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ABSTRACT

Udan, Maria L.D. PhD., University of Missouri-Saint Louis, August 2009. Activation of
the innate immune response by the Alzheimer’s amyloid beta protein via Toll-like
receptors. Major Professor: Michael R. Nichols

Alzheimer’s Disease (AD) is the most common form of neurodegenerative disease
characterized by the generation and deposition of amyloid beta plaques and the formation
of neurofibrillary tangles. A wealth of data now demonstrate that inflammation is a
prominent feature in AD pathology and a potential therapeutic target for the treatment
and prevention of the disease. The emergence of evidence linking amyloid beta protein
(AP), the primary component of senile plaques, to inflammation has led to new insights
into understanding AD pathology. AP, a protein fragment resulting from cleavage of
human amyloid precursor protein (APP), primarily exists in two forms: a slower-
aggregating 40-amino acid long peptide (AP(1-40)), and a faster-aggregating 42-residue
peptide AP(1-42). This investigation focused on elucidating the mechanism by which A3
provokes an inflammatory response in AD. For this study, we utilized THP-1 human
monocytes/macrophages as an inflammatory model system due to their sensitivity to Ap.
We hypothesized that fibrillar AB(1-42) may utilize Toll-like receptors (TLRs), a family
of transmembrane receptors that mediate recognition of certain conserved structural
motifs in pathogens, for production of proinflammatory products and activation of the
innate immune response. Biophysical characterization of the bioactive species of AB(1-
42) revealed that a soluble yet fibrillar species of AP(1-42) invokes tumor necrosis factor
alpha (TNFa) production in THP-1 monocytes/macrophages. Moreover, using a TLR
antibody neutralization assay, whereby receptor blockade inhibits cell responsiveness to
TLR ligands, we showed that both TLR2 and TLR4 were highly involved in AB(1-42)-
induced TNFa production. The role of TLR2 in AB-induced innate immune response was
further substantiated by the production of proinflammatory interleukin-8 (IL-8) in
transfected HEK293 cells, a mammalian cell line that does not express TLR2, after
stimulation with AP(1-42). Furthermore, our results suggest the possible involvement of
TLR2/TLR1 or TLR2/TLR6 for the AB-induced activation of TLR downstream
signaling. Taken together, our findings provide strong correlation between AP and innate
immune response activation via TLR2 and TLR4. The identification of TLRs that
recognize AP has opened new venues for understanding the mechanism of AB-induced
inflammatory response and may thus be a new therapeutic target for AD.
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Toll-like receptors 2 and 4 mediate AP(1-42) activation of the
innate immune response in a human monocytic cell line

Maria L. D. Udan, Deepa Ajit, Nikkilina . Crouse and Michael R. Nichols

Deparment of Chemistry and Biochemisry, University of Mimewri, % louis, Missouri US4

Abstract

The primary molscules 1o medialing Me nnale mmune e
sponee ane the TolHke tamily of receptos (TLRs). Recent
work has estabBished Thal amoic-beta (AR) fibrils, the pe
mary components of senle plaques in Arheimers disease
(AD), can inleract with he TLR24 accessory protein CO14.
Ushg anibody neutralraion assays and Wmor necrosis
facior algha rdease in he huran monocyBe THP-1 col e,
we delemined Mal both TLRZ and TLR4 medisled an
inflarmmalory response ko aggregaed AR1-42). This was in
contrast 1o exchsive TLR Bgands Epopolysacchande {LPS)
(TLR4) and tripaimiioy cysteing send tetmiysine (PamaCSK.)
(TLRZ). Alamic loes micresenpy Fmagng showed a fibillar
momphology lor e poinflammalony AR1—42) speces. Pre-
rakment of the celis wilh 10 pgiml of a TLRZ-specific anti-
body blocked ~50° of he cell msponse ko Ibdlar AR(1—42),
completaly blocked the Pam,CSK, response, and had no et

Aldheimer's daese (AD) i35 a progressve neurodegenerative
illness disgnosed clindeally by cognitive decline and patho-
Il by by the presence of extracellulsr neuritc plagues in
limbic brain reglons and intracellnlsr neurofibrillary tngles
(Sekoe 2001 ). The prinusry 1 of neuritic plaques i3
amylodd-bets (Af) (Glenner and Wong 1984), a 40- or 42-
residue pepiide derived from proteolyads of the amylodd-p
precursor prodein. A large body of evidence supports the
fundamental role of AP in AD etology. The monomeric form
of AP circulses ubquitbusly in plasma and cerebrospinal
fludd yet an aggregated nsoluble fibrillar form comprises the
characterigtic AD deposits (Selkoe 200d). fn viter studies
have shown that AR monomer will undergo non-covalent
selFamembly (Jamett of al. 1993) o form a polydisperse
mixture of soluble oligomers (Dahlgren of al AW2) and
proiodibril (Harper ef al 1999) that are enriched in fraheet
structure (Walsh ef al. 1999) and uliimately insoluble fibrils
(Harper ef of. 19972). The types of intermedistes formed

during fibrillogenesds are dependent on the sohton condi
tions (Harper ef . 19949; Dahlgren of of. 2002). Cellubsr

& 2007 The Anthom

524 Jovormaal Coamrge latiom & 00T It

fect on the LPS-induced response. A TLR4-specilic anfbady
(10 pgémil) Hocked ~35% of the cell response o fibriltar
AR{1—43), completely blocked he LPS response, and had no
eliect on he PamyCSK, response. Payrmydn B aboished he
PS5 response wilh no efect on AR(1-42) ruling oul baciedsl
contamination of he A samples Combinalion anibody pre-
reatments indicaled thal neutralization of TLR2, TLR4, and
CDi4 togeter was much more eflecve at blscking Bwe AR(1—
42) responss than he anbodies used sone These dala
demoneirale al bdlar AR1-42) can irgges e innale in-
e respanse and hal bol TLRZ and TLR4 mediale Af-
nduzed Wy necwmes oo sipha poduckon in & human
ooyt el Ene.

Keywords: aggregation, Alrheimafs di amybid-
pepbde, inflamamaton, innae Emrunly, Tol-ke recmpions.
£ Neurachem. (2008) 104, 524-533.

studies have shown that fibrllar forms of AR are tosde o
neuton compared with the benlgn monomer { Yankner 1906)
yel difficulties have been encountersd tndng o cormelae
insoluble fibrllar AR with memory loss in a tramgendc
miuse model (Westerman af al 2002). Therefore, much of
the recent investigstive focus has shifted to soluble AR
apprepstes s early oxk sgenls (Hass and Selooe 2007).
Further reseanch will elardfy if one species can be implcsted
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BT, acoepied Sepiember 17, 3007,
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PAMPs, pahogenassonised moecdar patiems; PRE, phosploe baf-
fored mabine; PMMB, palymmocs B; TLRs, Talllice moepiom; THEx
temor reoesis facior alpha; XTT, 23-bis (2-methory-4-siiro-Smalf-

istry, J. Mook
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a3 the primary toxic agent in AD but i & becoming evident
that maorphologically diverse aggregation specles can cause
different harmful effects (Deshpande ef of. 2006). The
overall findings sgpes that distinet tosic and biologieal
mechaniimg are dependent on & specific AR structure or the
exient of oligomen zation.

Chne such bological sctivity of AP B &3 & proinfanmm story
aimula It has been well documented that inflammsiory
markers such & actvated microgis and proinfammsiony
cyiokines have been observed surmunding AP lesions in the
human AD beain (MoGeer of al. 1987). The parenchynaal
microglia ane believed o orginate from peripheral cells of
the monocye'microglial linesge which infilirsie the paren-
chyma and differentiste ink microglial cells (Wegiel of al.
ANM). The in vive inflammatory response 1o AR has been

ubted N mur in vire cell model sysems
meluding both microglial and monecytie cells (Klegeri
of o 1907, Yates of ol 2000; Comba of ol 2001).

The mechaniam by which AR evokes a proinflanmsiony
response appesrs o be quite complex. FibAllar AP serves s
a lgand for both the scavenger receplor clas A (Bl Khoury
ef al. 1906, Paresce of al 1996) and receplor for advanced
glyeation end products (Yan of af. 1996) although neither &
linked © a poinflammsiony respome. A mubiecepior
complex comprising the scaenger receplor class B recepior
(D36, asfrinegrin, and the negin-sssocised proein
D47 has been identified in medisting fibeillar AP initistion
of humen THP-1 monocyte and murne microglial prodn-
Rammatory events (Bamberger ef al. 20073) and plagocyiss
of fibrillar AR via stypical phagocytic mechansms (Koe
migsknecht and Landreth 200u).

Incressing evidence suggpests that te humsn imate
mmmune feponse may be trigeered by spgregsted AP
Human innate mmuonity i3 &n imporian lne of defense
during bacterial fungal, or viral mvasdon and can mvolve
production of promflsematry  eyiokines, anthmicrobdal
peptides (Hoffmann of o, 1999, and protesses (Mun-Bryce
ef af. 2002) to neutralize pathogens The ability of phago-
eyt and immmne cell b0 recognl e thess pathogens 15 due o
motfs called pathogen-ssocised molecular patiems
(PAMPs) which bind patem recognition recepiors. The
primary medistons of the nnaste =h are &

e respone | m=S

CIN4 sppears i be ligmnd-binding and presentstion o
membrane TLR4 andior TLR2 (Kieltan 2006), which
ramduce the signal through the membrane and initste the
ntrscellular mnate mmune feponse pathwas.  Mone
mecenthy, CDI4 was shown o mediste uptake of double-
granded BMA and directly ineract with intracellular TLR3
(Lee of al W)

A growing number of endogenows humen molecules now
appeat 1o activaie the mnste mmune response (Kielan 2006)
meluding the AR peptide. A physical snd functonal
mieraction was demongrated between fibrillar AP1-42)
and CIH4 that resulied in the melese of inflammasiony
products i primary murine microghal cells and hunsn
peripheral blood mononue kar cells (Fassbender e af. XW4).
Furthermore, (D 4medisted mnemalizston of fibrllar
ARB1-42) by a phagocyte mechanism in microgha and
ineressed CI4 immunoetsning was observed in AD brain
e d with age-matched controls (Lin of ol AWS5).
Az CD14 can nteract with both TLR4 and TLR2, we sought
o determine which ir i TLE plays a functional
role i ramducing the ARinduced mnste immune ognal
through the membrane.

Materak and methods

Cdl culture and celiul ar assays

The THP-] cells were obtaimed from ATOC (Mamses, VA, USA)
and maintsined in RPMI-1680 culne medinm (HyOone, Logan,
UT, USA) conteining 2 mmolL. L-ghtamine, 25 mmoll. HEPES,
15 gL sodiom bhicarbomate, 1% fatal hovine saum (HyClome]),
50 WmL peicilling 50 pgiml. stepomydn (HyClone), ad
50 pmoll. femercapioeshanal at 370 in 5% C0,. For cdllar
asmays, THP:] cells were conirifoged, washed, and resuspended in
reduced el bovine serom (2%) gowih mednm Cell onomin-
tioms were adjosed o 1.0 x 10° calsimL and 0.3 mL was added 1o
individual wells of a $8-well sterile alore plse. Proinflammatory
modubion nh‘qn'n lﬂr.-] ]'_P'S (Eldlrﬂh coll K1Z) and

nynihedio bacierial 1 byl oy nl sexy] iiadysine
Mm@mnﬂhmqnﬂqm}--ﬂdwhﬂmﬂ
{PMX-B) solfase Sigma, St Loni, MO, USA) wee added direcdy
i oells and incubated at 3 7°C. Fallowing incubation, the coment of
each well was removed, centrifaged o 2800 & for 10 min, and dhe

dant was frozen @ —NPC for sabssquent analysic Concen-

Bmaily of trammembrane pattern recogniton receplors
termed Tolklike receplors (TLEs) which recognise PAMPs
[reviewed in Hoffmann er al {1999); Aderem and Ulevitch
{200:0)]. There are currently 11 human TLES and they vary in
thelr celluler localization and ability 1o detect distinet
mathogems (Aderem and Ulevitch 2; Boehme and Comp-
on 2004). The most widely sudied PAMP i3 backerial

Hpopolysaccharide (LPS), &n guber-membrans I 1 of

i-nm-d.q:mﬂ.mm data for TLR agomiss were fit to a sigmoidal
fhresparameter sqmfion weing SigmaPlot graphing program to
dedeomine ECay vales Af{1-d2pindnced THP-1 cal adberenas
mmdwﬁmmmgﬂmmmmh
cdls was remowved,
acdherent cells wes wmhed with phosphate-buffered saline (PRS)
and removed with 0.25% trypsin EDTA {HyOone)l The mediom,
P‘B wash, and removed adherend cell were ooumied mnder a

Grram-negative bactera LIPS can activate TLR4 via complex
formation with LPS-binding prolein and CD4, a glycosyl-
phosphatidy inmiokanchored b not membrane-spanning
recepior (Boehme and Compion 2004). The function of
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pe using & hemooyiometer.

Preparation of AR peptides
AR -42) peptides §Peptide, Bogasth, GA, USA) wes dissolved in
100% hexaflmorois opropanal (Sigma) for | b, aliquottad into sterile
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mmﬁpmﬁuﬂmlmmmmﬂmnﬂﬂ
—-XPC. Pror to cll temtment e lyophili pepich

the ] I::l:ﬂi-l:m. AB{]-‘Z}ﬂrTI_'ngmmml"i:d i the

resppandead in serils water i ]mlpmdllpq:hds
and inoohated at 47T Freshly necon stituted AR -42) in waier oas

hy were g F af g antibodies and the cells wers
farther i hﬁhmﬁumamﬂtmmthmﬂ

g wan mied as described shove. 5 ical araly
was perf: d for selsated hdhnmllﬂﬂuﬁdmﬂu

allowed to inmbate at 4°C prior o odl application. K

experimants indicate] that the prak o]l response aocwrmed hetoeen
48 and 96 h of APl -4Y) aggregation. Cells wes aqposesd ioa fimal
concentration of 15 pmoll. AR1-42) Commescial AR los wers
e i n-tesied prior io shipment and dedesmined to be (L35 ELV
mg. This tmmslies inin an effective LPS concmnimation of & pg/ml
tased on the calonlations described in (Gao and Tean 2003y LPS
mm-lhhu]mmﬁﬂmwllmmhmng]
cells. Hexafin af A peptide lots prior &0
shipment rendersd Iu endotowin levels undetecmable AR 1-42)

were ako mutindy tesed for contmination wsing

E.car

it st whiich tovn wers ically diffarent A roiet
was applisd 0 sach dats set and pevaloes wers obtaimed and
reparied in the figne lsgends.

Atomic foree miocoscopy

AR (1-42) aggeegation solstions (100 pmaoll) wers diloed i
1 pmoll. in water Grades V1 mica {Ted Pdly, Inc, Redding, CA,
USA) was out info 11 mm discles and affived to 12 mm medal discs.
Aliguos (50 pL) wes appliad io freshly cleaved mica, allowed in
adsash for 15 min, washed fwice with water, adr drisd, and stored in

preparations

an 23-his {2-mesh cocy-4-mitro-S-salfoph an yi)-2H
hunn'hduﬂcmmﬂph&-nm_yﬁmdﬂuﬂﬂlmﬁu
presence of hacterial growth was pmbed by miinchon drial-medi

& iner with desiccant. Images were ot d with a Na
T multmade atomic Hre pe (Digial I Santa
Bashara, CA, IBA} in Tlmna]dndﬂ“‘ Height malysis was

redoction of XTT Sigma). Briefly, AR(1-42) aliquots and water
comtmls were incuhated for 72 b at 37°C with XTT @3 mg/ml.)
and phenarine methosolfiee (83 pmol/T). Fedoosd XTT sbsor-
bance was mensumd at 457 om. Mimimal XTT redoction was
observed in e odl-fee ARl -42) samgles or sierile wader conirols
and no diffrences were noied beteeen e o,

Determination of THFx lewls

Mammmant of sscreted temaor neces is factor alpha (THF-a) in the
spsmaianis was determined by ELIEA. Brisfly, 100 . of4 pg/ml
mancckimal mt-buman TNFRTNFSFIA aptore antibody (RED
Systems, Minmeapoliz, MK, USA) was sdded to S6-well plates &
ovemight inmhation = 24%C. Welk wae wxhed with PRI
(HyClone) comtaining (LU05% Teveen-20 and blocked with 300 ul
PRS comtaiming 1% bovine serom alemin (BSA), 5% sucmss, and
0L05% Nal; for | b at M°C. Aferwshing, socomsive addiions of
50 pl. samples or standands (2 hj, 100 pl. biotimdaied pol yolonal
anti-human THFE-@/THFSF] A detection antibody (R& D Systams) in
X mmoll. Trs with 150 mmolL. Na(l and Q1% BSA {2 h),
100 pl. steptoyvidin-homendish panoxiduse (RA&D Sysems) di hoed
200 times with PES containing 1% BSA (30 min), and 100 pl. of
equl wolimes of 3Y,55-etamedryhenridine and hydrogen
peroide (KPL, Gashershorg, MDD, USA) 30 min). The readion
was stopped by the addition of 1% HxS504 soltion. The optiml
demsity of each sample was amahyzed at 450 nm with a reference
reading at 63 nm wsing a Spectalax M0 sheorbance plaesader
(Molemlar Devices, Union City, CA, USA). The oncentmtion of
THF-a in the experimental samples was caloubed fom a THF-a
simdaxd aorve of 15-2000 pgfml.. When neessary, samples were
diluted to &l within the sandard corve.

Antibody neutralization assay

THP-1 cells {10 5 10 cdleiml) were addad to a 48.well cell
culture plis and pe-trmisd with 5-30 pgfml TLR antibodisx, [2G
izotype contral, or PRS for | b at 37°C i 5% O0,. Antibodies and
isotype conirols wesd were finctiomal grade anti-bmman TLR2
{clane T2 5), TLRA fclome HTAI25), CTi14 {dome G DY) antibod -
iem, momss TglGtax and TgGlv isotype conrals from eBioscience
(San Diegn, CA, USA), pohyclonal anti-TLE2 and TLR4 antibodies
from Enviva(een,, and rat g isoty pe comirol fom Sigma. Following
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performed asing om fl d height mode
images.

Results

Humsan THPF-1 monocytic cells have been & use ful model for
AR proinflammstory sctvily (Flegeris of ol 1997, Yates
ef al AWW) and exhibit responses io dinul dmiler 1o hose
of microgha (Combs ef of. 2001). These cells play a critical
mole i the innate mmune respome and phagosytic calls
express the largest reperiodre of TLRs (Boehme and Comp-
ton 2004). Our infttal gudies confirmed the sensithvity of the
THP-1 monocytes o TLR agoniats. Commercial preparations
of the TIR4 agonist LPS (ulirspure E coli K12) and the
TLRE2 sgoniat Pamy(SEK4, a synthetie Bpopeptide, were
tested for thetr ability to stmulste TMFa producton from
THP-1 cells {dats not shown). TMFa i3 an mpontant product
of the MyD#8-dependent imnate mmune respome (Eielian
204, THP-1 cell supermstants were collected & h post
stimulson and secreted TNFa mesutement fevealed a
dent for both compounds. 6-h
incubation times were chosen based on seperae tHme-
dependent experiments showing maximal THNFa production
by LPS and Pam, CSE, after 6 h of cell expagure (data not
shown). Corve fiting of e concentration-dependence dats
was performed & deseribed in the Msterials snd methods and
produced BC 5 vales of § ngmL for ultrspone K12 LPS and
1 ngiml for Pam, (8K,

Human monocytes produce a significant prodnflammstony
reipome o agoregsted AP and our studies supporied these
findings uwsng the THP-1 monocytc cell bne AP(1-42)
apgrepsle; were prepared by fecomstituion in waler and
quisscent incubstion st 4°C. The sppregation was moniborad
by atomic force microscopy (AFM) (Fig 1), Freshly recon
atituted AR 1-42) monomer (Fig 1, left panel) showed a
dense field of small punctate species that had Hile stmuls-
tory effect on the celk. The heights for the vait majority of
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ir &

istry, J. Mook

siomal Society for Mewmch (200E) T84, 424 55

xviil



Fg. 1 Maphobgy of stmulsiory amyinid-bets (Af) {1-242) aggme-
gated spedes. A1-42) sggmgation solufions {100 pmaoll) wers
pepamsd and noubated & desabed in the Maleris and mathods.
Adquots wors removed af O b (il panel and 48 b (middle pan e,
diisd 1o 1 pmoll in water and imaged by stomic fome micmsoopy

these adotbed peptide specles were < 2nm. A lesaer
populstion of small spherical species was also obberved
the freshly recomtitubed AP({1—42) sample. The heights for
these ranged from 2 to 5 nm with an sverage of 3.2 + 0.8 nm
{SD) for m = 115 messurements sugpesting that they may be
fibrillar precursors. The few bright spots (helghts > 20 nm)
in the O h image may represent the rapld formation of
amorphous agrregstes immediste by following reconstimtion
Contmed meubation of the APR{1—42) soluion produced
thin flexible fiber-like ametures (Fig. 1, middle panel) which
comclded with the ability of the peptide to provoke a marked
incresie in TNFa production. Uking the conditions deseribed
in the Materiak and methods, an neubston tme of typdcally
48 h was necessary to produce an AR aporessted
species that nduced & donificant cell response, AFM helght
messurements of the ARN1-42) fibers were plotied = a
histogram (Fig. 1, rght panel) and fited for multiple peaks
Peak-fitting analyais subdivided the fibers into two poguls-
tons. The first, snd moit populated pesk, had 3 mesn helght
and SE of 4.4 + 0.1 nm. The second, lesa populsied pesk
had & mesn height of 79 + 06 nm (SE). These values were
dmiler 0 previous AFM-based morphologeal snalyses of
types 1 and 11 fibriller AP (Harper of al. 1997a)b; Stine of al.
AM3) and agreed with an earlier repont by Fasbender of al.
linking fibeiller AP(1-42) with activation of the imate
immune response (Liu ef ol 2005). Our resulis demonstrated
that fibiri Dar A B 1—42) waslargely reponsble for THP-1 cel
activation.

The THF-1 THFa production versus cell exposune time o
15 pmolL fibrlar A B(1—42) was slighily i fferent from that
of LPS and PamyCSEy in that it peaked consiiently at 10 h
(Fig 2, circles) compared with & h. THP-1 cells were not
pre-treated with a diferentsting agen in these sudies
although we obaerved that AR1-42) rapidly and effectively
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4 & 8 1w 1z
Finer naignt (nm)

WFN). The Supmx 5 @m mages are shown in height mode.
Tha frequency hisiogram fight panal) wes pmpamd from 300
height mesummants of the 43 h mage and fed ¥ = 0938 o a
he-poal Ganssian ares curs usng PeskdFi sofiwers w30 (Systat
Sofwam, Inc., San Josa, CA, USA).

comverbed the suspemion monosybes into adhenent cell, A
repretentative cell adherence time course & shown in Fig. 2
(riangles). Multiple experiments found that fibeillar AB1-—
42) st 48 h of aggregation typlcally mduced 74 + 4% (SE)

100 S ~ 100
80+ - 8D
40 L ap #
+2n— —2n+
T s 5L

Cell exposure time ()

Fig 2 Thme course of amyloidbeta () {1 -$2knduced THF-1 cal
adherence and wmoer necmsis facior alpha (THFa) producton.
Transiormation of THPF-1 suspension monooyies ino adhenent cells
frianghss) duing sxposum o 15 pmoliL Skwiller AR1-42) wes quan-
fiated by drect muning as described in e Matenals and mathods:
and presaied s % of adhorent calls relative to T iotal oounted calls
found in e wamsh, mnd pooks. Eror bas: {SE)
wenre | by ewor propeg fmm n = & sats of counts drom
wach of T pools ot sadh Sme poirt. THR: iswels wem determined in
THP.1 oall supsmatan s ot fa above Smes folowing freatmant with
15 pmoldl Biwiler AR1-47) THFs is repmsenied s % of the max
mum responsa which was 10 b for ssch axpssmant. Eror bas mp-
meant SE for six Hals in teo expesimens dor 0, 8, 10, and 24 h and
fros Halk in one epement for 2 and 48 h. Emor bas $hat ars not
wisibis are smallsr fhan e symbol. Actual ThFs levals for tha 10 b
fma pont averaged 507 pgiml.
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adherence of the THP- 1 cells after & h off A f{1—42) e xposure
{five separate experiments, nine tials wotal, dats not shown).
The observation that a longer cell exposure tme was
necessary 1o feach peak A P1-42)nduced THF2 production
supmedts that THP-1 cell sdherence or diffrentision is
important for AP responivenesa, Subsequent experiments in
this report wiltzed 26 hoell exposune o fbeiller AR1-42) 10
limit any ong-term prodinftsmmstory effecs to the cells. The
AP1-42) concentration {15 pmol/L) that was used & based
on monomerc units and does not reflect the acial fibellar
AP1-42) concentration which i3 Hkely nuch lower AP1-
42) concerirations below 15 pmoll dd not effectively
induee THF2 production from the THP-1 cells.

To delineste differences in the fibe lar AR1-42) reponse
compared with ultrapure K12 LPS and rule out the presence
of small iraces of ¢ ontaminsting LPS, the compound FMX-B
wai ledted for its effect on both imuli PMX-B neutraltees
the endotoicity of LPS by binding directly with the LPS
lipid A modety snd dsorganteing the outer bacterial mem-
brane (Vasrs 1992 Tavbery of al 2000). The meludon here
of 0.1 pg'ml PMX-B with ultrspure K12 LPS and AR1-43)
had dramstically different effects on the two prodndlsmms-
tory molecules (Fig. 3). Greater than 98% of the K12 LPS
signal was blocked by PMX-B with Hitle effect on the A
signal. PMX-B (0.1 pg'ml) ako had a small effect on the
THP-1 response evoked by 300 pgiml PamCSEy (dats not
shown) sugpedting that PMX-B may have some non-specific
effects or there are subie structural sinilarites between the
three proinflammastory stnul used in these smdies AR
PMX-B and LPSPMX-B smples were ncluded oo all
experiments for continual mondioring of trace ¢ oniaminstion,
Some experiment showed a grester than +10% effect of

120+

100

NN

B+
THF @ &0

404

AB(1—£2) ARPMX-B LPS LPS/PMX-8

Fig 3 Eflsct of polymyxin B PMXE) on e poinfammaiony re-
sponsa. THP.1 cells wem tmated with 15 pmolll amyibid-beta (Af)
{1=42) and 10 ngéml wtrapurs K12 lipopolyacchards {LP5S) in e
shsances or pmsance of 0.1 pp'ml PMVX-B. Tumor necross facior
alpha (TH Rz lovels are pm sen ted as % of the Afl| 1-42) and utspum
K12 LPS responsa in e absenos of PNVDGB. Actual THFR lovals
svaraged 328 and 853 pgiml for AN1-42) and LPS, mspacively.
Ermor bars represant SE for 15 Wals in fve separate expeiments.
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PMX-B on the AP response although XTT cell proliferation
mesiurements ndicated thene was no deectable presence of
bacterial contamination within the AP sample. For clarity,
thise experiments wene nol included i the TLR amibody
neutralizstion udies deseribed in the ensung sections.

