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ABSTRACT 

 

 

 

Crouse, Nikkilina R. Ph.D, University of Missouri-St. Louis, May 2009. THE ROLE 

OF AMYLOID-BETA ASSEMBLY STATE IN MONOCYTE MATURATION AND 

SMOOTH MUSCLE CELL DEGERATION. Major Professor: Michael R. Nichols. 

 

 

 

 Alzheimer’s Disease (AD) is a progressive, neurodegenerative disorder which is 

ranked as one of the leading causes of death among Americans. AD is characterized by 

the presence of intracellular neurofibrillary tangles comprised of hyperphosphorylated 

tau protein, and extracellular plaques made of amyloid β (Aβ). Together these two pa-

thologies lead to severe memory impairment in afflicted patients, but research has impli-

cated the presence of the Aβ deposits as likely causes for AD progression. Aβ is pro-

duced through the proteolytic cleavage of the integral membrane amyloid precursor pro-

tein (APP) which occurs through the action of β- and γ-secretases which produce 39-43 

amino acid Aβ peptides. In AD, the Aβ plaques are comprised of mostly 40 or 42 amino 

acid Aβ (Aβ(1-40) and Aβ(1-42) respectively). There is some evidence that in response 

to the presence of Aβ in the brain, monocytic cells circulating in the blood are recruited 

across the blood brain barrier and transformed into brain macrophages, also known as 

microglia. Here we investigate the ability of Aβ to transform cultured THP-1 monocytes 

into macrophage-like cells as a model of the in vivo process. Our results indicate that an 

early-formed Aβ oligomer which is formed when Aβ(1-42) is aggregated in water has 
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the ability to potently transform the non-adherent monocytes into adherent cells with 

many properties consistent with macrophages. Our data also shows that Aβ(1-40) is un-

able to form a species with a similar activity. We have determined that the transforming 

activity of Aβ(1-42) occurs through the formyl peptide receptor-like 1 (FPRL1) recep-

tor, but not through TLR2, TLR4 or an NF-κB dependent mechanism. Here we also 

study the involvement of cAMP in a model system of cerebral amyloid angiopathy 

(CAA), a condition in which Aβ deposits within the walls of cerebral vessels leading to 

hemorrhagic activity. CAA is reported to occur in many cases of AD, but especially in 

many early onset AD cases associated with Aβ mutations. We studied the ability of 

cAMP to rescue human aortic vascular smooth muscle cells (HA-VSMC) from Aβ in-

duced toxicity. We found that in our experiments treatment with some cAMP elevating 

compounds can subtly protect the cells from Aβ. Overall we show that Aβ is a peptide 

which has a wide variety of activities that are dependent upon the peptide’s assembly 

state. 
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1 INTRODUCTION 

 

 

 

1.1 Alzheimer’s Disease 

 

 

 

 Alzheimer’s Disease (AD) is a progressive, neurodegenerative disorder that af-

fects the memory of afflicted patients. First described in 1906 by Alois Alzheimer, AD 

has become the most common form of dementia experienced by aging people (St 

George-Hyslop, 2000). In the 20th century, the average life expectancy increased from 

49 to 76 years, which is believed to be a contributing factor to the increased numbers of 

AD patients (Selkoe, 2001a). In fact, AD currently ranks as the 5th leading cause of 

death among Americans over age 65 and the 7th leading cause of death for all Americans 

(Maslow, 2008). 

 Most cases of AD exhibit two classical brain lesions (Walsh and Selkoe, 2004), 

amyloid β (Aβ) plaques (Teplow, 1998; Selkoe, 2001b) and neurofibrillary tangles 

(Mandelkow and Mandelkow, 1998) (NFTs), both of which were first noted in the brain 

of the original AD patient Alzheimer studied (Selkoe, 2001b). Although these pathologi-

cal hallmarks of AD are present in most sufferers, tau tangles can occur in other neu-

rodegenerative diseases in the absence of Aβ plaques (Selkoe, 2001b). Also, some cases 

of AD have been classified as “tangle poor” (Selkoe, 2001b) due to the presence of Aβ 

plaques but very few NFTs (Terry et al., 1987). 
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 Aside from Aβ plaques and NFTs, other common hallmarks of AD include the 

presence of dystrophic neurites and an increase in brain atrophy (Mori et al., 1997). In-

flammation in the brain is also commonly found in patients with AD (McGeer et al., 

1987).  

 

 

1.2 Neurofibrillary Tangles (NFTs) 

 

 

 

 The protein tau is a microtubule associated protein (MAP) typically found in ax-

ons. MAPs serve as stabilization agents for neuronal microtubules that allow the micro-

tubules to perform their designated roles in intracellular transport, the establishment of 

cellular polarity as well as the development of other cellular processes (Mandelkow and 

Mandelkow, 1998). Tau also promotes the assembly of the microtubules and is regu-

lated by it’s level of phosphorylation (Iqbal et al., 2005). When tau is phosphorylated 

with 2-3 moles of phosphate per mole of tau, it is optimized for peak function (Kopke et 

al., 1993). 

 In AD, tau becomes hyperphosporylated (Mandelkow et al., 1995; Trojanowski 

and Lee, 1995; Delacourte and Buee, 1997) which leads to disruptions in intracellular 

transport and ultimately axonal death (Mandelkow and Mandelkow, 1998). It has been 

seen that tau becomes abnormally glycosylated before it is hyperphosphorylated (Wang 

et al., 1996a; Liu et al., 2002b) leading to the theory that the glycosylation actually pro-

motes the hyperphosphorylation (Liu et al., 2002a; Liu et al., 2002b). 

Tau can undergo abnormal phosphorylation at more than 30 different sites in AD, 

most of which are either serine or threonine residues followed by a proline residue sug-
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gesting that proline-directed protein kinases (PDPK) may participate in the phosphoryla-

tion of tau residues. Tau is known to be a substrate for several protein kinases, including 

glycogen synthase kinase-3 (GSK-3), cyclin dependent protein kinase-5 (cdk5), ERK 

1/2, protein kinase A, calcium and calmodulin-dependent protein kinase-II and stress-

activated protein kinases (Pei et al., 2003). Of the known kinases that phosphorylate tau, 

GSK-3, cdk5 and ERK 1/2 are PDPKs (Iqbal et al., 2005). When tau becomes phos-

phorylated at Serine 214 or Serine 262, it dissociates from and leads to the disassembly 

of the microtubule (Alonso et al., 1994; Alonso et al., 1996; Alonso et al., 1997; Man-

delkow and Mandelkow, 1998). 

 When the phosphorylation level of tau reaches 4-6 moles of phosphate per mole 

of tau, the hyperphosphorylated tau gains the ability to sequester normal tau. Alonso et 

al. showed that there is a high affinity between normal and hyperphosphorylated tau that 

was unable to be saturated with higher concentrations of the normal tau. They speculate 

that the hyperphosphorylated tau serves as a nucleation center for the normal tau allow-

ing the normal protein to aggregate into the tau tangles. This process leads to further 

microtubule disassembly and eventually more axonal death, possibly through a competi-

tion between hyperphosphorylated tau and tubulin for the normal tau (Alonso et al., 

1994; Alonso et al., 1996; Alonso et al., 1997; Alonso Adel et al., 2004). 

 If tau is phosphorylated at a level equal to 10 or more moles of phosphate per 

mole of tau, the protein begins to aggregate and it loses the ability to sequester normal 

tau (Alonso Adel et al., 2004). The additional phosphorylation is believed to neutralize a 

large, negatively charged area within a basic domain of tau (Ruben et al., 1991) that has 

been shown to self-assemble in vitro (von Bergen et al., 2000). The aggregates can have 
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the structure of paired helical filaments (PHF), twisted ribbons or straight filaments 

(Ruben et al., 1993). The PHF are reported to range in size from 10-20 nm wide and 

contain crossover repeats of about 80 nm (Schweers et al., 1995). It has been proposed 

that in order to stop the sequestering of normal tau and the disassembly of microtubules, 

neurons promote PHF formation by increasing the phosphorylation of tau (Iqbal et al., 

2005). The PHF and straight filaments eventually combine to make the NFTs seen in 

AD brains. 

 Aside from an increase in hyperphosphorylated tau, an increase in the overall 

level of tau is found in AD patients (Vigo-Pelfrey et al., 1995). In fact, it was shown that 

AD brains contain 4-8 times more total tau than age-matched non-demented brains (von 

Bergen et al., 2000). Once hyperphosphorylated, tau resists the proteolytic activity of 

calcium activated neutral protease (Wang et al., 1995; Wang et al., 1996b). Also, in AD 

the p70 S6 kinase is activated, which upregulates the translation of tau (An et al., 2003), 

accounting for an increase in normal tau and contributing to the levels of hyperphos-

phorylated tau seen in AD. 

 Although certainly an integral portion of AD pathology, it is not entirely clear 

whether or not tau is actually the causative factor of AD. Because “tangle poor” AD 

cases can occur (Terry et al., 1987; Selkoe, 2001b), it is likely that the hyperphosphory-

lation of tau is actually an event that occurs once the AD process has begun. Some re-

search has suggested that the presence of Aβ may play a role in the induction of the tau 

hyperphosphorylation process (Busciglio et al., 1995), and Dickson suggests that Aβ 

interactions with cells may lead to the activation of apoptosis and, eventually caspases, 

which in turn leads to the proteolysis of tau (Dickson, 2004). Taken together, the studies 
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suggest that Aβ is actually the more causative factor in AD and leads to the tau pathol-

ogy.  

 

 

1.3 Amyloid β (Aβ) 

 

 

 

 The Aβ peptide is a 39-43 residue protein (Citron et al., 1994) that is cleaved 

from a larger,  770 residue integral membrane protein known as the amyloid precursor 

protein (APP). The cleavage of APP can occur via an amyloidogenic or a non-

amyloidogic pathway. 

 In non-amyloidogenic APP cleavage, α-secretase cleaves APP in the middle of 

the Aβ sequence between APP residues 687 and 688, which correspond to Aβ positions 

16 and 17. This cleavage pathway results in the production of two protein fragments that 

are non-pathogenic (Weidemann et al., 1989; Esch et al., 1990; Sisodia et al., 1990). 

However in AD, Aβ is produced through the cleaving action of β- and γ-secretases 

(Selkoe, 2001c; Hardy and Selkoe, 2002) (Fig. 1.1) (Bateman et al., 2006). β-secretase 

cleaves the N-terminal end of Aβ between APP residues 671 and 672. γ-secretase pro-

vides the C-terminal cleavage of Aβ near the APP residue 713 (Selkoe, 2001b). Depend-

ing on the actual location of the γ-secretase cleavage of APP, the Aβ peptide is most 

commonly either 40- or 42-residues long (Aβ(1-40) and Aβ(1-42) respectively) and can 

be found as a component of the central nervous system (CNS) (Seubert et al., 1992; 

Busciglio et al., 1993). It has also been shown that in cases of AD where β-secretase 

cleavage is increased, there is a corresponding increase in the amount of Aβ present 

(Citron et al., 1992; Cai et al., 1993; Citron et al., 1994). 
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Fig. 1.1 Amyloid Precursor Protein is proteolytically cleaved to produce the A peptides. 

The Amyloid Precursor Protein (APP) is an integral membrane protein that is cleaved by -

secretase in the lumen to produce the N-terminus of the A peptides. Cleavage by -secretase 

produces the C-terminal end of the A peptides. Varying lengths of A are produced, depending 

on the location of the -secretase cleavage. Figure modified from Bateman et al., 2006. 
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 Determining the role of Aβ in AD has been difficult to study due to the location 

of Aβ plaques within the human brain, which has limited in vivo work to post-mortem 

studies. To help further the in vivo work, mouse models have been developed to mimic 

AD pathology. A common mouse line, TG2576, is a close model for human AD in that 

the mice develop Aβ plaques, dystrophic neurites and inflammation within the brain 

(Hsiao et al., 1996; Irizarry et al., 1997; Benzing et al., 1999) despite their lack of tau 

tangles (Irizarry et al., 1997). 

 Animal studies have suggested a correlation between increased Aβ loads and 

increased levels of neuronal disfuntion (Games et al., 1995; Hsiao et al., 1996; Masliah 

et al., 1996). When Tg2576 mice were subjected to a Morris water maze test, 2 – 6 

month old mice had a similar escape latency to non-transgenic litter mates, but 9 month 

old transgenic mice were significantly slower at escaping. Following the testing, the es-

cape platform was removed and the mice were allowed to swim for 60 second while the 

researchers measured the amount of time the mice spent in the quadrant where the plat-

form was. They again saw the young transgenic mice perform similarly to non-

transgenic mice while the older Tg2576 mice performed significantly more poorly. The 

transgenic mice were shown to express about 5 times more APP in the brain than non-

transgenic mice suggesting the relationship between Aβ and neuronal disfunction (Hsiao 

et al., 1996). 

 The correlation was later found to be consistent with human studies. A compari-

son of brain slices from 23 AD patients and 10 non-pathologic patients was undertaken 

to determine if there was a relationship between the pre-mortem mental function and the 

post-mortem physiology. The samples were removed from the brains with formic acid 
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and the levels of Aβ(1-42) and Aβ(1-40) were analyzed with an enzyme-linked immu-

nosorbent assay (ELISA). Patients exhibiting increased AD characteristics were found 

to have higher loads of insoluble Aβ in post-mortem brain slices than age-matched, non-

AD brains. There was an average of a 330-fold increase in Aβ(1-42) and a 1050-fold 

increase in Aβ(1-40) found in the AD brains compared to non-AD brains. It was also 

determined that of the Aβ found in the brains, a significantly higher portion was insolu-

ble in the AD brains versus the non-AD brains (Wang et al., 1999). 

 Despite the difficulties found in studying AD in vivo, the in vitro work has 

yielded much insight in the subject. Researchers have shown that once cleaved from the 

APP, Aβ begins to aggregate through a nucleation-dependent polymerization (Jarrett 

and Lansbury, 1993; Lomakin et al., 1996) (Fig. 1.2a). The aggregation begins with the 

formation of a nucleus from monomer units, which is the rate limiting step of the proc-

ess. Once formed, the nucleus structure is then further polymerized, which leads to an 

intermediate aggregation species commonly referred to as a protofibril, which itself un-

dergoes further aggregation to form large Aβ fibrils (Walsh et al., 1997) (Fig. 1.2b). As 

seen in figure 1.2, there is a lag time associated with the formation of the nucleus struc-

ture. However, if the aggregation mixture is seeded with pre-formed aggregates, the lag 

time disappears and both aggregations end with the attainment of an equilibrium state 

(Walsh et al., 1997).  

 Recent research has found that a variety of aggregation intermediates exist be-

tween the monomer and fibril stages of the polymerization model (Harper et al., 1997a; 

Walsh et al., 1997; Harper et al., 1999; Walsh et al., 1999; Stine et al., 2003). These Aβ 

aggregates are the primary component of the neuritic plaques found in AD brains, but 
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Fig. 1.2 A aggregates through a nucleation dependent polymerization mechanism.  

A) The formation of the A nucleus structure causes a lag time in the aggregation kinetics (solid 
line) followed by much faster formation of later aggregate species. If the aggregation mixture is 
seeded with pre-formed intermediates at the beginning (dashed line) the lag time disappears 
and the aggregation precedes to late stage aggregates quickly. Figure modified from Jarrett and 

Lansbury, 1993. B) The A aggregation process begins with monomer assembly into a nucleus 
which seeds the formation of protofibrils and eventually fibers (fibrils). Figure modified from 
Walsh et al., 1997. 

A 

B 
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there is a degree of polymorphism seen within the plaques (Selkoe, 2004). The terms 

protofibril and oligomer are vague and can refer to many different aggregate structures 

and assembly states. 

 Extensive solid state NMR studies on aggregated Aβ have shown that the protein 

adopts a primarily β-sheet secondary structure (Balbach et al., 2002; Bu et al., 2007). 

These studies have been supplemented with x-ray diffraction results, which suggest a 

cross-β structure wherein the side chains line up perpendicular and the interchain hydro-

gen bonding patterns line up parallel to the long axis of the fibril (Inouye et al., 1993; 

Malinchik et al., 1998; Serpell et al., 2000). 

 Studies of aggregated Aβ have also indicated that Aβ(1-42), the most prevalent 

form of Aβ found in the senile plaques of AD patients (Gravina et al., 1995), has a 

higher propensity for aggregation than the Aβ(1-40) form (Iwatsubo et al., 1994; Suzuki 

et al., 1994; Harper et al., 1997b) and is thus considered to be the more toxic species of 

Aβ. In fact, many early studies of Aβ(1-42) aggregates suggested that it was the highly 

aggregated fibrillar assembly that was responsible for the toxicity seen in cells (Pike et 

al., 1991; Roher et al., 1991; Pike et al., 1993). 

 However, more recent research has suggested an intermediate aggregate species 

as the most toxic. When rat brains were treated with solutions containing Aβ monomers 

and soluble oligomers a significant decrease in long term potentiation (LTP), a measure 

of synaptic plasticity, was found. If the Aβ solutions were immunodepleted before treat-

ing the rats, there was no decrease in LTP (Walsh et al., 2002). Westerman et al. found 

that in Tg2576 mice, older mice with high Aβ plaque loads did not exhibit significant 

cognitive dysfunction compared to non-transgenic mice (Westerman et al., 2002). Fur-
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ther support for soluble Aβ species being the most toxic is supported by studies with a 

mouse model expressing APP without the development of plaques. The APP mice per-

formed worse than non-APP expressing mice in Morris water maze tests and dry arena 

tests suggesting an impairment of neuronal function. The lack of plaque development in 

the mouse brains suggests that a soluble Aβ species is responsible for differences in per-

formance in the different mouse lines tested (Koistinaho et al., 2001). 

 There has been some difficulty in determining the exact identity of the toxic in-

termediate species because of its soluble nature. The research labs of Teplow (Walsh et 

al., 1997) and Lansbury (Harper et al., 1997b) both reported the presence of an aggrega-

tion intermediate that they named protofibrils. These species showed molecular weights 

>100,000 kDa with diameters up to 8 nm and lengths <200 nm (Walsh et al., 1997; 

Harper et al., 1999; Nybo et al., 1999; Walsh et al., 1999; Blackley et al., 2000). Despite 

the evidence of the protofibril assembly, other aggregate intermediates have been found 

to be toxic as well. Aβ-derived diffusible ligands (ADDLs) are soluble, globlular assem-

blies that range in size from 4-6 nm in diameter and 17-42 kDa in mass (Lambert et al., 

1998), and have been found to be toxic during in vitro studies (Oda et al., 1995; Lambert 

et al., 1998). 

 Other Aβ aggregation intermediates have been found and included in the class of 

soluble oligomers. Protofibrils of 2.7 to 4.2 nm in length have been previously described 

(Hartley et al., 1999). Kayed et al. described an oligomer-specific antibody that recog-

nizes oligomeric conformations of various amyloidogenic peptides. The smallest assem-

bly recognized with the antibody measured ~40 kDa, which corresponds to an Aβ oc-

tamer (Kayed et al., 2003). A study involving Tg2576 mice found that the decline in 
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memory function found in the middle aged mice correlated to the presence of a soluble 

Aβ intermediate. The species measured 56 kDa and was named Aβ*56. When Aβ*56 

was administered to young mice with no cognitive defects, the mice developed memory 

impairments (Lesne et al., 2006). 

 Interestingly, the Aβ aggregation pathway can be altered by changing the aggre-

gation environment. Studies by Harper et al. show that as the concentration of the aggre-

gation solution is increased, the rate of Aβ aggregation also increases. They also found 

that when the pre-formed protofibrils are diluted, they disassembled into shorter protofi-

brils of about half their original length. Aggregations at higher temperatures were found 

to have faster rates of assembly than lower temperature systems. Protofibril elongation 

was also increased by higher ionic strength solutions. Variations in pH were also found 

to affect the aggregation process (Harper et al., 1999). 

  

 

1.4 Familial AD Mutations 

 

 

 

 The collective research indicates that although tau is involved in the overall AD 

pathology, Aβ is most likely the causative factor for much of the neurodegeneration 

seen in AD. Adding to this viewpoint is the existence of familial forms of AD (FADs). 

Although the majority of AD cases are classified as sporadic and occur as a normal part 

of the aging process, a smaller group fall under the umbrella of FADs and often present 

with earlier average age of onset (AAO) of pathology than sporadic cases, which is also 

referred to as early onset AD (EOAD). Many times FAD cases come to light through the 

appearance of early onset AD within multiple generations of a family. 
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Mutation Name Phenotype AAO Reference 

Lys 670 Asn 
Met 671 Leu 

Swedish AD 52 
Mullan et al. 1992a; Mullan et al. 

1992b; Haass et al. 1995; Mann et 
al. 1996; Scheuner et al. 1996; 

His 677 Arg  AD 55 Janssen et al. 2003 

Asp 678 Asn  AD with occasional aggression 60 Wakutani et al. 2004 

Ala 692 Gly Flemish 
Large, dense core plaques and 

CAA 
40 - 60 

Wisniewski et al. 1991; Hendriks et 
al. 1992; Clements et al. 1993; 

Haass et al. 1994; Cras et al. 1998; 
De Jonghe et al. 1998; Kumar-Singh 
et al. 2000a; Roks et al. 2000; Walsh 

et al. 2001; Kumar-Singh et al. 
2002b 

Glu 693 Gly Arctic AD 58 
Kamino et al. 1992; Nilsberth et al. 
2001; Lashuel et al. 2003; Pavio et 

al. 2004; Whalen et al. 2005 

Glu 693 Gln Dutch HCHWA-D (repeated strokes) 50 

Van Broeckhoven et al. 1990; Soto 
et al. 1995; Mann et al. 1996; De 

Jonghe et al. 1998; Kumar-Singh et 
al. 2002a Baumketner et al. 2008 

Glu 693 Lys Italian Cerebral hemorrhages  Murakami et al. 2003 

Asp 694 Asn Iowa AD or cerebral hemorrhage 60 
Grabowski et al. 2001; Van Nostrand 

et al. 2001 

Ala 713 Thr  AD 59 Carter et al. 1992 

Ala 713 Val  Schizophrenia  Jones et al. 1992 

Thr 714 Ile Austrian AD with high plaque loads 35 - 45 Kumar-Singh et al. 2000b  

Thr 714 Ala Iranian AD 52 
Pasalar et al. 2002; Zekanowski et 

al. 2003 

Val 715 Met French AD 52 
Ancolio et al. 1999; De Jonghe et al. 

