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Abstract

Given a bounded subset B ⊂ R2, a discrete set of nodes {xk}1≤k≤n = Xn ⊂ B is uniformly distributed

throughout B and each xk ∈ Xn is generated at each time instant k ∈ {1, 2, ..., n} according to the

Poisson distribution. For some fixed radius r > 0, two nodes x, y ∈ Xn are said to connect and form

an edge if d(x, y) ≤ r. The graph of all such connected nodes x, y ∈ Xn is denoted by G(Xn; r).

Given C ⊆ Xn, it is said that C forms a connected cluster if given x, y ∈ C, there exists a set of edges

connecting x to y. If ρ ∈ ( 1
2 , 1) is chosen, then it is shown that there exists a radius r0 = r0(n, ρ)

such that the probability is 1
2 for the occurrence of a connected cluster in Xn of order at least N ≤ n

such that N
n ≥ ρ. Furthermore, if R2 is partitioned into subsets of conjoined hexagons of a size

chosen so that each can be inscribed into a circle of radius r
4 > 0, then by defining x, y ∈ Xn to be

connected if x and y are in the same or conjoined hexagons, the new graph denoted by G(Xn; ∗),

is shown to be contained in the original graph, G(Xn; r). It is shown that there exists a radius

r∗0 = r∗0(n, ρ) such that the probability is 1
2 for the occurrence of a connected cluster in Xn of order

at least N ≤ n in the hexagonal paradigm. It will be proven that r0 ≤ r∗0 and subsequently, r0 = r∗0 .

By proving results similar to Cai [5] theorems 3.2.3 and 3.3.1, the length of the sharp threshold

interval in the hexagonal paradigm can be estimated. Then, by using the relationship between the

radii in the continuum and hexagonal paradigms, the length of the sharp threshold interval in the

continuum paradigm is established.
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Chapter 1

Introduction

1.1 Motivation

The issues of redundancy, interference and isolation are of paramount importance in the study of

coverage and connectivity amongst randomly deployed sensors in some large, bounded area. Each

node in a network connects to others within its communications radius and transmits information

across the network in a series of hops. If each node in the network has a common communications

radius that is too large, then there will be a tendency for covered areas to overlap with multiple nodes

transmitting the same information to multiple nodes within the network causing packet collisions and

information loss [12− 14, 18]. In contrast, if the common communications radius is too small, then

large areas in the bounded region will be left unmonitored with information only being transmitted

to other nodes within smaller, isolated subregions [12, 18]. Given a fixed number of nodes, the last

statements imply that there is a smallest radius of connectivity rc, such that if each of the nodes

has a common communications radius r < rc, then interconnectivity amongst nodes will be sparse

and isolated, while full connectivity occurs in the event that r > rc [16 − 17]. Equivalently, given

a common, fixed radius of connectivity, there is a smallest number of randomly distributed nodes

nc, such that interconnectivity amongst nodes will be sparse and isolated when n < nc, while full

connectivity occurs in the event that n > nc [23].

Because of concerns over the cost per unit for wireless sensor nodes, network lifetime and efficient

utilization [21], it is prohibitively expensive to deploy a large number of sensor nodes in order to

effectively provide failover for both coverage and connectivity in the event that certain subsets of

nodes become inoperative. As such, instead of requiring full connectivity of all nodes, in [5], Cai,
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et.al. use a hexagonal lattice structure to model interconnectivity amongst randomly distributed

nodes throughout some large, bounded region. Therein, connectivity ensues between nodes within

the same or neighboring hexagons. With this setup, it is proven in [5] that there is a critical density

of nodes in the lattice structure such that the probability is 1
2 for the occurrence of the event that

at least half of all the sensor nodes are connected. This probability of 1
2 corresponds to the center

of the interval in r about which the probability of the aforementioned event increases from some

small positive value to a value very close to 1. An estimation of the length of this interval is given

in [5]. This dissertation is concerned with providing a similar analysis without an assumed lattice

structure.

1.2 Dissertation Plan

Estimation of the length of the interval about the critical radius in the continuum will be accom-

plished in several steps.

1) Define the concept of an open edge between nodes and the concept of a connected component about

a node and an open edge.

2) Define a set of connected clusters with the property that the number of nodes is at least half of all

of available nodes and show that the set is non-empty.

3) With a suitable probability measure, show that the probability that the set of connected clusters is

non-empty is a continuous function of the distance between nodes.

4) With continuity established for the probability measure as a function of the distance between nodes,

show that there is a radius such that the set of connected clusters is non-empty with probability 1/2.

5) State the main theorem to be proven which regards an upper and lower bound on the probability

that the set of connected clusters is not empty.

6) Define a hexagonal lattice structure where the common size of each hexagon is a function of the

connection radius of an inscribed circle.

2



7) Show results similar to those in numbers 1− 5 in the presence of the hexagonal structure.

8) To prove the analogue to number 5 in the presence of a hexagonal lattice structure, first define a

torus structure on the lattice to eliminate any boundary connectivity conditions.

9) In the presence of the torus, prove the hexagonal analogue to number 5.

10) Show an inequality relationship between radii from and the hexagonal analogue to 4 and use this

result to prove 5.

1.3 Dissertation Organization

In chapter (2), results from selected related works are presented and summarized. In chapter (3),

some needed background material and results from random graph theory, site percolation on a

lattice and random field theory are presented. In chapter (4), results are presented showing that the

probability measure is a continuous function of the radius r and the existence of a particular radius

r0 such that the probability is 1
2 for the occurrence of the event that at least half of all nodes are

connected in a cluster and the theorem regarding the length of the sharp threshold interval about r0

is stated. Chapter (5) presents similar results as those in chapter (4) within a different connection

model framework that is based upon partitioning the bounded region into hexagons and the length

of the sharp threshold interval in this framework is stated and proven. Chapter (6) presents results

that establish a relationship, r0 ≤ r∗0 and the length of the sharp threshold interval about r0 is

established. In Chapter 7, an application is presented in the realm of data classification whereby

an upper bound for a critical radius is found such that correlated data are classified into at least

a fixed number of specified classes. Chapter (8) establishes a genetic algorithmic framework for

continuation of the results presented in this dissertation. Lastly, the Appendix chapter contains

supporting results about the increasing event and probability measure for both the continuum and

hexagonal connectivity models.
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Chapter 2

Related Work

2.1 Connectivity by Node Density and Radial Distance

In [5], Cai, et. al. define two events on a region of bounded area which will be assumed to be

of area 1 without loss of generality. The first event is that there is a connected cluster of nodes

totaling at least one half of all generated nodes. Therein, it is shown that there is a critical density

of nodes λ0 such that this event occurs with probability 1
2 . For densities λ ≥ λ0, it is shown that

connected clusters of nodes in numbers slightly less than 1
2 of all available nodes occur with high

probability approaching 1 that depends upon the number of hexagons in the bounded region and

the densities λ and λ0. Likewise, for densities λ ≤ λ0, it is shown that connected clusters of nodes

in numbers slightly more than 1
2 of all available nodes occur with low probability approaching 0

that depends upon the number of hexagons in the bounded region and the densities λ and λ0. The

second event is that there is a connected cluster of nodes such that the total covered area by the

occupied hexagons in the connected cluster is at least 1
2 of the bounded region. Therein, it is shown

that there is a critical density of occupied hexagons λH0 such that this event occurs with probability

1
2 . For densities λ ≥ λH0 , it is shown that a connected cluster of hexagons of total area 1

2 occurs with

high probability approaching 1 that depends upon the number of hexagons in the bounded region

and the densities λ and λH0 . Likewise, for densities λ ≤ λH0 , it is shown that connected clusters of

hexagons of total area 1
2 occurs with low probability approaching 0 that depends upon the number

of hexagons in the bounded region and the densities λ and λH0 . For both events defined, it is shown

that the associated probability of occurrence sharply increases from some small positive value to a

value close to 1 on some interval of constant length about the critical density. For both events, the
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length of the interval about the critical density is shown to be proportional to the reciprocal of the

log of the area of a prototypical hexagon.

A similar analysis proceeds in this dissertation whereby similar events are defined in the context of

random geometric graphs and a critical number of nodes, equivalently critical radius depending upon

the number of nodes, is found for each event defined such that each event occurs with probability 1
2 .

The length of the interval about the critical radii such that the probability of occurrence increases

sharply is shown to be proportional to the product of the critical radii and a sublogarithmic factor

of the number of nodes. It is also shown that the length of the interval about the critical radii is

related to the minimax distance between two sets of n
2 nodes, when the set of n nodes is divided a

certain way.

In [15], Bettstetter begins with the basic problem of obtaining a minimum node density such that

every individual node has at least one neighbor to which it connects. Additionally, he investigates

the problems of the minimum node density required such that each node has at least N neighbors

and the minimum node density such that the network will have no operational isolated nodes with

high probability in the event that a certain number of nodes fail. As such, a closed-form, analytical

expression is derived for a lower bound on the critical radius of connectivity rc, such that every node

has at least one node to which it connects with a certain probability, p. Likewise, a closed form

expression is found for the probability that each individual node has at least N neighbors.

Similarly, in this dissertation, a critical node density is found such that at least N nodes are

connected with probability 1
2 . A radial connectivity distance is shown to exist such that this event

occurs with said probability and an upper bound on the required radial distance is found as a

function of the minimax distance between nodes in two partial subsets of all nodes.

2.2 Connectivity by Sector-Based SubConnectivity

In [11], Xue, et.al. use a sector-based strategy, and full connectivity within the sector, in order to

address the problem of full connectivity within some bounded region. For any small, fixed δ > 0,

the subconnectivity function

φ+
n = (1 + δ) log 2π

2π−θ
(n)

is defined. They show that if each individual node is able to connect to each of its φ+
n nearest

neighbors that lie within a sector of angle θ ∈ (0, 2π), with the exception of those nodes sufficiently
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close to the boundary of the sector defined by θ, then all nodes will be asymptotically connected such

that an infinite cluster of connected nodes exists almost surely. Additionally, the subconnectivity

function

φ−n = (1− δ) log 2π
2π−θ

(n)

is defined and it is shown that the network of nodes is asymptotically disconnected such that only

isolated connected clusters of nodes exist, almost surely. Clearly,

φn ≡ lim
δ→0+

φ−n

= lim
δ→0+

(1− δ) log 2π
2π−θ

(n)

= log 2π
2π−θ

(n)

demarcates the critical phenomenon for full connectivity using this sector based strategy. Further-

more, using other geometric arguments, it is shown that the network will be fully connected if each

individual node connects to its φπn nearest neighbors, where

φπn ≡ lim
θ→π

φ+
n

= lim
θ→π

lim
δ→0+

φ+
n

= lim
θ→π

lim
δ→0+

(1 + δ) log 2π
2π−θ

(n)

= lim
θ→π

log 2π
2π−θ

(n)

= log2(n).

Therefore, if all nodes in either half of the region are fully connected, then with high probability, all

nodes will be fully connected. This suggests some correlation between the events of full connectivity

in either half plane. As is turns out, this is a true statement.

In this dissertation, lemma 2.1 from [7] is used. It states that if the maximum distance between

two sets of independent, uniformly distributed nodes is small, with high probability, then the con-

nectivity graph of nodes in one set is a subgraph of the connectivity of nodes in the other set, with

high probability. Herein, the theorem is applied to both halfs of a set of n nodes which are divided

evenly and it is shown that full connectivity occurs when the radius of connectivity is the sum of rc

plus half this maximum distance.

In [43], Han et. al. consider a point coverage problem whereby points are scattered throughout
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the two dimensional plane and the minimum number of sensors required to cover the scattered

points is determined. If each node has a certain communications range r and a connectivity sector

s = s(r, θ) for a given node is defined as a radial line of length r extending from the node together with

a sweeping angle θ, then it is shown that a finite set of n points is completely covered by O(log(n))

distinct connectivity sectors. In addition, it is shown that an infinite cluster of connected nodes

exists if each connectivity sector s contains a hexagonal region h such that area(h)/area(s) ≥ .827

and h defines the overlapping communications ranges of nodes contained therein.

In this dissertation, theorem 2.48 from [1] is used. It states that the probability of the occurrence

of an increasing event will increase from some small positive value to a value very close to 1 on some

small interval. Furthermore, the amount of the increase is on the order of O(log(n)). As such, each

node contributes O(log−1(n)) to the increase of the probability on the small interval. Much in the

same way, each sector in [43] contributes O(log−1(n)) to the sharp increase of the probability of an

increasing event on some small interval.

2.3 Other Works

In [44], Bhondekar, et. al. use a genetic algorithm for optimizing a self-organizing wireless sensor

network design. At each step, the algorithm randomly selects individual nodes to be parent nodes

according to a biological evolutionary process in order to produce child nodes in a connected cluster

with said parent. A selection of an optimal node configuration is made, subject to some design

constraint function f that is a function of the coverage area, node overlap errors, isolated node

errors, master-node ratio and network energy. An integer lattice is assumed with identical nodes

placed either randomly or deterministically at integer coordinates in some bounded, square region.

The nodes can operate in one of three modes, X-mode, Y-mode and Z-mode. X nodes transmit

information gathered from Y and Z nodes back to base stations via multihop communication. As

such, the configured communications radius for X nodes is assumed to be much larger than that of

either Y or Z nodes and the number of X nodes is assumed to be much smaller than the number of

Y or Z nodes. The constraint function f is a measure of the quality of the network topology and is

a weighted sum of the design parameters, coverage area, node overlap errors, isolated node errors,

master-node ratio and network energy. Multiplying coefficients for the optimal design parameters

were determined experimentally and found to be −4.0, 0.5, 10.0,−1.0, 1.0, respectively. Each node

is randomly assigned a 2 bit binary representation so that a network configuration consists of a

binary word. An optimal subset of 300 network configurations from the sample space are then

7



changed randomly via a genetic mutations algorithm until a configuration is found that minimizes

the constraint function, f . It was shown that each of the design parameters can be minimized in

less than 3000 mutations to the subset of network configurations from the sample space.

A genetic algorithm paradigm will be used in a future extension of some of the results in this

dissertation. As such, a little more detail will be given in a later section. In the interim, suppose

that n nodes are uniformly distributed throughout some bounded region, B. As in [44], the network

is self-organizing and each of the nodes operates in one of X, Y or Z mode. Given fixed commu-

nications radii ry and rz on Y and Z nodes respectively, it will be shown that there is a critical

radius r0,x = r0,x(n, ρ, ry, rz) on X nodes such that at least half of all nodes are connected with

probability 1
2 . Furthermore, an estimate of the length of the sharp threshold interval will be com-

puted with techniques developed within the paradigm. Using a genetic algorithm, a representative

node configuration will be found such that coverage area, node overlap errors, isolated node errors,

master-node ratio and network energy are minimized.

8



Chapter 3

Review of Important Concepts

3.1 Random Geometric Graphs

Definition A node process is a mapping X : R2 → R2 such that for B ⊂ R2, there is an n ∈ N and

a subset Xn = {xk}1≤k≤n ⊂ B such that X(B) = Xn.

Definition Suppose B ⊂ R2 and X is a node process that randomly generates independent nodes

Xn = {xk}1≤k≤n ⊂ B according to some probability distribution. Nodes x, y ∈ Xn are said to be

r-connected and form an r-open edge if d(x, y) ≤ r, for some fixed r > 0. Nodes x, y ∈ Xn are

r-disconnected and form an r-closed edge otherwise.

Definition Let E be the set of edges between nodes in Xn. G(Xn; r) is defined to be the r-graph

of the set of all r-open and r-closed edges from E between nodes in Xn.

Definition Given nodes x, y ∈ Xn, denote the edge between x and y as < x, y >r. A subset of nodes

C ⊆ Xn forms an r-connected cluster if and only if given any x, y ∈ C, there exists r-open edges

< x, a1 >r, < a1, a2 >r, ..., < ak−1, y >r ∈ E connecting x to y, for nodes {a1, a2, ..., ak−1} ⊆ C.

Definition Let A be a set of graphs of E and G(Xn; r) ∈ A. A is said to be an increasing property

if and only if for r′ 6= r such that G(Xn; r) ⊆ G(Xn; r′) it is true that G(Xn; r′) ∈ A.

Definition Let P be a probability measure on (Ω,F). If A is a monotone (increasing) property

and ε ∈ (0, 1
2 ), define

r(n, ε) = inf{r > 0 : P (G(Xn; r) ∈ A) ≥ ε} (3.1)

and

∆(n, ε) = r(n, 1− ε)− r(n, ε). (3.2)
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If ∆(n, ε) = o(1), then A has a sharp threshold.