A TLR antibody neutraltzstion sssy was developed 1o
investigate which transmembrane TLRs mediste the AR1-—
42) proinl] ammstory respomie. The ssay was mitdally ested
on the TLR agonists LPS and Pam(CSEy o delermine and
demonstrate the semitivity of the asntbody neutralizstion
approach. The ulirapure K12 LIPS from Invivolien has been
stringently purified by double phenol extraction of a 0.2%
ety lmine'l P deoxycholsie aqueous phase. This pro-
cedure has been shown o remiove conlaminating Hpoprokdins
reapomible for TLR2-medisted stgnaling (Hirschfeld e al
20000, Our TLR antibody neutralizstion resulls were comds-
tent with those findings. The uhrspure K12 LPS response
wad sgnificantly attenusted by CD4 (75 mhibdtion) snd
TLRA (87% inhibition) antihodies (Fig 4, black bars) with
no effect by the TLR2 sntibody (12% nhibition) ompared
with the Ig(i Botype control (10°% inhikton). The CD14
{sotype contol, IgGl, nhibied just 6% of the K12 LPS
reaporse, Antbody neutralization of the TLR2 agoniat
Pamy(" 5K was clear. Only the CD4 and TLRE2 antibodies
had blocking sctivity (Fig. 4, gray bars). The TLE2 antbody
was extremely effective and blocked 96% of the Pamy CSE4

1204
100 4

B0

THF e

By

404

204 -
&

n-
— TLAZ TLA4 G2 COM4 G

Fig- 4 Tol-lke recepior (TILA} anbody neutmlizaton of lipopolysac-
chartle (LPS) and ipaimitay! cyseiyl senl etaiysine (PamiCSH).
THP-1 calls wors pre-incubated with 10 pg'ml TLA antbodies and
mouss ambody isohpes controb as descrbed n Materinls and
mathods prior to addiion of 10 nghml wtrapurs K12 LPS (blad bas),
or 1 ngiml Pam,CE¥, (gay bam). Ambodes jaBicecience] with
cormapond ng isotyps oon teols wiees TLUAE and TLAY (Igh2) andC D14
{igG1). Ermor hars repmsant SE for six irisls, o sxpesiment s for e
LPS data and fwes Fiak, one exparmant for e Pam,C8K; data
Samimily sgnficant difsmnoes detenined by Most am denoted
with symbols (*p< 0001 and "p«< 00025 from mepecive ig&
oonirols). Actual fumn or necmsis factor alpha (THFa) e s, whidh o
presanted a5 % of the utrapum K12 LPS and Pam,C58K,; msponss
pre-mated with phosphate-bufiemd saiine |PES) wehcle, awraged
2186 and 257 pgiml, respactoaly.
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response while neutralizstion with the CIN4  antibody
Bocked W% of the response. Nedraltzaton of LPS and
Pamy CSEy with anti-TLR2 and -TLR4 antibodies respec-
tvely was not ststisteally differet from Ig(2 control
{p = 025),

The TLE antibody neutralizstion studies were conducted
againit the AR1-42) proinflammaony response o elockdate
which CDMATIRE mecepior combination was medisting
AP1-42induced THFa production. Pre-treatment of the
THP-1 celk with a CD 4 antthody effectively sttemsted the
AP1-42) response (62% inhibton relstive to ARTEGI
comtrol) (Fig 5) consdstent with a previows meport (Fasb-
ender ef af. 200d). Surprisingly, both TLE4 (35% inhibition)
and TLR2 (5(P% mhibition) amibodies were effectve st
slgnal sttenustion compared with the st TeG control with
TLE2 possessing grester blocking sctivity, Statistical anal-
yals mdicated sgnificant inhibitory differences between the
antibodies and thelr respective IgG controls (p < 0L001).
These data mdicste that muldple TLRs may nterset with
fibrillar AP1-42). PMX-B had an sversge atenuston of
4 + 3% SE on the APR142) response in thess experments
{see Fig. 3). A different set of TLR antibodies and sotype
comtrol were required for the AP1-42) neutralizstion
Audies because of significan attenustion of the A[1-42)
response by the mowse IpG2 control used in the LPS and
Py CSE studies (Fig. 4). For this resson we utl feed TLE2
and 4 sntibodies produced in rat (InvivoGen). Furthermaone,

LY
4 csﬂ'av & &
Fig. 5 Talkliks {TLR) ty of e amyioid-
beta Af) {1-42) proinfammatory resporse. THR mils wers pre-
incubated with 10 pgiml TLA antibodies and isotyps contmls prior io
#w mcdifion of 16 pmolil aggregeted Af{1-42). Ansibodies with cor
msponding Ectyps contmls wers TLRZ and TLRM (=t IgG) {Invio-
Gan) and G4 jmouss IgG) eBicscenm ). Tumor necmesis tscior
sipha (THFs) lovels aw pesenisd as % of e AR 1-47) resporss
fma i wit b phasphate-b uilened saline (PES) vehicle. Ermr bas mp-
msont SE for 12 irinls in four separate experments for TURZ, TUR4,
and @t igh and six el in wo sxpasments for CD14 and IgGl.
Swtslically agnifient diferences fom repedive Igh confrols are
dencted with an asterisc {*p < 0.001). Actual THFa bevels nduced by
Af1=-42) slone averaged 328 pgml.

(%) &0 - - "
a0
= AN
o
& o
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the mouse IgGl laype control &t 10-20 po'ml showed a
comdabent 20-30% imulbstion of the APR1-42) response
(Fig. 5), which may have offset some of the effectiveness of
the anti-CD14 newraltzation. These Baes underscored the
mportance of including TG isatype controls in antbody
neulraltration experiments for proper inemretation. Becsuse
of these IgG effects, we wene careful nol i ssign oo much
imporiance 1o & ferences betwoen TLR2, TLR4, and CD14
antibodies in AR 1—42) neutralizing shility. The antbody
neuraltaton  rels demonstated that muhiple TLRs
medizie the APR1-42) innate immume response and that
baoth TLR2 snd TLR4 have active roles in the pathway.
Antbody blockade of the AP{1-42) inmie immune
responde was dose dependent In separsle experiments
TLR2 and TLR4 aniibodies concentrations were evalusied
at § and 20 peiml. compared with 10 po'ml anibody n
Fig 5. Neutralizstion effectivensss incressed with higher
concentrations of TLR2 and TLR4 amibodies (Fig &)
Similar 1o Fig. 5, the TLR2 antbody agsin was & shghily
mane effective blocker of the APR(1-42) response than the
TLR4 antbody. Owversll, the individual TLR antibodies
clearly blocked AP1-42) activity but only 1o & certain extent
of around 50-70% inhibition. The resuls presented here and
those of Fassbender er af. (200d) suggest that a significant
amourt of the Af-induced pronflsmmatory response &

T T T
o 5 10 15 20

Antibody (pgfml )

Fig & Dose-dependence of ol rempior (TLA} ansbody neu-
tmlizing abilty againd amyoidbata (Af) {1-42). THP-1 cells were
P i with -] of TUA2 jcimins) and
TLA4 (sanghe) ambodes {(vvoGan) or =t Igh Eotyps contmll
fsquares] prior fo $w additon of 15 pmolfL sggregated A 1-42).
Tumar necmsis isctor alpha (THFA) isvels are presented = % of e
AP —£2) mepores prodrested with phosphate-bulfesd saline [PES)
wahichs. Tha 10 pghml TLR2, TLRY, and mt igh dats are reproducsd
tmm Fg. 5. Neutralzation dats am Tha average + SE for n= 3 ek
& pgiml) and = 6 inals (20 pgiml). Stdstcally signifcant difier
ances from respectve Igh comme are demoled by symboks
[« 0001 and *p « 0.005). Actusl THF 3 inwls induced by A 1-42)
alona wem e same as Fig. 5
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controlled by innate immune receptons, One explanation for
the remaining unblocked activity may be contributions from
other receplors that medise the AR proinflanmstonry
reapone sch as the CD36M s f-neginCDE47T multrecep-
o complex. (Bamberger af al. 2008).

A second explnation may be that since both TLR2 and
TLR4 mediste AP-induced TNFa producton, one receplor
may compensste for the other when either one & macces
sihle. To test this idea, a neuvtralizstion ssssy wiltdng
combimatdons of TLR2, TLR4, and CIN4 anfibodies was
conducted v ssses the effect of blocking muhiple TLR
patlways medisting the APR(1-42) response. All four
pemutaton wene examined &t § peiml of each antibody.
A ower antibody concentration was wad i betier observe
the effect of combinstion antibody trestment. Funthermorne,
each cell trestment was supplemented up o 10 poml sl
IgG and § peiml mouse IpGil to meteh the triple-combins-
tion TIRATIR4ALDI4 sntbody trestment with isotype
control amounis. For this resson, direst comparison of the
combinaton antibody restments in Fig. 7 with those in

Fig. 7 G

N arsbody
{1=42) pmirdammaory responsa. THP-1 mis wore pe-noubeed
with 5 pgéml tollike moepior (TLA) 2, TLAE fvivoGen), or CO14
{eBnscience) antbodes or mmbinations of Se fres prior o e

n of Sa amyioid-beta (A

of 15 pmoil aggregaied AR 1-42). A med isofyps control
sample was also ussd which contained 5 pgiml mousa IgG1 (CD14)
and 10 poiml mt Igh (TLAZ, TUAY). Antibody pre-tmatmants wem
supplemen isd with one or both of the above IgGs so that aach ang-
by i similar iy and Igh Tumar
necrosks fador slpha (THF ) isvels ars pesented s % of $ha AJ{1=
47) msponss pre-reated with phosphatebulios d saline [PES) weini.
cha. Ermr bam repressnt SE for n =3 trinls. SiasScaly signifioant
differences from the @t lghmouss g5 @niml am denoled with an
stk {°p « 0.001). Less significant differences were obsorsed for
indrdcual ang-TLA2 (o « 025), and-TLAS {p <0.05), and ans-CO0M4
{p= 0.20) amibody raatmenis Actusl THF: el induced by Al{1=
427) alone was 457 pgiml.
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Figs 5 and 6 i3 nod straighiforvand A small reduction of the
ARl 42-induced TMF2 response was observed in the
presence of 5 poml of each amibody (Fig 7). As noted
earber, the mowe IgGl Botype control for CD1 4 sugmented
the APR(1-42) response. Mouse IgGl (5 pa'ml) was
inchided n esch sample that dd not conain CIN4 and
may have maiked some of the TLR blocking ability. The
differences in neutralizing shility of each antibody at § pa/
mL in comparion with the mouse TgGi/rat IgG control wene
of small or no ststisical mportance (Fig. 7 legend). TLR
antibady double combinations were much more effective,
particularly the combnation of TLRATLRS which blocked
6% of the response. Interestingly, TLRZ/CD14 and TLRS/
CIN4 antibody combinstions also blocked the response
beter than the indbidual antibodies sugpesting that AR
intetacions my overlap o some extent with both TLRS and
CIN4. The moat effective neutralizstion occurred afler
antihody pre-trestment with a TLRUTLR4ACDIS wple
combiration which blocked 709 of the APR{1—42) response
compared with the mixed mouse IpGliat 1gG isotype
control (Fig. 7).

Discussion

The data preseried here demonstrate a role for both TLR2
and TLR4 in medisting the THP-1 mono: e macrophage
profnflammatory response indtiated by fibrillar AR1—42)
Cur mesulis are consistent with a previous report by
Fasbender of af. (2004) showing CD14 antbody neotral
{zation of Af-induced microglisl activation Although CD14
functions & a ligand-binding scossory protein for both
TLR4 and TLE2, Fasshender of al propoded thet the AP
e lular activation was likely transitied by TLRA based on a
podtive mespomse obtained n Chinese hamster ovary cells
lacking & fmetional TLRE2, However, this result was not
confirmed n cells that do express TLR2 such &3 microgha,
peripheral blood monocybes, or THP-1 cells and therefore did
not exclude arole for TLR2 when present in the cell. In et
our dats indicstes that TLR2 snd TLE4 can both iransduee
the AP signal snd mey compensste for esch other when
necessary. The convergence of AP and the nnate fmmune
sydem suggests that in some manner fbellar A B 1-43) may
act like a PAMP-like infectiom agent through TLR sctivation
and & prodnflannstony ¢ascade.

Several reports sugpest that AR sctivation of the innae
immune mesponse may have beneficial spects. Coltured
primary microghal cells prepaned from CD4-wild type mice
were significantly betier st miemalizing fibrillar AR1—42)
compared with cells prepaned from CT4-deficient mice (Lin
ef al 2005). Furthermore, it was shown that stmulbstion of
BV2 mouse microghal cells with TLR4, TLR2, and TLR®
agoniis ¢aued significant uptake of AP(1-42) (Tahara of al
2000). Moreover, the activation of TLR2 in primary mouse
microghial cells with TLR2 agomnist peptidoglycan enhanced
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formay] pepide recepior-like 2-medised upike of AR1-42)
{Chen ef al 206). fn vive studies support the celluler studies
and have shown an incressed AR load in Mo/Hu AFPawe
P51dES mice with deficlencies in TLR4 (Tahara of al. 2006).
The oheervation of incrested CD14 immunmiaining in AD
brain shices companed with age-maiched control (Lin of al.
A05) has added o the growing body of evidence linking
innate immunity with neuradegenerative divesie (discused
in Nguyen ef al 2002).

The sensltivity of mnaie mmune receplors io LPS (TLR4)
and Hpoproteins (TLR2) demands that careful ¢onsideration
be given 0 expermentsl preparations Csution has been
auggeded when inempreting an imate mmune response and
potental contmination of the preparaton with backeral
components mus be mled ou (Klelian Xd6). Endotoxin
messurements of the commernctal AR los wilized in these
Audles foamd undetectshle levels of LPS and the possibdlity
of externally miroduced bacterial contaminstion was fou-
tinely mondiored using sn XTT cell proli ferstion sy, These
tests were substantisted i Fig. 3 where PMX-B had no
effect on the AR1-42) response in the sme experments
which TLR antibodies showed neutralizing activity, Further-
more, the innate immune responie dependency on AR1-42)
aggregation time also srgued sgainat e presence of
contaminanis in the AP sampl. Low levels of TNFa
production were typlcally observed when the peptide was
freshly recomstitied. Continued incubstion (48-96 h) of the
peplide at 4°C produced maximal stmolsory  sctivity
followed by & decline o baseline levels upon further aging
of the AR sample. This type of tme course would not be
expecied if the sample contaned conaminating TLR agon-
14 and degradstion of the contaminants after 1 weoek would
nol be expecied either & AR(142) aggregstion solutions
wre incubated st 4°C until cell exposure. The decline in
Almulstory activity wpon contnued ageregstion of the
peplide 13 of inerest and currently wnder nvestigation
our kaboratory. Omne explanation nasy be that mddway through
the agiremton p the actual miration of fibrllar
AR & well below 15 pmoll, which & hesed on monomer
i, Continued formaton of fibers may creste oxic effeck
thereby muting celluber reponses. We are curmently imves-
tgating the strewral snd blochemical bads for the AP
aggre gation Hme-dependent responae. The cumulative realls
and analyses ndicate that the THP- 1 monocyte THF 2 slgnal
B caused by AP and not contaminents

The stmuctural festres of PAMPs that confer TLE ligand
specificity ane not comple ly understood. The lipid A modety
of LPS is the primary region responsible for LIPS activity
{Chiller ef af. 1973) and i3 thought & possess the PAMP
motif, Lipid A & composed of a diglucosamine backbone
with efter- and amide-linked long-chain fatty acids. The
mumber and length of lpdd A scyl chains vary among
bacieria and aher LPS potency (Miller ef af. A005). Although
some TLR2 ansgonist have a proten component the

& 2007 The Awthors
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common stuctural festure among PAMPS sppears 1o be
amphiphilicity with significant regions of hydrophobicitye. AR
fibrils can be included in this category based on solid stste
MNME stdies indiesting 8 hydrophobic core ruming along
the fiber axis (Petkova of al. 2002). Cryatallographic stdies
of soluble CD14 show & large MNAlerminal hydrophobic
pocket important for LPS binding (Eim ef of. 2005). The
binding pocket overtaps with sress of conserved leusine-rich
repeats which are abo found on TLR4. AR fibrils musy
P structural comp b that have similerides with
both TLR2 and TLR4 agonisis

The mle of imnate immunity in the pathogeneds of AD
will need further imvestigation Effective TLR-medisted
phagocyioats and clesrance of AR agprepstes would
theoretically provide beneficial effects athough a sustained
nflammatory response o sgpregated AR has been aug-
geded &5 one of the wmderlying mechaniams of progressive
newrodegeneration in AD (MoGeer and MeGeer 1998) and
may in fact exacerbate AP deposition (Golde 2003). AR
plaque-induced recndiment of peripheral monocybes into
the brain parenchyma snd thelr subsequent & ferentiation
nto phagoeytie micoghal cells may help explain the
i d CI¥4 expression in AD brain shoes reported by
Liu efal (2005). The PAMP-like featres necessry i
activate the intale mmune response may not be present in
all AP sggregate morphologies therely allvwing certain
populstions 1o elode recognition and suggesting that nod all
can trigger a respondge. This ddea B consiten with the
ohserved diversity in AP aggregste morphologies i the AD
bran. Some of these deposdis sre sumpmnded by inflam-
mstory markers while others lack inflammatory eytopathol-
oy (Selkoe 2004). Furhermore, some AP aggregsie
dructures that initiale an nnaste mmune response may be
resktant i phagocytic degradation. In summary, the
mteraction between AP agpregsies TIR: and innste
immunity may further explain some of the complexities
of AD etiology and provide a potential podn of therapeutic
intervention.
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1 INTRODUCTION

1.1 Alzheimer’s Disease: Comprehending the etiology of the disease

Advances in scientific and medical research have resulted in a dramatic rise in
human life expectancy. In the 20" century, an increasing number of individuals have
reached the age at which short-term memory defects linked with normal aging of the
human brain has become one of the major concerns. Although this is a common
occurrence among older people, the problem arises when a person starts to have trouble
following complex discussions and making decisions, and begins to experience a
heightened degree of forgetfulness. These are common symptoms of dementia, an illness
that is associated with age, in which parts of the brain begin to malfunction causing
disruptions and progressive loss in memory, judgement, reasoning and behavioral
stability (St George-Hyslop 2000).

Alzheimer’s Disease (AD) is the most common form of neurodegenerative
dementia. This illness currently affects about 10% of persons over 65 years of age, and
>40% of people over 85 years (Buxbaum and Tagoe 2000). Globally, the disease affects
almost 2% of the population in industrialized countries, and it is predicted that the

occurrence of AD will increase three-fold within the next fifty years (http://www.alz.org).

There is no strong correlation between the occurence of AD and race or sex type.

However, it is more prevalent in women mainly due to the fact that women live longer



than men (Irvine, El-Agnaf et al. 2008). To date, there is still no definitive diagnosis of
the disease other than postmortem analysis of the brain (Georganopoulou, Chang et al.
2005). However, the effort to decipher the causes and mechanism of AD has gone a long
way since its discovery in 1906 by Alois Alzheimer (Selkoe 2001). Studies done for the
past decades have identified two proteins that comprise the classical neuropathological

lesions that are diagnostic of AD: the neurofibrillary tangles and senile plaques.

1.1.1 Neurofibrillary Tangles

In an effort to better understand the pathology of AD, researchers have done post-
mortem analysis of the human AD brain. Examination of the degenerating neurons in the
diseased brain regions showed the presence of nonmembrane-bound clusters of abnormal
cytoplasmic fibers ~20-nm length, which are referred to as neurofibrillary tangles (Kosik,
Joachim et al. 1986; Selkoe 1996; Selkoe 2001). Furthermore, rigorous
immunocytochemical and biochemical analyses identified the microtubule-associated
phosphoprotein tau as the main component of neurofibrillary tangles (Grundke-Igbal,
Igbal et al. 1986; Kosik, Joachim et al. 1986; Selkoe 1996). In the neurons, tau proteins
can be found predominantly in axons. Under normal conditions, tau exists as a highly
soluble phosphorylated protein, which functions as a stabilizer and promoter of
microtubule polymerization (Hanger, Anderton et al. 2009). Microtubules are important
for providing routes where nutrients and other molecules can move through cells (St
George-Hyslop 2000). However, excessive tau phosphorylation and overexpression was

found to be the main cause of transformation of soluble tau into tangles. Moreover,



numerous studies using antibodies specific for various phosphor-tau epitopes have
suggested that the disregulation of tau phosphorylation is due to the augmented activity
of certain kinases, such as glycogen synthase kinase-3 (GSK-3), cyclin-dependent kinase
5 (cdk5), casein kinase 1 (CK1) and cyclic AMP-dependent protein kinase (PKA), as
well as inactivation of certain phosphatases (Selkoe 1996; Patrick, Zukerberg et al. 1999;
Churcher 2006; Hanger, Byers et al. 2007; Hanger, Anderton et al. 2009). So far, one
recent therapeutic strategy focuses on how to subtly regulate the activity of kinases. The
activation of phosphatases as a therapeutic target seems unlikely due to still poorly
understood mechanism and involvement of phosphatases in tau pathology (Hanger,

Anderton et al. 2009).

1.1.2. Senile plaques

Another directly observable hallmark of AD is the presence of extracellular senile
or amyloid plaques. These clusters of protein accumulate in the spaces between nerve
cells and are present extensively in the hippocampus and the cerebral cortex region of the
AD brain. Closer analysis showed that these plaques contain extracellular deposition of
numerous proteins, the principal of which is amyloid B- protein (AB) (Selkoe 2001).
Numerous studies have associated both the more common 40-amino acids long A
(designated as AP(1-40)) and the less common but faster aggregating 42-amino acids
long AB(1-42) with AD. There are two forms of senile plaques that have been detected in
the diseased brain: neuritic plaques and diffuse plaques. Neuritic plaques are compact and

contain the fibrillar form of both AB(1-40) and AB(1-42). Further evidences revealed the



presence of reactive proinflammatory cells called microglia, as well as reactive
astrocytes, along with the plaques (EI Khoury, Moore et al. 2003). Swollen and deformed
neurons in the vicinity of the plaques are also observed. Microscopic analysis of the
diseased brain sections showed that the size (diameter) of neuritic plaques vary greatly,
from 10 to >120 um (Selkoe 2001). In contrast, diffuse plaques are composed exclusively
of AB(1-42). These amorphous plaques are also observed in young individuals afflicted
with Down’s syndrome before Alzheimer’s type-dementia is manifested (Irvine, El-
Agnaf et al. 2008). Moreover, immunohistochemical studies of patients with Down’s
syndrome demonstrated the presence of diffuse plaques at an early age, but neuritic
plaques only occur at a later age, along with the presence of abundant neurofibrillary
tangles (Lemere, Blusztajn et al. 1996; Selkoe 2001). Due to these findings, scientists
considered diffuse plaques to be precursors of the neuritic plaques, and thus called diffuse

plaques as “preamyloid deposits”.

1.2 Probing the molecular mechanism of AD: Focus on amyloid 3- protein (Af)

As mentioned previously, AD is characterized by progressive accumulation of A3
protein in the brain sections, mainly in the cerebral cortex, hippocampus and other
regions of the brain. To understand the protein’s involvement in the disease, it is crucial
to fully comprehend the molecular mechanism of AP production. A major breakthrough
in the study of AP and its connection with AD transpired when scientists effectively
isolated plaque amyloid deposits from the diseased brain and successfully sequenced the

AP protein (Selkoe 1996; Mattson 2004). This led to the identification of amyloid



precursor protein (APP) as the major source of AP (Selkoe 1998; Castellani, Lee et al.
2008). The subsequent discussions below will focus on the mechanism of A production,

AP hypothesis, and structural studies of AP and how it contributes to AD pathogenesis.

1.2.1 Amyloid precursor protein processing and generation of AP

Extensive reviews have been written about the nature of the human amyloid
precursor protein. APP was identified as the main source of A that is implicated in AD.
Numerous researchers like Dennis Selkoe of Harvard, Mark Mattson of U. Kentucky and
Edward Koo of UC San Diego, among others, have focused on elucidating the nature and
function of this type-1 integral membrane glycoprotein. The human amyloid precursor
protein (APP), which is located on chromosome 21, is composed of a single membrane
spanning domain, a large extracellular domain and a shorter (~47 amino acid)
cytoplasmic COOH-terminal region (Selkoe 2001; Thinakaran and Koo 2008). Studies
now show that approximately half of AP(1-40) or AP(1-42) sequence lies on the
extracellular part of APP (AP amino acids 1-17, from amino acids 597-613 of APP that is
695-amino acid long (APP-695)), while the other half, which contains hydrophobic
residues, lies within the phospholipid bilayer (Mattson 1997). Among the numerous
isoforms, the largest of the known APP splice forms is comprised of 770 amino acids
(Suzuki and Nakaya 2008). This particular APP is expressed throughout the body, as well
as in neurons. Increasing evidence suggests that APP is important in neuronal growth and
survival, synaptic plasticity and cell adhesion (Buxbaum and Tagoe 2000; Mattson 2004;

Thinakaran and Koo 2008).



A model of APP processing is illustrated in Figure 1.1 (Mattson 2004). APP
trafficking involves transit from the endoplasmic reticulum to the plasma membrane
where it undergoes post-translational modification. Afterwhich, APP is rapidly
internalized and translocated back to secretory vesicles through endocytic and recycling
compartments (Selkoe 1998; Thinakaran and Koo 2008). During this trafficking process,
APP molecules can undergo specific proteolytic cleavage through the action of enzymes
a, B and y secretases to release the secreted products into the extracellular space. The
likely APP cleavage sites by the secretase enzymes that are discussed in this section are
based on the sequence of APP-695. The action of a secretase on APP was the first to be
identified. Investigations showed that a secretase clips 12 amino acids NH,-terminal to
the single transmembrane domain of APP (between amino acids 612 and 613, amino
acids 16 and 17 of AP) (Sisodia, Koo et al. 1990). This cleavage releases the non-
amyloidogenic form secreted APPsa ectodomain from the cell surface, leaving an 83-
residue (APP83) COOH-terminal fragment in the membrane. This residue is further acted
upon by y-secretase (cleavage between amino acids 639 and 640 of APP-695, and at the
COOH terminus of AB) to form a shorter 3 kDa peptide p3 into the extracellular space.
Aside from the products produced through the action of a-secretase, alternate APP
cleavage occurs 16 amino acids NHj-terminal to the a-cleavage site is mediated by
secretase (amino acid residues 596 and 597 of APP-695 that corresponds to the NH,
terminus of AP) (Mattson 1997; Selkoe 1998; Selkoe 2001). Consequently, a smaller
fragment (S)APPP is released into extracellular milieu, retaining a 99-residue (APP99)
COOH-terminal fragment that contains intact AP in the membrane. This COOH-terminal

fragment can be further proteolytically cleaved by y-secretase to generate an intact AP
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Figure 1.1. Processing of Amyloid precursor protein (APP). (a) Cleavage of APP involves the
activities of a-, B- (BACE1) and y-secretase. o secretase cleavage results in the release of soluble
non-amyloidogenic APP fragment (sAPPa) from the cell surface and leaves an 83-amino acid-C-
terminal fragment (C83). BACE cleavage leaves a 99-aa residue, which can be further processed
by y-secretase to generate and liberate a 39-42 residue amyloidogenic peptide. The 99-residue
fragment can also be internalized and further processed by y-secretase to produce AP (1-40)/(1-
42) in endocytic compartments. C99 cleavage by y-secretase also liberates an APP cytoplasmic
domain that can translocate to the nucleus for modulation of gene expression, i.e., induction of
apoptotic genes. Processing of APP/C99 residue by caspases results in the production of
neurotoxic peptide C31. (b) Amino acid sequence of AB(1-40) and APB(1-42). The bold italics
represent the part of AP that lies partly outside the cell membrane and is being liberated upon
cleavage of APP by a secretase (Mattson 1997; Mattson 2004)



peptide 38-42 amino acid residues in length (Mastrangelo, Ahmed et al. 2006; Pearson
and Peers 2006). Under normal conditions, APP cleavage by B and y secretases typically
results in the formation of 40-residue AP peptide. However, about 10% of the cleavage
product is AB(1-42) (St George-Hyslop 2000). Because the nature of y secretase has not
been fully understood, further studies are still being done as to the site of cleavage of
APP99 and APP83. However, several lines of evidence showed that considerable amount
of AB(1-40) and AP(1-42) are made during internalization and internal processing of the
APP COOH fragment (Mattson 1997; Selkoe 2001; Mattson 2004). The formed AB(1-40)
or AB(1-42) is then released from the cell and has likelihood to form fibrils.

The o secretase-catalyzed APP cleavage is believed to be the predominant
processing pathway for APP and the APPsa have distinct extracellular functions.
Numerous in vitro studies reveal increasing number of roles of sAPPa in neurons
including cell survival (Mattson, Cheng et al. 1993; Ohsawa, Hirose et al. 1995),
stimulation of neurite outgrowth (Clarris, Nurcombe et al. 1994; Ohsawa, Hirose et al.
1995; Furukawa, Sopher et al. 1996), regulation of cell adhesion, and protection against a
range of metabolic, excitotoxic and oxidative insults, among others (Mattson, Cheng et
al. 1993; Smith-Swintosky, Pettigrew et al. 1994; Selkoe 1998).

