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Translating Counting Problems into
Computable Language Expressions

Section 1: Introduction

The field of Natural Language Processing (NLP) is an increasingly popular

area of research in the Artificial Intelligence (AI) field. There are many

significantly difficult problems in this area, such as natural language

understanding, universal language modelling, etc., (see [6]). In this thesis, we

target a subproblem of NLP: Mathematical Language Processing (MLP). This

subfield is important because it is essential for developing a powerful AI

mathematics problem solver. Additionally, many complex issues that most NLP

projects require, such as understanding idioms, politics, culture background, etc.,

can be avoided in MLP. Although the context used in MLP is greatly reduced

compared to generalized NLP, it is still a challenging problem. Since there are so

many types of mathematics problems in a large number of areas, we will not

target the general mathematics problems at this point. Thus, in this thesis, we

restrict our focus to a special class of mathematics problems – Counting Problems.

There are several research inquiries in this area. Some immediate

examples that come to mind are the ANALOGY program written by Evans [7]

and ARIS, which solves arithmetic word problems with verb categorization [4].

These papers mainly focus on a special type of mathematics problem, Word

Problems, and most of them deal with relatively simple word problems. One of

the best programs in this area that is currently available is Wolfram Alpha, an

application that provides a large array of mathematical functionalities including

the ability to solve word problems. Unfortunately, despite the advanced

mathematical capabilities that Wolfram Alpha possesses, it is somewhat lacking

in the domain of NLP, and when faced with a college-level problem, fails to



3

extrapolate vital components of the problem. For example, it cannot solve the first

counting problem in our database. These approaches do two things together: 1)

Understand the meaning of those mathematics problems; 2) Solve those problems

based on that understanding. There is a big drawback with this approach.

Currently, the AI problem solver is weak and non-robust, as it cannot handle

relatively hard mathematics problems. If an AI program that intends to understand

the meaning of a mathematics problem must worry about the problem-solving

part, then a large variety of mathematics problems cannot be included in the MLP

program. For example, the famous Goldbach Conjecture can address this point.

Goldbach Conjecture: Every even integer greater than two could be written as the

sum of two primes.

This problem demonstrates a problem for an AI to work with: it is extremely

hard to solve, but it is very easy to understand the meaning. A better approach for

MLP is decoupling the tasks of understanding the meaning of a mathematics

problem and solving the problem, so that the MLP program can focus on

understanding without worrying about the problem-solving part. Based on this,

we will separate a typical AI mathematics problem solver into two independent

problems: 1) Translate a mathematics problem from a human language to a

computer-friendly language; 2) Solve the mathematics problem automatically by

an AI. In this thesis, we will work on the first problem: Developing an AI

program that can translate a mathematics counting problem into some computer-

friendly language.

Section 2: Framework of Mathematical Language Translation

Part I.
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We will introduce our model for problem translation into our mathematical

language. Before discussing the specifics of the translated mathematical language,

we would like to first cover our goals in developing the language. Consider the

following problem:

There are four qualities that we would like to discuss in our translation.

First, the translation is intended to be computation friendly. This project

primarily aims to take a math problem in an unstructured, natural language and

reconvey it in a format that a computer could more easily understand. As an

example, the simple phrase, “How many integers,” implies to the AI that it must

return some quantity specifying a number of integers. This simple notion can be

extrapolated as follows:

[#enum#] := {#int#}

(This representation will be expanded on in later sections.) By representing the

object to be counted in this way – an idea we call the enumerator – the AI will be

able to draw upon any functions, mathematical rules, and/or properties, which

apply specifically to integers.

Second, the translation must be accurate. By restricting ourselves to counting

problems, we may take a set-oriented approach to solving them. This means that

virtually every problem we work with can be approached by defining a set, filling

that set with every instance of the object to be counted, and then returning the

cardinality of that set. As a student might similarly brute force a counting problem,

likewise the result that the AI returns should be the solution. For this to work, the

AI must be able to precisely translate the problem into our new language.

For example, when the AI attempts to solve the listed problem, it will first

define a set. Next, it will fill that set with every integer from 1 through 999,999

that contains each of the digits 1, 2, and 3, at least once. Finally, it will return the

How many integers from 1 through 999,999 contains each of the digits 1, 2,
and 3 at least once?
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cardinality of that set. How the AI fills the set is beyond the scope of this thesis;

all that matters is making the AI translate the problem into a format that it can

work with.

