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ABSTRACT

Over the past few years, Augmented Reality (AR) and Virtual Reality (VR) have

emerged as highly popular technologies that demand rapid and efficient processing

of data with low latency and high bandwidth, in order to enable seamless real-time

interaction between users and the virtual environment. This presents challenges for

network infrastructure design, which can be addressed through edge computing. How-

ever, edge computing also presents challenges, such as selecting the appropriate edge

server for computing tasks in dynamic networks with rapidly changing resource avail-

ability. Named Data Networking (NDN) is a potential future Internet architecture

that could provide a balanced distribution of edge services across servers, thereby

preventing service disruptions. In this study, eComVes, a novel strategy that en-

hances ComVes, is proposed for information-centric edge applications that adopt a

correction mechanism to ensure service execution on the highest resourced server.

This mechanism allows users and intermediate routers to learn about the servers’

resource status directly from the server without using any explicit control messages

or probing. We evaluated the performance of eComVes against ComVes and observed

an improvement in the success ratio while maintaining a consistent response time,

indicating an improvement in load balance across the servers.

Keywords: Named-data Networking, edge computing, resource discovery, service

orchestration.
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CHAPTER 1: INTRODUCTION

The proliferation of mobile end-user devices and the Internet of Things (IoT) has

given rise to diverse delay-sensitive and computation-intensive services, such as aug-

mented reality-aided navigation and autonomous driving. These services cannot be

executed by user devices with limited computational capabilities. Edge computing

has been proposed to offer remote execution and while reducing communication time

and network bandwidth [2].

Edge computing poses new challenges such as the selection of suitable edge servers

to perform computing tasks in dynamic networks that experience frequent changes in

resource availability. We refer to such server selection challenges as task orchestration.

Task orchestration is critical to prevent overloading, which can lead to slow response

times and/or downtime. Any interruptions or downtime in these services can result

in poor user experiences and revenue losses.

Researchers have found that the Named Data Networking (NDN) architecture [1]

has more potential than traditional IP (Internet Protocol) architecture to serve as a

means of orchestrating tasks over edge servers [3]. NDN is a specific implementation

of Information-Centric Networking (ICN) [4] where data is identified by its name,

unlike traditional IP networks where data is retrieved based on the location of the

data.

Most existing methods for selecting servers based on resource availability rely on

network probing or control messages, which can accurately identify the highest-

resourced servers but incur significant overhead [2, 5–10]. However, solutions that

do not use any additional messaging are limited in their applicability and accuracy to

estimate available resource. ComVes, a lightweight load-balancing strategy proposed
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by Mansour et al. [11], can implicitly discover server resources without additional

messaging or probing but has limitations in discovering server resources to select the

highest-resourced server. In this study, we address the limitations of ComVes, namely

(i) the inaccurate estimation of total upstream server capacity, and (ii) the inabil-

ity to detect active traffic flow upstream. We propose a new strategy that selects

the highest-resourced server based on resource availability without requiring explicit

messages. This approach ensures an improved success ratio in obtaining success-

fully executed task data for the requested task while minimizing network resource

consumption.

The rest of this thesis is as follows: Chapter 2 discussed some preliminaries of

NDN and the related work on edge computing over NDN. Then Chapter 3 introduces

the details of the eComVes. Chapter 4 discussed implementation and presented

experiments and the experimental results. Finally, Chapter 5 concludes this thesis

with limitations and future work.



CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we first present a brief introduction to NDN and then discuss

existing research on task orchestration approaches in NDN.

2.1 Named Data Networking (NDN)

The Named-Data Networking (NDN) architecture, as described in [1] introduces a

data-centric approach to overcome some of the limitations of host-centric IP-based

networks. Instead of relying on IP addresses to identify and route data packets, NDN

uses unique names or content identifiers to retrieve data from the network.

There are two types of packets in NDN: Interest and Data packets.

An Interest packet is sent by a user when it wants to retrieve data from the network.

The Interest packet contains the name of the task it wants to execute, and the network

uses this name to route the packet to the appropriate server node. A nonce is also

included in the Interest packet, and the combination of the Service Name and Nonce

ensures a distinctive identification for each Interest packet.

A Data packet, as the name suggests, contains the actual data that the user re-

quested. It is sent by the server in response to an Interest packet. The Data packet

contains the name of the data it is providing, as well as the actual content. It also in-

cludes a signature to ensure the authenticity of the data. To facilitate the forwarding

of Interest and Data packets, NDN uses three main data structures:

• Forwarding Information Base (FIB): A forwarding table that maps the name

prefixes of service to corresponding next-hop/outgoing faces and cost of each

face. The appropriate outgoing face to forward an interest toward the pro-

ducer/server(s) is determined based on this cost and the forwarding strategy
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running in the node.

• Pending Interest Table (PIT): A table that keeps track of the outstanding Inter-

ests for which a router has not yet received data. The PIT is used to determine

where to forward incoming data packets. When an Interest is received, a PIT

entry is created that contains the Interest name, the incoming face, and a list

of outgoing faces to which the Interest has been forwarded.

• Content Store (CS): A cache that stores recently received data packets. When

data packets arrive at a router, they are cached in the CS. The CS is used to

satisfy Interests without having to forward the request upstream to the original

server. If a requested data packet is available in the CS, it can be immediately

forwarded to the requesting node.