The cleavage by p-secretase also normally occurs to produce and release AP.
Studies indicate that AP is being generated constitutively by normal cells in blood and
cerebrospinal fluid (CSF) with normal concentrations in the low nanomolar range (3-8
nM for CSF and under 500 pM in plasma) (Seubert, Vigo-Pelfrey et al. 1992; Motter,
Vigo-Pelfrey et al. 1995; Scheuner, Eckman et al. 1996; Dumery, Bourdel et al. 2001;

Ramsden, Plant et al. 2001). Thus, unaffected individuals normally produce and clear Ap.



Additionally, the AP protein being normally generated is thought to have a normal
physiological role. On the other hand, individuals afflicted with AD generate Af that

forms ordered aggregates, which are deposited as amyloid plaques.

1.2.2 Missense mutations in APP and other mutations cause autosomal dominant AD

Familial AD (FAD) occurs in mid, rather than late, adulthood (Buxbaum and
Tagoe 2000). Numerous studies of FAD cases reveal that early-onset AD (EOAD) is
caused by mutations in APP and presenilin genes. These mutations affect the metabolism
or stability of AP and cause autosomal forms of AD (Selkoe 1996; LaFerla, Green et al.
2007).

Several lines of evidence showed that mutations affecting the APP gene (Figure
1.2 adapted from (Selkoe 2001)) are closely associated with AD by increasing local
concentration and deposition of AP (1-42). Most of the mutations are located within the
AP sequence or in regions of the B-APP gene that encode amino acids that lie
immediately adjacent to the B- or y-secretase cleavage sites (Chartier-Harlin, Crawford et
al. 1991; Goate, Chartier-Harlin et al. 1991; Mullan, Crawford et al. 1992; Dumery,
Bourdel et al. 2001). The following discussion enumerates some of the known missense
APP mutations that are linked to familial or early-onset AD.

A double mutation (APPAxy) that alters Lys670Met671 in APP;7 to asparagine
and leucine, respectively, also known as Swedish mutation, can be found just adjacent to
the site of B secretase cleavage and induces heightened B-secretase cleavage to produce

more AB(1-40) and AB(1-42) (Citron, Oltersdorf et al. 1992; Mullan, Crawford et al.
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Figure 1.2. APP mutations genetically linked to familial Alzheimer’s disease. The sequence
within APP region that contains the Ap and transmembrane region is shown in expanded form,
with a single-letter amino acid code. The underlined residues represent the AP sequence. Arrows
represent the cleavage sites for o, fp and y secretases. The vertical broken lines indicate the
transmembrane region of the APP. Residues in yellow are the known sites for missense
mutations, and residues in blue are the amino acids that replace the amino acids in original
sequence. These are mutations identified in certain patients with familial Alzheimer’s disease.
The three-digit numbers represent the residue number according to the APP-770 isoform. (Selkoe
2001)
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1992; Selkoe 2001). On the other hand, the five mutation sites that occur just COOH-
terminal to the y-secretase cleavage sites (some of which are London mutation
(Val7171le), Rouen mutation (Val715Met) and Florida mutation (Ile716Val)) seemingly
have an enhancing effect on the production of AB(1-42) species (Goate, Chartier-Harlin
et al. 1991). The mutations within the AP sequence enhance the aggregational properties
of all AP species. For instance, Dutch mutation (Ala692Gly) results in formation of
plaques and tangles associated with dementia, and severe hereditary cerebral hemorrhage
with B-amyloidosis (Hendriks, van Duijn et al. 1992; Buxbaum and Tagoe 2000; Selkoe
2001). Afflicted individuals show extensive amyloid deposition in vessel walls of
cerebral cortex and leptomeninges (Levy, Carman et al. 1990). In general, vast evidences
revealed that APP mutation increases AB(1-42) concentration by a factor of 1.5 to 1.9,
while AB(1-40) concentration remains the same (Findeis 2007).

Aside from APP mutations, mutations in presenilin 1 (PS1, found on chromosome

14) and presenilin 2 (PS2, on chromosome 1) have also accounted for 30% to 40% of all
cases of EOAD. Presenilins are expressed in brain and concentrated in neurons
(Scheuner, Eckman et al. 1996; Uchihara, el Hachimi et al. 1996). More than 30
mutations in PS1 and 2 in PS2 have been reported (Selkoe 1997) and they generally
result in increase of AB1-42) production (Scheuner, Eckman et al. 1996; Buxbaum and
Tagoe 2000). For instance, immunohistochemical analyses of brains of patients with
Glu280Ala PS-1 mutation showed a greatly elevated AB(1-42), but not AB(1-40), levels
in the cerebellum (Lemere, Blusztajn et al. 1996). Evidences also showed that mutations
in gene encoding PS lead to a 1.5 to 3-fold increase in the relative abundance of plaques

containing AB(1-42) peptides in FAD, compared with the levels in sporadic cases of AD
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(Lemere, Blusztajn et al. 1996; Mann, Iwatsubo et al. 1996; Selkoe 2001). Moreover, the
rate of AP(1-42) aggregation was significantly enhanced in the presence of PS mutation,
compared to that of AB(1-40) peptide (Jarrett, Berger et al. 1993).

Taken together, these genetic studies support the notion that the mutations in APP
and PS lead to a significantly increased production of faster-nucleating AP variant Ap(1-
42) (Jarrett, Berger et al. 1993), and further underscores the idea that the acceleration of
amyloid fibril formation is critical for the study of AD (Selkoe 1997).

As discussed in the previous section (1.1), neurofibrillary tangles that contain
hyperphosphorylated tau proteins and Ap-containing senile plaques are hallmark
characteristic features of AD. Over the years, debate has ensued over whether there is a
link between AP and tau abnormalities, and whether either contribute to the pathogenesis
of the disease. Numerous evidences have demonstrated that mutations in both genes
encoding APP and tau result in dementing illness. However, further inquiry of the
molecular effects and characterizing the clinical signs and symptoms of these mutations
clarified the significance of tau and AP in AD progression. APP mutations were proven
to accelerate AP production (as discussed above), and these mutations have been linked
to some cases of EOAD (Goate, Chartier-Harlin et al. 1991). EOAD, although rare,
reflects the histological profile of plaques and tangles. Furthermore, clinical studies of
EOAD showed a characteristic hippocampal-predominant dysfunction as well as
dysfunction in other neocortical sites. In comparison, investigations focusing on
mutations of gene encoding tau showed that although these mutations promoted tau
hyperphosphorylation, they did not lead to AD. Instead, the mutations resulted in the

development of fronto-temporal dementia (FTD), which is another type of dementia
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different from AD and characterized by frontotemporal atrophy (Hutton, Lendon et al.
1998). Furthermore, the presence of tangles that appear first in extrahippocampal sites
and the absence of plaques make FTD histologically distinct from AD (Small and Duff
2008). These genetic findings led to the proposed “amyloid hypothesis” that A is the
primary instigator for pathogenicity in AD, and its accumulation and elevation result in

the hyperphosphorylation of tau and other clinical features of AD (Small and Duff 2008).

1.2.3 Amyloid B- peptide

As discussed previously, the heterogeneous cleavage property of B and y secretase
gives rise to a 39 to 42 amino acid long fragment of AP, with 40- residue peptide (termed
APB(1-40)) and 42-residue peptide (AP(1-42)) as the most common. The presence of two
additional amino acids in AP(1-42) has extensive consequence with regards to its
tendency to aggregate and form fibrils, with the longer AP(1-42) having a faster
aggregation rate and being more pathogenic (McLaurin, Yang et al. 2000; Castellani, Lee
et al. 2008). In 1985, researchers purified and characterized the peptide from post-
mortem brain of AD patients. Using liquid chromatography and western blotting,
Beyreuther’s group revealed that the AP peptides isolated from diseased patients are 4-5
kDa in size (Masters, Simms et al. 1985).

The presence of AP in individuals not afflicted with AD indicates that the protein
has a role in the normal physiology of the central nervous system; but the normal
function of AP is less understood as compared to its cytotoxic effects and its pathological

role in AD. Nevertheless, numerous investigations have revealed some of the roles of this
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APP fragment in the normal function of neuronal cells. Teng and co-workers suggested
that the more predominant form AP(1-40) functions as an antioxidant (Teng and Tang
2005). AB(1-40) was also shown to counteract the toxic effects of B and y secretase
inhibitors at concentration as low as 10 pM (Plant, Boyle et al. 2003). Further studies
have demonstrated that both AB(1-40) and AB(1-42) were found to moderate potassium
channels in neurons (Ramsden, Plant et al. 2001; Findeis 2007).

Despite the normal physiological roles of AP, the main focus of investigations is
the ability of this protein to form fibrils and its role in neurodegeneration. Increasing
interest in structural and functional properties of AP led to a better understanding of this
protein fragment. Numerous investigators have utilized various methods like circular
dichroism (CD), nuclear magnetic resonance (NMR), Fourier Transform Infrared
spectroscopy (FTIR) and microscopy techniques, among others, to extensively study the
structure of AP and its formation of fibrils (Hilbich, Kisters-Woike et al. 1991; Shen and
Murphy 1995; Nilsson 2004; Stromer and Serpell 2005).

One challenge that researchers encountered in studying the structure of
Alzheimer’s AP is the insolubility of the amyloid plaque, and as a result, the analysis of
AP from the diseased brain proved to be extremely difficult (Serpell 2000). This
prompted researchers to concentrate on AP fibrils that are formed in vitro. In vitro
structural prediction studies revealed that the fibrils were of varying lengths, about 6-8
nm in diameter, and generally possess a parallel B-sheet conformation (as shown in
Figure 1.3a and b) in which amino acids 41-42 of one peptide strand interact with amino

acids 34-35 of the second peptide monomer (Lansbury, Costa et al. 1995; Mattson 1997;
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Figure 1.3. Structural studies of AP. (a) Ribbon diagram of residues 9-40 of AP (1-40) showing
two [-sheet per molecule. Parallel B-sheets also observed on cross-f motif. (b) Atomic
representation of fibers, showing the length (in diameter) of about 6-8 nm. (c) Structure
prediction of AP (1-42), showing residues with high propensity for 3-sheet. Highly hydrophobic
regions are also shown. (Serpell 2000; Tycko 2004)
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Kowalewski and Holtzman 1999; Tycko 2004). For fibrils of relatively shorter peptides
(15 residues or less), an antiparallel B-sheet structure was demonstrated (Lansbury, Costa
et al. 1995; Balbach, Ishii et al. 2000; Tycko 2004). Moreover, analysis of soluble
AP peptide uncovered amino acid characteristics that favor B-sheet conformation and
revealed that C-terminal residues 28 to 40/42 have the highest probability for B-sheet
formation, while residues 9 to 21 showed a lower probability for B-sheet. Further
investigations showed that the propensity of residues 28 to 40/42 to form B-sheet is due to
its highly hydrophobic property. Residues 17-21 also exhibit greatest hydrophobicity.
Two predicted sites for B-turn in the peptide structure can be found between residues 6 to
8, and 23 to 27 (Figure 1.3¢) (Serpell 2000).

Using X-ray diffraction, Kirschner et al. revealed the B-sheet conformation of the
AP fibers, estimating the length to be 80A long and about 40A thick (Kirschner,
Abraham et al. 1986). These measurements correspond to four pleated sheets, with
approximately 16 hydrogen-bonds for each sheet. Halverson et al. (1990) correlated
peptide insolubility with [B-sheet conformation using Fourier Transform Infrared
spectroscopy (FTIR) studies. His group reported that residue AP(34-42) possessed
antiparallel stable B-sheet structure in the solid state (Halverson, Fraser et al. 1990). It
was also shown that the residues 10 to 42 may form the B-sheet core of the fibrils, while
fragments 1-9 were not required for fibril formation. Furthermore, this N-terminal region
may be exposed on the surface of the fibers and may play a role in interaction between
fibrils (Hilbich, Kisters-Woike et al. 1991). In addition, using electron microscopy,
APB(14-23) was found to be the shortest N-terminal fragment capable of fibril formation,

and that deletions or substitutions on this fragment completely abolished or impaired
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fibril formation (Tjernberg, Callaway et al. 1999). This led to the conclusion that
sequence 14 to 23 of AP forms the core of A fibrils.

As shown by evidences that are stated previously, A is a normal product in the
brain and cerebrospinal fluid of normal individuals. This signifies that AP itself does not
lead to neurodegeneration. However, studies showed that the key to neuronal injury
seems to lie on the aggregation state of AB. Moreover, the ability of synthetic AP to form
fibrils in vitro may be influenced by various parameters such as variations in pH,
temperature, buffers or solvent composition, presence of metals such as iron, copper and
zinc, peptide concentration and peptide sequence (Fraser, Nguyen et al. 1991; Shen and
Murphy 1995; Mattson 1997; Lansbury 1999; Serpell 2000; Walsh, Tseng et al. 2000;
Nichols, Moss et al. 2005). The following discussion will focus on the study of amyloid {3

fibril formation in vitro.

1.2.4 Amyloid B fibrillogenesis

Why is the study of amyloid P fibrillogenesis relevant? It has been about a decade
Osince the amyloid-B cascade hypothesis was first proposed. According to this
hypothesis, deposition and accumulation of fibrillar AP in brain tissues are the key
causative agent that drives AD pathogenesis (Hardy and Selkoe 2002; Teng and Tang
2005; Castellani, Lee et al. 2008). This led to an increased interest on understanding Af
fibril formation and how it can be a key to developing therapeutic strategies. Though
numerous studies have focused on the biophysical aspects affecting formation of AP

fibrils, the kinetics or mechanism of AP fibrillogenesis was poorly understood. Numerous
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laboratories investigated the mechanism governing A fibrillogenesis by utilizing
synthetic peptides. However, investigating the kinetics of A fibril formation proved to
be a challenging quest due to limitations on available techniques. FTIR spectroscopy,
CD, turbidity, thioflavin-T binding or microscopy could not provide detailed information
on fibril size, nor was it appropriate for real time analysis. Moreover, these techniques are
of limited use in clarifying the structures of fibrillogenesis intermediates (Kirschner,
Abraham et al. 1986; Fraser, Nguyen et al. 1991; Hilbich, Kisters-Woike et al. 1991). The
in vitro finding that A fibrillogenesis follows a nucleation-dependent polymerization
mechanism (as illustrated in Figure 1.4a) was first verified in 1986 when Teplow’s group
extensively studied the nucleation and growth of AB(1-40) fibrils using quasielastic light
scattering spectroscopy (QLS) along with size exclusion chromatography (SEC) and
electron microscopy (EM) (Lomakin, Chung et al. 1996). QLS is a useful technique in
monitoring the sizes of protein polymers in solution. The combination of QLS, SEC, and
microscopy allows a direct and rapid estimation of the AP oligomerization state (Walsh,
Lomakin et al. 1997).

The AP kinetic process is dependent on two parameters, namely the nucleation
rate and the rapid elongation or growth rate (Figure 1.4b, (Nilsson 2004)). Nucleation is
considered to be an initial rate-limiting step characterized by a lag period in which A
monomers self-associate to form micelles of AB from which fibrils materialize and
elongate (Serpell 2000; Carrotta, Barthes et al. 2007). The lag period of initial association
of monomers to form a nucleus is an entropically unfavorable process (Nilsson 2004).
However, once nucleus is formed, the aggregation proceeds rapidly to form fibrils. The

lag phase can be overcome experimentally by several ways such as seeding and other
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Figure 1.4. Mechanism of AP fibril- formation (a) Process of A fibril-formation from
monomers follows a nucleation-dependent polymerization mechanism (illustration from Walsh,
Lomakin et al. 1997). (b) The nucleation polymerization model of aggregation follows two
processes: nucleation, which is a slow process, and elongation which is rapid. The lag phase in
nucleation process can be eliminated using various parameters such as variations in pH,

temperature, solvent or buffer system, peptide concentration, or peptide sequence among others
(illustration from Nilsson 2004).
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biophysical processes (briefly discussed in section 1.4.3) Several laboratories have
shown that AP fibril polymerization proceeds with the formation of dimers, tetramers,
and finally oligomers (Tjernberg, Callaway et al. 1999). Moreover, further structural and
kinetic characterization of AP fibrillogenesis utilizing X-ray fiber diffraction, light
scattering, SEC and microscopy methods revealed that a time-dependent decrease in
dimer levels was paralleled by an increase of transient prefibrillar intermediate in the
fibril assembly, termed protofibrils (Harper, Wong et al. 1997; Walsh, Lomakin et al.
1997; Harper, Wong et al. 1999; Walsh, Hartley et al. 1999; Serpell 2000). Protofibrils
are small elongated oligomers with beaded appearance observed early on in the AP fibril
formation process, are about 2.7 to 4.2 nm in diameter, and measure <200 nm in length
which disappeared immediately with longer incubation time and were replaced by rigid,
amyloid-type full-length fibrils (Harper, Wong et al. 1997; Kowalewski and Holtzman
1999; Walsh, Hartley et al. 1999; Dumery, Bourdel et al. 2001; Kayed, Head et al. 2003).
Harper et al (1997) investigated AP(1-40) protofibril formation by AFM and reported the
appearance of small elongated AP oligomers with average height of 4.3 £ 0.5 nm and
lengths that range from 20-70 nm, characteristic of protofibrils (Harper, Wong et al.
1997). Using QLS, Walsh et al reported a hydrodynamic radius Ry of 27.8 + 1.8 nm for
the initially formed protofibrils, and steadily increased to a maximal value of 80.6 + 14.4
nm (Walsh, Hartley et al. 1999). Other evidences have demonstrated that protofibril
formation was observed at the early stages of both AB(1-40)and AB(1-42) fibrillogenesis
although they have differences in the diameter (~4.2 nm for AP (1-42) and ~2.2 nm for
AP(1-40) ) that may be attributed to the extra two residues of AP(1-42) (Harper, Wong et

al. 1997). Radiochemical and immunological assays revealed that other short-lived
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intermediates are being produced prior to protofibril formation, however, it is the dimer
and protofibrils that accumulate during fibrillogenesis substantiating the main idea that
protofibrils act as centers of growth of mature fibers (Walsh, Lomakin et al. 1997). AFM
analysis demonstrated that protofibril height is 40% that of fibrils (Harper, Wong et al.
1997; Harper, Wong et al. 1999). Several evidences also showed that protofibrils were in
equilibrium with lower molecular weight (LMW) AP in the course of AP fibril formation.
Further characterizations revealed that protofibrils are not easily sedimented, are too
small to produce turbidity, and have significant -sheet content, as shown by binding to
Congo red and thioflavin T, as well as CD data (Harper, Wong et al. 1997, Walsh,
Hartley et al. 1999).

Active research on the mechanism of AP fibrillogenesis resulted in several
proposed models that may further clarify the transition from protofibril to fibril
formation. One possible mechanism introduced is end-to-end association of protofibrils.
However, this model is unlikely due to kinetic barriers that may be encountered with
regards to proper alignment of protofibril ends. Another possible mechanism is “lateral
association” in which protofibrils combine laterally followed by addition of smaller AP
species (ie. monomers and dimers) to the end. Lateral association of protofibrils followed
by end-to-end annealing is another possible alternative explanation for AP fibril
formation (Burdick, Soreghan et al. 1992; Harper, Wong et al. 1997; Walsh, Lomakin et
al. 1997; Walsh, Hartley et al. 1999; Nichols, Moss et al. 2002).

The investigation of A fibrillogenesis proved to be a very challenging endeavor.
Numerous investigators reported other structures preceding fibril formation including

AB-derived diffusible ligands (ADDLs), AB*56, “globulomers” and “Ap oligomers”
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(Roychaudhuri, Yang et al. 2009). These fibrillar intermediates differ in morphology and
size, but it is still a challenge to distinguish one from the other. AFM analysis showed
that ADDLs are small “globules” of diffusible AP oligomers that measures 4.8 to 5.7 nm.
Further characterization of ADDLs by western blot analysis and SDS revealed a
molecular weight that ranges between 17 and 42 kDa, with the predominant species at 27
kDa (Lambert, Barlow et al. 1998). AB*56, which has a molecular weight of 56 kDa
characteristic of dodecameric species and morphology of prostate ellipsoid, was isolated
and identified from brains of Tg2576 mice (Lesne, Koh et al. 2006). AFM analysis of the
isolated AP*56 measured ~1 nm in height (Cheng, Scearce-Levie et al. 2007). On the
other hand, “globulomers”, so called due to the globular oligomeric structure, do not form
fibrils despite their ability to form B-sheet structure (Gellermann, Byrnes et al. 2008). AP
oligomers that were produced in vitro were found to be composed of 15 — 20 monomers,
with approximate MW of ~90,000 characteristic of an octadodecamer (Kayed, Head et al.
2003). Taken together, these intermediate species were termed ‘“‘soluble oligomers”
(Deshpande, Mina et al. 2006). This general term applies to all forms of AP that do not
pellet down after high speed centrifugation (typically >100,00g for more than 1h) (Irvine,
El-Agnaf et al. 2008).

It is apparent that the extensive efforts of various laboratories to study and
elucidate the mechanism of AP fibrillogenesis unexpectedly revealed a wide range of
fibrillar and oligomeric intermediates that may have a contribution to development of
AD. Biochemical and biophysical methods such as size measurement, however, could not
sufficiently provide the required sensitivity to distinguish one aggregation state to

another. Recent advances in the study of AP polymerization have included the use of
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conformation-specific antibodies that recognize generic structural features for providing
more detailed and sensitive information about the identity of aggregated species
(O'Nuallain and Wetzel 2002; Kayed, Head et al. 2003; Glabe 2004). The continuing
progress in the research of AP polymerization process, and the availability of numerous
tools for studying AP aggregation, are instrumental for elucidating the pathogenesis of

AD and in designing strategies for therapeutic intervention.

1.2.5 Correlation between AP assembly and AD

According to the AP cascade hypothesis, the overproduction of AP or the
increased proportion of the AB42/AB40 ratio is the basic pathophysiological process that
causes carly-onset AD. Over the years, numerous in Vitro and in vivo studies have
demonstrated that the fibrillar form of A is toxic to the neurons (Table 1.1 (Mattson
1997)). Several investigators, for instance, Yankner et al (Lorenzo and Yankner 1994)
studied the neurotoxicity of different AP species by creating nonamyloidogenic
amorphous AP aggregates and the amyloidogenic AP fibrils and comparing their
neurotoxic effects to primary rat hippocampal cultures. The prepared peptides were
characterized by microscopy and Congo red staining technique. For this study, 20 uM of
AP was applied to the hippocampal cultures and the biological effects were determined
by immunohistochemical process. Their results showed that the fibrillar form caused
significant neuronal cell loss and synapse loss while the nonfibrillar form was not toxic.
The neurotoxic effects of fibrillar AP to neurons were also demonstrated by other

laboratories as well (Kowall, Beal et al. 1991; Pike, Burdick et al. 1993; Geula, Wu et al.
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Table 1.1. Cytotoxic actions of amyloid-B peptide (adapted from (Mattson 1997))

Cell Type Toxic Action
Hippocampal neurons Cell death, sensitivity to excitotoxicity
Cortical neurons Cell death, sensitivity to excitotoxicity,

sensitivity to energy depletion, impaired

muscarinic signaling

Neocortical neurons Cell death

Neuroblastoma cells Cell death

PC12 cells Impaired mitochondrial function
Synaptosomes Impaired glutamate transport, impaired

mitochondrial function

Astrocytes Reactive phenotype, glutamate transport
impairment

Microglia Cell activation/injury

Smooth muscle Damage and death

_ Impaired glucose transport, loss of barrier
Vascular endothelial _ o
function, apoptosis influx
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1998). However, upon analyzing the post-mortem brains of the diseased patients, there is
insubstantial correlation between dementia and the density of fibrillar amyloid (Walsh,
Klyubin et al. 2002b; Walsh and Selkoe 2007; Irvine, El-Agnaf et al. 2008). This
observation eventually became a flaw of the amyloid-3 cascade hypothesis.

In contrast, for the past decade, evidences of the significant connection between
soluble AP levels and the extent of synaptic loss and cognitive impairment have
continuously emerged (Lambert, Barlow et al. 1998; Lansbury 1999; Lue, Kuo et al.
1999; Walsh and Selkoe 2007). The use of synthetic AP peptides, cell systems with over-
expressed APP, APP transgenic mouse models and human CSF and postmortem brain
contributed to the conclusion that soluble AP induces neurotoxicity rather than fibrillar
AP (Kirkitadze, Bitan et al. 2002; Irvine, El-Agnaf et al. 2008). Krafft and coworkers
(Roher, Chaney et al. 1996) isolated AP from the post-mortem brain of AD patients,
characterized the peptides using SEC, mass spectrometry (MS), and microscopy
techniques, and applied the peptides to cultures of rat hippocampal neuron glia cells.
Their study shows that dimers caused neuronal killing in the presence of microglia.

Similarly, Teplow’s group demonstrated using MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) assay that protofibrils perturb the normal
metabolism of cultured rat cortical neurons, which may be an early indicator of neuronal
dysfunction and cell death (Walsh, Hartley et al. 1999).

Utilizing Tg(APPSwe)2576Kahs mice (Tg2576), a well-characterized APP
transgenic mouse model that expresses APP mutation that is linked to AD, Lesne and
colleagues investigated the cause of memory decline in the absence of neurodegeneration

(Lesne, Koh et al. 2006). Using the performance on the Morris-water maze as a measure
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of spatial memory, they showed that mice started to develop memory deficits during the
middle age (6-14 months). When they analyzed the A species in the forebrain extracts of
these mice, they found that the nonameric and dodecameric AP species correlated with
the impairment of spatial memory.

Despite the emerging evidences implying the toxicity of soluble oligomers and
their ability to cause neuronal injury, it must be emphasized that the large insoluble Af
fibrils have been observed in the vicinity of the plaques and are also likely to be
intimately surrounded by a number of soluble oligomers. Taken together, the conclusion
that the large insoluble deposits, or the small oligomeric structures are the sole neurotoxic
entity is not yet established. Rather, it may be possible that there is a continuous

exchange between the two forms and both species are detrimental.

1.3 AD and inflammation

Closer analysis of the senile plaques observed in AD revealed the presence of
several cells that include astrocytes and activated microglia (El Khoury, Moore et al.
2003). Astrocytes are the largest population of cells in the central nervous system (CNS).
These cells function as major contributors to the structure and preservation of the blood-
brain barrier (BBB). They also help in maintaining homeostasis of the extracellular
environment (Moore and O'Banion 2002). In the presence of inflammatory stimulus,
astrocytes respond by expressing class I and II major histocompatibility molecules
(MHC-I and MHC-II, respectively). However, astrocytes are deficient in costimulatory

molecules. This deficiency inhibits them from presenting the antigen to naive T-cells
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although they can present antigens to primed memory T cells (Halliday, Robinson et al.
2000).

Microglial cells are the resident immune cells of the CNS with properties and
staining characteristics similar to macrophages (Ulvestad, Williams et al. 1994; Halliday,
Robinson et al. 2000). The morphology of the microglial cells was first described in 1932
by Rio-Hortega in silver carbonate-stained brain preparations at the light microscope
level (Rio-Hortega 1932; Lee, Nagai et al. 2002). Under normal physiological conditions
and in the normal adult brain, the microglia are found as “resting” microglia, and adopt a
characterized by a small cell body with fine and ramified processes and low expression of
surface antigens (Garden and Moller 2006). The role of “resting” microglia is for immune
surveillance and host defense (Liu and Hong 2003). Microglial cells are considered the
first line of host defense against pathogens. However, when there is an injury or infection
in the CNS, the “resting” microglia becomes activated, bringing about a change in
morphology from ramified morphology to a more spherical cell morphology and more
elongated or extended processes (Fischer and Reichmann 2001). Moreover, similar to
activated astrocytes, activated microglia up-regulate a variety of cell-surface receptors,
including MHC-II, proinflammatory cytokines and chemokines which include tumor
necrosis factor alpha (TNFa), free radicals (NO), reactive oxygen species (ROS) and
complement proteins (Moore and O'Banion 2002; Liu and Hong 2003).