Third, the translation must also be unambiguous. In natural languages, there

are often phrases that require context to be understood. For example, look at the

phrase, “Go down the road a ways and turn right.” The true meaning of this

instruction depends entirely on the interpretation of, “a ways,” which does not

specify any distance or landmarks to watch for and may lead the reader to the

incorrect destination. However, the message itself is not necessarily incorrect.

Whereas the quality of accuracy was related to ensuring the correct meaning was

specified, the quality of being unambiguous entails there being no other possible

meaning for our translation, or no other way that the components of the

translation can be understood.

Lastly, the translation should be concise. This means that any information

which is not critical to the solution will not appear in the translated work. In the

problem introduced at the beginning of this section, there is little text data that is

noncritical or without use. Consider a different problem:

One might consider 8 Ws, 2 Ts, and 4 Ls, then count all the different ways that

these 14 symbols can be arranged in order to reach the final answer. However,

phrases such as “James and a friend” or “one night” do not provide the AI with

any special constraints to which to adhere, nor any extra information regarding

how the individual elements of the set should be organized. The translated text

will not include this extraneous information. Conversely, the number 14 is

James and a friend played 14 games of tic-tac-toe one night. In how many
ways can James end the night with eight wins, two ties, and four losses?
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significant, as are the quantities of wins, losses, and ties. The translated text must

parse this information from the input.

Part II

In this part, we would like to go more in depth into how the process of

problem translation takes place.

Natural Language Processing

Because the user input is in the form of textual data, we will be using

natural language processing techniques to determine our translation. Natural

language processing is broadly defined as the automatic manipulation of natural

language, like speech and text, by software. Although this area of study draws on

only half of a century’s worth of research, there is a broad process to which we

will attempt to conform.

There are said to be two basic approaches to NLP. One is through rule-

based processing, in which every rule and step in translation was written by a

human being. The other approach is machine-learning processing; this draws on a

large corpus of text data in order to solve the given problem. Our project takes on

a rule-based approach, as our focus on counting problems and using a set-oriented

perspective should simplify the problem enough that we will not have to draw too

heavily on the work of linguistics, as that would cause us to stray from our

original problem. Furthermore, although it is a common pitfall of rule-based

approaches, we do not expect our system to grow overly complicated.

There is a third way that one might approach NLP called the hybrid

approach, which uses both methods. Though it is true that we intend to use some

amount of machine learning to help our knowledge base grow, this will be largely

overshadowed by the usage of rules and prewritten patterns to recognize key

phrases and words similar to the model in Wang et al. [8]. These will help us

determine the important information.
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In terms of the processing, the first step in building a translation is

tokenization, or the splitting of the input text into individual words or phrases.

Unfortunately for our purposes, this is not as straightforward as breaking a

sentence into words, removing punctuation, and then placing the words into a list.

There are several things wrong with this approach. For one, the phrase

“how many” is significant to understanding the problem because the noun

immediately following the phrase gives us the context into what we are trying to

count, such as what processes are acceptable on it. It would be far more efficient

and logical for those two words to be processed as a single unit. Another instance

is how the range in a problem might be specified; although a basic tokenizer splits

this into four separate words, the phrase “from 1 through 999,999” conveys a

single piece of information. In fact, the phrase “from [some number] through

[some number]” is a commonly reproduced pattern; we intend to create a database

of patterns that the AI can compare the original text with in order to formulate the

text in logical, processable tokens.

In short, an off-the-shelf tokenizer will not suit our needs. This observation is

magnified by our intention to use a database to interface with our AI (expanded

on later). Below, the problem is reorganized into more logical tokens:

“How many integers from 1 through 999,999 contains each of the digits 1, 2,
and 3 at least once?”

…

[“How”, “many”, “integers”, “from”, “1”, “through”, “999999”, “contains”,
“each”, “of”, “the”, “digits”, “1”, “2”, “and”, “3”, “at”, “least”, “once”]

“How many integers from 1 through 999,999 contains each of the digits 1, 2,
and 3 at least once?”

…

[“How many”, “integers”, “from 1 through 999999”, “contains”, “each of”,
“digits”, “1, 2, and 3”, “at least once”]
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We next consider stemming. Stemming involves simplifying a word to its

root. Manning et al. [5] describes the goal of this process as “to reduce

inflectional forms and sometimes derivationally related forms of words to a

common base form.”

