are the 
mean of three independent replicates +/- 1 SEM. Inset graph shows growth rate of WT (DY1457) 
and mnr2 (NP4) strains grown in LMM containing 3 µM Mg2+. (B) Aliquots of LMM were inoculated 
with WT (DY1457) and mnr2 (NP4) mutant strains, cultures grown for 16 h, and total cellular 
magnesium content determined using AAS. Data points are the mean of three independent 
replicates +/- 1 SEM. (C) WT (DY1457) and mnr2 (NP4) cultures were grown to mid-log phase in 
LMM containing 30 µM Mg2+. At zero time, 1 mM Mg2+ was added to initiate uptake, after which time 
aliquots of cells were collected on nitrocellulose membranes to monitor the change in Mg2+ content. 
Cell-associated Mg2+ was determined using AAS. Error bars equal +/-1 SEM (four independent 
experiments). 
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3.5 Models for Mnr2 function 

The growth defect seen in the mnr2 strain under Mg2+ deficient conditions could 

be explained by at least two models. First, the high intracellular Mg2+ concentration of 

the mnr2 mutant might lead to Mg2+ toxicity. However, this explanation seems 

unreasonable, as mnr2 and WT strains had a similar level of intracellular Mg2+ when 

grown with a high external Mg2+ concentration, but the mnr2 mutant did not exhibit a 

growth defect under these conditions (Figure 3.3A). A second possible explanation is 

that under Mg2+-limiting conditions (< 30 µM Mg2+), the mnr2 mutant has a defect in 

cytosolic Mg2+ homeostasis, i.e. that it cannot maintain the minimum level of Mg2+ 

required for the function of this compartment. If so, it is possible that the higher Mg2+ 

content of the mnr2 mutant in Mg2+ deficient conditions is a consequence of this strain 

being unable to redistribute Mg2+ from an intracellular store to the cytosol. If this model 

is correct, it predicts that Mnr2 is located in the membrane of an intracellular Mg2+ 

storage compartment, and functions to release Mg2+ from this organelle. The mnr2 

mutation would prevent the release of Mg2+ from this store upon the transition to 

deficient conditions, reducing the cytosolic Mg2+ concentration and resulting in a growth 

defect.  

The latter model attributes the high intracellular Mg2+ content of mnr2 mutants to 

Mg2+ trapped within an intracellular storage compartment. This model hypothesizes that 

WT yeast grown in replete conditions contain a significant intracellular store of Mg2+, 

which can be used to support growth in Mg2+-deficient conditions. If this is the case, 

when Mg2+-replete WT cells are transferred to Mg2+-free medium, growth of the cells 

should correspond with a decrease in the intracellular Mg2+ content, as the internal store 

is depleted. In contrast, WT cells that are already Mg2+-deficient should show little 

growth in Mg2+-free medium, and their intracellular Mg2+ content should be stable.  

 To test these predictions, WT and mnr2 strains were grown in Mg2+-replete 

medium (LMM + 200 mM Mg2+) to force Mg2+ accumulation and generate "loaded" 

cells, or a medium with a lower Mg2+ content (LMM + 30 µM Mg2+) to generate 

"unloaded" cells. Figure 3.3B illustrates that WT yeast grown in deficient conditions (< 

30 µM Mg2+) contained approximately 20 nmol Mg2+/106 cells, which probably 

corresponds to the minimum amount required for viability. For this reason, it seemed 
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reasonable to assume that cells supplied with 30 µM Mg2+ would not accumulate 

substantial intracellular Mg2+ stores (and could be considered "unloaded" cells). Cultures 

of loaded and unloaded cells prepared in this way were washed free of extracellular 

Mg2+, transferred to LMM supplemented with EDTA (to chelate trace quantities of 

Mg2+), and incubated for up to 24 hours. At intervals during this period, aliquots of cells 

were taken to monitor the use of stores via measurement of total Mg2+ content.  

The results show that in Mg2+-free conditions, WT cells loaded with Mg2+ grew 

significantly faster than unloaded cells (Figure 3.4A). After 24 hr incubation, cell density 

of the loaded cells increased 2.75-fold, compared to 1.8-fold for the unloaded cells. At 

the start of the experiment, the Mg2+ content of the loaded cells was more than 2-fold 

higher than the unloaded cells, indicating that the pretreatment protocol produced the 

expected difference in Mg2+ content (Figure 3.4B). In both WT cultures, Mg2+ content 

decreased with growth, but the loaded cells showed a faster rate of decrease. These 

observations were consistent with previous reports (Beeler et al, 1997) that intracellular 

Mg2+ stores were used to sustain growth in the absence of an external supply. 

I then determined the effect of the mnr2 mutation on the utilization of intracellular 

Mg2+. The Mg2+ content of both loaded and unloaded cells of the mnr2 strain was 

substantially higher than the equivalent WT cells at the start of the experiment (Figure 

 

Figure 3.4 Intracellular Mg2+ content supports growth in Mg2+-deficient conditions. WT (DY1457) 
and mnr2 (NP4) were grown to mid-log phase in LMM containing 200 mM or 30 µM Mg2+, to produce 
loaded and unloaded cells respectively. The cultures were washed twice with 10 mM EDTA and 
Millipore water to remove extracellular Mg2+, then transferred to LMM containing 1 mM EDTA, and 
incubated for 24 hours at 30°C. Aliquots were taken at indicated times and samples were used to 
determine A595 (A) and total cellular Mg2+ content using AAS (B). Error bars equal +/- 1 SEM (three 
independent experiments). (C) At indicated time intervals, aliquots were taken from WT and mnr2 
unloaded cells during growth in LMM containing 1 mM EDTA. The samples were washed with Millipore 
water to remove EDTA, serially diluted and spread on YPD media plates. The plates were incubated 
for 3 days at 30°C before counting colonies. The results from one experiment are shown. 



Pisat, Nilambari P. 2009, UMSL, 

 

p.55 

3.4B). Nevertheless, this higher Mg2+ content did not translate into a faster growth after 

transfer to Mg2+-free medium: both loaded and unloaded mnr2 did not grow under these 

conditions. In addition, there was little change in the Mg2+ content of the mnr2 cells 

during the experiment. After 10 hours of growth, a smaller absolute decrease in Mg2+ 

content was observed for the L and UL mnr2 cells than for the UL WT cells.  

Overall the data shown in Figure 3.4 suggests that the mnr2 mutant is unable to 

utilize intracellular Mg2+ to support growth. In fact, the data indicates that the difference 

in the Mg2+ content of WT and mnr2 strains after growth in deficient conditions appears 

to be a consequence of the mutant cells retaining the majority of their initial Mg2+ 

content, rather than utilizing it to sustain growth. An alternative explanation is that the 

elevated Mg2+ content reflects an improved ability of the mnr2 mutant to obtain Mg2+ 

from the environment under deficient conditions. My results do not support this 

interpretation however, because this effect was observed using a medium that was 

depleted of trace quantities of Mg2+ by the addition of EDTA.  

One possible inconsistency between this data and the above model is that, while 

unloaded mnr2 cells showed a decrease in intracellular Mg2+ content similar to that seen 

for the WT unloaded cells, the unloaded WT culture still achieved a significantly higher 

rate of growth than unloaded mnr2 cells. If the decrease in Mg2+ content observed in the 

WT during this time was due to the redistribution of intracellular stores, then why did the 

mnr2 culture not display growth comparable to WT? One possible explanation for the 

apparent contradiction might be that the viability of the unloaded mnr2 cells decreased 

during this experiment, with a consequent release of Mg2+ from the dead cells. To test 

this hypothesis, aliquots of unloaded WT and mnr2 cells were plated on YPD medium to 

determine cell viability. Because only one experiment was performed, the data was 

somewhat variable, but overall the unloaded mnr2 culture showed a small decrease in 

viable cell density, while the WT showed a small increase (Figure 3.4C). Hence, a 

decrease in viability may indeed explain the small decrease in Mg2+ content of the 

unloaded mnr2 cells observed during this experiment.  

3.6 Determination of Mnr2 subcellular location  

If Mnr2 were a transporter responsible for regulating vacuolar Mg2+ storage, it is 
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likely that this protein would be located in the vacuolar membrane. To test this 

prediction, I modified a plasmid containing the MNR2 ORF under the control of the 

endogenous promoter, adding sequences that would enable detection of the protein by 

Western blotting or fluorescence microscopy. The N-terminal end of the MNR2 ORF was 

fused either to six repeats of the myc-epitope tag, or the fluorescent protein citrine, a 

variant of YFP (Griesbeck et al, 2001; 

Zacharias et al, 2002) (see Ch. 2.6 for 

details of plasmid construction). 

These modified versions of Mnr2 can 

be considered to be functional if they 

complement the slow growth and 

high intracellular Mg2+ content 

phenotypes of mnr2 mutant strains 

grown under Mg2+ deficient 

conditions. To test the function of 

these modified proteins, the two 

constructs, an untagged MNR2 

construct (YCpMNR2, a positive 

control) and an empty vector (pFL38, 

a negative control), were used to 

transform an mnr2 deletion mutant. 

Growth and Mg2+ content of these 

strains were determined after culture 

in Mg2+-deficient conditions. The 

mnr2 strain with the empty vector 

grew little under these conditions, but 

the same mutant transformed with the 

YCpMNR2 (untagged Mnr2), YCpmyc-MNR2 (myc-tagged), or YCpcit-MNR2 (YFP-

tagged) constructs displayed a similar level of robust growth (Figure 3.5A). Expression 

of the tagged versions of Mnr2 also reduced intracellular Mg2+ content to a level similar 

to that observed for the complemented strain (Figure 3.5B). These results indicate that 

 

Figure 3.5 Modification of the N-terminus did not 
affect Mnr2 function. mnr2 (NP4) was transformed 
with either a low copy vector (pFL38), untagged MNR2 
(YCpMNR2), myc-tagged MNR2 (YCpmyc-MNR2), or 
citrine-tagged MNR2 (YCpcit-MNR2) as indicated. 
Strains were grown in LMM-ura with the indicated 
concentration of Mg2+ for 16 hours, and growth (A) or 
total cellular Mg2+ content (B) were determined. Data 
points are the average of two independent experiments. 
(C) Detection of myc-Mnr2 by Western blotting. 
DY1457 transformed with YCpmyc-MNR2 was grown in 
LMM-ura containing the indicated concentrations of 
Mg2+. Total protein was extracted and separated using 
SDS-PAGE. myc-Mnr2, Tfp1 and Dcp1-myc were 
detected by immunoblotting. Protein extracted from WT 
(DY1457) cells transformed with untagged MNR2 was 
included as a negative control, and protein from cells 
expressing a myc-tagged de-capping protein (Dcp1-
myc) was included as a positive control.  
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the addition of sequences to the N-terminal end of the Mnr2 protein does not disrupt its 

normal function, at least in the case of the myc and citrine tags. In contrast, a construct in 

which three repeats of the HA tag were fused to the C-terminal end of Mnr2 was not 

functional, indicating that the C-terminal end is sensitive to modification (data not 

shown). 

Since the myc-Mnr2 construct was primarily constructed in order to identify 

Mnr2 using Western blotting, I wanted to determine if myc-Mnr2 was detectable using 

this method. In addition, I wanted to examine the effect of Mg2+ supply on Mnr2 protein 

accumulation to determine if it was regulated, as previously reported for the Alr1 protein 

(Graschopf et al, 2001). Mg2+-dependent expression of Mnr2 would be an interesting 

finding for two reasons. First, it would provide further evidence for a role of Mnr2 in 

Mg2+ homeostasis, and second, it would suggest optimal conditions for the growth of 

yeast in order to maximize Mnr2 expression (information that may, for example, facilitate 

the detection of Mnr2 in subsequent experiments).  

To perform this experiment, a WT strain expressing myc-Mnr2 was grown over a 

range of Mg2+ concentrations. Total protein was extracted from the cells and separated by 

SDS-PAGE, then blotted to nitrocellulose. As negative and positive controls, I included 

protein extracted from a strain that did not express myc-Mnr2, and protein from a strain 

expressing another myc-tagged protein, Dcp1 (Sean Houshmandi, unpublished data). The 

myc-Mnr2 protein was detected by using an anti-myc antibody to probe the Western blot, 

and an anti-Tfp1 antibody was also included to detect this protein as a control for equal 

lane loading. As shown in Figure 3.5C, a band was visible in the lane loaded with 

protein from the strain expressing myc-Mnr2, but not in the negative control lane. This 

protein had an apparent molecular weight of approximately 116 kDa, similar to the 

predicted molecular weight for myc-Mnr2 (120 kDa). In protein from cells grown in 

Mg2+-deficient conditions, another band appeared with a slightly slower mobility. This 

lower-mobility band may represent a phosphorylated version of Mnr2, or a product of 

some other post-translational modification. A comparison of the total signal of these two 

bands over a range of Mg2+ concentrations indicated that there was no appreciable effect 

of Mg2+ supply on Mnr2 accumulation. Thus, this experiment indicated that, unlike Alr1, 

Mnr2 expression is not regulated by Mg2+ concentration. These experiments also 
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confirmed that the addition of myc-epitope tags allowed detection of the Mnr2 protein in 

total protein extracts of yeast cells. 

3.7 Determination of Mnr2 location using cell fractionation 

To determine the subcellular location of Mnr2, I used two independent 

techniques. The first method was sucrose gradient cell fractionation, which involves 

separating yeast organelles via differences in their buoyant density (Perzov et al, 2000). 

To perform these 

experiments, a WT strain 

transformed with YCpmyc-

MNR2 was cultured in 

standard synthetic medium, 

then processed to extract 

organelles as described in 

Materials and Methods (see 

Ch. 2.18 for details). The 

organelles were loaded on 

a 20-60% sucrose density 

gradient and subjected to 

ultracentrifugation. One ml 

fractions of the gradient 

were collected, and a 20 µl 

sample of each was 

separated using SDS-PAGE and blotted to nitrocellulose membrane. The myc-Mnr2 

protein and known organelle-associated marker proteins were detected using specific 

primary antibodies.  

Sucrose gradient fractionation separates light organelles such as vacuoles to the 

top (light) fractions, while the heavier organelles, such as mitochondria, endoplasmic 

reticulum (ER), and plasma membrane are distributed in the heavy fractions. In the 

sample data Figure 3.6, myc-Mnr2 was distributed primarily in the top fractions similar 

to the vacuolar marker, Tfp1. This observation indicates that the majority of Mnr2 is 

 

Figure 3.6 myc-Mnr2 co-fractionated with the vacuolar 
membrane. WT (DY1457) expressing myc-Mnr2 was grown in SC-
ura containing 4 mM MgCl2 and spheroplasts generated. The cell 
lysate was fractionated on a continuous 20-60% sucrose density 
gradient, and 1 ml fractions were collected from the bottom of the 
tube. Gradient fractions 1-10 (heavy-light) were separated by SDS-
PAGE  (7.5% acrylamide) and subjected to immunoblotting to detect 
myc-Mnr2 and markers for the indicated organelles (PVC = 
prevacuolar compartment, ER = endoplasmic reticulum, PM = 
plasma membrane). Protein extracted from a WT strain (DY1457) 
transformed with vector alone (pFL38) was included as a negative 
control for antibody specificity (-ve). One spurious cross-reacting 
band was observed with the myc antibody in the vector-only lane, 
and was also observed in lanes 3 and 4 (indicated with *). 
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associated with the vacuoles. A small amount of the Mnr2 protein (approximately 20%) 

appears to be located in the heavier fractions of the gradient, where its distribution 

overlapped with that of markers for the pre-vacuolar compartment (PVC), mitochondria, 

and ER. This signal may represent a fraction of the protein that is in transit through the 

secretory pathway to the vacuolar compartment, or it may be an artifact of poor 

separation. As expected, protein extracted from the control strain (-ve) showed no signal 

for myc-Mnr2, confirming the specificity of the anti-myc antibody (previously noted in 

Figure 3.5C). In summary, this data indicates that the bulk of the Mnr2 protein co-

fractionated with the vacuolar membrane, consistent with a role in the function of this 

compartment.  

3.8 Determination of Mnr2 location using epifluorescence microscopy 

Due to the apparent overlap of some of the myc-Mnr2 protein with ER, 

mitochondrial, and PVC markers, I used a second, independent technique of 

epifluorescence microscopy to verify the location of Mnr2. I also wanted to determine if 

extracellular Mg2+ concentration had any effect on the Mnr2 location, and to determine if 

Mnr2 is present in the vacuole membrane under Mg2+-deficient conditions (as expected if 

it was responsible for remobilizing vacuolar stores). To detect YFP-tagged Mnr2, a 

diploid strain (BY4743) was transformed with the YCpcit-Mnr2 construct (an N-terminal 

fusion of YFP to Mnr2). The citrine variant of yellow fluorescent protein (YFP) was 

chosen because Mnr2 expression is relatively low, and citrine has an excellent 

signal/noise ratio when expressed in yeast (Sheff & Thorn, 2004). To mark the location 

of the vacuolar membrane, I used the lipophilic styryl dye FM4-64. In yeast, FM4-64 is 

transported from the plasma membrane to yeast vacuoles by an endocytic process (Vida 

& Emr, 1995). FM4-64 and YFP fluorescence can be distinguished using different filters, 

allowing these markers to be detected in the same cell. To verify the specificity of the 

microscope filters, a diploid strain transformed with untagged Mnr2 and labeled with 

FM4-64 was also examined. 