Numerous studies of AD have demonstrated that microglia often cluster at sites of
extracellular deposits of AP (Masumura, Hata et al. 2000). The first animal model
evidence linking AP plaque formation with microglial activation was reported in 1998

when Cole and co-workers utilized hybrid Tg2576(HuAPPsw) mice (Tg2576 with
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Swedish familial K670N/M671L double mutation) in probing microglial response to AP
formation (Frautschy, Yang et al. 1998). This transgenic mouse model progressively
develops A deposits that test positive in Congo red staining between 26 and 32 weeks of
age. Swedish mutation also increases the total cerebral burden of AP than with the mutant
APP (Buxbaum and Tagoe 2000). In the study, Cole et al. used Griffonia simplicifolia
(GS) lectin labeling and phosphotyrosine staining to identify microglia. These methods
were chosen due to the fact that GS lectin specifically labels microglia in the rodent brain
(Kato, Kogure et al. 1995) and plaque-associated microglia express high levels of
phosphotyrosine (Akiyama, Barger et al. 2000). The investigators’ results demonstrate
that an increased density of enlarged microglia gathered in and around plaques that are
present predominantly in the hippocampus and cerebral cortex of 10- to 16-month
HuAPPsw mice. This finding is very similar to the microglial activation related to AP
formation in the AD brain.

Similar transgenic mouse (Tg2576 APPgsw) model studies showed activation of the
microglial cells in and around the fibrillary AP plaque perimeter (Apelt and Schliebs
2001; Wegiel, Wang et al. 2001). Moreover, several studies have demonstrated the
microlia’s capacity to phagocytose and internally degrade AP (Frautschy, Cole et al.
1992; Moore and O'Banion 2002). This phagocytic activity of microglia is considered to
be an antigen-presenting ability of the microglial cells and this may be substantial in
activation of the immune response.

Evidences have also emerged as to the contribution of AP in neurotoxicity and
AD pathogenesis. Both in vivo and in vitro studies have shown that AP(1-42) induce

neuronal apoptosis (Kowall, Beal et al. 1991; Loo, Copani et al. 1993; Pike, Burdick et

28



al. 1993; LaFerla, Tinkle et al. 1995; Masumura, Hata et al. 2000; Combs, Karlo et al.
2001; Morishima, Gotoh et al. 2001) as manifested by changes in morphology and
biochemistry of the neurons, such as membrane blebbing, compaction of nuclear
chromatin and intrernucleosomal DNA fragmentation (Loo, Copani et al. 1993; LaFerla,
Tinkle et al. 1995).

Perhaps the most studied effect of AP in neuroinflammatory process is as an
inflammatory stimulus. It has been well documented that AD is characterized by a wide
array of pro- and anti-inflammatory mediators. Analysis of microglia associated with
senile plaques showed the presence of or a significant upregulation of inflammatory
activity, such as production of cytokines and chemokines including interleukin (IL) -1,
IL-6, TNF-a, IL-8, transforming growth factor-f3 (TGF-), and macrophage inflammatory
protein-la. (MIP-1a), as compared to the age-matched, non-demented controls (Table
1.2) (Akiyama, Barger et al. 2000; Halliday, Robinson et al. 2000; Dumery, Bourdel et al.
2001; Perry, Newman et al. 2003). Likewise, several in vitro immunohistochemical
studies have demonstrated the same findings of AB-induced microglial upregulation of
cytokines and chemokines (Meda, Cassatella et al. 1995; Yates, Burgess et al. 2000;
Apelt and Schliebs 2001; Floden and Combs 2006). Using an in vitro cellular model of
human monocytes/macrophages, Klegeris et al. showed that AB peptide induced TNFa
secretion on THP-1 cells (Klegeris, Walker et al. 1997). These accumulated data of an
increased level of the proinflammatory products in the vicinity of senile plaques suggests
that a chronic inflammatory process contributes to the progression of AD. Despite the
numerous studies showing that several of these bioactive species promote

neurodegenerative mechanisms, others exert beneficial neurotrophic effects (Halliday,
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Robinson et al. 2000).

The role of TNFa in AD, for instance, is surprisingly controversial since it has
both pro-apoptotic and anti-apoptotic effects. This proinflammatory cytokine, which is a
powerful inflammatory mediator, is reported to kill human cortical neurons (Good,
Werner et al. 1996; Venters, Tang et al. 1999) and was found to be accountable for the
neurotoxic activity of microglia such as an increased expression of inducible nitric oxide
synthase (Combs, Karlo et al. 2001). Along with interferon gamma (IFNy), TNFa is s a
potent paracrine stimulator of other proinflammatory cytokines (Perry, Collins et al.
2001). On the other hand, TNFa production has also been reported to have a
neuroprotective role in neurons by inducing the expression of protective molecules
including manganese superoxide dismutase (Akiyama, Barger et al. 2000).

There is strong evidence of increased levels of TNFa in the brain microvessels
and cerebrospinal fluid of clinically diagnosed AD patients (Bruunsgaard, Andersen-
Ranberg et al. 1999; Tarkowski, Blennow et al. 1999; Tarkowski, Andreasen et al. 2003).
For example, Blasko et al showed that TNFa, in combination of interferon (IFN)-y,
increases the production of AP and inhibits the production of soluble APP in human
neuronal and nonneuronal cells (Blasko, Marx et al. 1999). These demonstrate the
participation of proinflammatory factors in the exacerbation of AD pathology.

Thus, vast data now have convincingly demonstrated that extracellular deposition
of AP in the AD brains triggers inflammation. How AP stimulates microglia at a
molecular level is still unclear. Several studies have shown that AP induces glial
activation through nuclear factor- kB (NF-kB) (Akama, Albanese et al. 1998; Bales, Du

et al. 2000; Combs, Karlo et al. 2001). Moreover, several laboratories suggested the
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Table 1.2. Microglial antigens and inflammatory mediators elevated in Alzheimer’s

disease (reproduced from (Perry, Newman et al. 2003))

Surface/membrane receptors

Complement and related proteins

Cytokines and Chemokines (and
receptors)

Effector enzymes

Acute phase proteins

MHC class I, MHC class 11
Leukocyte common antigen,
CDlla

Complement receptor 3
Complement receptor 4
Vitronecting receptor

Fc-y receptor

CSF1 receptor

Macrosialin (CD68)

Clq, C3,C5,C6,C7,C8, C9
C3b, C4b and C5b opsonins
C5b9 membrane attack complex
C4 binding proteins

Clusterin (apolipoprotein J)

IL1B

IL6 (IL6R, gp130)

TNFa

TGFBI, 2 (TGFBRI, TGFBRII)
IL8 (CXCR2)

MIP1la (CCR3, CCRYS)

MIP1B (CCR3, CCRS)

MCP1 (CCR3, CCRS)

Cyclooxygenase 2
Inducible nitric oxide synthase

Plasminogen activator inhibitor-1
al-Antichymotrypsin

Tissue plasminogen activator
Urokinase plasminogen activator
Protease nexin-1

a2- Macroglobulin

Serum amyloid protein
C-reactive protein

Thrombin

Apolipoprotein E
a2-Antiplasmin

CD, cluster differentiation; CSF, colony stimulating factor; IL, interleukin, MCP, monocyte
chemoattractant; MHC, major histocompatibility complex; MIP, macrophage inflammatory

protein; TGF, transforming growth factor; TNF, tumor necrosis factor
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involvement of receptors in AB-induced microglial activation. For instance, EI-Khoury et
al. (El Khoury, Hickman et al. 1996) reported that the scavenger receptor on the surface
of microglia binds to AP fibrils leading to cell adhesion and activation. Furthermore,
other investigators suggested that AB-induced microglial activation is due to A binding
to the receptor for advanced glycation end products (RAGE) (Yan, Chen et al. 1996;
Walsh, Lomakin et al. 1997). Using myeloid cells (e.g., THP-1 monocytes) and
microglia, Bamberger et al. reported the involvement of a receptor complex (B-class
scavenger receptor CD36, integrin associated protein/CD47 and the ogf;-integrin) for
microglial activation and proinflammatory response by fibrillar Ap (Bamberger, Harris et
al. 2003). Recently, Fassbender’s group showed that fibrillar AB(1-42) interacts with LPS
accessory receptor CD14 and triggers the release of proinflammatory products in primary
murine microglial cells and human peripheral blood mononuclear (PBM) cells
(Fassbender, Walter et al. 2004). This involvement of CD14 in AB-induced microglial
activation now presents a possible connection between innate immunity and AD

pathology.

1.4 Toll-like Receptors and Innate Immunity

“Immunity” refers to the ability of the host to protect itself from microbes that
would otherwise destroy it (Hoebe, Janssen et al. 2004). Immunity can be broadly
classified into two inducible systems: the innate immunity (‘natural immunity’) and
adaptive immunity (‘acquired immunity’) (Kielian 2006). During infection, these two

systems are activated sequentially to fight off and eliminate the microbe. Innate immunity
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is the first line of host defense towards these invading microbes while adaptive immunity
is activated later, usually about 4-7 days after infection (Albiger, Dahlberg et al. 2007).
The adaptive immune response is mediated by clonally distributed B and T lymphocytes
and is characterized by specificity and memory (Akira, Uematsu et al. 2006). Microbial
recognition involves the production of random and highly diverse antigen T- and B- cell
receptors, followed by clonal selection and amplification of these receptors with relevant
specificities. This mechanism requires augmentation and differentiation of the specific
clones into effector cells before they can contribute to host defense. The whole process
takes, as mentioned above, about 4-7 days thus making adaptive immune response a
delayed response (Akira, Takeda et al. 2001; Janssens and Beyaert 2003).

Innate immune response, on the other hand, is responsible for early detection of
invading pathogens. It is largely mediated by white blood cells (neutrophils and
macrophages), natural killer cells, dendritic cells, as well as perivascular macrophages
and microglia in CNS (Aderem and Ulevitch 2000; Kielian 2006). Originally thought of
as nonspecific, later investigations showed that innate immune response can discriminate
self and a variety of potential pathogens. Cells of the innate immunity effectively
recognize the antigens by predetermined sets of germline-encoded pattern recognition
receptors (PRRs) (Janssens and Beyaert 2003; Lee and Kim 2007). These PRRs are
involved in opsonization, activation of complement and coagulation cascades as well as
of proinflammatory signaling cascades, phagocytosis and apoptosis (Medzhitov 2001).

Because of limited receptor expression, the cells of the innate immune system
recognize the antigen by virtue of highly conserved structures that are expressed on these

invading microorganisms. These specific, highly conserved motifs are termed pathogen-
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associated molecular patterns (PAMPs) (Aderem and Ulevitch 2000; Kielian 2006; Lee
and Kim 2007). PAMPs are produced only by microbes and not by host cells and do not
vary between microorganisms of the same class. Moreover, they are vital for microbial
survival. These features make them the perfect target for innate immune recognition
(Medzhitov 2001). PAMPs recognition by PRRs results in activation of both extracellular
(such as complement pathways) and intracellular signaling cascades that eventually
culminate in the production of inflammatory response (Lee and Kim 2007).

The innate immune system uses PRRs that are located in three different
compartments: those that are secreted into the blood stream and tissue fluids, expressed
on the cell surface, or those that are expressed in intracellular compartments (Janssens
and Beyaert 2003). PRRs in body fluids functions include PAMPs opsonization,
activation of complement pathways and transfer of PAMPs to other PRRs. PRRs on the
cell surface presents PAMPs to other PRRs, promotes phagocytosis, and initiates major
signaling pathways. The cytoplasmic PRRs, on the other hand, are involved in
antibacterial immune response and antiviral defense (Lee and Kim 2007). One of the
most important and best characterized pattern recognition receptor families on the cell

surface are the Toll-like receptors.

1.4.1 Toll-like receptors (TLR)

Toll like receptors (TLRs) are products of evolutionary process. Analogous

receptors are found in plants, insects, worms (Caenorhabditis elegans) and vertebrates

(Albiger, Dahlberg et al. 2007). The founding member of the Toll family, termed Toll,
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was identified in 1996 in the fruit fly Drosophila melanogaster (Parker, Prince et al.
2007). Drosophila Toll was initially reported to be responsible for controlling
dorsoventral patterning during the fruitfly development (Medzhitov 2001; Kielian 2006;
Glezer, Simard et al. 2007). Later, Lemaitre et al. (Lemaitre, Nicolas et al. 1996) reported
that Drosophila Toll was also involved in antifungal immunity in adult fruit flies. In this
study, they utilized Toll-mutant Drosophila and found that these species rapidly succumb
to fungal infection due to failure to induce Drosomycin, an antifungal peptide. When the
Drosophila Toll was sequenced, Gay and Keith (Gay and Keith 1991) realized that their
intracellular domains showed striking similarity with the intracellular signaling domain
of the mammalian interleukin-1 (IL-1) receptor. This discovery prompted investigators to
search and identify mammalian Toll-like homologues.

TLRs are type I transmembrane proteins that are composed of a highly variable
ectodomain of leucine-rich repeats (LRRs) and a highly conserved intracellular or
cytoplasmic domain that is homologous to the interleukin-1 receptor (IL-1R) thus called
Toll/IL-1 receptor (TIR) domain (Miggin and O'Neill 2006; Trinchieri and Sher 2007).
LRR domains consist of 19-25 tandem repeats, each repeat contains 24-29 amino acids
and is involved directly or through accessory molecules in ligand binding (Albiger,
Dahlberg et al. 2007; Trinchieri and Sher 2007). TIR domain, on the other hand, interacts
with TIR-domain-containing adaptor molecules for signal transduction (Janssens and
Beyaert 2003). To date, 13 mammalian TLRs have been identified (10 human (TLR1-10)
and 12 murine (TLR1-9 and TLR11-13)) (Kielian 2006; Konat, Kielian et al. 2006;
Albiger, Dahlberg et al. 2007; Parker, Prince et al. 2007), and at least one agonist has

been identified for each TLR, with the exception of TLR10 (Kopp and Medzhitov 2003;
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Konat, Kielian et al. 2006). The agonists that are being recognized by TLRs, some of
which are listed in Table 1.3, include microbial components in bacteria, fungi, parasites
and viruses, including lipid-based cell wall components, microbial protein components
and nucleic acids.

TLRs are expressed in several immune cells including human monocytes and
macrophages, microglia, astrocytes, oligodendrocytes, dendritic cells (DC), B-cell,
specific types of T-cells, as well as nonimmune cells such as fibroblasts and epithelial
cells (Andreakos, Foxwell et al. 2004; Akira, Uematsu et al. 2006; Konat, Kieclian et al.
2006). Furthermore, expression of TLRs may be extracellular or intracellular. TLRs 1, 2,
4, 5 and 6 are expressed on the cell surface while TLR 3, 7, 8 and 9 are almost
exclusively found in intracellular compartments such as endosomes. TLRs that are
intracellularly expressed have ligands that are mainly nucleic acids, and these ligands
need to be internalized to the endosome before signaling is possible (Kielian 2006;
Parker, Prince et al. 2007).

Figure 1.5 ( adapted from (Konat, Kielian et al. 2006)) illustrates the general
signaling pathway by TLRs. Upon PAMPs recognition, TLR activation results in
initiation of the downstream signaling pathway through recruitment and activation of a
TIR-domain containing adaptor molecule, myeloid differentiation factor 88 (MyDS§8).
Activation of MyD88 leads to further activation of other adaptor molecules such as
serine/threonine kinase IL-1R-associated kinase (IRAK), which is associated with
MyD88, as well as TNF-receptor associated factor 6 (TRAF6). This downstream

activation cascade eventually leads to the activation of nuclear factor (NF)-kB family of

36



Table 1.3 Human TLRs and ligands (adapted from (Akashi-Takamura and Miyake
2006; Albiger, Dahlberg et al. 2007))

TLR Major Ligands Major Ligands and species
TLR1/TLR2 Triacyl lipopeptides Bacteria and mycobacteria
TLR2 LTA Gram-positive bacteria, i.e. Staphylococcus
aureus, Streptococcus pneumoniae, etc.
Atypical LPS Gram-negative bacteria, i.e. Phorphyromonas
gingivalis
Porins Gram-negative bacteria, i.e. Neisseria sp.,
Shigella sp., Haemophilus influenzae
Lipoarabinomannan Mycobacteria
Lipopeptides (Pam;CSK,,
MALP2)
Peptidoglycan Gram-positive bacteria
TLR3 dsRNA Virus
TLR4 LPS Gram-negative bacteria
Fusion protein RSV
EDA domain fibronectin (endogenous)
HSP60 (endogenous)
TLRS5 Flagellin Flagellated Gram-positive and Gram-negative
bacteria
TLR6/TLR2 Diacylated lipopeptides Mycoplasma
Zymosan Yeast
LTA Group B streptococci
TLR7 ssRNA Virus
TLRS ssRNA Virus
TLR9 Unmethylated CpGDNA Bacteria
Herpes virus DNA Virus
TLR10 Not determined
TLRI11 Unknown Uropathogenic E. coli
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Figure 1.5. The Toll-like receptor signaling pathway. TLR
activation by PAMPs recognition results in the activation of
the downstream signaling pathway that culminates in the
production of proinflammatory cytokines and chemokines, as
well as IFNPB. The initiation of downstream signaling begins
by activation and recruitment of adaptor molecules such as
MyD88 (as shown). TLR signaling pathway also utilizes a
MyD88-independent pathway, wherein TIRAP, TRIF and
TRAM adaptor molecules are recruited and activated (not
shown).( illustration from Konat, Kielian et al. 2006)
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transcription factors, as well as initiation of distinct parallel signaling pathways leading to
mitogen-activated protein (MAP) kinase. Initiation of these pathways subsequently result
in transcription of a myriad of pro- and anti-inflammatory cytokines, chemokines and
costimulatory molecules, such as TNF-a, IL-6, IL-1p and IL-12 (Kielian 2006; Konat,
Kielian et al. 2006; Albiger, Dahlberg et al. 2007; Guo and Schluesener 2007; Parker,
Prince et al. 2007).

TLR also utilizes other adaptor proteins for downstream signaling through a
MyDS88- independent pathway. This pathway starts with the TLR recruitment of adaptor
proteins such as Toll-IR-1 receptor (TIR)-associated protein (TIRAP, also known as
MAL), Toll-associated activator of IFN (TRIF) and Toll receptor-associated molecule
(TRAM), which are crucial for the expression of interferon (IFN)-inducible genes (Akira,
Uematsu et al. 2006; Kielian 2006; Konat, Kielian et al. 2006; Miggin and O'Neill 2006).

The study of human TLRs has progressed in the last 5 years (Kielian 2006), and
investigations on TLR expression are rapidly expanding. The following discussion will
focus on the most common and well defined TLRs, TLR2 and TLR4, as well as TLR

accessory proteins.

1.4.1.1 TLR4

TLR4 is perhaps the most extensively studied PRR. Furthermore, human TLR4
was the first characterized mammalian Toll (Medzhitov, Preston-Hurlburt et al. 1997).
Like other TLRs, TLR4 is expressed in various cell types, predominantly in immune cells

such as macrophages and DCs (Medzhitov 2001). It recognizes a variety of ligands, like

39



mannan (yeast) and host heat shock proteins and fibrinogen (virus) (Albiger, Dahlberg et
al. 2007); however, TLR4 is mostly known to recognize gram negative bacterial cell wall
component lipopolysaccharide (LPS) (Hoshino, Takeuchi et al. 1999). Hoshino et al and
several other investigators demonstrated that TLR4 mediates responses to LPS using
several mouse models that are TLR4-gene deficient, or LPS hyporesponsive mouse
strains (Poltorak, He et al. 1998; Hoshino, Takeuchi et al. 1999; Qureshi, Lariviere et al.
1999). LPS, a major constituent of the outer membrane of the Gram-negative bacteria,
consists of three regions (Figure 1.6 (Miller, Ernst et al. 2005)): the O-polysaccharide
chain, the core saccharide and the lipid A (Huber, Kalis et al. 2006). The O-specific chain
consists of a polymer of oligosaccharides with a repeating unit of one to eight glycosyl
residues. Core saccharide (or core region), on the other hand, is made up of
heterooligosaccharide that is subdivided into inner and outer core (Rietschel, Kirikae et
al. 1994). Lipid A is composed of a diglucosamine backbone containing ester-linked and
amide-linked long-chain fatty acids (Aderem and Ulevitch 2000) and functions as a
hydrophobic anchor of LPS on the major gram-negative outer membranes (Dixon and
Darveau 2005). It was already postulated since the 1950s that the lipid A is the toxic
component of LPS. But it was not until the late 1980s when the chemical structure of
lipid A was elucidated and chemically synthesized, and the biological activity of
synthetic lipid A was compared with bacterial lipid A and LPS that lipid A was shown to
be, in fact, the bioactive component of LPS (Loppnow, Brade et al. 1989; Rietschel,
Kirikae et al. 1994)

LPS is an amphiphilic molecule and it forms aggregates in solution (Jerala 2007).

Numerous evidences have established LPS as a powerful proinflammatory activator of
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Figure 1.6 Chemical structure of known TLR agonists. (A) Bacterial
lipopolysaccharide (LPS). (B) synthetic triacylated bacterial lipoprotein
tripalmitoyl cysteinyl seryl tetralysine (PamzCSKy). (C) synthetic
diacylated bacterial lipoprotein FSL-1.
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mononuclear cells, and TLR4- dependent activation of macrophages and microglia by
nanogram quantities of LPS results in the production of myriad cytokines such as TNF-aq,
IL-1, -6, -8, as well as nitric oxide (NO), and superoxide which are capable of inducing
apoptotic cell death (Poltorak, He et al. 1998; Moore, Andersson et al. 2000).

The molecular pathway of TLR4 activation by LPS has been extensively studied
and is depicted in Figure 1.7a and 1.7b (Aderem and Ulevitch 2000; Akashi-Takamura
and Miyake 2006; Kielian 2006). LPS recognition by TLR4 starts with the lipid A moiety
binding to a 58-60 kDa serum protein, human lipopolysaccharide-binding protein (LBP).
LBP is a serum glycoprotein belonging to a family of lipid-binding proteins that includes
bactericidal/permeability-increasing protein (BPI), phospholipid ester transfer protein and
cholesterol ester transfer protein (Gutsmann, Muller et al. 2001). In normal serum, LBP is
present at concentrations of =5 to 15 pg/ml (Kitchens, Wolfbauer et al. 1999).
Investigations have shown that the function of LBP in LPS signaling is to convert
oligomeric micelles of LPS to monomers, and to shuttle the monomeric LPS to CDI14
(Jerala 2007). Disaggregating the LPS increases the transfer and binding of LPS to CD14
(Hailman, Lichenstein et al. 1994; Miller, Ernst et al. 2005).

CD14, a 55-kDa high-affinity LPS receptor, can either be secreted in the serum
(soluble or sCD14) or expressed as a glycophosphoinositol (GPI)-anchored protein
(membrane or mCD14) on the surface of macrophages. Pugin et al reported the sCD14
level in normal serum to be 2 to 3 pg/ml (Pugin, Schurer-Maly et al. 1993). Several
biochemical and genetic evidences showed that CD14 binds to LPS with dissociation
constant (Kp) between 30 and 74 nM (Miyake 2004) and facilitates its signaling, but it

does not appear to be essential in direct LPS response (da Silva Correia, Soldau et al.
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Figure 1.7. TLR2 and TLR4 signaling pathway. (a) TLR4 signaling starts with the
binding of LPS, the most common TLR4 ligand, to LBP. LBP then transfers monomeric
LPS to CD14. CD14 then presents LPS to TLR4:MD2. The trimeric complex
LPS:TLR4:MD2 activates downstream TLR signaling leading to formation of
proinflammatory products (Aderem and Ulevitch 2000). (b) Both TLR2 and TLR4
utilize the adaptor molecule MyD88 for downstream signaling pathway. TLR2 forms a
complex with either TLR1 or TLR6 for recognition of triacylated or diacylated

lipopeptide, respectively (illustration from Kielian 2006).
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2001). Although CD14-knockout mouse studies have shown that LPS responses are
detectable without CD14, this TLR accessory protein is essential for the initiation of the
TRAM-TRIF pathway by TLR4/MD2 (Jiang, Georgel et al. 2005). Moreover, the
significance of CD14 in LPS signaling was evidenced in vivo by an impaired TNFa
response when CD14-deficient mice were challenged with LPS (Haziot, Ferrero et al.
1996).

In vitro studies showed the LPS/CD14 complex utilizes another host-derived
soluble adaptor molecule for the activation of downstream TLR signaling. This co-
receptor, termed MD-2, is a 25-30 kDa protein, lacks the transmembrane and intracellular
region and is expressed on the cell surface in association with the ectodomain of TLR4
(Akira, Takeda et al. 2001; Medzhitov 2001; Akashi-Takamura and Miyake 2006;
Kielian 2006). LPS bound to CD14 is transferred to MD-2, which associates with the
ectodomain of TLR4. Together, the MD-2/TLR4 oligomer binds LPS with nanomolar
affinity and the trimeric complex LPS:MD-2:TLR4 induces LPS signaling, translocation
of nuclear proteins and transcriptional activation of genes associated with the
inflammatory processes (Viriyakosol, Tobias et al. 2001; Akira, Uematsu et al. 2006;
Glezer, Simard et al. 2007).

TLR4 interaction with MD-2 is crucial for efficient responses to LPS. This was
supported by experiments that demonstrated unresponsive phenotype of mice carrying
knockout mutations in either TLR4 or MD-2 genes (Hoshino, Takeuchi et al. 1999;
Shimazu, Akashi et al. 1999; Nagai, Akashi et al. 2002). Recent efforts to elucidate the
MD-2:TLR4 binding to LPS showed that the TLR4 region Glu**-Lys"’ is the site for MD-

2 binding. Moreover, Cys®’ and Cys* within this region are critical for interaction with
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MD-2 and LPS signaling (Nishitani, Mitsuzawa et al. 2006). Furthermore, a model for
LPS-induced TLR4:MD-2 dimer was constructed based on mutational analysis wherein
the structure formed resembles the ‘m’ shaped dimers (Jin and Lee 2008). Crystal
structures of human MD-2 and its complex with LPS lipid A suggested that MD-2 plays a
principal role in endotoxin recognition (Ohto, Fukase et al. 2007). Several lines of
evidence also showed that TLR4 and MD-2 are important in ligand-recognition
specificity (Shimazu, Akashi et al. 1999; Miyake 2004; Prohinar, Re et al. 2007), thus, it
is plausible that TLR4 and MD-2 work together for ligand recognition and signal

transduction.

1.4.1.2 TLR2, TLR1, TLR6

Among all the TLRs that have been identified, TLR2 is considered the one with
the broadest specificity when it pertains to PAMPs recognition. TLR2 has been shown to
recognize a broad range of microbial products including peptidoglycan (PGN) from
Gram-positive  bacteria, bacterial lipoproteins (LP), mycobacterial cell-wall
lipoarabinomannan, lipoteichoic acid (LTA), tripalmitoyl-S-glyceryl-cysteine (Pam;Cys),
glycosylphosphatidylinositol lipid from Trypanosoma Cruzi, a phenol-soluble modulin
produced by Staphylococcus epidermidis, zymoan from fungi and glycolipids from
Treponema maltophilum (Janeway and Medzhitov 1999; Medzhitov 2001; Kielian 2006).
Moreover, studies have also shown that TLR2 recognize atypical LPS, which is
structurally different from bacterial LPS by virtue of the number of acyl chains in the

lipid A component (Takeda, Kaisho et al. 2003), from Leptospira interogans (Medzhitov
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2001) and Porphyromonas gingivitis (Hirschfeld, Weis et al. 2001). The wide spectrum
of microbial components that TLR2 can recognize may be due, in part, to the ability of
TLR2 to cooperate or complex with at least two other TLRs: TLR1 and TLR6. Therefore,
TLR2 dimer formation with TLR1 or TLR6 may dictate specificity of ligand recognition
(Ozinsky, Underhill et al. 2000; Takeuchi, Kawai et al. 2001; Akira, Uematsu et al.
2006). For instance, TLR2/TLR1 heterodimers preferentially act as a receptor for
triacylated lipopeptides whereas TLR2/TLR6 heterodimers are the receptors for
diacylated lipopeptides (Figure 1.6) (Ozinsky, Underhill et al. 2000; Takeuchi, Kawai et
al. 2001; Takeuchi, Sato et al. 2002; Dziarski 2003; Omueti, Beyer et al. 2005).

TLR2 is expressed on monocytes, macrophages, microglia, dendritic cells, B cells
and, to a lesser extent, on neutrophils and few other cells, whereas it has been shown that
both TLR1 and TLR6 are expressed by microglia (Dziarski 2003; Kielian 2006). As
presented in Figure 1.7b, TLR2 downstream signaling pathway begins with TLR2
complex formation with either TLR1 or TLR6, afterwhich, the complex utilizes both the
intracellular adaptor proteins MyD88 and TIRAP for subsequent induction of target
genes such as TNFa and other cytokines and chemokines (Kielian 2006).