2001 

Val 715 Ala German AD 47 
De Jonghe et al. 2001; Cruts et al. 

2003; 

Ile 716 Val Florida AD 53 Eckman et al. 1997 

Ile 716 Thr  AD 55 Terreni et al. 2002 

Val 717 Phe Indiana AD 47 Murrell et al. 1991 

Val 717 Gly  AD 55 Chartier-Harlin et al. 1991 

Val 717 Ile London AD 55 
Goate et al. 1991; De Jonghe et al. 

1998; De Jonghe et al. 2001 

Val 717 Leu  AD 38 
Murrell et al. 2000; De Jonghe et al 

2001 

Leu 723 Pro Australian AD 56 
Kwok et al. 2000; De Jonghe et al. 

2001 

Table 1.1 Mutations identified within the APP sequence. 
Early-onset of AD symptoms can often be found within multiple generations of a single family. 
Genetic analysis of these patients have brought about the identification of several APP muta-
tions that contribute varying pathologies to the AD models. Highlighted mutations occur within 

the A(1-42) sequence of APP. 
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 Once presented to the medical community, researchers attempt to elucidate the 

causes behind the unusual symptoms presented by FAD sufferers. Currently, many cases 

of FAD have been linked to mutations within the APP protein sequence (Table 1.1). 

Most of the mutations occur outside of the Aβ(1-42) sequence, which is located from 

residue 672 – 713 within the APP protein. 

 Mutations within similar locations of the APP sequence share overall pathologi-

cal manifestations. For example, several mutations have been identified from residues 

714-723 of APP, just C-terminal to the Aβ sequence. These mutations are associated 

with early AAO and an increase in the ratio of Aβ(1-42):Aβ(1-40) produced during APP 

cleavage, likely due to their proximity to the γ-secretase cleavage site. On the N-

terminal end of the Aβ sequence only one pathogenic mutation has been identified. Mu-

tations within the Aβ sequence are often associated with cerebral amyloid angiopathy 

(CAA), which will be described in depth later, and often result in cerebral hemorrhages. 

The following sections are detailed discussions of the various forms of FAD. 

 

 

1.4.1 APP Mutations C-terminal to the Aβ Sequence 

 

 

 

 Many of the mutations within the APP sequence occur C-terminal to the Aβ(1-

42) sequence, near the γ-secretase cleavage site between residues 713 and 714. These 

mutations share some pathogenic features, possibly due to their proximity to the γ-

secretase site. 

 Two mutations, the Austrian (Kumar-Singh et al., 2000b) and the Iranian 

(Pasalar et al., 2002), have been reported to occur at APP position 714 and involve the 
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conversion of the threonine residue to an isoleucine or an alanine, respectively. Both 

mutations lead to early appearance of AD symptoms, with the Iranian mutation having 

an AAO in the mid fifties while the Austrian leads to an AAO of about 35 years (Kumar

-Singh et al., 2000b; Pasalar et al., 2002) 

 The first patient (proband) identified with the Austrian mutation was, along with 

her family, studied intensively. Blood plasma samples were tested from the proband, a 

relative lacking in the mutation and several age-matched, unrelated control subjects. The 

plasma was analyzed for Aβ content, and it was determined that the proband contained a 

2.5-fold higher Aβ(1-42):Aβ(1-40) ratio than the other test subjects. Later postmortem 

studies of the proband showed pathological manifestations that included Aβ plaques and 

NFTs in the brain. Of interest was the exceptionally large plaque load comprised of dif-

fuse plaques that contained very little, if any, Aβ(1-40), which correlated with the earlier 

plasma analyses. Some of the Aβ found in the diffuse plaques was determined to be 

truncated at the N-terminus, but Aβ located in the vessel walls or as the dense cores of 

plaques were full length (Kumar-Singh et al., 2000b). 

 The in vivo results were complemented with an in vitro study in which the T714I 

mutation was transfected into human embryonic kidney cells (HEK293). The research-

ers found that here too, the ratio of Aβ(1-42):Aβ(1-40) was higher than in HEK293 cells 

transfected with wild type (WT) APP. Further analysis showed that the change in ratio 

was directly related to an increase in the level of Aβ(1-42) and a decrease in Aβ(1-40) 

(Kumar-Singh et al., 2000b). 

 The Iranian mutation was originally reported to be found in nine people within 

three generations of an Iranian family (Pasalar et al., 2002), but was later found to occur 
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in a patient living in Poland (Zekanowski et al., 2003). It is suspected that their may be 

some familial ties between the two instances. To date, no pathological information is 

available relating to the T714A mutation. 

 One position later, at 715, two more mutations in APP have been noted. The 

French mutation (V715M) has an AAO of about 52 with a duration of approximately 14 

years. Transfection of the mutation into HEK293 cells revealed a decrease in overall Aβ 

production when compared to WT transfected cells. Both transfections produced similar 

amounts of Aβ(1-42), but the V715M transfection led to a decrease in Aβ(1-40) produc-

tion (Ancolio et al., 1999). This result was confirmed in a study in which the mutation 

was transfected into primary mouse neurons, which resulted in a 30% decrease in Aβ(1-

40) production (De Jonghe et al., 2001). Therefore, the ratio of Aβ(1-42):Aβ(1-40) was 

again higher in the presence of the French mutation (Ancolio et al., 1999). 

 The other 715 APP mutation is the German mutation of V715A. The clinical 

AAO is 52 years. The mutation was transfected into HEK293 cells and the levels of Aβ 

were determined. The ratio of Aβ(1-42):Aβ(1-40) was about 4 times higher than WT 

APP transfected cells (Cruts et al., 2003). The V715A mutation was also transfected into 

mouse primary neurons, resulting in a nearly 50% decrease in the production of Aβ(1-

40) and a 50% increase in the production of Aβ(1-42) (De Jonghe et al., 2001). 

 Two mutations are reported at APP position 716, but the mutation I716T is very 

poorly represented in the literature (Terreni et al., 2002) despite appearing in databases 

detailing APP mutations (http://www.molgen.ua.ac.be/ADMutations). The Florida mu-

tation (I716V) has an AAO of 53 years. In an analysis of Aβ levels in the blood plasma 

of patients with the mutation there was an increase in the Aβ(1-42) levels compared to 
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patients not expressing the mutation. When the mutation was transfected into HEK293 

cells, an increase was seen in the Aβ(1-42):Aβ(1-40) ratio due to an increase in Aβ(1-

42) levels. The ratio increase was also seen when the I716V mutation was transfected 

into Chinese hamster ovary (CHO) cells, but in this instance both the Aβ(1-42) and Aβ

(1-40) levels increased compared to WT APP transfection controls (Eckman et al., 

1997). 

 There are currently four separate mutations reported to the 717 position of APP. 

Two of the mutations, V717G and V717I (London mutation) each have AAO of 55 

years (Chartier-Harlin et al., 1991; Goate et al., 1991).  Both lead to typical manifesta-

tions of AD. The London mutant has been shown to decrease the production of Aβ(1-

40) 2-fold while increasing the Aβ(1-42):Aβ(1-40) ratio 3-fold following transfection 

into CHO and HEK293 cells (De Jonghe et al., 1998). An increase in the Aβ(1-42):Aβ(1

-40) ratio was also seen when the V717I APP mutant was transfected into primary 

mouse cortical neurons (De Jonghe et al., 2001). 

 Another APP 717 mutation, the Indiana mutation (V717F), has been reported to 

have an AAO of 47 years. AD associated with the Indiana mutation typically has a dura-

tion of 7 years. Post-mortem studies of affected patients revealed typical AD pathology 

with very little Aβ deposition in the vessels and no sign of cerebral hemorrhage (Murrell 

et al., 1991). 

 The fourth mutation at the 717 position of APP is also the one with the earliest 

AAO, 38. The V717L change in APP leads to a duration of about 10 years (Murrell et 

al., 2000). As with the London mutation, when the V717L mutant was transfected into 

primary mouse cortical neurons, an increase in the Aβ(1-42):Aβ(1-40) ratio was seen 
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(De Jonghe et al., 2001). 

 The final C-terminal APP mutation that has been reported is the Australian mu-

tation, L723P. The mean AAO is 56 years for the Australian form of FAD. When APP 

containing the Australian mutation was transfected into CHO cells, the amount of Aβ(1-

42) produced was increased nearly two-fold when compared to WT APP transfections. 

It was also found that the presence of the L723P mutation was inducing apoptotic cell 

death in the CHO cells (Kwok et al., 2000). 

 Collectively, mutations in the C-terminal region of APP appear to increase the 

Aβ(1-42):Aβ(1-40) ratio. In studies in which six of the C-terminal APP mutations were 

individually transfected into primary mouse neurons, they all showed an increase in the 

ratio of Aβ(1-42):Aβ(1-40). The authors were also able to find an inverse correlation 

between the ratio and the AAO. As the ratio of Aβ(1-42):Aβ(1-40) increased, the AAO 

decreased with V717I having the lowest ratio and the highest AAO, and T714I having 

the highest ratio and the lowest AAO of the mutations studied (De Jonghe et al., 2001). 

The current theory is that due to the proximity of these particular mutations to the γ-

secretase cleavage site they are more likely to affect the cleavage of Aβ. The research 

suggests that whether it be from an increase in the production of Aβ(1-42) or a decrease 

in the production of Aβ(1-40), a higher ratio of Aβ(1-42):Aβ(1-40) leads to a more 

pathogenic form of AD. 

 

 

1.4.2 APP Mutations N-terminal to the Aβ Sequence 

 

 

 

 Only one pathogenic mutation has been reported in APP N-terminal to the Aβ 
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sequence. The Swedish double mutation of K670N/M671L is located directly before the 

Aβ sequence. The β-secretase cleavage site is located between residues 671 and 672 of 

APP. The Swedish mutation leads to AD with an AAO from 45 – 61 years with a me-

dian AAO of 55 and a duration of about seven years (Mullan et al., 1992a; Mullan et al., 

1992b). 

 Analysis of brain slices from patients with the Swedish mutation showed  high 

levels of overall Aβ, but very little accumulation of Aβ(1-40) in the brain. They also re-

vealed the presence of parenchymal vessel deposition of Aβ(1-40)  consistent with CAA 

(discussed later) (Mann et al., 1996). A study of Aβ(1-42) levels in blood plasma found 

that patients with the Swedish mutation who were not exhibiting AD symptoms had lev-

els of Aβ(1-42) similar to patients with the Swedish mutation who were symptomatic 

(57 ± 3 pM and 67 ± 10 pM, respectively). Also, both groups had more Aβ(1-42) than 

controls, 28 ± 2 pM, and sporadic AD patients, 27 ± 3 pM (Scheuner et al., 1996). 

 The increases in Aβ content related to the Swedish mutation are likely due to a 

variation in β-secretase cleavage possibly related to the location of the mutations. Haass 

et al. made some headway in understanding the effect that the Swedish mutation has on 

β-secretase cleavage. The researchers transfected mutant and WT APP into HEK cells. 

When they collapsed the Golgi network with inhibitory compounds, the production of 

Aβ was decreased in the cells transfected with the Swedish APP, but not in the cells 

with WT APP. Antibody staining revealed that the Aβ from the mutant APP was local-

ized in vesicles between the Golgi apparatus and the cell surface. The authors concluded 

that while WT APP is cleaved by β-secretase in endosomes during APP recycling, β-

secretase cleaves Swedish APP in secretory vesicles that are en route to the cell surface 
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(Haass et al., 1995). 

 

 

1.4.3 APP Mutations within the Aβ sequence 

 

 

 

 In addition to APP mutations that occur outside of the N- and C-terminal ends, 

some mutations have been reported to occur within the Aβ(1-42) sequence. When 

Janssen and colleagues undertook a mutational analysis of 31 families with suspected 

FAD, they discovered the H677R mutation. Although it hasn’t been studied in depth, 

this mutation has an AAO of 55 years (Janssen et al., 2003). 

 Another little studied mutation was found in a family of Japanese origin. The 

D678N mutation has an AAO of 60 years and presents with a traditional AD pathology 

with no vascularization. Of interest was that this particular mutation appears to lead to 

periodic increased aggression (Wakutani et al., 2004). 

 One of the more well-studied Aβ mutations is the Flemish mutation, A692G 

(APP numbering) or A21G (Aβ numbering). The AAO for this mutation can range from 

40 – 60 and has been associated with cerebral hemorrhage. Some patients with the 

Flemish mutation exhibited no symptoms of dementia but did present with strokes 

(Hendriks et al., 1992; Roks et al., 2000). Postmortem evaluations have revealed that the 

Flemish mutation leads to high levels of NFTs and large senile plaques that contain 

some of the largest cores found across the AD spectrum. The plaques were high in Aβ(1

-40) content and the cores were centered on the vasculature (Kumar-Singh et al., 

2002b). One study showed the cores of the senile plaques were up to 30μM in diameter 

(Cras et al., 1998). The location of the deposits is likely the reason that this particular 
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mutation leads to strokes. 

 Extensive studies have been performed to further understand the behavior of the 

Flemish Aβ mutant. Several research groups have analyzed the aggregation behavior of 

Aβ A21G and found that the peptide aggregates more slowly than WT Aβ. However, the 

mutant fibrilization pathway is skewed towards the production of larger, more stable 

aggregate structures (Wisniewski et al., 1991; Clements et al., 1993; Walsh et al., 2001). 

Creation of transgenic mouse models expressing Flemish APP have revealed that the 

human APP mutant is expressed in the brains of the mice and highly toxic, but in the 

mice there was very little Aβ deposition found and no tau pathology. The mutant mice 

showed an increase in mortality rates compared to WT mice, but the deaths of the mice 

were preceded by no warnings. The transgenic mice were also more likely to have sei-

zures and aggressive tendencies (Kumar-Singh et al., 2000a). 

 When the Flemish APP variant was transfected into CHO and HEK293 cells, the 

researchers found an increase in both Aβ(1-42) and Aβ(1-40) and no change in the ratio 

between them (Haass et al., 1994; De Jonghe et al., 1998). The researchers suggest that 

the increase in Aβ production may be due to an interaction between the mutation and α-

secretase, which cleaves between residues 16 and 17 of Aβ, and leading to an increase 

in β-secretase cleavage (De Jonghe et al., 1998). 

 Several mutations have been reported at the 693 APP position (position 22 in 

Aβ). The Arctic mutation, E693G or E22G, has an AAO of 58. Postmortem studies of 

afflicted patients revealed the presence of neuritic plaques, NFTs and moderate to severe 

amyloid deposition in the vasculature (Kamino et al., 1992). Evaluations of the plasma 

from patients with the Arctic mutation showed they had decreased levels of both Aβ(1-
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42) and Aβ(1-40) compared to non-expressing family members. However, when the 

mutation was transfected into HEK293 cells, only Aβ(1-42) levels decreased (Nilsberth 

et al., 2001). 

 When Aβ(1-40) E22G was added to primary mouse neurons in culture, degen-

eration was seen after 24 hours while WT Aβ(1-40) required 96 hours. Also, the mutant 

Aβ was able to lead to almost complete degeneration of axons and dendrites over a 20 

hour exposure. Primary human neurons responded in a similar manner to the mouse 

neurons suggesting a high level of toxicity from the Arctic mutation (Whalen et al., 

2005). 

 A series of in vitro aggregation studies with the Aβ(1-42) and Aβ(1-40) E22G 

mutants showed that the mutants aggregate faster than WT Aβ(1-40) with Aβ(1-42) 

E22G aggregating the fastest (Lashuel et al., 2003). Interestingly, the mutant aggrega-

tion pathway is unique from that of the WT peptide in that the mutant forms very stable 

protofibril structures. When the Aβ(1-40) E22G was allowed to aggregate, the ratio of 

protofibrils:monomer decreased by about half after 4.5 hours, but then remained stable 

over the next 23 hours suggesting an equilibrium within the system (Paivio et al., 2004). 

 Another well-studied mutation at position 693 is the Dutch mutation (E693Q). 

Also known as hereditary cerebral hemorrhage with amyloidosis of the Dutch type 

(HCHWA-D), the Dutch mutation leads to severe Aβ deposition in the vasculature ac-

companied by senile plaques in the parenchyma but no NFTs. The mutation leads to re-

peated strokes that can begin in the mid-30s, but the AD associated symptoms have an 

AAO of 50 years (Van Broeckhoven et al., 1990). Patients expressing this mutation 

have been found to have Aβ(1-40) located only in the vascular deposits and only Aβ(1-
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42) in the parenchymal plaques (Mann et al., 1996). 

 When the E693Q mutant APP was transfected into HEK293 and CHO cells, 

there was a decrease in the expression of Aβ(1-42) and Aβ(1-40) but no change in the 

ratio between them (De Jonghe et al., 1998). When SH-SY5Y cells, cultured human 

neurons, were treated with Aβ(1-42) E22Q the cells showed no degeneration after two 

hours, but a high degree after 24 hours. The cells also showed an increase in phosphory-

lation of tau (Kumar-Singh et al., 2002a). 

 A study using molecular dynamic simulations suggested that the Dutch Aβ mu-

tant has an increase in β-sheet structure in the 17 – 21 region, which is usually unstruc-

tured. The researchers hypothesized that this structuring may make it easier for the Aβ 

units to add on to aggregates and lead to an increase in fibrilization (Baumketner et al., 

2008) as previously seen (Soto et al., 1995). 

 The final mutation at position 693 is the Italian mutation (E693K). The presence 

of this mutation leads to significant cerebral hemorrhages. When PC12 neuronal cells 

were treated with either Aβ(1-42) or Aβ(1-40) E22K or the WT versions of the peptides, 

both mutants were more toxic to the cells than their WT analogues. Aβ(1-42) E22K was 

more toxic than Aβ(1-40) E22K. Analysis of the aggregation rates for both mutants re-

vealed that both Aβ(1-42) and Aβ(1-40) aggregate faster than their WT analogues 

(Murakami et al., 2003). 

 Position 694 has one known mutation, D694N (Iowa mutation). The presence of 

the Iowa mutation has an AAO of 60 years and leads to cerebral amyloid deposits and 

NFTs but sparse senile plaques. There is also a decrease in the Aβ(1-42):Aβ(1-40) ratio 

in the plaques (Grabowski et al., 2001). 
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 When the Iowa APP mutant was transfected into human H4 neuroglioma cells, 

analysis of the APP processing revealed no difference in the amount of Aβ produced 

compared to WT APP, but there was an increase in the amount of Aβ(1-40) produced. 

The in vitro aggregation of Aβ(1-40) D23N was much faster than that of WT Aβ(1-40) 

(Van Nostrand et al., 2001). It is possible that the loss of the charged asparagine residue 

may alter the aggregation properties of the Aβ leading to a faster aggregation. 

 There have been two other mutations reported at the 42 position of Aβ(1-42). 

The first, A42T was found in only one patient with no family history of AD. The patient 

had an AAO of 59 (Carter et al., 1992). Due to the lack of family history or other pa-

tients expressing the A42T mutation, it may not be pathogenic. The second mutation at 

Aβ 42 is A42V, the Iranian mutation. It was found within a single Iranian family in 

which a few people expressed AD symptoms, but several people in the kindred pre-

sented with Schizophrenia (Jones et al., 1992). It is possible that this mutation may also 

be non-pathogenic to AD. 

 

 

1.5 Cerebral Amyloid Angiopathy (CAA) 

 

 

 

 As previously mentioned, some FAD mutations lead to the presence of CAA. In 

fact, more than 80% of all AD patients develop CAA (Joachim et al., 1988; Vinters et 

al., 1996; Jellinger, 2002; Attems et al., 2008), and the presence of the CAA phenome-

non has been shown to increase cognitive defects in AD patients (Pfeifer et al., 2002). 

The most severe cases of CAA have been found in patients expressing the Flemish, 

Iowa or Dutch APP mutations (Revesz et al., 2003). 
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 The primary component of CAA is the deposition of Aβ into the cerebral blood 

vessels, particularly smaller vessels like the leptomeningeal and cortical arteries, the ar-

terioles and capillaries. The deposition leads to changes within the vasculature (Pezzini 

and Padovani, 2008). Initially, the Aβ deposits in the outer membranes of the vessels 

leaving the layer of smooth muscle cells (SMCs) unharmed. As CAA progresses, the Aβ 

deposits move into the SMC layer and surrounds the SMCs leading to their degenera-

tion. In severe cases of CAA a “double barrel” deposition is seen in the vessels (Fig. 

1.3) as Aβ deposits itself into two distinct layers. These cases also have fibrinoid necro-

sis and microannurisms and, eventually, the vessels rupture leading to hemorrhages or 

infarctions (Vinters and Gilbert, 1983; Mandybur, 1986; Vinters, 1987; Vonsattel et al., 

1991; Greenberg and Vonsattel, 1997; Thal et al., 2008). 

 

 

1.6 Immune response to AD 

 

 

 

1.6.1 The Human Immune System 

 

 

 

 The human body is a complex system that is able to defend itself from various 

foreign invaders like bacteria, fungi or protozoa as well as in cases of localized trauma 

(Serbina et al., 2008). In response to the presence of  pathogens, the human immune sys-

tem activates monocytic cells that are in normal circulation in the blood stream 

(Volkman and Gowans, 1965b, 1965a; Gordon and Taylor, 2005). The activation proc-

ess, also known as differentiation, transforms the monocytes into either macrophages or 

dendritic cells in an effort to first contain the pathogen and later develop antibodies 
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Fig. 1.3 A model of the CAA development pathology found in AD 
CAA, as found in AD, begins in the arteries and veins with no deposition as in the 

Normal case. As the disease progresses to mild CAA, the A begins to deposit in the 
membrane of the vessels. Moderate CAA cases display further deposition in the SMC 
layer leading to the degeneration of the SMCs. The final stage of CAA, classified as 
severe, involves the breakdown of the vessel walls which leads to the appearance of 
double-barreled Ab deposition and a high degree of SMC degeneration. Areas of fibri-
noid necrosis often appear and lead to hemorrhaging in the vessels. Figure modified 
from Thal et al., 2008). 
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against the foreign invader (Volkman and Gowans, 1965b, 1965a; Gordon and Taylor, 

2005) (Fig. 1.4). 