Figure 2.1: Forwarding process at a NDN node [1].

In Figure 2.1, the forwarder looks up the CS and then the PIT after receiving an

interest or request. If matching Data from the CS is found, the data is returned; if

a matching PIT entry is found, the incoming interface of the Interest is added to the

PIT. When neither the CS nor the PIT includes a match, the forwarder records the

incoming and outgoing interfaces of the Interest along with a timestamp in the PIT.

The forwarding strategy then selects the output interface(s) based on the cost mapped
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Task Orchestration Approaches in NDN

Resource-Oblivious
Server Selection Schemes

[10,12–14]
Resource-Aware Server

Selection Schemes

Resource Discovery
without Explicit Messaging

[11,15,16]

Resource Discovery
with Explicit Messaging

[2, 5–9,17]

Proactive Approach Reactive Approach

Figure 2.2: Categorization of Task Orchestration Approaches in NDN.

in the FIB. If the data is not mapped in the FIB or expired, a NACK, referred to as

Negative Acknowledgment, is returned to the user.

2.2 Task Orchestration Approaches in NDN

In recent years, there has been significant research on NDN-based edge computing

systems, primarily focusing on selecting servers to perform computing tasks. How-

ever, the selection process presents a significant challenge due to the rapidly changing

compute resources available at edge servers. Recent works have addressed this chal-

lenge and can be categorized into two key categories (illustrated in Figure 2.2): (i)

resource-oblivious server selection and (ii) resource-aware server selection.

(i) Resource-Oblivious Server Selection Schemes: Resource-Oblivious server

selection schemes do not consider the resource status in the servers to select a server

to execute a task. Existing solutions include Named-Function Networking (NFN) [12]

and NFaaS [13]. NFN leverages function names to locate remote compute resource

and perform in-network computation over NDN. Building on NFN, NFaaS [12, 13]

places functions in the network and executes them through virtual machines.NDNe
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[10] is another resource-oblivious server selection scheme that broadcast an Interest

in searching for the optimal server based on its response time, without taking into

account the resource availability of the servers which makes it a resource-oblivious

scheme.

Resource-oblivious schemes have a significant limitation in that they fail to con-

sider the servers’ resource status and are prone to choosing servers with insufficient

resources, which introduces additional delays.

(ii) Resource-Aware Server Selection Schemes: Resource-aware server selec-

tion schemes aim to estimate the resource status at each server to select the most

suitable server to execute the task. The estimation of resource status on servers can

be approached using a variety of methods, including predictive estimation based on

available information or direct feedback acquisition via messages. The messaging pro-

cess may be exclusively for learning resource status information, which can be referred

to as explicit messaging or it might involve additional messages designed for purposes

beyond resource status determination, yet effectively contributing to acquiring knowl-

edge about resource status. Following that these schemes can further be divided into

resource discovery with explicit messaging approaches and resource discovery without

explicit messaging approaches.

Resource discovery with explicit messaging approaches uses additional messaging,

signaling, or probing explicitly to learn about server resource status. This category

can be divided into two subcategories: Proactive and Reactive approaches. In the

Proactive approach, servers advertise their resource status proactively usually in a pe-

riodic manner, whereas in the Reactive approach, servers only share their status when

an event occurs such as receiving a request to share the server’s resource status. In

their pioneering papers [18] and [19], Mtibaa et al. and Mastorakis et al. respectively

highlight key challenges in NDN-based edge computing which mainly revolve around

resource discovery and service discovery. Among the resource discovery with explicit
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messaging approaches, Compute First Networking (CFN) [17], selects a suitable server

based on the current utilization of available resources advertised by the servers, while

DICer [2] proposes adapting the SVS synchronization [20] protocol to enhance NFN

nodes by sharing supplementary metrics, including resource utilization to improve

the service placement at task executor. Another scheme proposed by Pirmagome-

dov et al. [9] utilizes broadcasting an Interest through a delegated node located in

the wired portion of the network on behalf of a mobile user and the delegated node

gathers all servers’ status from the response and selects the best server based on the

collected server status. ICedge [5] is another resource discovery scheme with explicit

messaging that uses additional messages to share server resource availability status,

enabling the network to select the edge server based on resource availability. Kondo

et al. [8] proposed a similar strategy, where servers also share resource availability sta-

tus. CLedge [6], on the other hand, is a cloud-edge framework that takes into account

the diverse delay requirements of services while selecting a server. Meanwhile, uDis-

cover [7] uses additional messages to share resource availability information, allowing

the user to select the best server regarding resource availability.

Resource discovery without explicit messaging approaches for assessing resource

status does not rely on receiving explicit messages or signals to learn about the state

of the network. They instead use predictive analysis or leverage existing components

to learn about the resource status. NDN-IoT [15] and R2 [16] are examples of resource

discovery without explicit messaging approaches, but they are limited to the context

of networks where servers must be in the forwarding path from the user. This strategy

has a notable shortfall because it only considers the servers in the forwarding path

from the user to the source of the input data for task execution, potentially ignoring

other servers with more resources.