Evidences also demonstrate the role of CD14 on TLR2 recognition of gram-
positive PAMPs, such as PGN and LTA. Schroder et al. used human embryonic kidney
(HEK) cells and chinese hamster ovary (CHO) cells transfected with both TLR2 and
CD14 to show that LTA of Streptococcus pneumoniae and Staphylococcus aureus utilize
CD14 and TLR2 to activate immune cells (Schroder, Morath et al. 2003). Moreover,
using a CD14 mutant with deletion of the part of possible N-terminal ligand binding

pocket, and an anti-CD14 monoclonal antibody, Nakata’s group demonstrated that CD14

46



binds to triacylated lipopeptides and facilitates its recognition by TLR2/TLR1 complex
(Nakata, Yasuda et al. 2006). Other investigations utilizing knockout mice and
transfected cell lines also demonstrated the necessity of CD14 for TLR2/TLRI or
TLR2/TLR6 heterodimer recognition of PAMPs (Gupta, Kirkland et al. 1996; Henneke,
Takeuchi et al. 2001; Dziarski 2003; Esen and Kielian 2005; Manukyan, Triantafilou et
al. 2005).

Earlier studies implicated TLR2, along with TLR4, as a receptor for LPS
signaling (Kirschning, Wesche et al. 1998; Yang, Mark et al. 1998; Yang, Mark et al.
1999). However, a closer examination revealed that the original discrepancy on the
involvement of TLR2 in LPS activation was due to the contaminating lipoproteins, which
are TLR2 ligands, in commercially available LPS preparations (Kielian 2006). In fact,
when LPS was repurified and the contaminating lipoproteins were removed, the LPS was
unable to signal via TLR2 (Hirschfeld, Ma et al. 2000). Thus, investigations of PAMPs
recognition by TLRs require careful scrutiny to ascertain that the TLR agonists are not

contaminated with other biologically active PAMPs.

1.4.2 TLRs and AB: What is the connection?

In 2003, Fassbender’s group published results demonstrating the role of CD14 in
linking AP with the innate immunity (Fassbender, Walter et al. 2004). By surface
plasmon resonance spectroscopy (SPR), immunoprecipitation and western blotting, they
showed that CD14 binds fibrillar AB (1-42) with a dissociation constant (Kp) of 1.1 £ 0.1

x10”7 M. Moreover, CD14 binding to fibrillar AP42 was 20-fold stronger as compared to

47



CD14 and nonfibrillar AB (1-42) (Kp [M]=2.2 £ 0.7 x10®). The huge difference in the
Kp values suggests that CD14 recognizes the B-sheet structure of the fibrillar AB(1-42).
The group also tested the role of CDI14 in fibrillar AB(1-42) — induced microglial
activation using primary murine microglia from wildtype (WT) and CD14-deficient mice,
treated the cells with fibrillar AP(1-42) and interferon (IFN)-y, and analyzed the
proinflammatory marker IL-6. Results showed that CD14-deficient microglia released
significantly lower amounts of IL-6 in response to AP as compared to WT microglia. A
significant reduction of proinflammatory products was also observed when human
peripheral blood monocytes (PBM) induced with fibrillar Af was treated with anti-
human CD14 monoclonal antibody, 3C10. These data further strengthens the interaction
between CDI14 and fibrillar AB(1-42) in induction of proinflammatory products. The
authors also showed overexpression of CD14 in APP transgenic mice, which signifies
that CD14 significantly contributes to the inflammatory responses in AD.

However, CD14 does not contain a cytoplasmic domain (Haziot, Chen et al. 1988;
Muta and Takeshige 2001; Viriyakosol, Tobias et al. 2001; Kim, Lee et al. 2005) that
could activate the downstream signaling that induces production of proinflammatory
products (see Figure 4). As explained earlier, CD14 functions as a co-receptor for LPS
(Wright, Ramos et al. 1990; da Silva Correia, Soldau et al. 2001; Medzhitov 2001), as
well as for Gram-positive cell walls and their PGN component (Pugin, Schurer-Maly et
al. 1993; Gupta, Kirkland et al. 1996; Henneke, Takeuchi et al. 2001; Muta and
Takeshige 2001; Nakata, Yasuda et al. 2006). These PAMPs utilize TLR4 and TLR2 for
intracellular signal transduction. Fassbender et al (Fassbender, Walter et al. 2004)

proposed that the observed AP cellular activation may likely be transmitted by TLR4
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based on the positive inflammatory response obtained from CHO cells which lack a
functional TLR2.

In this regard, the purpose of this research is to investigate the possible
involvement of TLR(s) in AP(1-42) induction of the innate immune response.
Specifically, this research aims to identify the TLR that functionally interacts with AB(1-
42). We also aim to investigate the possible involvement of other TLR accessory proteins
and TLR complexes in AP(1-42) innate immune activation. The field of TLR research is
still in its infancy; thus, the information that will be obtained from this research may
contribute to increased understanding of how A assemblies interact with TLR family
members. Additionally, this investigation will contribute to further understanding the role
of AP in AD-associated neurodegeneration, and possibly, open a therapeutically relevant

perspective for TLRs and their recognition abilities for host-derived pathogens.
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2 GENERAL METHODS

2.1 Cell Culture

2.1.1 THP-1 monocytes

2.1.1.1 THP-1 storage, erowth and culture

The cultured human peripheral blood THP-1 monocytes were obtained from
ATCC (Manassas, VA, USA) and maintained in RPMI-1640 culture medium (HyClone,
Logan, UT, USA) that contains 2 mmol/L L-glutamine, 25 mmol/L HEPES, 1.5 g/L
sodium bicarbonate, 10% fetal bovine serum (FBS) (HyClone), 50 U/ml penicillin, 50
pg/ml streptomycin (HyClone), and 50 pmol/L B-mercaptoethanol (Fisher, Pittsburg, PA)
at 37°C in 5% CO,. For growth and maintenance, THP-1 monocytes were diluted three
times a week, with a dilution of 1:1 twice during the week, and 3:10 dilution at the end of
the week. For 1:1 dilution, half of the cells were removed from the flask and replaced
with the same volume of fresh growth medium for propagation, ensuring that the cell
concentration in the flask was maintained at 1 x10° cells/ml. For 3:10 dilution, 3 ml of
THP-1 cells were removed from the culture flask and spun at 500 xg for 10 minutes.
After centrifugation, supernatant was removed and cells were resuspended in 10 ml of

growth medium. Cells were transferred to a new cell culture flask for propagation. Cells
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were continuously subcultured for 3 weeks prior to experimentation.

For maintaining a continuous supply of THP-1, THP-1 monocytes were
cryopreserved. As soon as a small surplus of THP-1 cells becomes available for
subculture, several ampules of cells were frozen. Cells were removed from the flask,
centrifuged at 500 xg for 10 minutes and supernatant was removed without disturbing the
pellet. The pellet was then resuspended to a final concentration of 5 x10° cells/ml in
freezing medium (fresh growth medium containing 0.5% sterile dimethyl sulfoxide
(DMSO)). The cell suspensions were dispensed into prelabeled ampules (1 ml cell
suspension per ampule) and ampules were transferred to an ampule cooler (Nalge Nunc)
containing isopropyl alcohol. The specific heat of the coolant in the base of the cooler
insulates the container and gives a cooling rate of ~1°C/min in the ampules (Freshney,
2000). The cooler was placed in a -70°C freezer overnight prior to transfer of ampules in
liquid nitrogen. After overnight freezing at -70°C, ampules were rapidly transferred to a
cryo-container and THP-1 cells were stored immersed in liquid nitrogen.

Thawing THP-1 ampules needs to be rapid. THP-1 cells were thawed by
immersing the lower half of the ampule in 37°C waterbath for 2-3 minutes (but not
exceeding 3 minutes). The ampule containing thawed cells was then immersed in 70%
ethanol before opening the container. Cells were pipetted out from the ampule and
suspended in 9 ml of fresh THP-1 growth medium. Cell suspension was centrifuged, and
reseeded in a new cell culture flask, as described previously.

We have previously observed that the proinflammatory response of our THP-1
monocytes to TLR agonists started to deteriorate when THP-1 cells have been

subcultured continuously for greater than 2 months. To avoid this problem, we have
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staggered our culture of THP-1 monocytes. We constantly maintained two culture flasks
of THP-1 monocytes, in which one flask was cultured a month after the initial culture of
the first THP-1 flask. Cells were constantly monitored for viability by stimulation with

TLR agonists (section 2.3) and measuring TNFa production (section 2.7).

2.1.1.2 THP-1 preparation for experimentation

For cellular assays, THP-1 monocytes were removed from the culture flask and
centrifuged at 500 x g for 10 minutes. After centrifugation, supernatant was removed
without disturbing the pellet. The pellet was washed with THP-1 assay culture medium
(THP-1 growth but with 2% FBS), and centrifuged as described above. Afterwhich,
supernatant was removed and pellet was resuspended in assay medium. Cell
concentration was determined by direct counting of the cells using a hemocytometer.
THP-1 cells (with concentration maintained at 1x10° cells/ml) were added to individual
wells of a 48-well sterile plate to a final volume of 0.3 ml, or 96-well cell culture plate to
a final volume of 0.08 ml.

THP-1 monocytes are derived from the blood of a patient with monocytic
leukemia (Tsuchiya et al., 1980). The cells grow in suspension, have round morphology,
and do not adhere to the plastic surfaces of the culture plates (Takashiba et al., 1999;
Zhou et al., 2005). THP-1 can serve as a model of primary human microglia since they

acquire a microglia-like morphology when treated with LPS (Yates et al., 2000).
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2.1.2 Human Embryonic Kidney (HEK293) cells

Null HEK293 (stably transfected with the pUNO-mcs vector), 293-hTLR2 cells
(isolated clone of HEK293 cells stably transfected with human TLR2 gene), and 293-
hTLR2/CD14 (isolated clone of HEK293 cells stably transfected with human TLR2 and
CD14 genes) were obtained from InvivoGen (San Diego, CA, USA). Null HEK293 and
HEK 293-hTLR2 cells were maintained in Dubelcco’s Modified Eagle’s Medium
(DMEM) growth medium (HyClone) containing 4 mmol/L L-glutamine, 4.5 g/l glucose,
10% FBS and supplemented with 10 pg/ml Blasticidin (InvivoGen) at 37°C in 5% CO..
HEK 293-hTLR2/CD14 cells were maintained in the same growth medium supplemented
with 10 pg/ml Blasticidin and 50 pg/ml hygromycin (HygroGold") (InvivoGen). Cells
were subcultured in a T-75 cell culture flask every 4 days. The number of times the cells
were subcultured is denoted by passage number. Subculture of HEK 293 cells is
illustrated in Figure 2.1 and was done using the following procedure. Briefly, the growth
medium in the flask was removed, and the cells were gently washed with sterile
phosphate buffered saline (PBS) (Hyclone). After washing, the cells were treated with 2
ml of 0.25% trypsin-EDTA for 5 minutes at 37°C followed by addition of 8 ml of
corresponding growth medium. Cells were dispersed by repeated gentle pipetting over the
surface bearing the monolayer. Cells were collected, placed in a 15 ml conical tube,
centrifuged at 500 xg for 10 minutes, resuspended in appropriate fresh growth medium,
diluted to the appropriate seeding concentration, and reseeded in a fresh flask (Freshney,

2000). A surplus of HEK 293 cells were also cryopreserved in a similar manner as in
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Figure 2.1 Schematic diagram of the subculture of HEK293 cells. Stages in the subculture and
growth cycle of HEK293 cells following trypsinization (Freshney, 2000)
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THP-1 monocytes (section 2.1.1.1), in which 1.0 ml aliquots of cells were kept in liquid
nitrogen until needed for growth and culture.

For cellular assays, Null HEK293, 293-hTLR2 and 293-hTLR2/CD14 cells were
trypsinized, as described above, to dislodge the cells. Cell supernatant was centrifuged at
500 xg for 10 minutes, and cells were resuspended in fresh growth medium. 0.3 ml or 0.2
ml of cells was plated to individual wells of a 48-well or 96-well sterile culture plate,
respectively. The cell concentration for a 48-well plate was maintained at 3.0 x10°
cells/ml, and 2.0 x10° for a 96-well culture plate. HEK293 cells were incubated and
allowed to adhere for 4h at 37°C, 5% CO,. After incubation, growth medium was
removed and HEK293 cells were resuspended in their respective assay medium (growth
medium with reduced (2%) FBS) prior to treatment with effectors.

We have optimized the conditions of HEK 293 growth to achieve the maximal IL-
8 concentration. We varied the length of adhesion of our HEK 293 cells to the cell culture
plate prior to stimulation with effectors (section 2.3) and measured the IL-8 secretion
after incubation (section 2.7). Results in Figure 2.2 showed the highest IL-8 production
was achieved when HEK 293hTLR2 was allowed to adhere to the cell culture plate for 4
hours prior to treatment with effectors. Thus, for all experiments with Null HEK 293,
HEK 293hTLR2 and HEK293hTLR2/CD14 cells, cells were incubated for 4 hours prior
to stimulation with effectors. Similarly, we tested if proinflammatory production by
HEK293 cells is affected by the number of times the cells have been subcultured. Figure
2.3 shows that the ability of HEK 293hTLR2 to produce IL-8 upon stimulation with

fibrillar AB(1-42) aggregated for 216 hours at 4°C significantly decreased as the cells
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Figure 2.2. Optimization of HEK 293 adhesion time prior to stimulation
with Pam;CSK,. Null HEK293 (light gray bars) or HEK 293hTLR2 (dark
gray bars) was prepared for experiment, as described. After resuspension in
growth medium, cells were plated in a cell culture plate and allowed to
adhere at 37°C, 5%CO, for 0, 4, 24 or 72 hours prior to stimulation for IL-8
production (in pg/ml). After the given times, growth medium was removed,
resuspended in assay medium and cells treated with 1 ng/ml Pam;CSK,.
After 24-hour post-stimulation, IL-8 was measured. HEK 293hTLR2/CD14
cells were also tested and gave a trend similar to that of HEK 293hTLR2
(data not shown).
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aged. Therefore, for all experiments employing HEK293 cells, we used cells from either

passage 15 or 16 to achieve maximal secretion of IL-8.

2.2. Preparation of AP peptides

Lyophilized powder of AB(1-42) and AP(1-40) peptides were purchased from
rPeptide (Bogarth, GA, USA). The powder was dissolved in 100% hexafluoroisopropanol
(HFIP) (Sigma, St. Louis, MO), and incubated at room temperature for 1 hour. This step
is crucial to ensure disaggregation of any pre-formed aggregates. HFIP treatment also
allows “normalization” of the properties of different commercial preparations of AP
(Wood et al., 1996; Zagorski et al., 1999). After incubation, the peptides were aliquotted
into sterile microcentrifuge tubes, dried in a vacuum centrifuge, and dried samples stored
at -20°C. Before cell treatment, the lyophilized samples were resuspended to 100 pmol/L
or 1 mmol/L in sterile water and incubated at 4°C. For studying the effect of temperature
in AB(1-42) aggregation, prepared AP peptides were also stored at 25°C and 37°C. For
cell treatment, cells were exposed to a final concentration of 15 umol/L of AB(1-42) or

AB(1-40).

2.3 Activation of cell model systems

THP-1 monocytes or HEK 293 cells were prepared for experiment as described
above, and plated on a sterile 48-well or 96-well cell culture plate. To the wells, pure

bacterial LPS (Escherichia coli 026.B6, Sigma), ultrapure bacterial LPS (Escherichia coli
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Figure 2.3. Effect of HEK293 passage number on fibrillar Ap(1-42)
response. HEK293 hTLR2 cells were subcultured, as described. The number
of times the cells have been subcultured is denoted by passage number. For
each subculture, cells are prepared for experiment and stimulated with 15 uM
of fibrillar AB(1-42) for 24 hours. After post-stimulation, secreted I1L-8 was
determined. This result represents 1 representative experiment of 3. Error
bars represent n= 3 trials (1 experiment). The same experiment was done in
Null HEK293 cells and treatment with AP failed to stimulate Null HEK293
cells for IL-8 production (data not shown)
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K12, InvivoGen), synthetic bacterial lipoprotein tripalmitoyl cysteinyl seryl tetralysine
(Pam3;CSKy, InvivoGen), synthetic Pam,CGDPKHPKSF (FSL-1, InvivoGen) (Figure
1.6) or 15 umol/L AB(1-42) or AB(1-40) were applied. For HEK 293 experiments, AB(1-
42) that was allowed to aggregate for 216 hours at 4°C was used. Cells were incubated at
37°C, 5%CO; at concentrations and incubation times stated in the experiments. After the
indicated incubation time, cell supernatants were removed and centrifuged at 2500 xg for
10 minutes (Microcentrifuge® 18 Centrifuge, Beckman-Coulter) to remove cells, and
supernatants were collected and stored at -20°C prior to analysis of proinflammatory
products (TNFa or IL-8). For concentration dependence experiment, the ECsy values
were determined by fitting the concentration-dependence data for the agonists to a

—([x-x0

sigmoidal three-parameter equation (y = a/ [1 + ¢ ]ﬂv)) using SigmaPlot graphing

program.

2.4 Conversion of non-adherent THP-1 monocytes to adhering cells

THP-1 cell adhesion was described previously (Crouse et al., 2009). Briefly,
THP-1 cells were treated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA, Sigma)
for 24 hours, and cells incubated at 37°C, 5% CO,. Vehicle control was 0.0005% DMSO.
After incubation, non-adherent cells in the supernatant were removed and adherent cells
were washed with assay medium prior to 6-hour stimulation of cells with known TLR
agonists or 15 uM AB(1-42).

To verify the extent of adhesion, a separate well containing THP-1 cells was

induced with PMA, as described above. After incubation, non-adherent cells were
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removed, and adherent cells were washed with PBS. The adherent cells were removed
from the bottom surface of the cell-culture plate with 0.25% trypsin-EDTA (HyClone),
and counted under a microscope using a hemocytometer. Percent adhesion was calculated
by the number of adherent cells divided by the plated cell number. Adherent cells with %

adhesion range of 75% and above were used for proinflammatory response experiments.

2.5 LPS contamination assay

To test the AP preparations for the presence of contaminating bacterial
lipopolysaccharide, AB(1-42) was routinely tested using Polymyxin B-sulfate (PMX-B)
(Sigma). THP-1 monocytes were prepared as described, and plated on a 48-well cell
culture plate. Cells were pretreated with 0.1 pg/ml of PMX-B and incubated for 30
minutes at 37°C, 5%CQO,. After incubation, cells were treated with either 10 ng/ml of
ultrapure LPS or 100 pmol/L of AP(1-42) and incubated further for 6 hours at 37°C.
Following incubation, cell supernatants were collected, centrifuged as described above,

and supernatants stored at -20°C prior to TNFa measurement.

2.6 TLR antibody neutralization assay

THP-1 monocytes or HEK293 cells were seeded in 48-well or 96-well cell culture
plate, and pre-treated with 5-20 pug/ml of TLR antibodies, IgG isotype control or PBS for
1 hour at 37°C, 5% CQO,. TLR antibodies and IgG isotype controls that were utilized in

this experiment were functional grade anti-human TLR2 (clone T2.5), TLR4 (clone
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HTA125), CD14 (clone 61D3) antibodies, mouse 1gG2,x and IgGl,x isotype controls
from eBioscience (San Diego, CA), polyclonal anti-TLR2, TLR4, TLR1 or TLR6
antibodies from InvivoGen, or rat IgG isotype control from Sigma. Following incubation,
cells were treated with either 10 ng/ml ultrapure LPS, 1 ng/ml Pam3;CSKy4, 3 ng/ml (for
THP-1 monocytes) or 1 ng/ml (for HEK293 cells) FSL-1, or 15 umol/L of AB(1-42) and
further incubated for 6 or 24 hours in the same conditions. After incubation, cell

supernatants were collected as described above for TNFa or IL-8 determination.

2.7 Measurement of proinflammatory products

Secreted TNFa or CXC chemokine IL-8 in the supernatants were determined
using Enzyme-linked immunosorbent assay (ELISA). ELISA has become a standard
biochemical technique for determination of cytokine concentration, as well as levels of
other proteins of interest, in body fluids and culture medium. An advantage of this
method is its high specificity when monoclonal antibodies are used. Moreover, it is quick
and easy to perform for large number of samples (Turner et al., 2004).

100 pl of 2 pg/ml monoclonal anti-human TNFo/TNFSF1A primary antibody (for
TNFa) or monoclonal anti-human CXCLS8/IL-8 antibody (for IL-8) (R&D Systems,
Minneapolis, MN, USA) was added to 96-well plates for overnight incubation at 24°C.
Following incubation, wells were washed with PBS containing 0.05% Tween-20 and
blocked with 300uL. PBS containing 1% bovine serum albumin (BSA), 5% sucrose, and
0.05% NaNj for 1 hour at 24°C. After washing, 50uL of standards or cellular supernatant

samples were added and the plate further incubated for 2 hours. After successive washing
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and additions of 100pL of 0.1 png/ml biotinylated anti-human TNF-o/TNFSF1A detection
antibody (TNFa) or biotinylated anti-human CXCLS8/IL-8 antibody (IL-8) (R&D
Systems) in 20mmol/L Tris with 150mmol/L NaCl and 0.1% BSA for 2 hours, 100uL of
streptavidin-horseradish peroxidase (R&D Systems) diluted 200 times with PBS
containing 1% BSA for 20 minutes, and 100uL of equal volumes of 3,3°,5,5’-
tetramethylbenzidine and hydrogen peroxide (KPL, Gaithersburg, MD, USA) for 30
minutes, the reaction was stopped by the addition of 1 mol/L H,SO4 solution. The optical
density of each sample was analyzed at 450 nm with a reference reading at 630 nm using
a SpectraMax 340 absorbance plate reader (Molecular Devices, Union City, CA, USA).
A TNFa or IL-8 standard curve, with a range of 15 pg/ml to 2000 pg/ml is used to
calculate the actual TNFa or IL-8 in the experimental samples. We made certain that the
optical density of each sample falls within the standard curve. Samples whose optical

density is outside the standard curve were diluted.

2.8 Cell viability assay

Powdered XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carboxanilide) (Sigma) was dissolved in RPMI 1640 medium without phenol red
(HyClone) supplemented with 2 mmol/L L-glutamine to make a stock solution of 1
mg/ml. The stock solution was kept at -20°C prior to use.

For assessing the viability of THP-1 monocytes, the cells were plated in a 96-well
cell culture plate and treated with effectors as described in section 2.3. After incubation,

~60ml of cell supernatants were treated with 30 ml of thawed 1 mg/ml XTT stock
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solution containing 24.9 umol/L of phenazine methosulfate (PMS) (Fisher Scientific) and
cells further incubated for 3 hours at 37°C, 5% CO,.

For HEK293 cells, cells were plated in a 96-well cell culture plate and treated
with effectors as described. Following the desired incubation time, cell supernatants were
removed and adherent cells were washed with corresponding assay medium. After
removal of the medium, adherent cells were resuspended in 100 ml of HEK293 assay
medium containing 0.33 mg/ml XTT and 8.3 umol/L PMS. Cells were incubated further
for 3 hours at 37°C, 5% CO,.

For both cases, cell supernatants were removed from individual wells after
incubation, centrifuged at 2500 xg for 10 minutes to remove cells, and supernatants
transferred to a new 96-well plate. XTT reduction was analyzed by reading the
absorbance of the solution at 467 nm.

Tetrazolium salts, such as XTT, are commonly used as a measure of the redox
potential of cells as a measure of their viability (Braeckman et al., 2002). It is based on
the reduction of the colorless XTT tetrazolium salt within active mitochondria of living
cells by succinate dehydrogenase to form an orange-colored water-soluble formazan
(Figure 2.4) (Braeckman et al., 2002; Brady et al., 2007). The formation of a water-
soluble formazan allows direct monitoring of its appearance, and thus, is one of the
advantages of XTT over other previous tetrazolium salts like MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which produces insoluble salt

when reduced (Scudiero et al., 1988; Kuhn et al., 2003).
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Figure 2.4. Conversion of XTT to a water-soluble formazan salt by
viable cells. Metabolically active cells cleave the yellow tetrazolium salt
XTT to form an orange formazan dye. XTT reduction is measured by
reading the optical density at 467 nm.
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2.9 Atomic Force Microscopy

At different aggregation states of the peptide, samples of AB(1-42) or AB(1-40)
(100 pmol/L and 1 mmol/L) solutions were obtained and diluted to 1 pmol/L in water.
Grade V1 mica (Ted Pella, Inc., Redding, CA, USA) was cut into 11 mm circles and
affixed to 12 mm metal discs. 50 pL of resulting AP aliquots were applied to freshly
cleaved mica, allowed to adsorb for 15 minutes, washed twice with water, air dried, and
stored in a container with desiccant. Images were obtained with a Nanoscope III
multimode atomic force microscope (Digital Instruments, Santa Barbara, CA, USA) in
TappingMode™. Height analysis was performed using Nanoscope III software on

flattened height mode images.

2.10 Statistical Analysis

Data are expressed as mean + SD. Statistical comparisons were made using
Student’s t test (SAS system) (Harris, 2003). Differences between mean were considered

significant at p<0.05.

81



2.11 Bibliography

Brady, A. J., P. Kearney, et al. 2007. Comparative evaluation of 2,3-bis [2-methyloxy-4-
nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and 2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium,
monosodium salt (WST-8) rapid colorimetric assays for antimicrobial
susceptibility testing of staphylococci and ESBL-producing clinical isolates. J
Microbiol Methods. 71:305-311.

Braeckman, B. P., K. Houthoofd, et al. 2002. Assaying metabolic activity in ageing
Caenorhabditis elegans. Mech Ageing Dev. 123:105-119.

Crouse, N. R., D. Ajit, et al. 2009. Oligomeric amyloid-beta(1-42) induces THP-1 human
monocyte adhesion and maturation. Brain Res. 1254:109-119.

Freshney, R. 1. (2000) Culture of Animal Cells: A Manual of Basic Technique, 4th
Edition. NY: Wiley-Liss, Inc.

Harris, D. C. (2003) Quantitative Chemical Analysis, 6th Edition. New York: W.H.
Freeman and Company.

Kuhn, D. M., M. Balkis, et al. 2003. Uses and limitations of the XTT assay in studies of
Candida growth and metabolism. J Clin Microbiol. 41:506-508.

Scudiero, D. A., R. H. Shoemaker, et al. 1988. Evaluation of a soluble
tetrazolium/formazan assay for cell growth and drug sensitivity in culture using
human and other tumor cell lines. Cancer Res. 48:4827-4833.

Takashiba, S., T. E. Van Dyke, et al. 1999. Differentiation of monocytes to macrophages
primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic

nuclear factor kappaB. Infect Immun. 67:5573-5578.

Tsuchiya, S., M. Yamabe, et al. 1980. Establishment and characterization of a human
acute monocytic leukemia cell line (THP-1). Int J Cancer. 26:171-176.

Turner, C. K., T. M. Blieden, et al. 2004. A novel ELISpot method for adherent cells. J
Immunol Methods. 291:63-70.

Wood, S. J., B. Maleeft, et al. 1996. Physical, morphological and functional differences
between ph 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta. J

82



Mol Biol. 256:870-877.

Yates, S. L., L. H. Burgess, et al. 2000. Amyloid beta and amylin fibrils induce increases
in proinflammatory cytokine and chemokine production by THP-1 cells and
murine microglia. J Neurochem. 74:1017-1025.

Zagorski, M. G., J. Yang, et al. 1999. Methodological and chemical factors affecting
amyloid beta peptide amyloidogenicity. Methods Enzymol. 309:189-204.

Zhou, J., P. Zhu, et al. 2005. Involvement of CD147 in overexpression of MMP-2 and

MMP-9 and enhancement of invasive potential of PMA-differentiated THP-1.
BMC Cell Biol. 6:25.