Theorem 3.1.1 (Theorem 1.1 [7]) For increasing properties A consisting of graphs of nodes Xn ⊂

R2,

∆(n, ε) = O(rc log1/4(n))

where

rc ∝
√

log n

n
.

According to theorem 3.1.1, there is a critical radius of connectivity rc(n) > 0 such that P (A) > 0.

As such, there exists a short interval of radii such that P (A) increases from some small positive value,

to a value close to 1, on this interval. This dissertation will be concerned, at least in part, with

estimating the length of this critical interval for a particular event A, using this framework.

Definition Let X be a node process. Suppose X generates Xn and Yn independently and uniformly

in B. A bottleneck matching between Xn and Yn is a bijection b : Xn → Yn such that max{d(x, y) :

x ∈ Xn, y = b(x) ∈ Yn} is minimized.

Theorem 3.1.2 (Theorem 1.3 [7]) Let Mn denote the bottleneck matching between Xn and Yn.

Then,

Mn = Θ(rc log1/4(n))

where rc is given by theorem 3.1.1.

According to theorem 3.1.2, an estimate of the length of the bottleneck matching is on the order

of the length of the sharp threshold interval.

Lemma 3.1.3 (Theorem 2.1 [7]) Let Xn and Yn be independent, random samples of a node process

X and suppose P (Mn > γ(n)) ≤ p for some function γ(n) and some p ∈ (0, 1
2 ). For any radius

r > 0, if GrXn is distributed as G(Xn; r) and G
r+2γ(n)
Yn is distributed as G(Yn; r + 2γ(n)), then

P (GrXn ⊆ G
r+2γ(n)
Yn ) ≥ 1− p.

Lemma 3.1.3 is a statement that if the probability is small for the event of the bottleneck matching
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between Xn and Yn being larger than some predefined value, then the probability is large for the

event that the corresponding graphs have a containment relation.

3.2 Site Percolation on a Lattice

Let L2 = (V,E) be any lattice on R2, where V is a set of vertices and E is the corresponding set

of edges between neighboring nodes on vertices in V . Let X = {−1, 1} be a state space of values

on nodes across vertices in V and suppose nodes take the value 1 independently with probability

p ∈ (0, 1).

Definition Nodes on vertices a, b ∈ V are said to be connected and the edge e = < a, b > ∈ E is

said to be open if and only if xa = 1 = xb for states, xa, xb ∈ X on a and b, respectively.

Definition Nodes on a subset of vertices C ⊆ V form a connected cluster if and only if given

any a, b ∈ C, there exists open edges e1 = < a, a1 >, e2 = < a1, a2 >, ..., ek = < ak−1, b > ∈ E

connecting a to b, for vertices {a1, a2, ..., ak−1} ⊆ C.

Suppose nodes on vertices C ⊆ V is any connected cluster containing the origin and ω : E →

XE = {−1, 1} is any function such that ω(e) = 1 if e ∈ E is open and ω(e) = 0 otherwise,

independently of all other edges f ∈ E\{e}. For any edge e ∈ E, let µe be Bernoulli measure such

that µe(ω(e) = 1) = p and µe(ω(e) = 0) = 1− p. If Ω = {(ω(e))e∈E} is the sample space of random

outcomes on the edge space, then define a probability measure on Ω to be the product measure

P (·) =
∏
e∈E

µe(·). (3.3)

For any event A consisting of elements from Ω, the probability P (A) is defined to be

P (A) =
∑
ω∈A

P (ω). (3.4)

From [2], the principal quantity of interest is the percolation probability given by

θ(p) = P (|C| =∞) = 1−
∞∑
k=1

P (|C| = k). (3.5)

If θ(p) > 0, then with probability 1 there exists a unique connected cluster C ⊆ V such that |C| =∞.

Theorem 3.2.4 (Theorem 1.11 [2]) The probability ψ(p) that there exists an infinite connected

cluster satisfies ψ(p) = 1 if θ(p) > 0 and ψ(p) = 0 otherwise.

11



The central question that is motivated by the percolation probability of equation 3.5 is then,

”What values of p ∈ (0, 1) guarantee that θ(p) > 0?” According to [2], for a lattice on R2, there

exists a unique value pc ∈ (0, 1) such that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc, where

pc = sup{p ∈ (0, 1) : θ(p) = 0} (3.6)

by definition.

Definition Let Π be a group of permutations of E and π = (πe)e∈E ∈ Π. For ω ∈ Ω, the

permutation π acts on ω by πω = ω(πe). Suppose each edge e ∈ E is enumerated. If A ⊆ Π is any

subgroup, then A acts transitively on E if there exists α = (αj)1≤j≤|E| ∈ A such that αj = k for all

pairs j, k ∈ E.

π ∈ Π is a re-ordering of all edges, e ∈ E. If X is a state space of values on the set of edges

such that Ω = XE , then πω ∈ Ω is the corresponding re-ordering of the element ω ∈ Ω on all edges,

e ∈ E.

Definition Let F be a set consisting of subsets of Ω such that ∅,Ω ∈ F . If the union of every

countable collection of pairwise disjoint elements from F and the intersection of every finite collection

of pairwise disjoint elements from F are both elements of F , then F is called a σ-algebra of subsets

of Ω.

Definition Let Π be any group of permutations of E and A ⊆ Π any subgroup. If F is a σ-algebra

of subsets of Ω, then a probability measure P on (Ω,F) is called A-invariant if

P (ω) = P (αω)

for all α ∈ A and ω ∈ Ω. An event is called A-invariant if A = αA for all α ∈ A and A ∈ F .

Definition Let F be a σ-algebra of subsets of Ω and A ∈ F . If ω ∈ A and ω(e) ≤ ω′(e) for all

e ∈ E implies ω′ ∈ A, then A is called an increasing event.

Theorem 3.2.5 (Theorem 2.48 [1]) There exists a constant c ∈ (0,∞) such that the following holds.

Let F be a σ-algebra of subsets of Ω and A ∈ F any increasing event. Suppose N = |E| ≥ 1 and P

is a strictly positive and monotone probability measure on (Ω,F). If A ⊆ Π is any subgroup acting

transitively on E such that P and A are A-invariant, then

d

dp
P (A) ≥ cmp

p(1− p)
min{P (A), 1− P (A)} logN

12



where mp = P (Je)(1− P (Je)) and Je is the event that e ∈ E is open.

If A is an increasing event and P (A) = ε ∈ (0, 1
2 ), then theorem 3.2.5 requires there to be a short

interval, as a subset of (pc, 1), such that P (A) increases sharply from ε to 1 − ε on this interval.

According to theorem 3.2.5, the length of this sharp threshold interval is O(1/ logN).

3.3 Random Fields

3.3.1 Introduction

Let L2 = (V,E) be any lattice on R2, where V is a set of vertices and E is the corresponding set of

edges between nodes on vertices. Let X = {−1, 1} be a state space of values on V .

Definition If Λ ⊂ V is finite and Ω(Λ) = XΛ, then a configuration on vertices in Λ is an element,

ωΛ ∈ Ω(Λ).

Definition An energy function (Hamiltonian) for configurations across vertices in V is defined as

H(ωΛ, Λω) = −(
∑
s,s′∈Λ

Js,s′ωsωs′ +
∑

s∈Λ,s′∈V \Λ

J ′s,s′ωsωs′) (3.7)

where the configuration Λω ∈ Ω(V \Λ) is fixed and the values Js,s′ , J
′
s,s′ are the relative strengths of

the interactions between the nodes at vertices s = (i, k), s′ = (i′, k′) ∈ V such that

h(s, s′) = |i− i′|+ |k − k′| = 1. (3.8)

Definition The nodes on a set of vertices satisfying the distance constraint given by equation 3.8

are nearest neighbors and the relative strengths of the interactions are defined to be zero when

s, s′ ∈ V \Λ or h(s, s′) > 1.

Suppose Ψ is a finite index set and Vf is the set of all finite subsets of V . With Λψ ∈ Vf for all

ψ ∈ Ψ, the collection

π =

{
exp(−βH(ωΛψ , Λψω))∑

ωΛψ
∈Ω(Λψ) exp(−βH(ωΛψ , Λψω))

}
ψ∈Ψ

(3.9)

is a set of conditional probability measures. The question of the existence and uniqueness of a

probability measure µ, with conditional probability measures given by elements of π, may now be

asked.
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3.3.2 General Problem Statement

Definition A configuration over V is an element, ω = (ωs)s∈V ∈ X V = Ω. If F is a σ-algebra of

subsets of Ω, then a random field µ on V is a probability measure on (Ω,F).

Suppose there is a family of conditional probability measures that are indexed by a collection of

finite subsets of V . The general question to be asked is: ”Does there exist a probability measure µ

with conditional probability measures the same as the predefined family, π?”

3.3.3 Conditional Probability Measure

To answer the question just posed, suppose V1 ∈ Vf . Let µ be a random field, B ∈ F(V1) and let

y ∈ Ω(V \V1) be any fixed configuration on V \V1.

Proposition 3.3.6 Given y, the conditional probability measure of µ on the finite subset V1 ⊂ V is

well-defined when there exists ψ ∈ Ψ such that V1 = Λψ with

µV1(B | y) =
∑
ω∈B

πV1(ω, y) (3.10)

and πV1 ∈ π.

Proof Follows from the discussion in section 2.1.1 of [38].

3.3.4 Coherent Specifications

It is not enough that the conditional probability measures given by equation 3.10 be well-defined in

order for µ to be a probability measure associated to the specification π. It must also be the case

that for any V1, V2 ∈ Vf such that V1 ⊂ V2, it is true that µV2
|V1

= µV .

Definition Suppose V1, V2 ∈ Vf such that V1 ⊂ V2. Let µV1
and µV2

be conditional probability

measures of configurations on V1 and V2\V1, respectively. If B1 ∈ F(V1), B2 ∈ F(V2\V1) and

z ∈ V \V2, then the composition of µV1
and µV2

is defined as

(µV2
µV1

)(B1B2 | z) =

∫
B2

µV1
(B1 | yz)µV2

(X V1 , dy | z) (3.11)

where B1B2 ⊂ X V1 ×X (V2\V1) and

µV2
(X V1 , dy | z) =

∫
ω∈Ω(V1)

µV2
(dω, dy | z).
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A family of conditional probability measures {µV1}V1∈Vf associated with the random field µ is called

coherent, if

µV2
µV1

= µV2
(3.12)

for all V1, V2 ∈ Vf .

For equation 3.10, it is true that µ is a discrete probability measure. Therefore, it is enough

to show equation 3.11 applied to the specification of equation 3.10 for B1 = {ω} and B2 = {y} to

obtain

µV2
(X V1 , dy | z) =

∑
ω1∈Ω(V1)

exp (−βH(ω1y, z))∑
ω2∈Ω(V2) exp (−βH(ω2, z))

=

∑
ω1∈Ω(V1) exp (−βH(ω1y, z))∑
ω2∈Ω(V2) exp (−βH(ω2, z))

which implies

(µV2
µV1

)(B1B2 | z) =
exp(−βH(ω1, yz))∑

ω1∈Ω(V1) exp(−βH(ω1, yz))
× µV2

(X V1 , dy | z) (3.13)

=
exp(−βH(ω1y, z))∑

ω1∈Ω(V1) exp(−βH(ω1y, z))
× µV2

(X V1 , dy | z) (3.14)

=
exp(−βH(ω1y, z))∑

ω2∈Ω(V2) exp(−βH(ω2, z))

= µV2
(B1B2 | z).

The first term of equation 3.13 is the conditional probability of a configuration ω1 ∈ Ω(V1)

given the a
′
priori concatenated configuration, yz ∈ Ω(V \V1). The first term of equation 3.14 is the

conditional probability of a concatenated configuration ω1y ∈ Ω(V2) given the a
′
priori configuration,

z ∈ Ω(V1\V2). As such

(µV2
µV1

)(B1B2 | z) = µV2
(B1B2 | z)

implies that the family of conditional probability measures given by equation 3.10 is coherent.

Definition A coherent family of conditional probability measures π = {πV1
}V1∈Vf is called a con-

ditional specification and the set G(π) is defined to be the set of fields µ that admit π as their

conditional specification, i.e. µ ∈ G(π)⇐⇒ µV1 = πV1 for all V1 ∈ Vf .
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3.3.5 Interaction Potentials and Existence of Gibbs Measures

A random field, with conditionals given by equation 3.10, is associated to the specific Hamiltonian

given by equation 3.7. In general, a coherent specification in the form of the one given by equation

3.9 can be defined through the use of a more general Hamiltonian that is modeled as the sum of

functions giving a measure of the interaction between neighboring lattice vertices.

Definition An interaction potential measuring the amount of energy associated to interacting nodes

at neighboring vertices s, s′ ∈ V1 ∈ Vf is a family

φ = {φV1}V1∈Vf

of F(V1)-measurable functions φV1
: Ω(V1)→ R such that for Λ ∈ Vf and ω ∈ Ω

UφΛ(ω) =
∑

V1∈Vf :V1∩Λ6=∅

φV1
(ω) <∞. (3.15)

UφΛ(ω) defines the total energy of the configuration ω ∈ Ω across the finite set of vertices, Λ ∈ Vf .

Implicit in the definition of the conditional probability measure, as stated in equation 3.10, is

the measure of the changes from one configuration to the next. Since each configuration is discrete,

this change is taken to be the integral count of all changes between configurations. However, in the

more general case, a conditional probability measure of a continuum of configurations, utilizing the

Hamiltonian of equation 3.15, will be well-defined provided that the associated normalizing constant

is finite, when it is computed using an appropriate measure of changes in configurations.

Definition Suppose λ is a positive measure of sets in F(Λ) called a reference measure. It will be

said that an interaction potential φ is λ-admissible if for all ω ∈ Ω

ZφΛ(ω) =

∫
Ω(Λ)

expUφΛ(ωΛ, Λω)λΛ(dωΛ) <∞ (3.16)

where ωΛ and Λω are configurations on Λ and V \Λ, respectively and λΛ is the restriction of λ to Λ.

Any λ-admissible potential φ is called a Gibbs potential.

If φ is λ-admissible, then by arguments in [4], the family

πφ =
{
πφΛ

}
Λ∈Vf
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defined by

πφΛ(ω) = (ZφΛ(ω))−1 expUφΛ(ωΛ, Λω) (3.17)

can be shown to be a coherent set of conditional probability measures.

Definition The family πφ is called the Gibbs specification associated to the Gibbs potential φ. When

φ is a Gibbs potential, G(πφ) is denoted G(φ) and any measure µ ∈ G(φ) is called a Gibbs measure

associated to φ.

To show the existence of a Gibbs measure, it has to be shown that G(φ) is non-empty. One

way to accomplish this task [4] is to define a coherent specification
{
πφΛn(·|ω)

}
n≥1

associated to a

λ-admissible potential, φ. This sequence of conditional probability measures is indexed by a mono-

tonically increasing sequence of finite subsets (Λn ∈ Vf )n≥1 such that Λn ↑ V . By defining P(Ω,F)

to be the space of all probability measures on (Ω,F), the existence of a convergent subsequence

is guaranteed, since every uniformly bounded, infinite sequence of probability measures contains a

weakly convergent subsequence [6]. As such,
{
πφΛn(·|ω)

}
n≥1

is relatively compact in P(Ω,F) and

the limit of its convergent subsequence is an element of G(φ).

Define the space of summable potentials as

BV =

φ : | ‖φ‖ |s =
∑

A∈Vf :A3s
‖φA‖∞ <∞, s ∈ V

 . (3.18)

By arguments in [4], it can be shown that a summable potential φ is λ-admissible if and only if λ is

finite on the state space, X . Furthermore, suppose X is a complete, separable metric space. If the

reference measure λ is positive and finite, then for a summable potential φ, it is true that G(φ) is

non-empty and compact by arguments in [4]. This last statement is also due to G(φ) being closed

in the compact space, P(Ω,F) [38].

Returning to the specification given in equation 3.9, assume that a conditional specification has

been defined and that it is yet to be determined if an associated Gibbs measure exists. Clearly,

X = {−1, 1} coupled with any metric will form a complete, separable metric space. Taking the

reference measure λ as a count of changes in configurations on finite subsets of V , it is clear that

λ will be positive and finite. Lastly, the total energy on a finite subset Λ ∈ Vf takes the form

of H(ωΛ, Λω), given by equation 3.7. Hence, H(ωΛ, Λω) must be a finite number, requiring that

any potential used to define the total energy must be summable. Thus, G(φ) is non-empty for any

potential φ associated to H(ωΛ, Λω). Therefore, at least one Gibbs measure exists for the conditional
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specification defined by equation 3.9. As it turns out, for the example of equation 3.9, any Gibbs

measure µ associated to the Gibbs specification πφ is not always unique, by the discussion in the

next section.