 Monocytes are produced from pluripotent bone marrow stem cells and normally 

circulate in the blood. These cells are a subset of white blood cells and make up 5-10% 

of the circulating white blood cell population. Under normal circumstances the mono-

cytes circulate for a few days before entering tissues and transforming into macrophages 

as a way to maintain homeostasis within the tissues (Volkman and Gowans, 1965b, 

1965a; Gordon and Taylor, 2005; Seta and Kuwana, 2007; Serbina et al., 2008). How-

ever, if pro-inflammatory, metabolic or immune stimuli are sensed in the periphery, 

monocytes are recruited to the area and differentiated in one of two ways (Van Furth et 

al., 1973; Reya et al., 2001). 

The first pathway is the formation of macrophages, members of the innate im-

mune response. Macrophages are known to have roles in maintaining the homeostasis of 

the body through the removal of old cells and the repairing of tissues following a pro-

inflammatory response (Gordon, 1998). However, macrophages are primarily thought of 

as antigen presenting cells (Hoebe et al., 2004) with phagocytic (Schwende et al., 1996) 

and microbicidal (Mackaness, 1964; Benoit et al., 2008) capabilities. It is also believed 

that the bone marrow derived macrophages have the ability to enter the CNS through the 

blood brain barrier (BBB) when needed (de Groot et al., 1992; Lawson et al., 1992). The 

purpose of this differentiation pathway is to immediately attempt to sequester and de-

stroy as much of the foreign pathogen as possible to prevent further damage to the body. 

 The second pathway available for monocyte differentiation is the formation of 

dendritic cells (DCs) as part of the adaptive immune response. A vital part of the body’s 
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Fig. 1.4 Potential pathways for monocyte 
differentiation 
Monocytes can be differentiated through the 
Innate Immune Pathway leading to the for-
mation of macrophages. It can also be differ-
entiated through the Adaptive Immune Path-
way which will produce dendricytes and, ulti-
mately, B & T lymphocytic cells. Both path-
ways function in sync to provide the body 
with a complete immune response when 
faced with an invading pathogen. Figure 
modified from Reya et al., 2001. 
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overall protection mechanism is the formation of antibodies against various pathogens to 

help provide long term immunity. This process is accomplished through the use of B 

and T lymphocytes, which are both derived from DCs. The B lymphocytes possess the 

“memory” of native antigens, which prevents the body from attacking itself. The T lym-

phocytes, however, are members of a complex system of recognition and antibody pro-

duction that require fragments of pathogens be presented to them by the antigen present-

ing DCs. This pathway ultimately leads to the production of antibodies to pathogens that 

have previously attacked the body, which allows for a quicker response if exposure oc-

curs at a later time (Banchereau and Steinman, 1998). 

 

 

1.6.2 Microglial Activation 

 

 

 

 Microglia have often been referred to as the macrophages of the brain (Davoust 

et al., 2008) because they behave as phagocytes in response to local insult (Heneka and 

O'Banion, 2007). A normal brain contains a uniform population in the white and grey 

matter (McGeer et al., 1987) known as resident microglia that are able to undergo some 

degree of proliferation under normal conditions (Davoust et al., 2008). 

 In the absence of any insult or injury to the brain, microglia have a wide variety 

of functions. They can induce neuronal apoptosis (Marin-Teva et al., 2004), control syn-

aptogenesis (Roumier et al., 2004), regulate synaptic transmissions (Coull et al., 2005), 

and synthesize neurotrophic factors (Elkabes et al., 1996). Microglia posses a ramified 

morphology (Davoust et al., 2008), which is utilized to monitor the condition of the 

brain. The branches protruding from the cellular body are in constant motion, which al-
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lows microglia to survey the entire extracellular space of the parenchyma every few 

hours (Nimmerjahn et al., 2005; Raivich, 2005; Davoust et al., 2008). 

 If, during the process of surveying the brain, microglia sense an invading patho-

gen, an injury or another form of insult, they undergo an activation process that allows 

them to attempt to control the problem. Upon activation, microglial phagocytosis is 

functional (Bauer et al., 1994), and they are able to secrete proinflammatory cytokines 

like interleukin (IL) 1, IL-6 and tumor necrosis factor α (TNFα) (Banati et al., 1993). 

Activated microglia can also undergo an upregulation of some cell surface receptors like 

HLA-DR (McGeer et al., 1987), CD11b, Iba-1 and F4/80 in a manner similar to other 

macrophage cell lines (Davoust et al., 2008) leading to the conclusion that microglia are 

the first line of defense for the CNS (Kreutzberg, 1996). 

 Recently a series of mouse studies have added complexity to the microglial acti-

vation model. Mice were irradiated to kill all of their bone marrow, which was then re-

placed with green fluorescent protein (GFP)-labeled bone marrow. Close monitoring of 

the CNS following an induced brain injury showed an increase in perivascular macro-

phages and microglia expressing GFP (Eglitis and Mezey, 1997; Priller et al., 2001; 

Asheuer et al., 2004; Simard and Rivest, 2004). These studies lead to the notion that the 

microglial activation process may also involve the recruitment of cells from outside the 

CNS, specifically monocytic cells from the bone marrow. It is believed that bone mar-

row derived cells can be recruited from the periphery, cross the BBB and then differenti-

ate into microglia (Davoust et al., 2008). 

 Simard and Rives further extended their studies into an AD model system. When 

they created the bone marrow chimeric mice they used mice expressing APP. The re-
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searchers found that the Aβ deposits in the brain were surrounded by GFP+ microglia. 

They next made chimera from normal mice and three months later injected them with 

either Aβ(1-31), Aβ(1-40), Aβ(1-42) or Aβ(1-57). Upon sacrificing the mice up to a 

week later, the researchers found Aβ plaques surrounded by GFP+ microglia in the mice 

treated with Aβ(1-40) or Aβ(1-42) but not in the mice treated with the 31 or 57 residue 

peptides, suggesting these forms of Aβ can recruit cells from outside the CNS (Simard 

et al., 2006). 

 There is still some debate within the immunological community as to the impor-

tance of the aforementioned studies. It has been suggested that the process of irradiating 

the mice could, itself, damage the BBB and lead to the infiltration of external cells 

(Ajami et al., 2007; Carson et al., 2007; Mildner et al., 2007). In one study, two mice 

were joined together at the circulatory system (parabiosis) and allowed to establish joint 

circulation. One mouse partner expressed GFP tagged bone marrow and the other did 

not. The mice were then subjected to facial motoneuron axotomy to induce a microglial 

response in the brain without damaging the BBB. When the brains of the mice were ana-

lyzed, both contained activated microglia but no GFP (Ajami et al., 2007). A separate 

study used the bone marrow irradiation technique mentioned above, with the slight 

variation of protecting the heads of the mice from the radiation. This slight change in 

protocol resulted in no GFP in the brain (Mildner et al., 2007). Together, these studies 

suggest the labeled monocytic cells could not cross the BBB and enter the CNS because 

the barrier remained intact. 

 Chemotaxis, or the movement of cells in response to environmental stimuli, is an 

important component of the recruitment model. A study involving an in vitro model of 
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chemotaxis across the BBB suggested that Aβ can induce recruitment of monocytes 

across the barrier. A migration chamber was constructed with a barrier in the middle 

comprised of human cerebral endothelial cells to serve as the BBB and migration of 

monocytes from the upper chamber to the lower chamber were monitored. In all of the 

tests, 5 x 105 monocytes were placed in the upper chamber and allowed to incubate for 

24 hours before the number of cells in the lower chamber were counted. When only me-

dium was placed in the lower chamber, approximately 700 cells migrated from the up-

per chamber. If the lower chamber contained 2 x 104 monocytes, an additional 3000 

cells migrated from the upper chamber. However, if the lower chamber contained Aβ in 

medium or a mixture of Aβ and monocytes, cell migration from the upper chamber in-

creased significantly to 20,000 and 63,000 cells, respectively (Fiala et al., 1998). 

 Previous work has also indicated that Aβ treated PC12 cells and murine cerebral 

endothelial cells exhibit an increase in oxidative stress markers attributed to the interac-

tion of Aβ with the receptor for advanced glycation end products (RAGE). Human AD 

brain homogenates also show an increase in RAGE expression (Yan et al., 1996). Fur-

ther studies have indicated a role for RAGE in the possible recruitment of monocytes 

into the CNS. When THP-1 monocytes, a cultured monocytic cell line, were incubated 

with a monolayer of primary human brain microvascular endothelial cells (HBMVEC) 

the monocytes were able to adhere to the HBMVEC in a manner that was dependent 

upon the expression of RAGE. An experiment was performed to determine if RAGE 

was involved in the movement of monocytes across the HBMVEC layer. When an anti-

RAGE antibody was used on the monolayer, a significant decrease in the migration of 

the monocytes in response to Aβ was noted (Giri et al., 2000). 
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 Another receptor has also been identified to aid in Aβ induced migration and ac-

tivation of monocytes. The formyl peptide receptor-like 1 (FPRL1) was found to be ex-

pressed on CD11b-positive microglial cells surrounding Aβ lesions in AD brains. Aβ 

was found to induce high levels of chemotaxis and Ca2+ influx through FPRL1. Also of 

interest was the finding that freshly reconstituted Aβ was better able to induce monocyte 

migration than more highly aggregated Aβ solutions (Le et al., 2001). 

Aside from the debate about monocyte recruitment, it is also difficult to distinguish 

between resident and recruited microglia, partially due to the complexity and low yields 

obtained when attempting to harvest the primary cells. However, there is some evidence 

that suggests the CD45 receptor is highly expressed in recruited microglia, unlike resi-

dent microglia that have a very low expression. 

 Interestingly, studies of AD brains revealed that senile plaques are comprised of 

dystrophic neuritis, astrocytes and activated microglia (McGeer et al., 1987; Spires and 

Hyman, 2004; Mott and Hulette, 2005; Maragakis and Rothstein, 2006; Heneka and 

O'Banion, 2007). In a mouse model of AD, a 2-5 fold increase in microglia was seen in 

the area of Aβ plaques, and the plaques were found to be surrounded by activated, 

CD11b-positive microglia (Khoury and Luster, 2008). Despite being present in the vi-

cinity of plaques, the role of microglia in AD brains is far from understood. 

 

 

1.7 Cytokine and chemokine expression in AD 

 

 

 

 Cyclic AMP (cAMP) is a second messenger that is very highly regulated 

(Gilman, 1995). It is known to activate protein kinase A, which will, in turn, phosphory-
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late tertiary messengers (Kelley et al., 2008). cAMP can also act at a transmitter through 

binding with cyclic nucleotide gated channels (Matulef and Zagotta, 2003). Production 

of cAMP is regulated through the conversion of ATP in the presence of Mg2+, a reaction 

catalyzed by adenylate cyclase (AC) (Table 1.2). The only mechanism for cAMP degra-

dation is through the class of molecules known as phosphodiesterases (PDE), which are 

used to help maintain homeostasis (Kelley et al., 2008). 

 Studies involving inflammation have shown that increasing levels of cAMP 

through the use of PDE inhibitors or AC activators can attenuate the levels of the cyto-

kine TNFα in monocytic cells (Kunkel et al., 1988; Schade and Schudt, 1993; Sinha et 

al., 1995). Dibutyryl cAMP (dbcAMP), PDE inhibitors and AC activators were also 

shown to decrease LPS-induced TNFα levels in macrophages (Spengler et al., 1989) and 

microglia (Facchinetti et al., 2003). It is thought that cAMP may serve as a gatekeeper 

for inflammation (Jin and Conti, 2002), which may have implications in AD research 

due to its demonstrated ability to decrease the inflammatory marker TNFα. 

 Levels of TNFα have been studied in many different models of AD pathology, 

including in vivo. It has been seen that AD patients have higher levels of TNFα in the 

brain microvessels (Grammas and Ovase, 2001) and cerebral spinal fluid (CSF) than 

people who do not have AD (Tarkowski et al., 2003). TNFα is also found with microglia 

surrounding Aβ lesions in humans (McGeer et al., 1987) as well as transgenic mouse 

models of AD that have high expression of APP (Benzing et al., 1999). 

 Studies have shown that SMCs produce cytokines after exposure to Aβ (Suo et 

al., 1998), and AD patients express higher levels of TNFα in brain microvessels than 

non-demented individuals (Grammas and Ovase, 2001). Experiments on meningeal ves-
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Phosphodiesterase Inhibitors  

IBMX General PDE inhibitor 

Milrinone PDE3 inhibitor 

Ro 20-1724 PDE4 inhibitor 

Rolipram PDE4 inhibitor 

Zardaverine PDE3, PDE4 inhibitor 

Adenylate Cyclase Activator  

Forskolin 
Adenylate cyclase binding 

molecule 

Protein Kinase A Effectors 

Rp-cAMPS Inhibitor 

Sp-cAMPS Activator 

KT5720 Inhibitor 

H89 Inhibitor 

Table 1.2 Many compounds modulate the cAMP pathway 
Selection of agents to modulate the cAMP signal depend on 
which specific parts of the pathway need altered. IBMX is a 
general PDE inhibitor and works on the general class of PDEs. 
Forskolin is the only compound regularly used to activate ade-
nylate cyclase.  
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sels from AD patients revealed an increase in cAMP staining compared to non-

demented patients. Most notably, the cAMP was found to co-localize with the Aβ de-

posits within the vessels (Martinez et al., 2001). When taken together with an in vitro 

model showing that the presence of TNFα in human myometrium (uterine SMCs) stimu-

lates AC (Gogarten et al., 2003), an interesting picture begins to immerge. The interplay 

between Aβ induced production of TNFα and the upregulation of cAMP may be a pro-

tection mechanism in AD patients. 

 Other markers of inflammation have been found to participate in the overall AD 

pathology. Aβ has been shown to increase the production of IL-1β, IL-6 and TNFα in 

cultured microglia and astrocytes (Gitter et al., 1995; Chong, 1997). IL-6 has also been 

identified as a component of early senile plaques in AD brains (Luterman et al., 2000; 

Mehlhorn et al., 2000), and has been found to be secreted by peripheral blood mono-

cytes more in AD patients than non-demented individuals (Ravaglia et al., 2007). IL-1β 

has been found at increased levels in the CSF of AD affected individuals (Cacabelos et 

al., 1991; Blum-Degen et al., 1995). Interestingly, IL-6 stimulates the cdk5 kinase sys-

tem and IL-1β activates MAPK-p38, both of which increase tau phosphorylation (Rojo 

et al., 2008). 

 TNF-related apoptosis-inducing ligand (TRAIL) is an integral membrane protein 

and a member of the TNF family of cytokines (Rojo et al., 2008). It has been found in 

neuronal cultures treated with Aβ (Cantarella et al., 2003), as well as specifically ex-

pressed in AD brains, but not healthy brains. The immunoreactivity of TRAIL was lo-

calized near Aβ plaques (Uberti et al., 2004). 

 Chemokines have also been implicated in AD. A series of chemokine receptors, 
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CCR1, CCR3, CCR5, CXCR3 and CXCR4, have all been identified in AD brain slices 

(Xia and Hyman, 1999; Halks-Miller et al., 2003). Microglia from AD brains express 

increased levels of IL-8 and MIP3α mRNA (Rempel et al., 2001) while high levels of IL

-8 and MCP-1 were found in the CSF of AD patients (Galimberti et al., 2006b). MCP-1 

is implicated in the recruitment of cells to sites of inflammation. In fact, astrocytes have 

been shown to migrate towards Aβ deposits due to the presence of MCP-1 (Galimberti 

et al., 2006a). Once there the astrocytes attempt to clear the Aβ (Rojo et al., 2008) sug-

gesting a potentially protective role for some chemokines. 

 Overall, the research has shown that AD is a very complicated disorder with 

many contributing factors. It is of great importance for researchers to elucidate as many 

pieces of the puzzle as possible. In doing so the chances are increased that one day a 

cure or prevention will be developed for those suffering with this disease. 
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2 METHODS 

 

 

 

2.1 Cell Culture 

 

 

 

2.1.1 THP-1 Monocytes 

 

 

 

 THP-1 monocytes were purchased from ATCC (Manassas, VA). Cells were 

stored in 1 ml aliquots in liquid nitrogen until needed for culture. Cells were cultured in 

growth medium, which is RPMI 1640 containing 2mM L-glutamine and 1.5 g/L sodium 

bicarbonate (Hyclone, Logan, UT), supplemented with 10% Fetal Bovine Serum (FBS, 

Hyclone), 50 U/ml penicillin, 50 μg/ml streptomycin (Hyclone) and 50 μM β-mercapto-

ethanol (Fisher, Pittsburg, PA) at 37°C with 5% CO2. During culturing, cells were di-

luted 1:1 in fresh growth medium on Monday and Wednesday. On Friday cells were 

centrifuged at 0.5 x g for 10 minutes. Pellet was resuspended in growth medium for a 

final cell dilution of 3:7. For experiments, cells were removed from culture flask and 

centrifuged at 0.5 x g for 10 minutes. The pellet was resuspended in assay medium 

(same as growth but containing only 2% FBS) so that the resulting cell concentration 

was near 7 x 105 cells/ml as counted on a hemocytometer. 

 THP-1 cells are a cultured human peripheral blood monocytes derived from a 

leukemia patient (Tsuchiya et al., 1980). The cells are non-adherent with a rounded mor-
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phology. THP-1 cells have previously been used as a model of cell differentiation 

(Tsuchiya et al., 1982; Auwerx, 1991). 

 

2.1.2 Human Aortic Vascular Smooth Muscle Cells 

 

 

 Human Aortic Vascular Smooth Muscle Cells (HA-VSMC) were purchased 

from ATCC. Cells were stored in 1 ml aliquots in liquid nitrogen until needed for cul-

ture. Cells were cultured in growth medium, which is Ham’s F12K containing 2 mM L-

glutamine and 1.5 g/L sodium bicarbonate (Hyclone) and supplemented with 10mM 

Hepes (Fisher), 10 mM 2-[Tris(hydroxymethyl)methylamino]-1-ethanesulfonic acid 

(TES, Acros, Morris Plains, NJ), 0.05 mg/ml ascorbic acid (Fisher), 0.03 mg/ml endo-

thelial cell growth supplement (ECGS, BD Biosciences, San Jose, CA), 0.1 mg/ml insu-

lin (Fisher), 0.01 mg/ml transferrin (Fisher), 10 ng/ml selenium (Fisher) and 10% FBS 

at 37°C with 5% CO2. During culturing, the old growth medium was removed from the 

flask and replaced with fresh growth medium on Monday, Wednesday and Friday. Once 

cells achieved confluence on the bottom of the flask they were passaged as follows. 

Cells were removed from the flask by exposure to 1 ml of 0.25%  trypsin-EDTA 

(Hyclone) for seven minutes. Trypsin activity was stopped with 4 ml of growth medium 

and the combined 5 ml containing the cells was collected. The cells were spun at 0.5 x g 

for 10 minutes. The pellet was resuspended in 10 ml of fresh growth medium and 5 ml 

was added to a fresh flask containing 5 ml of fresh growth medium. For experiments, 

cells were removed from the flask and centrifuged as previously described. The pellet 

was then resuspended to 1 x 105 cells/ml in growth medium. Cells were plated into a 
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sterile 48-well plate and incubated 48 hours to allow for cell adherence before further 

experimentation was performed. Once adherence was achieved, growth medium was 

removed from wells and replaced with assay medium which is Ham’s F12K containing 

2mM L-glutamine and 1.5 g/L sodium bicarbonate (Hyclone) supplemented with 10 

mM Hepes, 10 mM TES and 0.05 mg/ml ascorbic acid.  

 

 

2.1.3 PC12 Cells 

 

 

  

 PC12 cells were purchased from ATCC. Cells were stored in 1 ml aliquots in 

liquid nitrogen until needed for culture. Cells were cultured in RPMI 1640 containing 2 

mM L-glutamine and 1.5 g/L sodium bicarbonate supplemented with 5% FBS, 10% heat

-inactivated horse serum, 50 U/ml penicillin and 50 μg/ml streptomycin at 37°C with 

5% CO2. During culturing, 10 ml of cells were seeded into a T-75 culture flask at a con-

centration of 1 x 105 cells/ml. Growth medium was replaced every two days until cells 

were either confluent or needed for an experiment. Upon achieving confluence, 2 ml of 

cells were removed from the flask by agitation and then seeded in a new flask and di-

luted to 10 ml total volume with growth medium. For experiments, cells were removed 

from flask and centrifuged at 0.5 x g. The pellet was resuspended in growth medium to 

3 x 105 cells/ml and plated into wells of a sterile 48-well culture plate. The plate was 

incubated at 37°C for 72 hours to allow the cells to adhere before further experimenta-

tion was conducted. 

 

 

2.2 Preparation of Aβ peptides 
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2.2.1 General Aβ preparation 

 

 

 

 Aβ(1-40) and Aβ(1-42) were purchased from rPeptide (Bogarth, GA) as a ly-

ophilized powder. Peptides were reconstituted in 100% hexafluoroisopropanol (HFIP, 

Sigma, St. Louis, MO) and incubated at room temperature for 1 hour to dissociate any 

pre-formed aggregates (Wood et al., 1996; Zagorski et al., 1999). Following incubation, 

the peptides were aliquotted into sterile microcentrifuge tubes and dried in a vacuum 

centrifuge before being stored at -20°C. Before using in the cells, peptides were resus-

pended to 50 μM, 100 μM or 1 mM in sterile water. Reconstituted peptides were stored 

at 4°C, 25°C or 37°C as indicated in the experiments. Aβ(1-42) L34P was received as a 

gift from Ron Wetzel (University of Pittsburgh). It was treated in the same way as the 

commercially available Aβ samples as described above. 