83



3 MODULATION OF AMYLOID BETA AGGREGATION MORPHOLOGY AND ITS

EFFECT ON PROINFLAMMATORY RESPONSE OF THP-1 MONOCYTES

3.1 Introduction

The brains of individuals with AD are characterized by the presence of two
lesions: extracellular deposits of AP peptides, so-called neuritic or senile plaques, and
intracellular neurofibrillary tangles (NFT) of hyperphosphorylated tau (Selkoe, 2001).
Numerous studies have now shown that AP plays a very important role in the AD
pathogenesis (Walsh et al., 2002a; Walsh et al., 2002b). Although the exact mechanism
of neurodegeneration is still uncertain, substantial evidences associate A} as fundamental
for neurodegeneration in AD (Ramsden et al., 2001). Particularly, several studies with
synthetic AR pinpoint the fibrillar form similar to those present in amyloid-bearing
plaques in AD as neurotoxic both in vitro and in vivo and causes neuronal dysfunction
and loss in AD (Kowall et al., 1991; Pike et al., 1991; Lorenzo and Yankner, 1994;
Iversen et al., 1995). However, recent reports suggest that it is the soluble, rather than the
insoluble AP that is responsible for early dendritic and synaptic injury, and eventually
neuronal dysfunction and degeneration (Lambert et al., 1998; Lue et al., 1999; Walsh et

al., 2002a; Chromy et al., 2003; Bucciantini et al., 2004).
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Besides being known to have direct neurotoxic effect, considerable evidences also
favor an indirect effect of AP to neurodegeneration based on ability of A to initiate and
release inflammatory mediators and neurotoxic factors in microglia, such as secretion of
proinflammatory cytokines, respiratory burst activity and increased phagocytosis and
chemotaxis (Murphy et al., 1998; Lue et al., 2001a; Lue et al., 2001b; Lee et al., 2002;
Floden and Combs, 2006). Consistent with this, reactive microglia has been observed to
be in and around AP — consisting plaques in AD (Frautschy et al., 1998; Stalder et al.,
1999). Thus, these studies suggest that the extracellular deposition of A triggers
inflammation in AD brain.

However, despite numerous evidences connecting AP to neuronal injury and
death, limited information is still available as to the exact mechanism by which AP
causes neurodegeneration. Similarly, a more complicated question that is a focus of
active study and debate is the question of, what AP assembly state correlates with the
biological activity and contributes most critically to neurological decline in AD. It is thus
important to have a clearer understanding of the A structure-function relationship for the
reason that determining the trigger of activation will result in a better understanding of
the contribution of inflammation in AD, and subsequently, will have important
implications to the development of therapeutic strategies.

In this study we investigate the ability of synthetic AP peptides to invoke a
proinflammatory response in a human monocytic cell line. Moreover, we seek to
determine the active AP species that induces TNFa production in our THP-1 monocytes.
We modulated AP aggregation by varying several factors including peptide

concentration, peptide length and temperature to examine the AP assembly state that
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correlates with biological activity. We propose that an AP (1-42) fibrillar precursor was
largely responsible for THP-1 cell activation. The data presented in this chapter is part of
a collaborative study with Deepa Ajit of Department of Chemistry and Biochemistry,
University of Missouri-Saint Louis. Additional data, analysis and conclusions will be

presented and included in Ms. Ajit’s dissertation.

3.2 Results

3.2.1 AP aggregation and proinflammatory response

To study the proinflammatory response of different AP aggregation species, we
have utilized a well-studied mammalian cell system, THP-1 monocytes. Numerous
investigators have utilized THP-1 cells as a model system for the study of
proinflammatory production by LPS and AP, and have shown that THP-1 cells are
morphologically similar to microglia when stimulated with LPS and AP, making them a
very good model of primary human microglia and for investigating AP induced
inflammatory activity (Klegeris et al., 1997; Yates et al., 2000; Combs et al., 2001). We
prepared the THP-1 monocytes as described in the methods, maintaining a cell
concentration of 1x10° cells/ml. The lyophilized Ap were resuspended in water to a final
concentration of 100 umol/L and kept at 4°C prior to cellular stimulation. The Ap was
allowed to aggregate at 4°C from Oh (freshly prepared) to 216h. In between these
aggregation times, AP solution was removed and was used to stimulate the THP-1

monocytes to a final A concentration of 15 umol/L. Cells were incubated for 6h at 37°C,
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Figure 3.1 Proinflammatory activity of synthetic AP(1-42) at different
aggregation. APB(1-42) was prepared in water and stored at 4°C , as described in
the Methods. THP-1 monocytes were incubated with 100 pmol/L of AB(1-42) at
different aggregation age to a final AP concentration of 15 pmol/L, and cells
incubated for 6h at 37°C, 5% CO,. After post-incubation, supernatants were
collected and TNFa production was measured using ELISA. Shown are three
representative experiments from different AB(1-42) lots.
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supplemented with 5% CO,. After incubation, supernatants were collected and assayed
for TNFa production by ELISA. Figure 3.1 illustrates the proinflammatory activity of
different aggregates of 100 umol/L. AB. Minimal TNFa levels were produced when THP-
1 cells were treated with freshly reconstituted (0 hours) AB(1-42). However, a steady and
significant increase in TNFa production was observed when AP(1-42) solution was
allowed to aggregate further, with the peak TNFa level observed between 48h and 96h of
AP aggregation. Interestingly, there was a noticeable decline in stimulatory activity when
AP sample was incubated for a longer aggregation time. Different representative
aggregation age profiles of 100 umol/L of AP were included in the figure to illustrate that
there is a lot-to-lot variation in stimulatory activity by synthetic Ap (May et al., 1992;
Zambrzycka et al., 2000). The toxicity of different AP aggregates were also monitored
using XTT and results showed that 15 pmol/L AP aggregates were not toxic to THP-1
cells (data not shown).

We monitored the morphology of the AP aggregate species using AFM (Figure
3.2a). The appearance of numerous punctuate species was observed for freshly
reconstituted AP monomers, with height measurement of <2 nm for majority of the
adsorbed species. There was also a noticeable presence of small spherical species in
APB(1-42) at Oh of aggregation. Height analysis of these species ranged from 2 to 5 nm,
with an average of 3.2 £ 0.8 nm (SD) for n = 115 measurements. This suggests that the
said spherical species might be fibrillar precursors. Also, a number of bright spots, with
height > 20nm, can be detected which may represent the formation of amorphous
aggregates immediately following reconstitution of the peptide. Consequently, these

spherical species were not able to stimulate THP-1 cells for TNFa production (Figure
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3.1). The appearance of thin flexible fiber-like structures was observed at 48 hours of A}
aggregation. Continuous incubation of AP increased the appearance of fibrillar structures.
When applied to THP-1 cells, these AP species invoked TNFa production. Height
measurements of the 48h aggregated AP fibrillar structure were performed and plotted as
a histogram (Figure 3.2b) and fitted for multiple peaks. Using peak fitting analysis, we
observed two populations: the first with a peak height and SE of 4.4 = 0.1 nm, and the
second having a mean height and SE of 7.9 + 0.6 nm (Udan et al., 2008). Our height
measurements for the fibers formed at 48h were in agreement with previous AFM
measurements describing type I and type Il fibrillar A (Harper et al., 1997; Stine et al.,
2003). Further incubation of the AP samples (216 hours) resulted in the formation of
longer fibrillar structures. Interestingly, a marked decrease in the presence of spherical
species was observed at this incubation time. The longer, more mature fibril structures
present at 216 hours surprisingly were not able to stimulate the THP-1 cells in producing
TNFo.

We also varied the length of cell exposure to further analyze Ap-induced
proinflammatory production. We found that maximum TNFa production was achieved
when THP-1 cells were exposed to 15 pmol/L of AB(1-42) for 10 hours (Figure 3.3a).
This trend was slightly different from that of LPS - and Pam3;CSKy - treated THP-1 cells
in that the maximal TNFa response was consistently observed after 6 hours of post-
stimulation (Figure 3.3b). Because continual exposure of the cells to proinflammatory
products may have a toxic effect on the cells, we have utilized a 6-hour cell exposure

despite the observed maximal AB TNFa response at 10 hour post stimulation.
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Figure 3.2. Morphological studies of Ap(1-42) aggregated species. (A) AP
aggregation solutions (100 pmol/L) in water were prepared as described in
Methods, and allowed to aggregate at 4°C. Aliquots were removed at 0, 48, 96
and 216h, diluted to 1 umol/L with water and imaged by AFM. Representative
AP solutions were also used to treat THP-1 monocytes for TNFa production.
AFM images are Sum x Spum and are shown in ‘height’ mode. (B) Representative
frequency histogram from 300 height measurements of AP(1-42) aggregated at
48h. Graph was fitted (r* = 0.932) to a two-peak Gaussian area curve using
PeakFit software v3.0 (Systat Software, Inc., San Jose, CA, USA). AFM images
courtesy of Ms. Deepa Ajit, Univ. of Missouri-St. Louis. Frequency histogram
analysis courtesy of Dr. Michael R. Nichols, University of Missouri-St. Louis.
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Figure 3.3. Effect of exposure time on AB(1-42)-, LPS- and Pam;CSKj,-
induced TNFa response in THP-1 cells. (A) THP-1 cells were exposed to
15 uM AB(1-42) at given times. After post-incubation, TNFa production was
analyzed by ELISA. (B) THP-1 cells were exposed to 10 ng/ml ultrapure E.
coli K12 LPS or 1 ng/ml Pam;CSK, at given times. Supernatants were
collected after stimulation and assayed for TNFa. For both figures, TNFa
was expressed as % of the maximum response, which was at 10 hours for
AP(1-42), and 6 hours for LPS and Pam;CSK,. Error bars for AP are
standard error for n = 6 trials for 0, 6, 10 and 24h and n = 3 for 48h; and n =
3 for both LPS and Pam;CSK,. Actual maximum averaged TNFa levels are
507 pg/ml for AP, 674 pg/ml for ultrapure LPS and 214 pg/ml for
Pam;CSKy.
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3.2.2. Modulation of AP aggregation

Our data suggests that an intermediate AB(1-42) species is stimulating our THP-1
monocytes in producing TNFa. However, as the AP aged, the species that were produced
failed to invoke TNFa production. To further understand the inability of the later
aggregated species to induce proinflammatory response in our THP-1 monocytes, we
regulated the aggregation kinetics. Several factors can modulate in vitro A fibril
formation. One of the factors that affects AP fibrillogenesis is the peptide concentration
(McLaurin et al., 2000; Taylor et al., 2003). Increasing the peptide concentration
considerably enhances the rate of aggregation (Harper et al., 1999; Nilsson, 2004; Chen
and Glabe, 2006). For this study, we increased the concentration of AP(1-42) stock
solution from 100 pumol/L to 1.2 mmol/L, and followed the ability of the AP aggregation
species to invoke TNFa production in THP-1 monocytes. To compare the effect of
concentration, the THP-1 cells were treated with both the concentrated AP sample and
100 pumol/L. AP preparation, to a final concentration of 15 umol/L. As shown in Figure
3.4a, 1.2 mmol/L AP sample invoked TNFa production (24 pg/ml) when it was freshly
reconstituted; however, further aging of the concentrated AP samples eradicated
induction of TNFa response. This response was significantly different from that of 100
umol/L of AP, wherein the peak response was observed at 96h of AP aggregation. AFM
analysis of the 1.2 mmol/L A solutions revealed that aside from the globular species, the
freshly reconstituted peptide solution (Figure 3.4b) already formed numerous long

fibrillar structures. A longer, intertwined dense population of fibrils was observed as
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Figure 3.4. Proinflammatory activity and morphological studies of
concentrated AP (1-42) sample. (A) Unlike 100 pM of AP (black line), a more
concentrated 1.2 mM AP(1-42) (circles) failed to induce TNFa response in
THP-1 monocytes. Ap was reconstituted in water to a final concentration 1.2
mM, as described in Methods. THP-1 cells were treated with Ap solution at
different aggregation times, and cells incubated for 6h at 37°C. After
incubation, cell supernatants were analyzed for TNFa using ELISA. A
representative graph for 100 uM A from Figure 3.1 was included for
comparison. (B) AFM of freshly reconstituted and 24h aggregated 1.2 mM AP
showed a population of fibrillar species. AFM was done as described in
methods. AFM images courtesy of Deepa Ajit, University of Missouri-St.
Louis.

93



early as 24 hours of AP aggregation, however, these species were not able to invoke
TNFa response. It was not possible to do height analysis on fibrils at 24 hours of
aggregation due to overabundance of intertwined fibrils. Nevertheless, the presented data
suggest that a 12-fold increase in AP concentration rapidly diminishes the lag phase for
fibril formation, and also attenuates the ability to induce TNFa response.

We next studied the effect of AP incubation temperature in fibril formation and
analyzed the biological activity of the AP species that are formed. We resuspended AB(1-
42) in water, as described in Methods, to a final concentration of 100 pmol/L and let the
solution aggregate at 4°C, 25°C and 37°C. At different times, solutions were removed and
used for THP-1 treatment. As shown in Figure 3.5a, only the AP species formed at 4°C,
and not at 25°C and 37°C, induced TNFa production in THP-1 monocytes. There was a
slight increase in the signal of A at 25°C aggregated for 48 hours, but the increase was
not significant. AFM analysis of freshly prepared AP solutions contained spherical
species (Figure 3.5b), which were still present at 48 hours of aggregation for AP stored at
4°C, along with a few fibrillar structures. AP solution incubated at 25°C and 37°C quickly
formed longer fibrillar structures (data not shown). At 96 hours of aggregation, A
incubated at 4°C contained long flexible fibrils (Figure 3.5b) with a mean height of 5.5 £+
1.6 nm (SD), as well as numerous globular structures, which correspondingly elicited an
increased TNFa production in THP-1 cells. AB samples incubated at 25°C showed longer
fibrils, with mean height of 6.9 £ 2.1 nm (SD). Interestingly, a decrease in the presence of
globular structures was also noticeable. AR samples at 37°C aggregated much faster, as
shown by an abundance of fibrils formed at 96 hours of aggregation. These data further

suggest that an intermediate fibrillar AP species induced TNFa response in THP-1 cells.
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Figure 3.5. Accelerated aggregation of AB(1-42) by increasing the incubation
temperature failed to invoke TNFa response in THP-1 monocytes. (A) 100
uM AB(1-42) was prepared in water and incubated at 0°C (circles) , 25°C
(triangles) or 37°C (diamonds). THP-1 cells were incubated with AP solutions to
a final concentration of 15 puM for 6 hours, as described in Methods. After
incubation, TNFo was assessed by ELISA. (B) Representative AFM images of
freshly prepared (a-c) or 96-hour aggregated (d-f) AB(1-42) solutions incubated
at 4°C (a,d), 25°C (b,e) or 37°C (c,f) were analyzed as described. Only the AP
sample incubated at 4°C elicited TNFa response in THP-1 monocytes. AFM
images courtesy of Deepa Ajit, University of Missouri-St. Louis.
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Increased fibril formation diminished the TNFa response, and prolonged and accelerated
aggregation failed to induce TNFa production in THP-1 cells.

APB(1-42) and AP(1-40) are the most predominant variants of AP that are present
in amyloid plaques (Taylor et al., 2003). The data that we have shown so far indicate that
the active species of AP(1-42) was effective in inducing TNFa production in THP-1
monocytes . We wanted to know if the species formed during AB(1-40) aggregation will
also instigate TNFa response similar to that of AB(1-42). For this, we prepared 100
umol/L. of AP(1-40) in water and treated the THP-1 cells the same way as AP(1-42).
After 6 hours of post-incubation, supernatants were analyzed for TNFa. Our results
showed that AB(1-40) samples at 4°C were not effective in inducing TNFa response
(Figure 3.6a). Moreover, AFM imaging of the AB(1-40) aggregation at 4°C indicated a
slower rate of fibril formation (Figure 6b, panels a-d). To hasten AP aggregation, samples
of AB(1-40) were likewise incubated at 25°C or 37°C. AFM analysis showed that
although at a much slower rate than AP(1-42), AB(1-40) also formed fibrils at elevated
temperatures (Figure 3.6b, panels e-h, i-1) and longer AP incubation (Figure 6b, panels h
and 1). However, these species were ineffective in inducing TNFa release in THP-1

monocytes (Figure 3.6a).

3.3. Discussion

Inflammation plays an essential role in the brain’s response to injury and
pathology (Moore et al., 2002). Growing evidences have linked inflammation with the

development of AD. Microglial cells, the resident immune cells of the CNS, play an
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Figure 3.6. ApB(1-40) failed to induce proinflammatory activity on THP-1 cells.
(A) 100 uM AP(1-40) was prepared in water, and incubated at 4°C (triangle) , 25°C
(inverted triangle) and 37°C (diamond), as described in Methods. Different
aggregation solutions were used to treat the THP-1 monocytes for 6 hours, and TNFa
was analyzed after post-stimulation. (B) Representative AFM images of AB(1-40)
samples at 4°C (a-d), 25°C (e-f) and 37°C (i-1) at different times. AFM images are 5
pum x Spm. AFM images courtesy of Deepa Ajit, University of Missouri-St. Louis.



integral role in inflammation. Moreover, activated microglial cells have been found to be
closely associated with and the most prominent component of senile plaques (Combs et
al., 2000; Masumura et al., 2000; Selkoe, 2001; Mattson, 2004). Numerous cellular
studies using microglia and human macrophage/monocytes cell line have demonstrated
that AP peptides are able to induce these cells to produce significant amounts of
proinflammatory cytokines and chemokines (Meda et al., 1995; Yan et al., 1996).

In studying the correlation between different AP aggregation species and
proinflammatory production, we have utilized THP-1 monocytes for the main reason that
THP-1 cells have expanse properties that are analogous to microglia and mature
phagocytes when treated with LPS and AP (Klegeris et al., 1997; Combs et al., 1999;
Combs et al., 2000). Moreover, THP-1 cells express numerous surface markers such as
CDll1a, CDI11b, CDll1c, CD18, CD36, CD44 and Fc immunoglobulin receptors that are
pronounced on macrophages and microglia (Klegeris et al., 1997). These metabolic and
morphological similarities between human monocytic cell line THP-1 and microglia
made the THP-1 an appropriate model for the study of AB-induced proinflammatory
response in primary human microglia.

We have shown that 100 pmol/L of AB(1-42) at 4°C was capable of invoking
TNFa production in THP-1 monocytes. Although the observed maximum TNFa response
varies from lot-to-lot preparation of AP, it was still apparent that an intermediate A
species activate the THP-1 monocytes and prolonged aggregation (216 hours) of the A
was ineffective in stimulating proinflammatory response. Furthermore, enhancing the rate
of aggregation and fibril formation by manipulating several factors such as increasing the

concentration (Fig. 3.4) or AP incubation temperature (Fig. 3.5) produced AP species that
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were not able to induce proinflammatory response in our THP-1 monocytes. These data
suggest that an intermediate A structure, and not the more mature rigid fibrils, act as a
proinflammatory stimulus.

Atomic force microscopy (AFM) is an ideal tool to follow the early
morphological changes in AP fibril formation (Stine et al., 1996). Several investigators
have used this technique to understand the process of AP fibrillogenesis (Harper et al.,
1997; Kowalewski and Holtzman, 1999; Nybo et al., 1999; Mastrangelo et al., 2006).
Since we are investigating the AP aggregation species that invokes proinflammatory
response in our model THP-1 monocytes, it is imperative that we consistently produce an
unaggregated starting material. We accomplished this by treating the AP with
hexafluoroisopropanol (HFIP). HFIP is known to disrupt peptide-peptide interaction
thereby disaggregating the pre-formed aggregates (Klein et al., 2004; Findeis, 2007).
AFM analysis of our freshly reconstituted AB(1-42) samples at 4°C, 25°C and 37°C
showed punctate structures that had height measurements of < 2nm, which correspond to
monomers (Klein et al., 2004). Moreover, small spherical structures with heights of 2-5
nm were also observed along with the punctuate species. These species were thought to
be prefibrillar precursors. These measurements correspond with the findings of Nybo et
al. (1999) in their investigation of the early stages of AP(1-42) fibrillogenesis. They
reported the earliest recognizable ultrastructure of AP as globular structures with mean
height of 4-5 nm. Moreover, these structures appear to fuse and align in a row, which
later becomes fibrils (Nybo et al., 1999). Our results showed that further incubation of
APB(1-42) at 4°C resulted in formation of two populations of fibrils with mean heights of

4.4 £ 0.1 nm (SE) and 7.9 £ 0.6 (SE). These measurements were consistent with that of
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Harper and colleagues (1997) when they analyzed the early steps of AP formation in vitro
by AFM. They reported height measurements of 7.3 + 0.53 nm and 3.8 + 0.43 nm for
their AP(1-42) species, which correspond to type-1 and type-2 fibrils, respectively
(Harper et al., 1997). Interestingly, these fibrils consistently stimulated our THP-1 cells in
producing proinflammatory TNFa. More importantly, the more mature fibrils that we
have generated in later AP aggregation were ineffective in stimulating a response. This
further infers that the intermediate fibrillar aggregation structures of AB(1-42) promote
TNFa secretion, and not the more mature fibrils.

Unlike AB(1-42), our AB(1-40) preparations were ineffective in activating our
THP-1 cells for TNFa response (Figure 3.6). Morphological analysis of these samples
showed a very slow progression of fibril formation. AB(1-40) and AP(1-42) bear different
biochemical properties. Numerous biochemical studies have demonstrated that AB(1-42)
aggregates much more quickly than AB(1-40) (Burdick et al., 1992; Jarrett et al., 1993).
Moreover, although there is more AP(1-40) that is being secreted, AB(1-42) is the major
component of senile plaques (Miller et al., 1993), as substantiated by recent findings
which showed that high levels of AB(1-40) alone do not result in observable amyloid
pathology, while low levels of AP(1-42) result in a wide range of amyloid pathology
(McGowan et al., 2005). These findings, together with our observation, suggest that
AP(1-42) is a major causative agent in pathogenesis of AD due to its enhanced
aggregation properties (Chen and Glabe, 20006).

Although instrumental in surveying the morphology of the species formed during
fibril formation, AFM analysis must be combined with other in vitro techniques that can

further substantiate our finding that intermediate soluble fibrillar structures of AP induce
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production of proinflammatory products. We have further characterized our AP
preparation by centrifuging the AP samples that were aggregated for 72 or 96 hours at a
speed of >100,000g for 1 hour. At this speed, all the rigid fibrillar structures would pellet
down and only the soluble oligomers will remain in the solution (Walsh et al., 2002b;
Klein et al., 2004; Irvine et al., 2008). After centrifuging the prepared A solution, the
supernatant was collected and tested for its ability to invoke proinflammatory response in
THP-1 cells. Using AFM, we found that some fibrillar structures were still present in the
supernatant after the AP samples were spun. Yet, supernatant still invoked a TNFa
response (data not shown). Furthermore, the aggregation species in the supernatant was
recognized by OC antibody (data not shown). This antibody recognizes fibrils and
fibrillar oligomeric species, which are described as small soluble aggregates that are
arranged in a similar conformation as in fibrils (Kayed et al., 2007). Taken together, these
additional results further confirm that a soluble fibrillar precursor species is the
proinflammatory form of AP. This project was done in collaboration with Deepa Ajit.
Several other biophysical methods were utilized for characterization of our bioactive AP
species and these additional data are presented in her dissertation.

Although numerous investigations have suggested that large fibrillar forms of AP
can kill neurons (Kowall et al., 1991; Pike et al., 1993; Lorenzo and Yankner, 1994;
Geula et al., 1998), accumulating evidence in vitro now demonstrate that the soluble
assembly forms of AP are the key nurotoxic effectors in AD (Lambert et al., 1998; Walsh
et al., 1999; Klein et al., 2004). The presence of soluble oligomeric AP assemblies have
also been observed from the supernates of AD brain and extracts of amyloid plaques

(Roher et al., 1996; Enya et al., 1999; McLean et al., 1999), which suggest that soluble
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AP could be the earliest mediators of neuronal dysfunction. A is capable of upregulating
cytokine and chemokine expression by microglia and monocytes/macrophages (Meda et
al., 1995; Yan et al., 1996; Klegeris et al., 1997); however, there are still conflicting
discussions and debates as to whether it is the oligomers or fibrils that are more potent
neurotoxins. Recent report by Sondag and colleagues (Sondag et al., 2009) showed that
proinflammatory cytokine IL-6 production was significantly higher when microglial cells
were stimulated with AP oligomers than with fibrils. However, their results also showed
that AP fibrils are more potent in inducing expression of proinflammatory chemokine
keratinocyte chemoattractant (KC, a mouse homologue of chemokine IL-8) than the
soluble aggregates. These findings demonstrate the ability of AP to act as a
proinflammatory stimulus in microglia, but more importantly, these results suggest that
the expression and release of proinflammatory products may depend on the specific
conformation of APB. Our present data reveal that cells of the monocytic origin respond to
an intermediate soluble yet fibrillar form of AP, and not the later more mature fibrils, by
secreting the proinflammatory cytokine,TNFa. Taken together, these evidences further
accentuate the intricacy involved in studying the association of AP aggregation with the

proinflammatory response in AD brain.
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4 THE ROLE OF TOLL-LIKE RECEPTORS IN AMYLOID BETA(1-42)
ACTIVATION OF THE INNATE IMMUNE RESPONSE

4.1 Introduction

The brains of individuals with Alzheimer’s disease contain reactive microglia and
these immune cells cluster at sites of AP deposition (Akiyama et al., 2000; Perry et al.,
2003). Microglial activation is always associated with production of inflammatory
products and mediators, which include complement proteins, cytokines and chemokines
(Das and Potter, 1995; Yates et al., 2000). Extensive and compelling evidence shows that
these activated microglia surround AP plaques (Miyazono et al., 1991; Frautschy et al.,
1998; Apelt and Schliebs, 2001; Wegiel et al., 2001) and in vitro activation of microglia
by AP results in the production and secretion of proinflammatory molecules such as
reactive oxygen species, cytokines and neurotoxins (Griffin et al., 1989; Venters et al.,
1999; Akiyama et al., 2000; Yates et al., 2000; Combs et al., 2001). However, it was
difficult to ascertain whether AB-induced inflammation contributes to or causes AD.
Several investigators have reported that the use of anti-inflammatory agents or non-
steroidal anti-inflammatory drugs (NSAIDs) significantly reduced the risk for AD
(McGeer et al., 1996; Stewart et al., 1997; Rogers, 2008). These evidences strongly
support the concept that chronic inflammatory process contributes to AD progression.

Inflammation is considered to be a double-edged sword: it may be useful when
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controlled, but deadly when it is not (Akiyama et al., 2000; Lai et al., 2006). Over the
years, investigators have tried to answer the mechanism by which AP causes heightened
expression of proinflammatory products in microglia. Some groups reported several
inflammation-related receptors present in the microglia as key players in AB-induced
microglial activation and inflammatory response. These include receptors for advanced
glycosylated end-products (RAGE) (Yan et al., 1996), scavenger receptor class A (El
Khoury et al., 1996; Paresce et al., 1996), B-class scavenger receptor CD36, intergrin
associated protein/CD47 and asf;-integrin receptor complex (Bamberger et al., 2003), as
well as calcium-, protein kinase C-, and tyrosine kinase- dependent second messenger
pathways (Klegeris et al., 1997; Combs et al., 1999; Yates et al., 2000). Recent studies by
Fassbender and colleagues demonstrated that fibrillar AP interacts and binds with the
bacterial lipopolysaccharide (LPS) receptor, CD14 (Fassbender et al., 2004). Moreover,
Bate et al reported that the subsequent killing of AB-damaged neurons by microglia is a
CD14 dependent process (Bate et al., 2004; Heneka and O'Banion, 2007). Furthermore,
Liu et al demonstrated a direct role of CD14 in fibrillar AB(1-42) phagocytosis, and an
observed elevation of CD14 immunostaining in AD brains compared with controls (Liu
et al.,, 2005). These evidences connecting CD14 with AP strongly suggest that innate
immunity is related to AD pathology.

A wealth of data now indicates that CD14 interacts with TLR4 and TLR2
(Chapter 1 review). In this study, we aspired to investigate and identify the
transmembrane TLR(s) that may be involved in the induction of innate immune response
by AB(1-42). For this investigation, we utilized cell systems including THP-1 monocytes

as a model of primary microglia (Chapter 3 review), as well as human embryonic kidney
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(HEK293) cells. We propose that TLR4 and TLR2 are highly involved in AP(1-42)-

induced proinflammatory cytokine production in these mammalian cell model systems.

