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ABSTRACT

Gravitational lensing has been simulated for numerical galaxy clusters in order to

characterize the effects of substructure and shape variations of dark matter halos on

the weak lensing properties of clusters. In order to analyze realistic galaxy clusters, 6

high-resolution Adaptive Refinement Tree N-body simulations of clusters with hydro-

dynamics are used, in addition to a simulation of one group undergoing a merger. For

each cluster, the three-dimensional particle distribution is projected perpendicular to

three orthogonal lines of sight, providing 21 projected mass density maps. The clus-

ters have representative concentration and mass values for clusters in the concordance

cosmology. Two gravitational lensing simulation methods are presented. In the first

method, direct integration is used to calculate deflection angles. To overcome com-

putational constraints inherent in this method, a distributed computing project was

created for parallel computation. In addition to its use in gravitational lensing simu-

lation, a description of the setup and function of this distributed computing project

is presented as an alternative to in-house computing clusters, which has the added

benefit of public enrollment in science and low cost. In the second method, shear

maps are created using a fast Fourier transform method. From these shear maps, the

effects of substructure and shape variation are related to observational gravitational

lensing studies. Average shear in regions less than and greater than half of the virial

radius demonstrates distinct dispersion, varying by 24% from the mean among the

21 maps. We estimate the numerical error in shear calculations to be of the order

of 5%. Therefore, this shear dispersion is a reliable consequence of shape dispersion,

correlating most strongly with the ratio of smallest-to-largest principal axis lengths

of a cluster isodensity shell. On the other hand, image ellipticities, which are of great

importance in mass reconstruction, are shown to have very little variance. However,

tangential alignment of average image distortion is quite strong, making mass density

peak locations easily resolvable.
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1 INTRODUCTION

Beginning with the discovery of a discrepancy between stellar and galactic mass-

to-light ratios, the study of a form of matter which interacts only noticeably through

the gravitational force has become an active field of study in Physics, both in astro-

physical and laboratory settings. While laboratory experiments continue to search

for a particle basis for dark matter, galaxies and galaxy clusters serve as a stage for

the study of dark matter halo properties, such as shape, mass composition (i.e. dark

versus luminous) and self-interaction strength. Such astrophysical studies take place

in gravitational lensing observation. While gravitational lensing has provided the

means to reconstruct projected dark matter mass density, numerical N-body simula-

tions have probed the properties of dark matter halos, up to computational resolution

limitations. From such numerical simulations it has become clear that galaxy clusters,

which are dominated by dark matter, should exhibit a broad distribution of elliptic-

ity, for a given total mass. As wider and deeper imaging surveys become available, it

will be necessary to understand what effect this noted dispersion has on observations.

These effects are quantified and discussed below for the case of weak gravitational

lensing.

Within cosmology literature, there exists a variety of notations and usages of pa-

rameters. For clarity, the following is a summary of the notation used throughout

this text. All of the material and calculations here are presented in the context of

the concordance model. Mass and distance quantities are written using the Hub-

ble parameter, h, such that Hubble’s constant is H0 = h ∗ 100km/s/Mpc. Unless

otherwise noted, when cosmological parameters, such as dark matter density, Ωm,

are needed for calculations, these parameters are taken from the five-year Wilkin-

son Microwave Anisotropy Probe (WMAP) data set (Hinshaw et al. 2009). While

seven-year WMAP data has been recently released (Jarosik et al. 2010), the largest

effect of changes to the data set is found in the σ8 parameter, which measures the
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RMS amplitude of mass fluctuations within spheres of radius 8h−1Mpc. However,

the changes in σ8 have a negligible effect on the axial ratios of the clusters used here

(Allgood et al. 2006). Distances represented with a capitalized “D” denote angular

diameter distances, which is the pertinent distance in gravitational lensing studies.