 

 

2.2.2 Aβ-derived diffusible ligands 

 

 

 

 Aβ-derived diffusible ligands (ADDLs) were prepared from lyophilized Aβ(1-

42) as previously described (Stine et al., 2003). One vial containing 0.25 mg of peptide 

was resuspended to 5 mM with 11 μL of dimethyl sulfoxide (DMSO, Sigma) and then 

diluted to 100 μM with 543 μL of ice cold Ham’s F12 medium with phenol red 

(Hyclone). The diluted peptide was incubated for 24 hours at 4°C before being centri-

fuged for 10 minutes at 14,000 x g. The supernatant, which contained the ADDLs, was 

collected and used for experiments. 

2.3 Cell Adherence Assays 
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2.3.1 Direct Counting 

 

 

 

 THP-1 cells were centrifuged and resuspended in assay medium as described 

above and then 204 μL was plated into wells of a sterile 48-well tissue culture plate. To 

the wells, ultrapure bacterial LPS (Escherichia coli K12), synthetic bacterial lipoprotein 

tripalmitoyl cysteinyl seryl tetralysine (Pam3CSK4) (InvivoGen, San Diego, CA), phor-

bol 12-myristate 13-acetate (PMA, Sigma), or Aβ were used to induce adherence in the 

cells. Cells were exposed to the effectors at 37°C at the concentrations and incubation 

times indicated in the experiments. After the incubation time, the medium, which con-

tained non-adherent cells, was collected off the wells. The wells were washed with 200 

μL of phosphate buffered saline (PBS, Hyclone) and the wash was collected. Cells that 

remained adherent were treated with 100 μL of trypsin and incubated at 37°C for 7 min-

utes. Trypsin activity was stopped with the addition of 400 μL of THP-1 growth me-

dium and the adherent cells were collected. Cells in the medium, wash and adherent 

populations were counted under a microscope on a standard hemocytometer and cor-

rected to total cells present. The percent adherence was determined by dividing the num-

ber of adherent cells by the total number of cells plated at the beginning of the experi-

ment (Crouse et al., 2009). Using only the adherent cell counts in the final percent ad-

herence calculation did not significantly alter the results of the experiments (Fig. 2.1). 

 

 

 

2.3.2 Calcein Fluorescence 
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Fig. 2.1 Counting adherent cells only does not significantly modify the results. 

THP-1 cells were treated with 15 M A(1-42) for 6 hours. Following the incubation, non-
adherent and adherent cells were collected and counted as described in the Methods. Per-
cent adherence was determined using the adherent cells as a percentage of all of the 
counted cells (circles) or as a percentage of the plated cells (inverted triangles). Error bars 
are standard error for n = 19 (0 hours), 17 (48 hours), 4 (72 hours), 5 (96 hours), 7 (120 
hours), 3 (144 hours) and 7 (216 hours). 
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Fig. 2.2 Esterase activity in live cells converts calcein AM to fluorescent calcein 
The methyl ester groups are cleaved off of calcein AM by esterase activity in living cells to 
produce calcein which undergoes >500-fold fluorescence increase.  



Crouse, Nikkilina, 2009, UMSL 64 

 

 

 

 Calcein AM is a non-fluorescent compound which can be taken up by living 

cells. Once internalized, esterase activity cleaves the methyl ester groups from the cal-

cein rendering the compound fluorescent at 504 nm excitation and 523 nm emission 

(Fig. 2.2) (Papadopoulos et al., 1994). 

 For six hour adherence assays, THP-1 cells were incubated with 10 μM calcein 

AM for 30 minutes at 37ºC prior to preparation in assay medium. The cells were plated 

and treated with 10 ng/ml PMA as described above. At the end of the incubation, the 

medium was removed and the adherent cells in the well were washed with PBS and the 

fluorescence was read on the Perkin Elmer Victor using the fluorescein filter. 

 For 24 hour adherence experiments, the cells were prepared in assay medium 

and treated with PMA as described above and incubated for 24 hours. At the end of the 

treatment, the medium was removed and the adherent cells were washed with PBS. The 

adherent cells were incubated with 10 μM calcein AM for 30 minutes at 37ºC. The fluo-

rescence was read on the Perkin Elmer Victor using the fluorescein filter. 

 

 

2.4 Inhibitor Studies 

 

 

 

2.4.1 FPRL1 and NF-κB Pathways 

 

 

 

 THP-1 cells were prepared in assay medium as described above and plated into a 

48-well plate. Cells were pretreated for 15 minutes with 30 μM of FPRL1 antagonist 
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Trp-Arg-Trp-Trp-Trp-TrpCO-NH2 (WRW4) peptide(Bae et al., 2004) (Tocris, Ellisville, 

MO) or 1 hour with ammonium pyrrolidinecarbodithiolate (PDTC, Sigma) before the 

addition of 10 ng/ml PMA or 15 μM Aβ(1-42). The samples were incubated for 6 hours 

at 37°C before being analyzed for adherence as described above. 

 

 

2.4.2 Toll-like receptors 

 

 

 

 THP-1 cells were added to a 48-well cell culture plate and pre-treated with 10 

μg/ml TLR antibodies or IgG isotype control for 1 h at 37°C in 5% CO2. Antibodies and 

isotype controls used were functional grade anti-human TLR2 (clone T2.5) or TLR4 

(clone HTA125) antibodies, mouse IgG1κ isotype controls from eBioscience (San 

Diego, CA, USA. Following the 1 h incubation, Aβ(1–42) was applied in the continuing 

presence of neutralizing antibodies and the cells were further incubated for 6 h in the 

same conditions. TNFα from cell supernatants was determined as described below. 

 

 

2.5 Determination of TNFα Levels 

 

 

 

 A sandwich enzyme linked immunosorbent assay (ELISA) was performed to 

measure the levels of secreted TNFα as previously described (Udan et al., 2007). Wells 

of a 96-well plate were coated with 100 μL of 4 μg/ml monoclonal anti-human TNFα/

TNFSF1A capture antibody (R&D Systems, Minneapolis, MN) and incubated at room 

temperature overnight. Following the incubation period, the wells were washed three 

times with PBS containing 0.05% Tween 20 and then blocked for 1 hour at room tem-
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perature with 300 μL of PBS containing 1% BSA, 5% sucrose and 0.05% NaN3. After 

washing three times as described, 50 μL of 20 mM Tris containing 150 mM NaCl, 0.1% 

BSA and 0.05% Tween 20 was added to wells followed by 50 μL of TNFα standards or 

cellular samples. The plate was incubated at room temperature for 2 hours after which it 

was washed three times as before. Next, 100 μL of biotinylated polyclonal anti-human 

TNFα/TNFSF1A detection antibody (R&D Systems) in 20 mM Tris with 150 mM NaCl 

and 0.1% BSA was added for two hours at room temperature. Following the incubation, 

the wells were washed three times. The wells were treated with 100 μL of streptavidin-

horseradish peroxidase (R&D Systems) diluted 200 times in PBS with 1% BSA for 20 

minutes at room temperature. The wells were washed three times followed by the addi-

tion of 100 μL of a 1:1 mixture of 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxide 

(KPL, Gaithersburg, MD) for 30 minutes. The enzymatic reaction was stopped with the 

addition of 50 μL of 1 M H2SO4. The optical density of each sample was analyzed using 

a SpectraMax 340 absorbance plate reader at 450 nm with a reference reading at 540 

nm. The concentration of TNFα in each sample was calculated from the TNFα standard 

curve which ranged from 15 – 2000 pg/ml. 

 

 

2.6 Characterization of adherent cells 

 

 

 

2.6.1 Cell Proliferation 

 

 

 

 THP-1 cells were prepared in assay medium as described above. Cells were 

plated into wells of a sterile 48-well plate with three wells for each condition. Cells were 
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treated with either 10 ng/ml PMA or 15 μM freshly prepared Aβ(1-42) (final concentra-

tions) and incubated for 6, 24 or 48 hours at 37°C. After the incubation time, the me-

dium was collected off the wells and the wells were washed with 200 μL of PBS. The 

wash was also collected. Cells that remained adherent were treated with 100 μL of tryp-

sin and incubated at 37°C for 7 minutes. The trypsin activity was stopped with the addi-

tion of 400 μL of THP-1 growth medium and the adherent cells were collected. The col-

lected populations were each centrifuged for 5 minutes at 2000 RPM. The pellets were 

each resuspended in 500 μL of PBS. A 100 μL aliquot was removed from each of the 

samples and placed in a fresh microcentrifuge tube containing 100 μL of 0.4% trypan 

blue (Hyclone). The samples were incubated at room temperature for 3 minutes before 

the living and dead cells in each sample were counted under a microscope using a hemo-

cytometer. The trypan blue exclusion assay was provided by Hyclone from a previously 

published method (Freshney, 1994). 

 

 

2.6.2 Fibronectin (Fn) Coating 

 

 

 

 Fn (Sigma) was reconstituted in sterile water to 1 mg/ml. It was stored at -20°C 

in 50μL aliquots. For coating, one aliquot was removed and diluted to 50 μg/ml in ster-

ile PBS. Each well of a sterile 48-well plate to be coated was treated with 100μL of 50 

μg/ml Fn (5 μg/well final concentration) and allowed to incubate at room temperature 

for one hour. The plate was covered and stored at 4°C until needed for an experiment, 

typically overnight but not longer than two weeks (Seo et al., 2006; Crouse et al., 2009). 

Prior to the addition of cells, any excess Fn solution was aspirated from the wells. 



Crouse, Nikkilina, 2009, UMSL 68 

2.6.3 Cell surface CD11b expression 

 

 

 

 Analysis of the CD11b expression on the cell surface was modified from a previ-

ously published method to measure the cell surface expression of tagged mutant pep-

tides (Conner et al., 2006). CD11b was analyzed as we have previously described 

(Crouse et al., 2009). THP-1 cells were prepared in assay medium and treated with ef-

fectors to induce adherence in wells pre-coated with Fn. Cells were incubated for 6 or 

24 hours at 37°C. Following the incubation, the medium was removed by aspiration and 

the wells were washed one time with 400μL of PBS containing 0.05% Tween 20. The 

cells were fixed with 250μL of 3.7% formaldehyde for 15 minutes. The wells were 

washed three times as described and then blocked for one hour at room temperature with 

300μL of PBS containing 1% BSA. The wells were washed once. The cells were treated 

with 200μL of 0.5 mg/ml mouse-raised anti-CD11b antibody  diluted 500-fold in PBS 

containing 1% dry milk and incubated at room temperature for three hours. The wells 

were washed three times. The cells were treated with 200μL of anti-mouse IgG HRP 

conjugate diluted 500-fold in PBS containing 1% BSA and incubated at room tempera-

ture for one hour. The wells were washed three times. The cells were treated with 250μL 

of absorbent HRP substrate for 20 minutes at room temperature. The substrate activity 

was stopped with the addition of 125μL of 1M H2SO4. The colored solution was trans-

ferred to the wells of a clear 96-well plate before the absorbance was read at 450 nm 

with the background at 540 nm subtracted out. 
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2.6.4 XTT Assay 

 

 

 

 A 1 mg/ml stock solution of 2,3-Bis(2-methoxy-4-nitro-5- sulfophenyl)-2H-

tetrazolium-5-carboxanilide (XTT) (Sigma) was prepared in RPMI 1640 without phenol 

red (Hyclone) supplemented with 2 mM L-glutamine and stored at -20°C. For non-

adherent cells, stock solution of XTT was thawed and mixed with 5 mM phenazine 

methosulfate (PMS, Acros) for a final PMS concentration of 24.9 µM. Samples of 220 

µL of cells in XTT assay medium (RPMI 1640 without phenol red supplemented with 2 

mM L-glutamine and 2% FBS) were treated with 110 µL of 1 mg/ml XTT/ 24.9 µM 

PMS and incubated for up to 4 hours at 37°C. For adherent cells, medium was removed 

and replaced with 0.33 mg/ml XTT/ 8.3 µM PMS in XTT assay medium and incubated 

for up to 4 hours at 37°C. For indirect measurement of cell adherence, 220 μL of treat-

ment medium containing non-adherent cells was moved from the treatment well to a 

fresh well. The cells were treated with 110 µL of 1 mg/ml XTT/ 24.9 µM PMS and in-

cubated for up to 4 hours at 37°C.  In all cases, XTT reduction was analyzed by absorb-

ance of the solution at 467nm.  

 The XTT assay is used to measure cellular metabolism. A colorless tetrazolium 

salt is reduced into an orange soluble fomazan product through the action of mitochon-

drial succinoxidase and cytochrome p450 as well as favoprotein oxidases (Fig 2.3)  

(Scudiero et al., 1988; Roehm et al., 1991; Kuhn et al., 2003). The XTT salt has been 

shown to be reduced more effectively in the presence of PMS (Scudiero et al., 1988). 

Many researchers in the AD field use a similar 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay which forms purple formazan crystals upon 
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Fig. 2.3 Colorless XTT tetrazolium salt is reduced to soluble, orange formazan 
Colorless XTT solution is reduced by one electron. Reduction leads to cleavage of the XTT 
ring system into the colored formazan structure. 
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reduction. However, a study comparing the effectiveness of the XTT, MTT and other 

viability assays showed that use of the MTT assay can suggest more toxicity than actu-

ally exists during studies involving Aβ (Wogulis et al., 2005), leading us to utilize the 

XTT assay for our experiments. 

 

 

2.7 cAMP studies 

 

 

 

2.7.1 Cell treatment with cAMP modulators 

 

 

 

 THP-1 cells were centrifuged and resuspended in assay medium as described 

above. The cells were counted and 290 μL plated into individual wells of a sterile 48-

well cell culture plate. The plated cells were treated with 10 ng/ml LPS, 1.67% DMSO 

(control) or different volumes of isobutylmethylxanthine (IBMX, Sigma) and forskolin 

(Fsk, Sigma) to achieve the final concentrations noted in the experiments. The cells 

were incubated for up to 6 hours at 37°C. The cells were removed from the well and 

treated with cAMP lysis buffer (Perkin Elmer) at a lysis buffer to cell ratio of 1:10 for 

15 minutes at room temperature. The samples were then stored at -20°C until analyzed. 

 HA-VSMC were prepared and plated for experiments 48 hours prior to treatment 

as described above. Following the incubation time, the medium was removed and re-

placed with 180 μL of fresh HA-VSMC assay medium and 10 ng/ml LPS (final), 15 μM 

Aβ (final), 1.67% DMSO (control, final) or different volumes IBMX and Fsk to achieve 

the final concentrations noted in the experiments. When treating the cells, IBMX and 

Fsk were added first to allow the cells to begin producing cAMP immediately. The cells 
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were incubated for 48 hours at 37°C with the effectors before medium was removed and 

XTT analysis was performed. 

 

 

2.7.2 Determination of cAMP Levels 

 

 

 

 The levels of cAMP in cells were measured using the competition based DEL-

FIA assay kit (Perkin Elmer, Waltham, MA). The DELFIA assay involves the competi-

tion of cAMP from the test sample and a cAMP-Europium tracer complex for an anti-

cAMP antibody adsorbed to a 96-well plate. After binding to the antibody, the Euro-

pium is dissociated from the cAMP and forms chelates with molecules in the Enhance-

ment solution. The time-resolved fluorescence of the Europium is read and compared to 

a standard curve (Fig. 2.4). All reagents for the assay were included in the DELFIA kit.  

 The anti-cAMP antibody solution was diluted 100-fold in 20 mM Tris contain-

ing 150 mM NaCl, 0.1% BSA and 0.05% Tween 20 and 50 μL was plated into wells of 

a yellow 96-well plate pre-coated with capture antibody (from kit). The plate was incu-

bated at room temperature for 30 minutes with gentle shaking. The cAMP standard was 

diluted in cAMP Buffer for Standards and serial dilutions were performed for the stan-

dard curve. The Eu tracer was diluted 100-fold in sterile water. To each well of the plate 

100 μL of Eu tracer and 50 μL of either cAMP standard or cellular sample were added. 

The plate was incubated at room temperature for 4 hours with gentle shaking. The plate 

was washed 3 times with cAMP Wash Buffer. To each well 200 μL of Enhancement 

Solution was added and the plate was incubated at room temperature for 45 minutes 

with gentle shaking. The time-resolved fluorescence was read with the Perkin Elmer 
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Fig. 2.4 Measurement of cAMP via DELFIA competition assay 
Levels of cAMP were determined as described in the Methods. The cAMP produced by the cells 
(squares) competes with the cAMP-Europium tracer (squares-circles) for the cAMP binding site 
on the antibody. Once bound, the Europium is cleaved from the bound cAMP and forms a mi-
celle-like structure which provides an enhancement in time-resolved fluorescence. 
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Victor (Perkin Elmer) using the Europium Time Resolved Fluorescence protocol. The 

concentration of cAMP in each sample was calculated from the cAMP standard curve 

which ranged from 28.125 – 1800 pmol/ml. 

 

 

2.7.3 Preparation of cAMP-HRP conjugate 

 

 

 

 A cAMP-HRP conjugate was prepared using a previously published method 

(Lombardi and Schooley, 2004). 15 mg of 1-[3-(dimethylamino)propyl]-3-

ethylcarbodiimide methiodide (Sigma Aldrich) was added to 1 ml of 5 mg/ml HRP 

(Sigma Aldrich) buffered in 0.1 M 2-(N-morpholino)-ethane sulfonic acid (Sigma Al-

drich) and 0.1 M Tris at pH 5.0. The solution was incubated for 2 hours at room tem-

perature with shaking. The solution was dialyzed overnight twice at 4°C against 1800 

ml of PBS at pH 7.4. The solution was removed from dialysis and treated with 1 mg of 

2’-O-monosuccinyladenosine 3’:5’-cyclic monophosphate sodium salt (Sigma Aldrich), 

3.1 mg of N-hydroxysulfosuccinimide (Molecular Probes) and 14 mg of 1-[3-

(dimethylamino)propyl]-3-ethylcarbodiimide methiodide. The solution was stored at 4°

C overnight with gentle shaking. The solution was dialyzed overnight twice at 4°C 

against 1800 ml of PBS at pH 7.4. Conjugate was removed from dialysis and stored in a 

foil-covered tube at 4°C due to light sensitivity.  

 

 

2.7.4 UMSL cAMP assay modified from Perkin Elmer DELFIA protocol 

 

 

 

 A white Greiner fluorescence plate (Greiner, Monroe, NC) was coated with 200 



Crouse, Nikkilina, 2009, UMSL 75 

μL of 10 μg/ml goat-raised anti-rabbit IgG (Sigma) overnight at room temperature. The 

plate was washed 3 times with PBS containing 0.05% Tween 20 and then blocked for 1 

hour at room temperature with 300 μL of PBS containing 1% BSA, 5% sucrose and 

0.05% NaN3. The plate was washed as described. Anti-cAMP antibody (Nichols and 

Morimoto, 1999) (Purdue University) was diluted 4000-fold in 20 mM Tris containing 

150 mM NaCl, 0.1% BSA and 0.05% Tween 20 and then 50 μL of the diluted serum 

was plated into the wells of the plate for 45 minutes at room temperature with gentle 

shaking. Eu tracer (Perkin Elmer) was diluted 100-fold in sterile water and the cAMP 

standard (Sigma) was diluted to desired concentrations in 20 mM Tris containing 150 

mM NaCl, 0.1% BSA and 0.05% Tween 20. To the wells 100 μL of diluted tracer and 

50 μL of diluted cAMP standard was added. The plate was incubated at room tempera-

ture for 4 hours with gentle shaking followed by a wash as described. Each well was 

treated with 200 μL of Enhancement Solution (Perkin Elmer) and incubated at room 

temperature with gentle shaking for 45 minutes. The time-resolved fluorescence was 

read with the Perkin Elmer Victor using the Europium Time Resolved Fluorescence pro-

tocol. The concentration of cAMP in each sample was calculated from the cAMP stan-

dard curve which ranged from 28.125 – 1800 pmol/ml. 

 

 

2.8 Atomic Force Microscopy (AFM) 

 

 

 

 At designated times during the peptide aggregation, samples were removed from 

the aggregation population and diluted to 1 μM in water. A 50 μL portion of the diluted 

sample was immediately applied to freshly cleaved grade V1 mica discs (Ted Pella Inc., 
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Redding, CA). Samples were adsorbed onto the discs for 15 minutes before being 

washed twice with water and left to air dry. Prepared discs were stored in a container 

with desiccant until imaging. AFM images were obtained using a Nanoscope III multi-

mode atomic force microscope (Digital Instruments, Santa Barbara, CA) in Tapping-

Mode™. Height analysis was performed using the Nanoscope III software on height 

mode images that had been flattened. 
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3 STUDY OF MONOCYTE MATURATION 

 

 

 

3.1 Introduction 

 

 

 

 AD is characterized by severe neuronal degeneration that is manifested through a 

loss of memory in sufferers. The process has been linked to two types of brain lesions, 

NFTs and Aβ plaques. Although NFTs have been shown to play an important role in the 

overall AD pathology, Aβ is likely more heavily involved in the degeneration process. 

 Aβ plaques in AD brains have been found surrounded by activated microglial 

cells (McGeer et al., 1987; Heneka and O'Banion, 2007). Activation of the microglia 

likely represent an immune response mounted by the CNS as microglia serve as the 

macrophages of the brain (Davoust et al., 2008). Their primary responsibilities in the 

immune pathway are to phagocytose invading pathogens (Bauer et al., 1994) and to re-

cruit further assistance through the production of proinflammatory cytokines (Banati et 

al., 1993). 

 It is known that a population of microglia reside in the brain and help maintain 

homeostatic activity in the absence of a threat to the CNS. However, recent in vitro 

(Fiala et al., 1998) and in vivo (Eglitis and Mezey, 1997; Asheuer et al., 2004; Simard 

and Rivest, 2004; Simard et al., 2006) studies have suggested the possibility that bone 

marrow derived monocytic cells can be recruited from outside of the CNS, cross the 
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BBB and eventually differentiate into non-resident microglial cells to aid in the defense 

against CNS insult. There is still considerable debate among the immunological commu-

nity as to the significance of these studies (Carson et al., 2007). 