This example serves a dual purpose; it demonstrates the process of

stemming by showing the sort of sentence that a stemmer might create. A similar

process is used by Google’s search engine in order to understand different word

forms and find related articles. However, it also conveys how the original

meaning has been somewhat lost. Notice how when “is” is changed back into its

root form, the connection between “repeat of digit” and “not allow” is far less

clear from a high-level perspective? The parser may have a more difficult time

drawing a connection between these two tokens. This is an obstacle we believe

can be overcome with proper processing of tokens. Eliminating ambiguity is a

worthwhile tradeoff.

Stemmers often come in NLP software packages and should be sufficient

for our purposes. By using one, it will be simpler for our AI to interface with our

database of previous problems.

There is one final NLP-related aspect of the translation left to be

mentioned. Earlier, we indicated the usefulness of tokenization, and the necessity

of constructing tokens that did not consist of words by themselves, but rather

connected words that conveyed related ideas. We need a reliable way to identify

significant terms into phrases. This is a two-fold process. Keywords (such as the

“How many four digit odd numbers can be created using only the digits 0, 1,
2, 3, 4, and 5 if repetition of digits is not allowed?”

…

“How many four digit odd number can be create use only the digit 0 1 2 3 4
and 5 if repeat of digit be not allow?”
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aforementioned “how many” or “from” and “through”) can be used to indicate

related words and phrases. Alternatively, tokens may be generated with the aid of

part-of-speech tagging, or POS tagging.

POS tagging uses a lexicon to identify words and determine to which

category they belong. Referencing our usual example:

For this example, we used the Universal Part-Of-Speech Tagset to classify

the words, as in chapter five of Bird et al. [1]. Based on our understanding of

tokenization, virtually every token should have either a noun (marked NN) or a

numeral (marked NUM). If there are others, they will have to be detected by

keywords. Furthermore, identifying which words belong in any given token will

be based on the way they are structured. As an example, a determine or article

(marked DET) usually indicates the beginning or end of a token.

With this groundwork, we can discuss the first step in translation: breaking

the input text into tokens. First, we stem the input text, breaking every word into

its original form. Next, we use POS tagging to obtain extra information about the

structure of the text. Finally, using pattern matching and keywords, we divide the

text into tokens using a tokenizer that we will develop ourselves.

“How many integers from 1 through 999,999 contains each of the digits 1, 2,
and 3 at least once?”

…

[(‘How’, ‘QW’), (‘many’, ‘ADV’), (‘integers’, ‘NN’), (‘from’, ‘IN’), (‘1’,
‘NUM’), (‘through’, ‘IN’), (‘999,999’, ‘NUM’), (‘contains’, ‘VB’), (‘each’,
‘DET’), (‘of’, ‘ADP’), (‘the’, ‘DET’), (‘digits’, ‘NN’), (‘1’, ‘NUM’), (‘2’,
‘NUM’), (‘and’, ‘CC’), (‘3’, ‘NUM’), (‘at’, ‘ADP’), (‘least’, ‘ADV’), (‘once’,
‘NUM’)]
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Rule-Based Translation

Once the text has been broken into tokens, the next step is to translate the

tokens into our new format. For some parts of the problem, this is relatively

straightforward; a single token can be represented as one or two lines in our

translation. Other pieces of information require more ingenuity to extrapolate, as

they require us to recognize the connections between multiple tokens. In either

case, however, our translation AI uses keywords and pattern matching to properly

derive meaning.

Patterns and keywords are intrinsically related in this project. Patterns are

stored in our database. Each one corresponds to at least one line in our translation.

Some of them require the classification that the POS tagger provided us, while

others incorporate the actual words. In either case, patterns consist of keywords.

For this project, keywords are simply said to be the building blocks of patterns.

As the translator parses each word, it compares the word with a database of

keywords which allow the AI to correctly select the patterns needed.

“How many integers from 1 through 999,999 contains each of the digits 1, 2,
and 3 at least once?”

…

“How many integer from 1 through 999999 contain each of the digit 1 2 and 3
at least once?”

…

[(‘How’, ‘QW’), (‘many’, ‘ADV’), (‘integer’, ‘NN’), (‘from’, ‘IN’), (‘1’,
‘NUM’), (‘through’, ‘IN’), (‘999999’, ‘NUM’), (‘contain’, ‘VB’), (‘each’,
‘DET’), (‘of’, ‘ADP’), (‘the’, ‘DET’), (‘digit’, ‘NN’), (‘1’, ‘NUM’), (‘2’,
‘NUM’), (‘and’, ‘CC’), (‘3’, ‘NUM’), (‘at’, ‘ADP’), (‘least’, ‘ADV’), (‘once’,
‘NUM’)]

…

[“How many”, “integers”, “from 1 through 999999”, “contains”, “each of”,
“digits”, “1, 2, and 3”, “at least once”]
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Words that are written out are meant to be understood as they are.