The results shown in Figure 3.7 revealed that the cells expressing cit-Mnr2 

showed a signal around the periphery of the vacuole, as identified by DIC optics and 

FM4-64 staining. Merging the FM4-64 and YFP images revealed excellent 
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correspondence between the two signals. Due to fragmentation of the vacuole in Mg2+ 

deficient cells, the morphology of the vacuole was more distinct in replete cells compared 

with deficient cells, but in deficient cells the FM4-64 signal again corresponded exactly 

with the YFP signal. Control cells expressing untagged Mnr2 showed low levels of 

diffuse background autofluorescence, but no obvious vacuolar membrane signal. Despite 

the relatively low signal intensity of the YFP-tagged Mnr2, the brighter FM4-64 signal 

did not "bleed-through" to 

the YFP channel (see the 

merged image of 

control/high Mg2+ cells), 

indicates that the 

microscope filters separate 

these signals. 

This data confirms 

that in both Mg2+-replete 

and deficient cells, Mnr2 

is primarily located on the 

vacuolar membrane 

consistent with a function 

in regulating the release of 

Mg2+ from the vacuole. 

However, it remains 

possible that a very small 

amount of Mnr2 is present 

in other cellular locations 

(such as the ER). Later in this work, I describe further experiments undertaken to 

investigate this possibility (Ch. 3.12) 

3.9 Genetic evidence for a role of Mnr2 in vacuole function 

Biochemical studies have suggested that a vacuolar Mg2+/H+ exchanger is 

responsible for transporting Mg2+ into vacuoles (Borrelly et al, 2001). Proton transport to 

 

Figure 3.7 cit-Mnr2 was located in the vacuolar membrane. WT 
(DY1457) cells were transformed with either YCpcit-MNR2 or vector 
alone (untagged control). Cultures were grown for six hours in LMM-
ura containing either 1 µM (low Mg2+) or 1 mM Mg2+ (high Mg2+). An 
aliquot of each culture was incubated with 2 µM FM-64 dye for 15 
min, washed once with fresh media and incubated for 30 minutes at 
30°C before microscopy. DIC = differential interference contrast, YFP 
= yellow fluorescent protein.  
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the vacuole is dependent on V-ATPase activity (Forgac, 1999). Therefore, V-ATPase 

activity should be required for Mg2+ storage in vacuoles, and also for the expression of 

the mnr2 Mg2+ hyperaccumulation phenotype. In the absence of V-ATPase activity, I 

expected that the effect of the mnr2 mutation would be diminished or even eliminated. To 

test this prediction, I examined the effect of combining the tfp1 and mnr2 mutations. The 

Tfp1 protein is an essential V-ATPase subunit, and loss of this protein eliminates V-

ATPase activity (Hirata et al, 1990). As shown in Figure 3.8A, an mnr2 strain grown in 

Mg2+ deficient conditions had a high intracellular Mg2+ content compared to the WT. In 

contrast, the tfp1 mutation was associated with a decrease in Mg2+ content irrespective of 

the Mg2+ concentration the strain was supplied with, consistent with a defect in Mg2+ 

storage. As expected, the mnr2 tfp1 double mutant showed Mg2+ levels similar to that of 

the single tfp1 strain, indicating that the high Mg2+ phenotype of mnr2 was suppressed. 

This result indicates that, as predicted, the tfp1 mutation is epistatic to mnr2. Figure 3.8B 

shows the effect of the above mutations on cell growth after transfer from Mg2+ replete 

media to deficient media, as an indication of their ability to utilize intracellular stores of 

Mg2+. While the mnr2 mutant showed a severe growth defect compared to the WT, the 

 
Figure 3.8 Genetic analysis of Mg2+ homeostasis. (A) Effect of the mnr2, tfp1, mrs2 and lpe10 
mutations on Mg2+ content. DY1514 isogenic strains, WT (DY1457), mnr2 (NP4), tfp1 (NP193) and 
mnr2 tfp1 (NP201) and DBY747 isogenic strains, WT (DBY747), lpe10 (lpe10Δ-1), mrs2 (mrs2Δ-2), 
mnr2 lpe10 (NP107) and mnr2 mrs2 (NP112) strains were grown to log phase in LMM with either 1 µM 
or 1 mM Mg2+, the total intracellular Mg2+ content using AAS. (B) Effect of mnr2, tfp1, mrs2 and lpe10 
mutations on growth in Mg2+-free conditions. The strains described in panel (A) were grown in SC-ura 
medium, washed with 10 mM EDTA to remove extracellular Mg2+, and used to inoculate Mg2+-free 
LMM to an starting cell density of 0.1. After growth for 16 hours, A595

 was recorded. Error bars indicate 
+/- 1 SEM (three replicates). 
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tfp1 strain shows an even more severe growth defect, consistent with the apparent 

absence of an intracellular Mg2+ store (Figure 3.8A). The double mutant showed growth 

similar to the single tfp1 mutant, which is again consistent with the apparent lack of 

internal stores in both these strains.  

In mammalian cells, mitochondria may participate in storage of excess Mg2+ 

(Kubota et al, 2005). My cell fractionation studies could not exclude that some portion of 

Mnr2 was associated with the mitochondria. For this reason, I wanted to examine the 

possibility that Mnr2 might regulate the Mg2+ content of the mitochondria. I constructed a 

set of strains in the DBY747 background carrying the mnr2 mutation with or without the 

Mrs2 and Lpe10 proteins. As discussed previously (Ch. 1.8.1.2), Mrs2 and Lpe10 form a 

heteromeric complex in the inner mitochondrial membrane, which is thought to transport 

Mg2+ into the mitochondria. Inactivation of either gene reduced mitochondrial Mg2+ 

content, indicating they are both required for mitochondrial Mg2+ uptake (Gregan et al, 

2001b). As observed previously in the DY1514 genetic background, an mnr2 mutant in 

the DBY747 genetic background retained a higher Mg2+ content when grown under Mg2+ 

deficient conditions (Figure 3.8A). Unlike the tfp1 mutation, the mrs2 and lpe10 single 

mutations were not associated with a substantial decrease in intracellular Mg2+ content 

under Mg2+ replete conditions, suggesting that mitochondrial Mg2+ content represents 

only a minor fraction of total Mg2+ content. Additionally, when combined with mnr2, the 

mrs2 and lpe10 mutations were not associated with an increase in the severity of the 

mnr2 phenotype, suggesting that the increased Mg2+ content associated with the mnr2 

mutation is not a consequence of an increase in mitochondrial content. In contrast to the 

tfp1 mutation, neither the mrs2 nor the lpe10 mutation had any effect on growth, 

suggesting that these mutants have full access to intracellular Mg2+ stores under Mg2+ 

deficient conditions (Figure 3.8B), and the combination of mnr2 with either lpe10 or 

mrs2 mutations did not enhance the mnr2-associated growth defect in low Mg2+. These 

observations support the conclusion that Mnr2 does not regulate the Mg2+ content of 

mitochondria. 

3.10 Interaction of the ALR and MNR2 genes 

My current model for Mnr2 function proposes that this protein functions to 
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release Mg2+ from the vacuole to buffer the cytoplasmic [Mg2+]i. It is also possible 

however that the mnr2 phenotype of higher Mg2+ content could result from the activation 

of a novel (as yet uncharacterized) system responsible for Mg2+ uptake. If this model is 

correct, the mnr2 phenotype of higher Mg2+ content should be independent of the activity 

of the Alr proteins, the only known systems for Mg2+ uptake in yeast. To test if the mnr2 

phenotype was dependent on the Alr proteins, I generated a set of mutants with all 

possible combinations of the three mutations, and determined their effect on intracellular 

Mg2+ content and Mg2+-dependence for growth. Cultures were initially grown in 250 mM 

YPD to enable growth of all strains, and washed cells were then used to inoculate 

aliquots of LMM with a range of Mg2+ concentrations. As reported previously 

(MacDiarmid & Gardner, 1998), the alr1 mutant showed a growth defect that was 

ameliorated by supplementation with Mg2+ (Figure 3.9A). In addition, this strain had a 

lower intracellular Mg2+ content than the WT, and this phenotype was again partially 

suppressed by Mg2+ supplementation. The alr2 mutation in contrast had no effect on 

growth, but it significantly reduced Mg2+ content (Figure 3.9B). Earlier reports had noted 

that the alr2 mutation did not significantly affect Mg2+ content in the S288C background 

(Graschopf et al, 2001; MacDiarmid & Gardner, 1998) suggesting that this gene is more 

active in strains derived from W303. This conclusion is supported by the observation that 

an alr1 alr2 double mutant showed a severe growth defect that was not alleviated by 

Mg2+ supplementation. This severe synthetic phenotype suggests that Alr2 plays a 

significant role in Mg2+ uptake in this strain background.  

Under the relatively Mg2+-replete conditions used for this experiment, the single 

mnr2 mutation was not associated with a growth defect. However, this mutation strongly 

enhanced the growth defect associated with the alr1 mutation, which reduced access to 

extracellular Mg2+. This observation is consistent with the idea that both proteins 

contribute to regulating the Mg2+ concentration of the cytoplasm; Alr1 supplies external 

Mg2+, and Mnr2 supplies Mg2+ from internal stores.  

As demonstrated in Figure 3.9, eliminating both Alr1 and Alr2 caused a severe 

reduction in growth and the largest reduction in Mg2+ content. The observation that both 

Mg2+ content and growth phenotypes of the alr1 alr2 mutant were almost insensitive to 

Mg2+ supplementation suggests that this strain has an extremely severe block in Mg2+ 
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uptake. In this genetic background, if the mnr2 mutation were to cause the activation of 

another novel Mg2+ uptake system, I expected to see this system have an effect on growth 

and Mg2+ content. However, these phenotypes were very similar in the triple and the 

double mutant strains, which does not support the idea that a novel Mg2+ uptake system is 

upregulated by the inactivation of MNR2. In contrast, the observation that the alr1 and 

alr2 mutations in combination are epistatic to mnr2 is consistent with my proposed model 

for Mnr2 function. I suggest that alr1 alr2 mutant strains are able to acquire just enough 

Mg2+ to survive, but not enough to accumulate significant stores within the vacuole. For 

 
Figure 3.9 ALR1 and ALR2 are epistatic to MNR2. (A, B) Cultures of WT (DY1457), alr1 (NP10), alr2 
(NP27), mnr2 (NP4), alr1 alr2 (NP14), alr1 mnr2 (NP18), alr2 mnr2 (NP36) and alr1 alr2 mnr2 (NP20) 
strains were grown in YPD media with 250 mM Mg2+, washed twice with 10 mM EDTA; and  twice with 
Millipore water, and used to inoculate LMM medium with the indicated concentration of Mg2+. One set of 
the above cultures was inoculated to an initial cell density of 0.01 and incubated for 16 hours, after which 
A595 was recorded (A). A second set of the above cultures was used to determine total cellular Mg2+ 
content using AAS (B). Error bars equal +/-1 SEM (three replicates). (C, D) Four alr1 alr2 strains (NP14, 
NP15, NP28 and NP38) and four alr1 alr2 mnr2 strains (NP6, NP17, NP18 and NP20) were grown in 
YPD containing 250 mM Mg2+, washed as described above to remove extracellular Mg2+ and used to 
inoculate YPD media containing the indicated concentration of Mg2+ to an initial A595

 of 0.01. Cultures 
were grown for 16 hours at 30°C and growth and total cellular Mg2+ content was determined. (E) 
DY1457, NP4, NP14, and NP20 cultures were used to inoculate LMM containing 1 µM Mg2+. After 16 
hours growth, total cellular Mg2+ content was determined using AAS. Error bars equal +/-1 SEM (three 
replicates). 
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this reason, the high intracellular Mg2+ phenotype of the mnr2 strain is suppressed in the 

triple mutant. The inactivation of the ALR genes produces an effect similar to the tfp1 

mutation, preventing the cell from accumulating excess Mg2+ within the vacuole. Under 

these conditions, the Mnr2 protein is essentially unnecessary and its inactivation has no 

effect on homeostasis. Hence, the ALR genes are epistatic to MNR2.  

To further verify that the mnr2 mutation did not affect growth and Mg2+ content 

phenotypes in the alr1 alr2 background, I repeated the growth and Mg2+ content 

measurements using four independently isolated strains of double (alr1 alr2) and triple 

mutants (alr1 alr2 mnr2) grown over a range of Mg2+ concentrations (all strains were 

derived from sporulation of a triple heterozygous diploid strain). Figure 3.9C 

demonstrates that there was no difference in the growth of double (alr1 alr2) versus triple 

mutants (alr1 alr2 mnr2). The mnr2 mutation was however associated with a slight 

increase in Mg2+ content in an alr1 alr2 background (Figure 3.9D), although this effect 

was not large enough to be distinguished from random variation.  

I also repeated measurements of Mg2+ content using cells cultured under severely 

Mg2+ deficient conditions (Figure 3.9E), which maximize the effect of the mnr2 

mutation on Mg2+ content. Under these conditions, the mnr2 single mutant had a higher 

Mg2+ content than the WT. However, this phenotype was suppressed in an alr1 alr2 

mutant background, again confirming that the expression of this mnr2 phenotype is 

dependent on the function of the Alr proteins.  

In summary, these results indicate that the ALR genes are epistatic to MNR2. This 

effect can be explained by the observation that in the W303 background, deletion of both 

of the ALR genes induces a severe defect in Mg2+ uptake, meaning that such strains are 

unable to accumulate Mg2+ in excess of their minimum requirements for survival. Under 

these conditions, storage of excess Mg2+ in the vacuole is prevented, which suppresses 

the effect of the mnr2 mutation. 

3.11 Direct assays of cation transport by Mnr2 

Thus far, my results provide indirect support for a model in which Mnr2 is a 

transporter responsible for releasing vacuolar Mg2+ content. Ideally, it would be possible 

to demonstrate biochemically that Mnr2 is directly responsible for Mg2+ transport. 
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Isolation of vacuole membranes from yeast is relatively simple, but the probable 

orientation of Mnr2 in the vacuole membrane, and the lack of suitable radioisotopes of 

Mg2+ makes studies of Mg2+ transport by isolated vacuoles technically very difficult. 

However, I reasoned that if Mnr2 had the same topology as Alr1, it should be capable of 

mediating Mg2+ uptake when relocated to the plasma membrane. Biochemical studies of 

metal transport using whole yeast cells are theoretically much simpler than utilizing 

isolated membranes, and would also allow me to determine if there was any functional 

overlap between the Alr and Mnr2 proteins. For example, if Mnr2 was relocalized to the 

plasma membrane in an alr1 alr2 mutant strain, the resulting restoration of Mg2+ uptake 

might suppress the alr1 alr2 phenotypes of slow growth and reduced intracellular Mg2+ 

content. 

I suspected that the overexpression of Mnr2 might overcome mechanisms of 

protein sorting and allow some of the protein to reach the cell surface. To test this 

prediction, I constructed a plasmid containing the myc-MNR2 coding sequence fused to 

the strong GAL1 promoter. Use of a myc-tagged protein would enable me to verify 

overexpression using Western blotting, and to detect the location of the protein in cells 

using immunofluorescence. Initially, WT cells were transformed with this construct and 

grown in LMM-ura medium containing either glucose or galactose as carbon source. 

Protein was then extracted from the cells and subjected to SDS-PAGE and Western 

blotting to detect myc-Mnr2. As seen in Figure 3.10A, growth of cells in glucose 

medium drove undetectable levels of Mnr2 in the presence of 3 µM Mg2+, and a low but 

detectable level of Mnr2 expression relative to the loading control (Tfp1) in presence of 3 

mM Mg2+. Growth in galactose produced a large increase in Mnr2 expression (compare 

expression of Mnr2 to Tfp1). The effect of galactose was independent of Mg2+ supply, 

although a higher level of Mnr2 was seen in Mg2+-replete cells. Proteins extracted from 

WT cells expressing untagged Mnr2 and Dcp1-myc were used as negative and positive 

controls, respectively. No Mnr2 band was detected in the negative control samples, and a 

band of the appropriate size (26 kDa) was detected in the positive control (Dcp1-myc) 

samples confirming that the anti-myc antibody was specific for the myc epitope tag. 

To determine if the overexpression of Mnr2 in an alr1 alr2 strain was capable of 

suppressing the growth defect of this strain, an alr1 alr2 strain was transformed with the 
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YEpGmyc-Mnr2 plasmid and several control constructs, including an empty vector, a 

low copy MNR2 genomic clone, and a low copy ALR1 genomic clone (Figure 3.10B). 