 Although the discussion is ongoing, Aβ has been implicated in recruiting cells of 

monocytic lineage to sites of the peptide accumulation (Wegiel et al., 2004; Simard et 

al., 2006; El Khoury et al., 2007). It has been shown to play roles in various steps of the 

overall recruitment process such as monocyte migration (Giri et al., 2000; Le et al., 

2001), adhesion (Yan et al., 1996) and the differentiation of monocytes into macro-

phages (Fiala et al., 1998). 

 Aβ is known to cause a wide array of cellular responses that are each dependent 

upon the aggregation state of the peptide to induce activity. Studies of the Aβ aggrega-

tion pathway have indicated many distinct species that exist between monomer and fi-

bril structures (Harper et al., 1997; Walsh et al., 1997; Harper et al., 1999; Walsh et al., 

1999; Stine et al., 2003). Aβ plaques found in vivo have also been shown to exhibit 

some polymorphism with respect to the aggregation intermediates present (Selkoe, 

2004b, 2004a). Analysis of these Aβ species reveal that they each have unique proper-

ties with respect to toxicity and other biological activities (Pike et al., 1991; Lorenzo 

and Yankner, 1994; Dahlgren et al., 2002; Walsh et al., 2002; Deshpande et al., 2006). 

 The relationship between Aβ aggregation state and its role in monocyte recruit-

ment is unclear. Here we present evidence that Aβ can induce adherence in monocytic 

cells through the FPRL1 receptor. Although we have previously shown that Aβ can in-

duce adherence in these cells very rapidly (Udan et al., 2007), in this study we provide 

evidence that a rapidly formed oligomeric Aβ species is responsible for this activity. 
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3.2 Results 

 

 

 

3.2.1 Development of Maturation Model System 

 

 

 

 In an effort to develop a better understanding of the monocyte recruitment and 

differentiation process we chose to model the process using cultured THP-1 monocytes, 

human leukocytes derived from a leukemia patient. The cells express monocyte markers 

and are typically non-adherent and possess a round morphology (Tsuchiya et al., 1980). 

These cells are well studied and have previously been used to model the differentiation 

process (Auwerx, 1991) in addition to modeling the role of macrophages in various in-

flammatory diseases (Sakamoto et al., 2001; Kramer and Wray, 2002; Ueki et al., 2002; 

Hjort et al., 2003). There are several known markers of differentiation including phago-

cytosis (Schwende et al., 1996), upregulation of various receptors (Chomarat et al., 

2000; Dzionek et al., 2000; Hayden et al., 2002; Chomarat et al., 2003), arrest of prolif-

eration (Schwende et al., 1996) and the change from a non-adherent to an adherent phe-

notype (Ding et al., 2007). The easiest measure for the transformation of monocytes is 

the induction of adherence in the cells, so it is the primary method we used to monitor 

the differentiation of the cells. 

 To properly study the effect that Aβ treatments would have on the monocytes, 

we needed a control compound to use for comparison. Many studies have been per-

formed involving THP-1 differentiation, which utilized a wide variety of differentiating 

compounds, so we chose to test many of them. 
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 LPS is a component of the outer membrane of Gram-negative bacteria that is 

known to activate the innate immune response through its interaction with CD14 and 

toll-like receptor 4 (TLR4) (Boehme and Compton, 2004). It has also been shown to in-

duce adherence in THP-1 cells (Hmama et al., 1999). We treated the THP-1 cells with 

0.01, 0.1 or 10 ng/mL LPS for 6 hours, a time that we have previously shown induces 

pro-inflammatory cytokines through the innate immune system (Udan et al., 2007). In 

these experiments, we were able to elicit 4.58 ± 2.03%, 16.80 ± 5.24% and 5.41 ± 

0.93% from the three respective treatment concentrations (Fig. 3.1A). This result was 

not strong enough to allow LPS to serve as a control for further studies. 

 We next tested 1α,25-dihydroxycholecalciferol (Vitamin D3) as a potential con-

trol differentiating agent. Vitamin D3 has been published to induce adherence in periph-

eral blood monocytes (PBMC) (Remer et al., 2006) and lead to the arrest of proliferation 

as well as an upregulation of phagocytosis in THP-1 monocytes (Schwende et al., 1996). 

In our studies, we treated the THP-1 cells with 0.1 μg/ml Vitamin D3, 0.02% ethanol, or 

water for 6 hours and then analyzed the adherence as described in the methods. Our data 

showed 6.28 ± 1.14 %, 9.84 ± 4.34% and 7.95 ± 2.03% adherence for Vitamin D3 and 

the ethanol and water controls, respectively (Fig. 3.1B). Because we saw no significant 

adherence following Vitamin D3 treatment, we were unable to use it as a control. 

 We next tested Pam3CSK4 for its ability to induce adherence in the THP-1 

monocytes. Pam3CSK4 is a synthetic triacylated lipopeptide that is known to activate the 

innate immune response through TLR2 (Udan et al., 2007) and lead to activation of the 

NF-κB pathway (Akira et al., 2001). We tested the ability of Pam3CSK4 to induce adher-

ence at concentrations ranging from 0 – 100 ng/ml. None of the concentrations tested 
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Fig. 3.1 LPS, Vitamin D3 and Pam3CSK4 induce no significant adherence in monocytes 
THP-1 monocytes were incubated at 37°C for 6 hours with the concentrations of effectors indi-
cated. Following the incubation time, percent adherence was determined as described in the 
Methods. A) LPS induced adherence where water served as the 0 ng/mL control in the experi-
ments. Error bars are standard error for n= 7 (0 ng/mL), 2 (0.01 ng/mL), 2 (0.1 ng/mL) and 5 (10 

ng/mL). B) Vitamin D3 induced adherence where 0.02% ethanol was the 0 g/ml control and a 
matching water control was also performed. Error bars are standard error for n= 3 (water, etha-

nol) and 4 (0.1 g/ml Vitamin D3) C) Pam3CSK4 induced adherence where water was the 0 ng/
ml control. Error bars are standard error for n= 2 (0.001, 0.01, 0.1, 10 and 100 ng/ml Pam3CSK4) 
and 6 (0 and 1 Pam3CSK4). 
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were able to cause the THP-1 cells to adhere to the plate (Fig. 3.1C), therefore 

Pam3CSK4 was discarded as a positive control. 

 Our final potential control agent was PMA, which has been shown to differenti-

ate THP-1 cells into macrophages (Tsuchiya et al., 1982; Schwende et al., 1996). It has 

recently been shown that using a treatment concentration of 5-10 ng/ml PMA is effec-

tive at inducing differentiation without the aberrant upregulation of genes (Park et al., 

2007), therefore we chose the final treatment concentration of 10 ng/ml PMA for our 

experiments. In our control experiments, PMA was able to induce 55.97± 3.85, 87.80 ± 

2.96 and 86.09 ± 3.26% adherence following 6, 24 and 48 hour incubations, respectively 

(Fig. 3.2). The early induction of adherence by the PMA allows it to serve as a control 

even at short incubation times. 

 With our positive control in place, we were ready to test the Aβ for its ability to 

affect the maturation process of the THP-1 cells. We had previously shown that a 6 hour 

incubation with Aβ(1-42) led to the activation of the innate immune response in THP-1 

cells(Udan et al., 2007), so we chose a 6 hour incubation time for our adherence studies 

as well. When Aβ(1-42) was freshly reconstituted in water, it induced 41.85 ± 4.14% 

adherence, which was nearly identical to the 43.11 ± 3.65% induced by the PMA treated 

cells. Both values showed statistical significance when compared to water controls (Fig. 

3.3). 

 

 

3.2.2 Determination of the Active Aβ Aggregate Species 

 

 

 

 Because of the large degree of polymorphism seen in the neuritic plaques of AD 
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Fig. 3.2 PMA potently induces adherence following short and long incubation times 
THP-1 cells were prepared in assay medium and plated into a 48-well plate. The cells were 
treated with either 0.005% DMSO (black bars) or 10 ng/ml PMA (grey bars) and incubated at 
37°C for either 6, 24 or 48 hours. Following the incubation, the percent of cells adhering to the 
well was determined as described in the methods. Statistical significance of <0.0005 is denoted 
by * and determined for n= 3 (DMSO) or 4 (PMA). 
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Fig. 3.3 Effect of Aβ(1-42) and PMA on THP-1 monocyte adherence.  
THP-1 monocytes were treated with 10 ng/ml PMA or 15 µM Aβ(1-42) from a freshly reconsti-

tuted 100 μM water solution and incubated for 6 hours at 37°C. Percent adherence was deter-
mined by direct cell counting as described in the methods. Standard error bars were calcu-
lated from n=17 trials for PMA and n=22 trials for Aβ(1-42). Water (n=15) controls induced 5 ± 
1% adherence.  
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brains (Selkoe, 2004a), we were interested in determining which Aβ species was respon-

sible for inducing the adherence in the monocytes. To this end, we reconstituted Aβ(1-

42) in water and either treated the cells immediately or allowed the Aβ to aggregate at 

4°C before the cell treatment. We then determined the amount of adherence induced at 

the various stages of aggregation. Our data indicates that Aβ(1-42) is most potent at in-

ducing adherence when it is freshly reconstituted, but as it is allowed to aggregate, the 

effect eventually disappears (Fig. 3.4A). AFM images taken at correlating times of Aβ(1

-42) aggregation show that at 0  and 48 hours of aggregation (Fig. 3.4B and Fig. 3.4C, 

respectively), the predominant species are small, globular structures. By 96 hours of ag-

gregation, Aβ(1-42) has lost nearly all ability to induce adherence, and the AFM shows 

the presence of long fibrilar structures (Fig. 3.4D). Because our data suggested that fibril 

formation was inversely correlated with Aβ(1-42) activity, we used freshly reconstituted 

Aβ for the remainder of our experiments unless otherwise indicated. 

 In order to confirm that treatment of the cells with Aβ did not induce toxicity, we 

applied the XTT cell viability assay. Following incubation of the cells with Aβ, the cells 

were treated with the XTT/PMS solution as described in the Methods. The samples were 

incubated for 3 hours and the amount of XTT reduced was measured by absorbance 

(Fig. 3.5). Although the freshly reconstituted Aβ induced the highest amount of adher-

ence, it was not the most toxic species. The 48 and 96 hour aggregated Aβ were the 

most toxic species with only about 60% cell viability. Samples treated with later Aβ ag-

gregation species showed no toxicity. 

 In an effort to ensure that we were using the best concentration of Aβ to achieve 

our results, we tested the effect of Aβ(1-42) treatment concentration on its ability to in-
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Fig. 3.4 Early A(1-42) aggregates induce monocyte adherence.  

A(1-42) was reconstituted in sterile water to 100 M and incubated at 4°

C. A) At the given times, cells were treated with 15 M A for 6 hours and 
adherence was measured by direct counting as described in the Methods. 
Error bars represent standard error for n trials of 19 (0 h), 17 (48 h), 4 (72 
h), 5 (96 h), 7 (120 h), 3 (144 h), and 7 (216 h). B-E) Representative AFM 

images of A(1-42) aggregation at 4°C taken at 0, 48, 96 and 216 hours, 

respectively. Images are 5 m x 5 m and taken as described in Methods. 
Images are courtesy of Deepa Ajit.  
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Fig. 3.5 Effect of A(1-42) aggregation state on induced toxicity in THP-1 monocytes 

A(1-42) was reconstituted in sterile water to 100 M and incubated at 4°C. At the given 

times, cells were treated with 15 M A for 6 hours and toxicity was measured by XTT of 
solution cells as described in the Methods. The data was corrected to percent of control sur-
vival. Error bars represent standard error for 3 trials. 
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duce adherence in the THP-1 monocytes. We treated the cells with 0, 5, 10 and 15 μM 

Aβ(1-42) that was freshly reconstituted in water (Fig. 3.6). Our data shows that 15 μM 

Aβ(1-42) induces the most adherence of the concentrations tested, validating it as our 

standard treatment concentration. We did not test higher concentrations of Aβ because 

the large volumes of water required could cause the cells to become distressed and mask 

the true effect of the treatment. 

 Once we confirmed our treatment concentration, we wanted to further under-

stand which Aβ aggregation species was responsible for the activity. Because we saw 

the greatest amount of adherence at early time points, we hypothesized that monomeric 

Aβ may be the potent species. Since Aβ(1-40) is known to remain monomer for longer 

than Aβ(1-42) (Walsh et al., 1997), we treated the cells with Aβ(1-40) that had been ag-

gregated at 4°C and then analyzed the adherence. We saw no significant adherence from 

the Aβ(1-40) treated cells throughout the time course of treatment (Fig. 3.7A), which 

suggested that monomer was not the active species, but led us to the idea that perhaps an 

early formed oligomeric species was active. 

 We again tested this theory with the Aβ(1-40) which we allowed to aggregate at 

25° or 37°C to help speed the aggregation process. The experiment again showed no 

significant adherence. The Aβ(1-42) controls in the two experiments confirm the cells 

are responsive to stimuli (Fig. 3.7A). Because of these results, we formed two potential 

theories. First, monomer could still be the active species, but the recognition and activity 

could be dependent on the two terminal amino acids present in Aβ(1-42) but missing in 

Aβ(1-40). The other possibility was that because Aβ(1-40) aggregates through a differ-

ent pathway than Aβ(1-42) (Bitan et al., 2003), the Aβ(1-40) may not form the active 
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Fig. 3.6 Effect of final A(1-42) treatment concentration on monocyte adherence  

Freshly reconstituted 100 M A(1-42) in water was added to THP-1 monocytes in different 

volumes to produce different final A concentrations. All treatments maintained the same 
cell count and volume of sterile water from well to well. The treated cells were incubated at 

37°C for 6 hours and the percent of cells adhering was determined by direct counting. Sta-

tistical differences from the water control (0 M A) are as follows: * p<0.05, ** p<0.01, 
***p<0.005. 

[A(1-42)] (M)

0 5 10 15

P
e
rc

e
n
t 
A

d
h
e
re

n
c
e

0

20

40

60

80

100

* 

** 

*** 



Crouse, Nikkilina, 2009, UMSL 92 

A Aggregation Age (hrs)

0 50 100 150 200

P
e
rc

e
n
t 
A

d
h
e
re

n
c
e

0

20

40

60

80

100

A(1-42), 4
o
C

A(1-40), 4
o
C

A(1-40), 25
o
C

A(1-40), 37
o
C

D E 

C B 

Fig. 3.7 A(1-40) aggregated at different temperatures does not induce THP-1 adherence  

A(1-40) was reconstituted in sterile water to 100 M and incubated at 4, 25 or 37°C. A) At the 

given times, cells were treated with 15 M A(1-40) or A(1-42) for 6 hours and adherence was 
measured by direct counting as described in the Methods. Error bars represent standard error 

for n trials of 3. B) Representative AFM image of A(1-40) aggregation taken at 0 hours. C-E) 

Representative AFM images of Ab(1-40) aggregation taken at 96 hours and 4, 25 or 37°C, re-

spectively. Images are 5 m x 5 m. Images are courtesy of Deepa Ajit.  
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aggregate species. 

 In an effort to answer these two possibilities, we obtained Aβ(1-42) L34P, which 

has been shown to have restricted aggregation and instable fibrils (Williams et al., 

2004). Because the mutant peptide will aggregate slowly, it provides a sample which 

should maintain a monomeric morphology while providing the two terminal amino ac-

ids lacking in Aβ(1-40). Treatment of the cells with Aβ(1-42) L34P aggregated at 4°C 

produced no significant adherence (Fig. 3.8A). Aggregating the peptide at 25°C or 37°C 

also produced no adherence (data not shown). AFM images confirm that the Aβ(1-40) 

and Aβ(1-42) L34P peptides do not aggregate to form significant fibrils even after 168 

hours of aggregation at 4ºC (Fig. 3.8C). Taken together, this data suggests that an early 

formed aggregate species that is unable to form in restricted aggregation Aβ peptides is 

responsible for inducing adherence in the THP-1 monocytes. 

 In order to confirm our hypothesis that an early formed, non-monomeric Aβ(1-

42) oligomeric species was responsible for inducing adherence in the THP-1 monocytes, 

we chose to manipulate the aggregation conditions. It is known that Aβ aggregates in a 

nucleation-dependent manner during which a lag phase precedes the elongation stage 

(Jarrett and Lansbury, 1993). Increasing the concentration of Aβ can decrease this lag 

phase and lead to more rapid aggregation. We prepared two Aβ(1-42) aggregation solu-

tions, one at 50 μM and the other at 100 μM with the belief that a lower aggregation 

concentration would lead to a higher monomer:oligomer ratio than in the higher concen-

tration due to its slower aggregation process. We then proceeded to treat the THP-1 cells 

with different volumes of the peptides to produce a final treatment concentration of 15 

μM. If the monomer is the active Aβ species, we expected to see similar amounts of ad-
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Fig. 3.8 A(1-42) L34P does not induce THP-1 monocyte adherence  

A(1-42) L34P was reconstituted in sterile water to 100 M and incubated at 4°C. A) At the 

given times, cells were treated with 15 M A L34P or 10 ng/ml PMA for 6 hours and adher-
ence was measured by direct counting as described in the Methods. Error bars represent 

standard error for n trials of 5 for A(1-42) L34P and 1 for PMA. B,C) Representative AFM 

images of A(1-42) L34P aggregation at 4°C taken at 0 and 168 hours, respectively. Images 

are 5 m x 5 m and taken as described in Methods. Images are courtesy of Deepa Ajit.  
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herence induced following treatment of the cells with freshly reconstituted Aβ(1-42), 

despite the varying aggregation concentrations. 

 We treated the THP-1 cells with 15 μM of either 50 or 100 μM Aβ(1-42) at 0, 24 

or 48 hours of Aβ aggregation. Freshly reconstituted 100 μM Aβ(1-42) induced 58.24 ± 

3.63% adherence while the 50 μM Aβ(1-42) only induced 16.32 ± 4.40%. Both samples 

showed decreases in the amount of adherence induced as the aggregation increased (Fig. 

3.9). Because the monomer:oligomer ratio was higher in the 50 μM Aβ sample yet it 

induced less adherence, we concluded that monomer is not the Aβ species responsible 

for inducing adherence in THP-1 monocytes. 

 Many researchers have published protocols for forming soluble intermediates on 

the Aβ aggregation pathway, including oligomers (Walsh et al., 1997; Lambert et al., 

1998; Kayed et al., 2003; Lesne et al., 2006). In order to strengthen our conclusion that 

an oligomer is responsible for the transformation of cells, we tested one of these types of 

oligomers known as A derived diffusible ligands (ADDLs). Part of the preparation pro-

tocol for the ADDLs involves a centrifugation step (see Methods), thus we tested the Aβ 

before and after centrifugation. The samples are termed Total and ADDLs, respectively. 

The Total sample induced 5.08 ± 1.93% adherence while the ADDLs induced 4.79 ± 

2.53% adherence (Fig. 3.10). These results implicate a very specific Aβ(1-42) oligomer, 

which is not found in the ADDLs preparation, in the transformation of monocytes into 

adherent cells. 

 

 

 

3.2.3 Investigation of Potential Maturation Receptor Pathways 
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Fig. 3.9 Lowering A aggregation concentration decreases monocyte adherence.  

Lyophilized A(1-42) was reconstituted in sterile water to either 100 M or 50 M and ag-

gregated at 4°C. At the times indicated, THP-1 cells were treated with 15 M of either solu-

tion for 6 hours at 37°C. The percent adherence was determined as described in the Meth-

ods. SE was determined for n trials of 3 (0 hours) and 2 (24 hours and 48 hours, 50 M). 

Only 1 trial was done for 100 M at 48 hours. Water-induced adherence controls (2.8 ± 0.4 

%) were subtracted from final percent adherence presented. Differences between 100 M 

and 50 M treatments were significant at 0 (* p<0.0005) and 24 hours (** p<0.005) of aggre-
gation. 
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Fig. 3.10 ADDLs do not induce significant adherence in THP-1 monocytes 
ADDLs were prepared as described in the Methods. Cells were treated with either the total 
aggregation mixture prior to centrifugation (Pre-spun) or ADDLs at a final concentration of 
15 μM Aβ(1-42). A 10 ng/mL PMA control was also included. Adherence is the average ± 
SE for n=2 trials for PMA and n=4 trials for Total and ADDLs over two separate experi-
ments. 
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 Once we determined that an oligomeric Aβ(1-42) species was able to potently 

induce adherence in THP-1 monocytes, we were interested in exploring the receptors 

involved in this process. Our lab has previously shown that Aβ can use toll-like recep-

tors 2 and -4 to induce a pro-inflammatory response in THP-1 monocytes (Udan et al., 

2007). We first chose to investigate the role of these receptors in the Aβ induced adher-

ence process of THP-1 cells. 

 The THP-1 cells were prepared in assay medium. The control cells were pre-

treated for 1 hour with PBS, and the sample cells were pre-treated with anti-TLR2 anti-

bodies, anti-TLR4 antibodies or an IgG isotype control. Following the pre-incubation, 

freshly reconstituted Aβ(1-42) was added to the cells and they were again incubated for 

6 hours. After the incubation, the adherence was analyzed and the TNFα production was 

measured. Blocking either TLR receptor resulted in no significant change in the adher-

ence induced by Aβ (Fig. 3.11A). However, the analysis of the TNFα production was 

similar to our previously reported data (Udan et al., 2007) and confirmed the efficacy of 

the antibody neutralization of TLR2 and TLR4 (Fig. 3.11B). 