4.2 Results

4.2.1 Mammalian cell model system: THP-1 monocytes

4.2.1.1 Toll-like receptor ligands activate the proinflammatory response in THP-1

monocytes

The interaction of LPS with TLR4 is the best studied model of innate immunity
(Aderem and Ulevitch, 2000). Several groups have extensively analyzed LPS-mediated
TLR4 downstream signaling for induction of proinflammatory response (Poltorak et al.,
1998; Hoshino et al., 1999; Qureshi et al., 1999). Aside from TLR4, numerous studies
also focused on TLR2 due to its capability to recognize a broad range of ligands (Chapter
1 review; (Albiger et al., 2007)). We started our investigation by first testing whether
THP-1 monocytes produce TNFa upon induction with known TLR agonists LPS (TLR4),
synthetic tripalmytoyl cysteinyl seryl tetralysine Pam;CSK,; (TLR2/1) and synthetic
diacylated lipopeptide FSL (TLR2/6). THP-1 monocytes were treated with increasing
concentration of the agonists, and incubated for 6 hours, as discussed in Methods.
Supernatants were collected after incubation, and secreted TNFa was measured by
ELISA. TNFa measurements revealed a concentration-dependent response for all TLR

agonists (Figure 4.1). Fitting the data to a sigmoidal three-parameter equation produced
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ECsg values of 5 ng/ml for ultrapure K12 LPS, 1 ng/ml for Pam3;CSK4 and 7 ng/ml FSL-
1. For succeeding experiments, we decided to utilize the following concentrations: 10
ng/ml LPS, 1 ng/ml Pam;CSK4 and 1 or 3 ng/ml FSL-1. We further extended our
investigation by determining the best condition for maximal TNFo production by our
TLR agonists. We found highest TNFa response for LPS, Pam3;CSK,4 and FSL-1 when
cells were exposed to these agonists for 6 hours (Figure 3.3, FSL data not shown). These
data confirmed the responsiveness of THP-1 monocytes to known TLR ligands, and is
particularly useful in our investigation of AB-TLR interaction since these agonists can be

used in later experiments as positive controls.

4.2.1.2 Amyloid beta(1-42) is devoid of any contamination

We have previously shown that soluble fibrillar AP(1-42) activates THP-1
monocytes for proinflammatory response (Chapter 3). In the previous report, we have
demonstrated that the maximal TNFa response was achieved when 100 pmol/L AB(1-42)
was allowed to aggregate at 4°C between 48 and 96 hours. Because of this result, the
same conditions were utilized for the AP samples in this study. For every analysis,
corresponding AFM images and height analyses were performed. Height measurements
were in accord with the soluble fibrillar AB(1-42), discussed in chapter 3.

Bacterial LPS utilizes TLR4 for activation of TLR downstream signaling that
culminates in production of proinflammatory cytokines and chemokines such as TNFa.

Because our main objective is to identify the TLR that plays a functional role in AB-

112



3000

[TNEa], pg/10° cells

-2 0 2 4
log [ligand], ng/ml

Figure 4.1. Known TLR agonists induce TNFa production in a dose-
dependent manner. THP-1 monocytes were stimulated with increasing
concentration of ultrapure K12 LPS (circles), synthetic Pam;CSK,
(triangles) or synthetic FSL-1 (diamonds) for 6 hours, as described in
Methods. The same volume of water was added to the cells as a control
in the absence of agonist. After stimulation, secreted TNFa in the
supernatants was analyzed by ELISA. Error bars represent standard error
for three measurements. Data was fit to sigmoidal three-parameter
equation using SigmaPlot graphing program.
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induced inflammatory response, we have to ensure that our AB(1-42) is devoid of any
contaminating bacterial lipopolysaccharide that might interfere with the proper
interpretation of our results. We also wanted to confirm that the secreted TNFo observed
in THP-1 monocytes was due to AP as a proinflammatory stimulus, and not due to traces
of contaminating bacterial LPS. To rule out the presence of traces of LPS in our AB(1-42)
samples, we tested our AP preparation using the compound Polymyxin-B sulfate (PMX-
B). PMX-B is a cationic decapeptide that binds to lipid A moiety of LPS and neutralizes
its pathogenicity and prevents LPS-induced cytokine production (Pristovsek and Kidric,
1999). To determine if PMX-B can neutralize TNFa secretion by 10 ng/ml of ultrapure
K12 LPS, THP-1 monocytes were pretreated with medium alone, or with increasing
concentration of PMX-B for 30 minutes. After preincubation, cells were stimulated with
10 ng/ml LPS for 6 hours prior to TNFa measurement. PMX-B effectively neutralized
the proinflammatory effect of LPS in a dose-dependent manner, with a 2-fold reduction
of LPS signal for as low as 10 ng/ml of PMX-B (Figure 4.2a). This data implies that
PMX-B is an effective tool in neutralizing LPS response and thus, can be used to test for
LPS contamination in our AP samples. Using XTT proliferation assay, it was found that
PMX-B alone did not have any toxic effect on our THP-1 monocytes (data not shown).
Next, we pretreated the THP-1 cells with 0.1 pg/ml of PMX-B for 30 minutes, as
described previously, prior to THP-1 stimulation with 15 pmol/L of AB(1-42). Figure
4.2b shows different profiles for PMX-pretreated Ap and PMX-pretreated LPS (Udan et
al., 2008). PMX-B almost completely abrogated the K12 LPS signal (LPS/PMX %

response of 1.85 + 0.84, as compared to 100 = 1.1 % response by LPS alone), but with

little or no effect on AP signal (AB/PMX % response of 95.7 £ 3.25 compared to 100 +
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Figure 4.2. PMX-B is a powerful tool for ruling out the presence
of small traces of contaminating bacterial LPS. (A) The LPS
proinflammatory response was neutralized by PMX-B in a dose-
dependent manner. THP-1 were preincubated with increasing
concentrations of PMX-B prior to stimulation with 10 ng/ml LPS, as
described in Methods. Error bars represent standard error for three
experiments. (B) PMX-B does not have an effect on AB(1-42)
proinflammatory response. THP-1 cells were treated with 15 uM AP
or 10 ng/ml LPS in the presence or absence of 0.1 pg/ml of PMX-B.
Results are presented as % TNFa of the Ap or K12 LPS without
PMX-B. Error bars represent standard errors for 15 trials in five
separate experiments. Actual TNFa levels averaged 328 pg/ml for
AP and 859 pg/ml for K12 LPS.
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0.43 % response by AP without PMX-B). This signifies that our AP preparations are
devoid of contaminating LPS. Moreover, the results imply that TNFa production in THP-
1 is mainly due to AP as a proinflammatory stimulus, and not because of possible traces
of LPS in the AP preparation. For subsequent experiments involving AB, AB/PMX-B and
LPS/PMX-B samples were included for continual monitoring of trace contamination.
Some results showed greater than 10% reduction in AB- induced TNFa response when
pretreated with PMX-B, although XTT cell proliferation experiments indicated that our
AP samples are devoid of any bacterial contamination (data not shown). For accurate
interpretation of results, those experiments were not included in the study of AB-TLR

interaction.

4.2.1.3 Toll-like receptor antibody neutralization assay was effective in blocking the

activity of known TLR agonists bacterial LPS and synthetic Pam;CSK4

We have developed a TLR antibody neutralization assay to aid us in investigating
which transmembrane TLR mediates AB-induced immune response. We initially tested
the effectiveness of this assay on our known TLR ligands, bacterial LPS (TLR4) and
synthetic Pam3;CSK,4 (TLR2). THP-1 cells were preincubated with 10 pg/ml TLR
antibodies prior to addition of either 10 ng/ml E. coli 026.B6 LPS or 1 ng/ml Pam;CSKj.
TLR4 neutralization lowered the E. coli 026.B6 LPS response by almost 79% (%
response of 29.3 £ 1.56 compared to 100 = 2.9 of LPS alone) (Figure 4.3, gray bars).
Surprisingly, TLR2 also had a significant effect on our LPS response. Antibody blockade

of TLR2 considerably decreased the % LPS response to 33.2 £+ 0.25. This result implies
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Figure 4.3. Toll-like receptor (TLR) neutralization of bacterial
lipopolysaccharide. THP-1 cells were pre-incubated with 10 ug/ml of TLR
antibodies (eBioscience) or mouse isotype controls (IgG2 isotype control for TLR2
and TLR4 antibodies, IgG1 isotype control for CD14) for 1 hour prior to addition of
10 ng/ml LPS, as described in methods. Experiments done several times, and
representative graph is shown. Pure LPS (E. coli 026.B6) (gray bars) utilized both
TLR4 and TLR2 in secretion of TNFa. TLR2 conferred sensitivity to LPS may be
due to contaminating bacterial lipoproteins. Repurified LPS preparation (E. coli
K12) abolished the effect of TLR2 on LPS-induced TNFa response. Error bars are
SE of three measurements.
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that TLR2 lowered the TNFa response by almost 70%, similar to the effect of TLR4
neutralization. Because substantial evidences show that LPS utilizes TLR4 for
downstream activation of innate immunity, this finding was unexpected. Several
investigators reported that TLR2-conferred sensitivity to LPS may be due to
contaminating lipoproteins (TLR2 agonists) in commercially available LPS preparations
(Kielian, 2006), and repurifying the LPS preparations and removal of trace amounts of
TLR2 agonists abated the effect of TLR2 in LPS activation (Hirschfeld et al., 2000).
Because of this possibility, we repeated the TLR neutralization using a commercially
available repurified, ultrapure K12 LPS. This LPS preparation has undergone stringent
repurification by double phenol extraction of a 0.2% triethylamine/0.5% deoxycholate
aqueous phase which ensures removal of contaminating lipoproteins that signal through
TLR2 ((Hirschfeld et al., 2000), InvivoGen.com). Our result (Figure 4.3, black bars)
demonstrated a TLR4-, but not TLR2-, dependent LPS-induced TNFa production (%
TNFa response of 13.0 + 3.4 for TLR4, 87.9 + 1.4 for TLR2). The TLR2 and TLR4
isotype control IgG2 had 10% inhibitory effect (% response of 90.0 + 2.4) on LPS
response; this denotes that the 10% inhibitory effect observed on K12 LPS response
when TLR2 was neutralized was not statistically significant.

Pam3;CSK4 utilizes TLR2 in activation of the innate immune response. This was
clearly demonstrated by an almost complete eradication of Pam3;CSK4- induced secreted
TNFa when TLR2 was blocked by 10 pg/ml of the TLR2 antibody (Figure 4.4, gray bar;
% response of 4.2 £ 0.76) (Udan et al., 2008). As expected, TLR4 is not being utilized by
Pam3;CSK4 for TNFa secretion (80.9 £ 1.4 % TNFa response). Although there is a 20%

inhibitory effect of TLR4 neutralization in Pam3;CSK4 response, the value was not
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Figure 4.4 TLR antibody neutralization of bacterial lipopolysaccharide and
Pam;CSK,. THP-1 monocytes were pre-incubated with 10 pg/ml of TLR
antibodies (eBioscience) or isotype controls (IgG2 for TLR2 and TLR4 antibodies;
IgG1 for CD14) as described in Methods, prior to treatment with either 10 ng/ml of
ultrapure E. coliK12 LPS (black bars) or 1 ng/ml Pam;CSK, (gray bars). Secreted
TNFa was measured by ELISA. Results are presented as % TNFoa of LPS or
Pam;CSK, pre-incubated with phosphate-buffered saline (PBS) medium. Actual
TNFa levels were 216 pg/ml for LPS and 257 pg/ml pg/ml for Pam;CSK,. Error
bars for LPS data correspond to SE for six trials (2 experiments), and three trials,
one experiment for Pam;CSK, data. A Student’s t-test was used to calculate the
significance between individual TLR and their respective isotype IgG controls ( *p
<0.001 and *p < 0.0025)
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statistically different (p< 0.25) from the TLR2 IgG2 isotype control (% response of 85.6
+4.6).

This experiment also demonstrated the necessity of the accessory protein CD14
for ultrapure LPS- and Pam3;CSKy- induced activation of downstream TLR signaling.
K12 LPS response was significantly attenuated by CD14 antibody, as shown by 75%
inhibition. This result was significantly different from the CD14 isotype control I1gGl
which inhibited only 6% of the K12 LPS response. Likewise, neutralization with the
CD14 antibody blocked 90% of Pam3;CSK, signal. The data presented here indicates that
the developed TLR neutralization assay is sensitive in specific recognition of TLR

agonists and may be a tool for invetistigating AB-TLR interaction.

4.2.1.4 TLR2 and TLR4 play a role in fibrillar AB(1-42)-induced TNFa response in THP-

1 monocytes

TLR neutralization was performed to clarify which TLR is being utilized by
fibrillar AP for TNFa production. As described in methods, THP-1 cells were incubated
with 10 pg/ml of TLR antibodies or isotype control for 1 hour prior to stimulation with
15 umol/L of AP(1-42). Our results demonstrated the importance of TLRs and TLR
accessory protein CD14 for AB-induced activation of innate immune response. As shown
in Figure 4.5, CD14 neutralization significantly reduced AP response by 62%, relative to
its isotype control IgG1 (Udan et al., 2008). This result suggests that AP utilizes CD14
for TNFa production, which was in accord with the previous report (Fassbender et al.,

2004). Surprisingly, both TLR2 and TLR4 neutralization also diminished AB- induced
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TNFa response. TLR4 blockade decreased the TNFa response by 35% (% response of
65.45 + 1.87). More surprisingly, TLR2 antibody was more effective in neutralizing the
AP response, as evidenced by 50% attenuation of TNFa signal (% response of 50.62 +
3.26). Using Student’s t-test, these results were significantly different from IgG control (p
<0.001).

The TLR2 and TLR4 antibodies (InvivoGen) that were used in this experiment
were different from the ones used for TLR neutralization of LPS and Pam;CSKy. This is
due to a consistent significant attenuation of AP response by IgG2 control used in LPS
and Pam3;CSK, studies. Nevertheless, this different set of TLR antibodies was still
effective in blocking TLR. Moreover, a consistent 20 — 30% increase in A response was
observed when THP-1 monocytes were pre-treated with 10 to 20 pg/ml of CD14 isotype
control, IgG1 (Figure 4.5 and 4.6b). This consistent stimulation may have cancelled out
some of the effectiveness of anti-CD14 neutralization. Because of the IgG effect, it was
not possible to compare the differences between TLR2, TLR4 and CDI14 antibody
neutralizing ability of AP response.

The AB-induced TNFa response was neutralized by TLR antibodies in a dose-
dependent manner (Figure 4.6 a and b) (Udan et al., 2008). The effectiveness of TLR
antibodies in neutralizing AP response was clearly demonstrated when THP-1 cells were
pre-treated with as low as 5 pg/ml TLR antibodies. About 29% reduction of TNFa
response was observed when THP-1 cells were treated with 2.5 pg/ml of TLR2 antibody,
and 15% reduction of TNFa response for TLR neutralization. Increasing the
concentration of the TLR antibodies augmented the effectiveness of neutralization, as

depicted by a more dramatic decrease in TNFa response. A boost of TLR2 or TLR4
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Figure 4.5. TLR2, TLR4 and CD14 play an active role in Ap-induced innate
immune response activation. THP-1 monocytes were pre-incubated with 10
pug/ml of TLR2, TLR4 (InvivoGen), CD14 (eBioscience) antibodies, or IgG isotype
controls, as described in Methods. Isotype controls were rat IgG (Sigma) for TLR2
and TLR4, and mouse IgG1 (eBioscience) for CD14. After incubation, THP-1 cells
were stimulated with 15 puM of AB(1-42) for 6 hours. TNFa was measured using
ELISA. Results are expressed as % TNFao of AP response treated with phosphate
buffered saline (PBS) medium. 20-30% stimulation of AP response was
consistently observed for IgG1. Actual TNFa levels induced by AP alone averaged
328 pg/ml. Error bars correspond to SE for 12 trials (four separate experiments) for
TLR2, TLR4 and rat IgG, and six trials (2 experiments) for CD14 and mouse IgGl1.
A Student’s t-test was used to calculate the significance between individual TLR
and their respective isotype IgG controls ( *p < 0.0001). rIgG; rat IgG
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Figure 4.6. Dose-dependent neutralizing ability of TLR antibodies against AB(1-
42). THP-1 cells were pre-incubated for 1 hour with increasing concentrations of
TLR antibodies or their isotype controls, as described in the Methods, prior to
stimulation with 15 uM of AP(1-42). After 6 hours post-stimulation, TNFa was
measured using ELISA. Results are expressed as % TNFa of AP response treated
with phosphate buffered saline (PBS) medium. (A) TLR2 (circles) and TLR4
(triangles) antibodies (InvivoGen) blocked AP response in a dose-dependent manner.
Rat IgG (rIgG, squares) is the isotype control for TLR2 and TLR4. The 10 pg/ml
TLR and IgG result are reproduced from Figure 4.5. Standard errors are SE for n =3
trials (5 pg/ml) and n = 6 trials (20 pg/ml). A Student’s t-test was used to calculate
the significance between individual TLR and their respective isotype rat IgG (*p <
0.0001). Actual TNFa was the same as Figure 4.5 (B) CD14 (circles) antibody
(eBioscience) also efficiently blocked AP response in a dose-dependent manner.
Error bars are SE of three trials. Actual TNFa of A alone averaged 170 pg/ml
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concentration from 10 pg/ml to 20 pg/ml further lowered the TNFa response by 10%. On
the other hand, the neutralizing effect of CD14 antibody on AP appeared to plateau at ~45
+ 3.0% starting at 5 pg/ml. The TLR2 and TLR4 isotype control rat IgG did not have an
effect on AP response. However, a consistent stimulation of the response was observed
for CDI14 isotype control mouse IgGl. Moreover, similar with the results for
neutralization using 10 pg/ml TLR antibodies, TLR2 antibody was more effective in
blocking AP response than TLR4. Nevertheless, the results presented here suggest that
AP is utilizing multiple toll receptors for the activation of innate immune response. More
importantly, TLR2 and TLR4 play an active role in AP-induced production of
proinflammatory products. Noticeably, a complete abrogation of the AB-induced immune
response was not observed when higher concentrations of TLR antibodies were used.
Individual TLR neutralization using 20 pg/ml antibodies caused only 50-70% inhibition.
A number of reasons may explain this result. First, previous reports suggested that Ap
fibrils also interact with other receptors for cellular activation and neurotoxicity like
scavenger receptors, RAGE, CDI11b/CDI18receptor, CD36/0¢p-integrin/CD47
multireceptor complex or complement factor C1 (Bamberger et al., 2003; Fassbender et
al., 2004). Thus, to explain the remaining unblocked activity, it is possible that AP
utilized these other receptors when TLRs were made unavailable.

A second possibility may be that since TLR2 and TLR4 play a role in A
response, one receptor may compensate for the other when one is inaccessible. We tested
this hypothesis by using a combination of TLR2, TLR4 and CDI14 antibodies to
investigate whether neutralizing multiple receptors will further enhance the reduction of

TNFa response as compared to individual receptor blockade. For this study, we lowered
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our TLR antibody concentration to 5 pg/ml to better observe the effect of combination
antibody treatment. Moreover, we also supplemented each cell treatment with up to 10
pg/ml of rat IgG or 5 pg/ml of mouse IgGl to match the triple combination
TLR2/TLR4/CD14 neutralization with isotype control amounts. Since we have used a
lower antibody concentration, and individual TLR neutralization was supplemented with
IgG isotype controls, it is not possible to directly compare the results that we obtained in
this experiment with that in Figure 4.5 and Figure 4.6. This experiment was performed
numerous times and the results are shown in Figure 4.7 (Udan et al., 2008). As shown,
the AP-induced TNFa response was only slightly reduced when individual TLRs were
blocked with 5 ng/ml of the antibody (% response of 92.6 + 0.72, 85.2 + 3.73 and 98.52
+ 1.57 for TLR2, TLR4 and CD14, respectively). These individual TLR neutralization
results were not statistically different from that of the mouse IgGl/rat IgG control (%
response of 95.2 + 2.7). As discussed earlier (Figures 4.5 and 4.6), a consistent
enhancement of AP response was observed when cells were treated with mouse 1gG1
control. Since the individual TLR2 and TLR4 (and all other samples that do not contain
CD14) were supplemented with mouse IgG1l to match the concentration of the triple
combination TLR2/TLR4/CD14, this may have masked some of the TLR blocking
activity. A double combination of TLR2/CD14 and TLR4/CD14 antibody neutralization
was better in lowering the AP response compared to the individual TLR blockade (34.4%
and 35.5% reduction, respectively). The neutralizing activity of TLR2/CD14 and
TLR4/CD14 compared to that of mouse IgG1/ rat IgG control was significantly different
(p<0.001). These comparable results of TLR2/CD14 or TLR4/CD14 blockade suggest

that an overlap to some extent of AP interaction with both TLRs and CD14 may be
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Figure 4.7. Combination TLR antibody neutralization of AB(1-42)-induced TNF «a
response. THP-1 monocytes were pre-incubated with 5 pg/ml of TLR2, TLR4
(InvivoGen), CD14 (eBioscience) antibodies, or a combination of 5 pug/ml mouse IgG1
and 10 pg/ml rat IgG isotype control, as described in Methods. Individual cell
treatments were also supplemented with one or both of the mentioned IgGs to match
the concentration of the IgG controls. After pre-treatment, THP-1 cells were stimulated
with 15 uM of AP(1-42) for 6 hours. TNFa was measured using ELISA. Results are
presented as % TNFa of AP response treated with phosphate buffered saline (PBS)
medium. Actual TNFa levels induced by AP alone averaged 487 pg/ml. Error bars
correspond to SE for n = 3 trials. A Student’s t-test was used to calculate the
significance between individual TLR and the mouse 1gG1/rat IgG isotype control ( *p
< 0.001). Less significant differences were observed for individual anti-TLR2 (p<
0.25), anti-TLR4 (p< 0.05) and anti-CD14 (p< 0.20) antibody treatments. rlgG; rat
IgG, mlgG1; mouse IgG1
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occurring. Blocking both TLR2 and TLR4 simultaneously (TLR2/TLR4) was much more
effective in neutralizing the response (60% reduction). The most effective reduction of
AP response was observed when all TLR2, TLR4 and CD14 (TLR2/TLR4/CD14 triple
combination) were neutralized (71.3% reduction, compared with the mouse IgG1/rat IgG

isotype control).

4.2.1.5 TLR1 and TLR6 may also be involved in fibrillar AB(1-42)-induced activation of

the innate immune response

We have so far demonstrated that TLR2 plays an active role in AB-induced
initiation of innate immune response. TLR2 forms a TLR2/TLR6 or TLR2/TLRI
heterodimer to recognize diacylated and triacylated lipopeptides (LPT), respectively
(Nakata et al., 2006). To assess if TLR2 also requires complex formation with either
TLR1 or TLR6 for recognition of fibrillar AR, we have included TLR1 and TLR6
antibodies in our TLR neutralization analysis.

To test the effectivity of the added antibodies, we performed neutralization assay
using the known TLR2 agonists, Pam3;CSK4 (for TLR2/1) or FSL-1 (for TLR2/6) (Figure
4.8). Unlike the previous neutralization experiment for TLR ligands (Figure 4.3 and 4.4),
we lowered our TLR antibody concentration to 1 pg/ml in this study to better assess the
effect of the antibody neutralization, since using 10 pg/ml of the TLR1 or TLR6 antibody
completely eradicated the agonist signals (data not shown). As described in Methods,
THP-1 cells were pre-incubated with TLR antibodies or isotype control for 1 hour prior

to 6-hour cellular stimulation with AB(1-42). Results clearly showed that triacylated
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Figure 4.8. TLR2 complex antibody neutralization of known TLR2
agonists, synthetic diacylated or triacylated lipopeptides. THP-1 monocytes
were pre-incubated with 1 pg/ml of TLR antibodies (InvivoGen) or its isotype
control rat IgG (Sigma) for 1 hour, prior to 6-hour cellular stimulation with
either 10 ng/ml of FSL-1 (black bars) or 1 ng/ml of Pam;CSK, (gray bars).
Secreted TNFo was measured by ELISA. Results are presented as % TNFa of
FSL-1 or Pam;CSK, pre-incubated with phosphate-buffered saline (PBS)
medium. Error bars represent SE for nine trials. A Student’s t-test was used to
calculate the significance between individual TLR and their respective isotype
IgG controls ( *p < 0.001)
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synthetic Pam;CSK4 activates downstream immune signaling via TLR2/TLRI
heterodimers. A significant 60% and 75% reduction in TNFa response were observed
when TLR2 and TLR1 were neutralized, respectively (p< 0.001). Antibody blockade of
TLR6 lowered the Pam3;CSKy- induced secretion of TNFa by 13% (% response of 86.9 +
1.9); however, this result was not significantly different from that of its isotype control rat
IgG (% response of 87.65 * 2.4). Likewise, diacylated synthetic FSL-1 utilizes
TLR2/TLR6 complex for activation of downstream signaling, as depicted by 71% and
91% reduction in TNFa response when TLR2 and TLR6 were blocked with 1 pg of the
antibody, respectively.

Next, the TLR antibody neutralization experiment was utilized to answer the
question: is TLR2/TLR1 or TLR2/TLR6 complex formation required for AB-induced
activation of the innate immune response, or does A interact with TLR2 alone? For this
study, we have reverted back to using 10 ug/ml of the TLR antibodies. For the purpose of
investigating the importance of TLR2 complex formation, we have included combination
neutralization of TLR2/TLR1 and TLR2/TLR6 in our neutralization experiment. The cell
treatments with individually blocked TLRs were supplemented with 10 pg/ml of the
isotype rat IgG control to match the concentration of double combination TLR2/TLR1 or
TLR2/TLR6 with isotype control amounts. Our preliminary results suggest that TLR1
and/or TLR6 may also have an active role in AP response (Figure 4.9). Neutralizing
TLR2 with 10 pg/ml of the antibody decreased the AB-induced %TNFa response to 39.9
+ 2.6 (70% reduction). Surprisingly, blocking either TLR1 or TLR6 also significantly
lowered the TNFa response, compared to the isotype rate IgG (p< 0.001). TLR1 was

much more effective in neutralizing the A signal than TLR6, as shown by 57%
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Figure 4.9. Combination TLR2 complex antibody neutralization of Ap(1-
42)-induced TNF a response. THP-1 monocytes were pre-incubated with
10 pg/ml of TLR2, TLR1, TLR6 (InvivoGen) antibodies, or 20 pg/ml rat IgG
isotype control for 1 hour, as described in Methods. Individual cell
treatments were also supplemented with 10 pg/ml of rat IgG to match the
concentration of the 20 pg/ml rat IgG control. After pre-treatment, THP-1
cells were stimulated with 15 uM of AP(1-42) for 6 hours. TNFa was
measured using ELISA. Results are presented as % TNFa of AP response
treated with phosphate buffered saline (PBS) medium. Error bars represent
SE for n= 18 trials (6 separate experiments) for TLR2, TLR1, TLR6, and n =
6 trials (2 separate experiments) for TLR2/TLR1 and TLR2/TLR6. A
Student’s t-test was used to calculate the significance between individual
TLR and the rat IgG isotype control ( *p < 0.001). rIgG; rat IgG
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reduction for TLR1 neutralization compared to 43% for TLR6 blockade. The AP signal
was further decreased when the combination of TLR2/TLR1 or TLR2/TLR6 were
blocked. Neutralization of TLR2/TLR1 complex decreased the % response to 24.7 *
2.43, while TLR2/TLR6 complex blockade lowered the % response to 33.77 £ 2.04. A
slight enhancement of AP response was observed for cells pre-incubated with 20 pg/ml of
TLR isotype rat IgG control. Overall, the presented results demonstrated that TLR2 and
TLR4 have an active role in AB-induced activation of the innate immune response.
Additionally, our recent data also suggests a possible involvement of TLR1 and TLR6 as

well for AP activation of downstream TLR signaling.