Growth was then assayed by application of cells to solid synthetic media. All strains grew 

at a similar rate to the WT strain in the presence of 2% galactose and excess Mg2+ (50 

mM) (Figure 3.10B), which suppressed the alr1 alr2 growth defect (MacDiarmid & 

Gardner, 1998). In the presence of 4 mM Mg2+, the alr1 alr2 strain transformed with the 

 

Figure 3.10 Suppression of alr1 alr2 phenotypes by Mnr2 overexpression. (A) A WT strain 
(DY1457) was transformed with either a control vector (pFL38), or a GAL1-promoter driven myc-MNR2 
construct (YEpGmyc-MNR2). Transformants were grown in LMM-ura media with either glucose or 
galactose as carbon source, and 3 µM or 3 mM Mg2+. Total protein was extracted and myc-Mnr2 
expression detected via immunoblotting. Total protein extracted from DY1457 transformed with vector 
alone was included as negative control (-ve), and an extract of a strain expressing Dcp1-myc as a 
positive control. Tfp1 was also detected as a control for equal lane loading. (B) WT (DY1457) and alr1 
alr2 (NP14) strains were transformed with either a control vector (pFL38), low copy WT ALR1 
(YCpALR1), low copy myc-MNR2 (YCpmyc-MNR2), or YEpGmyc-MNR2. Strains were grown in SD-ura 
containing 100 mM Mg2+ and serially diluted 5 fold. Aliquots (maximum 1.2 x 104 cells) were applied to 
SGal-ura plates with a low (4 mM) or high (50 mM) Mg2+ concentration. Plates were incubated for 2 
days at 30°C before photography. (C) Strains described in panel (B) were used to inoculate aliquots of 
SGal-ura media to an initial A595 of 0.1. After 16 hours of growth at 30°C, cell density was recorded. 
Error bars indicate +/- 1 SEM (five replicates). (D) WT diploid cells (DY1514) transformed with either 
YEpGmyc-MNR2 (myc-Mnr2) or pFL38 (untagged control) were grown to log phase in SGal-ura, and 
myc-tagged Mnr2 detected by indirect immunofluorescence. Epi = Epifluorescence, DIC = Differential 
interference contrast. Arrows indicate myc-Mnr2 location at the cell periphery. (E) Strains described in 
panel (B) were grown in SGal-ura and total cellular Mg2+ content determined using AAS. Error bars 
indicate +/- 1 SEM (four independent experiments). 
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empty vector alone did not grow, illustrating the severe growth defect of this strain under 

normal conditions. I saw no effect of the low copy MNR2 construct on this phenotype, 

indicating that a small increase in Mnr2 expression (from an extra 1-2 gene copies/cell) 

could not suppress the Mg2+ uptake defect. In contrast, both the low copy ALR1 and 

GAL1-MNR2 constructs conferred robust growth, although Mnr2 overexpression did not 

completely rescue growth to the WT level. The strong suppression of the growth defect 

by Mnr2 overexpression indicated that Mnr2 is able to effectively compensate for loss of 

the ALR genes. This suppression was also seen in strains grown in liquid culture with a 

standard (4 mM) Mg2+ supply (Figure 3.10C). The low copy ALR1 construct completely 

rescued the alr1 alr2 growth defect, overexpression of Mnr2 restored near-normal rates 

of growth, and the alr1 alr2 strain with the low copy MNR2 construct grew at a similar 

rate to the uncomplemented strain.  

These observations are consistent with the idea that mislocalization of Mnr2 to the 

plasma membrane could compensate for a loss of plasma membrane uptake systems by 

transporting Mg2+ into the cell. To directly determine the effect of Mnr2 overexpression 

on its location, I visualized the myc-Mnr2 protein using the technique of 

immunofluorescence. A diploid strain (BY4743) was transformed with YEpGmyc-

MNR2 and YCpMNR2 (as a negative control), and both strains were grown to log phase 

in SC-ura containing galactose to drive myc-Mnr2 overexpression. The epitope tagged 

protein was labeled with a fluorescent dye using an indirect immunofluorescence 

protocol (Ch. 2.19.4) and the labeled cells examined using epifluorescence microscopy. 

Cells overexpressing myc-Mnr2 showed signal around the vacuoles. In addition, the bulk 

of the cells showed a punctate signal at the plasma membrane (indicated by white arrows 

in Figure 3.10D). Only diffuse background staining was observed in the untagged 

negative control cells (Figure 3.10D). This observation of plasma membrane-localized 

Mnr2 was in contrast with previous observations of cit-Mnr2 expression, which revealed 

Mnr2 signal exclusively at the vacuole membrane (Figure 3.7). Hence, these 

observations confirm that Mnr2 overexpression can cause the accumulation of Mnr2 at 

the plasma membrane, where this protein could potentially mediate Mg2+ uptake.  

I also examined if Mnr2 overexpression could suppress the reduced Mg2+ content 

of alr1 alr2 mutants. Expression of ALR1 restored Mg2+ content to a WT level (Figure 
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3.10E). The MNR2 single copy plasmid was associated with a slight increase in Mg2+ 

content, although Mg2+ content of independently isolated alr1 alr2 mutants varied 

somewhat (data not shown) and thus this effect is probably not significant. Somewhat 

surprisingly, overexpression of Mnr2 did not restore a "WT" level of Mg2+ content. 

However, it is clear that the overexpression of Mnr2 allowed the alr1 alr2 strain to 

accumulate Mg2+ at a faster rate than the control strain, because Mnr2 overexpression 

allowed much more rapid growth without a consequent decrease in Mg2+ content. In 

order for the Mnr2 overexpressing strain to grow more quickly than the mutant, while 

retaining the same Mg2+ content, the Mnr2 overexpressing strain must have obtained 

Mg2+ more efficiently from the environment. In summary, these observations provide 

strong evidence that the Mnr2 protein represents an ion channel or transport system that 

can independently mediate Mg2+ transport. Additional discussion on the effect of Mnr2 

overexpression on its activity in the vacuolar membrane, and in turn on the vacuolar 

Mg2+ concentration is included in the summary section (Ch. 3.13.6).  

3.12 Effect of the mnr2 mutation on ER function 

My cell fractionation studies (Figure 3.6) suggested that a small proportion of 

Mnr2 might be present in the secretory pathway. While as previously noted, this 

observation may be an artifact of the cell fractionation technique, it may also indicate that 

some of the Mnr2 protein is resident in these compartments, or is in the process of 

transport to the vacuolar membrane after synthesis in the ER. If Mnr2 is required for 

Mg2+ homeostasis within these organelles, the mnr2 mutation might be deleterious to the 

function of the secretory pathway.  

A commonly used method to determine the health of this compartment is to 

monitor the activity of the "Unfolded Protein Response" (UPR). The UPR is the 

induction of a number of coordinately regulated genes in response to a defect in ER 

function (the signal for which is thought to be the accumulation of unfolded proteins in 

the ER lumen). The response system consists of two proteins, an ER-localized 

transmembrane sensor (Ire1) and a transcriptional activator (Hac1) [reviewed in (Patil & 

Walter, 2001)]. When secretory pathway function is compromised, unfolded ER proteins 

activate the endoribonuclease activity of Ire1, which then cleaves an intron from the 
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HAC1 pre-mRNA. The spliced HAC1 mRNA is translated into a protein (Hac1i), which 

functions as a transcriptional activator of UPR target genes (Cox & Walter, 1996; Ellis et 

al, 2004). The activity of Hac1i can be measured by using a lacZ reporter gene containing 

UPR-responsive elements in the promoter. 

To determine if the mnr2 mutation induced the UPR, WT and mnr2 strains were 

transformed with a UPRE-lacZ reporter (Kawahara et al, 1997), and a CYC1 promoter-

lacZ reporter (Guarente et al, 1984) as a UPR-insensitive negative control. Strains were 

grown in LMM containing high (1 µM) and low (1 mM) Mg2+ and β-galactosidase (β-

gal) activity  was measured (Figure 3.11A). In both WT and mnr2 strains, activity of 

both reporters was significantly reduced in low-Mg2+ conditions. I have observed a 

similar effect of low Mg2+ supply on other lacZ-fusion constructs, indicating a general 

negative effect of severe Mg2+-deficiency on lacZ gene expression (data not shown). For 

this reason, I could not directly determine the effect of low Mg2+ on UPR activity. 

However, a consistently reproducible increase in reporter activity was seen in the mnr2 

strain under low-Mg2+ conditions. In contrast, the control reporter expressed similar 

levels of  β-gal activity in WT and mnr2 strains regardless of Mg2+ supply, indicating that 

 

Figure 3.11 The mnr2 mutation induced the unfolded protein response. (A) WT (DY1457) and 
mnr2 (NP4) strains were transformed with reporter gene constructs pMCZ-Y (UPRE-regulated lacZ) 
or pLGΔ312 (CYC1 promoter-lacZ, control) and grown to log phase in LMM containing either 1 µM or 
1 mM Mg2+ for determination of β-galactosidase activity. (B) WT (NP59), mnr2 (NP64), hac1 (NP68) 
and mnr2 hac1 (NP88) were transformed with pMCZ-Y and grown in LMM-ura with 1 µM Mg2+ to log 
phase, then assayed for β-galactosidase activity. (C) WT (DY1457) and mnr2 (NP4) strains were co- 
transformed with pMCZ-Y and either pFL46-S (empty vector) or a construct driving constitutive 
expression of the spliced form of the HAC1 mRNA (pHAC1i). The strains were grown to log phase in 
LMM with 1 µM Mg2+ prior to determination of β-galactosidase activity. (D) Growth (A595) of WT 
(DY1456, NP59, NP61), mnr2 (NP4, NP5, NP64, NP94, NP97, NP99), hac1 (NP68, NP69, CEY4) 
and mnr2 hac1 (NP70, NP71, NP88, NP89) strains was determined after 16 hours at 30°C. Data 
points are mean of six replicates for (A), and three for (B) and (C). For (D), data points are the 
average of values obtained for each strain listed. Error bars equal +/- 1 SEM. Results shown are 
representative of at least three independent experiments for (A), (B) and (C) and two for (D). 
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the increase in UPR reporter activity seen in mnr2 is not a general effect of this mutation 

on lacZ gene expression.  

Since induction of UPR reporter gene activity is an indirect measure of the UPR, I 

wanted to examine if the induction of the UPR reporter gene in the mnr2 strain was 

dependent on a functional response pathway. To do this, I constructed an mnr2 hac1 

double mutant and determined the effect on UPR reporter activity after growth in LMM 

containing 1 µM Mg2+ (Figure 3.11B). The hac1 mutation alone substantially reduced 

reporter activity, indicating the expected dependence of the system on Hac1 activity. The 

same low level of activity was observed in the double mnr2 hac1 strain, indicating that 

the induction of reporter activity associated with the mnr2 mutation was dependent on 

Hac1 activity and the intact UPR signaling pathway.   

As a second control, I also examined if the mnr2 mutation elevated reporter 

activity by hyperactivating the Hac1i protein independent of the state of the ER. WT and 

mnr2 strains were transformed with a low copy construct containing a version of the 

HAC1 gene lacking the intron (pHAC1i) (Boutry et al, 1989). This construct drives 

constitutive expression of Hac1i independent of Ire1 activity. If mnr2 did affect the 

activation of Hac1i independent of Ire1 activity, I expected to see a similar increase in 

lacZ activity in the mnr2 strain expressing the intron-less pHAC1i. As expected of strains 

constitutively expressing Hac1i, higher reporter activity was observed (Figure 3.11C). 

However, there was no difference in the reporter activity of both WT and mnr2 strains. 

This result indicates that mnr2 does not increase the activity of Hac1i independent of the 

Ire1 protein. 

 Since some strains with severe UPR defects are dependent on the activation of 

the UPR for growth, I also determined if combining the hac1 and mnr2 mutations 

resulted in a synthetic lethal growth phenotype under Mg2+ deficient conditions (where 

the induction of the UPR was most obvious). Single and double mutant strains were 

grown in LMM containing 1 µM Mg2+ and cell density was recorded after 16 hours of 

growth. Figure 3.11E shows that the hac1 mnr2 double mutation slightly increased 

growth compared to mnr2 alone, indicating that mnr2 mutants are not dependent on the 

UPR for growth. This observation is consistent with the small increase in UPR reporter 

activity seen in mnr2, which suggested that this mutation has a relatively mild effect on 
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secretory pathway function. Nevertheless, these results suggest that in addition to its 

major role in regulating vacuolar Mg2+ storage, Mnr2 is involved in maintaining the 

function of the ER and secretory pathway under Mg2+-deficient conditions. The 

contribution of Mnr2 to the maintenance of ER function in Mg2+ deficient conditions is 

further discussed in Ch. 3.13.8. 

3.13 Summary and discussion 

The purpose of this study was to characterize the fifth CorA homolog in the yeast 

genome, Mnr2, and to understand the role that Mnr2 plays in Mg2+ homeostasis. The 

results reported in this chapter suggest a revised model for Mg2+ homeostasis in yeast 

(Figure 3.12). The model suggests that under Mg2+ replete conditions, yeast vacuoles 

function as a storage site for excess Mg2+, and that the Mnr2 protein aids growth in Mg2+-

deficient conditions by releasing Mg2+ from the vacuole to buffer against cytoplasmic 

Mg2+ deficiency. The evidence supporting this model is discussed below. 

3.13.1 The vacuole as a site for storage of excess Mg2+ 

My work indicates that the vacuole may play a role in the intracellular storage of 

excess Mg2+ ions. Consistent with this model, a recent study showed that the vacuolar 

Mg2+ concentration in Mg2+-replete yeast cells is approximately four-fold higher than the 

cytoplasmic concentration (Simm et al, 2007). My observations of the effect of the tfp1 

mutation on yeast Mg2+ content, and the interaction of the mnr2 and tfp1 mutations, are 

also consistent with a role for the vacuole in Mg2+ storage. Transport of Mg2+ into the 

vacuole would require energy input to overcome the charge gradient generated by V-

ATPase activity. Although the transporter responsible has not been identified, several 

lines of evidence suggest that this system is a proton-coupled exchanger. First, mutations 

that eliminate vacuolar proton-ATPase activity confer Mg2+ sensitivity (e.g. tfp1, data not 

shown), as do those that induce defects in vacuole function or morphology (e.g. vps1, R. 

Gardner, personal communication). In addition, mutations inactivating V-ATPase activity 

substantially reduced Mg2+ accumulation [Figure 3.8A and (Eide et al, 2005)]. Finally, 

several studies have identified possible Mg2+/H+ antiport activities in the vacuole 

membrane, with apparent Km values ranging from 0.3 to 1 mM Mg2+ (Borrelly et al, 

2001; Nishimura et al, 1998; Okorokov et al, 1985). However, it should be noted that the 
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tfp1 mutant phenotype of reduced Mg2+ content may not represent a direct effect of a 

reduction in Mg2+/H+ exchanger activity; this phenotype could result from the inhibition 

of other processes important to Mg2+ accumulation in this compartment, such as 

phosphate storage (Beeler et al, 1997). It is also possible that the tfp1 mutation prevents 

the Mg2+/H+ exchanger from reaching or being correctly assembled in the vacuole 

membrane. Whatever the mechanism responsible for this effect, these data implicate the 

vacuole in Mg2+ storage. In contrast, 

mutations that prevent mitochondrial 

Mg2+ uptake had no effect on the 

ability of yeast cells to accumulate 

intracellular stores of Mg2+, as 

indicated by the high Mg2+ content 

of these mutants in replete 

conditions, and subsequent robust 

growth in Mg2+-free medium 

(Figure 3.8A and B). 

3.13.2 Vacuolar stores of Mg2+ 
can be utilized to offset 
cytosolic Mg2+ 
deficiency 

Previous work (Beeler et al, 

1997) as well as data reported here 

(Figure 3.4) show that the initial 

Mg2+ content of yeast cells affects 

the rate of growth upon transfer to 

Mg2+-free medium, and that Mg2+ content rapidly decreases under these conditions. 

Because approximately 80% of Mg2+ in replete cells is vacuolar (Simm et al, 2007), these 

observations suggest that vacuolar Mg2+ can be redistributed to critical cellular 

compartments to maintain homeostasis. The severe growth defect displayed by tfp1 cells 

when transferred to Mg2+-deficient conditions (Figure 3.8B), provides support for this 

 

Figure 3.12 Model for Mnr2 function in yeast. The 
location and function of previously characterized Mg2+ 
transporters and the Mnr2 protein is shown. The Alr 
proteins regulate the flow of Mg2+ into the cell from the 
external environment, maintaining the concentration of 
an essential pool of Mg2+ within this compartment. Free 
ionized Mg2+ ([Mg2+]i) is in equilibrium with Mg2+ bound to 
proteins and small molecules. Under replete conditions, 
excess Mg2+ entering the cell is diverted into the vacuole, 
via the activity of an exchanger driven by the vacuolar 
proton concentration gradient (generated by the V-
ATPase). The Mnr2 protein is located at the vacuole 
membrane, where it regulates the flow of Mg2+ from the 
vacuole lumen to the cytosol. Under deficient conditions, 
vacuolar stores are allowed to flow back into the 
cytosolic compartment to buffer the concentration of free 
ionized Mg2+. Under Mg2+-replete conditions, the bulk of 
cellular Mg2+ is contained within the vacuole. 
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view. 

3.13.3 Mnr2 is required for the release of vacuolar Mg2+ stores 

Several lines of evidence indicate that Mnr2 is required for the release of vacuolar 

Mg2+ (and more generally, for the regulation of vacuolar Mg2+ content). First, mnr2 

mutant strains accumulated more Mg2+ than WT during growth in replete conditions 

(Figure 3.4), but this increased content did not translate into improved growth under 

deficient conditions. Second, genetic interaction studies support the idea that the Mnr2 

and Alr proteins both contribute to the maintenance of cytosolic Mg2+ concentration. 