 The next mechanistic pathway we investigated was the NF-κB dependent path-

way known to be utilized by PMA. It has been previously shown that PMA induced dif-

ferentiation in HL-60 peripheral blood leukocytes (Eck et al., 1993) and K562 mono-

cytic/megakaryotic cells (Kang et al., 1996) is NF-κB dependent. We pre-treated the 

THP-1 cells with either water or 100 μM PDTC for 1 hour at 37°C (Kang et al., 1996) 

before adding either PMA or Aβ(1-42) for 6 hours. Following the incubation, adherent 

cells were counted and percent adherence calculated. PMA was only able to induce in 
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Fig. 3.11 A induced adherence does not require TLR2 or TLR4 
THP-1 cells were prepared in assay medium and pre-incubated for 1 
hour with anti-TLR2 or anti-TLR4 antibodies, an IgG isotype control or 

PBS. Following incubation, the cells were incubated with A(1-42) for 6 

hours at 37°C. The A induced adherence (A) and TNF production (B) 
were determined as described in the Methods. The data is from one 
experiment. SE values in figure B are from three separate ELISA meas-
urements. 
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the PDTC pre-treated cells 35.40 ± 5.00% of the adherence induced in water treated 

controls, verifying the NF-κB pathway as important in PMA induced adherence. How-

ever, when compared to the water treated control, Aβ was able to induce 101.46 ± 

5.74% of the control adherence in the PDTC treated cells (Fig. 3.12). This result clearly 

shows that Aβ does not utilize the NF-κB dependent mechanism that PMA uses to in-

duce adherence in the cells. 

 Aβ has previously been shown to utilize the G-protein coupled receptor FPRL1 

for chemotaxis, with lower order Aβ aggregates being the most effect species (Le et al., 

2001). Because of this, we next analyzed FPRL1 for its role in THP-1 adherence. We 

pre-treated the cells with either a water control or 30 μM WRW4, a known antagonist to 

FPRL1 (Bae et al., 2004; Kam et al., 2007), for 15 minutes before treatment with PMA 

or Aβ(1-42). Following the 6 hour incubation, the adherent cells were counted and the 

percent adherence was determined. When compared with the water treated control, Aβ 

was only able to induce 3.30 ± 1.91% of the control adherence in the cells. The PMA 

induced adherence was also affected, but not as dramatically as with PDTC pre-

treatment. PMA was able to induce 58.29 ± 8.59% of the control adherence in the 

WRW4 pre-treated cells (Fig. 3.13). These data indicate that FPRL1 is the receptor that 

mediates Aβ(1-42) induced THP-1 adherence independent of the NF-κB pathway. 

 

 

3.2.4 Indirect measurements for determining adherence 

 

 

 

 In addition to the use of the counting based adherence assay, we developed other 

methods to analyze the adherence induced in the THP-1 cells. Although these methods 
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Fig. 3.12 A(1-42) does not induce adherence through an NF-B dependent pathway 
THP-1 monocytes were incubated for 6 hrs with 15 µM Aβ(1-42) or 10 ng/ml PMA following 
a 1 hour pre-incubation with 100 μM PDTC or water control. Percent adherence was deter-
mined by direct counting of adherent cells. Data are the average of 5 and 4 separate ex-
periments for Aβ(1-42) and PMA respectively. * p <0.0005 
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Fig. 3.13 A(1-42) does induce adherence through an FPRL1 dependent pathway 

THP-1 monocytes were incubated 6 hours with 15M A(1-42) or 10 ng/mL PMA following 

a 15 minute pre-incubation with 0.33 g/mL WRW4. % Differentiation was determined by 
direct counting of adherent cells. Data are the average of 6 and 5 separate experiments 

for A and PMA respectively. * p <0.005, ** p <0.025 
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are not as quantitative as the direct counting method, they did provide useful trending 

information. This section will include a brief description of the methods as well as some 

of the data obtained through their use. 

 We have previously described the use of the XTT assay for analysis of cellular 

metabolism and toxicity. We also applied the assay towards determining cellular adher-

ence. To confirm that the XTT assay is capable of distinguishing cell numbers, we 

plated various concentrations of cells into the wells of a 48-well plate and treated them 

with 0.33 mg/ml XTT / 8.3 μM PMS. The cells were incubated at 37ºC for four hours. 

Every hour aliquots of the solution were removed and the absorbance of the reduced 

XTT was measured (Fig. 3.14A). 

 The data clearly show that as the cell count is increased, the amount of XTT re-

duced is increase. All samples show a linear curve as more XTT is reduced over time. 

When the XTT reduction values at three hours of incubation from figure 3.14A are plot-

ted versus cell count, a linear correlation is formed with an R2 value of 0.9997 (Fig. 

3.14B). Taken together, the data suggest that the XTT assay may be a valuable qualita-

tive tool for determining the number of cells adhering following effector treatment. 

 We next tested the ability of the XTT assay to measure cell adherence in PMA 

treated cells. We treated the THP-1 monocytes with varying concentrations of PMA and 

incubated them for 24 hours at 37ºC. At the end of the incubation the medium contain-

ing non-adherent cells was moved to a fresh well. Both the adherent and non-adherent 

cells were assayed with XTT as described in the methods (Fig. 3.15A). As amount of 

XTT reduced by the cells in the medium decreased, the amount reduced by the cells in 

the well increased. Together the data suggests that the cells at higher concentrations of 
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Fig. 3.14 XTT reduction correlates well with cell counts 
A) Varying numbers of THP-1 cells were prepared and plated into the wells of 
a 48-well plate. The cells were treated with XTT and the absorbance at 467 
nm was measured every hour for four hours. B) Data from the three hour ab-
sorbance reading in A was plotted versus the number of cells in the well. The 
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PMA are present in the well, but not the medium. To confirm this result, we counted the 

number of adherent cells in each treatment and determined the percent adherence (Fig. 

3.15B). 

 The plot of percent adherence versus PMA treatment concentration is very simi-

lar to the XTT derived results with one exception. In figure 3.15A, the 2 ng/ml PMA 

treatment appears to induce some adherence in the cells, but direct counting indicated 

that is not the case. Because there is no wash step between treatment and XTT analysis, 

it is possible that there are some loosely adherent cells which would have been dis-

lodged. Despite this small inconsistency, the XTT appears to provide useful information 

regarding cell adherence. A decrease in XTT reduction in the medium of treated sam-

ples indicates a loss of cells from the medium and therefore an increase in adherence. 

 In an effort to confirm some of our earlier findings with regards to Aβ induced 

adherence, we repeated some experiments using the XTT analysis. To confirm our ag-

gregation age findings, we treated the monocytes with 15 μM Aβ(1-42) at various ages 

of aggregation for six hours. We the moved the medium to a fresh well and treated it 

with XTT solution to determine the amount of reduction from the non-adherent cells. In 

order to combine the data from multiple experiments, the amount of XTT reduced by 

Aβ treated cells in each experiment was corrected to the amount reduced relative to the 

amount of XTT reduced by the control cells for the experiment (Fig. 3.16). The data 

shows that there is less reduction by the medium in samples treated with early Aβ aggre-

gation states which suggests that more cells remain in the well while later stage treat-

ments have more cells. The trend is consistent with the data presented in Fig. 3.5, which 

shows that the highest amount of adherence is induced by freshly prepared Aβ(1-42). If 
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Fig. 3.15 PMA induced adherence can be studied with multiple methods 
THP-1 cells were treated with 0, 1.67, 3.33, 5, 6.67 or 10 ng/ml PMA and 
incubated for 24 hours at 37°C. A) Non-adherent cells were moved to a new 
well. Adherent and non-adherent cells were treated with 0.33 mg/ml XTT/ 8.3 

M PMS for 3 hours. Absorbance of the samples was read at 467 nm. B) 
After XTT analysis, adherent cells were removed from the well with trypsin 
and counted. The adherent cells were corrected to percent adherence as 
described in the Methods. 
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Fig. 3.16 A induced adherence by XTT is similar to data from direct counting  

A(1-42) was reconstituted in sterile water to 100 M and incubated at 4°C. At the given 

times, cells were treated with 15 M A for 6 hours. Following the treatment, non-adherent 
cells were moved to a new well and analyzed with XTT as described in the Methods. At 

each time point, the absorbance of A treated cells was divided by the absorbance of water 
treated control cells and corrected to a percentage. Error bars represent standard error for 
n = 2 (0, 120 hrs), 3 (168 hrs), 4 (96 hrs) and 5 (48 hrs). 



Crouse, Nikkilina, 2009, UMSL 108 

the raw percentages in figure 3.16 are considered, they suggest about 60, 65, 30, 30 and 

15% adherence induced at 0, 48, 96, 120 and 168 hours of Aβ aggregation respectively. 

These numbers are higher than those determined by direct counting, but is likely due to 

the lack of a washing step before the cells were analyzed. 

 We also retested out Aβ(1-42) treatment concentration dependence using the 

XTT analysis. The cells were treated with different volumes of 100 μM Aβ(1-42) that 

was aggregated for 48 hours. Following a six hour incubation, the medium containing 

the non-adherent cells was analyzed by XTT (Fig. 3.17). As we previously found in fig-

ure 3.6, 15 μM Aβ(1-42) induced the highest amount of adherence as evidenced by a 

loss of non-adherent cells in the medium. The 7.5 μM Aβ treatment induced slightly less 

adherence, but was similar to the amount induced by the 15 μM treatment. This result is 

not unexpected since both 10 and 5 μM treatments induced some adherence in figure 

3.6. When we performed this experiment with the direct counting assay, we did not test 

concentrations lower than 5 μM, but the results in 3.17 suggest that they would not in-

duce adherence. 

 Our final experiment with the XTT methodology was the effect of Aβ aggrega-

tion concentration. In figure 3.9 we tested 100 μM and 1 mM Aβ(1-42) aggregation con-

centrations for their ability to induce adherence and analyzed the results by direct count-

ing. Here we tested 100 μM and 1.2 mM Aβ(1-42) that was aged 48 hours and analyzed 

the results by XTT (Fig. 3.18). The results are in agreement with those shown in figure 

3.9. Aβ that aggregates at a lower concentration maintains the ability to induce adher-

ence while Aβ at higher concentrations does not. This result further confirms our earlier 

conclusion that an early-formed Aβ(1-42) oligomer is able to induce adherence in THP-
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Fig. 3.17 Concentration dependence of A(1-42) induced adherence measured by XTT 

48 hour aggregated 100 M A(1-42) in water was added to THP-1 monocytes in different 

volumes to produce different final A concentrations. All treatments maintained the same 
cell count and volume of sterile water from well to well. The treated cells were incubated at 

37°C for 6 hours and the XTT reduction of the non-adherent cells was measured. 
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Fig. 3.18 Increasing A aggregation concentration decreases monocyte adherence.  

Lyophilized A(1-42) was reconstituted in sterile water to either 100 M or 1.2 mM and 

aggregated at 4°C for 48 hours. THP-1 cells were treated with 15 M of either solution for 

6 hours at 37°C. The XTT reduction by the non-adherent cells was measured as described 
in the Methods. 
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1 monocytes. 

 Aside from the absorbance based XTT assay, we have developed a fluorescence 

based assay to analyze adherence. Calcein AM is a non-fluorescent compound that can 

be taken up by living cells. Once internalized, esterase activity cleaves the ester groups 

from the calcein rendering the compound fluorescent (Papadopoulos et al., 1994). Al-

though generally used to measure cell viability, we have adapted it to serve as an indica-

tor of adherence. 

 We incubated THP-1 cells with 10 μM calcein AM for 30 minutes before prepar-

ing the cells in assay medium. The cells were plated and treated with 10 ng/ml PMA for 

6 hours before the medium was removed and the adherent cells washed with PBS. The 

fluorescence of the wells was then measured before the cells were removed and counted 

(Fig. 3.19). A plot of calcein fluorescence versus cell count reveals a linear correlation 

with an R2 value of 0.9985. This method of pre-labeling cells with calcein appears to be 

an effective measure of adherence following short incubations. 

 In order to utilize the calcein methodology for longer incubations we made a 

slight modification to the protocol. Instead of incubating the cells with the calcein AM 

before effector treatment, we induced adherence by exposing varying numbers of cells 

to 10 ng/ml PMA for 24 hours. We then removed the medium and washed the adherent 

cells with PBS before incubating the adherent cells with 10 μM calcein AM for 30 min-

utes. The fluorescence of each well was measured before the cells were removed from 

the wells and counted (Fig. 3.20). 

 The fluorescence of the adherent cells clearly shows the most adherent cells in 

the PMA treated well that had the highest plated cell count and the lowest fluorescence 
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Fig. 3.19 Calcein fluorescence can be used to measure cell adherence induced by PMA 

Varying numbers of THP-1 cells were pre-incubated with 10 M calcein AM for 30 minutes at 
37°C before being prepared in assay medium and treated with 10 ng/ml PMA for 6 hours. Fol-
lowing the treatment, the non-adherent cells were removed, the adherent cells were washed 
with PBS and the fluorescence of the calcein measured. The equation of the line and the R

2
 

value were calculated in SigmaPlot. 
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in the water treated well (Fig. 3.20A). The number of adherent cells counted in each 

well shows a similar trend (Fig. 3.20B). When the data from 3.19A,B were normalized 

based upon the well with the most adherence, the two sets of data are very similar (Fig. 

3.20C). The number of adherent cells determined by both counts and fluorescence are in 

close agreement across all treatments. We have not applied the calcein assay to Aβ treat-

ments. 

 

3.3 Discussion 

 

 

 

 The process of transforming monocytes into macrophages may play an important 

role in AD and other neurodegenerative disorders. Our work shows that Aβ(1-42) is able 

to induce this transformation in THP-1 monocytes based upon the change into an adher-

ent morphology from a suspension cell type. The data presented here shows that a spe-

cific Aβ(1-42) oligomeric species is responsible for the transformation, which has spe-

cific implications in the AD model. It is well-known that Aβ(1-42) is the main compo-

nent of the various plaques found in the brains of AD patients (Gravina et al., 1995; 

Selkoe, 2001a, 2001b). Aβ aggregates into a variety of species from monomer to large 

fibrillar structures, and the Aβ deposits found in the parenchyma of the brain have been 

shown to be a continuum of structures rather than a single, distinct aggregate species 

(Selkoe, 2004b). 

 It has been reported that Aβ accumulation in the brain can lead to the infiltration 

of monocyte/macrophages that are derived from the peripheral blood cells. Studies in 

mouse models have shown that there is a large increase in blood-derived microglia into 
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Fig. 3.20 Calcein fluores-
cence correlates with di-
rect counting 
THP-1 cells were prepared 
in assay medium and 
76160, 38080, 19040 or 
9520 cells were plated into 
the wells of a sterile 48-well 
plate. The cells were 
treated with 10 ng/ml of 
PMA or a water control for 
six hours as indicated in the 
legends. A) Following the 
incubation, the non-
adherent cells were re-
moved and the wells were 
washed with PBS. The ad-
herent cells were treated 

with 10 M calcein AM for 
30 minutes before the fluo-
rescence was read. B) Fol-
lowing fluorescent analysis, 
the adherent cells were 
trypsinized and counted as 
described in the Methods. 
C) Data from panels A and 
B were divided by the corre-
sponding result for 76160 
cells treated with PMA and 
multiplied by 100 to obtain a 
percentage. 
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the area of Aβ plaques (Simard et al., 2006). The study also showed that the infiltrating 

cells were more competent at phagocytosis of the Aβ than the resident microglia 

(Simard et al., 2006). However, as discussed at length by Carson and colleagues (Carson 

et al., 2007), the bone marrow chimera technique used to understand this process may 

itself cause the infiltration of the peripheral cells in a non-specific manner. However, the 

results were later confirmed by determining the unique immunoreactivity profiles of 

resident and recruited microglia and then analyzing the cells present in APP transgenic 

and normal mice. The study indicated that the mice expressing APP showed a marked 

increase in the recruited microglia compared to the wild type mice (El Khoury et al., 

2007). 

 Despite the data suggesting the recruitment of non-resident cells into the CNS, it 

is yet unclear when the transformation from monocyte to macrophage occurs. Although 

it has been previously seen that Aβ can differentiate human monocytes (Fiala et al., 

1998), our data suggests that an oligomeric form of Aβ(1-42) that is formed very early 

in the aggregation pathway can initiate the transformation process. Figure 3.3 shows that 

following a 6 hour incubation, freshly reconstituted Aβ(1-42) can induce  a nearly iden-

tical amount of adherence as the well known differentiating agent PMA. As the Aβ(1-

42) is allowed to aggregate, the dominant structure seen in the AFM images moves from 

a small globular species into long fibrils (Fig. 3.4 B-E). A dramatic loss in the ability to 

induce adherence was seen when the Aβ(1-42) was aggregated for 96 hours, which cor-

relates with the presence of a large number of fibril structures (Fig 3.4). 

 We did not see any significant adherence induced by the Aβ(1-40) (Fig. 3.7 A), 

which was not completely unexpected since Bitan et al showed that Aβ(1-40) and Aβ(1-
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42) aggregate via distinct pathways (Bitan et al., 2003). Increasing the aggregation tem-

perature for the Aβ(1-40) did not lead to the progression to fibrils, but it also did not in-

duce adherence, which suggests that the active oligomeric species is off-path for the Aβ

(1-40). Also of interest was the Aβ(1-42) L34P mutant’s inability to induce adherence in 

the monocytes (Fig. 3.8 B). This peptide did not aggregate well as expected (Williams et 

al., 2004), but it also did not form the conformation needed to induce the adherence in 

the cells. We had predicted that the Aβ(1-42) L34P peptide would maintain a high 

monomer:oligomer ratio, and thus help us determine if monomer was the active species. 

The lack of activity suggests that an oligomeric species that is off the aggregation path-

way for Aβ(1-40) and Aβ(1-42) L34P is actually the active species in solution. 

 The strongest evidence for our conclusion that an Aβ(1-42) oligomer can induce 

adherence is found in the results from figure 3.9. Aβ aggregation rates can be manipu-

lated through the modulation of the aggregation kinetics. By decreasing the Aβ aggrega-

tion concentration to 50 μM, the lag phase of the aggregation should be extended and 

lead to a higher monomer:oligomer ratio than in the 100 μM aggregation solution. 

Keeping the final treatment concentration constant at 15 μM, we ensure that the same 

total amount of Aβ is presented to the cells, and the only variable is the progression of 

the aggregation. Because the 50 μM Aβ(1-42) aggregation solution induced significantly 

less adherence than the 100 μM solution at 0 hours of aggregation, we were able to con-

clude that monomer is not the species responsible for inducing adherence in the cells. 

Rather, a very early-formed oligomeric species, which can only be formed on the un-

restricted Aβ(1-42) aggregation pathway, is responsible for inducing this phenomenon. 

 It was somewhat unexpected that the ADDLs did not induce adherence in the 
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monocytes (Fig. 3.10) because of the growing number of studies detecting specific solu-

ble Aβ intermediates, including protofibrils (Walsh et al., 1997), oligomers (Kayed et 

al., 2003), ADDLs (Lambert et al., 1998) and Aβ*56 (Lesne et al., 2006). However, not 

all of these species possess the same types of biological activities. It has been seen that 

ADDLs are less toxic to human cortical neurons than Aβ oligomers (Deshpande et al., 

2006), but both species are more toxic than fibrillar Aβ (Lambert et al., 1998). Within 

the field of Aβ research it has proven very difficult to discern between the size and con-

formational components of the soluble aggregation species with regards to their activi-

ties. A recent report suggests that the molecular weight of ADDLs ranges from 150 – 

1000 kDa (Hepler et al., 2006), which is indicative of a higher order aggregation state 

than previously believed. It is possible that the ADDLs are formed later in the Aβ aggre-

gation pathway than the active oligomer species, thus explaining their inability to induce 

adherence in the monocytes. 

 Despite our previous study which showed the activation of the innate immune 

response by Aβ through TLR2 and TLR4 (Udan et al., 2007), blocking these receptors 

did not prevent the Aβ(1-42) induced adherence (Fig. 3.11). However, in combination 

with the ineffectiveness of blocking the NF-κB dependent pathway with PDTC (Fig. 

3.12), the non-involvement of the TLRs is not terribly surprising. Activation of the in-

nate immune system through the TLRs is an upstream activator of the NF-κB pathway 

(Fitzgerald and Chen, 2006). Oddly though, activation of FPRL1 with the short peptide 

WKYMVM has been shown to activate NF-κB in human U87 astrocytoma and Chinese 

hamster ovary cells (Kam et al., 2007). Despite this previous research, our studies sug-

gest that the activation of NF-κB and the induction of adherence through FPRL1 may 
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involve separate pathways. 

 The interaction between FPRL1 and Aβ(1-42) has been previously reported to 

lead to mobilization of Ca2+ and induce chemotaxis in human PBMC (Le et al., 2001). 

The same study also found that if they aggregated the Aβ, it was less able to induce 

chemotaxis than freshly reconstituted Aβ, a result which mirrors our own. We have 

shown that pre-treating the THP-1 monocytes with WRW4, an antagonist to FPRL1, sig-

nificantly attenuates the adherence induced by treatment with freshly reconstituted Aβ(1

-42) (Fig. 3.13). These data are also in agreement with another study which indicated 

that WRW4 was able to block the phagocytosis of Aβ(1-42) in human macrophages (Bae 

et al., 2004). 

 Collectively, the findings of our work suggest that Aβ(1-42) is able to potently 

induce adherence in non-adherent THP-1 monocytes. If further characterization of the 

adherent cells indicates they have been differentiated into macrophages, these results 

could be vital to understanding the recruitment and transformation of non-resident 

monocytes into the CNS in response to AD pathology. The study by Luster and col-

leagues showed that this recruitment process is initiated before Aβ plaque deposits are 

detectable (El Khoury et al., 2007), suggesting that the presence of an early oligomeric 

species may be the trigger. Our results provide new insights into this process, and may 

lead to a greater understanding of the overall relationship between Aβ aggregation state 

and the response of the cells. 
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4 CHARACTERIZATION OF ADHERENT CELLS 

 

 

 

4.1 Introduction 

 

 

 

 The human body is a complicated system that stands ready to defend itself from 

a pathogenic invasion. In healthy individuals, the bone marrow produces a steady stream 

of monocytic cells that circulate in the bloodstream. If a pathogen invades the body, 

these monocytes have the potential to undergo differentiation and transform into other 

types of cells to protect the body (Volkman and Gowans, 1965a, 1965b; Gordon and 

Taylor, 2005). 

 In order to immediately respond to the insult associated with pathogenic inva-

sion, the monocytes are differentiated into macrophages through the innate immune re-

sponse (Van Furth et al., 1973; Reya et al., 2001). The primary function of the newly 

formed macrophages is to phagocytose and destroy the invader (Mackaness, 1964; 

Schwende et al., 1996; Benoit et al., 2008). Once the immediate threat is contained, the 

monocytes begin differentiation through the adaptive immune response pathway into 

dendricytes. These cells are antigen producing cells that aid in the formation of antibod-

ies and the development of long-term immunity to the pathogen (Banchereau and Stein-

man, 1998). 