Mansour et al. proposed a resource discovery without an explicit messaging ap-

proach, named ComVes [11], which searches for the least loaded server for service
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execution without using any additional control messages. This sets it apart from

NDN-IoT and R2 since it makes use of all servers that are available rather than lim-

iting itself to a certain number of servers. Each router in ComVes maintains a table

named busyness table containing the number of pending requests each of its faces

with respect to the service name which is the cost for this approach. This cost is in-

cremented upon receipt of a new request and decremented upon receipt of a response,

and it serves as the basis for searching for the best server as the number of pending

interests implies the load of upstream servers. A lower cost in the table indicates a

better cost. However, this strategy can not reflect on the server resource availability

since it receives no explicit feedback from the server.

Explicit messaging approaches offer greater accuracy in identifying the least loaded

server by obtaining feedback directly from the server, but the use of additional explicit

messaging can lead to significant overhead costs. ComVes shows great potential as it

can predict resource status indirectly without the need for extra messages and can

function in any network. However, ComVes has its own limitations such as inaccurate

estimation of upstream server capacity as well as the inability to detect active traffic

flows upstream. This study aims to address these limitations and develop a strategy

to overcome them.

Our study proposes a resource discovery without an explicit messaging approach

that does not rely on explicit messages to learn about resource availability and instead

uses piggybacking to learn about resource status in order to choose the least-loaded

edge server to execute tasks. Routers get direct feedback from the servers through

piggybacking and an overview of the upstream resource status and that helps to find

the most resourced server.



CHAPTER 3: RESOURCE DISCOVERY AT THE NETWORK EDGE USING

DATA PIGGYBACKING

In this chapter, we highlight the limitations of ComVes [11] and propose eComVes,

an enhancement of ComVes to address these limitations.

3.1 ComVes Limitations

ComVes is unable to accurately estimate the resource availability of servers up-

stream. The forwarding based on the number of pending requests for each of its faces

can lead to an inaccurate selection of the servers with the most resources available

because it does not reflect the current resource availability status of the server. We

have addressed two limitations of ComVes namely (i) the inaccurate estimation of

total upstream server capacity, and (ii) the inability to detect active traffic flow up-

stream. Then we illustrated them in the subsequent scenarios where the problems

become increasingly apparent:

3.1.1 Problem 1: Inaccurate Estimation of Total Upstream Server Capacity

ComVes estimates the resource availability using a heuristic which measures the

number of pending interests in each outgoing face as an estimation of how loaded

is the interface. Because the number of pending interests can indicate how much

resource is used upstream but does not indicate resource availability when upstream

servers have different capacities, the estimation can be inaccurate when the capacity

of servers upstream are diverse. ComVes does not consider the capacity of upstream

servers and assumes that all servers have the same capacity since it does not receive

any direct feedback from the server. Consequently, if a given face f leads to higher

available resources, but the number of the pending requests for f is higher than that of
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Figure 3.1: Illustration of Problem 1: Router 1, running ComVes, selects face 258
leads to Server 1 which has reached its capacity causing packet loss, despite face 259
leads to higher-resourced Server 2 and Server 3.

other faces, ComVes will still choose other faces over f which leads to higher resources

and have the potential to satisfy more requests.

This problem is illustrated in Figure 3.1. The capacity of the upstream servers

cannot be detected by Router 1. In the given scenario, face 258 leads to Server 1

which can handle 10 tasks, and face 259 leads to Server 2 and 3 which can handle 10

and 5 tasks respectively. Therefore, face 259 leads to more resources than face 258.

But ComVes assumes that both face lead to the same amount of resources according

to the cost in the busyness table and forwards request almost evenly toward those.

In this scenario, Router 1 selects face 258 which will execute at Server 1. Server 1 is

already overloaded; thus Interest is dropped. On the other hand, both Server 2 and

Server 3 have more resources to handle the task. So, here Router 1 running ComVes

is making an inaccurate forwarding decision.

3.1.2 Problem 2: Inability to Detect Active Traffic Flow Upstream

ComVes assumes that the cost of each face can be measured by only the traffic

passing through the router. If there is more active traffic flow upstream using the
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Figure 3.2: Illustration of Problem 2: ComVes at Router 3 selects face 260 leading to
Server 1, despite face 258 leading to higher-resourced Server 2.

resources, ComVes fails to estimate resource consumption and fails to reflect on it

while making a forwarding decision. As a result, ComVes may select a given face

f with the lowest cost in the busyness table, leading to a server that is shared by

additional users and, therefore, more heavily loaded, resulting in its inability to fulfill

more requests than other faces. This problem is depicted in Figure 3.2. ComVes

assumes that the cost associated with each face can be measured solely based on the

amount of traffic passing through the router, without considering the active traffic

flow of any upstream user. In the figure, receiving a new request from User 2, Router

3 with ComVes running chooses face 260 to forward the request, because it has the

lowest cost of 3 in the busyness table without knowing another active traffic flow

upstream from User 1 to Server 1. At router 1, even though face 259 has the lowest

cost of 7, the ComVes still selects face 258 with a cost of 10, as the request cannot be

forwarded downstream, resulting in a difference in cost of 4 between the two faces.

The request will be directed to Server 1, which has already reached its maximum

capacity, while both Server 2 and Server 3 can handle two additional tasks. As a

result, ComVes makes inaccurate decisions in search of servers at the highest resource
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Table 3.1: In eComVes, each router maintains a table called a loadTable for services.
This table contains six columns namely service name, face, server hint, cost, capacity,
and freshness.