When combined with alr1, the mnr2 mutation conferred a synthetic slow growth 

phenotype, consistent with both mutations reducing the supply of Mg2+ to an essential 

compartment (most likely the cytosol). The opposite effect of mnr2 and alr1/alr2 

mutations on Mg2+ content, and the location of Mnr2 protein in the vacuolar membrane, 

is consistent with the model that Mnr2 supplies the cytosol with Mg2+ from vacuolar 

stores, rather than from the external environment. Lastly, the observation that the tfp1 

mutation suppressed the mnr2 mutant phenotype of high Mg2+ content is consistent with 

this phenotype being due to misregulation of vacuolar Mg2+ storage. If the tfp1 mutation 

prevents vacuolar Mg2+ storage by inhibiting the Mg2+uptake system, the Mnr2 protein 

would be superfluous. 

3.13.4 Mnr2 is directly responsible for Mg2+ transport 

The direct function of Mnr2 in Mg2+ transport is supported by my observation that 

the redirection of this protein to the plasma membrane effectively suppressed the growth 

defect of an alr1 alr2 mutant (Figure 3.10B-D), indicating that Mnr2 could substitute for 

the function of the missing Alr proteins. The increased growth conferred by Mnr2 

overexpression had no effect on Mg2+ content of the mutant, indicating that it was 

supported by increased access to external sources of Mg2+. The observation that Mnr2 

can substitute for the Alr proteins also indicates that Mnr2 does not indirectly affect yeast 

physiology via the regulation of the activity or expression of the Alr proteins. This is an 

important point because several examples of regulatory factors orthologous to nutrient 

transporters have been described in yeast [e.g., Snf3, a plasma membrane glucose sensor, 

(Forsberg et al, 2001)]. Lastly, in both Mg2+-replete and deficient cells, cit-Mnr2 was 
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detected in the vacuole membrane (Figure 3.7), suggesting that it is present in the correct 

location under the appropriate conditions to regulate the Mg2+ content of this organelle. 

3.13.5 Cation transport by mnr2 mutants  

Elemental profiling of the mnr2 strain indicated that under Mg2+-deficient 

conditions, this strain accumulated a higher content of some divalent cations, including 

Mn2+, Ca2+ and Zn2+ (Figure 3.2). In addition, sensitivity to the divalent cations Ca2+, 

Mn2+, Co2+ and Zn2+ was also increased (Figure 3.1). Together, these observations 

suggested that the mnr2 mutation resulted in an elevated activity of the cell surface 

transporters for these metals. Under conditions of cation excess, an increased rate of 

accumulation via these systems might cause increased sensitivity. This model raises the 

question of why the mnr2 mutation has this effect on cation uptake. 

 Several explanations could be proposed. First, it is possible that the mnr2 

mutation increased the expression of high affinity transport systems that are specific for 

all these divalent cations. A second model is that the Mnr2 protein itself is responsible for 

homeostasis of some of these cations (in addition to Mg2+), and that an increase in cation 

accumulation occurs for the same reason as Mg2+ accumulation (the cations are trapped 

in the vacuole compartment). This explanation seems possible given that CorA family 

proteins have the ability to transport other divalent cations with low affinity (e.g. Co2+) 

(Hmiel et al, 1986; Payandeh & Pai, 2006; Snavely et al, 1989a). A third model is that the 

mnr2 mutation increases the expression or activity of systems involved in Mg2+ 

homeostasis, indirectly leading to an increase in the activity of a relatively non-specific 

low affinity cation uptake system.  

Looking at these models in turn, I prefer model 3, for the following reasons. 

Model 1 seems implausible, given the multiple complex systems in place to regulate the 

activity of high affinity cation uptake systems for such potentially toxic cations as Mn2+ 

and Zn2+. The expression or activity of these systems would have to be coordinated by 

the inactivation of a single gene. At least one of these systems in particular is dependent 

on a single well-characterized factor (e.g., Zap1 for zinc regulation) (Zhao et al, 1998; 

Zhao & Eide, 1997), and there seems to be no clear mechanism by which Mnr2 could 

have a global affect on the function of all of these disparate systems. 
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Model 2 (trapping of cations in the vacuole) does not easily explain both 

phenotypes (high cation content and associated sensitivity), since a block in the release of 

divalent cations from the vacuole is not likely to increase sensitivity to those cations. In 

fact, the opposite effect might be expected since increased trapping of cations in the 

vacuole would be expected to decrease their concentration in the cytosol, thus increasing 

resistance. In addition, there are other systems known to release divalent cations from the 

vacuole. For example, Zn2+ storage is regulated by Zrt3 (MacDiarmid et al, 2000), while 

Mn2+ storage is regulated by Smf2 (Culotta et al, 2005). Expression of both these proteins 

is upregulated by a deficiency of their respective substrates. In this context, any effect of 

the Mnr2 transporter on storage of these metals would be expected to be minor. However, 

I cannot rule out some contribution of this effect to the elevated cation content of the 

mutant strain. 

The last model (that the mnr2 mutation increases the activity of a non-specific 

cation uptake system) seems the most plausible. Although homeostasis of Mg2+ is not 

well understood compared to that of other nutrient metals, it has been reported that the 

expression of the Alr1 protein is regulated by Mg2+ availability. Both transcriptional and 

post-translational mechanisms were proposed to explain this regulation (Graschopf et al, 

2001). Other systems regulating the expression of cation transporters are generally 

coupled to the cytosolic cation concentration, for example via the activity of cation-

sensing transcriptional regulators like the Zap1 protein (Lyons et al, 2000; Zhao & Eide, 

1997). If this is also the case for Alr1, then a reduction in the cytosolic Mg2+ 

concentration might be expected to increase the accumulation of this protein at the cell 

surface. If my proposed model for Mnr2 function that it serves as vacuolar Mg2+ efflux 

transporter is correct, it appears likely that the mnr2 mutation reduces cytosolic Mg2+ 

availability (an idea which is supported by the observation that the mnr2 mutation 

enhanced the growth defect associated with the alr1 mutation). As a consequence of this 

perceived Mg2+ deficiency, mnr2 mutant cells may up-regulate the expression of Alr1 to 

compensate. A previous study showed that the overexpression of Alr increased the rate of 

Co2+ uptake and induced a strong sensitivity to this cation, as well as several other 

divalent cations (including Ca2+, Mn2+ and Zn2+) (MacDiarmid & Gardner, 1998). The 

effect of increased Alr1 expression on cation homeostasis is consistent with my 
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observations (Figure 3.1 and 3.2). In addition, it is important to note that reducing Mg2+ 

availability enhanced the effect of the mnr2 mutation on cation content. This effect could 

have two possible explanations: first, due to the absence of competitive inhibition by 

Mg2+, a low Mg2+ concentration may promote the uptake of other cations by the Alr1 

protein; second, the cellular Mg2+-deficiency induced by growth in low Mg2+ medium 

may stimulate an increase in Alr1 activity, further enhancing uptake of other divalent 

cations. Although not much is known about the specific regulation of Alr1 activity, the 

activity of other CorA proteins (such as Mrs2) is reportedly regulated by cytosolic Mg2+ 

availability (Romani et al, 1991; Romani & Scarpa, 2000; Schindl et al, 2007). In Chapter 

4, I describe the results of my experiments designed to test some of these predictions (for 

example, the effect of the mnr2 mutation on Alr1 expression).  

3.13.6 Mg2+ storage is not restored by the overexpression of Mnr2 

The observation that an alr1 alr2 mutant overexpressing Mnr2 could grow rapidly 

under normally non-permissive conditions, while still retaining the same Mg2+ content as 

the corresponding mutant strain, indicates that Mnr2 overexpression increased the rate at 

which the mutant could obtain Mg2+ from the environment. However, Mnr2 

overexpression did not restore the Mg2+ content of the mutant to the level of a WT strain 

grown under replete conditions, suggesting that Mnr2 overexpression did not fully 

substitute for the loss of the Alr proteins. There are at least two possible explanations for 

this observation.  

First, my experiments (Figure 3.3B) as well as previous work (Beeler et al, 1997) 

indicate that in replete cells, 50-80% of total cellular Mg2+ is not required for growth. 

Consistent with this idea, I observed that tfp1 mutants cultured in Mg2+-replete or 

deficient conditions accumulated approximately the same Mg2+ content as WT strains 

grown under severely deficient conditions (approximately 20 nmol/106 cells), indicating 

that this value probably represents the minimum Mg2+ content required for viability. In 

alr1 alr2 strains overexpressing Mnr2, the rate of Mg2+ influx may be sufficient to supply 

this minimal requirement and support growth, but not sufficient for the cell to refill 

intracellular stores. In this regard, it is important to note that Mnr2 overexpression did not 

completely suppress the growth defect of the alr1 alr2 strain (Figure 3.10C). Second, in 
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addition to causing mislocalization of Mnr2, overexpression of this protein substantially 

increased its accumulation in the vacuole membrane (Figure 3.10D). If Mnr2 is 

responsible for the efflux of Mg2+ from the vacuole, the resulting increase in activity may 

counteract the storage of Mg2+ in this compartment. Thus, there are at least two valid 

reasons why Mnr2 overexpression might return the cytosolic Mg2+ concentration to a 

near-normal level and restore a near-normal growth rate, but not allow significant 

refilling of vacuolar stores. Interestingly, the expression of some plant Mg2+ transporters 

(e.g. AtMrs2-1) in yeast alr1 alr2 mutants was reported to facilitate growth without 

significantly altering Mg2+ content (da Costa et al, 2007), indicating that this effect is not 

unique to Mnr2. 

3.13.7 Role of Alr2 in Mg2+ homeostasis 

My work also provides some new insights into the role of the Alr2 transporter. 

Alr2 function is somewhat controversial; its apparently minor contribution to homeostasis 

(da Costa et al, 2007; Graschopf et al, 2001; MacDiarmid & Gardner, 1998; Wachek et 

al, 2006) has been attributed to lower expression (MacDiarmid & Gardner, 1998) or to a 

mutation that reduces its activity compared to Alr1 (Wachek et al, 2006). This work 

demonstrates that Alr2 does contribute to homeostasis independent of Alr1, at least in the 

W303 genetic background (Figure 3.9B). Deletion of ALR2 alone significantly reduced 

Mg2+ accumulation, but did not affect growth. The effect of the ALR2 deletion on Mg2+ 

content was consistently observed in several independently isolated mutant strains, 

indicating that it was reproducible. One possible explanation for this phenotype is that in 

cells grown under replete conditions, Alr2 promotes the influx of Mg2+ in excess of 

normal cellular requirements. This could be simply due to the contribution to total Alr 

protein activity provided by this gene, or it could reflect a specific effect of the Alr2 

protein on the activity of heteromeric complexes formed with Alr1 (Wachek et al, 2006). 

Whatever the mechanism, if the Alr2 protein has this effect, then the alr2 mutation would 

prevent the cell from completely filling intracellular stores. In contrast, the alr1 deletion 

had a larger effect on Mg2+ content, and conferred a strong growth defect, suggesting that 

Alr1 is essential for the routine maintenance of the cytosolic Mg2+ concentration.  
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3.13.8  Mnr2 may be required for the maintenance of ER function in Mg2+-
deficient conditions 

In addition to its role in the release of vacuolar Mg2+ stores, I obtained evidence 

suggesting that Mnr2 may also be required for the function of other endomembrane 

compartments. This experiment was suggested by the observation that a fraction of the 

Mnr2 protein may not be associated with the vacuole membrane (Figure 3.6). A portion 

of Mnr2 co-fractionated with markers for the late endosome, ER and mitochondrial 

compartments in density gradients, suggesting it could not be assigned unequivocally to 

any of these compartments. However, I did not observe any obvious alternative location 

for cit-Mnr2 in cells examined with fluorescence microscopy (Figure 3.7). For these 

reasons, the exact location of this fraction of the protein could not be determined, and it 

remains possible that it simply represents an artifact of the cell fractionation technique. 

However, given that Mnr2 would still be expected to transit through the ER and secretory 

pathway on its way to the vacuole, I decided to investigate the effect of the mnr2 

mutation on secretory pathway function. I observed that the mnr2 mutation increased the 

activity of a UPR-regulated lacZ reporter gene in Mg2+-deficient conditions (Figure 

3.11A), suggesting that Mnr2 is important for ER function. Although little is known 

about the role of Mg2+ ions in the ER compartment, there is good reason to believe that 

Mg2+ may be required for ER function. The lumen of the ER is a site where newly 

synthesized proteins are folded and modified, and some of the enzymes essential for these 

processes are Mg2+-dependent. Two examples are the yeast ER-localized protein 

chaperones Kar2 and Lhs1 (Steel et al, 2004). Kar2 is required for the process of ER-

associated protein degradation (ERAD), which exports misfolded proteins from the ER 

lumen (Nishikawa et al, 2001), while Lhs1 plays a role in refolding denatured luminal 

proteins (Hamilton et al, 1999; Hanninen et al, 1999). Both Kar2 and Lhs1 require Mg2+ 

to enable the ATP hydrolysis essential for refolding their substrates (Hamilton et al, 

1999; Tokunaga et al, 1992).  

In light of this information, I suggest two models that may explain the apparent ER 

defect associated with mnr2 mutation. First, Mnr2 may play a direct role in regulating the 

Mg2+ content of the ER lumen, perhaps by supplying Mg2+ to this compartment. Since 
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Mnr2 is likely to represent a channel, the direction of Mg2+ flow through this system 

would be dependent in part on Mg2+ concentration, and under appropriate conditions, the 

opening of the channel may equalize the concentration between the cytosol and the lumen 

of the ER. In support of this model, we note that the highest induction of the UPR 

reporter was observed under severely Mg2+-deficient conditions (under which the supply 

of Mg2+ to the ER and secretory pathway compartments may be more critical).  

Second, it is possible that the apparent cytosolic Mg2+ deficiency associated with the 

mnr2 mutation (as a consequence of a block in the release of Mg2+ stores) could 

indirectly inhibit the function of the secretory pathway, by decreasing the supply of Mg2+ 

to the ER. Since defects in components of the ERAD pathway have been shown to induce 

the UPR (Travers et al, 2000), the inhibition of Kar2 function in the mnr2 mutant might 

explain the induction that we observed. However, we note that in WT yeast, microarray 

experiments did not reveal the induction of known UPR target genes by Mg2+ deficiency, 

(Wiesenberger et al, 2007) suggesting that Mnr2 may play a more specific role in the 

maintenance of ER function. A definitive test of these models will require the 

development of reliable methods to measure the Mg2+ concentration of both cytosolic and 

secretory pathway compartments in yeast. 
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Chapter 4 Effect of intracellular Mg2+ storage on Alr1 
regulation and modification 

4.1 Introduction 

In Ch. 3.5, I described evidence suggesting that the Mnr2 protein regulates 

intracellular Mg2+ stores by releasing Mg2+ from the vacuole under Mg2+-deficient 

conditions. One of the phenotypes of the mnr2 mutant strain was sensitivity to divalent 

cations such as Ca2+, Mn2+, Zn2+, and Co2+ (Figure 3.1). An examination of the elemental 

content of WT and mnr2 mutant strains revealed an increase in the content of Ca2+, Mn2+, 

and Zn2+, most notably under Mg2+ deficient conditions (Figure 3.2). To explain the 

above two observations, I suggested that the mnr2 mutation causes an increase in the 

expression or activity of a non-specific divalent cation transport system in the plasma 

membrane (Ch. 3.13.5).  

Alr1, like other members of CorA family proteins, has been reported to mediate 

low affinity transport of various divalent cations (e.g. Co2+) (MacDiarmid & Gardner, 

1998; Maguire, 2006) making this protein a potential candidate for the induced non-

specific divalent cation transport system. Additional support for this model comes from a 

previous study (Graschopf et al, 2001) reporting that Alr1 expression is regulated by 

Mg2+ availability. The level of Alr1 protein in WT cells was induced under Mg2+ 

deficient conditions, and upon exposure to higher Mg2+ concentrations, the Alr1 protein 

underwent rapid degradation. Since the mnr2 mutation may deplete the cytosolic Mg2+ 

concentration, I suspected that Alr1 expression might be induced to a higher level in this 

mutant. This change might in turn have resulted in a higher rate of accumulation of other 

divalent cations via the Alr1 protein. 

In this chapter, I describe experiments performed to understand the effect of the 

mnr2 mutation on Alr1 expression and activity, and by extension on cytoplasmic Mg2+ 

homeostasis.  

4.2 Effect of Mg2+ supply and the mnr2 mutation on Alr1 protein 
accumulation 

To determine if the mnr2 mutation increased Alr1 accumulation, WT and mnr2 
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strains expressing an epitope-tagged Alr1 

protein (Graschopf et al, 2001) were grown 

in LMM containing a range of Mg2+ 

concentrations. Protein was extracted from 

the cells, separated with SDS-PAGE, and 

subjected to immunoblotting to detect 

epitope-tagged Alr1. As previously observed 

(Graschopf et al, 2001), my experiments 

showed that in WT yeast, Alr1 protein levels 

were elevated after growth in Mg2+ deficient 

conditions (< 100 µM Mg2+) (Figure 4.1A). I 

also observed that Alr1 accumulation was 

significantly elevated in the mnr2 strain. The 

difference in Alr1 accumulation was most 

obvious under moderately deficient 

conditions, but was observed to some extent 

at all Mg2+ concentrations tested. This 

observation supports the hypothesis that the 

mnr2 mutation causes the cell to sense a 

change in Mg2+ availability, via mechanisms 

that regulate ALR1 gene expression or protein 

accumulation. 