Also, to remove ambiguity between positions in either source or lensing planes and

Cartesian coordinates, throughout this text symbols “x” and “y” will represent po-

sitions in the lensing and source planes, respectively, while subscripts will represent

orthogonal Cartesian coordinates, e.g. x1 and x2. Finally, all equations presented in

this work were obtained from the cited sources. Gravitational lensing equations of

the general nature may be found derived in Schneider et al. 1999.

This work is organized as follows: the remainder of this section highlights the

development of gravitational lensing to the study of weak lensing. Studies which

illustrate an important method of lensing analysis are included here. For a more

detailed history, and for information on strong and microlensing, which is not used

in this work, see Schneider et al. 1999 and Schneider et al. 2006. Section 2 provides

the theoretical foundation for gravitational lensing studies, specifically focusing on

those principles which are important in this work. Next, the theory of dark matter

is outlined in two ways. Sections 3.1 and 3.2 present historical background for the

theory of dark matter. Following this is a discussion of dark matter halo shape, in

Section 3.3, which is a motivating factor of this work. Section 3.4 provides a summary

of two observational methods used to reconstruct mass densities. After providing the

principles and motivation for this study, the methods are outlined, beginning with

deflection angle by ray-tracing in Section 4 and ending with shear calculations in

Section 5. Included in Section 4 is an outline of a distributed computing project,

including its operational procedure and impact on the science involved and volunteers

participating in the project. Finally, the results are presented in Section 6, followed

by a discussion.
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1.1 HIGHLIGHTS IN DEVELOPMENT OF WEAK LENS-

ING

From the eighteenth century studies of Michell and Laplace1 to modern mass re-

construction methods, gravitational lensing has evolved from an esoteric study of

gravitational effects on light to a tool used to probe properties of astrophysical struc-

tures and phenomena. An early example of the calculation of light deflection by

gravity was developed by Johann Georg von Soldner in 1804, when Soldner used the

classical mechanics approach to study the path of light rays passing a massive ob-

ject (Soldner 1804). Soldner calculated the amount of error one could expect due

to gravitational deflection when measuring locations of stellar objects. To perform

this calculation, however, Soldner assumed light had “all of the absolute properties

of matter” (ibid, page 171). Using this assumption, within the framework of classical

mechanics, Soldner’s result produces a deflection angle of

α̂(r) =
2GM

c2r
, (1.1)

where G is the gravitational constant of Newtonian mechanics, M is the mass of the

deflecting object and c is the vacuum speed of light.

Roughly 100 years after Soldner’s light deflection calculation, Albert Einstein

studied the propagation of light within the framework of special relativity (Einstein

1911). As one part of this study, Einstein shows the speed of light will appear to vary

with position due to the gravitational potential through the use of the equivalence

principle. Applying Huygen’s Principle to a light wave traveling through a gravita-

tional potential, Einstein derived a deflection angle equal to Soldner’s value, though

Einstein made no mention of Soldner’s work. At the end of this 1911 paper, the de-

flection angle for a light ray passing near the Sun is calculated to be 0.83 arc-seconds.

1Independently, John Michell and Peter Simon Laplace noted that if the mass of an object was
sufficiently large, the escape velocity could exceed the speed of light, by assuming light is affected
by gravity like material objects (cf Schneider et al. 1999).
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Five years later, Einstein revised the light deflection angle relationship, using it as

one of a few predictions of the general theory of relativity (Einstein 1916). In the

special relativistic case, the bending of the light ray is due to the observed speed of

light change by a factor of

1 +
Φ

c2
, (1.2)

where Φ is the gravitational potential. This effect is a result of gravitational time

dilation, as the time interval is being enhanced by this amount. However, within

general relativity the effects of gravity both on space and time are taken into account.