 In the CNS, the role of macrophages are played by the microglia. These cells 
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possess phagocytic abilities similar to the macrophages found in the periphery (Banati et 

al., 1993; Bauer et al., 1994; Davoust et al., 2008). The presence of activated microglia 

surrounding Aβ plaques in AD brains (McGeer et al., 1987; Heneka and O'Banion, 

2007) suggests that an immune response is attempted in response to AD pathology. Be-

cause of the similarities in physiology and function, peripheral macrophages may pro-

vide a useful model system to study the activation of microglia. 

 When monocytes are transformed into macrophages, they undergo morphologi-

cal changes including flattening and spreading and the ability to adhere (Tsuchiya et al., 

1982; Schwende et al., 1996). The receptors on the surface of the cells also change upon 

activation and an increase is seen in the expression of CD11b, iba-1 and F4/80 (Davoust 

et al., 2008). Once in the macrophage phenotype, the cells also develop the ability to 

phagocytose pathogens and secrete proinflammatory cytokines (Schwende et al., 1996). 

 Aβ has previously been shown to induce adherence in peripheral blood mono-

cytes (Le et al., 2001). In addition, we have shown that this process occurs in THP-1 

monocytes in response to freshly reconstituted Aβ(1-42) (Crouse et al., 2009). We sug-

gested that this transformation to an adherent phenotype is likely to be related to the dif-

ferentiation of the monocytes to macrophages. Here we characterize the cells that were 

transformed to determine if they possess other features unique to macrophage-like cells. 

 

 

4.2 Results 

 

 

 

4.2.1 Integrin Receptor Expression 
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 The family of integrins serves as receptors for cell adhesion to extracellular ma-

trix, and mediate cell-cell adhesion. The integrins are αβ heterodimers in which 8 β sub-

units can associate with 18 α subunits to produce 24 known integrins (Hynes, 2002). Of 

these known integrins, the class of β2 integrins are known to be expressed exclusively 

on leukocytes and play a pivotal role in adhesion and migration of these cells. Specifi-

cally, the Mac-1 integrin made up of CD11b (αM subunit) and CD18 (β2 subunit) have 

been implicated in cellular migration (Mayadas and Cullere, 2005). 

 Fibronectin (Fn) is one of the components in the extracellular matrix that can 

interact with integrins (Ruoslahti and Pierschbacher, 1987). It is a known adhesion pro-

tein that has been published to stabilize the adherence of THP-1 cells treated with LPS 

(Kounalakis and Corbett, 2006). We wanted to explore the possibility of Fn stabilizing 

the adherence induced in our cells when they were treated with PMA or Aβ. 

 Wells of the experimental plate were pre-coated with Fn as described in the 

methods. The cells were treated with 10 ng/ml of PMA or 15 μM of freshly prepared Aβ

(1-42) and incubated for 6 hours (Fig. 4.1A). The cells treated in wells pre-coated with 

Fn had increased adherence compared to cells in uncoated wells. Both effectors induced 

more adherence in the presence of Fn. 

 We have previously shown that incubation of the cells with Aβ(1-42) for 24 

hours induced a similar amount of adherence as a 6 hour incubation time (Udan et al., 

2007). We wanted to determine if Fn would stabilize the Aβ induced adherence during a 

24 hour incubation (Fig 4.1B). Cells treated with freshly reconstituted Aβ(1-42) induced 

35.32% adherence in uncoated wells and 79.17 ± 14.20% adherence in wells coated 
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Fig. 4.1 Fn increases the adherence induced by PMA and A

THP-1 monocytes were incubated at 37°C with 10 ng/ml PMA or 15 

M A(1-42) in the presence or absence of Fn. Following the incu-
bation time, percent adherence was determined as described in the 
Methods. A) Treated cells were incubated with the effectors for 6 
hours. Error bars are standard error for n= 2 trials. B) Treated cells 
were incubated for 24 hours with the effectors. Error bars are stan-

dard error for n= 1 (A -Fn) and 2.  

A 
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with Fn. PMA induced 72.66 ± 9.23% and 83.58 ± 7.44% in uncoated and coated wells, 

respectively. 

 The results to the previous experiments suggested that Fn coating could stabilize 

the adherence induced by treatments that may not have induced adherence in earlier ex-

periments. An Aβ(1-42) concentration dependence experiment revealed that concentra-

tions of Aβ lower than our typical 15 μM treatment did not induce significant adherence 

in the THP-1 cells (Fig. 3.5). We retested the ability of 5 μM Aβ(1-42) to induce adher-

ence in THP-1 cells at various incubation times (Fig. 4.2). THP-1 cells incubated with 5 

μM of freshly prepared Aβ(1-42) in Fn coated plates induced 14.99 ± 4.29% adherence 

at 6 hours, 66.03 ± 15.21% adherence at 24 hours and 77.36% adherence at 48 hours of 

incubation. When the cells were treated in uncoated plates, the 6 and 24 hour adherence 

values dropped to 8.56 ± 3.21% and 10.97 ± 0.27%, respectively (data not shown). The 

ability of 5 μM Aβ(1-42) to induce adherence in uncoated plates with a 48 hour incuba-

tion was not tested. 

 The process of differentiation has been linked to increased expression of various 

cell surface markers including CD11b on the surface of the macrophages but not on the 

parent monocytes (Schwende et al., 1996). To determine if the increased adherence to 

Fn coated plates was due to an upregulation of integrin receptor expression, we analyzed 

the amount of CD11b expressed on the surface of adherent cells. The measurement was 

performed by applying an anti-CD11b to the surface of the cells followed by an anti-IgG 

antibody tagged with HRP, which was used to provide colormetric detection of the re-

ceptor as described in the Methods. Separate experiments were performed and the data 

was corrected to absorbance per 105 cells for averaging purposes. Cells treated with 
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Fig. 4.2 Fn coating allows lower concentrations of A to induce monocyte adherence 

Wells were pre-coated with Fn as described. Cells were treated with 5 M A(1-42) and in-
cubated at 37°C for the times indicated. Following the incubation the adherence was ana-
lyzed as described. Error bars are SE for n= 2 (6, 24) and 1 (48). 
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PMA induced a normalized cell surface CD11b expression of 0.16 ± 0.01 and 0.39 ± 

0.03 AU/ 105 cells after 6 and 24 hours of exposure, respectively. Cells treated concur-

rently with 15 μM Aβ(1-42) expressed 0.28 ± 0.01 and 0.71 ± 0.04 AU/ 105 cells after 6 

and 24 hour incubations, respectively (Fig. 4.3A). The lower 5 μM Aβ(1-42) treatment 

for 24 or 48 hours induced 0.27 ± 0.02 and 0.62  ± 0.05 AU/ 105 cells, respectively 

while concurrent PMA treatments induced 0.39 ± 0.03 and 0.54 ± 0.01 AU/ 105 cells 

with 24 and 48 hour incubations (Fig 4.3B). 

 

 

4.2.2 Markers of Monocyte Differentiation 

 

 

 

 The upregulation of CD11b expression upon treatment of the THP-1 cells with 

Aβ compared to PMA treatment suggests that the cells are being differentiated and not 

simply becoming adherent. We decided to analyze the adherent cells for other markers 

of the differentiation process. It has been shown previously that upon differentiation, the 

morphology of monocytic cells will change. The cells will flatten and spread as they be-

come adherent and they will also develop vacuoles (Tsuchiya et al., 1982).  

 Following treatment of the THP-1 cells with either PMA or Aβ(1-42) for 6 or 24 

hours, in the presence and absence of Fn, we imaged the cells with a camera attached to 

an inverted microscope to study the morphological changes. The untreated monocytes 

have a rounded morphology with no protrusions emanating from the cell body (Fig. 

4.4A). Following a 6 hour exposure to PMA or Aβ(1-42) in the absence of Fn, subtle 

changes became noticeable in the cells. A few of the cells were beginning to elongate 

and spread (Fig. 4.4 B,C). More spreading and elongation was seen in the cells treated in 
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Fig. 4.3 Cell surface CD11b expression in adherent monocytes  

Wells of a sterile 48-well plate were pre-coated with 5 g of Fn to 
ensure cell adherence. A) THP-1 monocytes were treated with 10 

ng/ml PMA or 15 M freshly reconstituted A(1-42) for 6 or 24 hours 

at 37°C. SE bars were calculated from n=5 trials for all data points. 

B) THP-1 monocytes were treated with 10 ng/ml PMA or 5 M 

freshly reconstituted A(1-42) for 24 or 48 hours at 37°C. SE bars 
were calculated from n= 5 (PMA, 24) and 2 for all other treatments. 
Following incubation, adhering cells were analyzed for expression of 
the cell surface receptor CD11b as described in the methods. The 
expression was normalized using the number of adhering cells.   
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Fig. 4.4 Study of morphological changes induced in treated THP-1 monocytes 

THP-1 cells were treated with 10 ng/ml PMA or 15 M Ab(1-42) in the presence or absence of 
Fn. Following the incubation with effectors, the non-adherent cells were removed and pictures 
were taken of the adherent cells. A) Untreated THP-1 Monocytes B) 6 hour PMA treatment -Fn 

C) 6 hour A treatment -Fn D) 6 hour PMA treatment +Fn E) 6 hour A treatment +Fn F) 24 

hour PMA treatment -Fn G) 24 hour A treatment -Fn H) 24 hour PMA treatment +Fn I) 24 hour 

A treatment +Fn. Arrows indicate early morphological changes. 
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Fn coated wells (Fig. 4.4 D,E). Many of the cells still maintained their rounded mor-

phology after a 6 hour treatment. However, following a 24 hour incubation with either 

PMA or Aβ(1-42), most of the cells appeared morphologically distinct from the parent 

monocytes (Fig. 4.4 F-I). Again the cells treated in the presence of Fn showed a higher 

degree of spreading. It is interesting to note that in all cases the Aβ treated cells ap-

peared to transform somewhat differently than the PMA treated cells, but nevertheless 

exhibited the morphological changes associated with differentiation. 

 We also studied the effect of PMA and Aβ(1-42) treatments on cell proliferation, 

in the absence of Fn, because the transformation from monocyte to macrophage is 

known to be accompanied by an arrest in the cell cycle (Schwende et al., 1996; Ding et 

al., 2007). We treated THP-1 cells with 10 ng/ml PMA or 15 μM Aβ(1-42) at either 0 or 

168 hours of aggregation for 6, 24 and 48 hours. At each time point all of the cells in the 

wells were counted using trypan blue exclusion. None of the treatments lead to an in-

crease in total cell count (Fig. 4.5A). Even treatment with 168 hour Aβ(1-42), which 

does not induce adherence in the cells (Fig. 3.4A), led to an arrest of proliferation.  

There was a noticeable decrease in the cell count at 24 hours of the cells treated 

with freshly reconstituted Aβ. The counts included all of the cells, living and dead, so 

we quantitated the percentage of the cells that were viable based upon trypan blue exclu-

sion. At the time where we saw a decrease in cell count, we found a corresponding de-

crease in the percentage of the cells that were viable (Fig. 4.5B). The treatment with 168 

hour Aβ showed no changes in viability over the course of the experiment, but the vi-

ability was decreased compared to PMA treated cells at all time points. 

To clarify the results of the trypan blue exclusion assay, we used XTT to test the 
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Fig 4.5 PMA and A treatments decrease THP-1 cellular proliferation 

THP-1 cells were treated with 10 ng/ml PMA or 15 M A(1-42) aggre-
gated 0, or 168 hours. A) At the times indicated, the living and dead cells 
in each sample were counted using trypan blue exclusion and total num-

ber of cells reported. SE bars are for n= 2 (A 0 & 168 hours) or 3 
(PMA). Cell counts were adjusted to the same starting count. B) At the 
times indicated, the living and dead cells in each sample were counted 
using trypan blue exclusion and percent of living cells reported. SE bars 

are for n= 2 (A 0 & 168 hours) or 3 (PMA).  
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metabolic activity of the adherent cells derived from PMA or Aβ treatment. An increase 

in the amount of XTT reduced indicates an increase in metabolic activity (Scudiero et 

al., 1988). The cells that were treated with PMA, 15 μM Aβ(1-42) or 5 μM Aβ(1-42) for 

24 hours all showed an increase in XTT reduction over the background absorbance of 

XTT in the absence of cells (Fig. 4.6A) despite the decrease in viability seen with the 

trypan blue exclusion assay. Likewise, the XTT reduction from the 48 hour PMA and 5 

μM Aβ(1-42) samples were both above the background (Fig. 4.6B). Although the XTT 

reduction by the cells treated with PMA for 48 hours is above the baseline, it is a lower 

amount of reduction than the cells that were only treated for 24 hours, which suggests 

that longer exposure to PMA may be detrimental to the cells. Both experiments indicate 

that Aβ treatment can increase the metabolism of the cells more than PMA treatment. 

 

 

4.3 Discussion 

 

 

 

 The differentiation of monocytic cells into microglia may play an important role 

in AD pathogenesis. Markers of the differentiation process include upregulation of β2 

integrins like CD11b, cell adherence, arrest of cellular proliferation and morphological 

changes (Tsuchiya et al., 1982; Schwende et al., 1996; Ding et al., 2007). We have pre-

viously shown that early-formed Aβ(1-42) aggregation intermediates can induce adher-

ence in THP-1 monocytes as potently as PMA (Crouse et al., 2009) (Chapter 3). Al-

though one piece of the puzzle, the adherent phenotype alone is not enough to consider 

the cells differentiated into macrophages, we have analyzed several of the other aspects 

of the differentiation process to confirm the transformation of the cells. 
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Fig. 4.6 XTT reduction from adherent THP-1 monocytes 
THP-1 cells were treated for A) 24 or B) 48 hours with the concen-
trations of effectors listed. Following the incubation the non-
adherent cells were removed and the adherent cells were treated 

with 0.33 mg/ml XTT/ 8.3 M PMS for 3 hours and analyzed as 

described in the methods. SE bars are for n= 2 (5 M A, 24 and 

48 hours, and PMA, 48 hours) and 4 (15 M A, 24 hours and 
PMA, 24 hours). Line indicates background absorbance of XTT in 
the absence of cells. 
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 Schwende et al. have analyzed THP-1 cells treated with PMA for many of the 

markers of differentiation. Their results found that 87% of the cells treated with PMA 

expressed CD11b on their surface while only 55% of cells treated with Vitamin D3 and 

less than 10% of control cells expressed the marker. They also found that PMA induces 

an almost complete arrest of proliferation (Schwende et al., 1996). 

 Our results are similar to those of Schwende in that the PMA treated cells ex-

press CD11b. We were surprised to find that cells treated with 15 μM Aβ(1-42) for 6 

and 24 hours expressed more CD11b on their surface (Fig. 4.3A). It is possible that be-

cause Aβ and PMA function through different pathways (Fig. 3.11), the upregulation of 

CD11b will also be induced differently. 

 The use of Fn coated plates allowed us to study the effects of a lower Aβ treat-

ment concentration on the cells because of the added stability towards the cells. The 5 

μM Aβ(1-42) treatment induced less CD11b than PMA with a 24 hour exposure, but 

more than PMA after a 48 hour treatment (Fig. 4.3B). Because of the lower concentra-

tion, it appears to take longer for the effects of Aβ on the cells to be seen, which is 

probably why without Fn pre-treatment, the cells treated with 5 μM Aβ did not adhere 

(Fig. 3.5). The lower Aβ treatment concentration also did not appear to have much ef-

fect on the amount of XTT reduction. The cells treated with 5 μM Aβ metabolized simi-

lar amounts of XTT as the PMA treated cells after both 24 and 48 hour exposures (Fig. 

4.6). 

 The XTT reduction profile of the 15 μM Aβ treated cells is distinct from those of 

the 5 μM Aβ and PMA treated cells. Following a 24 hour exposure to the 15 μM Aβ, the 

cells reduced more XTT than with the other treatments (Fig. 4.6A). Many previous stud-
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ies have shown that soluble Aβ species are toxic to cells (Koistinaho et al., 2001; Walsh 

et al., 2002), so we expected a decrease in XTT reduction. Our hypothesis is that the 

cells may actually be stressed and have increased their metabolism in response to the 

insult from Aβ.  

Support for this theory can be found in the trypan blue exclusion data. Following 

a 24 hour exposure to 15 μM Aβ, there was a marked decrease in the percentage of liv-

ing cells, which then increases after 48 hours, although the viability at 48 hours is still 

decreased with respect to a 6 hour treatment (Fig. 4.5B). The loss of viability correlated 

with a decrease in total cell count after 24 and 48 hours with the Aβ (Fig. 4.5A). We 

have observed that when the THP-1 cells die, they can fall apart into fragmented sec-

tions, which can make it impossible for them to be counted and thus giving a decrease in 

overall cell number. The stressed cells in the XTT experiment may be on the verge of 

death, much like those in the trypan blue assay. 

Tsuchiya et al. described morphological changes that take place in THP-1 mono-

cytes upon differentiation with phorbol esters. In general the cells become flatter and 

less rounded. They develop protrusions from the cell body and internal vacuoles 

(Tsuchiya et al., 1982). 

Our cells showed significant morphological changes, both in the absence and 

presence of Fn, which suggest they are adopting a macrophage-like phenotype (Fig. 

4.4). The PMA treated cells become elongated with smooth bodies. They develop exten-

sions protruding from the cell body that are increased with longer exposure to the PMA 

or in the presence of Fn.  

When compared to the Aβ treated cells, the PMA cells seem to transform into a 
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similar but distinct morphology. Where the PMA treated cells have smooth bodies after 

24 treatments, the Aβ treated cells appear rough and irregular. A likely explanation for 

the difference is the previously noted potential for Aβ to be toxic. Although the cells are 

changing their phenotype in response to the Aβ treatment, they may not be healthy and 

so the transformation is not ideal. 

When taken together, the data all seems to indicate that treatment with Aβ(1-42) 

is indeed differentiating the THP-1 cells into macrophages. The cells undergo similar 

changes when treated with PMA and Aβ, but in many cases the Aβ treated cells appear 

to be somewhat stressed or compromised, possibly due to the toxic nature of Aβ. While 

significant, our findings are incomplete.  

A true measure of the transformation from monocytes to macrophages will in-

clude an increase in phagocytic ability by the newly differentiated cells. Schwende, Tsu-

chiya and others utilized phagocytosis by PMA treated THP-1 cells as a functional 

measure of monocyte differentiation into macrophages (Tsuchiya et al., 1982; Schwende 

et al., 1996; Yamaguchi et al., 2002; Shiratsuchi and Basson, 2005; Lee et al., 2007; 

Ustyugova et al., 2007). This type of assay, will allow us to determine if the adherent 

cells transformed in response to Aβ are fully functioning macrophages. In the future we 

intend to strengthen our current findings with the addition of a phagocytosis study. 
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5. EFFECT OF Aβ IN A MODEL OF CAA 

 

 

 

5.1 Introduction 

 

 

 

 AD pathology includes the deposition of Aβ plaques in the brains of afflicted 

patients. In addition to the brain deposition, over 80 percent of AD sufferers experience 

a condition known as CAA (Joachim et al., 1988; Vinters et al., 1996; Jellinger, 2002; 

Attems et al., 2008). Studies of AD cases involving CAA have suggested that increased 

vascular deposition may correlate with an increase in cognitive deficits (Pfeifer et al., 

2002). 

 In CAA, Aβ deposits in the vasculature of the brain, which can lead to fibrinoid 

necrosis, microannurisms, hemorrhages and infarctions (Vinters and Gilbert, 1983; 

Mandybur, 1986; Vinters, 1987; Vonsattel et al., 1991; Greenberg and Vonsattel, 1997; 

Thal et al., 2008). Studies of cultured human SMCs show production of cytokines fol-

lowing Aβ treatment (Suo et al., 1998), which correlates to in vivo findings of increased 

TNFα expression in AD brain vessels (Grammas and Ovase, 2001). A separate study 

showed the co-localization of cAMP with vascular Aβ deposits in AD patients 

(Martinez et al., 2001). 

 Increased levels of cyclic adenosine monophosphate (cAMP) production have 

been shown to modulate the levels of TNFα in vitro (Kunkel et al., 1988; Schade and 
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Schudt, 1993; Sinha et al., 1995).  In the presence of TNFα, human myometrium shows 

an increase in AC (Gogarten et al., 2003). These findings seem to substantiate the con-

cept of cAMP serving as a gatekeeper for inflammation (Jin and Conti, 2002) and sug-

gest a potential connection between cAMP and AD related inflammation.  

 In this study we investigate the effects of Aβ on HA-VSMC and THP-1 cells. 

We attempt to elucidate the role of cAMP in the inflammation and toxicity pathways 

involved in Aβ treatment of these cells. 

 

 

5.2 Results 

 

 

 

5.2.1 Development of cAMP Immunoassay 

 

 

 

 In order to be able to monitor the production of cAMP produced in the cells, we 

designed competition based immunoassay similar to the commercially available DEL-

FIA kit produced by Perkin Elmer. The methodology of the assay works as described in 

the Methods. Briefly, cAMP from a sample competes with a Europium tagged cAMP 

tracer complex for the binding sites on a polyclonal anti-cAMP antibody. Following 

binding, an Enhancement Solution dissociates the Eu from the cAMP allowing the Eu to 

form a chelation complex with some components of the Enhancement Solution. The 

time-resolved fluorescence of the Eu complex can then be measured. 