Service Name Face Server Hint Cost Capacity Freshness
/service1 258 S1 4 10 0.003200
/service1 258 S2 3 10 0.002956
/service1 260 S3 4 5 0.002897
/service2 258 S1 3 10 0.003001
/service2 260 S4 2 5 0.003256

level and cause packet loss by forwarding the request to an overloaded server.

The eComVes alleviates the problems by adding a correction mechanism that cor-

rects the cost of each incoming face with respect to the service name on the way back

of a response data reflecting on the direct feedback of servers on resource availability.

3.2 Proposed Forwarding Strategy

The proposed forwarding strategy, eComVes, involves a correction mechanism that

corrects the cost of faces to reflect the resource availability according to the upstream

servers’ feedback without any explicit messaging to solve problems 1 and 2.

3.2.1 Structure and Function of loadTable

In this study, the proposed strategy, eComVes involves each router maintaining a

table called a loadTable with six columns, including service name, face, server hint,

cost, capacity, and freshness as shown in Table 3.1. An illustrative table is presented

in Table 3.1.

The first column "Name" contains the unique name prefix of the services provided

by the upstream servers, and the second column "Face" is the outgoing face toward

the server of the corresponding name prefix. Each face requires to be equipped with a

view of the resource status of heterogeneous servers to get a holistic perspective on the

available resources upstream and thereby identify the highest-resourced server. To

accomplish it, this approach employs "Server Hint" in the third column. The "Cost"

in the fourth column is the main basis for forwarding decisions, which quantify the
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expected number of tasks that upstream servers of each face can handle for the as-

sociated service. Therefore, a higher cost indicates a better cost. Together, these

columns, "Server Hint" and "Cost", are used to monitor the resource availability of

each upstream server for the associated face and the name. As having exact costs

on multiple faces in the table can lead to biases and starvation of a face, the subse-

quent columns "Capacity" and "Freshness" are introduced. The "Capacity" column

indicates the maximum number of tasks each upstream server can accommodate con-

currently. The time at which the most recent task request was forwarded to a Server

Hint of a Face reflects the entry’s "Freshness" which is listed in the final column.

For instance, the first-row entry at the Table 3.1 signifies that Face 258 has a server

upstream with the id S1 that offers service with the name prefix /service1, which can

execute up to 10 tasks concurrently and is currently anticipated to execute 4 tasks

with available resources, with the most recent task being forwarded from this entry

at 0.003200 seconds chronologically.

3.2.2 Algorithm of the Proposed Strategy

The proposed strategy’s operational procedure is presented in Algorithm 1. Ini-

tially, the loadTable of a given router R, running the proposed forwarding strategy,

is populated based on the service name and the face entries of the FIB on Line 1.

The Service Hint for each entry is initialized as null and the cost is initialized with

a value of the estimated maximum capacity of the servers as the cost reflects the

anticipated number of tasks the server can handle with available resources. However,

this initialization value of cost is quickly corrected by a correction mechanism in the

proposed strategy.

Upon receiving a new service request, R searches for the highest-cost entry in the

loadTable for the requested service, on Line 3, to find the face that is expected to lead

to the highest-resourced server. If loadTable has multiple entries of server hint per

face with the highest cost, denoted as maxCost, resulting in Line 4 as true, it requires
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Algorithm 1 Proposed Forwarding Strategy eComVes
1: initialize(loadTable, FIB)

2: procedure OnReceiveInterest(interest)
3: E ← {e|e ∈ loadTable, e.cost = MaxCost(loadTable, interest.name) }
4: if getLength(E) > 1 then
5: maxCost← e.cost
6: E ← {e|e ∈ loadTable, e.capacity = MinCapacity(loadTable,

interest.name, maxCost)}
7: if getLength(E) > 1 then
8: minCapacity ← e.capacity
9: E ← {e|e ∈ loadTable, e.freshness = MinFreshness(loadTable,

interest.name, maxCost, minCapacity) }
10: end if
11: end if
12: forwardInterest(interest.name, e.face)
13: timestamp←getTimestamp
14: update(loadTable, interest.name, e.face, e.serviceHint,−1, timestamp)
15: end procedure

16: procedure OnReceiveData(data, incomingFace)
17: serverHint← data.metaInfo.serverHint
18: cost← data.metaInfo.cost
19: E ← {e|e ∈ loadTable, e.name = data.name , e.face = incomingFace,

e.cost = cost, e.serverHint = serverHint }
20: if getLength(E) >= 1 then
21: update(loadTable, data.name, incomingFace, serverHint, cost)
22: while getLength(loadTable, data.name, incomingFace) > threshhold

do
23: minfreshness←MinFreshness(E)
24: delete(loadTable, data.name, incomingFace,minfreshness)
25: end while
26: else
27: insert(loadTable, data.name, incomingFace, serverHint, cost)
28: end if
29: end procedure