In relativity, displacements are found in any particular frame of reference by,

ds2 = gµνdx
µdxν , (1.3)

where ds represents the invariant displacement interval and dxµ represents the in-

finitesimal displacement in the µ-direction in the frame of reference in which the

values of the metric, gµν , are calculated. As a simple example, applicable to the

Sun, consider a weak, static gravitational potential, Φ(r), in spherical space-time

coordinates (t,r,φ,θ). In this coordinate system, the non-trivial values of gµν are

gtt = −
(

1 +
2Φ

c2

)
(1.4)

grr =

(
1 +

2Φ

c2

)−1

(1.5)

gθθ = gφφ = 1 . (1.6)

Using the displacement equation, the observed speed of light equals

c(r) = c

√
− gtt
grr

(1.7)

= c

(
1 +

2Φ

c2

)
. (1.8)
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Applying the Huygen’s principle and integrating along the path with this general

relativistic value gives a deflection angle twice the previously calculated one, equal to

α̂(r) =
4GM

c2r
. (1.9)

Using this result, Einstein calculated the deflection angle of a light ray passing the

surface of the Sun to be 1.7 arc-seconds (Einstein 1916). Three years later, this result

was tested by Arthur Eddington through the observation of star positions near the

Sun, viewed during the May 29, 1919 solar eclipse (Dyson et al. 1920). Star positions

were measured at two sites, the Island of Principe, off of the western coast of Africa,

and Sobral in North Brazil. The deflection angle values measured were 1.98 ± 0.12

arc-seconds (Sobral) and 1.61± 0.30 arc-seconds (Principe)2. About these deflection

angles, Dyson et al. 1920 wrote,

Thus the results of the expeditions to Sobral and Principe can leave little

doubt that a deflection of light takes place in the neighborhood of the sun

and that it is of the amount demanded by Einstein’s generalized theory of

relativity, as attributable to the sun’s gravitational field.

Alongside Einstein’s predicted light deflection by the Sun, Fritz Zwicky suggests

using galaxies as sources of gravitational lensing (Zwicky 1937a). Zwicky lists three

reasons to search for gravitational lensing images in galaxies. First, lensing could

serve as an additional test of general relativity. Second, though Zwicky does not

use the term lens, he does suggest using the phenomenon as method of seeing objects

beyond the scope of conventional telescopes. Finally, it could be used as an alternative

method of measuring galaxy masses.

2The error reported with these deflection angles is less than the seeing. This was achieved by
averaging multiple images.
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In 1964, Sjur Refsdal illustrated the possibility of using gravitational lensing as a

tool for cosmology (Refsdal 1964). Refsdal suggested using the time delay between

multiple images of the same supernova source. Assuming the deflecting galaxy is

spherically symmetric and both the supernova and deflecting galaxy are at low red-

shifts, Refsdal shows that the inferred mass of the galaxy scales linearly with the

time delay, while the time delay and Hubble’s constant share an inverse relationship.

After establishing these relationships, Refsdal goes on to show the observation of this

image time delay is possible using average galaxy densities and masses known at the

time. Essentially, this paper encourages the beginning of a field of study known as

microlensing. For more information on microlensing, see Schneider et al. 2006.

One of the next major discoveries in gravitational lensing is the observation of

arcs. In 1986, Roger Lynds and Vahé Petrosian reported the observation of “arclike

features” in images of the clusters Abell 370 and CL 2244-02, which themselves are

at redshifts of 0.373 and 0.328, respectively (Lynds & Petrosian 1986), as shown in

Figure 1.1. These observations came after it was noted that similar but less “clearly

delineated” features were found in the cluster Abell 2218 (Lynds & Petrosian 1989,

page 1).

The lengths and radii of curvature of the arcs in the images of both clusters

are similar and have the feature of being concave inward towards the center of the

structure of the clusters. Additionally, spectroscopic analysis places the Abell 370 arc

at a redshift of 0.725 (Miller & Goodrich 1988). While this separate redshift would

now be one factor in naming this a gravitational lensing image, in 1989, Lynds &

Petrosian acknowledge (ibid, page 6),

We are continually reminded by colleagues that not all astronomers place

unrestrained faith in the cosmological interpretation of redshift for extra-

galactic objects.
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Therefore, Lynds & Petrosian 1989 rule out explanations ranging from tidal dis-

ruptions of a galaxy to shock waves before finally settling on the gravitational lensing

explanation.