However, words that are in brackets specifically refer to the tags that the POS

tagger assigns. In this case, NUM refers to a numeral. If one of these patterns is

matched, then the translator will generate a range. A range merely consists of a

minimum number and a maximum number. Referencing our usual example:

Once the AI begins processing the third token, “from 1 through 999999,” it will

create a range from 1 through 999,999, inclusive. Keep in mind that, at this point,

we do not know to what this range refers; until we process the other tokens, we

will not know if this is a range to select integers from or perhaps a range to NOT

select integers from. For a smaller range, like “1 to 5”, it could be a set to select

digits from, or something else entirely. However, the four keywords in this token

are proof enough that the AI needs to indicate that this range exists.

Patterns for obtaining ranges:

1. from [NUM] through [NUM]

2. from [NUM] to [NUM]

3. between [NUM] and [NUM]

4. [NUM] to [NUM]

[(‘How’, ‘QW’), (‘many’, ‘ADV’), (‘integer’, ‘NN’), (‘from’, ‘IN’), (‘1’,
‘NUM’), (‘through’, ‘IN’), (‘999999’, ‘NUM’), (‘contain’, ‘VB’), (‘each’,
‘DET’), (‘of’, ‘ADP’), (‘the’, ‘DET’), (‘digit’, ‘NN’), (‘1’, ‘NUM’), (‘2’,
‘NUM’), (‘and’, ‘CC’), (‘3’, ‘NUM’), (‘at’, ‘ADP’), (‘least’, ‘ADV’), (‘once’,
‘NUM’)]

…

[“How many”, “integers”, “from 1 through 999999”, “contains”, “each of”,
“digits”, “1, 2, and 3”, “at least once”]
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Another important pattern is the phrase “how many.” Not only are these

words given priority by the tokenizer, “how many” maps to a specific pattern in

our database that is used to indicate the enumeration in the counting problem.

The “how many” token is first processed by immediately taking the next token as

input. The tokenizer will have prepared this token according to a rule that looks

like:

{[NN] | [ADJ]}+ [NN]

The pattern above uses several symbols that we intend to use when describing

patterns in our database. These will be expanded on in later sections, but to briefly

summarize: The braces {} are used to indicate a group of keywords, the brackets []

are used to indicate a linguistic category such as nouns and verbs, and the cross +

is used to indicate zero, or more, iterations of whatever is immediately to the left

of it. The pipe | is used to indicate multiple possibilities; this means that “[NN] |

hello” will match either a noun or the word “hello.”

Let us explain the example above in more detail. The pattern will match

some repeating number of nouns and adjectives (or none at all) followed by a

noun. This is only the structure. In order to process this token, the AI must obtain

the last noun in this token. A few examples should illustrate this:

How to process “how many” token:

1. Locate the “how many” token (there should be one in every problem we work
with).

2. Obtain the token immediately after the “how many” token.

3. Extract the last noun in this token.

1. [“How many”, “integers”, “from 1 through 999999”, “contains”, “each
of”, “digits”, “1, 2, and 3”, “at least once”]

2. [“How many”, “four digit odd numbers”, “can be created”, “using only
the digits”, “0, 1, 2, 3, 4, and 5”, “if repetition of digits is not allowed”]

3. [“How many”, “3 digit positive integers”, “can be formed using”, “odd
digits less than six”]
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The first example is our usual example. It is the simplest of them all; following

the “how many” token is the token “integers,” which can only consist of the noun,

“integers.” Thus, integers are what the translator will interpret as the item to be

counted. The second and third examples start out the same; the translator goes to

translate the “how many” token, which requires that it look to the next token.

However, these new tokens both have four words in them. Furthermore, the word

“digit” should be an adjective in this case but may be erroneously classified as a

noun by the POS-tagger. Therefore, the AI translator searches for the last noun in

the token.

Experience-based learning

Several times, we have referenced a database with which the AI will interface.

Here, we will expand on its role.

Our translator AI will store several pieces of information, but the most

important will be patterns. Patterns may be used by either the tokenizer or the

translator; we have not decided if the two will be separated or if it is possible to

reuse patterns in both areas. This would allow patterns to conform to a specific,

defined usage; one type of pattern is used to generate tokens, the other to generate

lines of the translation. In practice, however, this may create unnecessary

redundancy.