3.3.6 Relationship Between Random Fields and Site Percolation

Proposition 3.3.7 (Theorem 1.16 [1]) Suppose L2 = (V,E) is a finite hexagonal lattice such that

for nodes on vertices s, t ∈ V , < s, t >L2 and < C{s,t} >L2 are the edge between and a set of edges

connecting s and t, respectively. With λ being the density of nodes in B, let

pλ = 1− e−Ahrλ (3.19)

be the common probability that any hexagon will contain at least one of n uniformly distributed nodes,

where Ahr is the common area of each hexagon, which can be inscribed into a circle of radius r, for

some r > 0. If X = {−1, 1} is a state space of values on V such that for s ∈ V , it is true that

xs = 1 with probability pλ, then for vertices s1, s2 ∈ V , the following holds

P (< C{s1,s2} >L2) =
2× exp(Ahrλ

∑
<s,t>L2∈<C{s1,s2}>L2

xsxt)

Zλ
− 1 (3.20)

where

Zλ =
∑

(xs)s∈V ∈XV
exp (Ahrλ

∑
<s,t>L2∈E

xsxt).

Proof This is just a restatement of theorem 1.16 of [1] for the special case of q = 2 and β = Ahrλ.

By equation 3.19, each hexagon in the lattice has an equal probability of containing at least one

of the n nodes so that the set of hexagons containing a node is uniformly distributed throughout

the partition. Equation 3.20, refers to the probability measure that will be used throughout the

remainder of the thesis.
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Chapter 4

Continuum Model

4.1 Procedure

Let B ⊂ R2 be a bounded region containing the origin 0̂ = (0, 0) and let X be a node process

such that X(B) = Xn is a set of n nodes uniformly distributed spatially throughout B, where n is

a Poisson random variable which takes a particular value (denoted as n) with density parameter

λ = λ(n). For some fixed r > 0, nodes in Xn will connect if their mutual distance is within r. For

fixed ρ ∈ ( 1
2 , 1), define An,ρ,r to be the set of all subsets of Xn containing at least 100ρ% of all

generated nodes which form a connected subset containing 0̂.

Let ε > 0 be given and let r(n, ρ, ε) be the least connectivity radius r > 0 such that P (An,ρ,r) ≥ ε.

It will be shown that P (An,ρ,r) is an increasing function of the connection radius r. The aim is to

estimate the length of the interval of connectivity radii such that the occurrence of An,ρ,r increases

in probability from a value of ε to a value of 1− ε on the interval of radii.

As an integral step in estimating the length of the interval of radii, continuity in r and ρ of

P (An,ρ,r) will be shown. As such, by continuity in ρ, for small δ > 0, the probability of An,ρ,r is

close to the probabilities of An,ρ+δ,r and An,ρ−δ,r. Furthermore, by continuity and the increasing

nature of P (An,ρ,r) in r, there exists r0 = r0(n, ρ, r) such that P (An,ρ,r0) = 1
2 . An upper bound

for P (An,ρ+δ,r) is found when r ≤ r0 and a lower bound for P (An,ρ−δ,r) is found when r ≥ r0. For

ε > 0, this upper and lower bound is used to estimate the length of the interval of radii such that

P (An,ρ,r) increases from ε to 1− ε.
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4.2 Definitions

Definition Given a fixed node, y ∈ Xn, an r-connected component containing y is the subset of

nodes < Cy >r ⊆ Xn containing y and every x ∈ Xn\{y} having a chain of r-open edges connecting

x to y.

Definition Given an r-open edge, e = < x, y >r ∈ G(Xn; r), an r-connected component containing

e is the subset of nodes < Ce >r ⊆ Xn containing x and y together with every z ∈ Xn\{x, y} having

a chain of r-open edges connecting z to both x and y.

Definition Let E be any σ-algebra of subsets of E. Suppose {ηk}k≥1 is a sequence of random

variables on E with values in R. It will be said that ηk converges weakly to a random variable

η : E → R (written ηk ⇒ η), if

lim
k→∞

Fk(x) = lim
k→∞

P (ηk ≤ x)

= P (η ≤ x)

= F (x)

for all x ∈ R.

4.3 The Event

4.3.1 Bounded Number of Nodes

Let < C >r ⊆ Xn be an r-connected component containing 0̂ such that | < C >r | = N and define

ρn(C) = N
n . Define the graph property of all connected components containing at least 100ρ% of

all available nodes by

An,ρ,r = {< C >r ⊆ Xn : ρn(C) ≥ ρ}. (4.1)

As in [7], for ε ∈ (0, 1
2 ), define

r(n, ρ, ε) = inf{r > 0 : P (An,ρ,r) ≥ ε} (4.2)

to be the critical radius at which An,ρ,r occurs with probability at least ε and define

∆(n, ρ, ε) = r(n, ρ, 1− ε)− r(n, ρ, ε) (4.3)
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to be the length of the continuum of radii upon which An,ρ,r increases in probability from ε > 0 to

1− ε > 0.

4.3.2 Unbounded Number of Nodes

In the event that n is unbounded, define the corresponding graph property to be

Ar = {< C >r ⊆ X∞ : | < C >r | =∞}. (4.4)

4.4 Continuity Results

In order to prove the existence of r0 > 0 such that P (An,ρ,r0) = 1
2 , it will be shown that P (An,ρ,r)

is a continuous function of r. By properties of probabilities measures, P (An,ρ,r) ∈ [0, 1] and by

proposition A.1.50, it is true that P (An,ρ,r) is non-decreasing as a function of r > 0. By theorem

3.1.1, it is true that P (An,ρ,r) increases from ε > 0 to 1 − ε > 0 for fixed ε ∈ (0, 1
2 ). Then, by

continuity, there exists r0 > 0 such that P (An,ρ,r0) = 1
2 . If I is any continuum of radii and P (An,ρ,I)

is defined to be the set {P (An,ρ,r) : r ∈ I}, then it is easily seen that r0 is in the interior of any

compact interval of radii Iε such that P (An,ρ,Iε) = [ε, 1− ε]. Seeking a contradiction, suppose r0 is

in the boundary of Iε. Since Iε is compact and P (An,ρ,r) is continuous in r, then P (An,ρ,r0) = ε or

P (An,ρ,r0) = 1− ε. Therefore, P (An,ρ,r0) = 1
2 implies ε = 1

2 . This is a contradiction since ε ∈ (0, 1
2 ).

Thus, r0 is in the interior of Iε. Q.E.D.

Now, if it can be shown that r0 is independent of ε, then r0 ∈ Iε for all ε ∈ (0, 1
2 ). Note that

r0 ∈ I =
⋂
k Iεk for any sequence εk → 1

2 . Clearly I is compact so that r0 is in the interior of

I. Therefore, either I is an interval or I = {r0}. Suppose I is an interval of radii. Since r0 is

in the interior of I, then there exists r′0 < r0 ∈ I. Now, since εk → 1
2 , then P (An,ρ,r′0) = 1

2 and

r′0 < r0 = inf{r > 0 : P (An,ρ,r) = 1
2}. This is a contradiction. Therefore, I = {r0} so that r0 is

unique. Q.E.D.

Continuity of P (Ar) in r is proven in [3] and can be used for proving continuity of P (An,ρ,r) in

r as follows. Let ∂B denote the boundary of B and define ABr = {0̂ ↔ ∂B} to be the event that

there is an r-connected cluster containing 0̂ and a node in ∂B. By arguments in [3], continuity of

P (Ar) in r is equivalent to continuity of P (ABr ) in r for all bounded regions B containing 0̂. Clearly,

P (ABr ) = P (ABr − An,ρ,r) + P (ABr ∩ An,ρ,r) so that continuity of P (ABr ) in r implies continuity of

P (ABr ∩ An,ρ,r) in r. Now, there exists r′0 > 0 such that P (ABr ) = 1 for all r ≥ r′0. Then, it follows

that P (An,ρ,r) = P (ABr ∩ An,ρ,r) is continuous when r ≥ r′0. In particular, P (An,ρ,r) is continuous
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at r′0. So, there is δ > 0 such that P (An,ρ,r) is continuous upon [r′0 − δ, r′0 + δ]. Continuing this

argument, continuity of P (An,ρ,r) extends until r′0 − δ = 0 so that P (An,ρ,r) is continuous for all

r ≥ 0. Q.E.D.

Theorem 4.4.8 (Theorem 3.8 [3]) Suppose {rk}k≥1 is a sequence of radii such that 0 < rk ≤ R for

some R > 0 and {ηk}k≥1 is a sequence of random variables which take values rk with probability 1.

If 0 < r ≤ R and η is a random variable taking the value r with probability 1 such that ηk ⇒ η as

k →∞. Then, P (Aηk)→ P (Aη) as k →∞.

Proof This is just a restatement of theorem 3.8 of [3] for the special case of random variables ηk

and η such that P (ηk = rk) = 1 = P (η = r) for all k ≥ 1.

Corollary 4.4.9 (to Theorem 4.4.8) P (An,ρ,r) is a continuous function of r.

Proof Continuity of P (Ar) in r follows from theorem 4.4.8. Therefore, the result follows by the

discussion preceding the statement of theorem 4.4.8.

Theorem 4.4.10 r = r(n, ρ, ε) is a continuous function of ε if and only if P (An,ρ,r) is a continuous

function of r.

Proof Suppose r(n, ρ, ε) is a continuous function of ε and let {εk ∈ (0, 1
2 )}k≥1 be a sequence of

positive real numbers such that εk → ε0 as k → ∞. Let {X(e)}e∈G(Xn;r) be a finite sequence

of uniformly distributed random variables with values in [0, 1] and define a sequence of random

variables {ηk}k≥1 by ηk(e) = r(n, ρ, εk) ≡ rk when X(e) < 1 and 0 otherwise. Clearly, ηk = rk with

probability 1 for all k ≥ 1. Likewise, define a random variable η0 by η0(e) = r(n, ρ, ε0) ≡ r0 when

X(e) < 1 and 0 otherwise so that η0 = r0 with probability 1. Since r(n, ρ, ε) is continuous in ε,

then rk → r0 as k → ∞ so that ηk ⇒ η0 as k → ∞. Now, define R = 2 ∗max{d(x, y) : x, y ∈ Xn}.

By lemma A.1.56, 0 < ηk ≤ R for all k ≥ 0. Therefore, P (An,ρ,ηk) → P (An,ρ,η0
) as k → ∞ by

corollary 4.4.9 since rk → r0 as k →∞. Thus, P (An,ρ,r) is a continuous function of r. Conversely,

suppose P (An,ρ,r) is a continuous function of r and let {εk ∈ (0, 1
2 )}k≥1 be any convergent sequence

such that εk → ε0. Define rk = r(n, ρ, εk) and r0 = r(n, ρ, ε0). Given ξ > 0, it is true that

Ξ ≡ {k ≥ 1 : |P (An,ρ,rk) − P (An,ρ,r0)| ≥ ξ} is a set of measure zero by the continuity assumption.

Therefore, rk → r0 as k →∞ by proposition A.1.57. Thus, suppose that Ξ 6= ∅. Then, Ξ is at most

countable so that Ξ = ∅ a.s. Hence, rk → r0 as k →∞ by proposition A.1.57 so that r(n, ρ, ε) is a

continuous function of ε.
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4.5 Continuum Giant Component

Theorem 4.5.11 There exists r0 = r0(n, ρ) <∞ such that P (An,ρ,r0) = 1
2 .

Proof Let ε ∈ (0, 1
2 ) be given. Since An,ρ,r is an increasing property in r by proposition A.1.47,

theorem 3.1.1 applies. Thus, there exists an interval Iε of length ∆(n, ρ, ε) such that P (An,ρ,r) ∈

[ε, 1−ε] for r ∈ Iε. Since P (An,ρ,r) is a continuous function of r by corollary 4.4.9 and non-decreasing

in r by proposition A.1.50 and 1
2 ∈ [ε, 1− ε], then there exists r0 ∈ Iε such that P (An,ρ,r0) = 1

2 . If

R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then by lemma A.1.56, it is true that 0 < r0(n, ρ, ε) ≤ R <∞. It

remains to be shown that r0 = r0(n, ρ), independent of ε.

Lemma 4.5.12 r0 = r0(n, ρ, ε) is independent of ε.

Proof Let ε1, ε2 ∈ (0, 1
2 ) and suppose r0,1 = r0(n, ρ, ε1), r0,2 = r0(n, ρ, ε2) such that

P (An,ρ,r0,1) =
1

2
= P (An,ρ,r0,2). (4.5)

It has to be shown that r0,1 = r0,2. Let {εk}k≥1 be a sequence such that εk = ε1 for all k ≥ 1 and

define r0,k = r0(n, ρ, εk). Then, for arbitrary ξ > 0, it is true that

Ξ ≡ {k ≥ 1 : |P (An,ρ,r0,k)− P (An,ρ,r0,2)| ≥ ξ} = ∅ (4.6)

since r0,k = r0,1 for all k ≥ 1. Hence, by proposition A.1.57, r0,k → r0,2 as k →∞. But, r0,k = r0,1

for all k ≥ 1 so that r0,1 = r0,2. Thus, r0 = r0(n, ρ), independent of ε.

Corollary 4.5.13 Given r > 0, there exists a density of nodes λ0 = λ(n0) such that

P (An0,ρ,r) =
1

2
.

Proof By lemma 4.5.12, let n0 = n0(r, ρ) be the minimum of all positive (real) solutions to r =

r0(n, ρ) for some fixed r > 0. It follows that P (An0,ρ,r) = 1
2 .

Theorem 4.5.11 is the statement and proof of the existence of a particular radius r0 at which

the probability is 1
2 for the occurrence of the event of at least half of the nodes in Xn will form a

connected cluster. Furthermore, lemma 4.5.12 proves that r0 is independent of ε ∈ (0, 1
2 ). Lastly,

given a fixed radius r > 0, corollary 4.5.13 is a statement and proof that the radius r0 guaranteed

by theorem 4.5.11 can be used to find a critical density of nodes such that the probability is 1
2 for

the occurrence of the event of at least 100ρ% of the nodes in Xn forming a connected cluster.
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4.6 Continuum Sharp Threshold Interval Length

Given the particular radius guaranteed by theorem 4.5.11, then theorem 3.1.1 can be used to find

an estimate of the length of the sharp threshold interval such that P (An,ρ,r) increases sharply from

some ε ∈ (0, 1
2 ) to 1− ε. By lemma 4.5.12, it is true that r0 is independent of any particular ε. Thus,

the interval and its length must be fixed given n and ρ ∈ ( 1
2 , 1).

Theorem 4.6.14 ∆(n, ρ) = O(r0 log
1
4 n).

Proof For δ ∈ (0, 1
2 ), let εδ = 1

2 − δ. By theorem 3.1.1 and theorems 4.5.11 and 4.5.12,

∆(n, ρ) = lim
δ→0+

∆(n, ρ, εδ)

= lim
δ→0+

O(r(n, ρ, εδ) log
1
4 n)

= O(r0 log
1
4 n).

Theorem 4.6.14 gives an expected result, given theorem 3.1.1 above. According to theorem 3.1.2

above, this length turns out to be the same as the length of the bottleneck matching, Mn. In [47], it

is shown that an algorithm used to compute Mn will need O(n log(n)) computations. However, in

[5], a much more practical estimate of this length is obtained after the bounded region is partitioned

by hexagons of a known size. If M is the number of these hexagons in the bounded region, then it

is shown that a good estimate of the sharp interval length is a polynomial in 1
M .

Theorem 4.6.15 There is a constant c > 0, independent of M , such that for all ε1 > 0 and every

fixed small δ > 0

P (An,ρ+δ,r) ≤ (
1

2
+ ε1)M−c(r0−r) (4.7)

for all r ≤ r0 and

P (An,ρ−δ,r) ≥ 1− (
1

2
+ ε1)M−c(r−r0) (4.8)

for all r ≥ r0.

Theorem 4.6.16 P (An,ρ,r) is a continuous function of ρ.
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The proof of theorem 4.6.16 requires theorem 4.6.15 which will be proven later. For now, the

result of theorem 4.6.16 is assumed. By theorem 4.6.16, for small δ > 0,

P (An,ρ−δ,r) ≈ P (An,ρ,r) ≈ P (An,ρ+δ,r).