4.2.2. Mammalian Cell System: Human Embryonic Kidney (HEK) cells

4.2.2.1 Induction of proinflammatory IL-8 production in transfected HEK 293 cells with

known TLR agonists

The main purpose of the study is to determine which TLR is responsible for Ap-
dependent inflammatory response. Using THP-1 monocytes, we have identified TLR2
and TLR4 to have a role in AP activation of the innate immune response. Numerous
investigators whose focus is to study the mechanisms involved in TLR recognition and
signaling utilize model cell lines such as Human embryonic kidney (HEK) cells (Bauer;
Chen et al., 2006; Walter et al., 2007; Goodridge and Underhill, 2008). We have started
utilizing HEK293 cells to further investigate the role of TLR2 and its complex (TLR2/1

or TLR2/6) in AP proinflammatory response. This mammalian cell line does not express
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TLR2 and other TLRs (Razonable et al., 2006), although recent studies have shown that
HEK293 cells express low amounts of TLR1 and TLR6 (InvivoGen, 2006). We have
acquired human HEK293 cells transfected with TLR2 (herein referred to as HEK
293hTLR2) to substantiate the role of TLR2 in AP response. For proper interpretation of
results, we have also acquired non-transfected HEK293 cells (herein referred to as null
HEK293).

We began our investigation by first testing the ability of our known TLR agonists
to induce IL-8 production in our HEK293 cell lines (Figure 4.10). HEK 293hTLR2 cells
were strongly stimulated to produce IL-8 in the presence of 1 ng/ml of Pam3;CSK4
(TLR2/1 ligand) or 1 ng/ml of FSL-1 (TLR2/6 ligand) (Figure 4.10b). Expectedly, our
ultrapure LPS (TLR4 ligand) failed to stimulate our TLR2 transfected cells in producing
IL-8. Null HEK293 cells, on the other hand, were not stimulated by same concentration
of the known TLR agonists (Figure 4.10a). The data presented here signify that the
acquired TLR2-transfected HEK 293 cells are devoid of any traces of TLR4, and our
Null HEK293 cells may be used for succeeding experiments as control cells.

We wanted to know if our TLR neutralization assay can also be applied to our
HEK 293hTLR2. HEK 293TLR2 cells were grown, as described in Methods. Cells were
pre-treated with 10 pg/ml of the TLR antibodies or isotype rat IgG control for 1 hour
prior to 24-hour stimulation with either 1 ng/ml of Pam3;CSK4 or 1 ng/ml of FSL-1. After
post-stimulation, IL-8 levels were measured by ELISA. Our results confirmed the
effectiveness of the TLR neutralization assay on this cell line. Antibody blockade of

TLR2 or TLR1 decreased the Pam;CSKy-induced IL-8 response to 30.9 £+ 0.84 and 20.9

+ 1.34, respectively (Figure 4.11). These signify a 48% reduction for TLR2, and 58%
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Figure 4.10. PAMP activity on HEK 293 cells. (A) Activity
of PAMPs on Null HEK293 cells. Cells were grown, as
described in Methods, prior to 24-hour stimulation with known
TLR PAMPs. Concentration of the agonists are E. coli K12
LPS (10 ng/ml), Pam;CSK, (1 ng/ml), and FSL-1 (1 ng/ml).
(B) Stimulation of TLR2-transfected HEK 293 cells (HEK
293hTLR2) with known TLR agonists. Concentration of
agonists is the same as in A. For both instances, secreted 1L-8
was measured by ELISA. These results represent 1
representative experiment of 4. Error bars represent SE of n=3
trials (1 experiment)
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Figure 4.11. TLR2 complex antibody neutralization of TLR2 ligands. HEK
293hTLR2 cells were pre-incubated with 10 pug/ml of TLR2, TLR1, TLR6
(InvivoGen) antibodies, or 20 pg/ml rat IgG isotype control for 1 hour, as
described in Methods. After pre-treatment, HEK 293hTLR2 cells were
stimulated with 1 ng/ml of either Pam;CSKy or FSL-1 for 24 hours. IL-8 was
measured using ELISA. Results are presented as % IL-8 of Pam;CSK, or FSL
response treated with phosphate buffered saline (PBS) medium. Error bars
represent SE for n= 6 trials (2 separate experiments) for Pam;CSK, and n = 3
trials (1 experiment) for FSL-1. rIgG; rat IgG
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reduction for TLR1, compared to the rat IgG isotype control. TLR6 blockade evoked a
28% attenuation of Pam3;CSKy response. However, this attenuation was comparable to
that of the rat IgG isotype control (22% reduction). Antibody neutralization of the
TLR2/TLR6 agonist FSL-1 was clear. TLR2 neutralization almost completely abrogated
FSL-1- induced IL-8 response (85% reduction) while TLR6 blockade lowered the FSL-1
response by 57% (% response of 42.8 + 3.13). TLR1 neutralization did not have an effect
on the FSL-1 response. For all neutralization experiments, we have included stimulation
of null HEK293 cells with the TLR agonists. Similar to Figure 4.10, 1 ng/ml of

Pam;CSK4 or FSL-1 did not induce IL-8 production in null HEK 293 cells.

4.2.2.2 Induction of proinflammatory IL-8 production in transfected HEK 293 cells with

fibrillar AB(1-42)

To understand the contribution of TLR2 in AB-induced immune response, and to
assess the responsiveness of the HEK cells to AP, we next stimulated our HEK 293 cells
with 15 pmol/L of AB(1-42). Null HEK 293 cells and HEK 293hTLR?2 cells were grown,
as described in Methods. After 4 hours of allowing the cells to adhere in the cell culture
plate, cells were stimulated with 15 umol/L of AB(1-42) for 24 hours. The IL-8 level was
measured post-stimulation by ELISA. As seen in Figure 4.12, TLR2-transfected HEK
cells produced a significant amount of IL-8 (81 pg/ml/10° cells + 1.8), while null HEK
cells failed to produce IL-8 upon A stimulation. This result further substantiates our
finding that TLR2 plays a role for AB-induced proinflammatory production.

We carried out the TLR antibody neutralization to further verify the role of TLR2,
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as well as TLR2 complex, in AP response. We pre-treated our Null HEK cells and HEK
293hTLR2 cells with 10 pg/ml of TLR antibodies (InvivoGen) or rat IgG isotype control
(Sigma) for 1 hour prior to 24-hour cell stimulation with 15 pmol/L of AB(1-42). As
expected, AP treatment did not stimulate our null HEK cells in producing IL-8. Our
initial results with the HEK 293TLR2 cells (data not shown) revealed a big reduction in
AB-IL-8 response when TLR1 was neutralized (70% reduction). A 30% reduction was
also observed when TLR2 and TLR6 were blocked. However, there was a substantial
attenuation of AP response when cells were pre-treated with the isotype IgG control. This
issue of reduced AP response with IgG control made it impossible to interpret our TLR
neutralization results properly. The TLR neutralization of AB-induced IL-8 response in
HEK 293TLR2 is an ongoing investigation in our lab and the effect of isotype IgG

control needs further analysis.

4.3. Discussion

The data that we have presented in this study emphasize the role of toll-like
receptors in AP-induced activation of the innate immune response. By utilizing THP-1
monocytes which naturally express TLRs ((Faure et al., 2000), we have identified TLR4
and TLR2 to be involved in proinflammatory response initiated by fibrillar AB(1-42).
These results were consistent with that of Fassbender and colleagues (Fassbender et al.,
2004). Using an antibody neutralization assay, they reported a CD14-dependent

microglial activation by fibrillar AB. Moreover, they presented A activation by nuclear
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Figure 4.12. Fibrillar AP(1-42) activity on HEK 293 cells. Null HEK293
cells and TLR-2 transfected HEK293 cells (HEK 293hTLR2) were grown, as
described in Methods, prior to 24-hour stimulation with 15 pM of A
aggregated at 216 hours. Secreted IL-8 was measured by ELISA. This result
represent 1 representative experiment of 3. Error bars represent SE of n= 3
trials (1 experiment)
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translocation of NFkB in CD14-transfected Chinese hamster ovary (CHO-KI1) cells.
Since the CHO cells lack a functional TLR2, they suggested that TLR4 may be
responsible for A signal transduction.

Our TLR antibody neutralization in THP-1 monocytes clearly demonstrated the
importance of TLR4 in Ap-induced immune response (Figure 4.5, 4.6b, 4.7). A
consistent 50-60% reduction of the AB-induced TNFa response was observed when cells
were pre-incubated with TLR4 antibody. Additionally, we identified TLR2 to be equally
responsible for fibrillar AP response. In fact, our results showed a more significant
reduction of AP response from TLR2 antibodies than from TLR4 antibodies (Figure 4.5,
4.6b). We have further substantiated our finding that TLR2 is involved in fibrillar Ap-
induced immune response by using a TLR2-transfected cell line. HEK cells do not
express TLR2 (Razonable et al., 2006), thus it is a model system in further clarifying the
importance of TLR in agonist signaling. Stimulation of HEK 293hTLR2 with 15 umol/L
of AP resulted in the production of proinflammatory IL-8, while the same concentration
of AP failed to stimulate the Null HEK293 cells for IL-8 production (Figure 4.12). This
result implies that the transfected TLR2 gene was responsible for AB-induced IL-8
response.

Our results have also indicated that TLR2 and TLR4 may compensate for each
other for transduction of AP signal when necessary (Figure 4.7). Moreover, we have
further demonstrated the importance of CDI14 on the AP-induced activation of
downstream signaling (Figure 4.5, 4.6a, 4.7). One difficulty that we encountered using
TLR neutralization of AP response is a consistent stimulation of TNFa response for

CD14 isotype control, IgG1 (Figure 4.5, 4.6a). This 20-30% increase in signal may have
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offset the effectiveness of our anti-CD14 neutralization. These issues emphasize the
importance of including the isotype controls in the experiment for proper and accurate
interpretation of results.

Several groups have started to focus on Toll-like receptors and its accessory
proteins to better understand the mechanism of A inflammatory response or clearance.
Using cultured CD14-positive microglia and microglia derived from CD14-deficient
mice, Liu et al emphasized the importance of CD14 in AP(1-42) phagocytosis by
microglia (Liu et al., 2005). In vivo studies using Mo/Hu APPswe PSIdE9 mice deficient
in TLR4 showed a decreased clearance of diffuse and fibrillar AP deposits, demonstrating
the significance of TLR4 signaling pathway in AP load and clearance in AD brain
(Tahara et al., 2006). Furthermore, using immunohistochemical staining, Liu et al.
reported a strong expression of CD14 on brain sections of AD patients as compared to
that of control subjects (Liu et al., 2005). Recently, Fassbender’s group also released their
findings that TLR4-deficient mice C3H/HelJ strongly inhibited monocytic and microglial
activation by aggregated AP(1-42) as demonstrated by a significant decrease in the
secretion of IL-6, TNFa and nitric oxide compared to the wildtype C3H/HeN (expressing
TLR4) mice (Walter et al., 2007). This result further supported our findings of TLR4-
mediated AP proinflammatory response. Similarly, findings by Jin, et al. showed that
TLR4 was also implicated in the upregulation of proinflammatory (TNFa, IL-1, IL-10,
IL-17) products in the brains of TLR4 wildtype AD mice as compared to TLR4 wildtype
non-transgenic mice (Jin et al.,, 2008). Recently, Rivest and colleagues have also
published reports implicating TLR2 an endogenous receptor that is involved in clearance

of AB(1-42) (Richard et al., 2008). Overall, our findings, together with these other
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studies, contributed to growing evidences linking neurodegenerative diseases with innate
immune response.

Investigating the ligand-TLR interaction means that utmost care should be taken
to ensure that the agonists are free of contamination that might falsely activate certain
TLRs (Kielian, 2006). Over the years, the purity of TLR agonists has been an ongoing
issue in investigating agonist-TLR interaction (Hirschfeld et al., 2000; Gao et al., 2001;
Lee et al., 2002). We have carefully prepared our AB(1-42) samples and made sure that
our preparations are free of contaminating traces of LPS. Although the commercial Af
lots were already endotoxin-tested prior to shipment (0.35 EU/mg, which corresponds
into an effective LPS concentration of 8 pg/ml) (Gao and Tsan, 2003), we still have
continuously monitored our AP preparations using PMX-B. PMX-B is often used in cell
culture systems to test for LPS contamination (Weaver et al., 2007). Our A preparations
were devoid of any traces of bacterial LPS contamination, as depicted by Figure 4.2b.
XTT proliferation assay was also done routinely to verify the purity of our A
preparations. Moreover, the possibility of contamination in our AP preparation was
invalidated by our AP aggregation data (Figure 3.1) which demonstrated a steady
increase of TNFa production when AP was aggregated at 4°C for up to 96 hours,
followed by a decline of the TNFa signal to baseline level when AP was incubated for
longer period of time (216 hours). This trend would not be observed if traces of
contaminating TLR ligands are present in our AP preparation. Degradation of the
contaminants is also not expected, thus, if there is a presence of any traces of bacterial
contaminants, the AB-induced TNFa signal should remain at 216 hours.

Our preliminary results with THP-1 monocytes (Figure 4.9) also suggest a
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possible role for TLR1 and TLR6 in AP activation of the innate immune response. Our
laboratory, and others, have demonstrated the importance of TLR2 in Ap-induced
immune response (Jana et al., 2008; Richard et al., 2008; Udan et al., 2008). TLR2 is
known to form a heterodimeric complex with either TLR1 or TLR6 for recognition of a
wide spectrum of ligands (Schroder et al., 2004; Manukyan et al., 2005; Kielian, 2006).
Our TLR neutralization revealed a significantly decreased TNFa response for A when
TLR1 and TLR6 were blocked. Interestingly, TLR1 seems to have more effect in AP
response than TLR6, as demonstrated by greater inhibition with 10 pg/ml of TLR1
antibody as compared to TLR6. We wanted to further investigate the possibility of TLR2
complex formation for recognition of AR by doing antibody neutralization on TLR2-
transfected HEK293 cell line. We are on our preliminary stage of investigation using
HEK 293 cells, however, rat IgG effects on the AP response have been encountered and
are being carefully assessed. Nevertheless, understanding the role of TLR1 and TLR6 in
AP interaction with TLR2 will give us further insight on AB-TLR2 recognition.
Numerous investigations about structures of TLR-ligand complexes have
continuously emerged over the years to better understand their activation mechanisms.
Previous report about the crystal structure of TLR1-TLR2-Pam;CSK4 emphasizes the
importance of the lipid chains of Pam;CSKy in its interaction with the TLR2/TLR1
heterodimers (Jin et al., 2007). The crystal structure showed the interaction of two of the
three lipid chains of Pam3;CSK4 with TLR2 pocket, and the last lipid chain is inserted into
a hydrophobic channel of TLR1. Likewise, structure studies of LPS-TLR4-MD?2 binding
were done using LPS antagonist Eritoran. LPS is an amphipathic macromolecule

composed of hydrophobic lipid A, composed of four to seven acyl chains and
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phosphorylated di-glucosamine, core and O-antigen (Chapter 1, Figure 1.5). Eritoran, on
the other hand, is a structural mimic of lipid A of LPS , with four acyl chains and a
phosphorylated glucosamine backbone (Mullarkey et al., 2003; Rossignol and Lynn,
2005). Structural studies of Eritoran-MD2-TLR4 shows binding of Eritoran to the
hydrophobic pocket of MD-2 via its acyl chains (Kim et al., 2007). Moreover, a crystal
structure of mouse CD14 shows a large hydrophobic pocket on the N-terminal which was
identified to be the main component of the LPS-binding site (Kim et al., 2005). A
structural model of AP fibrils by NMR spectroscopy revealed a double- layered 3 sheet
structure with a hydrophobic core and a hydrophobic face. It is thus possible that
hydrophobicity plays a big role in ligand-TLR recognition, and the hydrophobicity
possessed by AP may also be responsible for its recognition by CD14, TLR4 and TLR2.
The association of AP with inflammation is ongoing research in the field of AD. It
remains to be determined whether inflammatory response is advantageous or detrimental
to neuron survival. The identification of several receptors on microglia and monocytes
that recognize fibrillar AP has opened new venues for understanding the mechanism of
AP and inflammatory response. The inclusion of TLRs in the list of receptors that
recognize AP contributes to the role of innate immunity in the pathogenesis of AD, and
therefore may be a powerful tool for identification of therapeutic targets that slow the

progression of AD.
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5 THE ROLE OF MONOCYTE MATURATION AND ITS RELATIONSHIP TO
AMYLOID BETA AND INFLAMMATION

5.1 Introduction

The presence of of activated microglia surrounding neuritic plaques in the AD
brain strongly suggests a specific interaction between AP and microglia. Moreover,
numerous evidence now shows that microglia may be activated by AP, leading to
initiation of inflammation (Frautschy et al., 1992; Barger and Harmon, 1997; Akama et
al., 1998; Hu and Van Eldik, 1999). A plethora of inflammatory products in the brain
upon microglial activation may encourage the transmigration of monocytes from the
circulation across the blood-brain barrier. Thus, the peripheral monocytes, which
differentiate into macrophages during the infective process, may also be present as
infiltrated phagocytes along with the resident microglia surrounding the senile plaques
(Fiala et al., 1998). Previous reports have shown that Af modulates monocyte adhesion
(Yan et al., 1996) and differentiation to macrophages (Fiala et al., 1998). Our recent
finding demonstrating oligomeric AB(1-42)- induced THP-1 monocyte maturation and
adhesion was consistent with these previous reports (Crouse et al., 2009). Furthermore,
additional studies have documented monocyte/macrophage infiltration to sites of brain
AP accumulation (Simard et al., 2006; El Khoury et al., 2007). Macrophages play an
important role in inflammation through production of proinflammatory cytokines and

chemokines, cell adhesion molecules and nitric oxide (NO), among others (Kim et al.,
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2006). Thus, the presence of macrophages in the brain may also contribute to the
exacerbation of inflammation induced by Ap.

To study the contribution of macrophages in AB-induced immune response, we
have modeled the macrophages present in the brain by differentiating our THP-1
monocytes using phorbol myristate acetate (PMA) (Tsuchiya et al., 1982). We have
chosen TNFa production as the outcome variable for studying effect of macrophages in
Ap-induced proinflammatory production. In this investigation, we report that
differentiation of THP-1 monocytes to macrophages significantly enhanced TNFa
production by fibrillar AP(1-42), and may further contribute to inflammation in the

diseased brain.

5.2. Results

5.2.1 TNFa production induced by known TLR agonists in differentiated and

undifferentiated THP-1 cells

For our initial investigation, we examined the proinflammatory response of
PMA-differentiated THP-1 macrophages to known TLR agonists. THP-1 monocytes
grow in suspension and they do not adhere to the surfaces of the cell culture plates. For
the induction of differentiation to macrophage-like cells, THP-1 monocytes were treated
with 10 ng/ml of PMA for 24 hours, as described in Methods. After incubation with
PMA, THP-1 cells became adherent and developed morphological changes

characteristics of differentiation to macrophages. The extent of cell adherence was
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measured by direct counting of the adherent cells and dividing it by the total number of
plated cells. Cells that were used for subsequent experiments have % adherence values of
75% and above. Cells that were poorly adherent were not used. Once the % adherence
was measured, cells were treated with either ultrapure K12 LPS (TLR4 agonist) or
Pam3;CSK4 for 6 hours. Figure 5.1 shows the comparison of TNFa secretion for THP-1
monocytes or PMA-induced macrophages that were stimulated with 10 ng/ml of
ultrapure K12 LPS. Although undifferentiated THP-1 cells produced TNFo upon
stimulation with ultrapure LPS, differentiation of monocytes to macrophages
substantially elevated the LPS-induced TNFa response five-fold. Moreover, PMA-
differentiated THP-1 macrophages responded to LPS and Pam;CSK4 (TLR2 agonist)
stimulation in a dose-dependent manner (Figure 5.2). Our data is consistent with that of
Takashiba (Takashiba et al., 1999). The extent of TNFa secretion varies from one
experiment to another. This explains the different levels of TNFo when PMA-

differentiated THP-1 monocytes were stimulated with 10 ng/ml LPS (Figure 5.1 and 5.2).

5.2.2 AB-induced TNFa production is augmented in PMA-derived THP-1

macrophages

We next compared the proinflammatory response of AP(1-42) in PMA-
differentiated THP-1 cells to that of undifferentiated THP-1 cells. We incubated our
THP-1 monocytes and PMA-differentiated THP-1 cells with 15 pmol/L of AB(1-42)

aggregated at 4°C for 48 hours. At various incubation times, secreted TNFa was
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Figure 5.1. LPS-induced TNFo production from differentiated and
undifferentiated THP-1 cells. THP-1 monocytes were differentiated for 24
hours using phorbol-myristate acetate (PMA), as described in the Methods.
After incubation, undifferentiated cells (THP-1 monocytes, black bars) and
PMA-differentiated cells (macrophages, gray bars) were stimulated with 10
ng/ml of LPS for 6 hours. TNFo was measured in the supernatant after
stimulation by ELISA. This result is a represent 1 representative experiment of
3. Error bars denote n = 3 trials (1 experiment)
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Figure 5.2. Dose response of TNFa production by known
TLR agonists. THP-1 monoctyes were differentiated using
10 ng/ml PMA, as described in Methods. After
differentiation, PMA-differentiated cells were treated with
increasing concentration of (A)K12 LPS (TLR4 agonist) or
(B) Pam;CSK, (TLR2 agonist) for 6 hours. TNFa was
measured using ELISA. This result represent 1
representative experiment of 2. Error bars represent n = 3
trial (1 experiment).
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measured. Figure 5.3a demonstrates that AP(1-42) stimulated THP-1 monocytes (circle)
for TNFa production as early as 4 hours incubation (18.9 £ 2.9 pg/ml), with maximal
response observed at 10 hours (also shown in Figure 3.3a). In comparison, PMA-
differentiated THP-1 (triangles) cells began producing considerable TNFa at 6 hours of
incubation (27 = 0.53 pg/ml) and the TNFa continued to rise even at 24 hours post-
stimulation. At this time (24 hours), AB-induced TNFa production is three-fold higher in
PMA-differentiated cells than undifferentiated cells. Like the response of differentiated
THP-1 cells to known TLR agonists, PMA-differentiated THP-1 cells were also
stimulated by AP(1-42) in a dose-dependent manner (Figure 5.3b). These results
demonstrate a more enhanced production of proinflammatory products when

macrophages are stimulated by fibrillar AB(1-42).

5.3 Discussion

Differentiation of THP-1 monocytes to macrophages with phorbol esters have
been well-characterized (Tsuchiya et al., 1982; Auwerx, 1991; Takashiba et al., 1999;
Traore et al., 2005). One of the most widely-used differentiating agent is 4a-phorbol-12-
myristate-13- acetate (PMA) (Chong et al., 2003; Lai et al., 2006). In this study we have
analyzed the contribution of macrophages in AB-induced proinflammatory production.
We have shown in this preliminary investigation that TNFa production is considerably
increased when PMA-derived THP-1 cells were stimulated with known TLR agonists
LPS(TLR4) and Pam3;CSKy (TLR2) as compared to undifferentiated cells. Similar results

were observed when PMA-differentiated cells were stimulated with 15uM of AB(1-42).
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Figure 5.3. Fibrillar AB(1-42)-induced TNFo secretion
from differentiated and undifferentiated THP-1 cells. (A)
THP-1 monocytes (circles) or PMA-differentiated THP-1
macrophages (triangles) were stimulated for 0, 2, 4,6,10 and 24
hours with 15 pM AB(1-42). After post-stimulation, TNFa was
measured using ELISA. (B) Dose response of TNFa secretion.
THP-1 monocytes were differentiated with 10 ng/ml PMA, as
described in Methods. PMA-derived THP-1 macrophages were
stimulated with increasing concentration of AP(1-42) for 24
hours. TNFo level was measured by ELISA. For both
experiments, error bars represent n = 3 trials (1 experiment)
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Takashiba et al investigated the relationship between THP-1 cell maturation and
mechanism of LPS stimulation. They revealed the novel role for NF-xB in the maturation
process. They found that differentiation of THP-1 monocytes to macrophages results in
accumulation of NF-xB in the cytoplasm, which is mainly responsible for the enhanced
ability of the cell to respond to LPS stimulation (Takashiba et al., 1999). This suggests
that accumulation of NF-kB in the cytoplasm upon maturation of monocytes to
macrophages primes the cells for increased responsiveness to LPS and in turn, leads to
rapid secretion of inflammatory mediators.

Recent reports showed that cytokine gene transcription by AP requires stimulation
of NF-kB pathway (Combs et al., 2001). The accumulation of NF-kB in the cytoplasm
during the differentiation process may thus be correlated to enhanced production of
TNFa upon AP stimulation. Another possibility for elevated TNFa production in
macrophages is the constitutive expression of TLRs. Although the level of TLR2 in
macrophages that were derived in vitro is similar to that of monocytes, TLR4 expression
was significantly increased by about 300% in macrophages when compared to monocytes
(O'Mahony et al., 2008). We have previously demonstrated the role of TLR2 and TLR4
in AB-induced inflammatory production (Udan et al., 2008) (Chapter 4). A combination
of elevated TLR and NF-kB expression in macrophages may be responsible for enhanced
proinflammatory production by Ap.

Several studies have shown a correlation between AP accumulation and
infiltration of peripheral blood monocytes/macrophages in senile plaques (Fiala et al.,
1998; Simard et al., 2006; El Khoury et al., 2007). Oligomeric AB(1-42) has likewise

been reported to have chemotactic activity (Giri et al., 2000; Le et al., 2001). Moreover,
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our lab has reported that oligomeric AP(1-42) aggregates induce THP-1 monocyte
differentiation to macrophages (Crouse et al., 2009). These evidences suggest that
oligomeric AB(1-42) may also induce recruitment of blood-derived macrophages to the
site of inflammation.

The correlation between AP and inflammation in AD brain is an active focus of
investigation. Our preliminary data suggests that AB-induced heightened inflammation
may be mediated by TLRs from resident activated microglia as well as infiltrating
macrophages that may also be present surrounding the senile plaque. Further
investigations need to be performed to further clarify the mechanism of AB-induced
immune response and to better understand the contribution of immune cells in AD

pathogenesis.
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6 CONCLUSION

In these studies, we successfully demonstrated that AP(1-42) invoked
proinflammatory response in human THP-1 monocytes/ macrophages, a mammalian cell
model system for human microglia. Moreover, the data presented suggest that the ability
of AP to induce TNFa production is dependent on its aggregation conformation. Using a
combination of AFM and cellular studies, along with high speed centrifugation of AP
samples and employing conformation-specific antibodies, we reported that the soluble yet
fibrillar AP species are the bioactive AP. These AP species exist prior to formation of
longer, more mature fibrils, and are thus called fibrillar precursors.

Studying A fibrillogenesis is a very challenging task. Although microscopy
(AFM and EM) are valuable tools in studying the morphology of the formed AP species,
this technique alone could not provide detailed information of the fibril size for different
aggregation species nor is appropriate for real time analysis. In order to have a better
understanding of the bioactive AP(1-42) species, the use of other biophysical techniques
that will further provide vital information such as molecular weight and conformation,
along with the microscopy studies, may aid in elucidating the AB(1-42) species that can
activate our THP-1 cells.

We also showed the correlation between AP and the innate immune response by
identifying the involvement of toll-like receptors, particularly TLR4 and TLR2, in AB-

induced response. Our findings further suggest that TLR4 and TLR2 may compensate for
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one another for AB-induced activation of TLR downstream signaling. Moreover, the
possibility of AP utilizing TLR2/TLR1 or TLR2/TLR6 complex was also suggested
based on a significant neutralizing effect of the TLR1 and TLR6 antibodies on Af
response. The possible involvement of the TLR2/1 or TLR2/6 in AB-induced immune
response is a good are to follow up on for the information that can be obtained will give
us further insight on AB-TLR2 recognition. Aside from the TLR neutralization assay, the
role of TLRs in AB-induced inflammatory response may be confirmed by other methods
such as using cell lines transfected with TLR as well as utilizing TLR knockout mice.
These are valuable tools for studying the ligand-TLR interaction.

Our results also showed that AB-induced TNFa production for PMA-induced THP-1
macrophages is undoubtedly much higher compared to that of THP-1 monocytes. This
suggests that infiltrating macrophages that may be present surrounding the senile plaque
may also contribute to heightened inflammation that is observed in the AD brain.

Overall, we presented evidences suggesting that inflammation in the AD brain is
induced by soluble yet fibrillar species of AP(1-42), and the heightened inflammation
observed in microglia surrounding the AD senile plaques may in part be due to the
contribution of AP interaction with TLR2 and TLR4 that are expressed on microglia, as
well as the infiltrating macrophages that may be present in the site of injury. This study
has thus opened new venues for understanding the mechanism of Ap-induced

inflammatory response and may be a new therapeutic target for AD.
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