The benefits of using a database itself, however, are clear. We do not intend

to treat the entirety of the translator AI as one collection of code as this may lead

to unnecessary confusion on the task of its original purpose; each step that the

translator takes is meant to be clearly defined. More importantly, this will aid us

in making the translator more extendable. In the future, adding more refined

functionality to the AI would simply be a matter of adding more patterns to the

database.
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Pattern Structure

Patterns will be used to generate either a token or a line in the translation of

the problem. Every pattern consists of individual components called keywords. A

keyword can refer to either an actual word or a classification of a word.

Furthermore, we use operators to enhance the expressiveness of the words.

Operators slightly change the meaning of any keywords in the pattern. Keywords

are case-insensitive; “integers” and “Integers” will both map to the same pattern.

This approach to expressing patterns is intentionally made similar to regular

expressions in order to make them more universally understood. However, they

are not exactly the same. The notation of regular expressions is designed to work

with specific characters and character classes. Our pattern-notation will map to

words and word classes.

The brackets, indicated [], will contain a word class. The text inside of

brackets is used to express a range of possible words.

A pipe, indicated |, can be used to make a pattern match different things.

Braces can be used to group things together, and they can be used to apply

notation to a larger group of keywords.

[NN]: This pattern will map to any noun.

[ADJ] integers: This pattern will map to the word “integers” with an
adjective attached to it.

Integer | digit: This pattern will map to either the word “integer” or the
word “digit.”

[NN] | [ADV]: This pattern matches either a noun or an adverb.



15

The asterisk, indicated *, is used to describe that a keyword or set of keywords

may appear multiple times, one time, or none at all.

The escape character, indicated \, can be used to deviate from the original

meaning of any of the symbols that we have presented here. For word classes,

only a single escape character is needed to deviate from its original meaning.

Pattern Usage

Patterns are used in two key areas of the AI: the tokenizer and the translator.

The tokenizer uses them to parse the language into definable sections which can

then be compared and independently processed. The translator uses them to better

determine what lines to generate in our translation.

The patterns mentioned so far have been based purely on our knowledge of

the structure of counting problems. We did not consult any guides on linguistics,

[ADJ] integer | integer: This pattern is miswritten; it is guaranteed to require
an adjective, followed by either the word “integer” or the word “integer.” The
next example shows it written in a more useful way.

{[ADJ] integer} | integer: This pattern will match either the word “integer” or
an adjective, followed by the word “integer.”

How many [ADJ]* [NN]: This pattern will match any of the following phrases
(and more): “How many integers”, “How many odd integers”, or “How many
3-digit odd integers”.

[NN] | \[NN]: This pattern will match either a noun or the keyword “[NN]”.

\[{[NUM], }*[NUM]\]”: This pattern will match a set of numbers delineated
with brackets. For example, “[1, 2, 3, 4, 5]”
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but the patterns we have fit the sample problems that we have prepared, which

were randomly sampled from several books on discrete mathematics and algebra.

User Data

One last feature of the database is to collect user data and attempt to derive

patterns from them. All problems submitted by users will be stored. The AI will

parse the problems it receives in intervals and attempt to determine new patterns.

This involves keeping statistics on the number of occurrences of any particular set

of keywords. New entries will be added as the components arrive to the database,

and entries that are made particularly common may be incorporated later as new

patterns.

Section 3: Design of a Mathematical Machine Language

In this section we will look at the design of a Mathematical Machine

Language. The typical case of general natural language translation is imprecise,

thus making it unfit for computation in its raw form. In order to make a future AI

problem solver understand the translation, we need a highly accurate computable

mathematical language which can be processed by the AI problem solver. This

language will conform to the guidelines discussed at the beginning of the paper.

We need to use natural language pre-processing to understand the meaning of a

given mathematics problem so that we can translate it into a formal and rigorous

format, which we refer to as our mathematical machine language. In this section,

we discuss the details of the design of this language.

Language Constructs

The understanding of a mathematics problem will be determined by the

structure of the problem. Our translation must describe the components of the

structure with formal expressions. Since we are targeting counting problems, our

language design should accurately reflect the properties of the counting problems.
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1. Enumerator

Every counting problem needs to count a certain mathematical

object, which we call the enumerator. For example, we might count the

number of integers that satisfy certain conditions; or we could count the

number of triangles following the given conditions. In our formal

mathematical machine language, we denote it by [#enum#].