In this light, theorem 4.6.15 asserts that if r1 < r0 < r2 and for some ε ∈ (0, 1
2 ) it is true that

P (An,ρ,r1) = ε and P (An,ρ,r2) = 1 − ε, then r2 − r1 is an estimate of the sharp threshold interval

length for the event, An,ρ,r.
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Chapter 5

Hexagonal Partition Model

It was seen in the previous chapter that r0 > 0 exists such that the probability is 1
2 for the event of

at least 100ρ% of all nodes to connect. By theorem 3.1.1,

rc = rc(n) ∝
√

log n

n
≤ r0(n) = r0 (5.1)

where rc defines the critical radius at which the same event occurs with arbitrarily small positive

probability.

For fixed r ∈ (rc, r0), let hr be the largest hexagon that can be inscribed into a circle of radius

r
4 > 0. Let H(r) be a countably infinite collection of copies of hr such that

R2 =
⋃

hri,j∈H(r)

hri,j (5.2)

and for hri,j , h
r
i′,j′ ∈ H(r), it is true that hri,j 6= hri′,j′ whenever |i − i′| + |j − j′| 6= 0. Connectivity

between x, y ∈ Xn is then defined as x and y both lying in the same hexagon or neighboring hexagons.

With the bounded region B partitioned into hexagons contained within B ∩ H(r), the analysis

proceeds whereby the original problem of estimating the sharp threshold interval length in the

continuum is now replaced by the problem of estimating the length in the hexagonal partition

framework. As such, definitions of connectivity and the increasing event are defined in the new

framwork. Then, the continuity and existence results are shown to still hold in the new framework.

Later, an analogue to theorem 4.6.15 is stated and proven.
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5.1 Definitions

Definition A hexagonal partition of B is a finite collection of hexagons from H(r) such that B is a

union of all hexagons in the finite collection.

Definition The Hamming distance between elements, hri,j , h
r
i′,j′ ∈ H(r) is defined to be the quantity

h(hri,j , h
r
i′,j′) = |i− i′|+ |j − j′|.

Definition Nodes x, y ∈ Xn are H(r)-connected and < x, y >H(r) is an H(r)-open edge, if there

exists hrix,jx , h
r
iy,jy

∈ H(r) such that x ∈ hrix,jx and y ∈ hriy,jy where h(hrix,jx , h
r
iy,jy

) ≤ 2 with

|ix − iy| ≤ 1 and |jx − jy| ≤ 1. Nodes in Xn are H(r)-disconnected and form an H(r)-closed edge

otherwise.

Definition Given a y ∈ Xn, an H(r)-connected component containing y is the subset of nodes

< Cy >H(r) ⊆ Xn containing y and every x ∈ Xn\{y} having an H(r)-open set of edges connecting

x to y.

Definition Given an H(r)-connected edge, e =< x, y >H(r), an H(r)-connected component con-

taining e is the subset of nodes < Ce >H(r) ⊆ Xn containing x and y and every z ∈ Xn\{x, y} having

an H(r)-open set of edges connecting z to both x and y.

5.2 The Increasing Property

5.2.1 Bounded Number of Nodes

Let < C >H(r) ⊆ Xn be an r-connected component such that | < C >H(r) | = N and define

ρ∗n(C) = N
n . Define the graph property of all connected components containing at least 100ρ% of

all available nodes by

A∗n,ρ,r = {< C >H(r) ⊆ Xn : ρ∗n(C) ≥ ρ}. (5.3)

As in [7], for ε ∈ (0, 1
2 ), define

r∗(n, ρ, ε) = inf{r > 0 : P (A∗n,ρ,r) ≥ ε} (5.4)
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to be the critical radius at which A∗n,ρ,r occurs with probability at least ε and define

∆∗(n, ρ, ε) = r∗(n, ρ, 1− ε)− r∗(n, ρ, ε) (5.5)

to be the length of the continuum of radii upon which A∗n,ρ,r increases in probability from ε > 0 to

1− ε > 0.

5.2.2 Unbounded Number of Nodes

In the event that n is unbounded, define the corresponding graph property and associated event to

be

A∗r = {< C >H(r) ⊆ X∞ : | < C >H(r) | =∞}. (5.6)

5.3 Continuity Results

In order to prove the existence of r∗0 > 0 such that P (A∗n,ρ,r0) = 1
2 , it will be shown that P (A∗n,ρ,r)

is a continuous function of r. By properties of probabilities measures, P (A∗n,ρ,r) ∈ [0, 1] and by

proposition A.2.63, it is true that P (A∗n,ρ,r) is non-decreasing as a function of r > 0. By theorem

3.1.1, it is true that P (A∗n,ρ,r) increases from ε > 0 to 1 − ε > 0 for fixed ε ∈ (0, 1
2 ). Then, by

continuity, there exists r∗0 > 0 such that P (A∗n,ρ,r∗0 ) = 1
2 . If I is any continuum of radii and P (A∗n,ρ,I)

is defined to be the set {P (A∗n,ρ,r) : r ∈ I}, then it is easily seen that r∗0 is in the interior of any

compact interval of radii Iε such that P (A∗n,ρ,Iε) = [ε, 1− ε]. Seeking a contradiction, suppose r∗0 is

in the boundary of Iε. Since Iε is compact and P (A∗n,ρ,r) is continuous in r, then P (A∗n,ρ,r∗0 ) = ε or

P (A∗n,ρ,r∗0 ) = 1− ε. Therefore, P (A∗n,ρ,r∗0 ) = 1
2 implies ε = 1

2 . This is a contradiction since ε ∈ (0, 1
2 ).

Thus, r∗0 is in the interior of Iε. Q.E.D.

Now, if it can be shown that r∗0 is independent of ε, then r∗0 ∈ Iε for all ε ∈ (0, 1
2 ). Note that

r∗0 ∈ I =
⋂
k Iεk for any sequence εk → 1

2 . Clearly I is compact so that r∗0 is in the interior of

I. Therefore, either I is an interval or I = {r∗0}. Suppose I is an interval of radii. Since r∗0 is

in the interior of I, then there exists r′0 < r∗0 ∈ I. Now, since εk → 1
2 , then P (A∗n,ρ,r′0) = 1

2 and

r′0 < r∗0 = inf{r > 0 : P (A∗n,ρ,r) = 1
2}. This is a contradiction. Therefore, I = {r∗0} so that r∗0 is

unique. Q.E.D.

Continuity of P (A∗r) in r is proven in [3] and can be used for proving continuity of P (A∗n,ρ,r) in r

as follows. Let ∂B be defined as in chapter 4 and define AB∗r = {0̂↔ ∂B} to be the event that there

is an H(r)-connected cluster containing both 0̂ and a node in ∂B. By arguments in [3], continuity of
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P (A∗r) in r is equivalent to continuity of P (AB∗r ) in r for all bounded regions B containing 0̂. Clearly,

P (AB∗r ) = P (AB∗r −A∗n,ρ,r)+P (AB∗r ∩A∗n,ρ,r) so that continuity of P (AB∗r ) in r implies continuity of

P (AB∗r ∩A∗n,ρ,r) in r. Now, there exists r′0 > 0 such that P (AB∗r ) = 1 for all r ≥ r′0. Then, it follows

that P (A∗n,ρ,r) = P (AB∗r ∩A∗n,ρ,r) is continuous when r ≥ r′0. In particular, P (A∗n,ρ,r) is continuous

at r′0. So, there is δ > 0 such that P (A∗n,ρ,r) is continuous upon [r′0 − δ, r′0 + δ]. Continuing this

argument, continuity of P (A∗n,ρ,r) extends until r′0 − δ = 0 so that P (A∗n,ρ,r) is continuous for all

r ≥ 0. Q.E.D.

Corollary 5.3.17 (to Theorem 4.4.8) P (A∗n,ρ,r) is a continuous function of r.

Proof Note that H(r)-connected nodes are within distance r of one another. Therefore, continuity

of P (A∗r) in r follows from theorem 4.4.8. Hence, the result follows by the discussion preceding the

statement of corollary 5.3.17.

Theorem 5.3.18 r = r∗(n, ρ, ε) is a continuous function of ε if and only if P (A∗n,ρ,r) is a continuous

function of r.

Proof Suppose r∗(n, ρ, ε) is a continuous function of ε and let {εk ∈ (0, 1
2 )}k≥1 be a sequence of

positive real numbers such that εk → ε0 as k → ∞. Let {X(e)}e∈G(Xn;H(r)) be a finite sequence

of uniformly distributed random variables with values in [0, 1] and define a sequence of random

variables {η∗k}k≥1 by η∗k(e) = r∗(n, ρ, εk) ≡ r∗k when X(e) < 1 and 0 otherwise. Clearly, η∗k = r∗k

with probability 1 for all k ≥ 1. Likewise, define a random variable η∗0 by η∗0(e) = r∗(n, ρ, ε0) ≡ r∗0

when X(e) < 1 and 0 otherwise so that η∗0 = r0 with probability 1. Since r(n, ρ, ε) is continuous in

ε, then rk → r0 as k →∞ so that η∗k ⇒ η∗0 as k →∞. Now, define R = 2 ∗max{d(x, y) : x, y ∈ Xn}.

By lemma A.2.69, 0 < η∗k ≤ R for all k ≥ 0. Therefore, P (A∗n,ρ,η∗k) → P (A∗n,ρ,η∗0 ) as k → ∞ by

corollary 5.3.17 since r∗k → r∗0 as k →∞. Thus, P (A∗n,ρ,r) is a continuous function of r. Conversely,

suppose P (A∗n,ρ,r) is a continuous function of r and let {εk ∈ (0, 1
2 )}k≥1 be any convergent sequence

such that εk → ε0. Define r∗k = r∗(n, ρ, εk) and r∗0 = r∗(n, ρ, ε0). Given ξ > 0, it is true that

Ξ ≡ {k ≥ 1 : |P (A∗n,ρ,r∗k)− P (A∗n,ρ,r∗0 )| ≥ ξ} is a set of measure zero by the continuity assumption.

Therefore, r∗k → r∗0 as k →∞ by proposition A.2.70. Thus, suppose that Ξ 6= ∅. Then, Ξ is at most

countable so that Ξ = ∅ a.s. Hence, r∗k → r∗0 as k →∞ by proposition A.2.70 so that r∗(n, ρ, ε) is a

continuous function of ε.

5.4 Hexagonal Giant Component

Theorem 5.4.19 There exists r∗0 = r∗0(n, ρ) <∞ such that P (A∗n,ρ,r∗0 ) = 1
2 .
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Proof Let ε ∈ (0, 1
2 ) be given. Since A∗n,ρ,r is an increasing property in r by proposition A.2.60,

theorem 3.1.1 applies. Thus, there exists an interval Iε of length ∆∗(n, ρ, ε) such that P (A∗n,ρ,r) ∈

[ε, 1−ε] for r ∈ Iε. Since P (A∗n,ρ,r) is a continuous function of r by corollary 5.3.17 and non-decreasing

in r by proposition A.2.63 and 1
2 ∈ [ε, 1− ε], then there exists r∗0 ∈ Iε such that P (A∗n,ρ,r∗0 ) = 1

2 . If

R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then by lemma A.2.69, it is true that 0 < r∗0(n, ρ, ε) ≤ R <∞. It

remains to be shown that r∗0 = r∗0(n, ρ), independent of ε.

Lemma 5.4.20 r∗0 = r∗0(n, ρ, ε) is independent of ε.

Proof Let ε1, ε2 ∈ (0, 1
2 ) and suppose r∗0,1 = r∗0(n, ρ, ε1), r∗0,2 = r∗0(n, ρ, ε2) such that

P (A∗n,ρ,r∗0,1) =
1

2
= P (A∗n,ρ,r∗0,2). (5.7)

It has to be shown that r∗0,1 = r∗0,2. Let {εk}k≥1 be a sequence such that εk = ε1 for all k ≥ 1 and

define r∗0,k = r∗0(n, ρ, εk). Then, for arbitrary ξ > 0, it is true that

Ξ ≡ {k ≥ 1 : |P (A∗n,ρ,r∗0,k)− P (A∗n,ρ,r∗0,2)| ≥ ξ} = ∅ (5.8)

since r∗0,k = r∗0,1 for all k ≥ 1. Hence, by proposition A.2.70, r∗0,k → r∗0,2 as k →∞. But, r∗0,k = r∗0,1

for all k ≥ 1 so that r∗0,1 = r∗0,2. Thus, r∗0 = r∗0(n, ρ), independent of ε.

Corollary 5.4.21 Given r > 0, there exists a density of nodes, λ∗0 = λ(n∗0), such that

P (A∗n∗0 ,ρ,r) =
1

2
.

Proof By lemma 5.4.20, let n∗0 = n∗0(r, ρ) be the minimum of all positive (real) solutions to r =

r∗0(n, ρ) for some fixed r > 0. It follows that P (A∗n∗0 ,ρ,r) = 1
2 .

Theorem 5.4.19 is the statement and proof of the existence of a particular radius r∗0 at which

the probability is 1
2 for the occurrence of the event of at least half of the nodes in Xn will form a

connected cluster. Furthermore, lemma 5.4.20 proves that r∗0 is independent of ε ∈ (0, 1
2 ). Lastly,

given a fixed radius r > 0, corollary 5.4.21 is a statement and proof that the radius r∗0 guaranteed

by theorem 5.4.19 can be used to find a critical density of nodes such that the probability is 1
2 for

the occurrence of the event of at least half of the nodes in Xn will form a connected cluster.
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5.5 Hexagonal Sharp Threshold Interval Length

Given the particular radius guaranteed by theorem 5.4.19, then theorem 3.1.1 can be used to find

an estimate of the length of the sharp threshold interval such that P (A∗n,ρ,r) increases sharply from

some ε ∈ (0, 1
2 ) to 1− ε. By lemma 5.4.20, it is true that r∗0 is independent of any particular ε. Thus,

the interval and its length must be fixed given n and ρ ∈ ( 1
2 , 1).

Theorem 5.5.22 ∆∗(n, ρ) = O(r∗0 log
1
4 n).

Proof For δ ∈ (0, 1
2 ), let εδ = 1

2 − δ. By theorem 3.1.1 and theorems 5.4.19 and 5.4.20,

∆∗(n, ρ) = lim
δ→0+

∆∗(n, ρ, εδ)

= lim
δ→0+

O(r∗(n, ρ, εδ) log
1
4 n)

= O(r∗0 log
1
4 n).

As in theorem 4.6.14 above, theorem 5.5.22 gives an expected result, given theorem 3.1.1 above.

Likewise, a similar result to theorem 3.3.1 of [5] can be stated and later proven, as in the case of

theorem 4.6.15.

Theorem 5.5.23 There is a constant c > 0, independent of M , such that for all ε1 > 0 and every

fixed small δ > 0

P (A∗n,ρ+δ,r) ≤ (
1

2
+ ε1)M−c(r

∗
0−r)

for all r ≤ r∗0 and

P (A∗n,ρ−δ,r) ≥ 1− (
1

2
+ ε1)M−c(r−r

∗
0 ) (5.9)

for all r ≥ r∗0.

Let M2 be the number of hexagons partitioning the region B and let HB(r) = H(r) ∩ B. Given

< C >H(r) ⊆ Xn, define HC = {hrB ∈ HB(r) : hrB ∩ < C >H(r) 6= ∅} to be the connected cluster

of hexagons such that each hexagon contains at least one node from the connected cluster of nodes,

< C >H(r).

Lemma 5.5.24 E[ ρ∗n(C) ] = E[ |HC | ]
M2 .
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Proof Let < C >H(r) ⊆ Xn be an H(r)-connected cluster and let KHC be a random variable taking

as values the number of nodes in the region RHC defined by the hexagons in HC . Since the n nodes

are uniformly distributed spatially and B is partitioned into M2 copies of the prototypical hexagon

hr, then

E[ KHC ] = n
E[ area(RHC ) ]

area(B)

= n
E[ |HC | ]× area(hr)

M2 × area(hr)

= n
E[ |HC | ]

M2
.

But, E[ KHC ] = E[ | < C >H(r) | ]. Therefore,

E[ | < C >H(r) | ] = n
E[ |HC | ]

M2

implies

E[ ρ∗n(C) ] =
E[ |HC | ]

M2
.