30: procedure OnReceiveNACK(nack, incomingFace)
31: E ← {e|e ∈ loadTable, e.cost = MinCost(loadTable, nack.name, incomingFace)}
32: if getLength(E) > 1 then
33: maxFreshness←MaxFreshness(E)
34: update(loadTable, nack.name, incomingFace, e.hint, penaltyCost,maxFreshness)
35: else
36: update(loadTable, nack.name, incomingFace, e.hint, penaltyCost)
37: end if
38: end procedure
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deciding which entry should be selected among all entries in set E to forward the

request. We measure that the lower capacity server serves faster if two entry for two

faces has the exact cost but leads to different capacity. Therefore, R looks for the face

with the least capacity at Line 6 which returns all entries with maxCost and lowest

capacity, denoted by minCapacity. If multiple entries with maxCost and minCapacity

are returned as well, it determines which entry among those with the highest cost and

lowest capacity is the oldest, having the lowest freshness at Line 9 to avoid starvation

of a face. Line 9 usually returns a single entry as the time elapsed is hardly the

same. When the appropriate face is identified in the loadTable associated with the

requested service, R forwards the request to that face and server hint as stated in

Line 12. The selected entry in the loadTable is then decremented at Line 14, as the

expected number of tasks that the upstream server associated with the server hint

could handle would decrease by accepting the new request. The freshness column is

also updated at Line 14 with new times returned from Line 13 since Freshness keeps

track of the time the most recent task request was sent, ensuring that the same entry

is never chosen repeatedly and preventing bias towards one entry.

Correction Mechanism: The correction mechanism of the proposed strategy,

eComVes is shown in Lines 16-29. When R1 running the strategy receives a response

Data packet on Line 16, it learns the server hint and cost information from the

packet’s meta info. The strategy checks if the server hint associated with the name

and incoming face is in the loadTable at Line 20. If it is, it corrects the cost in the

loadTable for the server hint that is associated with the face and name on Line 21.

Otherwise, it inserts the information into the loadTable since the router does not

have any previous entry for this service hint on Line 27. In Line 20, it also checks

if the number of entries associated with the incoming face and name is greater than

threshhold. If so, R deletes the oldest entry associated with the name and faces the

loadTable to maintain scalability at Lines 22-25.
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NACK feedback: The NACK feedback operation in the strategy is demonstrated

in Lines 30-38. A Server responds with a NACK when it does not have resources

available to execute the task. When R receives a NACK, the entry in the loadTable

with the lowest cost service hint for the requested service name and the incoming

interface downstream receives a penalty cost that is significantly lower, at Line 34,

preventing R from selecting the face-leading overloaded server until it receives a data

correction. An entry with the lowest cost service hint in the loadTable gets the

penalty cost because an entry with the least resource is more likely to be overloaded.

If multiple entries have the lowest cost, R selects the face with the newest entry as it

is more prone to overload.

Figure 3.3: Demonstration of eComVes: meta info in data from Servers 2 and 3,
and NACK from Server 1 update the cost in the loadTables of downstream routers,
including Router 1 and Router 3. The reduced cost resulting from receiving NACK
prevents Server 1 from becoming overloaded, while the cost and server hint from
Servers 2 and 3 provide an overview of resource availability to Router 1. Therefore,
when Router 3 receives a new request from User 1 via Face 258, it selects Face 258
as per the loadTable and reaches the most resourced Server 2.

3.2.3 eComVes in Action

The high-level example of the proposed strategy, eComVes is shown in Figure 3.3

illustrating how the eComVes handles problems 1 and 2. In the given scenario depicted
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in Figure 3.3, Server 1 has reached its maximum capacity while Servers 2 and 3 still

have the capacity to execute more tasks. When downstream routers, such as Router 1

and Router 3, receive data with meta-information from Servers 2 and 3, they update

their cost calculations, which previously did not consider server capacity, and update

the loadTables accordingly. As a result, the cost of Server 1, which was previously

the highest at 7 for Router 3, is now set to 0, while the cost for Server 2 and Server 3

is 7 and 2, respectively, for Router 3. Previously, these costs were 6 for Router 3, and

Router 1 was unaware of the existence of two servers. With this information, Router

3 can now send more requests via Face 259 and avoid Face 260, which is overloaded.

This approach prevents Server 1 from becoming overloaded, and the meta-information

from Servers 2 and 3 provides an overview of resource availability to Router 1.

This approach addresses the two problems of ComVes described in Section 3.1. It

solves ComVes’s inability to accurately estimate upstream server capacity by provid-

ing a complete overview of resource availability to downstream routers. Therefore,

Router 1 can now select the highest-resourced server, which is Server 2 in this case.

It solves ComVes’s inability to detect upstream active traffic flow as well by sending a

reduced cost with the receipt of NACK. Therefore, Router 3 does not choose Server 1,

because of its highest resource score estimated using explicit overload NACK message.



CHAPTER 4: RESULTS

The aim of this section is to assess the effectiveness of the proposed strategy,

eComVes using a simulation study. Specifically, we seek to determine: (i) if eComVes

selects the most highly-resourced server through task distribution, (ii) if eComVes

achieves better success of satisfying requests overall using success ratio metric (iii)

and, if eComVes leads to a decrease in overall response time through CDF of delays.

4.1 Implementation

Every router runs the eComVes and maintains a loadTable. The loadTable updates

upon receiving a request, data, or NACK according to the algorithm 1. A point to

be noted is that algorithm 1 Line 24 is included in the design, but it is not part

of this implementation. The server application sends data with Metainfo carrying

server hint which is the unique ID of the corresponding server and the cost, which

is the current number of tasks it can accommodate, calculated from the difference

of capacity and current load of a server. It estimates the computation time using

the function described in the next paragraph and schedules the task to be completed

within that time and sends NACK if the estimation says it can accommodate the

new request. We implement ComVes [11] and compare its performance against the

eComVes’s performance.