The observation that Alr1 protein 

accumulation was increased as a 

consequence of the mnr2 mutation is 

consistent with the model proposed to 

explain the increased divalent cation content 

of this mutant. However, it was not clear 

whether the additional Alr1 protein was 

located at the plasma membrane, or if it was 

accumulated in some other location. To 

 

Figure 4.1 Effect of the mnr2 mutation on 
Alr1 accumulation. (A) WT (DY1457, W) and 
mnr2 (NP4, M) strains transformed with 
YIpAlr1HA were grown to log phase in LMM-
ura media containing a range of Mg2+ 
concentrations. Total protein was extracted 
and separated by SDS-PAGE. Alr1-HA and 
Tfp1 proteins were detected by 
immunoblotting. Protein extracted from WT 
(DY1457) transformed with untagged ALR1 
was included as a (-ve) control for antibody 
specificity. (B) Quantitation of Alr1-HA signal 
in WT and mnr2 strains grown as indicated in 
A. Band density was normalized to the total 
Alr1 signal detected in both strains for each 
replicate. Error bars indicate +/-1 SEM (five 
independent experiments). (C) WT (BY4743) 
and mnr2 strains (BY4743 and isogenic 
ykl064w mutant) expressing YFP-Alr1 (YCpcit-
ALR1 vector) were grown to log phase in SC-
ura, then transferred to LMM + 100 µM Mg2+ 
for 6 hours growth. YFP-Alr1 was detected by 
indirect epifluorescence microscopy. Typical 
cells are shown. 
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verify the location of Alr1 in the mnr2 strain, I determined the location of a version of the 

Alr1 protein tagged with YFP (citrine) on the N-terminus (Ch. 2.5.1). This N-terminally 

tagged version of Alr1 is fully functional (Abhinav Pandey, unpublished data) and its 

expression is usually regulated from the native ALR1 promoter. As previously reported 

(Graschopf et al, 2001), when expressed in a WT strain, YFP-Alr1 signal was 

predominantly detected as a punctate signal at the plasma membrane, with a smaller 

amount of punctate intracellular signal observed in a minority of cells. In the mnr2 

mutant expressing YFP-Alr1, the distribution of signal was not significantly altered 

(Figure 4.1C). In control cells without the tagged ALR1 construct, only a weak diffuse 

cytosolic background signal was observed (data not shown). Since these observations 

were made using cells grown in LMM with 100 µM Mg2+, any difference in location 

associated with the difference in Alr1 expression should have been readily visible. The 

normal (plasma membrane) distribution of Alr1 in the mnr2 strain also demonstrated that 

the growth defect associated with this mutation in Mg2+-deficient conditions (Figure 

3.3A) could not be attributed simply to Alr1 mislocalization and a consequent reduction 

in Mg2+ uptake. 

Together, these observations are consistent with the explanation for the increased 

divalent cation content of mnr2 mutants proposed above, specifically the increased 

expression of the Alr1 low-affinity divalent cation uptake system. This increased Alr1 

expression may also explain the divalent cation sensitivity of mnr2 mutants (Figure 3.1). 

Although cation sensitivity was assayed under Mg2+-replete conditions, where Alr1 

expression was relatively low, an increase in Alr1 expression in the mnr2 strain was still 

observed under replete conditions (100 µM-10 mM Mg2+, Figure 4.1B). In addition, the 

elevated cation content of the mnr2 strain was significantly enhanced under conditions of 

severe Mg2+-deficiency (Figure 3.2 and Figure 3.3B), where an increase in Alr1 

expression was clearly observed (Figure 4.1A). 

4.3 Mechanism of Alr1 regulation 

Since the mnr2 mutation affected Alr1 expression, I wanted to understand how 

this effect occurred. For this reason, it was necessary to study the mechanism by which 

Alr1 is regulated in response to Mg2+ supply. In doing so, I also hoped to develop tools to 



Pisat, Nilambari P. 2009, UMSL, 

 

p.84 

investigate the physiological role of Mnr2 in more detail.  

The expression of many yeast metal transporters (e.g. Zn2+ transporters) has been 

linked to the intracellular content of the corresponding metal ion (Eide et al, 2005). This 

regulation prevents deficiency of essential metal ions, while limiting their 

overaccumulation in replete conditions. Transporter regulation is often mediated at 

several levels, with both transcriptional and post-translational components (Eide, 2006; 

Gaither & Eide, 2000). In most cases, these systems respond to the intracellular 

concentration of the metal ion (rather than 

the external supply). For example, the Zap1 

protein, a transcriptional activator, senses the 

availability of Zn2+ within the cytosol and 

mediates transcriptional regulation of the 

zinc transporter, Zrt1. Zap1 mediates its 

effect on Zrt1 gene expression by binding to 

recognition sites in the promoters of the 

ZRT1 and other Zn2+-regulated genes (Lyons 

et al, 2000). This transporter and other 

examples suggested that transcriptional 

control might be important for Alr1 

regulation. 

In a previous study, the authors 

reported an increase in ALR1 mRNA under 

deficient conditions, based on RT-PCR 

quantification of ALR1 transcript levels 

(Graschopf et al, 2001). However, when 

others in this laboratory attempted to replicate these results using the more direct 

technique of mRNA extraction and Northern blotting, no consistent regulation of the 

ALR1 transcript level was observed (Aandahl Achari and Colin MacDiarmid, 

unpublished data). These observations were made using the same strain described in the 

original report (FY1679, which is derived from the S288C genetic background), as well 

as when using the DY1457 strain (which is derived from the W303 genetic background) 

 

Figure 4.2 Analysis of ALR1 gene 
expression with a lacZ fusion construct. 
WT (DY1457) and mnr2 (NP4) strains were 
transformed with an ALR1 promoter-lacZ 
reporter construct (YEpALR1-lacZ) or a 
promoterless lacZ construct (YEp353). 
Cultures were grown to log phase in LMM-ura 
media with the indicated Mg2+ concentration, 
and assayed for β-galactosidase activity. Error 
bars show +/- 1 SE of the mean (six 
replicates). 
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(Aandahl Achari, unpublished data). These results cast doubt on the earlier report of 

ALR1 transcriptional regulation in response to Mg2+ supply. 

To further investigate ALR1 transcription using an independent approach, I 

generated a construct containing the entire ALR1 promoter region fused to the lacZ 

reporter gene (Ch. 2.6). This construct was introduced into WT and mnr2 strains, which 

were then grown in media supplied with a range of Mg2+ concentrations and assayed for 

β-gal activity. Two observations are evident from this data in Figure 4.2. First, consistent 

with the results of the Northern analysis, there was no significant increase in reporter 

activity under deficient conditions, confirming that ALR1 promoter activity is not 

responsive to Mg2+ supply. Second, there was no major difference in β-gal activity 

between the WT and mnr2 strains at any of the Mg2+ concentrations tested (Figure 4.2).  

From these results it is possible to draw two conclusions. First, the elevated Alr1 

protein accumulation under deficient conditions is not a consequence of an increase in 

ALR1 gene expression. The increase in Alr1 protein might instead be achieved by an 

alternative mechanism, such as the post-translational control of protein stability, or the 

rate of Alr1 translation. Second, the increase in Alr1 accumulation seen in the mnr2 

mutant does not appear to be a consequence of an increase in ALR1 gene expression. This 

increase may again result from a change in the efficiency of some downstream regulatory 

process, such as the regulation of Alr1 protein stability. 

4.4 Effect of Mg2+ concentration on Alr1 stability 

A previous report proposed that the accumulation of the Alr1 protein was post-

translationally regulated by Mg2+ supply (Graschopf et al, 2001). They observed that in 

deficient cells exposed to high Mg2+, Alr1 was rapidly degraded. This process was 

dependent both on endocytosis, and the activity of the Rsp5 ubiquitin ligase (degradation 

was inhibited in end3 and npi1 mutant strains). To duplicate these results, I obtained the 

yeast strain carrying the epitope-tagged Alr1 construct used in the study (FY1679 

transformed with a construct for expression of the ALR1 gene, fused to three repeats of 

the HA epitope at the C-terminal end). This strain was grown in LMM-ura medium 

containing 5 µM Mg2+ for 12 hours to allow Alr1 expression, and the culture was then 

transferred to LMM-ura media containing different concentrations of Mg2+ (5 µM and 1-
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100 mM) (Figure 4.3). In contrast to the previous report, I observed no difference in Alr1 

stability between cells transferred to replete (1-100 mM Mg2+) and those transferred to 

fresh deficient medium (5 µM Mg2+).  

In the above experiments, I deviated from the published protocol (Graschopf et al, 

2001) by omitting cycloheximide from the Mg2+-replete medium. I believed that the rapid 

degradation previously reported upon exposure to Mg2+ would overwhelm the 

contribution of new Alr1 synthesis during this time, making the use of this antibiotic 

unnecessary. However, the high 

stability of the Alr1 protein in my 

experiments suggested that new 

protein synthesis during the time 

course might have counteracted 

the effect of Mg2+ on Alr1 

stability. To determine if this was 

the case, I added 100 µg/ml 

cycloheximide to the Mg2+-replete 

medium before transferring the 

cells. In this experiment (Figure 

4.4), a three-hour exposure of 

deficient cells to Mg2+ 

concentrations up to 500 mM did 

not result in a reproducible 

decrease in the protein compared 

to controls. Although a small 

decrease in the stability of the protein from the cells exposed to high Mg2+ concentrations 

(100 and 500 mM) in the absence of cycloheximide was observed in this individual 

experiment, the previous experiment (Figure 4.3) failed to show decrease in the protein 

stability in cells exposed to 100 mM Mg2+concentration. 

 

Figure 4.3 Alr1 stability was unaffected by Mg2+ 
repletion. FY1679 transformed with YIpALR1-HA was 
grown in LMM-ura containing 5 µM Mg2+ for 12 hours. The 
cells were washed with water, then transferred to LMM 
containing 5 µM, 1 mM, 10 mM or 100 mM Mg2+ (left). 
Aliquots were taken at 0, 30, 90, and 180 minutes, protein 
was extracted, and 20 µg of protein was separated on a 
7.5% gel. After blotting to nitrocellulose, the Alr1 and Tfp1 
proteins were detected using the appropriate antibodies. 
Total protein extracted from the FY1679 strain expressing 
untagged Alr1 was included as a control for antibody 
specificity (-ve). 
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These results cast doubt on one published finding, that the stability of the existing 

pool of Alr1 in deficient cells is dependent on Mg2+ supply. In support of my findings, 

other workers in this laboratory have generated similar results (Aandahl Achari, Colin 

MacDiarmid, unpublished results), as has an independent laboratory (Richard Gardner, 

unpublished results). Others in this laboratory subsequently performed experiments to 

investigate the mechanism of Alr1 regulation and obtained results that were consistent 

with the stability of Alr1 observed here. The results of some of these experiments, and 

how they relate to an overall model of Alr1 regulation, are discussed in the summary 

section. However, in subsequent investigations, I decided to focus on other interactions of 

the MNR2 and ALR1 genes, as outlined below. 

4.5 Post-translational modification of Alr1  

During the above experiments, I noticed an interesting effect of Mg2+ on the Alr1 

protein. On exposure of Mg2+ deficient cells to Mg2+replete conditions, the single band of 

Alr1-HA protein seen in Western blot underwent rapid change to a form with slower 

mobility (Figure 4.3) (henceforth, the change in the mobility of the Alr1-HA protein is 

alternatively referred as "modification" in this report). The modification was most 

obvious when proteins were separated via SDS-PAGE gels containing a lower percentage 

of acrylamide (5%) than was normally used (7.5-10%). In the experiment shown, this 

effect was predominantly seen in the cells exposed to 100 mM Mg2+ (Figure 4.3), 

possibly due to an extended run time for this electrophoresis experiment (other 

 

Figure 4.4 Effect of cycloheximide and Mg2+ treatment on Alr1 stability. Cells of FY1679 
transformed with YIpALR1-HA were grown in LMM-ura containing 5 µM Mg2+ for 12 hours. The cultures 
were washed, then transferred to media with 5 µM, 1 mM, 10 mM, 100 mM, or 500 mM Mg2+, with or 
without 100 µg/ml cycloheximide as indicated. Cultures were incubated at 30°C and aliquots of cells 
removed at 0 or 180 minutes for protein extraction. 30 µg of protein was subjected to 7.5% SDS-PAGE 
and immunoblotting to detect the Alr1-HA and Tfp1 proteins. Protein from FY1679 expressing untagged 
Alr1 was included as a control for HA antibody specificity (-ve). 
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experiments indicated that as little as 1 mM Mg2+ could trigger this change). This change 

occurred within 30 minutes of exposure to Mg2+, consistent with a previous study of Alr1 

regulation (Graschopf et al, 2001). The change in Alr1 mobility suggests that the Alr1 

protein is post-translationally modified on exposure to Mg2+, for example by 

phosphorylation or ubiquitination. Many plasma membrane nutrient transporters (e.g. 

Zrt1) have been shown to undergo such modifications in response to elevated 

concentrations of their substrates (Gitan et al, 1998). However, the apparent stability of 

Alr1 suggests that this modification is not ubiquitination (since the addition of ubiquitin 

would be expected to trigger rapid degradation of the protein). A recent report attributed 

the change to phosphorylation, based on a reduction in the abundance of the lower 

mobility form after treatment with lambda protein phosphatase (Wachek et al, 2006). 

These observations suggested that the lower mobility form of Alr1 (with the higher 

apparent molecular weight) is the phosphorylated form. 

Modification of Alr1 in response to Mg2+ could occur as a consequence of a 

change in conformation that exposes sites capable of being phosphorylated. The Mg2+-

binding sites visualized in the CorA structure are likely to be present in the Alr1 protein, 

since the residues responsible for interaction with Mg2+ in T. maritima CorA are tightly 

conserved in Alr1 (data not shown). I hypothesize that when cytosolic Mg2+ availability 

increases, the Alr1 protein can bind Mg2+ at these conserved sites. Occupancy of these 

sites may in turn change the conformation of the Alr1 complex, and trigger 

phosphorylation by an unidentified kinase. If this model is correct, the extent of Alr1 

modification might provide an indirect measure of cytosolic Mg2+ availability. In 

addition, modification may contribute in part to the regulation of Alr1 activity. For this 

reason, I believed it was important to study the effect of mnr2 mutation on this Mg2+-

dependent Alr1 modification. 

I first examined the effect of decreasing the intracellular Mg2+ content on the rate 

at which the Alr1 protein was modified. I predicted that if Alr1 was modified in response 

to decreasing Mg2+ availability, a WT strain with a lower Mg2+ store would show a faster 

rate of Alr1 modification when compared to cells having higher internal stores. In 

addition, I predicted that (irrespective of their intracellular Mg2+ content), mnr2 cells 

would display a faster rate of Alr1 modification than WT, because of the inaccessibility 



Pisat, Nilambari P. 2009, UMSL, 

 

p.89 

of the intracellular Mg2+ store in this mutant. 

To perform this experiment, WT and mnr2 strains expressing epitope-tagged Alr1 

were grown in LMM media containing either low (100 µM) or high (250 mM) Mg2+ 

concentration for 12 hours. These treatments generated either Mg2+ -unloaded or loaded 

cells respectively. The 100 µM concentration was chosen because this medium should 

significantly deplete Mg2+ stores while still allowing active growth. The cells were then 

transferred to a medium containing no Mg2+ to study the effect of depleting intracellular 

Mg2+ stores on the Alr1 protein. Aliquots of cells were taken to measure cell density and 

Mg2+ content during the experiment (Figure 4.5A and B). Directly after transfer to fresh 

medium and at 

intervals thereafter, 

aliquots of the cells 

were removed and 

protein was 

extracted under 

denaturing 

conditions (to 

prevent any 

subsequent 

modification of the 

Alr1 protein in 

vitro). Alr1-HA and 

control proteins were separated by SDS-PAGE and detected by Western blotting (Figure 

4.6).  

As expected, loading cells with Mg2+ generated a 2-fold difference in the Mg2+ 

content of WT cells at the start of the experiment (Figure 4.5B). WT loaded cells grew 

30% more than unloaded cells over 24 hours, and depleted their intracellular Mg2+ 

content to ~50% of its starting value during this time. This observation is consistent with 

my previous experiments (Figure 3.4A and B) showing that Mg2+-replete cells have 

excess Mg2+ content that can be used to support growth under deficient conditions. I 

concluded that the initial difference in Mg2+ stores between loaded and unloaded WT 

 

Figure 4.5 Growth and Mg2+ content of Mg2+-loaded and unloaded cells 
during incubation in Mg2+-free medium. WT (DY1457) and mnr2 (NP4) 
strains transformed with YIpAlr1-HA were grown for 12 hours in LMM-ura 
containing a low (100 µM) or high (250 mM) Mg2+ concentration (generating 
unloaded and loaded cells respectively). The cultures were then transferred 
to LMM-ura containing no added Mg2+. At the indicated times, aliquots were 
removed for measurement of cell density (A) and Mg2+ content via AAS (B). 
A single representative experiment is shown. 
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cells was significant enough to produce variation in the Mg2+ concentration of the cytosol 

during their subsequent incubation in Mg2+-free conditions. 