The enumerator representation is: [#enum#]:={#int#}

2. Unit

An enumerator is typically comprised of basic components; for

example, an integer is formed by digits. We define such a component as

the unit of the enumerator and use [#unit#] to represent it. The unit of the

previous example would be denoted as:

[#unit#]:={#digit#}

3. Subunit

A unit may also be formed by smaller components. For example,

when we count the number of triangles, the enumerator is a triangle; the

unit is a vertex; and a vertex is formed by coordinates. We call its x-

coordinate or y-coordinate as the subunits. The subunits could have

multiple levels. When we have a single subunit, we use [#subunit#] to

represent it. When we have multiple subunits, we denote them by

[#subunit:A#], [#subunit:B#], and so on. We may also have multiple-

levels of subunits. To represent subunits in that situation, we use

[#subunit:1#], [#subunit:2#], etc. If there are several subunits in one level,

we can combine both formats with [#subunit:1A#], [#subunit:1B#], etc.

See the example below for the representation:

How many integers from 1 through 999,999 contains each of the digits 1, 2,

and 3 at least once?
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How many triangles with positive area have all their vertices at points (i, j)

in the coordinate plane, where i and j are integers between 1 and 5

inclusive?

[#enum#]:={#triangle#}

[#unit#]:={#vertex#}

[#subunit#]:={#coordinate#}

4. Constraint

In a typical counting problem, there are many constraints, that are

applied on the enumerator, the unit, or the subunits. In order to specify to

which object a constraint is applied, we use level numbers to refer to those

components. For example, the enumerator corresponds to level 0; the unit

corresponds to level 1; and the subunit corresponds to level 2, and so on.

The notation we use for a constraint is: [#constr#]. The standard format we

use for a constraint is: Category:Rule

We use categories to organize different types of rules, such as

Range, List, Form. Some of the rules do not belong to any category, and

we omit the category part for these kinds of constraints. We treat this case

as the general category. We use the previous example to illustrate the way

we use to represent the constraints.

[#enum#]:={#int#}

[#unit#]:={#digit#}

[#constr:0#]:={@Range:[1 → 999999]@}

[#constr:1#]:={@List:{1,2,3}@}

[#constr:1#]:={@Repet:Num(Each())>=1@}

How many integers from 1 through 999,999 contains each of the digits 1, 2,

and 3 at least once?
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We enclose a constraint inside a pair of special tags: {@ …@}, so

that our MLP-system can parse the constraints easily. A range rule is

enclosed inside a pair of brackets, such as [1 → 999999]. A list rule is

enclosed inside a pair of curly braces, such as {1,2,3}. When we need to

refer to a rule later, we use a symbol to denote the list, such as

{@List:=L={1,2,3}@}. The notation [#constr:0#] means that the

constraint is applied on the enumerator; and [#constr:1#] means that the

constraint is applied on the unit. The third constraint rule above uses two

functions: Num() and Each(), which we will discuss next.

5. Function

In order to represent a large number of mathematical properties,

we need to define many functions in the form of

FunctionName(ParameterList), although sometimes the parameter list

might be empty. In such a case, we use some default meaning, which we

will explain below. In the example above, we used two functions: Num()

and Each(). The expression Each(L) refers to any element in the list L.

The function Num() represents the number of occurrences of the object as

the parameter. For example, Num(Each(L)) means that the number of

occurrences of any element in the list {1,2,3}. Actually we can combine

Num() and Each() as one function NumEach(). There are a large number

of functions that need to be defined by human experts, because this part

belongs to the system design, and we do not expect that our MLP-system

can do this part automatically. Let us go back to another example above to

see more functions.

How many triangles with positive area have all their vertices at points (i, j) in

the coordinate plane, where i and j are integers between 1 and 5 inclusive?
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[#enum#]:={#triangle#}

[#unit#]:={#vertex#}

[#subunit#]:={#coordinate#}

[#constr:0#]:={@Area()>0@}

[#constr:1#]:={@Form:{#2-tuple#}@}

[#constr:2#]:={@List:[frm]{:int:}@}

[#constr:2#]:={@Range:[1 -> 5]@}

In our first constraint [#constr:0#], which is applied on the

enumerator, we use a function Area(). Since the parameter list is empty,

we assume that the default parameter is used, and in this situation, we

define the default parameter as a triangle. Thus the expression Area()>0

means that the area of any triangle is positive. Our second constraint is

applied on a vertex, and it belongs to the Form category. We use a 2-tuple,

that is (i, j), in the form of {#2-tuple#} to represent the form rule. Our

third constraint is applied on the coordinate with a list rule which specifies

that each coordinate is an integer. In the expression, we used an operator

[frm], which means selected from operation. This constraint means that the

list of the individual coordinates is not the whole integer set, only part of

the set. Our fourth rule is also applied on the coordinate with a range rule

that provides a specific range for each coordinate.