We use the following function for estimate the task execution time at server, T (i) =

ui

ci
+α, where ui represents the resource utilization of server i, ci denotes the capacity

of the server i, and α stands for an insignificantly small randomization factor for re-

quested service, accounting for any additional time requirements. This randomization

factor is added to the function as we aim to replicate the real-world scenario on a
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Table 4.1: Simulation parameters

Parameters Value(s)
number of servers {2, 3}
number of users {1, 2}
number of services 1
frequency (request per second) {25, 30, 35, 40, 45}
capacity (number of tasks) [3 - 60]
link delay (ms) 10
link bandwidth (Mbps) 1
simulation time (seconds) 50

smaller scale where there can be many factors that can affect the response time. This

function serves as a fundamental model for estimating task request response time.

This function returns higher delays for higher-loaded servers.

4.2 Experimental Setup

We implement and evaluate the strategy described in Section 3.2. Using ndnSIM [21]

module within ns-3, the simulation was conducted on a Desktop machine equipped

with a 7-core Intel CPU and 64 GB of memory.

We use two simple network topologies shown in Figure 4.1 for our simulations.

Figure 4.1(a) is the topology used to evaluate the performance of the eComVes for

problem 1, and Figure 4.1(b) is the topology used for problem 2.

Table 4.1 summarizes the full simulation parameters used in our evaluation. To

observe the performance of the two strategies, we conduct simulations that measures

response time and the task distribution under varying frequency (request rates). The

bandwidth and link delay are set to 1 Mbps and 10ms. The generated results are

averages of 5 runs and each simulation lasts for 50 seconds. The experiment is con-

figured for a single service. Therefore, the users send only tasks belonging to one

service. We will extend the work to support multiple services in the future.In both

topologies, User 1 sends requests at a rate of 25, 30, 35, 40, or 45 tasks per second.

We refer to such request rates as frequency shown in Table 4.1. ComVes and the
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(a) Evaluation Topology for Problem 1: User 1 sends request at
rate of 25, 30, 35, 40, 45 per seconds; capacities of Server 1 and
Server 2 is 20 tasks and Server 3 is 5 tasks.

(b) Evaluation Topology for Problem 2: User 1 sends request at
rate of 25, 30, 35, 40, 45 per seconds and request rate of User 2 is
three times that of User 1; capacities of Server 1 and Server 2 is
equal in the range of 36 tasks each.

Figure 4.1: Evaluation topology for Problem 1 and Problem 2.
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eComVes are limited to discovering upstream servers up to 2 hops. This limitation is

reflective of actual operational conditions in real-world scenarios, and our simulation

aims to replicate this scenario on a smaller scale.

The first topology in Figure 4.1(a) for problem 1 includes three servers, where both

Server 1 and Server 2 have a capacity of 20 tasks and Server 3 has a capacity of 5

tasks. Router 1 is linked to one user having two upstream interfaces (258, 260) where

face 258 leads to Server 1 and 2 and 260 leads to Server 3.

The second topology for problem 2 is presented in Figure 4.1(b) where there are

two users and two servers included.In this topology, User 1 is unaware of the active

link of User 2 upstream due to limiting hop. The frequency of User 2 is three times

that of User 1. All the servers (Server 1 and Server 2) have an equal resource capacity

of 36 tasks to observe the impact of problem 2.

4.3 Evaluation Metrics

We consider the following metrics to evaluate our proposed solution:

1. Task Distribution: The number of tasks received by each server. We differenti-

ate the number of processed tasks scheme (processed) and the number of failed

tasks scheme (overloaded) due to the overloaded server.

2. Success Ratio: The ratio between the total number of satisfied requests received

by the user and the total number of requests sent by that user.

3. Request Response Time: Time elapsed between a user sending a request and

receiving a response from the server.

4.4 Experimental Result

In this section, we analyze the results and compare the performance of the eComVes

with ComVes.
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4.4.1 Result and Analysis for Problem 1

This subsection discusses the results for Problem 1 described in the topology pre-

sented in Figure 4.1(a). We compare the performance of the eComVes, and those of

ComVes.

Task Distribution: First, we measure the task distribution across servers (S1, S2,

S3) to visualize the overall selection mechanism of eComVes compared with ComVes.

This task distribution is presented in Figure 4.2 using a bar chart where pattern

bars indicate the executed task and the solid part indicates the task failed due to an

overloaded server. The green and yellow bars present results for ComVes, whereas

the purple and cyan represent eComVes. Figure 4.2(a) with frequency 25 shows

that ComVes has about 12% overload occurrence with almost one-fourth of the total

requests sent to Server 3 with lower resources, while eComVes has an occurrence of

the overloaded server of almost 0% with just a few tasks sent to Server 3. Server

3 receives very few tasks because Router 1 running eComVes receives the corrected

cost with server hint piggybacked on the response data, and due to the difference in

cost, the cost for servers 1 and 2 never drops below Server 3 in loadTable. Requests

are promptly handled by servers 1 and 2, preventing the cost from falling below the

highest cost observed with Server 3. With a lower frequency in comparison to the

total capacity of upstream servers, servers can accommodate all the requests. As we

increase the frequency of requests, the task distribution gets critical, and the wrong

decision regarding selecting the highest-resourced server results in more packet loss

due to an overloaded server. Therefore, in Figure 4.2(b) with frequency 30, the rate

at which servers experience overloads for ComVes is increased to 16% higher than

that observed with eComVes. In Figure 4.2(c) with frequency 35, around 27% of

requests are sent to Server 3 for ComVes while Server 3 starts receiving around 1% of

requests for eComVes at this point, which results in 19% more successful execution

of requests on servers than ComVes. This trend continues at Frequency 40 as shown
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(a) Task Distribution for frequency 25.
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(b) Task Distribution for frequency 30.
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(c) Task Distribution for frequency 35.