As previously observed (Figure 3.4A), mnr2 cells displayed a growth defect 

when transferred to deficient conditions (Figure 4.5A). Despite differences in their initial 

Mg2+ content, both loaded and unloaded mnr2 cells showed the same slow rate of growth 

in Mg2+-free medium. In addition, the Mg2+ content of both loaded and unloaded mnr2 

cells did not decrease during 

growth, remaining similar to 

the starting values even after 

24 hours of incubation. These 

observations are consistent 

with mnr2 mutant lacking the 

ability to access intracellular 

Mg2+ stores to support growth. 

In protein extracts of 

WT loaded and unloaded cells 

at the zero time point, two 

major bands of Alr1-HA were 

detected. Initially, the 

predominant band (Figure 

4.6A, band 1) had a lower 

mobility, but over time, this 

low-mobility band was 

completely replaced by a 

higher-mobility band (Figure 

4.6A, band 2). I suggest that this change indicates a gradual change in the form of the 

Alr1 protein in response to Mg2+-deficient conditions (it is also possible that some of the 

newly formed band was contributed by newly-synthesized Alr1, but this fraction was also 

in a different form from the original protein). This modification was the opposite of that 

observed when cells were transferred from deficient to replete conditions (Figure 4.3) 

(Graschopf et al, 2001). In extracts from WT unloaded cells (low-no Mg, Figure 4.6A), 

 

Figure 4.6 Effect of intracellular Mg2+ supply on Alr1 
modification during Mg2+-depletion. Protein was extracted 
from aliquots of cells removed at the indicated times during the 
experiment described in Figure 4.5. The extracts were analyzed 
by 5% SDS-PAGE and immunoblotting to detect Alr1-HA and 
Tfp1. Time courses for unloaded WT cells (A), loaded WT cells 
(B), unloaded mnr2 cells (C) and loaded mnr2 cells (D) are 
shown. "Low" and "High" indicate unloaded and loaded cell 
preparations. The location of the lowest and highest mobility 
forms of Alr1 are indicated (1 and 2 respectively). 
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the transition to the new form was essentially complete by 6 hours. However, the loaded 

WT cells (high-no Mg, Figure 4.6B) showed a slower rate of Alr1 modification, and 

lower mobility forms were still present 8 hours after transfer. This difference in the rate 

of Alr1 modification between loaded and unloaded cells was consistently observed in 

several different experiments (data not shown). Since no Mg2+ was available in the 

medium, this observation suggests that the form of the Alr1 protein depends upon 

intracellular Mg2+ availability, rather than the external concentration. 

When the response of the mnr2 mutant was determined, I observed a very clear 

difference from WT. At the start of the time course, there appeared to be slightly more of 

the higher mobility form 

of Alr1 present in both 

loaded and unloaded 

mnr2 cells. This 

observation suggests that 

even replete mnr2 cells 

may exhibit a slight 

cytosolic Mg2+ 

deficiency compared to 

WT. After transfer to 

Mg2+ deficient 

conditions, both 

unloaded (low-no Mg, 

Figure 4.6C) and loaded (high-no Mg, Figure 4.6D) mnr2 mutant cells showed similar 

rapid rates of Alr1 modification. Modification to the higher mobility form was essentially 

complete within 2 to 3 hours. The observation that a major variation in the initial Mg2+ 

store had no effect on the rate of this transition appears to provide further evidence that 

the mnr2 mutation prevents intracellular stores from contributing to Mg2+ homeostasis. 

I also performed control experiments to confirm that the change in Alr1 

modification that I observed was a consequence of Mg2+-deficiency (and for example, not 

simply a response to transferring the cells to fresh growth medium). In these experiments, 

the cells were transferred to fresh media containing the same concentration of Mg2+ as the 

 

Figure 4.7 Growth and Mg2+ content of yeast strains during 
incubation in Mg2+-replete conditions. Cultures of DY1457 (A, WT) 
and NP4 (B, mnr2) strains expressing Alr1-HA were grown in low or 
high Mg2+ conditions to generate loaded or unloaded cells, as 
previously described (Figure 4.5). Cells were harvested, washed, 
transferred to fresh aliquots of the same medium (low Mg2+ to low 
Mg2+, or high Mg2 to high Mg2), and incubated for up to 24 hours. At 
the indicated times, samples were removed for measurement of cell 
density (A595) and Mg2+ content (via AAS). One representative 
experiment is shown. 
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original culture (100 µM or 250 mM). As before, I monitored growth and Mg2+ content 

of the cells during the time course (Figure 4.7). Both strains exhibited robust growth in 

either Mg2+ concentration, although the higher concentration had a minor inhibitory 

effect on growth (an effect that I have observed in other experiments). Mg2+ content at 

the start of the experiment matched that expected for the conditions and genotypes used. 

During the experiment, content fluctuated somewhat, but was not substantially altered by 

the end of the time course. Alr1 modification was also monitored for up to 24 hours 

(Figure 4.8A and B). In extracts from either loaded or unloaded WT cells, the lower 

mobility form of Alr1 predominated for the entire time course. In the mnr2 mutant, I 

observed the same slight increase in the higher mobility form in both loaded and 

unloaded cells at the start of 

the time course. Interestingly, 

after transfer to fresh medium, 

the small amount of the higher 

mobility form that was present 

previously rapidly 

disappeared, and the lower 

mobility form predominated 

for the remainder of the time 

course. Thus, when either WT 

or mnr2 cells were supplied 

with adequate Mg2+ 

throughout the time course, I did not observe a transition to the higher mobility form, as 

would be expected if this change reflected the induction of Mg2+ deficiency. 

4.6 Summary and discussion  

The initial goal of the experiments reported in this chapter was to investigate the 

effect of inactivating the MNR2 gene on one aspect of Mg2+ homeostasis, the regulation 

of ALR1 gene and protein expression. The rationale behind these investigations was that 

since ALR1 expression had been reported to respond to Mg2+ availability, I expected that 

a loss of Mnr2 function would cause disruptions in Mg2+ homeostasis, which might in 

 

Figure 4.8 Alr1 modification under Mg2+-replete conditions. 
Samples of yeast were prepared from WT (DY1457) and mnr2 
(NP4) strains during growth in medium with low (100 µM) or high 
(250 mM) Mg2+, as described in Figure 4.7. Protein was 
extracted and fractionated by SDS-PAGE, and the Alr1-HA and 
Tfp1 proteins were detected by immunoblotting. Protein 
extracted from DY1457 expressing untagged Alr1 was included 
as a control for antibody specificity (-ve). 
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turn perturb Alr1 regulation. If so, this effect might in part explain some other phenotypes 

of mnr2 mutants, in particular their higher content of divalent cations such as Ca2+ and 

Mn2+, and their sensitivity to these cations. In the longer term, these investigations might 

provide novel tools to study other aspects of Mg2+ homeostasis in yeast, such as Mg2+-

responsive reporter genes. The results of these studies appear to establish that the mnr2 

mutation does affect some aspects of Alr1 regulation and biology, in particular the level 

of Alr1 protein accumulation, but has no effect on ALR1 gene expression. I also identified 

an effect of the mnr2 mutation on the gel mobility of the Alr1 protein, suggesting that the 

altered Mg2+ levels resulting from this mutation affects the post-translational modification 

of Alr1. These findings, and their relevance to the model previously proposed to explain 

Mnr2 function (Figure 3.12 and Ch. 3.5), are summarized below. 

4.6.1 Alr1 modification and Mg2+ homeostasis 

Another finding described in this work was that Alr1 underwent an apparent post-

translational modification in response to Mg2+ supply resulting in a change in its mobility 

in SDS-PAGE. In Mg2+-replete conditions (Mg2+ > 100 µM), the Alr1 protein was 

primarily present in a lower-mobility form, while under Mg2+-deficient conditions the 

mobility of the protein was increased. Most interestingly, the rate at which this 

modification occurred was influenced by the mnr2 mutation, suggesting a dependence on 

intracellular Mg2+ availability. A previous study attributed the change in Alr1 mobility to 

phosphorylation of the protein (Graschopf et al, 2001; Wachek et al, 2006), but these 

experiments were poorly controlled, and it is possible that the observed effect was due to 

the degradation of this protein during the assay. Despite this uncertainty, I believe that 

Alr1 is likely to be phosphorylated in replete conditions for the reasons outlined below. 

First, when Mg2+-deficient cells were transferred to replete medium, there was a rapid 

conversion of the low form of Alr1 to the high form (within 30 minutes in 100 mM, 

Figure 4.3, and data not shown). The speed of this transition was consistent with a post-

translational modification like phosphorylation rather than a slower process such as the 

de novo synthesis of an alternative form of the protein. Second, a previous survey of the 

yeast proteome identified a peptide derived from Alr1 that was phosphorylated at serine 

residue 190 (Peng et al, 2003). I suggest that this peptide is unlikely to represent the only 
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site of Alr1 modification, as only a small number of peptides derived from Alr1 were 

identified in the Peng study. In addition, several intermediate forms of Alr1 are visible on 

Western blots (Figure 4.6) implying that several different residues are modified. Third, a 

recent study determined the ability of various purified yeast kinases to phosphorylate the 

yeast proteome in vitro (Ptacek et al, 2005). These researchers reported that Alr1 was 

phosphorylated by several purified kinases (Fus3, Tos3, Atg1, Tpk1 and Ptk2). Although 

these results do not prove that Alr1 is a target for these kinases in vivo, they do 

demonstrate that recognition sites for these kinases are present in the protein. 

Interestingly, the same study also demonstrated the in vitro phosphorylation of Alr2 by 

the Atg1, Ptk2 and Tpk1 kinases, and of Mnr2 by the Ptk2, Sky1, Pho85/Pho80, Tpk1, 

Tpk2, and Tpk3 kinases. The Tpk1 kinase (which can phosphorylate all three proteins) is 

one of three isoforms of protein kinase A (PKA) in yeast (cAMP-dependent protein 

kinase) [reviewed in (Hardie et al, 2006)]. PKA regulates many different processes 

broadly connected with cell growth, including the response to essential nutrients. Another 

kinase identified in this study, Ptk2, is involved in regulating polyamine transport in 

yeast, which is a process that some studies have connected with Mg2+ transport via the 

Alr proteins (Maruyama et al, 1994). Thus, phosphorylation of these proteins by PKA 

and Ptk2 could very well have a significant role in regulating Alr1 function. 

4.6.2 The mnr2 mutation increased Alr1 accumulation 

As previously reported (Graschopf et al, 2001), I observed that Alr1 accumulation 

was elevated in Mg2+-deficient conditions, suggesting that yeast cells can regulate ALR1 

expression according to Mg2+ supply. Since a previous report attributed this regulation in 

part to changes in ALR1 mRNA levels, I initially suspected that the mnr2 mutation 

exerted its effect on Alr1 protein accumulation primarily via an effect on gene regulation. 

However, Northern blotting and hybridization experiments failed to provide evidence for 

an effect of Mg2+-supply on the expression of the ALR1 gene (Aandahl Achari and Colin 

MacDiarmid, unpublished data). When an ALR1 promoter-lacZ fusion construct was used 

to measure ALR1 promoter activity, no effect of Mg2+ supply was observed (Figure 4.2) 

and the mnr2 mutation also had no effect on the activity of this reporter construct. Based 

on this data, I concluded that the previous report of ALR1 gene regulation was inaccurate, 
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and that the effect of the mnr2 mutation was not mediated through an effect on ALR1 

gene expression.  

If Alr1 protein levels were not determined by mRNA level, then what mechanism 

is responsible for the effect of Mg2+ and the mnr2 mutation on Alr1 protein 

accumulation? One possibility is that the Alr1 protein is post-translationally regulated via 

the control of protein stability (Graschopf et al, 2001). According to this model, the 

stability of the Alr1 protein is high in Mg2+ deficient cells, but is reduced upon repletion. 

When Mg2+ availability increases, plasma membrane-localized Alr1 is modified by 

ubiquitination, rapidly internalized by endocytosis, trafficked to the vacuole, and 

degraded in a Pep4-dependent process. However, based on my experiments and those of 

others in this laboratory, it appears that the stability of the existing pool of Alr1 protein in 

deficient cells is unaffected by exposure to excess Mg2+.  

My results raise the question of why key observations in a previous report were 

not reproducible (Graschopf et al, 2001). My experiments to analyze the effect of Mg2+ 

on Alr1 stability were performed under conditions in which Mg2+ accumulation is known 

to occur (Figure 3.3B) (Lee & Gardner, 2006), suggesting that inefficient Mg2+ uptake 

was not responsible for the absence of Alr1 degradation. In addition, similar experiments 

performed in parallel with another metal-regulated protein (the Zn2+ transporter, Zrt1) 

were successful in demonstrating its destabilization by Zn2+ (Aandahl Achari, 

unpublished data), indicating that the stability of Alr1 was not a consequence of some 

fundamental flaw in the experimental strategy. As previously noted, independent research 

groups also failed to reproduce key observations in the previous report (Richard Gardner, 

personal communication).  

An independent approach to studying the effect of Mg2+ on Alr1 stability is to 

examine its effect on protein location. When a YFP-tagged version of the Alr1 protein 

(YCpcit-ALR1) was expressed in Mg2+-deficient WT yeast, and the cells were then 

transferred to replete medium, signal was initially observed at the plasma membrane as 

expected (Lauren Stein, unpublished observations). After 2 hours of incubation in high 

Mg2+ medium, no internalization of the Alr1 protein was observed, indicating that Mg2+ 

supplementation did not accelerate endocytosis of Alr1. In addition, the end3 mutation 

(which blocks endocytosis) (Raths et al, 1993) had no effect on the distribution of the 
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protein after two hours (in both WT and end3 strains, it remained on the plasma 

membrane). Thus, even using an independent experimental approach, rapid 

internalization and degradation of Alr1 in response to Mg2+ was not observed. 

Another finding of the previous report (Graschopf et al, 2001) was that various 

genetic changes affected Alr1 regulation. For example, the end3, rsp5, npi1 and pep4 

mutations were reported to prevent Alr1 degradation following Mg2+ repletion. Other 

workers in this laboratory also attempted to replicate these observations, with mixed 

success (Aandahl Achari, Abhinav Pandey, and Colin MacDiarmid, unpublished 

observations).  

Since we could not detect any Mg2+-stimulated degradation of Alr1, the effect of 

the mutations (end3, rsp5 (npi1) and pep4) on the steady-state accumulation of Alr1 in 

Mg2+-deficient and replete conditions were determined. From these experiments, it was 

concluded that the rsp5 mutation (which prevents ubiquitin-protein ligase (Rsp5) 

mediated protein degradation) (Graschopf et al, 2001; Hein et al, 1995) and the pep4 

mutation (which prevents protein turnover in vacuoles) (Jones et al, 1982) did in fact 

inhibit the regulation of Alr1 accumulation (Abhinav Pandey, unpublished observations). 

These observations are consistent with the initial model (Graschopf et al, 2001), which 

proposed that in replete conditions Alr1 was ubiquitinated (via an Rsp5-dependent 

process), internalized, and delivered to the vacuole for degradation (a Pep4-dependent 

process). The possible involvement of ubiquitination in Alr1 regulation is also supported 

by a recent proteomic survey (Peng et al, 2003), which identified Alr1 as a component of 

a mixture of ubiquitin (Ub)-conjugated proteins. In contrast to the previous report 

however (Graschopf et al, 2001), the end3 and dim1 mutations that prevent endocytosis 

had no effect on regulation (Aandahl Achari, Abhinav Pandey and Colin MacDiarmid, 

unpublished observations). These observations are consistent with the lack of response of 

the YFP-tagged Alr1 protein to high Mg2+ in both WT and end3 strains (see above), and 

together suggest that plasma membrane-localized Alr1 is resistant to internalization and 

degradation in response to high Mg2+ concentrations.  

4.6.3 Revised model for Alr1 regulation 

Given the above observations, how is the steady-state regulation of Alr1 protein 
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level achieved? (Figure 4.1A). Although the plasma membrane localized pool of YFP-

tagged version of Alr1 is apparently relatively insensitive to high Mg2+ concentration 

(Lauren Stein, unpublished observations), factors implicated in the regulation of protein 

stability and sorting (Pep4 and Rsp5) are required for regulation. In addition, the effect of 

mnr2 mutation on Alr1 accumulation (Figure 4.1A) is most easily explained based on a 

model in which Alr1 accumulation is coupled to the cytosolic Mg2+ concentration.  

Taking the above factors into consideration, I suggest a revised model for Alr1 

regulation outlined here. I propose that upon translation of the Alr1 protein and its 

subsequent insertion in the ER membrane, the yeast cell makes a decision about the fate 

of the protein that is based on the current level of cytosolic Mg2+. In Mg2+-deficient cells, 

the protein follows a "default" sorting pathway and accumulates in the plasma membrane, 

where it can mediate Mg2+ uptake. In Mg2+-replete cells, the protein is modified by the 

addition of ubiquitin, and is then sorted to the vacuole for degradation. In pep4 and npi1 

mutants, the protein is either ubiquitinated and accumulates in the vacuole lumen (in 

pep4), or fails to be ubiquitinated and follows the default pathway to the cell surface (in 

npi1). If cytosolic Mg2+ homeostasis is perturbed genetically (by the mnr2 mutation), the 

proportion of Alr1 sorted to the vacuole is reduced, and the steady state level of the 

protein increases. Similar processes of regulation have been observed for some other 

regulated yeast transporters. For example, in non-permissive conditions, the Gap1 amino 

acid transporter is also directly sorted from the Golgi to the vacuole for degradation, 

without transit through the plasma membrane (Scott et al, 2004). Thus, precedent for this 

mode of regulation exists in yeast. 