Define Dn,ρ,r = {HC ⊆ HB(r) : E[ ρ∗n(C) ] ≥ ρ}. With Dn,ρ,r defined as such, the original

problem of estimating the length of the sharp threshold for the event An,ρ,r in the continuum is now

recast as a site percolation problem on a hexagonal lattice. As will be defined later, a site in the

lattice will be deemed open if the corresponding hexagon is occupied by at least one of the nodes

from Xn and it will be deemed closed otherwise. Likewise, two sites are connected and belong to the

same connected cluster if both sites are open and their hamming distance is less than or equal to

one. Later, a torus on the lattice will be formed by defining a countable collection of permutations

of the hexagons in the partition so that the length of the sharp threshold for the event Dn,ρ,r can be

approximated by the length for another event D∗n,ρ,r on the torus. In this way, boundary connection

issues for sites in the partition of B are mitigated and the length of the sharp threshold interval for

the event D∗n,ρ,r approximates the length for Dn,ρ,r, which approximates the length for A∗n,ρ,r, which

finally approximates the length for An,ρ,r, the original event in the continuum.

Theorem 5.5.25 There is a constant c > 0, independent of M , such that

P (Dn,ρ,r) ≤
1

2
M−c(r

∗
0−r)
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for all r ≤ r∗0. Similarly, for some fixed small δ > 0 and for all ε1 > 0, there is an M0(δ, ε1) such

that for all M > M0(δ, ε1)

P (Dn,ρ−δ,r) ≥ 1− (
1

2
+ ε1)M−c(r−r

∗
0 )

for all r ≥ r∗0.

An important part of the proof of theorem 5.5.25 relies upon the sharp threshold inequality

results of [39] and [40]. In order to apply these results, connectivity in the hexagon lattice structure

should be extended to the case of a torus, whereby any boundary connectivity issues are mitigated.

As such, make HB(r) into a torus by identifying hi,j ∈ HB(r) with an element hi′,j′ in a copy of

HB(r), if i′ = i mod M and j′ = j mod M . For every k, l ∈ Z, the mapping τk,l : hi,j → hi+k,j+l

defines a shift translation. In this way, a subgroup of automorphisms τ = {τk,l : k, l ∈ Z} with the

transitivity property is formed. Thus, any hexagon hi,j can be shifted to any other hexagon hi′,j′

with the translation, τi′−i,j′−j . Now, hexagons in the 1st row (column) are allowed to be joined in

a connected cluster with hexagons in the Mth row (column), provided that all hexagons in question

are occupied.

Proposition 5.5.26 Define τ(HB(r)) to be the torus created by translations of hexagons in HB(r)

under the action of permutations in τ and define D∗n,ρ,r = {HC ⊆ τ(HB(r)) : E[ ρ∗n(C) ] ≥ ρ}.

Then, Dn,ρ,r ⊂ D∗n,ρ,r and Dn,ρ,r 6= D∗n,ρ,r.

Proof Since D∗n,ρ,r contains all of the connected hexagons from Dn,ρ,r and any connections between

the 1st and Mth rows (columns) while Dn,ρ,r contains no connection between the 1st and Mth rows

(columns), then the result follows.

Definition To each hexagon in the partition of B, associate a site i ∈ {1, 2, ...,M2} as the center of

the hexagon. For sites i ∈ {1, 2, ...,M2}, define si ∈ {0, 1} to be the state on site i. A site i is said to

be open if si = 1 and closed otherwise. There exists an edge e{i,j} between sites i, j ∈ {1, 2, ...,M2}

if and only if there exists a hexagon hri,j 3 i, j or there exists neighboring hexagons hri 3 i and hrj 3 j

in the partition of B. Define e{i,j} to be open if and only if si = 1 = sj and closed otherwise.

Definition The conditional influence of i on the event D∗n,ρ,r is defined to be

I(i) = P (D∗n,ρ,r | si = 1)− P (D∗n,ρ,r | si = 0)
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and it is a measure of the change in the probability of D∗n,ρ,r due to a state change from si = 0 to

si = 1 at site, i.

For completeness, a theorem from [5] is stated without proof, which gives an upper bound on

the change in P (D∗n,ρ,r) as a function of the node density λ. Utilizing the chain rule for derivatives,

a lower bound on the change in P (D∗n,ρ,r) as a function of r is found and the resulting inequality

relationship is used to estimate upper and lower bounds on P (D∗n,ρ,r), which will approximate the

inequality results of theorem 5.5.25.

Lemma 5.5.27 (Lemma 4.1.1 [5]) There is a constant z > 0, independent of M and λ, such that

d

dλ
P (D∗n,ρ,r) ≤ z∗(λ) min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)} logM

where Ahr is the area of the prototypical hexagon hr and z∗(λ) = −zAhre−Ahrλ.

Lemma 5.5.28 There is a constant c > 0, independent of M and λ, such that

d

dr
P (D∗n,ρ,r) ≥ c∗(λ) min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)} logM

where Ahr is the area of the prototypical hexagon hr and c∗(λ) = c(λ)Ahre
−Ahrλ, with c(λ) = −cg(λ)

for some function g(λ).

Proof As in corollary 5.4.21, let n∗ be the inverse of r∗ and seeking a contradiction, suppose

dr/dλ = 0. Let ε ∈ (0, 1
2 ). By lemma 5.5.27, dP/dλ exists. Now, the existence of dP/dr will be

shown by proving a Lipschitz condition on the probability distribution P (D∗n,ρ,r) as a function of r.

Assume area(B) = 1. Without loss of generality, it can be assumed that r ∈ [0, 1]. Without further

loss of generality, let r1, r2 ∈ [0, 1] such that r∗0 is the midpoint of [r1, r2], i.e. r∗0 = (r2 − r1)/2.

Then, by theorem 5.5.22,

|P (D∗n,ρ,r2)− P (D∗n,ρ,r1)| ≤ 1 = (∆∗(n, ρ))−1|r2 − r1|.

Therefore, P (D∗n,ρ,r) is Lipschitz continuous with respect to r. Hence, dP/dr exists. Now, since

dP/dλ, dP/dr and dr/dλ all exist, then the Chain Rule for derivatives yields,

d

dλ
P (D∗n,ρ,r) =

d

dr
P (D∗n,ρ,r)×

dr

dλ
.
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Note that the existence of dP/dr requires that |dP/dr| <∞. Therefore, since dr/dλ = 0, then

d

dλ
P (D∗n,ρ,r) =

d

dr
P (D∗n,ρ,r)× 0 = 0.

As a result, P (D∗n,ρ,r) is constant as a function of λ. So, suppose that 0 < n < n∗. Then,

P (D∗n,ρ,r) = 0, which implies that P (D∗n,ρ,r) ≡ 0. This is a contradiction, since P (D∗n,ρ,r) is a

probability distribution. Hence, dr/dλ 6= 0. Now, by theorem 3.2.5, there is a constant c > 0,

independent of M and λ, such that

I(i) ≥ cmin{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)}
logM

M2
.

Under the action of τ , each hexagon in the bounded region B is translated to another hexagon in a

copy of B. Therefore, D∗n,ρ,r and P (D∗n,ρ,r) are invariant under the action of τ . Hence, I(i) = I(j)

whenever, τ(i) = j, where τ(i) is defined to be the translation of the hexagon hri 3 i to the hexagon

hrj 3 j in the copy of the partition of B. From [5], in the proof of theorem 5.5.27, the following

identity holds

d

dλ
P (D∗n,ρ,r) =

d

dλ

(
e−Ahrλ

M2∑
i=1

I(i)

)

= −Ahre−Ahrλ
M2∑
i=1

I(i). (5.10)

For r > 0 and k > 0, any r-connected component in Xn containing at least n+k
2 nodes will inherently

contain an r-connected component of size at least n
2 . Hence, A∗n+k,ρ,r ⊆ A∗n,ρ,r. It follows that

P (A∗n+k,ρ,r) ≤ P (A∗n,ρ,r). Therefore, r∗(n, ρ, ε) ∈ {r > 0 : P (A∗n+k,ρ,r) ≥ ε}, which implies r∗(n +

k, ρ, ε) ≤ r∗(n, ρ, ε) for k > 0. Hence,

r∗(n+ k, ρ, ε)− r∗(n, ρ, ε) ≤ 0. (5.11)

Since node density λ is proportional to node count n for any bounded region B, then using inequality

5.11 yields

dr

dλ
= lim
k→0

r∗(n+ k, ρ, ε)− r∗(n, ρ, ε)
k

≤ 0.
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Since dr/dλ 6= 0, it follows that

dr

dλ
< 0.

Since dr/dλ exists, then |dr/dλ| <∞. Thus, by substituting

I(i) ≥ cmin{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)}
logM

M2

into 5.10, it follows that

d

dλ
P (D∗n,ρ,r) = −Ahre−Ahrλ

M2∑
i=1

I(i)

≤ −cAhre−Ahrλ
M2∑
i=1

min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)}
logM

M2

= −cAhre−Ahrλ min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)} logM.

Therefore,

d

dλ
P (D∗n,ρ,r) =

d

dr
P (D∗n,ρ,r)×

dr

dλ

≤ −cAhre−Ahrλ min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)} logM (5.12)

so that

d

dr
P (D∗n,ρ,r) ≥ −cAhre−Ah

rλ

(
dr

dλ

)−1

min{P (D∗n,ρ,r), 1− P (D∗n,ρ,r)} logM. (5.13)

Defining g(λ) = (dr/dλ)−1, the result follows.

By inequality 5.13, P (D∗n,ρ,r) is increasing as a function of r and by inequality 5.12, P (D∗n,ρ,r) is

decreasing as a function of λ.

Lemma 5.5.29 Let c > 0 be as in theorem 5.5.28. Then, there exists r∗0, independent of M , such

that

P (D∗n,ρ,r) ≤
1

2
M−c(r

∗
0−r)
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for all r ≤ r∗0 and

P (D∗n,ρ,r) ≥ 1− 1

2
M−c(r−r

∗
0 )

for all r ≥ r∗0.

Proof Arguing as in the proof to theorem 5.4.19, there exists r∗0 such that P (D∗n,ρ,r∗0 ) = 1
2 . Arguing

similarly to corollary 5.3.17, P (D∗n,ρ,r) is continuous in r. Therefore, P (D∗n,ρ,r) ≤ 1− P (D∗n,ρ,r) for

r ≤ r∗0 and P (D∗n,ρ,r) ≥ 1− P (D∗n,ρ,r) for r ≥ r∗0 . Thus, the result of lemma 5.5.28 takes the form

d

dr
P (D∗n,ρ,r) ≥ c∗(λ)P (D∗n,ρ,r) logM

for r ≤ r∗0 and

d

dr
P (D∗n,ρ,r) ≥ c∗(λ)(1− P (D∗n,ρ,r)) logM

for r ≥ r∗0 . The last two inequalities can be written

d

dr
logP (D∗n,ρ,r) ≥ c∗(λ) logM

for r ≤ r∗0 and

d

dr
log (1− P (D∗n,ρ,r)) ≤ −c∗(λ) logM

for r ≥ r∗0 , respectively. Consider r ≤ r∗0 . Both sides of

d

dr
logP (D∗n,ρ,r) ≥ c∗(λ) logM

are integrated in the direction of increasing node density since P (D∗n,ρ,r) decreases as a function of

node density λ by the proof to lemma 5.5.28. It was also shown that dr/dλ < 0, i.e. r is decreasing

as a function of node density. Therefore, the integration limits for the interval [r, r∗0 ] are from r∗0

to r. Noting that the inequality is reversed for backward integration, the following is obtained for

c > 0 and some K1(λ) ≥ 0,

logP (D∗n,ρ,r) ≤ K1(λ) logM c(r−r∗0 )
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which can be rewritten as

logP (D∗n,ρ,r) ≤ K1(λ) logM−c(r
∗
0−r).

This implies

P (D∗n,ρ,r) ≤ K2(λ)M−c(r
∗
0−r)

for some K2(λ) ≥ 0. Therefore, using the initial condition P (D∗n,ρ,r∗0 ) = 1
2 yields K2(λ) = 1

2 . Thus,

P (D∗n,ρ,r) ≤
1

2
M−c(r

∗
0−r).

Now, consider r ≥ r∗0 . Similary, both sides of

d

dr
log (1− P (D∗n,ρ,r)) ≤ −c∗(λ) logM

are integrated in the direction of increasing connection radii on [r∗0 , r] since P (D∗n,ρ,r) increases as

a function of connection radii r by the proof to lemma 5.5.28. Therefore, the integration limits are

from r∗0 to r. The following is obtained for c > 0 and some K3(λ) ≥ 0,

log (1− P (D∗n,ρ,r)) ≤ −K3(λ) logM c(r−r∗0 )

which can be rewritten as

log (1− P (D∗n,ρ,r)) ≤ −K3(λ) logM−c(r
∗
0−r)

= K3(λ) logM−c(r−r
∗
0 ).

This implies

1− P (D∗n,ρ,r) ≤ K4(λ)M−c(r−r
∗
0 )

for some K4(λ) ≥ 0. Therefore, using the initial condition P (D∗n,ρ,r∗0 ) = 1
2 yields K4(λ) = 1

2 . Hence,

P (D∗n,ρ,r) ≥ 1− 1

2
M−c(r−r

∗
0 ).
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By proposition 5.5.26, there are cases when Dn,ρ,r ⊂ D∗n,ρ,r, but Dn,ρ,r 6= D∗n,ρ,r so that the

occurrence of D∗n,ρ,r does not imply the occurrence of Dn,ρ,r. To exclude these possibilities, the

arguments of [5] are followed whereby a slightly larger event Dn,ρ−δ,r is considered for some small

δ > 0 such that the occurrence of D∗n,ρ,r implies the occurrence of Dn,ρ−δ,r.

As in [5], let φ(M) be any M -dependent integer such that φ(M)→∞ as M →∞ and

φ(M) = o(c(r − r∗0) logM).

Choose a coordinate system so that B has its lower left corner at the origin. Define the top, bottom,

left and right boundary strips of B as Hi, i = 1, 2, 3, 4 with sizes φ(M)×M , φ(M)×M , M × φ(M)

and M × φ(M) by

H1 = {Hi,j : i = M − φ(M) + 1, ...,M, j = 1, ...,M}

H2 = {Hi,j : i = 1, ..., φ(M), j = 1, ...,M}

H3 = {Hi,j : i = 1, ...,M, j = 1, ..., φ(M)}

H4 = {Hi,j : i = 1, ...,M, j = M − φ(M) + 1, ...,M}.

Let Ei be the event that there is a connected path of occupied hexagons crossing Hi long way.

Lemma 5.5.30 For i = 1, 2, 3, 4, there are constants ci > 0 such that for large M and r ≥ r∗0

P (Ei) ≥ 1− e−ciφ(M).

Proof As in [5], by the duality property, the occurrence of Ei, i = 1, 2, 3, 4 is equivalent to the

non-occurrence of the event that there is a connected path of unoccupied hexagons crossing Hi, i =

1, 2, 3, 4 short way. The rest of the proof follows [5] with the edge probability as a function of node

density p(λ0) replaced by r∗0 and the critical probability for the occurrence of an infinite cluster of

occupied hexagons pc replaced by r∗(n, ρ, ε).

Proof (Theorem 5.5.25) By proposition 5.5.26, Dn,ρ,r ⊂ D∗n,ρ,r so that P (Dn,ρ,r) ≤ P (D∗n,ρ,r). To
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estimate P (Dn,ρ−δ,r) for r > r0 and any given δ > 0, let E = E1 ∩ E2 ∩ E3 ∩ E4 and consider

F = D∗n,ρ,r ∩ E. Since P (F ) = P (F ∩ Dn,ρ−δ,r) + P (F −Dn,ρ−δ,r), then

P (Dn,ρ−δ,r) ≥ P (F )− P (F −Dn,ρ−δ,r).

Noting that P (E1) = P (E2) and P (E3) = P (E4), then the FKG inequality of [2] yields

P (F ) ≥ P (D∗n,ρ,r)P 2(E1)P 2(E3).

By lemma 5.5.30, there exists b > 0 such that for all sufficiently large M ,

P (F ) ≥ 1− 1

2
M−c(r−r

∗
0 ) −O(e−bφ(M)).

Using φ(M) = o(c(r − r∗0) logM), this implies that for any given ε1 > 0 and all sufficiently large M

depending upon ε1,

P (F ) ≥ 1− (
1

2
+ ε1)M−c(r−r

∗
0 ).