S1 S2 S3
Server ID

0

200

400

600

800

1000

Nu
m
be

r O
f T
as
ks

ComVes(Overloaded)
ComVes(Processed)
eComVes(Overloaded)
eComVes(Processed)

(d) Task Distribution for frequency 40.
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(e) Task Distribution for frequency 45.

Figure 4.2: Comparing impacts of service request rate (frequency) on task distribution
for Problem 1.
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Figure 4.3: Comparing the impact of service request rate on success ratio and response
time for Problem 1.



25

in Figure 4.2(d) where ComVes has about 21% overload occurrence with almost 29%

of the total requests sent to Server 3, while the eComVes has the occurrence of the

overloaded server of less than 1% with 8% tasks sent to Server 3. This difference

in the experiencing overloaded servers decreases slightly, which is around 20% at

Frequency 45 in Figure 4.2(e) as the cost becomes 0 or penalty cost for all faces in

the loadTable at some point when the frequency is higher exceeding the total capacity

of the upstream server. As the number of tasks increases in the network, all servers

become overloaded.

Success Ratio: Figure 4.3(a) shows the ratio of user 1 requests successfully sat-

isfied by any server at different rates to the total requests sent. This figure shows

that the success ratio of both eComVes and ComVes decreases as frequency increases.

At a lower request rate, most of the requests can be accommodated, and the suc-

cess ratio for both strategies can get close to 1, resulting in an insignificant gain for

eComVes. Therefore, the cost of the faces in loadTable is always greater than zero

for eComVes. In our simulation, frequency 25 is the lowest frequency, and eComVes

achieved a success ratio of almost 1, 10% more than ComVes. As the frequency

increases, the lowest-loaded server selection becomes critical. Therefore, the suc-

cess gain of eComVes. which can be defined as the success ratio difference between

eComVes with Comves, increasing to almost 13% at frequency 30 and continuing to

increase to 19% at frequency 35 with a success ratio of 1. When the frequency reaches

40, servers start to experience overloaded, resulting in cost 0 or penalty cost in the

loadTable and the gain decreases to 10% for eComVes. This is because, at a higher

frequency, both strategies fail to accommodate requests due to resource unavailability.

The success gain decreases more at the frequency 45 to 5% and becomes the lowest

gain in the simulation. According to the simulation results, frequency 35 is the sweet

spot for our experiment, where eComVes performs best, outperforming ComVes by

19% in the success ratio. After this point, the gain starts to decrease with increasing
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frequency.

Request Response Time: To investigate the impact of different task-sending

rates on response time, we compare the CDF of eComVes response time and ComVes

response time. We present the CDF for frequencies 25 and 45. In the figure, we refer

to "scheme XX" where the scheme is ComVes or eComVes and XX is the sending rate

(25, 30, 35, 40, or 45).

Figure 4.3(b) shows that the response time of eComVes is mostly less than 0.7

seconds for frequency 25. There are less than 1% overload occurrences, denoted by

Inf (infinity). More than 99% tasks had response times within 0.7 seconds, resulting

in one cluster. eComVes balances the load across the servers, and one cluster indicates

a balanced load across servers and consequently stable delays, whereas ComVes has a

gradually increasing curve, indicating that a wide range of response times are covered.

This suggests that some tasks took longer to complete than others, resulting in a

spread-out CDF curve. This is a result of Server 3 receiving more requests in ComVes,

which results in either longer execution times or overloaded servers. For ComVes

10% of tasks have an overload occurrence, whereas for eComVes, almost 0% of tasks

experience overload occurrence.

For frequency 45, delays are larger due to a higher load of requests. The percent-

age of reaching infinity increases for both strategies as the higher frequency degrades

both performances, resulting in a lower gain for eComVes. Similar to frequency 25,

eComves’s clustered value indicates more consistent performance within a specific

range, while ComVes’s scatter value suggests a wider variability in performance af-

fected by load imbalance. ComVes has fluctuations with multiple clusters, whereas

eComVes has consistent delays with one cluster, implying better load balancing across

the server.
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4.4.2 Result and Analysis for Problem 2

It is essential to note that, the performance evaluation results for Problem 2 are

specific to the requests from User 1 only, as all requests from User 2 are directed to

Server 2 exclusively due to a common hop limit imposed on both strategies discussed

earlier.