Translation Principles and Rules

With the basic constructs defined above, in order to complete mathematics

problem translation, we need a set of principles and rules to guide our MLP-

system. In order to present these principles and rules, we would like to use a set of

examples to derive them in a natural way.

“How many four-digit odd numbers can be created using only the digits 0, 1, 2,
3, 4, and 5 if repetition of digits is not allowed?”
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We have looked at this example before. Now we may use our formal

mathematics machine language to represent its translation. Based on the described

patterns, we can extract a constraint on the enumerator integer as a “four-digit odd”

requirement. We extract an explicit list of digits as {0,1,2,3,4,5}, and there is a

repetition rule given by “no digit repetition”. Thus, we have the following

translation.

[#enum#]:={#odd#}

[#unit#]:={#digit#}

[#constr:0#]:={@Form:NumElements()=4@}

[#constr:1#]:={@List:{0,1,2,3,4,5}@}

[#constr:1#]:={@Repet:NumEach()<=1@}

In this example, we train our MLP-system with the following rules or

patterns.

Translation Rule R1: Merge Rule

When certain constraint on the enumerator has a very close relationship,

we can apply the merge rule to get one single expression.

In this example, the constraint “odd” and the enumerator “integer” are

mergeable as a single expression {#odd#}. How does the system know if a

constraint and an enumerator are mergeable? This decision should be made by a

human expert, and the system uses the experience data to make its decision.

Translation Rule R2: Form Rule

After we extract the enumerator and the unit, we need to extract certain

constraint that describes the way to form an enumerator from the units.

In this example, we have a constraint that specifies the number of units in

each enumerator; then we use the function NumElements() to describe the form
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rule. We can extend the form rule R2 to the unit-subunit pair and subunit:1-

subunit:2 pair easily.

Translation Rule R3: List Rule

After we determine the unit, we need to look for a list of values that the

unit will take.

In this example, we extract an explicit list of values for the unit:

{0,1,2,3,4,5}, which follows the pattern: [NUM]*, and [NUM].

Translation Rule R4: Repetition Rule

After we get a list of values for the unit, we need to extract the constraint

that describes the repetition rule.

For the repetition rule, we typically use the function NumEach() to specify

the number of occurrences of each element in the list.

We use a few more examples to train our MLP-system with more rules

and patterns.

How many 3 digit positive integers can be formed using odd digits less than six?

[#enum#]:={#posint#}

[#unit#]:={#digit#}

[#constr:0#]:={@Form:NumElements()=3@}

[#constr:1#]:={@List:[frm]{:odd:}@}

[#constr:1#]:={@Value()<6@}

In this translation, we applied the merge rule R1 which combines the

“positive” constraint and the enumerator “integer” as a single expression:

{#posint#}. For the second constraint, we do not use the expression
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{@List:{1,3,5}@}, which is equivalent to the requirement “odd digits less than

six”. Doing so would involve data processing, although it is simple processing.

We set the following principle for our MLP-system.

Translation Principle P1: Minimum Processing Principle

When we translate the mathematics problems, refrain from excessive data

processing. Preserve the meaning of the original problem as much as possible.

The reasoning behind this principle is simple: we wish to set a clear

boundary between our translator and the future problem solver. The data

processing belongs to the problem-solving part. Our future problem solver will be

used for educational purpose, and it will need to explain all meaningful data

processing steps to the students. If our translator does excessive data processing,

then the problem solver would not have the chance to explain each part to the

students. As a caveat, sometimes we may need to do some necessary processing.

We will see that below.

[#enum#]:={#way#}

[#unit#]:={#state#}

[#constr:0#]:={@Form:NumElements()=14@}

[#constr:1#]:={@List:{“W”,”T”,”L”}@}

[#constr:0#]:={@NumElements(“W”)=8@}

[#constr:0#]:={@NumElements(“T”)=2@}

[#constr:0#]:={@NumElements(“L”)=4@}

In this translation, we omit a lot of information in the problem that we feel

is not essential for a solution. We summarize this type of data processing as the

following principle.