It is now claimed that F−Dn,ρ−δ,r = ∅, requiring that P (F−Dn,ρ−δ,r) = 0 for all large M . Following

[5], the occurrence of F implies that there is a connected path of hexagons which encloses the sub-

lattice given by HB(r) −
⋃4
i=1Hi. Because the nodes in Xn are uniformly distributed, then there

is a connected cluster of hexagons within the original lattice totaling at least ρM2 − (2Mφ(M) +

2φ(M)(M−2φ(M))) hexagons, where ρM2 is a lower bound on the number of occupied hexagons in

the largest connected cluster and 2Mφ(M) + 2φ(M)(M − 2φ(M)) is the total number of hexagons

in the strips, Hi, i = 1, 2, 3, 4. Let δ1 = (2Mφ(M) + 2φ(M)(M − 2φ(M)))/M2. It follows that

F ⊂ Dn,ρ−δ1,r since F occurs in those hexagons of B that are not near the boundary of B by a

simple translation τ of hexagons h ∈
⋃4
i=1Hi to hexagons h ∈ HB(r)−

⋃4
i=1Hi. Thus, if M is large

enough so that δ1 < δ, then F ⊂ Dn,ρ−δ1,r ⊂ Dn,ρ−δ,r.

Proof (Theorem 5.5.23) Consider r ≤ r∗0 . Since

P (A∗n,ρ+δ,r) = P (A∗n,ρ+δ,r,Dn,ρ,r) + P (A∗n,ρ+δ,r −Dn,ρ,r)
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then

P (A∗n,ρ+δ,r) ≤ P (Dn,ρ,r) + P (A∗n,ρ+δ,r −Dn,ρ,r).

It will be shown that P (A∗n,ρ+δ,r−Dn,ρ,r) = o(M−c(r
∗
0−r)). Let x be a configuration of states across

hexagons in HB(r) and let C(x) = {C1, ..., CK} be the set of clusters in x. For i = 1, ...,K, let NCi

be the number of nodes in the cluster, Ci. Then, {NCi | C(x), n} ∼ B(n,
|HCi |
M2 ). Suppose Ci0 ∈ C(x)

is any cluster such that ρ∗n(Ci0) ≥ ρ+ δ. Since the occurrence of the event Dcn,ρ,r implies
|HCi0 |
M2 < ρ,

then

A∗n,ρ+δ,r −Dn,ρ,r ⊂ {ρ∗n(Ci0) ≥ ρ+ δ,
|HCi0

|
M2

< ρ}.

By arguments in [48] and [5], there is an α = α(ρ, δ) > 0 such that

P (ρ∗n(Ci0) ≥ ρ+ δ | {
|HCi0

|
M2

< ρ}, C(x), n) ≤ e−α(ρ,δ)n.

Let K be a random variable which takes the number of nodes generated in B as values. It follows

that

P (A∗n,ρ+δ,r −Dn,ρ,r) ≤ P ({ρ∗n(Ci0) ≥ ρ+ δ}, {
|HCi0

|
M2

< ρ})

= P (ρ∗n(Ci0) ≥ ρ+ δ |
|HCi0

|
M2

< ρ)× P (
|HCi0

|
M2

< ρ)

≤ P (ρ∗n(Ci0) ≥ ρ+ δ |
|HCi0

|
M2

< ρ) (5.14)

= E[P (ρ∗n(Ci0) ≥ ρ+ δ | {
|HCi0

|
M2

< ρ}, C(x), n)]

≤ E[e−αn]

= e−αn × P (K = n)

≤ e−αn (5.15)

where inequality 5.14 follows since P (
|HCi0 |
M2 < ρ) ≤ 1 and inequality 5.15 follows since P (K = n) ≤ 1.

Now, since αn > d logM implies e−αn < M−d, then for any d > 0 and every fixed δ > 0, it

follows that P (A∗n,ρ+δ,r −Dn,ρ,r) decays to zero at a rate faster than M−d for n large enough. The

case of r ≥ r∗0 is proven with similar arguments.

Theorem 5.5.31 P (A∗n,ρ,r) is a continuous function of ρ.
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Proof Let σ = 1 − ρ in equation 5.3. Then, A∗n,σ,r is an increasing property in σ for increasing

ρ ∈ ( 1
2 , 1). Therefore, by theorem 3.2.5, it is true that A∗n,σ,r has a sharp threshold in σ and hence

in ρ. Thus, P (A∗n,ρ,r) is differentiable in ρ which implies that P (A∗n,ρ,r) is continuous as a function

of ρ.

By theorem 5.5.31, for small δ > 0,

P (A∗n,ρ−δ,r) ≈ P (A∗n,ρ,r) ≈ P (A∗n,ρ+δ,r).

In this light, theorem 5.5.23 asserts that if r∗1 < r∗0 < r∗2 and for some ε ∈ (0, 1
2 ) it is true that

P (A∗n,ρ,r∗1 ) = ε and P (A∗n,ρ,r∗2 ) = 1 − ε, then r∗2 − r∗1 is an estimate of the sharp threshold interval

length for the event, A∗n,ρ,r.
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Chapter 6

Proof (Main Theorem 4.6.15)

Recall from section 3.1 that if Xn is a set of nodes generated by a node process X : R→ R, then for

r > 0, G(Xn; r) is defined to be the r-graph of the set of r-open and r-closed edges between nodes

in Xn ⊂ B. As before, let H(r) be a partition of R2 into copies of the prototypical hexagon hr.

Definition G(Xn;H(r)) is defined to be the H(r)-graph of all H(r)-open and H(r)-closed edges

between nodes in Xn ⊂ B.

Lemma 6.0.32 G(Xn;H(r)) ⊆ G(Xn; r).

Proof Suppose < x, y >H(r) ∈ G(Xn;H(r)) is any H(r)-connected edge. Without loss of generality,

choose a coordinate system on R2 so that < x, y >H(r) lies on a coordinate axis with 0̂ = (0, 0)

defined such that d(x, 0̂) = d(x,y)
2 = d(0̂, y). Since x, y ∈ Xn ⊂ B and H(r) is a partition of

B, then there exists hrix,jx , h
r
iy,jy

∈ H(r) such that x ∈ hrix,jx , y ∈ hriy,jy and h(hrix,jx , h
r
iy,jy

) ≤

max{|ix−iy|, |jx−jy|} ≤ 1. Each of hrix,jx and hriy,jy are copies of hr and can be inscribed into copies

of a circle of radius r
4 . Therefore, d(x, y) = d(x, ∂hrix,jx)+d(∂hriy,jy , y) ≤ r

2 + r
2 = r so that x, y ∈ Xn

are r-connected. Thus, < x, y >H(r) ∈ G(Xn; r), which shows that G(Xn;H(r)) ⊆ G(Xn; r).

Lemma 6.0.33 P (A∗n,ρ,r) ≤ P (An,ρ,r).

Proof By lemma 6.0.32, it is true that A∗n,ρ,r ⊆ An,ρ,r. Therefore, since P is non-decreasing by

properties of probability measures, the lemma follows.

Lemma 6.0.34 r0 ≤ r∗0.
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Proof Seeking a contradiction, suppose r0 > r∗0 . Then,

1

2
= P (An,ρ,r0) (6.1)

≥ P (An,ρ,r∗0 ) (6.2)

≥ P (A∗n,ρ,r∗0 ) (6.3)

=
1

2
(6.4)

where equality 6.1 follows by theorem 4.5.11, inequality 6.2 follows by properties of probability

measures and by hypothesis, inequality 6.3 follows by lemma 6.0.33 and equality 6.4 follows by

theorem 5.4.19. It follows that P (An,ρ,r∗0 ) = 1
2 . Therefore, r∗0 ∈ {r > 0 : P (An,ρ,r) = 1

2} and

r∗0 < r0 = inf{r > 0 : P (An,ρ,r) = 1
2}. This is a contradiction. Thus, r0 ≤ r∗0 .

Proof (Theorem 4.6.15) Since P (An,ρ,r) and P (A∗n,ρ,r) are continuous functions of r, then by

theorem 5.5.23 and lemma 6.0.34, for every r ∈ [0, r0] there exists r′ ≤ r such that

P (An,ρ+δ,r′) ≤ P (A∗n,ρ+δ,r) (6.5)

≤ (
1

2
+ ε1)M−c(r

∗
0−r)

≤ (
1

2
+ ε1)M−c(r0−r). (6.6)

Consider r0 ∈ [0, r0]. Then, continuity of P (An,ρ+δ,r) in r and the non-decreasing property of

P (An,ρ+δ,r) in r implies inequality 6.6 for all r ∈ [0, r′]. It is claimed that r′ = r0. Seeking a

contradiction if r′ < r0, suppose P (An,ρ+δ,r) ≤ ( 1
2 +ε1)M−c(r0−r) for all r ∈ [0, r′] and P (An,ρ+δ,r) >

( 1
2 + ε1)M−c(r0−r) for all r > r′. By hypothesis, r0 > r′ so that when r = r0, it follows that

P (An,ρ+δ,r0) > 1
2 . Now, since for any connected cluster < C >r such that ρn(C) ≥ ρ+ δ for δ > 0,

the statement ρn(C) ≥ ρ is implied, then An,ρ+δ,r ⊆ An,ρ,r for all r ∈ [0, r0]. Hence, r′ < r0 leads

to

P (An,ρ,r0) ≥ lim sup
δ→0+

P (An,ρ+δ,r0) ≥ P (An,ρ+δ,r0) >
1

2
. (6.7)

In particular, inequality 6.7 gives P (An,ρ,r0) > 1
2 . This is a contradiction since P (An,ρ,r0) = 1

2 by

theorem 4.5.11. It follows that r′ = r0 and

P (An,ρ+δ,r) ≤ (
1

2
+ ε1)M−c(r0−r)
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for r ≤ r0. A similar argument is used to prove

P (An,ρ−δ,r) ≥ 1− (
1

2
+ ε1)M−c(r−r0)

for r ≥ r0.

The implication of the proof to theorem 4.6.15 is that P (An,ρ,r) = P (A∗n,ρ,r) for r ∈ [0, r0]. As

such, when r ∈ [0, r0), probabilities in the continuum are computed by partitioning the bounded

region and computing probabilities using the random cluster measure. This notion will be of great

use in the next chapter when the concern is to not have one large cluster and several smaller ones.

Rather, it is desired to have only smaller clusters.

Theorem 6.0.35 P (An,ρ,r) = P (A∗n,ρ,r) for r ∈ [0, r0].

Proof By continuity in ρ of P (A∗n,ρ,r) as given by theorem 5.5.31, it is true that

lim
δ→0+

P (A∗n,ρ+δ,r) = P (A∗n,ρ,r).

Suppose δ1 > δ2 such that ρ+δ1, ρ+δ2 ∈ ( 1
2 , 1) and let < C >r ∈ An,ρ+δ1,r. Then, ρn(C) ≥ ρ+δ1 >

ρ + δ2 so that < C >r ∈ An,ρ+δ2,r. Hence, An,ρ+δ1,r ⊆ An,ρ+δ2,r. By properties of probability

measures, P (An,ρ,r) is monotone non-decreasing as a function of decreasing ρ. By inequality 6.5, it

follows that P (An,ρ+δ,r) ≤ P (A∗n,ρ+δ,r) for all r ∈ [0, r′] so that

lim sup
δ→0+

P (An,ρ+δ,r) ≤ lim sup
δ→0+

P (A∗n,ρ+δ,r) = P (A∗n,ρ,r). (6.8)

From the proof of theorem 4.6.15, it was shown that r′ = r0. Therefore, inequality 6.8 holds for all

r ∈ [0, r0]. Now, the monotone convergence theorem [51] gaurantees that P (An,ρ+δ,r) → P (An,ρ,r)

as δ → 0+. Therefore, inequality 6.8 becomes

P (An,ρ,r) = lim sup
δ→0+

P (An,ρ+δ,r) ≤ P (A∗n,ρ,r). (6.9)

In particular, P (An,ρ,r) ≤ P (A∗n,ρ,r) so that with the result of lemma 6.0.33, namely P (A∗n,ρ,r) ≤

P (An,ρ,r), the theorem follows.

Corollary 6.0.36 P (Ar) = P (A∗r) for r ∈ [0, r0].

Proof By theorem 6.0.35, it is true that P (An,ρ,r) = P (A∗n,ρ,r) for all r ∈ [0, r0] and all n ≥ 1.

By proposition A.2.64, it follows that P (A∗r) ≤ P (A∗n,ρ,r) = P (An,ρ,r). In particular, P (A∗r) ≤
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P (An,ρ,r). Without loss of generality, assume that area(B) = 1. From [5], differentiability of

P (An,ρ,r) in λ = λ(n) = E[n] implies continuity of P (An,ρ,r) in λ so that the following holds

lim
E[n]→∞

P (An,ρ,r) = P (Ar). (6.10)

Therefore, P (A∗r) ≤ P (An,ρ,r) and equation 6.10 implies P (A∗r) ≤ P (Ar). Similarly, P (Ar) ≤ P (A∗r)

so that the corollary follows.

Corollary 6.0.37 r0 = r∗0.

Proof By theorem 6.0.35, it is true that 1/2 = P (An,ρ,r0) = P (A∗n,ρ,r0). In particular, 1/2 =

P (A∗n,ρ,r0). Since 1/2 = P (A∗n,ρ,r∗0 ) by theorem 5.4.19 and r∗0 is unique, then r0 = r∗0 .

Proof (Theorem 4.6.16) Follows directly from theorem 6.0.35 and theorem 5.5.31.

What is implied by theorem 6.0.35 and corollary 6.0.37 is that the problem of estimating the

probabilities and length of the sharp threshold interval in the continuum can be re-cast as problems

of estimation in the presence of a hexagonal partition of the bounded region. As such, tools from

percolation and the random cluster model theories can readily be employed. This fact will be of

paramount importance in the applications to data classification where a data set consisting of multi-

dimensional points is partitioned into disjoint, connected subsets. As it is advantageous to not

have one connected cluster containing at least 100ρ% of all points, since otherwise there may exist

a single cluster containing almost all points by lemma A.1.46, the connection radius for points in

the continuum must be in the sub-critical range r ∈ [0, r0) when classifying data into more than 2

classes. Since P (An,ρ,r) = P (A∗n,ρ,r) for r ∈ [0, r0], disjoint clusters of points in the continuum are

equivalent to disjoint clusters of occupied hexagons in the hexagonal partition of the bounded region

containing all points. As such, multi-dimensional points in the continuum can be thought to belong

to the same class if they are within a certain Euclidean distance of one another. As a result, the

multi-dimensional points will have representatives belonging to occupied, connected hexagons in the

2-dimensional, bounded, partitioned region. All representatives in connected clusters of hexagons

form the members of a class.
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Chapter 7

Application to Data Classification

7.1 Motivation

Suppose a car dealership has a database of customer information containing age, marital status,

current employer, credit history, etc. and it is desirable to be able to predict the class of vehicle that

a new customer would buy based upon the historical car-purchasing patterns of other customers. In

order to be able to address this problem, a model of the historical patterns should be devised which

“predicts”, with high accuracy, the class of vehicle that was purchased by previous customers given

the historical data. As such, suppose there are M2
1 data points, sampled from the population of

historical data according to some probability distribution. Further suppose that these data points

will be used to build the predictive model while other data points sampled from the population

will be used to validate the predictive model. Following the run of validation points against the

model, the predicted classifications are checked against the known class of cars bought by the actual

customers in the validation set.

Suppose there are N2
1 classes into which the M2

1 data points will be classified and that M2
1 is

much greater than N2
1 . For this description, each class can be thought of as a combination of price

range and type (sedan, sports car, SUV). Each customer will be classified by price range of vehicle

according to the attributes of the customer as detailed in the data point. Each customer attribute

is scored with a number in the interval between 0 and 1 so that if there are m attributes in each

data point, then each data point maps to a point in the m-dimensional unit cube. Buyers fit into

one of the N2
1 classes if its measure against a current member of the class is “close”. Since each

data point maps to a point (node) in the unit cube, then a good measure of the “closeness” of 2
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customers can be the Euclidean distance (or a constant multiple) between the corresponding points

in the m-dimensional unit cube. It is shown below that there is a minimal upper bound on this

distance that will guarantee at least N2
1 classes. For now, denote this upper bound by B(M1, N1),

which depends upon the parameters M1 and N1. Now, define e(x, y) to be the (possibly modified)

Euclidean distance between m-dimensional points x and y in the unit cube. If x and y are 2 distinct

data points with y already belonging to one of the N2
1 classes, then x also belongs to the same class

if e(x, y) < B(M1, N1).

It is worthwhile to note that there is a trade-off between limiting the size of M1 when determining

the clusters of data points versus computing reliable values for the sample mean for each of the classes.