Task Distribution: In Figure 4.4, we present the task distribution, which in-

cludes processed and dropped tasks due to overloaded servers, on two servers with

different traffic flows for varying request rates to compare the eComVes with ComVes

for Problem 2. Figure 4.4(a) with frequency 25 shows that eComVes has almost no

overload occurrence with only a few tasks sent to Server 2, whereas ComVes chooses

overload server of around 12% of the time with almost one-fourth of the total re-

quests from User 1. This is because R1 running ComVes assumes from its busyness

table that the requests from User 1 are only being forwarded toward the upstream

server. It almost evenly distributes all the requests toward two faces and cannot see

the active traffic link in the upstream that consumes resources on Server 2. As we

increase the frequency in ComVes, the server experiences 13% overload occurrence at

frequency 30 forwarding around 20% of total requests from User 1 to Server 2, and

18% overload occurrence at frequency 35 forwarding around 21% of total requests

from User 1 to Server 2. Given that, for eComves the server experiences almost no

overload and forwards almost no requests to server 2. Increasing the frequency more

for eComVes, Server 2 also starts receiving requests from User 1; 6% of requests from

User 1 are forwarded to Server 2 at frequency 40, and almost 11% are forwarded to

Server 2. This causes both servers to be overloaded by 12% at frequency 40 and

21% at frequency 45. This is because, at this point, the request rate exceeds the

total upstream server capacity and server selection becomes random. In contrast, in

ComVes, 24% and 27%, respectively, of requests are forwarded to server 2 at frequen-

cies 40 and 45. This results in 23% overload at frequency 40 and 27% overload at
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(a) Task Distribution for frequency 25.
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(b) Task Distribution for frequency 30.
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(c) Task Distribution for frequency 35.
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(d) Task Distribution for frequency 40.
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(e) Task Distribution for frequency 45.

Figure 4.4: Comparing impacts of service request rate (frequency) on task distribution
for Problem 2 (Specific to request from User 1).
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Figure 4.5: Comparing the impact of service request rate on success ratio and response
time specific to requests from User 1 for Problem 2.
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frequency 45. R1 running ComVes forwards more requests to Server 2 than eComVes

because ComVes does not distinguish the difference in capacity in the upstream server,

whereas eComVes receives real-time resource availability from the upstream server.

Success Ratio: In Figure 4.5(a) eComves perceives the difference as it receives

direct feedback from servers on resource availability with server hints piggybacked on

the Data. Therefore, it avoids going to Server 2, as the cost never gets higher than

the face towards Server 1 due to mostly consumed resources. Due to the identical

cause discussed earlier, the success ratio in Figure 4.4 also corresponds to User 1’s

requests only.

Figure 4.5(a) shows the ratio of user requests from User 1 successfully satisfied

at different rates to the total requests sent and the impact of the user request rate

on this ratio. This figure shows that the success ratio of both eComVes and ComVes

decreases as frequency increases. This is because, at a very high frequency, the request

rate becomes higher than the total capacity of the upstream server, and all servers

become overloaded at a certain point. As there are no resources left on any server,

the cost for each face in loadTable becomes 0 or penalty cost resulting in a random

server selection. Therefore, the success ratios of both strategies go downward as both

fail to execute requests due to resource unavailability. In our simulation, the highest

frequency we set is 45 tasks per second, where the total capacity of upstream servers is

25. eComVes still manage to complete about 5% more requests successfully before all

servers become overloaded. As we decrease the frequency, eComVes becomes almost

10% better than ComVes in terms of successful request execution at frequency 40 and

achieves 100% success ratio at frequency 35 whereas ComVes fails requests almost

19% time due to server overload. eComVes achieves 100% success ratio at rates of 25

and 30 and fails around 13% at frequency 30 and 10% at frequency 25. Comparing

ComVes itself to frequency 30, ComVes performs slightly better at frequency 25. This

is because server 2 is relatively less loaded at 25 than it is at 30, and choosing a
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server has less of an impact with less load. Based on the simulations, we discover

that frequency 35 is the sweet spot for eComVes, where it outperforms ComVes most

by 18% in the success ratio.

Request Response Time: The CDF in Figure 4.5(b) illustrates the response time

for Problem 2. For frequency 25, 20% of the tasks have longer delays of more than 1

second in ComVes. This happens because ComVes forwards requests to server 2, which

is loaded with requests from user 2. These requests either fail due to an overloaded

server indicated at the infinity point or execute with a high delay, causing the outlier

cases. On the other hand, eComVes demonstrates consistent performance in more

than 99% of tasks, and less than 1% of tasks go to infinity due to an insignificant

number of packet losses. At frequency 45, servers encounter resource unavailability,

leading to a cost of 0 or a penalty cost for every face in the loadTable. The delay for

both strategies increases with frequency. However, eComVes can execute a greater

number of requests at least 5%(for frequency 45), and shows a consistent response

time where ComVes has multiple clusters, including higher delays.

It is essential to recognize that this experiment has some limitations, such as the

lack of multiple services, running on simple topologies, and the exclusion of mobility

factors. However, these limitations serve as a starting point for further research.



CHAPTER 5: CONCLUSIONS AND FUTURE WORKS

In this study, we introduce a resource discovery scheme called eComVes for information-

centric edge applications that utilizes a correction mechanism to select the highest-

resourced edge servers for the execution of the service. The proposed mechanism

allows users and intermediate routers to learn about the status of edge servers di-

rectly from the servers’ feedback, eliminating the need for explicit control messages

or probing.

Our simulation findings show that eComVes improves in terms of success ratio,

having a maximum gain of 19% for problem 1 and 18% for problem 2 against ComVes

while maintaining consistent response time, indicating an improvement in load bal-

ance across the servers. We plan to investigate the eComVes in scenarios that involve

multiple users and multiple services in complex and larger topologies.
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