(a) Abell 370 (b) CL2244-02

Figure 1.1 Arcs produced by gravitational lensing.
Images reproduced with permission of author (Lynds & Petrosian 1989).

With the improvement of computing power and the advent of CCD astronomy,

gravitational lensing observations moved into the weak lensing regime. One ground-

breaking work in the area of weak lensing is Tyson et al. 1990. A statistical analysis

of the image alignments of galaxies in Abell 1689 and CL 1409+52 selected by color

type revealed tangential alignment around the center of both clusters. This tangential

alignment is most distinct among blue galaxies, which are located at a higher redshift.

While Abell 1689 and CL 1409+52 are at redshifts of 0.18 and 0.46, respectively, sev-

enty percent of the faint blue galaxies are at a redshift exceeding 0.9. Additionally,
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Tyson et al. 1990 perform ray-tracing simulations with isothermal mass distributions,

using real deep field images as background sources. The same tangential alignment

study was then performed on these ray-trace results, showing a direct relationship

between velocity dispersion and tangential alignment strength.

Once the tangential alignment and image distortion effects are shown to be the

result of gravitational lensing, the next step would be to use lensing as a tool to

study astrophysical structures. As mentioned above, it had been demonstrated that

gravitational lensing can constrain galaxy mass and Hubble’s constant (Refsdal 1964).

Another useful application of gravitational lensing was to constrain mass density

profiles within the center of lensing clusters (Hammer 1991). However, Kaiser &

Squires 1993 utilize the weak lensing observations to reconstruct two-dimensional dark

matter distributions. Image ellipticities are used to create a two-dimensional map of

the shear and tangential alignment effects of gravitational lensing. Through the use of

the differential equations that relate shear and two-dimensional mass density, Kaiser &

Squires 1993 produce a projected matter distribution of the lensing mass distribution.

The reconstruction method is tested with simulated isothermal models, one of which

is chosen to represent the Abell 1689 studied by Tyson et al. 1990. Reconstruction

reproduced the model density profile very well up to a constant offset. This mass

offset is chosen so that the two-dimensional mass density reaches zero at the edge of

the grid. A more detailed description of weak lensing mass reconstruction is provided

in Section 3.4.

Weak gravitational lensing studies require wide surveys containing multiple galax-

ies to provide a sample set large enough for adequate image ellipticity averaging. Since

weak lensing is based on the overall statistical analysis of galaxy images, it is vitally

important to have a sufficiently high signal-to-noise ratio. One planned survey is the

Large Synoptic Survey Telescope (LSST; cf LSST 2010). This telescope will have a

9.6 deg2 field of view. It is estimated that the shear noise with this survey will be
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0.05 arcmin−2 (ibid, page 502). As is demonstrated below, this low noise level3 will

require an understanding of the effects of halo ellipticity dispersion on the average

shear. Techniques which will be used to analyze LSST data directly use the average

shear, or reduced shear, within an annulus around the center of the cluster. One

example is surface density (ibid, Equation 14.10),

∆Σ(R) = γT (R)ΣCR (1.10)

= 〈Σ(< R)〉 − Σ(R) , (1.11)

where Σ(R), the projected mass density at a radial distance, R, is related to the

tangential shear, γT . In this equation, ΣCR represents the critical lensing density,

which distinguishes different lensing regimes (cf Sections 2.3 & 2.4). Equation (1.11)

applies to distributions that are axisymmetric along the line of sight. Another example

is the convergence (ibid, Equation 14.14)

κ(R) = 1− 1

1− g(R)
exp

(
−
∫ RM

R

2 〈g〉
r (1− 〈g〉)

− 2 〈g(RM)〉
α

)
(1.12)

through which the mass density, which is proportional to κ (cf Section 2.1), is related

to the reduced shear, g, averaged within an annulus R < r < RM . The average shear

value within a given region plays an important role in galaxy cluster weak lensing

studies. However, the average shear values do not simply depend on the lensing

mass, instead depending on a combination of the magnitude and spacial distribution

of the mass. One demonstrated feature of the CDM cosmology is the dispersion

in shape parameters for dark matter halos of a given mass (cf Allgood et al. 2006