In probability theory (see [9]), the Law of Large Numbers states that when the sample size is large,

the sample mean is a very good estimate for the true mean of the distribution of data. However,

as the sample size grows, computation of the distances for determining the classes grows more than

linearly since each data point must be compared to every other data point in order to determine if

they belong in the same class.

Suppose all M2
1 data points have been classified and new points are to be classified. Rather than

classify new data points by comparing its distance to every data point in each class to determine

the appropriate classification, new data points are placed into the class where the distance from the

data point to the mean of the class is less than B(M1, N1).

7.2 Procedure

The idea is to partition B into M2
1 hexagons and find N2

1 contiguous clusters of hexagons such that

each of the clusters are mutually disjoint. Into one and only one hexagon of a given cluster will each

data point be mapped to form a node in the connected cluster. As such, the connected clusters of

hexagons will be the N2
1 classes containing a representative node associated to one and only one

data point.

Begin by proving that there is a minimum number of hexagons in any partition of B containing

N2
1 disjoint subsets of hexagons with M2

1 equaling the sum total of all hexagons in the disjoint sets.

This minimum number is important in so far as the size of the hexagons will be predetermined,

which has the effect of determining the maximum distance between interconnected nodes in the

partition.
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7.3 Partition

Theorem 7.3.38 Assume that there are M2
1 samples and N2

1 classifications for the samples. The

minimum number of hexagons required to partition the unit square into N2
1 disjoint regions such that

M2
1 is the sum total of all hexagons in the disjoint regions is given by

S(M1, N1) = M2
1 + (N1 − 1)2 + 2M1N1.

Proof Since M2
1 >> N2

1 by hypothesis, then the total number of hexagons required to partition

B into disjoint regions of contiguous hexagons is O(M2
1 ). Label the disjoint regions A1, A2, ..., AN2

1

and let k be any integer such that 1 ≤ k ≤ N2
1 . Since the total number of hexagons partitioning B

is O(M2
1 ), then the number of hexagons in Ak is proportional to M2

1 . Likewise, the total number

of hexagons in boundary(Ak) is proportional to area(Ak). Since area(Ak) is proportional to M2
1 ,

then the number of hexagons in boundary(Ak) is proportional to M2
1 . Note that each Ak shares a

portion of its separating boundary with each of its neighboring clusters of hexagons. Let Aj be a

neighboring cluster of Ak such that j 6= k and 1 ≤ j ≤ N2
1 . Since this portion of the separating

boundary is proportional to both area(Ak) and area(Aj), then it is proportional to a common area

of size area(Akj). Repeating this same logic for all integers k and j such that 1 ≤ k ≤ N2
1 and

1 ≤ j ≤ N2
1 , the total number of hexagons in the entire separating boundaries is proportional to a

common area of size area(A). Since minimizing the total number of hexagons in B is tantamount

to minimizing the area(A), then each of the N2
1 disjoint clusters of connected hexagons is the same

size and must be a square sub-region of B containing M2
1 /N

2
1 hexagons. The minimum number of

hexagons that are required to enclose N2
1 sub-regions of B containing M2

1 /N
2
1 hexagons is exactly

(N1 − 1)2 + 2M1N1. Therefore, the minimum number of hexagons required to partition B into N2
1

disjoint regions such that M2
1 is the sum total of all hexagons in the disjoint regions is given by

S(M1, N1) = M2
1 + (N1 − 1)2 + 2M1N1.

Using theorem 7.3.38, a maximum radius for connectivity of nodes in the bounded region can be

obtained such that, with probability 1, there are N2
1 disjoint clusters in existence.
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7.4 Interval about the Critical Radius

From [2], theorem 3.2.4 states that there is a critical probability of connection between hexagons

containing a node such that it is no longer possible to have disjoint clusters when this critical

probability of connection is exceeded. Hence, all occupied hexagons will be connected into one

cluster, which is not what is desired in this case. Since the size of B is fixed, then to decrease the

probability of connection while maintaining N2
1 disjoint contiguous clusters of hexagons containing

a node, the size of each hexagon must decrease while increasing the number of hexagons in the

boundaries. In this way, the ratio of the total number of occupied hexagons to the total number of

hexagons will be less than this critical probability of connection. Note that the minimum number of

hexagons required for separation is given by theorem 7.3.38 so that the common radius of the circle

which can inscribe any one of these hexagons is of size

R(M1, N1) =
1

2
√
S(M1, N1)

(7.1)

thereby necessarily indicating that

B(M1, N1) = 2R(M1, N1).

In order to NOT exceed the critical probability of connection, which means maintaining the N2
1

classes of M2
1 data points, the radial size of each hexagon must be less than or equal to R(M1, N1).

By theorem 3.2.4 from [2], the clusters will be disjoint with probability 1. Hence, the following

corollary to theorem 7.3.38 follows from these statements.

Corollary 7.4.39 Let hr be a hexagon of size such that it can be inscribed into a circle of radius

r = r(M1, N1) > 0 where

0 < r ≤ R(M1, N1).

If B is partitioned into copies of hr, then with probability 1, the region B will contain (at least) N2
1

disjoint regions of contiguous hexagons that are occupied by the M2
1 nodes associated to data points

in the classes.

As stated previously, it is desirable to have the ratio of the M2
1 occupied hexagons to the total

number of hexagons S(M1, N1) to be less than the critical probability of connection for the hexagonal
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lattice i.e.

p(M1, N1) =
M2

1

S(M1, N1)
<

1

2
< 1− 2 sin (

π

18
).

Lemma 7.4.40 For fixed ρ ∈ ( 1
2 , 1) and r > 0 there exists δ ∈ (0, 1

2 ), such that { |<C>H(r)|
S(M1,N1) < 1

2} =

A∗cS(M1,N1),ρ−δ,r upto sets of P measure zero.

Proof By definition, A∗cS(M1,N1),ρ−δ,r = { |<C>H(r)|
S(M1,N1) < ρ− δ}. Take δ = ρ− 1

2 .

Therefore, by lemma 7.4.40, continuity in r > 0 and the non-decreasing property of P (A∗cS(M1,N1),ρ−δ,r)

for decreasing r > 0 granted by corollary 5.3.17 and proposition A.2.63, respectively, then by in-

equality 5.9, it follows that

R(M1, N1) < r∗0 = r∗0(M1, N1)

for the event A∗cS(M1,N1),ρ−δ,r, since this event is increasing for decreasing r ≤ r∗0 , a reversal.

Let ε ∈ (0, 1
2 ) be given and let r∗1 > 0 and r∗2 > 0 guaranteed by corollary 5.3.17 be such that

P (A∗cS(M1,N1),ρ−δ,r∗1
) = 1 − ε and P (A∗cS(M1,N1),ρ−δ,r∗2

) = ε, respectively. Then, again by corollary

5.3.17, it follows that

R(M1, N1) < r∗1 < r∗0 = r∗0(M1, N1) < r∗2

since P (A∗cS(M1,N1),ρ−δ,R(M1,N1)) = 1. By symmetry, it follows that

R(M1, N1) < r∗1 < r∗0 = r∗0(M1, N1) < r∗2 < 2r∗0 −R(M1, N1).

Note that by corollary 7.4.39 and by symmetry that

P (A∗cS(M1,N1),ρ−δ,r) = 0

when r ≥ 2r∗0 − R(M1, N1). Therefore, if A∗cS(M1,N1),ρ−δ,r occurs with probability 0, then the event

{ M2
1

S(M1,N1) <
1
2} occurs with probability 0. Otherwise, A∗cS(M1,N1),ρ−δ,r would occur with positive

probability since { M2
1

S(M1,N1) <
1
2} ⊆ {

|<C>H(r)|
S(M1,N1) < 1

2} = A∗cS(M1,N1),ρ−δ,r upto sets of P -probability
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measure zero by lemma 7.4.40. Hence, { M2
1

S(M1,N1) ≥
1
2} occurs with probability 1. As a result,

M2
1

M2
1 + 2M1N1 + (N1 − 1)2

≥ 1

2

with probability 1. Therefore, with probability 1 for M1, it follows that N1 has the solution

N1 ≥ 1−M2
1 +

√
2M2

1 (M2
1 + 1). (7.2)

Lemma 7.4.41 If r ≥ 1
2N1

, then P (A∗cS(M1,N1),ρ−δ,r) = 0.

Proof Without loss of generality, suppose area(B) = 1 and further suppose that B is divided

into squares with sides of length 2r = 1
N1

. By hypothesis, B contains M2
1 data points and it is

to be divided into N2
1 regions. Clearly then, there are no boundary hexagons separating each of

the N2
1 regions since the sides of B have length 2rN1 = 1 which gives B an area of 1. Let each

square be inscribed with a circle of radius r, which itself may be inscribed within a hexagon. By

hypothesis, each of the N2
1 hexagons in B contains at least one of the M2

1 data points. Hence,

each of the N2
1 (occupied) hexagons is connected in a cluster to every other hexagon in B so that

P (A∗S(M1,N1),ρ−δ,r) = 1. Since P (A∗S(M1,N1),ρ−δ,r) = 1 for r = 1
2N1

, then P (A∗S(M1,N1),ρ−δ,r) = 1 for

r ≥ 1
2N1

by proposition A.2.63.

As a result of the preceding lemma, a conservative estimate for r∗0 is given by the minimal solution

to

2r∗0 −R(M1, N1) ≥ 1

2N1

where for M1, the value of N1 satisfies N1 ≥ 1 −M2
1 +

√
2M2

1 (M2
1 + 1) and a minimal solution is

found when N1 = 1−M2
1 +

√
2M2

1 (M2
1 + 1) such that

2r∗0 −R(M1, N1) =
1

2N1
. (7.3)

As such, for ε ∈ (0, 1
2 ), since (r∗1 , r

∗
2) ⊂ ( R(M1, N1), 2r∗0 −R(M1, N1) ), then by equation 7.3

r∗2 − r∗1 ≈ 2r∗0 − 2R(M1, N1)

=
1

2N1
−R(M1, N1) (7.4)
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is an estimate of the length of the sharp threshold interval r∗2 − r∗1 about r∗0 .

Theorem 7.4.42 Let ∆∗(M1, N1) denote the sharp threshold interval length for the event of clas-

sifying M2
1 random data points into N2

1 classes. Then,

∆∗(M1, N1) = O(N−1
1 ).

Proof Follows directly from equation 7.4, equation 7.1 and theorem 7.3.38.

Using the value of r∗0 given by equation 7.3 and by using the estimate for the length of the sharp

threshold interval about r∗0 given by equation 7.4, an estimate for the value of r∗1 can be obtained.

Thus, when r ≤ r∗1 , the event A∗cS(M1,N1),ρ−δ,r occurs with probability at least 1− ε. Now, assuming

that the means of each class have been calculated using the current members of the respective

class, the car purchase of new customers associated to any new data points can be ”predicted” with

probability greater than 1− ε merely by measuring the distance from each data point to the mean

of each class to determine if the distance is less than 2r∗1 .

The process of measuring distances from new data points to the mean of each class is determin-

istic. As such, if at least N2
1 classes are required to classify each possible data point encountered,

then classification of a new data point only depends upon whether or not the corresponding class

is formed. Now, by corollary 7.4.39, there is a non-zero probability that less than N2
1 classes form

when r = r∗1 > R(M1, N1). If pN1
represents the probability that less than N2

1 classes form when

r = r∗1 , then the mean number of misclassified data points is computed as pN1M
2
1 since the M2

1 data

points are uniformly distributed throughout B.

Proposition 7.4.43 When r = r∗1, there is a non-zero probability that less than N2
1 classes form.

Proof Follows directly from theorem 7.3.38, corollary 7.4.39 and corollary 5.3.17.

Corollary 7.4.44 When r = r∗1, the mean number of misclassified data points is pN1
M2

1 , where

pN1
> 0 is the probability that less than N2

1 classes form.

Proof By proposition 7.4.43 there is a pN1
> 0 probability that any new data point cannot be

classified correctly when r = r∗1 . Since the data points are uniformly distributed, then the mean

number of misclassified points is pN1
M2

1 .
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Chapter 8

Summary and Future Research

8.1 Summary

It was assumed that n nodes in a set Xn were uniformly distributed throughout the continuum

of a bounded region B of area 1 in the 2-dimensional plane with individual nodes communicating

provided that their Euclidean distance d(x, y) ≤ r for x, y ∈ Xn and some predefined radius, r.

For ρ ∈ ( 1
2 , 1), the set such that at least half of all n nodes communicate in a connected cluster

was defined as An,ρ,r = {< C >r ⊆ Xn : ρn(C) ≥ ρ}, where ρn(C) = N
n . The probability

distribution P (An,ρ,r) was shown to be continuous as a function of r so that there exists r0 > 0

such that P (An,ρ,r0) = 1
2 . If ε > 0 is given and r(n, ρ, ε) = inf{r > 0 : P (An,ρ,r) ≥ ε}, then

the length of the interval about r0 such that P (An,ρ,r) increases from ε to 1 − ε was defined to be

∆(n, ρ, ε) = r(n, ρ, 1 − ε) − r(n, ρ, ε). The length ∆(n, ρ, ε) was to be estimated. Using techniques

from [7], it was shown that ∆(n, ρ, ε) = O(r0 log
1
4 (n)). Yet, this estimate depends upon the unknown

quantity, r0. As such, a theorem was stated and later proven which gives a lower bound on P (An,ρ,r)

for r ≥ r0 and an upper bound on P (An,ρ,r) for r ≤ r0. By continuity of P (An,ρ,r) as a function

of r, then given ε > 0 such that P (An,ρ,r1) = ε and P (An,ρ,r2) = 1 − ε, it must be the case that

r1 < r0 < r2 and ∆(n, ρ, ε) = r2 − r1. In order to show the upper and lower bound on P (A∗n,ρ,r),

similar results to those proven in the continuum case were restated and proven in the presence of

a hexagonal partition of B for the analogues, A∗n,ρ,r and P (A∗n,ρ,r). It was shown that r0 ≤ r∗0 .

Coupled with the upper and lower bounds on P (A∗n,ρ,r), the upper and lower bounds on P (An,ρ,r)

were established. As such, an estimate of the length ∆(n, ρ, r) of the interval about r0 as r2 − r1

was established.
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8.2 Future Research

To reiterate, it is assumed that n nodes are uniformly distributed throughout the continuum of some

finite region, B. As in [44], the network is self-organizing and each of the nodes operates in one of

X, Y or Z mode. Given fixed communications radii ry and rz on Y and Z nodes respectively, it will

be shown that there is a critical radius r0,x = r0,x(n, ρ, ry, rz) on X nodes such that at least half of

all nodes are connected with probability 1
2 . This will be accomplished by

1) Modifying the continuum model (chapter 4) to account for multiple node radii.

2) Modifying the hexagonal partition model (chapter 5) so that all nodes in the same hexagon

are configured the same. As such, a binary word over the hexagons will constitute a configuration

such that X, Y and Z nodes are represented with unoccupied hexagons being treated as though

they were failed nodes.

With these adjustments, the analysis can continue as before. Lastly, using a genetic algorithm, a

representative node configuration will be found such that coverage area, node overlap errors, isolated

node errors, master-node ratio and network energy are minimized.
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Appendix A

Supporting Results

A.1 Continuum Model

A.1.1 Graph

Proposition A.1.45 If r < r′, then G(Xn; r) ⊆ G(Xn; r′).

Proof Suppose r < r′. If < x, y >r ∈ G(Xn; r), then d(x, y) ≤ r < r′ so that < x, y >r ∈ G(Xn; r′).

Hence, G(Xn; r) ⊆ G(Xn; r′).

A.1.2 Increasing Property

Lemma A.1.46 |An,ρ,r| ≤ 1.

Proof If An,ρ,r = ∅, then there is nothing to prove. Thus, suppose that An,ρ,r occurs and < C >r

∈ An,ρ,r. Since ρn(C) ≥ ρ > 1
2 , then all other connected components are of order strictly less than

half of all nodes. Therefore, |An,ρ,r| = 1.

Proposition A.1.47 An,ρ,r is an increasing property in r.

Proof Suppose < C >r ∈ An,ρ,r and fix arbitrary r′ > r. Then, d(x, y) ≤ r < r′ for all x, y ∈ <

C >r. Thus, < C >r ⊆ < C >r′ implies N = | < C >r | ≤ | < C >r′ |. Hence, < C >r ∈ An,ρ,r

implies < C >r′ ∈ An,ρ,r. Since r′ > r is arbitrary, then An,ρ,r is an increasing property in r.

Proposition A.1.48 An,ρ,r is a decreasing property in n.