One argument that might be made against the above model is that the stability of 

the Alr1 protein in deficient cells was not affected by Mg2+ status (Figure 4.4) and in 

some way is misleading. For example, the Alr1 protein may have been internalized in 

response to Mg2+ repletion, but not degraded. However, I do not believe this is the case, 

for the following reasons. First, as previously noted, the rate of Mg2+ uptake by deficient 

cells is constant for at least three hours (Figure 3.3C). Second, as previously discussed, 

other workers in this laboratory examined the location of Alr1 directly (Lauren Stein, 

Frank Donovan and Colin MacDiarmid, unpublished observations). When a YFP-tagged 

version of Alr1 (YCpcit-ALR1) was expressed in Mg2+-deficient yeast cells, it was 
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present at the cell surface as expected. Subsequent exposure of the cells to Mg2+-replete 

medium for up to three hours did not appreciably change the location of the protein. 

Thus, since Alr1 remains on the plasma membrane after Mg2+ exposure, any down-

regulation of the activity of the protein would require its modification in situ. 

4.6.4 Genetic tests of the trafficking model 

 Other work in this laboratory appears to provide additional support for the above 

model. For example, several other genes have been identified as required for the 

regulation of Alr1 accumulation (Abhinav Pandey and Colin MacDiarmid, unpublished 

data). As previously reported (Graschopf et al, 2001), other members of this laboratory 

have also observed a dependence on the PEP4 gene for Alr1 regulation, indicating a 

requirement for vacuolar proteases (an observation which is consistent with post-

translational regulation). The npi1 and doa4 mutations are both associated with an 

increased accumulation of Alr1 in Mg2+-replete conditions. Both of these genes are 

required for correct regulation of ubiquitination in yeast (Belgareh-Touze et al, 2008; 

Swaminathan et al, 1999). The npi1 mutation reduces the activity of the essential Rsp5 

gene by 90% (Springael & Andre, 1998). This mutation is associated with reduced 

ubiquitination of many regulated membrane proteins and a consequent increase in their 

stability (Galan et al, 1996; Springael et al, 2002). The doa4 mutation eliminates the 

activity of an enzyme required for the cleavage of Ub from modified proteins before their 

delivery to the vacuolar lumen for degradation. As with npi1, this mutation stabilizes 

many plasma membrane proteins (Dupre & Haguenauer-Tsapis, 2001). Although this 

mutation reduces the level of free Ub within the cell, a reduction in Ub availability is not 

thought to be the reason for the effect of the mutation on protein stability. Instead, recent 

studies implicate the role of Doa4 as a sorting factor required for the delivery of 

ubiquitinated proteins to the vacuole lumen (Nikko & Andre, 2007). In the absence of 

Doa4, these proteins are sorted from the vacuolar membrane back to the plasma 

membrane via retrograde transport pathways (Nikko & Andre, 2007).  

In addition to these factors, genes required for the correct function of protein 

sorting pathways (specifically, the sorting of ubiquitinated proteins to the vacuole) were 

also found to be required for Alr1 regulation. For example, a strain lacking the VPS27 
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gene, and one lacking both the GGA1 and GGA2 genes, were defective in Alr1 

regulation. VPS27 is required for sorting of ubiquitinated proteins from the pre-vacuolar 

compartment (PVC) to the vacuole (Piper et al, 1995), while GGA1 and GGA2 are 

partially redundant genes required for the sorting of ubiquitinated proteins from the late-

Golgi to the PVC (Scott et al, 2004). The effect of these mutations on Alr1 regulation is 

consistent with my proposed model that in replete conditions, ubiquitinated Alr1 follows 

a pathway from the late-Golgi direct to the vacuole. Ubiquitination of Alr1 could occur in 

the Golgi under replete conditions, mediated by Rsp5. Further evidence for this model of 

direct sorting from Golgi to vacuole were provided by experiments showing that the end3 

and dim1 mutations, which prevent endocytosis, had no effect on Alr1 regulation, 

consistent with a model in which regulation primarily occurs via trafficking directly from 

Golgi to vacuole. 

If the above model is correct, it does raise the question of why plasma membrane-

localized Alr1 would not be targeted for ubiquitination and internalized upon Mg2+ 

repletion, as is the case for many other regulated nutrient transporters (Roberg et al, 

1997). One possibility is that, because of the relatively non-toxic nature of Mg2+ ions, 

such a "rapid-response" system for Alr1 downregulation is simply unnecessary. It is also 

possible that the Alr1 protein at the plasma membrane can sense and respond to increased 

cytosolic Mg2+ by immediately lowering its activity, as has been reported for bacterial 

CorA channels (Payandeh et al, 2008). This model would make sense in light of the 

rather slow uptake of Mg2+ by deficient yeast (Figure 3.3C). I previously suggested that 

this slow Mg2+ uptake is limited by the ability of the cell to sequester Mg2+ in the vacuole. 

Given that Alr1 is a cation channel, and should display the rapid transport characteristics 

of such proteins, the slow rate of uptake observed suggests that transport via Alr1 is not 

the rate-limiting step in Mg2+ accumulation. Instead, I suggest that the rate of 

sequestration in the vacuole determines the rate of overall uptake. By this model, uptake 

would proceed until cytosolic Mg2+ concentrations reached a critical level, at which time 

the Alr1 channel would close. When sufficient sequestration had taken place to lower the 

cytosolic level, Alr1 would open again and allow Mg2+ influx. Such a regulated uptake 

process might prevent the overaccumulation of cytosolic Mg2+, and thus reduce the 

possibility of Mg2+ toxicity during repletion. 



Pisat, Nilambari P. 2009, UMSL, 

 

p.100 

Chapter 5 Summary and future directions 

5.1 Summary and significance of this work 

My studies involving Mnr2 characterization have provided new information on 

Mg2+ homeostasis in yeast and other eukaryotes. As summarized in Figure 3.12, the data 

presented in this dissertation are consistent with a model in which Mnr2 functions as a 

cation efflux system in the vacuole membrane. Under conditions of cytosolic Mg2+ 

deficiency, the Mnr2 protein allows the release of Mg2+ from stores held in the vacuolar 

compartment. This released Mg2+ can then be utilized to allow cells to continue growth 

for a short time in the absence of an external Mg2+ supply. Mnr2 also participates in Mg2+ 

homeostasis over a range of Mg2+ concentrations, as indicated by the higher Mg2+ content 

of mnr2 mutants grown in replete conditions. However, the primary importance of Mnr2 

(and vacuolar Mg2+ stores in general) is evident from the phenotypes of mnr2 deletion 

mutants, which were unable to deplete intracellular Mg2+ stores under deficient 

conditions, and displayed a severe growth defect. The mnr2 mutation was also associated 

with two other phenotypes suggestive of lower intracellular Mg2+ availability, the 

increased accumulation of the Mg2+-responsive Alr1 protein, and an increase in the 

abundance of a higher-mobility form of this protein associated with Mg2+ deficiency. 

This work provides the first description of a transporter that regulates Mg2+ homeostasis 

by controlling access to an intracellular Mg2+ store. In this chapter, I will describe 

experiments that might be performed to further test this basic model, and discuss the 

general implications of my findings to the field of Mg2+ homeostasis and to 

biotechnology in general. 

5.2 Role of Mnr2 in homeostasis of other divalent cations 

In addition to its clear role in Mg2+ homeostasis, the mnr2 mutant also showed 

sensitivity to, and increased content of, other divalent cations, notably Mn2+ and Ca2+. 

These phenotypes of the mnr2 mutant suggest that Mnr2 may also participate in the 

homeostasis of these cations. In some respects this observation is not surprising, given 

the relatively broad specificity of CorA-family proteins for divalent cations (Graschopf et 

al, 2001; MacDiarmid & Gardner, 1998). Based on the observations reported here, there 
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are at least two models that could explain the above phenotypes. First, it is possible that 

the mnr2 mutation has the same effect on the intracellular storage of other divalent 

cations as it does on Mg2+ storage; i.e., the mnr2 mutation could block the release of 

these cations from the vacuolar compartment. It is clear from published work that the 

vacuole is a major site for storage of potentially toxic cations such as Zn2+, Fe2+ and Ca2+ 

(Dunn et al, 1994; MacDiarmid et al, 2000; Paidhungat & Garrett, 1998; Simm et al, 

2007). Transport systems responsible for storage of these cations (Li et al, 2001a; 

MacDiarmid et al, 2000; Pozos et al, 1996) as well as systems responsible for their 

release from the vacuole under deficient conditions have been identified (e.g. Zrt3 for 

Zn2+, Smf3 for Fe2+, and Yvc1 for Ca2+) (Denis & Cyert, 2002; MacDiarmid et al, 2000; 

Palmer et al, 2001; Portnoy et al, 2000). In addition to these specific systems, it is 

possible that under appropriate conditions, Mnr2 provides a "low-affinity" system that 

allows efflux of these metals from the vacuole when they are present at high 

concentrations. This observation would not be unusual, as redundancy of low and high 

affinity transport systems is a feature of ion homeostasis in yeast (Waters & Eide, 2002). 

If Mnr2 does play this role, loss of its activity could result in higher levels of cation 

accumulation in the vacuole. This effect might be more obvious under conditions in 

which rates of metal influx into the cell are high and vacuolar stores are filled (for 

example, when cells are grown with very high concentrations of metals, or when a low 

environmental Mg2+ allows elevated influx of other divalent cations via Alr1). 

A second possible explanation for the higher divalent cation content of the mnr2 

mutant is that it occurs as a consequence of another effect on Mg2+ homeostasis. I 

observed several different effects of the mnr2 mutation on the major Mg2+ transport 

system of yeast, Alr1. The mnr2 mutation is associated with a significant increase in the 

accumulation of the Alr1 protein in the cell without any change in the subcellular 

distribution of the protein (as determined by fluorescence microscopy). This observation 

suggested that mnr2 mutants might have a higher activity of Alr1 at the cell surface. If so, 

this protein might provide a route for increased influx of various divalent cations into the 

cell, particularly under conditions of low external Mg2+ content. Previous work has 

shown that the overexpression of Alr1 increased both the rate of 57Co2+ uptake and 

sensitivity to this cation as well as conferring sensitivity to many other divalent cations 
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(including Mn2+, Ca2+, Ni2+, and Zn2+) (MacDiarmid & Gardner, 1998). Reducing the 

Mg2+ concentration of yeast media enhances the toxicity of most divalent cations, 

suggesting that these cations compete with Mg2+ for transport via Alr1 (Blackwell et al, 

1997; Eitinger et al, 2000; Joho et al, 1991).  

5.3 Measurement of Alr1 activity 

To distinguish between the above two models, it would be best to directly 

examine the effect of the mnr2 mutation on Alr1 activity. If increased activity of Alr1 at 

the plasma membrane is responsible for increased divalent cation uptake (model 2), it 

should be possible to measure this difference directly by measuring the initial rate of 

cation uptake. Currently it is possible to measure Mg2+ uptake by monitoring the total 

Mg2+ content of yeast cells after transfer from deficient to replete conditions (Figure 

3.3C). From published work, it is clear that this process is dependent on the Alr proteins 

(Lee & Gardner, 2006). However, the rate of this uptake process is very slow (Figure 

3.3C), suggesting that it may be limited by the rate of sequestration in the intracellular 

store rather than the activity of Alr1, per se. In addition, because detection of this uptake 

requires that cells first be depleted of Mg2+ stores, it is not possible to use this protocol to 

compare the rate of uptake (and hence Alr1 activity) in replete and deficient cells, or to 

compare strains that vary in their initial Mg2+ content under these conditions. For 

example, this technique could not be used to measure uptake in WT vs mnr2 mutants 

(Figure 3.3C), as the substantial stores present in Mg2+-deficient mnr2 cells complicated 

the subsequent measurement of Mg2+ uptake rate in replete conditions (as well as the 

interpretation of the results).  

Although one study described the use of electrophysiological techniques for 

measurement of Alr1 activity (Liu et al, 2002), the use of such methods in yeast is 

technically very demanding. In addition, this technique required the overexpression of 

Alr1, which would prevent its use to study normal variations in Alr1 expression and 

activity. A simple quantitative method to measure Alr1 activity in yeast is required to 

better understand how Alr1 contributes to Mg2+ homeostasis, and to investigate the role 

of phosphorylation in this process. Previous studies of Alr1 activity utilized a radioactive 

cobalt isotope (57Co2+) to measure a relatively rapid uptake process possibly mediated by 
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the Alr proteins (MacDiarmid & Gardner, 1998). These studies demonstrated that the 

overexpression of Alr1 or Alr2 resulted in a substantial increase in the rate of 57Co2+ 

accumulation, while ALR1 deletion reduced this activity. The authors concluded that the 

Alr proteins provided a "low affinity" Co2+ uptake system, and that 57Co2+ was therefore a 

useful tracer for studies of Alr activity. These studies were inconclusive however, in that 

they did not fully define the contribution of the Alr proteins to total Co2+ uptake. 

Although the mutant strain showed reduced uptake activity, this decrease could have 

been a consequence of a general decline in the viability of this strain in response to the 

defect in Mg2+ homeostasis associated with this mutation. This is an important caveat 

because as several systems are known to accumulate Co2+ in yeast (Li & Kaplan, 1998; 

Liu et al, 1997), and Co2+ uptake may be a relatively non-specific assay for Alr activity.  

Despite this uncertainty about Co2+ however, the use of alternative substrates to 

study the activity of the Alr proteins has a lot of potential. Several divalent cations have 

been suggested to be substrates for the Alr proteins, based on the enhanced sensitivity of 

strains overexpressing these proteins (MacDiarmid & Gardner, 1998). It may be possible 

to identify a divalent cation for which transport is almost entirely mediated by the Alr 

proteins under a particular condition. Such a cation might be identified by utilizing 

known or potential inhibitors of the Alr proteins to define the proportion of total uptake 

contributed by the Alr proteins. For example, hexaminecobalt (III) chloride has been 

shown to be a very effective and specific inhibitor of bacterial (Kucharski et al, 2000), 

fungal (Kolisek et al, 2003) and plant (Li et al, 2001b) CorA-family proteins. Although 

the effect of this inhibitor on Alr activity has not been tested, it seems likely that it would 

also be an effective inhibitor of these systems. Another possible Alr inhibitor is Al3+ ion 

(MacDiarmid & Gardner, 1998), although the specificity of this inhibitor for CorA-type 

proteins is not as well defined. Finally, Mg2+ itself should competitively inhibit the 

uptake of other divalent cations via the Alr proteins, although it may not be as effective 

as the above two candidates. A simple screen for metal uptake could be performed by 

incubating yeast cells with a mixture of all potential Alr substrates (Ni2+, Co2+, Zn2+, 

Mn2+, and Ca2+) in the presence or absence of inhibitors. A change in the content of all 

the cations over time could be measured simultaneously by using ICP-MS. The cation 

showing the most robust uptake in the absence of inhibitor, but minimal uptake in the 
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presence of the inhibitor would be selected for further study. Control experiments could 

then be performed to verify the specificity of the tracer. For example, I would expect that 

in strains overexpressing the protein, uptake of the substrate would be enhanced, and that 

this increased activity would also be sensitive to inhibition. 

Once a suitable tracer is identified, it may be possible to measure the activity of 

the Alr proteins in yeast over relatively short time periods (so as to measure the initial 

rate of the uptake process). Measurement of the initial rate of uptake would be essential 

to ensure that the activity of the Alr protein itself was being studied rather than the rate of 

secondary processes, such as the intracellular sequestration of the cation. Using a 

radioactive isotope of the metal may facilitate measurement of initial rates of transport 

(isotopes of Ni2+ and Mn2+ are available that would be suitable for this task). Rapid 

measurements may also be possible using ICP-MS. The effect of the mnr2 mutation on 

uptake activity could then be determined. As controls, I would include a strain that 

overexpressed the Alr1 protein (I would expect this strain to show faster uptake of the 

tracer used). In addition, it would be advisable to determine the level of Alr1 expression 

observed in the various strains. This would enable me to definitively determine if the 

increased activity was due to increased expression under the exact conditions used in the 

experiment, or if it could be due to another effect (for example, the post-translational 

modification of Alr1, as discussed below). 

5.4 Identifying phosphorylated residues in Alr1  

Before we can understand the physiological role of the post-translational 

modification of Alr1, it will be necessary to demonstrate that the modification observed is 

primarily phosphorylation. The conventional method to determine if a protein is 

phosphorylated is to purify it. For example, immunoprecipitation could be used to purify 

small amounts of an epitope-tagged version of the protein. The purified protein could 

then be subjected to Western blotting using antibodies that recognize the epitope tag (as a 

positive control), and phosphorylated residues such as phosphoserine or 

phosphothreonine. In this way, it could be directly demonstrated that the slow-mobility 

form was phosphorylated, as only this form would be expected to react with the antibody. 

Controls could be included in this experiment to show that the slower-mobility form 
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could be transformed into the faster form by treating the purified protein with a 

phosphatase enzyme, such as calf intestinal phosphatase (Heredia et al, 2001). I would 

expect that this faster form would not react with antibodies specific to phosphorylated 

residues.  