(simulation) and Mandelbaum et al. 2006 (observation)). For example, there exists

a wide dispersion in ellipticity values. Below it is shown that this spread in halo

ellipticity results in an equally broad range of average shear values, as are used in

3compare to shear dispersion shown in Section 6.2.
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observation methods described above. Additionally, as surveys become broader and

deeper, such as the LSST, this shear dispersion is on the order of the signal-to-noise

ratio, therefore becoming observable.
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2 BASICS OF GRAVITATIONAL LENSING

2.1 GRAVITATIONAL LIGHT DEFLECTION

Figure 2.1 Schematic illustration of Gravitational Light Deflection

One of the successful predictions of Albert Einstein’s theory of general relativity

is the deflection of light ray paths due to the effects of gravitation (Einstein 1916).

Similar to trajectories of massive objects, light rays experience a deflection effect.

General Relativity gives the deflection angle, α̂, for a light ray passing a point mass,

M , with impact parameter ~x as

~̂α(~x) =
4GM

c2
~x− ~x′∣∣∣~x− ~x′

∣∣∣2 , (2.1)
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where ~x′ is the location of the point mass, G is the Gravitational Constant of New-

tonian Mechanics, and c is the speed of light. One may notice that this is simply

~̂α = 2RF
~x− ~x′∣∣∣~x− ~x′

∣∣∣2 , (2.2)

where RF is the Schwarzschild radius4. Since masses are often given in solar masses, it

may be convenient to note that the Schwarzschild radius of the Sun is approximately

2.95km.

In the thin lens approximation, valid for cosmological distances because deflection

occurs over distance scales much less than the line-of-sight distances, the lens may be

treated as a two-dimensional deflector. Such projected planes of background objects

and foreground lenses are illustrated in Figure 2.1. The thin lens approximation

allows one to extend the deflection treatment given by Equation (2.1) to an extended

body. If the mass is integrated over the projected mass density, Σ, then the deflection

angle becomes

~̂α =
4G

c2

∫
Σ(~x′)

~x− ~x′∣∣∣~x− ~x′
∣∣∣2d2x′ . (2.3)

As is sometimes done in other fields, such as electrodynamics, the unprimed factor in

Equation (2.3) can be written as a gradient of a scalar potential, where the gradient

is taken with respect to the unprimed variables. In other words, one may define

~̂α = ∇ ψ̂, such that

ψ̂ =
4G

c2

∫
Σ(~x′)ln

∣∣∣~x− ~x′
∣∣∣ d2x′ . (2.4)

In light of the two lensing regimes, strong and weak, it is convenient to write the

surface mass density in terms of the critical density,

Σcr =
c2

4πG

DS

DLSDL

, (2.5)

4The symbol, RF, should not be confused with the Solar radius, R�, which should also not be
confused with the NFW scale radius, Rs. This notation will be used throughout.
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where DLS is the angular diameter distance between the lens and the source5. The

physical interpretation and significance of Σcr is discussed further in Section 2.3.

Once this substitution has been made, one may obtain a useful quantity in lensing,

the convergence.

Convergence is a measure of isotropic focusing of light rays. Using angular rela-

tionships shown in Figure 2.1, convergence can be related to the light deflection angle

as follows. It can be seen in Figure 2.1 that

~y =
DS

DL

~x−DLS
~̂α . (2.6)

While Equation (2.3) is a function of linear distance in the lens plane, the deflection

angle may be found as a function of light ray coordinate angles using the relationships,

y = DSβ and x = DLθ, obtaining

~β = ~θ − DLS

DS

~̂α(DLθ) . (2.7)

At this point it is convenient to scale alpha to the point of view of the observer. The

geometric meaning of the scaled and unscaled values of α is shown in Figure 2.1. This

gives the more familiar lens equation

~β = ~θ − ~α(~θ) , (2.8)

where

~α(~θ) =
1

π

∫
d2θ′κ(~θ′)