Proof Suppose < C >r ∈ An′,ρ,r. If n′ < n, then | < C >r |/n′ > | < C >r |/n ≥ ρ so that

< C >r∈ An′,ρ,r. Hence, An,ρ,r ⊆ An′,ρ,r. Since n′ < n, then An,ρ,r is decreasing in n.
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A.1.3 Probability Measure

Proposition A.1.49 The event An,ρ,r is P -measurable.

Proof For x, y ∈ Xn and S ⊆ Xn, define the state on < x, y >r to be 1 if and only if < x, y >r ∈

G(S; r) and −1 otherwise. Then, S mutually determines an element ωS ∈ Ω = {−1, 1}Xn so that S

is P -measureable. Since An,ρ,r is the event that there exists ωS ∈ Ω mutually determined by S ⊆ Xn

such that (maxy∈S | < Cy >r |)/n ≥ ρ, then An,ρ,r is P -measureable.

Proposition A.1.50 P (An,ρ,r) is a non-decreasing function of r.

Proof Suppose r1 ≤ r2. Since An,ρ,r is an increasing property in r by proposition A.1.47, then

An,ρ,r1 ⊆ An,ρ,r2 so that P (An,ρ,r1) ≤ P (An,ρ,r2) by properties of probability measures. Thus,

P (An,ρ,r) is non-decreasing in r.

Proposition A.1.51 P (An,ρ,r) is a non-increasing function of n.

Proof Suppose n′ < n. Since An,ρ,r is a decreasing property in n by proposition A.1.48, then

An,ρ,r ⊆ An′,ρ,r so that P (An,ρ,r) ≤ P (An′,ρ,r) by properties of probability measures. Thus,

P (An,ρ,r) is non-increasing in n.

A.1.4 Connection Radius

Proposition A.1.52 r(n, ρ, ε) is a non-decreasing function of ε.

Proof Suppose ε1, ε2 ∈ (0, 1
2 ) such that ε1 ≤ ε2. Define r1 = r(n, ρ, ε1) and r2 = r(n, ρ, ε2) and

suppose r1 > r2. Since P (An,ρ,r) is non-decreasing in r by proposition A.1.50, then P (An,ρ,r1) ≥

P (An,ρ,r2) ≥ ε2 ≥ ε1. Hence, r2 ∈ {r > 0 : P (An,ρ,r) ≥ ε1} and r2 < r1 = inf{r > 0 : P (An,ρ,r) ≥

ε1}. Contradiction. Thus, r1 ≤ r2 so that r(n, ρ, ε) is non-decreasing in ε.

Lemma A.1.53 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then Xn = {x ∈ Xn : d(x, y) ≤ R} for all fixed

y ∈ Xn.

Proof Clearly, {x ∈ Xn : d(x, y) ≤ R} ⊆ Xn. Conversely, fix any y ∈ Xn. For every x ∈ Xn, it is

true that d(x, y) ≤ 2 ∗max{d(x, y) : x, y ∈ Xn} = R. Hence, Xn ⊆ {x ∈ Xn : d(x, y) ≤ R} for all

fixed y ∈ Xn. Thus, Xn = {x ∈ Xn : d(x, y) ≤ R} for all fixed y ∈ Xn.

Corollary A.1.54 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then < Cy >R ∈ An,ρ,R for all y ∈ Xn and

n ≥ 1.
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Proof Fix an arbitrary y ∈ Xn. By lemma A.1.53, if < Cy >R = {x ∈ Xn : d(x, y) ≤ R}, then

< Cy >R = Xn so that | < Cy >R | = |Xn| = n. Therefore, since y ∈ Xn is arbitrary, then

< Cy >R ∈ An,ρ,R for all y ∈ Xn and n ≥ 1.

Corollary A.1.55 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then P (An,ρ,R) = 1 for all n ≥ 1.

Proof By lemma A.1.53 and corollary A.1.54, it is true that Xn ∈ An,ρ,R for all n ≥ 1 and ρ ∈ ( 1
2 , 1).

Thus, An,ρ,R 6= ∅ for all n ≥ 1 and ρ ∈ ( 1
2 , 1). Hence, P (An,ρ,R) = 1 for all n ≥ 1.

Lemma A.1.56 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then 0 < r(n, ρ, ε) ≤ R for all ε ∈ (0, 1
2 ).

Proof By lemma A.1.53, it is true that Xn = {x ∈ Xn : d(x, y) ≤ R} for all fixed y ∈ Xn. Therefore,

P (An,ρ,R) = 1 ≥ ε for all ε ∈ (0, 1
2 ). Suppose that ε0 ∈ (0, 1

2 ) exists such that r0 = r(n, ρ, ε0) > R.

Thus, An,ρ,R ⊆ An,ρ,r0 so that

1 = P (An,ρ,R)

≤ P (An,ρ,R)

≤ P (An,ρ,r0)

since P (An,ρ,r) is non-increasing in n by proposition A.1.54, non-decreasing in r by proposition

A.1.50 and by properties of probability measures. Hence, P (An,ρ,r0) = 1. But, then R ∈ {r > 0 :

P (An,ρ,r) ≥ ε0} and R < r0 = inf{r > 0 : P (An,ρ,r) ≥ ε0}. Contradiction. Thus, 0 < r0 ≤ R.

Therefore, since ε0 is arbitrary, then 0 < r(n, ρ, ε) ≤ R for all ε ∈ (0, 1
2 ).

Proposition A.1.57 Suppose {εk ∈ (0, 1
2 )}k≥1 is any convergent sequence such that εk → ε0. De-

fine rk = r(n, ρ, εk) and r0 = r(n, ρ, ε0). For arbitrary ξ > 0, if {k ≥ 1 : |P (An,ρ,rk)− P (An,ρ,r0)| ≥

ξ} is a set of measure zero, then rk → r0 as k →∞.

Proof If ξ > 0 is arbitrary and {k ≥ 1 : |P (An,ρ,rk) − P (An,ρ,r0)| ≥ ξ} is a set of measure zero,

then

P (An,ρ,rk) = P (An,ρ,r0) ≥ ε0

for all k ≥ 1. Hence, rk ∈ {r > 0 : P (An,ρ,r) ≥ ε0} for all k ≥ 1. Thus,

lim
k→∞

rk = lim
k→∞

r(n, ρ, εk)
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= lim
k→∞

inf{r > 0 : P (An,ρ,r) ≥ εk} (A.1)

= inf{r > 0 : P (An,ρ,r) ≥ ε0} (A.2)

= r(n, ρ, ε0)

= r0

where equation A.1 and equation A.2 follow since rk ∈ {r > 0 : P (An,ρ,r) ≥ εk} ∩ {r > 0 :

P (An,ρ,r) ≥ ε0} for all k ≥ 1 and εk → ε0 as k →∞.

A.2 Hexagonal Partition Model

A.2.1 Graph

Proposition A.2.58 If r < r′, then G(Xn;H(r)) ⊆ G(Xn;H(r′)).

Proof Suppose r < r′. Choose a coordinate system so that 0̂ = (0, 0) is defined such that d(x, 0̂) =

d(x,y)
2 = d(0̂, y) and x and y lie on the same coordinate axis. Orient H(r) and H(r′) so that

x ∈ hrix,jx ∩h
r′

ix,iy
and y ∈ hriy,jy ∩h

r′

iy,jy
are centered along the same coordinate axis. If < x, y >H(r)

∈ G(Xn;H(r)), then h(hrix,jx , h
r
iy,jy

) ≤ 1. If h(hr
′

ix,jx
, hr

′

iy,jy
) > 1, then h(hrix,jx , h

r
iy,jy

) = h(hrix,jx ∩

hr
′

ix,jx
, hriy,jy ∩h

r′

iy,jy
) > 1. Contradiction. Thus, < x, y >H(r) ∈ G(Xn;H(r′)) so that G(Xn;H(r)) ⊆

G(Xn;H(r′)).

A.2.2 Increasing Property

Lemma A.2.59 |A∗n,ρ,r| ≤ 1.

Proof If A∗n,ρ,r = ∅, then there is nothing to prove. Thus, suppose that A∗n,ρ,r occurs and <

C >H(r) ∈ A∗n,ρ,r. Since ρ∗n(C) ≥ ρ > 1
2 , then all other connected components are of order strictly

less than half of all nodes. Therefore, |A∗n,ρ,r| = 1.

Proposition A.2.60 A∗n,ρ,r is an increasing property in r.

Proof Suppose < C >H(r) ∈ A∗n,ρ,r. Fix arbitrary r′ > r and let x, y ∈ < C >H(r). By proposition

A.2.58, it is true that < x, y >H(r) ∈ G(Xn;H(r)) ⊆ G(Xn;H(r′)). Thus, < C >H(r) ⊆ < C >H(r′).

Since N ≤ | < C >H(r) | ≤ | < C >H(r′) |, then < C >H(r) ∈ A∗n,ρ,r implies < C >H(r′) ∈ A∗n,ρ,r.

Since r′ > r is arbitrary, then A∗n,ρ,r is an increasing property in r.

Proposition A.2.61 A∗n,ρ,r is a decreasing property in n.
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Proof Suppose < C >H(r) ∈ A∗n′,ρ,r. If n′ < n, then | < C >H(r) |/n′ > | < C >H(r) |/n ≥ ρ so

that < C >H(r)∈ A∗n′,ρ,r. Hence, A∗n,ρ,r ⊆ A∗n′,ρ,r. Since n′ < n, then A∗n,ρ,r is decreasing in n.

A.2.3 Probability Measure

Proposition A.2.62 The event A∗n,ρ,r is P -measurable.

Proof For x, y ∈ Xn and S ⊆ Xn, define the state on < x, y >H(r) to be 1 if and only if < x, y >H(r)

∈ G(S;H(r)) and −1 otherwise. Then, S mutually determines an element ωS ∈ Ω = {−1, 1}Xn so

that S is P -measureable. Since A∗n,ρ,r is the event that there exists ωS mutually determined by S

such that (maxy∈S | < Cy >H(r) |)/n ≥ ρ, then A∗n,ρ,r is P -measurable.

Proposition A.2.63 P (A∗n,ρ,r) is a non-decreasing function of r.

Proof Suppose r∗1 ≤ r∗2 . Since A∗n,ρ,r is an increasing property in r by proposition A.2.60, then

A∗n,ρ,r∗1 ⊆ A
∗
n,ρ,r∗2

so that P (A∗n,ρ,r∗1 ) ≤ P (A∗n,ρ,r∗2 ) by properties of probability measures. Thus,

P (A∗n,ρ,r) is non-decreasing in r.

Proposition A.2.64 P (A∗n,ρ,r) is a non-increasing function of n.

Proof Suppose n′ < n. Since A∗n,ρ,r is a decreasing property in n by proposition A.2.61, then

A∗n,ρ,r ⊆ A∗n′,ρ,r so that P (A∗n,ρ,r) ≤ P (A∗n′,ρ,r) by properties of probability measures. Thus,

P (A∗n,ρ,r) is non-increasing in n.

A.2.4 Connection Radius

Proposition A.2.65 r∗(n, ρ, ε) is a non-decreasing function of ε.

Proof Suppose ε1, ε2 ∈ (0, 1
2 ) such that ε1 ≤ ε2. Define r∗1 = r∗(n, ρ, ε1) and r∗2 = r∗(n, ρ, ε2) and

suppose r∗1 > r∗2 . Since P (A∗n,ρ,r is non-decreasing in r by proposition A.2.63, then P (A∗n,ρ,r∗1 ) ≥

P (A∗n,ρ,r∗2 ) ≥ ε2 ≥ ε1. Hence, r∗2 ∈ {r > 0 : P (A∗n,ρ,r) ≥ ε1} and r∗2 < r∗1 = inf{r > 0 : P (A∗n,ρ,r) ≥

ε1}. Contradiction. Thus, r∗1 ≤ r∗2 so that r∗(n, ρ, ε) is non-decreasing in ε.

Lemma A.2.66 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then Xn = {x ∈ Xn : h(hRix,jx , h
R
iy,jy

) = 0} for

all fixed y ∈ Xn.

Proof By lemma A.1.56, Xn = {x ∈ Xn : d(x, y) ≤ R}. Let CR be a circle of radius R such that

Xn ⊂ CR ⊂ B. Choose an orientation of HR such that hRix,jx ∈ HR inscribes CR for some fixed

x ∈ Xn. Then, for all y ∈ Xn, it is true that y ∈ hRix,jx . Hence, hRix,jx = hRiy,jy for all y ∈ Xn so that

h(hRix,jx , h
R
iy,jy

) = 0.

60



Corollary A.2.67 If R = 2 ∗ max{d(x, y) : x, y ∈ Xn}, then < Cy >HR ∈ A∗n,ρ,R for all y ∈ Xn

and n ≥ 1.

Proof Fix an arbitrary y ∈ Xn. By lemma A.2.66, if < Cy >HR = {x ∈ Xn : h(hRix,jx , h
R
iy,jy

) = 0},

then < Cy >HR = Xn so that | < Cy >HR | = |Xn| = n. Therefore, since y ∈ Xn is arbitrary, then

< Cy >HR ∈ A∗n,ρ,R for all y ∈ Xn and n ≥ 1.

Corollary A.2.68 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then P (A∗n,ρ,R) = 1 for all n ≥ 1.

Proof By lemma A.2.66 and corollary A.2.67, Xn ∈ A∗n,ρ,R for all n ≥ 1 and ρ ∈ ( 1
2 , 1). Thus,

A∗n,ρ,R 6= ∅ for all n ≥ 1 and ρ ∈ ( 1
2 , 1). Hence, P (A∗n,ρ,R) = 1 for all n ≥ 1 and ρ ∈ ( 1

2 , 1).

Lemma A.2.69 If R = 2 ∗max{d(x, y) : x, y ∈ Xn}, then 0 < r∗(n, ρ, ε) ≤ R for all ε ∈ (0, 1
2 ).

Proof By lemma A.2.66, Xn = {x ∈ Xn : h(hRix,jx , h
R
iy,jy

) = 0} for all fixed y ∈ Xn. Therefore,

P (A∗n,ρ,R) = 1 ≥ ε for all ε ∈ (0, 1
2 ). Suppose that ε0 ∈ (0, 1

2 ) exists such that r∗0 = r∗(n, ρ, ε0) > R.

Thus, A∗n,ρ,R ⊆ A∗n,ρ,r∗0 so that

1 = P (A∗n,ρ,R)

≤ P (A∗n,ρ,R)

≤ P (A∗n,ρ,r∗0 )

since P (A∗n,ρ,r) is non-increasing in n by proposition A.2.64, non-decreasing in r by proposition

A.2.63 and by properties of probability measures. Hence, P (A∗n,ρ,r∗0 ) = 1. But, then R ∈ {r > 0 :

P (A∗n,ρ,r) ≥ ε0} and R < r∗0 = inf{r > 0 : P (A∗n,ρ,r) ≥ ε0}. Contradiction. Thus, 0 < r∗0 ≤ R.

Therefore, since ε0 is arbitrary, then 0 < r∗(n, ρ, ε) ≤ R for all ε ∈ (0, 1
2 ).

Proposition A.2.70 Suppose {εk ∈ (0, 1
2 )}k≥1 is any convergent sequence such that εk → ε0.

Define r∗k = r∗(n, ρ, εk) and r∗0 = r∗(n, ρ, ε0). For arbitrary ξ > 0, if {k ≥ 1 : |P (A∗n,ρ,r∗k) −

P (A∗n,ρ,r∗0 )| ≥ ξ} = ∅, then r∗k → r∗0 as k →∞.

Proof If ξ > 0 is arbitrary and {k ≥ 1 : |P (A∗n,ρ,r∗k)− P (A∗n,ρ,r∗0 )| ≥ ξ} = ∅, then

P (A∗n,ρ,r∗k) = P (A∗n,ρ,r∗0 ) ≥ ε0

for all k ≥ 1. Hence, r∗k ∈ {r > 0 : P (A∗n,ρ,r) ≥ ε0} for all k ≥ 1. Thus,

lim
k→∞

r∗k = lim
k→∞

r∗(n, ρ, εk)
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= lim
k→∞

inf{r > 0 : P (A∗n,ρ,r) ≥ εk} (A.3)

= inf{r > 0 : P (A∗n,ρ,r) ≥ ε0} (A.4)

= r∗(n, ρ, ε0)

= r∗0

where equation A.3 and equation A.4 follow since r∗k ∈ {r > 0 : P (A∗n,ρ,r) ≥ εk}, {r > 0 : P (A∗n,ρ,r) ≥

ε0} for all k ≥ 1 and εk → ε0 as k →∞.
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