 The following is an explanation of the substitutions we made to the DELFIA 

protocol. We were able to successfully replace the pre-coated yellow plate provided in 

the DELFIA kit with a white Greiner fluorescence plate in which we coated the plate 
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with a capture antibody. This was done by overnight incubation at room temperature 

with 200 μL of 10 μg/ml goat-raised anti-rabbit IgG. The wells were blocked for 1 hour 

at room temperature with PBS containing 1% BSA, 5% sucrose and 0.05% NaN3. The 

Perkin Elmer wash buffer was replaced with PBS containing 0.05% Tween 20. The 

Perkin Elmer anti-cAMP serum was successfully replaced with anti-cAMP, which was 

obtained from Purdue University (Nichols and Morimoto, 1999). We were also able to 

substitute 20 mM Tris containing 150 mM NaCl, 0.1% BSA and 0.05% Tween 20 for 

the provided Perkin Elmer Assay Buffer and the Perkin Elmer cAMP Buffer for Stan-

dards. The Perkin Elmer cAMP standards were also substituted using cAMP purchased 

from Sigma Aldrich.  

 We were unable to find suitable replacements for the Eu tracer. We did prepare a 

cAMP-HRP conjugate (Lombardi and Schooley, 2004) to use as a competitor for the 

cAMP in the samples, but it did not function as well as expected. The Enhancement So-

lution was proprietary and the components are not available. The Perkin Elmer Victor 

plate reader was required for optimal sensitivity. A comparison of the results from the 

two methods can be seen in figure 5.1. Despite our assay development, all of the cellular 

samples were analyzed using the DELFIA methodology. 

 

 

5.2.2 Effect of cAMP on TNFα Production in HA-VSMC 

 

 

 

 For our model system, we chose to use HA-VSMC. These cells have been 

shown to produce similar levels of cytokines following Aβ treatment as the cerebral vas-

cular smooth muscle cells (Suo et al., 1998). Aβ is also capable of inducing toxicity in 
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Fig. 5.1 Modifications to the DELFIA protocol are as effective as the original method 
cAMP standards were prepared and analyzed using either the UMSL developed protocol 
(filled circles) or the Perkin Elmer DELFIA kit (open triangles). Data is presented as the % of 
cAMP binding in sample (B) over cAMP binding in blank (B0) versus the log of the cAMP con-
centration. Error bars are standard error for n=3 trials of each method. 
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both cell lines in a similar manner (Wang et al., 2000).  

 To test the ability of cAMP to attenuate TNFα production, cells were treated 

with either IBMX, Fsk or a combination of both to raise the levels of cAMP in the cells. 

IBMX is a phosphodiesterase inhibitor, thus blocking the degradation of cAMP (Kelley 

et al., 2008) while Fsk is an AC activator which increases the production of cAMP 

(Seamon et al., 1981). THP-1 cells are faster to grow and easier to work with than HA-

VSMC, making them an ideal cell line to use for some of our control experiments. We 

used THP-1 cells to confirm the increase of cAMP upon treatment with the cAMP ele-

vators because they are easier and faster to grow and analyze. Treating the cells with a 

combination of 300 μM IBMX and 100 μM Fsk for as little as 15 minutes increases the 

amount of cAMP from 40.37 ± 1.34 pmol/ml to 146.09 ± 2.67 pmol/ml (Fig. 5.2). Simi-

lar increases over control treatments are seen at 60, 120, 240 and 360 minutes of treat-

ment with the cAMP elevators. 

 We also tested the effect of LPS to induce cAMP production in THP-1 cells in 

the presence and absence of IBMX and Fsk. In our experiments, the LPS treatment did 

not induce an increase in cAMP (Fig. 5.3). Also, when IBMX or Fsk were used either 

alone or with LPS treatment, there was no significant increase in cAMP production. 

However, when the cells were treated with both IBMX and Fsk in the presence or ab-

sence of LPS, a dramatic increase in the levels of cAMP was noted. 

 

 

5.2.3 Effect of cAMP on Aβ induced toxicity in HA-VSMC 

 

 

 

 We then moved our studies to the effect of Aβ treatments on HA-VSMC. Before 
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Fig. 5.2 Effect of IBMX and Fsk treatment on cAMP levels in THP-1 monocytes 
THP-1 cells were prepared in assay medium and 290 mL was plated into wells of a sterile 

48-well plate. The control cells were treated with 5 L each of water and DMSO (black 

bars). The sample cells were treated with 5 L of water, 2.5 L of 36 mM IBMX and 2.5 L 

of 12 mM Fsk to a final treatment concentration of 300 M IBMX/ 100 M Fsk. The cells 
were incubated for times indicated before being collected and analyzed for cAMP produc-
tion as described in the methods. Data is the average ± standard error of n=6 (60, 360 min-
utes), 5 (15, 120 minutes) and 1 (240 minutes). 
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Fig. 5.3 Effect of IBMX and Fsk on LPS induced cAMP production in THP-1 cells 
THP-1 cells were prepared in assay medium and 290 mL was plated into wells of a sterile 

48-well plate. The control cells were treated with 5 L each of water and DMSO. The sam-

ple cells were treated with 5 L of 6 g/ml LPS, 2.5 L of 36 mM IBMX and 2.5 L of 12 

mM Fsk as indicated to achieve final treatment concentrations of 10 ng/ml LPS, 300 M 

IBMX and 100 M Fsk. The cells were incubated for 6 hours before being collected and 
analyzed for cAMP production as described in the methods. Data is the average ± standard 
error of n=5 experiments. 
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studying the effects of the IBMX and Fsk on Aβ treated cells, we first performed a se-

ries of control experiments to better understand how Aβ alone affects the cells. We 

tested the effect of Aβ(1-40) and Aβ(1-42) aggregation age as well as the effect of 

IBMX and Fsk concentrations on the viability of HA-VSMC. 

 The aggregation state of Aβ has been shown to be integral to its functions in the 

cells (Udan et al., 2007; Crouse et al., 2008), thus it was of interest to know if any par-

ticular aggregation species was more potent at inhibiting the cellular metabolism. We 

monitored the reduction of XTT by the cells following a 48 hour treatment with Aβ at 

different aggregation states. Freshly prepared Aβ(1-42) was able to inhibit 70.29 ± 

4.77% of the HA-VSMC metabolism (Fig. 5.4). Although incubation of the peptide at 

4°C for up to 48 hours was less toxic to the cells than freshly prepared Aβ(1-42), it was 

still capable of inhibiting the metabolic activity. However, aggregation for 72 – 144 

hours did not inhibit, but rather slightly enhanced, the HA-VSMC metabolism of XTT.  

 To determine if all early Aβ aggregation states were toxic, we compared the ef-

fects of Aβ(1-42) and the slower aggregating Aβ(1-40) in HA-VSMC. The Aβ(1-42) 

was again toxic at early aggregation states as we previously observed. The Aβ(1-40), 

however, was not toxic at any stage, but rather enhanced the metabolism of the HA-

VSMC (Fig. 5.5). 

 Before studying the regulation of on Aβ induced toxicity by IBMX and Fsk in 

HA-VSMC, we tested the concentration dependence of the compounds alone using HA-

VSMC metabolism of XTT as a measure. Surprisingly, all of the concentrations of 

IBMX tested enhanced the metabolism of the treated cells compared to control cells 

(Fig. 5.6A). The effect does appear to level off around an IBMX concentration of 150 
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Fig. 5.4 Early formed A(1-42) aggregation species are toxic to HA-VSMC 

HA-VSMC were plated in 48-well plates and allowed to adhere for 24 hours. A(1-42) was re-

constituted in sterile water to 100 M and incubated at 4°C. At the indicated times, cells were 

treated with 15 M A for 48 hours. Following the incubation, the medium was replaced with 

0.33 mg/ml XTT/ 8.3 M PMS for 3 hours. The absorbance of the XTT solution was read in a 
96-well plate. The data was corrected to control cells treated only with water at each time point. 
Bars are average ± SE for n = 10 (0, 48 hrs), 4 (120 hrs), 3 (24, 96, 144 hrs) and 2 (72 hrs). 
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Fig. 5.5 A (1-42), but not A(1-40) inhibits HA-VSMC metabolism of XTT 
HA-VSMC were plated in 48-well plates and allowed to adhere for 24 hours. Aβ (1-40) and 

A(1-42) was reconstituted in sterile water to 100 M and incubated at 4°C. At the indicated 

times, cells were treated with 15 M A for 48 hours. Following the incubation, the medium 

was replaced with 0.33 mg/ml XTT/ 8.3 M PMS for 3 hours. The absorbance of the XTT 
solution was read in a 96-well plate. The data was corrected to control cells treated only 
with water at each time point. Data is one trial from one experiment. 
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Fig. 5.6 Treatment with 
varying concentrations of 
IBMX and/or Fsk increase 
HA-VSMC metabolism 
HA-VSMC were plated in 48-
well plates and allowed to 
adhere for 24 hours before 
treatment with cAMP elevat-
ing agents. A) Cells were 
treated with varying volumes 
of 1.1 or 9 mM IBMX to reach 
the final concentrations indi-
cated. B) Cells were treated 
with varying volumes of 0.75 
or 6 mM Fsk to reach the final 
concentrations indicated. C) 
Cells were treated with vary-
ing volumes of 1.1 or 9 mM 
IBMX  and 0.75 or 6 mM Fsk 
to reach the concentrations 
indicated. All treated cells 
were incubated for 48 hours. 
Following incubation, the me-
dium was replaced with 0.33 

mg/ml XTT/ 8.3 M PMS for 3 
hours. The absorbance of the 
XTT solution was read in a 96
-well plate. Bars are the aver-
age ± SE for n = 2 trials from 
2 separate experiments. 
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μM and drop somewhat at 300 μM. Similarly, all Fsk concentrations tested increased the 

reduction of XTT (Fig. 5.6B). Unlike with the IBMX treatment, the enhancement is con-

centration dependent across the range studied. We also tested concentrations of the com-

bination of IBMX and Fsk together. The greatest metabolic enhancement was seen when 

the cells were treated with 18.75 μM IBMX and 6.25 μM Fsk (Fig. 5.6C). The other 

treatment combinations showed slightly lower enhancement with the exception of the 

300 μM IBMX/ 100 μM Fsk combination, which appeared to be slightly toxic. 

 We next tested the ability of IBMX and Fsk to rescue the HA-VSMC from Aβ(1

-42) induced toxicity. The cells were treated with freshly prepared Aβ(1-42) for 48 

hours in the presence or absence of 75 μM IBMX, 25 μM Fsk or both 75 μM IBMX and 

25 μM Fsk. Treatment with Aβ alone resulted in only 55.53 ± 5.72% cell survival while 

treating the cells with cAMP elevators in the absence of Aβ did not diminish cell sur-

vival (Fig. 5.7). When the IBMX, Fsk or IBMX and Fsk were combined with the Aβ 

treatment, no rescuing effect was seen. 

 Because the previous experiment showed no increase in cell survival upon 

upregulation of cAMP, we began adjusting the concentrations of the cAMP elevators. 

We repeated the previous experiment but decreased the Fsk concentration from 25 to 20 

μM. Again, the Aβ treatment caused lower levels of survival (69.13 ± 4.05%) and the 

treatments with only cAMP elevators induced 90% or greater survival (Fig. 5.8). We did 

see a subtle rescuing effect in the cells treated with the cAMP elevators. Treatment of 

the cells with Aβ/IBMX resulted in 82.77 ± 4.27% survival, Aβ/Fsk resulted in 88.36 ± 

4.07% survival and Aβ/IBMX/Fsk resulted in 91.05 ± 8.61% survival.  
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Fig. 5.7 75 M IBMX and/or 25 M Fsk do not rescue A treated HA-VSMC 
HA-VSMC were plated in a 48-well plate and allowed to adhere for 24 hours. The cells 

were then treated with freshly prepared 15 M A(1-42), 75 M IBMX or 25 M Fsk in the 
combinations indicated above for 48 hours. Following the incubation, the medium was re-

placed with 0.33 mg/ml XTT/ 8.3 M PMS for 3 hours. The absorbance of the XTT solution 
was read in a 96-well plate. The data was corrected to control cells treated only with water 
(0.665 ± 0.046 AU). Bars are the average ± SE for n = 8 (Aβ, IBMX, Fsk), 7 (Aβ/IBMX, Aβ/
Fsk, Aβ/IBMX/Fsk) and 5 (IBMX/Fsk) over 3 separate experiments. 
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Fig. 5.8 75 M IBMX and/or 20 M Fsk subtly rescues A treated HA-VSMC 
HA-VSMC were plated in a 48-well plate and allowed to adhere for 24 hours. The cells 

were then treated with freshly prepared 15 M A(1-42), 75 M IBMX or 20 M Fsk in the 
combinations indicated above for 48 hours. Following the incubation, the medium was re-

placed with 0.33 mg/ml XTT/ 8.3 M PMS for 3 hours. The absorbance of the XTT solution 
was read in a 96-well plate. The data was corrected to control cells treated only with water 
(0.294 ± 0.033 AU). Bars are the average ± SE for n = 12 (Aβ, Aβ/IBMX, Aβ/Fsk, Aβ/IBMX/
Fsk), 11 (IBMX, Fsk, IBMX/Fsk) over 4 separate experiments. Statistical significance of 
<0.025 is denoted by * and significance of <0.005 is denoted by **. 
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5.3 Discussion 

 

 

 

 AD is a complicated puzzle of physiological phenomena which necessitates 

studying the problem in small pieces with the goal of gaining a more global understand-

ing of the situation. It is generally agreed that Aβ plays a prominent role in AD related 

pathology and therefore is of great importance to the overall problem. In this study, we 

attempted to show that Aβ(1-42) is toxic to SMCs as a model of CAA, but that the toxic 

effects could be modulated by the upregulation of cAMP.  

 We chose to perform our control experiments for this study in the THP-1 cell 

line due to the ease of working with these particular cells. Our selection of IBMX and 

Fsk as the cAMP elevating agents was made to provide the most efficient increase in 

cAMP levels. There are a wide variety of PDEs which degrade cAMP, and each can be 

regulated individually with a plethora of compounds. However, IBMX is a general PDE 

inhibitor which functions on the whole class of PDEs thereby ensuring the greatest pos-

sible increase in the cAMP. Fsk is a general activator of AC which catalyzes the conver-

sion of ATP to cAMP (Kelley et al., 2008). Studies suggest that Fsk interacts with the 

catalytic subunit of AC and does not require the enzyme’s regulatory subunit for func-

tion (Seamon and Daly, 1981; Seamon et al., 1981). 

 In our study we were able to confirm that incubations up to six hours of IBMX 

and Fsk with the THP-1 cells generated high levels of cAMP (Fig. 5.3). The incubation 

time of six hours was chosen for the later THP-1 experiments because in our previous 

studies, we found that optimal cellular response to effectors like LPS also occurs follow-

ing a six hour incubation (Udan et al., 2007). We did not perform an IBMX and Fsk 
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concentration dependent study in the THP-1 cells because the concentrations would not 

necessarily transfer to the HA-VSMC cell line. We were more concerned with confirm-

ing that IBMX and Fsk do indeed increase cAMP levels in the cells. 

 We have previously studied the TNFα production of THP-1 cells in response to 

various stimuli, including LPS (Udan et al., 2007). Our results indicated that LPS is able 

to induce high levels of TNFα, but we wanted to see if LPS was able to induce cAMP 

production in response to the increase in TNFα. Gogarten and colleagues showed that in 

human myometrium, the presence of TNFα activates AC at the level of the AC/G-

protein interaction or directly at AC itself (Gogarten et al., 2003).   

 As shown in figure 5.4, when we treated the THP-1 cells with LPS alone, there 

was very little stimulation of cAMP. There was also very little cAMP produced when 

IBMX or Fsk were used alone to treat the cells. However, when the two cAMP elevators 

were combined, the cAMP showed a dramatic increase. It is likely that if one end of the 

cAMP regulation pathway is affected, the other portion works harder to compensate and 

maintain homeostasis within the system. Therefore, if AC is stimulated by Fsk, the 

PDEs may increase the breakdown of the excess cAMP. Conversely, if the PDEs are 

inhibited and cannot breakdown cAMP, AC may decrease the amount of ATP converted 

to cAMP. If Fsk and IBMX are used in combination, the overall amount of cAMP pro-

duced by the activation of AC is increased, but it cannot be degraded because of the 

PDE inhibition leading to an overall increase in cAMP levels within the cell.  

 We next shifted our focus from the THP-1 cells to the HA-VSMC. Our plan was 

to monitor the toxicity induced by Aβ treatment of the cell using the XTT assay. Al-

though it is a measurement of cellular metabolism, a decrease in the conversion of XTT 
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to formazan (see fig. 3.5) is generally interpreted as an indication of toxicity.  

 Although early research suggested that late stage Aβ aggregates were the most 

toxic species to cells (Pike et al., 1991; Roher et al., 1991; Pike et al., 1993), more re-

cent studies have indicated that it is more likely early, soluble aggregates that are re-

sponsible for the toxic activity (Koistinaho et al., 2001; Walsh et al., 2002). We found 

that treatment of the HA-VSMC with Aβ(1-42) that was freshly prepared or aggregated 

for up to 48 hours induced a high level of toxicity in the cells. Aβ(1-42) that was aggre-

gated for longer periods of time were not toxic to the cells. As shown in figure 3.10, Aβ

(1-42) aggregated for longer than 48 hours shows the presence of long, fibrillar species.  

 Van Nostrand’s lab has shown that in order for Aβ(1-40) to be toxic to cerebral 

SMCs, the peptide must assemble on the surface of the cells (Van Nostrand et al., 1998). 

Aβ(1-42) may also require assembly on the cellular surface to induce cellular toxicity. 

Since the Aβ that was aggregated for 48 hours or less contains very few fibrils (Fig. 

3.10), there is still the possibility of the aggregation occurring on the cell. However, the 

longer aggregating solutions are high in fibril content, which suggests that they will be 

unable to assemble on the cell surface, which may explain their inability to induce toxic-

ity in the HA-VSMC. Interestingly, when we compared the effects of Aβ(1-40) to Aβ(1-

42), we found that Aβ(1-40) did not induce toxicity at any aggregation state. Because 

Aβ(1-40) does not aggregate well in our conditions, it is unlikely to assemble on the sur-

face of the HA-VSMC, and therefore cannot induce toxicity. 

 It has been shown that the presence of cAMP can modulate Aβ induced toxicity 

in PC12 neuronal cells (Onoue et al., 2002). When we tried to rescue the HA-VSMC 

from Aβ(1-42) induced toxicity with 75 μM IBMX, 25 μM Fsk or a combination of 
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both, we did not see a change in the Aβ toxicity (Fig. 5.8). However, when we dropped 

the concentration of Fsk to 20 μM, we saw modest, but statistically significant, de-

creases in the amount of toxicity when the cells were treated with IBMX, Fsk, or both 

IBMX and Fsk in combination with the Aβ (Fig. 5.9). The result is promising, and fur-

ther modulation of the IBMX and Fsk concentrations may lead to further rescue of the 

cells. 

 Overall, we have shown that early Aβ(1-42) aggregate species are toxic to the 

HA-VSMC while all species of Aβ(1-40) produced under our aggregation conditions are 

benign. We have also shown that treatment of the cells with IBMX and Fsk may provide 

a potential pathway for rescuing the cells from the toxic effects of Aβ. 
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6 FUTURE WORK 

 

 

 

6.1 Extension of Monocyte Maturation Studies 

 

 

 

 In these studies, we have presented data which indicate that Aβ(1-42) is capable 

of aggregating into an assembly state which possesses the ability to transform mono-

cytic cells into macrophage-like cells. These data show that this ability is unique to an 

early-formed Aβ(1-42) aggregation intermediate which is not formed by Aβ(1-42) 

L34P, Aβ(1-42) ADDLs or Aβ(1-40). The Aβ transformed cells have traits which are 

similar to PMA-induced monocyte-derived macrophages, suggesting that the Aβ-treated 

cells are also transformed to macrophages. 

 In order to conclusively determine whether the Aβ derived adherent cells are 

truly macrophages, we intent to employ a cellular phagocytosis assay. Schwende et al. 

previously showed that THP-1 cells treated with PMA or, to a lesser degree, Vitamin 

D3, undergo an upregulation of latex bead phagocytosis (Schwende et al., 1996). We 

plan to treat the THP-1 cells with Aβ(1-42) or PMA to induce adherence followed by 

treatment with fluorescent latex beads. If the Aβ treated cells are indeed differentiated 

into macrophages, they should phagocytose the beads in a manner similar to the PMA 

treated cells. We believe that the addition of this assay will strengthen our results and 

further extend the knowledge base related to monocyte recruitment in AD. 
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 If we are able to confirm that Aβ treated cells are differentiated into functioning 

macrophages through the phagocytosis assay, the next step would be to move our work 

into a more physiologically relevant cell system. THP-1 cells are cultured monocytes 

taken from a leukemia patient (Tsuchiya et al., 1980). It is possible that the presence of 

the leukemia in the original patient may cause the THP-1 monocytes to respond to Aβ in 

a manner that differs from cells of a healthy individual. Also, cultured cells often behave 

differently than primary cells harvested near to the experiments. Therefore, we would 

like to extend the studies found in Chapters 3 and 4 into PBMC.  

 In order to accomplish the experimental goals, we will need to harvest blood 

samples from volunteers and isolate the cells from the whole blood. Several protocols 

have been previously published for this purpose (Gyimesi et al., 2004; Ghadimi et al., 

2008; Kalyan and Chow, 2008; Wang et al., 2008; Yu et al., 2008; Zhang et al., 2008). 

If the experiments show similar results in the primary cells as in the cultured cells, it 

will strengthen our position that Aβ may induce the recruitment of monocytic cells from 

outside the CNS and lead to the transformation into recruited microglia. 

 

 

6.2 Expansion of cAMP Studies 

 

 

 

 Our studies in Chapter 5 were somewhat inconclusive. Some of the experiments 

indicated that the presence of cAMP could modulate toxicity induced by Aβ treatment 

of HA-VSMC. Due to the laborious culture and high costs of maintenance of the cells, 

we were forced to put this study on hold. In the future, we would like to revisit this line 

of experimentation because we feel we did not fully explore the possibilities.  
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 We would also like to extend the studies from Chapter 5 into the PC12 neuronal 

cell line. We would like to determine if Aβ is toxic to these cells, and if so, attempt to 

identify the toxic species. It is also of interest whether the upregulation of cAMP can 

provide some protection to these cells. We already possess the PC12 cells, and have cul-

turing protocols in place (as described in the Methods). 
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