The above experiment would demonstrate that the protein was phosphorylated, 

and might suggest which class of residue was involved (serine, threonine or tyrosine), but 

it would not identify the specific residue(s) that are modified. It is clear from my work 

that several residues may be modified, and the large number of potential phosphorylation 

sites in Alr1 identified by software tools such as NetPhosYeast (Ingrell et al, 2007) 

makes identifying the exact sites of phosphorylation a difficult task. A recent study used 

an evolutionary approach to predict phosphorylation sites for PKA in yeast proteins 

(Budovskaya et al, 2005). As the consensus recognition site for PKA is R-[KR]-X-S, 

potential sites can be identified using simple sequence database searches. Although such 

sites will occur randomly in any protein sequence with fairly high frequency, functional 

sites will tend to be conserved between closely related homologs from different yeast 

species. The authors found that a consensus PKA recognition site within the Alr1 

sequence (RRKTM, at T612) is conserved in Alr1 homologs from several closely related 

species (Budovskaya et al, 2005). The location of this site differed from that previously 

identified as phosphorylated by Peng et al. (Peng et al, 2003), and there is no direct 

evidence for Alr1 modification at this location. Nevertheless, the identification of these 

sites provides a useful starting point for any genetic analysis of phosphorylation.  

Interestingly, potential sites for PKA were also found at amino acid (aa) 611 of 

Alr2, and at aa 162 and 618 of Mnr2. During my work on Mnr2, I noticed that this 

protein also shows an apparent Mg2+-dependent modification (Figure 3.5C). In Western 

blots, a lower mobility form of Mnr2 is observed in low Mg2+ (< 100 µM). This 

observation suggests that Mg2+-dependent modification, most likely via phosphorylation, 

is not restricted to Alr1 but may instead represent a general strategy for regulation of 

these channels. 

The fastest way to identify specific sites of Mg2+-dependent phosphorylation in 

Alr1 may be to purify the protein and utilize mass spectrometry for analysis. A 

polyhistidine tract (Hengen, 1995) or Tandem Affinity Purification tag (Tagwerker et al, 
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2006) could be added to the N-terminal end of the protein to allow its purification from 

cell lysates. Cells expressing these constructs could be grown in Mg2+-deficient and 

replete conditions to generate cell extracts containing predominantly one or the other 

form of Alr1. The Alr1 protein would be purified from each extract under conditions 

designed to prevent dephosphorylation (for example, using denaturing conditions to 

inactivate endogenous phosphatases). Western analysis of the protein would be used to 

verify that the purified protein showed the same difference in mobility as I observed in 

crude protein extracts. Enough of the protein would need to be purified for it to be 

visualized on SDS-PAGE gels. Both bands could then be excised from the gel, purified, 

and subjected to protease digestion (to obtain peptides) prior to mass spectrometry. The 

peptides derived from high Mg2+ and low Mg2+ samples would be compared for a mass 

shift of 80 Daltons in serine, threonine and tyrosine residues indicative of 

phosphorylation. This approach was successful on a much larger scale in yeast (Peng et 

al, 2003), even to the extent of identifying Alr1 peptides in a digest of the entire yeast 

proteome. As an added advantage, this approach may also allow to identify other post-

translational modifications of Alr1, including ubiquitination, which has been implicated 

in the regulation of Alr1 accumulation. 

The necessity of the above strategy may have been preempted by recent progress 

in yeast proteomics however. Many general studies have now been performed to 

characterize the yeast phosphoproteome using mass spectroscopy (Ficarro et al, 2002). 

The results of these studies have been collated into web databases such as PeptideAtlas 

(King et al, 2006) and Phosphopep (Bodenmiller et al, 2007) to provide a resource for the 

preliminary identification of defined phosphorylation sites on yeast proteins. Searching 

the database of compiled results for Alr1 phosphorylation sites revealed five 

phosphorylated residues, including two serine residues (S847 and S850) in the C-terminal 

cytosolic domain. Interestingly, work in this laboratory has revealed a possible role for 

this domain in the regulation of Alr1 protein accumulation by Mg2+ supply (Abhinav 

Pandey, personal communication). In addition, alignment of the C-terminal domain 

sequence with closely regulated Alr1 homologs reveals that the potentially 

phosphorylated S847 and S850 residues are very tightly conserved (identical in 10/10 

fungal sequences). The existence of these conserved residues at the C-terminal end of 
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Alr1 suggests that they might play a role in regulating Alr1 stability. For example, the 

phosphorylation of Alr1 may be a prerequisite for its ubiquitination. Genetic evidence 

suggests that ubiquitination plays a role in the regulation of Alr1 stability (Graschopf et 

al, 2001), and there are several examples from yeast of phosphorylation (or 

dephosphorylation) preceding the ubiquitination of post-translationally regulated 

membrane proteins (e.g. Gap1) (Garrett, 2008). Modifying these residues to determine 

their importance to regulation would be one way to test this model. 

5.5 Known functions of ion channel phosphorylation 

In addition to its potential role in regulating Alr1 stability, phosphorylation might 

also allow the activity of the Alr1 channel to be modulated according to Mg2+ 

availability. Studies of other channels have revealed that such modification can affect 

channel activity via different mechanisms. These include changing the sensitivity of a 

ligand-dependent channel to activation by its ligand, changing the activity of the channel 

directly (via alteration of the open probability), or changing the degree to which 

regulatory subunits (inhibitory or stimulatory) associate with the core channel. For 

example, the inositol 1,4,5-trisphosphate receptor (IP3R) is a Ca2+ channel located in the 

ER membrane responsible for the release of Ca2+ from ER stores in response to an 

increased cytosolic concentration of the IP3 signaling molecule (Vanderheyden et al, 

2008). The IP3R is phosphorylated at several sites by at least 12 different protein kinases. 

Although the function of this phosphorylation in many cases remains unclear, some clear 

effects have been documented. For example, phosphorylation of the IP3R subunit 1 by 

protein kinase A has been shown to result in an increase in channel sensitivity to IP3 (the 

receptor ligand) (Tang et al, 2003). This channel also serves as an example of how 

phosphorylation can affect channel interactions with other regulatory proteins. PKA 

phosphorylation of the IP3R1 subunit is thought to reduce its interaction with calmodulin, 

enhancing channel activity (Tang et al, 2003). 

Another good example of the effect of phosphorylation on channel activity is the 

Kir3 protein, one of a family of inward rectifying potassium channels regulating heart 

function. Phosphorylation of Kir3 by PKA was reported to modulate the response of the 

channel to cAMP-dependent activation. Mutation of the S385 residue of the Kir3 protein, 
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which prevented phosphorylation, strongly reduced its activation by the cAMP pathway 

(Rusinova et al, 2009). The activity of several other inwardly rectifying Kir channels are 

also modulated by phosphorylation by PKA or PKC (Karle et al, 2002; Keselman et al, 

2007). These kinases phosphorylate different residues in the proteins, and have different 

effects on function (either stimulating or suppressing activity). 

The mammalian TRPM6 and TRPM7 proteins form another class of channel 

specific for Mg2+ ions [(reviewed in (Cao et al, 2008a)]. As outlined previously (Ch. 

1.9.1), these proteins are primarily responsible for Mg2+ uptake by mammalian cells, and 

play an important role in whole-body Mg2+ homeostasis through their function in 

regulating Mg2+ reabsorption by the kidney (Schlingmann & Gudermann, 2005). The 

TRPM proteins are unusual in having a cytoplasmic domain consisting of an active 

protein kinase of an unusual type (the  α-kinase domain). This domain has been 

demonstrated to phosphorylate associated channel subunits, and is also capable of 

autophosphorylation. Genetic studies have suggested that the kinase domain is important 

for the interaction of TRPM channels with a regulatory protein, RACK1 (Cao et al, 

2008b), which modulates channel activity. Thus, phosphorylation may play a role in 

regulating the primary mechanism of Mg2+ uptake in mammalian systems. Use of the 

yeast model system to study the physiological role of Mg2+ transporter modification may 

also throw light on the role of this modification in mammalian cells. 

5.6 Genetic analysis of phosphorylation 

Although a role for phosphorylation in regulating Alr1 activity is an interesting 

model, it should be noted that there is as yet little evidence that Alr1 activity is modified 

by Mg2+ availability. As previously discussed, this absence of information is primarily 

due to the lack of simple and accurate techniques for such measurements. Once a reliable 

method for the measurement of Alr1 activity is established, it would be possible to 

perform studies to measure the effect of Mg2+ supply on Alr1 activity, and to determine if 

the predominant form of the Alr1 protein affects this activity. In addition, it would also 

become possible to perform genetic studies to define the role of specific residues on Alr1 

activity. For example, once residues modified by phosphorylation were identified, it 

would be possible to mutate these residues to either prevent or simulate modification of 
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the protein. Replacement of a phosphorylated serine by alanine for example, would 

prevent its modification, while replacement with aspartate would simulate constitutive 

phosphorylation of that residue. The modified versions could then be reintroduced into 

yeast to measure the effect of the mutations on activity (or some other parameter such as 

protein stability). The advantage of this approach is that it allows the effect of the 

modification to be measured in cells grown under identical conditions, removing the 

variable of Mg2+ supply from the interpretation of the results. Development of this assay 

would also allow a determination of the effect of the mnr2 mutation on Alr1 activity. The 

mnr2 mutation altered both Alr1 accumulation and the degree of Alr1 modification. 

Either of these effects may have increased Alr1 activity, an effect that might explain the 

increase in divalent cation content of the mnr2 mutant detected with ICP-MS.  

A second question raised by this work is to identify which protein kinases (and 

protein phosphatase enzymes) are responsible for Alr1 modification. Identification of 

phosphorylated residues may provide clues to the kinases responsible, because these 

enzymes generally recognize consensus sequences within proteins (as discussed above 

for PKA). Identifying the kinase responsible for Alr1 modification may be as simple as 

screening kinase mutants to determine which strains are unable to phosphorylate the Alr1 

protein. Some clues to the identity of the kinase are already available in the form of 

studies performed to determine the in vitro substrate specificity of yeast kinases 

(described above). Assuming that phosphorylation does play a role in Alr1 regulation by 

Mg2+ supply, identification of the kinase(s) responsible may provide clues to the signal 

transduction pathway that senses Mg2+ availability. This response may represent a 

specific reaction to the absence of Mg2+, or it may reflect a more general physiological 

response to nutrient limitation, or a decreased growth rate. Either way, such findings 

would provide interesting insights into this poorly understood area. 

5.7 Parallels between Mg2+ homeostasis in yeast and plants 

In contrast to yeast, where only five different CorA transporters are present, there 

are many different CorA family genes in plants. In sequence, these proteins are most 

closely related to the yeast Mrs2 and Lpe10 channels of the mitochondrial membrane 

(Gregan et al, 2001a). However, characterization of several of the Arabidopsis proteins 
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has demonstrated that they play diverse roles, including mediating Mg2+ uptake over the 

plasma membrane and transport into chloroplasts. The function of majority of these 

proteins is unknown at present, but it is very likely that one or more members of this 

family are involved in regulating vacuolar Mg2+ content. Differentiated plant cells 

contain large vacuoles that, as in yeast, play an important role in the storage of essential 

inorganic nutrients [reviewed in (Martinoia et al, 2007)]. 

One interesting parallel observed between my work and plant biology is in the 

field of ionomics. The ionome is the content of inorganic nutrients in an organism. 

Possible variation in the yeast ionome was previously determined by screening a 

collection of approximately 4500 viable yeast deletion mutants for those mutations that 

affect elemental content (Eide et al, 2005). The screening defined a set of 212 mutant 

strains that had an altered content of at least one of 13 elements measured when grown 

under "replete" conditions. Some interesting correlations between these different mutants 

were observed. For example, most of the mutants identified showed variation in content 

in several different elements indicating that the mutations were generally pleiotrophic. In 

fact, only four out of the 212 mutations affected only one element. This observation 

suggests that processes essential for general homeostasis of a variety of different 

elements, rather than more specific transport functions, were altered by the mutations. In 

agreement with this conclusion, a major class of mutants affected vacuolar formation or 

function, for example, by preventing the generation of the vacuolar proton gradient. A 

particular feature of this class of mutants is a decrease in Mg2+, P, Ni2+ and Co2+ content, 

presumably because the vacuole was less able to accumulate these elements. Since the 

proton gradient is essential for the transport of cations into the vacuole, and the content of 

this compartment has a large influence on overall elemental content, it is understandable 

that the content of several elements is affected in these mutants.  

This type of analysis has also been extended to plant systems (Lahner et al, 2003). 

In this study, mutant populations of A. thaliana were subjected to systematic ICP-MS 

analysis to identify novel mutations affecting elemental content. Fifty-one mutants were 

isolated in this screen, and many of these plants had alterations in Mg2+ content, meaning 

that this could be a useful method for analysis of Mg2+ homeostasis in Arabidopsis. A 

similar study was performed recently in Lotus japonicus (Chen et al, 2008), indicating 
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that this method is applicable not just to model plant systems. Interestingly, in the later 

study, a subgroup of mutations with pleiotrophic effects on Mg2+, Co2+, Ni2+ and P 

content was identified. These mutations may identify genes involved in vacuolar 

function, as observed in yeast. ICP-MS analysis of the mnr2 mutant revealed that this 

mutation was also pleiotrophic, altering yeast content of Mn2+, Zn2+, Ca2+ and P in 

addition to Mg2+. Since my work showed that Mnr2 affects vacuolar ion homeostasis, it 

seems possible that some of the mutations now being identified in plants have similar 

effects, and may even encode members of the CorA-family. 

The description of the ionome in plants, and the characterization of genes 

encoding specific element transport systems is an essential step towards the 

biotechnological manipulation of elemental content. Making specific changes in the 

degree to which plants accumulate and store various elements would facilitate many 

biotechnological advances. As an indication of the importance of this information, it is 

clear that many modern high-yielding crops have a significantly lower content of many 

inorganic nutrients (Davis, 2009) including Mg2+, Fe2+, Cu2+ and Ca2+. For some 

elements, reduction in the nutrient content is substantial (for example, in one comparison 

of modern and "classic" varieties of 20 vegetable crops, copper content decreased an 

average of 80%). Much of this decrease is likely a consequence of selection for higher 

yield and bulk, without co-selection for nutrient content. The definition of model plant 

and crop plant ionomes would facilitate reversing this trend by the use of specific genome 

modifications, potentially without altering valuable traits for high yield. In this context, 

pleiotrophic mutations that alter content of several elements at once may be very useful, 

as modification or addition of only a single gene could promote the accumulation of 

several different elements.  

One gene family that represents a good example of this idea was described 

recently (Uauy et al, 2006). The NAM genes from wheat affect the redistribution of 

nutrients from the plant to the developing seed. Three NAM genes were shown to be 

important for this transfer process, and plants lacking NAM genes function stored less 

nitrogen, Zn2+ and Fe2+ in the seed. The NAM genes encode transcription factors that 

may regulate the expression of transport systems required for nutrient redistribution from 

leaf cells. Given the importance of seed nutrient content to agriculture and human 
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nutrition, the identification of the NAM genes represents a major advance, and the 

identification of other genes that affect nutrient content will hopefully follow. 

Another major application for genes affecting elemental content is the 

bioaccumulation of valuable or toxic soil components. Some plants have been developed 

as tools for accumulating elements from soil, a process called phytoextraction [reviewed 

in (Chaney et al, 2007)]. In this technique, a plant variety capable of hyperaccumulating a 

potentially toxic element (and which is generally very tolerant to the element) is grown in 

soil containing a high concentration of that element. Such soils can occur naturally or as a 

result of human activity (for example, due to contamination with mine or factory waste). 

Harvesting the plant allows it to be disposed of at a safe location, removing the toxic 

element from the soil. Repeated cycles of this process eventually lead to the rehabilitation 

of the site, with minimal human intervention. In some cases, the element can be 

recovered from the harvested plant material, providing a profitable means of "mining" the 

metal.  

Nickel (Ni2+) is one such element for which this process has been proven to be 

economically viable. Ni2+ hyperaccumulator species (e.g. Alyssum murale) can 

accumulate 100-fold more Ni2+ in the shoot than other crop plants without a decrease in 

yield. When Alyssum murale was grown in naturally Ni2+-rich serpentine soils, the ash 

derived from burning the crop consisted of 25-50% Ni2+ (Tappero et al, 2007). The 

relatively pure Ni2+ present in this material makes it the richest Ni2+ ore available for 

smelters. Hyperaccumulators that show specific ability to accumulate various elements 

have been described, including those for Zn2+, Co2+, Cd2+, Mn2+ and Ni2+. The tolerance 

and hyperaccumulation phenotypes of these species have been attributed to higher 

activity of metal transport systems (Pence et al, 2000) as well as the biosynthesis of metal 

chelating metabolites such as nicotianamine or histidine (Pianelli et al, 2005), although 

the specific contribution of many of these compounds to tolerance is still controversial. 

Ionomic analysis of hyperacumulator species may be one way to identify the genes 

involved in these processes. One feature of bioaccumulators that does seem clear is that 

the metal ions tend to be stored in the vacuoles of the plant cells (Tappero et al, 2007), an 

observation which again demonstrates the parallels between basic mechanisms of metal 

homeostasis in yeast and plants.  
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