James and a friend played 14 games of tic-tac-toe one night. In how many ways
can James end the night with eight wins, two ties, and four losses?
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Translation Principle P2: Necessary Abstraction Principle

When we do translation on mathematics problems, some detailed

information that is not essential for the problem-solving should be omitted. But

the change must not alter the nature of the original problem.

In this example, the name of the person “James” is not important. The

game type is also not important. We only want to know the results of the game:

win, tie, or loss. This type of abstraction is very common in mathematics

problem-solving, which is quite different from the general natural language

processing.

[#enum#]:={#triangle#}

[#unit#]:={#side#}

[#constr:0#]:={@CountBy:Congru()=No@}

[#constr:1#]:={@List:{5,5,8,14,14}@}

In this example, we use the principle P2 to skip the information like

Darina, cm, and make abstraction of a stick as a side of a triangle. For the first

constraint, we add a category called “CountBy,” which specifies the counting rule:

what criterion we use to identify different enumerator. The rule we use here

“Congru()=No” means that if two triangles are congruent, then we do not treat

them as different enumerators. Here there is a hidden rule we do not specify here,

Darina has 5 sticks measuring 5cm, 5cm, 8cm, 14cm, 14cm. Using exactly 3
sticks as the size of the triangle, how many non-congruent triangles are
possible if the sticks are joined only at their end points?
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that is, we use 3 sides to form a triangle. The reason is that we do not need to

represent knowledge that is supposed to be known by everyone.

Translation Principle P3: No Known-Fact Principle

For any property that is treated as a known fact, we should not translate it

in our output. The future problem solver will easily recover it when solving the

problem.

This principle tells the system to only do appropriate translation, neither

doing more than necessary nor less than necessary.

[#enum#]:={#sum#}

[#unit#]:={#number#}

[#constr:0#]:={@CountBy:Value()=Distinct@}

[#constr:1#]:={@Set:{-2,-1,1,2,3,4,5}@}

[#constr:0#]:={@Form:NumElements()=3@}

In the first constraint, we use the “Value()” function to specify the

counting criterion. When two sums have the same value, we cannot count them as

two different sums. In the second constraint, we use the “Set” category instead of

the “List” category. The main difference is that for the “Set” category, the

elements selected must be different, which is not a requirement for the “List”

category.

Translation Principle P4: Context-Based Explanation Principle

The context of the problem is important when we understand the meanings

of certain keywords. Therefore, we need to determine the context using certain

keywords in the problem.

How many distinct sums can be obtained by adding 3 different numbers from
the set {-2, -1, 1, 2, 3, 4, 5}

How many different eight-card hands are there with no more than three black
cards?
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[#enum#]:={#hand#}

[#unit#]:={#card#}

[#constr:0#]:={@Form:NumElements()=8@}

[#constr:0#]:={@CountBy:OrderElements()=No@}

[#constr:0#]:={@Form:NumElements(“black”)<=3@}

In this example, the meaning of “hand” relies on the context. This question uses

the card-game context, otherwise we cannot eliminate the ambiguity in our

understanding. Based on this observation, we have the principle P4. In the above

example, we use the function “OrderElements()” to define the counting criterion:

when two hands have the same set of cards, but the cards are arranged in different

orders, we treat them as the same hand. Or in other words, rearranging the order

of the cards in a hand would not result in a new hand.

Translation Rule R5: Multi-Component Unit Rule

When we detect that a unit is composed of multiple components, we can

use an n-tuple to represent the unit. Then we need to define the constraints on

individual components.

[#enum#]:={#pizza#}

[#unit#]:={#2-tuple#}

[#subunit:A#]:={#topping#}

[#subunit:B#]:={#size#}

[#constr:2A#]:={@Form:NumElements()=7@}

[#constr:2B#]:={@Form:NumElements()=3@}

[#constr:0#]:={@Form:NumElements(A)=3@}

The main property of this problem is that the unit has two components,

topping and size. So we use a 2-tuple to represent this unit. Then we define the

A local pizza store offers a choice of seven toppings and three sizes (small,
medium and large). How many three-topping pizzas do they offer?
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constraints on individual components. With this arrangement, we can represent

the structure clearly.

Section 4: Conclusion

This AI translator has the potential to provide a new approach to

automated problem solving and understanding natural language as a whole. Each

token represents an idea, and each pattern gives us a way to not only recognize,

but also express that idea. By focusing our efforts on translation, we are able to

draw focus away from a more difficult part of the process, namely answering the

question, and instead come up with a computation-friendly way of expressing

statements.
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