~θ − ~θ′∣∣∣~θ − ~θ′∣∣∣2 , (2.9)

5On cosmological scales, DLS does not simply equal the difference DS −DL. Instead, relativistic
effects must be considered. For a numerical relationship between redshift and distance, see Demianski
et al. 2003.
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using the definition of convergence

κ(θ) =
Σ(DLθ)

Σcr

. (2.10)

This definition of the deflection angle connects the aforementioned lensing potential,

ψ, with convergence via the two-dimensional Poisson equation,

∇2 ψ = 2κ . (2.11)

This equation will be important in the study of shear.

2.2 LENSING AS A MAPPING

Viewing images and their sources in terms of positions in the lens and source

planes can be represented as a mapping. Such a treatment of lensing leads to simple

connections between mass density and image distortions, instead of point-by-point

angle deflection. To treat lensing as a vector transformation, one first must find the

Jacobian matrix, from which changes in positions between source and lensing planes

may be found. Using the position variables defined above, the Jacobian matrix takes

on the form,

Aij ≡
∂βi
∂θj

. (2.12)

After finding the transformation matrix, A, at a given point, one immediately can

understand the effects lensing has on extended background sources.

Viewing the Jacobian Matrix, A, in terms of the lensing treatment developed

in Section 2.1, one can obtain the gravitational lensing quantities, convergence and

shear. After substituting the lens equation into the definition of the Jacobian matrix,

A, the Jacobian can be rewritten as,

Aij = δij −
∂2ψ

∂xi∂xj
. (2.13)
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From this, shear and convergence can be recovered:

trA = 2−∇2 ψ = 2(1− κ) , (2.14)

detA = (1− ∂2ψ

∂x2
1

)(1− ∂2ψ

∂x2
2

)−
(

∂2ψ

∂x1∂x2

)2

, (2.15)

≡ (1− κ)2 − γ2
1 − γ2

2 . (2.16)

Shear has been defined here by

γ1 =
1

2

(
∂2ψ

∂x2
1

− ∂2ψ

∂x2
2

)
, (2.17)

γ2 =
∂2ψ

∂x1∂x2

, (2.18)

γ ≡ γ1 + ıγ2 . (2.19)

In these two-dimensional calculations, as well as with Fourier analysis used in Section

5.1, it is advantageous to treat shear as a complex number, as in Equation (2.19).

Now A can be viewed as a symmetric, 2x2 matrix with eigenvalues of 1− κ± γ,

A =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (2.20)

2.3 CHARACTERISTICS OF GRAVITATIONAL LENSING

Defining magnification in terms of the determinant of the Jacobian,

µ =
1

detA
, (2.21)

makes interesting properties of light deflection more apparent. Immediately, one

notices that should the determinant of the Jacobian go to zero, magnification becomes

infinite. This is an artifact, however, that is due to the ray treatment of optics here.

Points in the lensing plane for which the determinant vanishes form what are known
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as critical curves. Tracing the critical curves back to the source plane lead to caustics.

In the case of axial symmetry, critical curves are circles. In the limit that the circular

lens becomes a point mass, the caustic becomes a point. A background source located

at that point forms a so-called Einstein ring, as shown in Figure 2.2(a).

(a) Einstein Ring (b) Image of a source moved just off
of caustic

(c) Image of a source placed farther
from caustic than (b), but still mul-
tiply imaged

(d) Single image far from critical
curve.

Figure 2.2 Ray-trace images of a background source lensed by a point mass.

Since magnification diverges for points lying on critical curves, unphysical infinite

magnification must be reconciled with diverging mathematical formulae. Extended

sources do not have simple magnifications corresponding to values at a point. Instead,

a mean value of the extended source contributes to the real magnification factor.
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Further, Schneider et al. 1999 show finite magnification even for point sources, using

wave properties, which have been suppressed in this geometric analysis.

Critical curves separate regions of varying sign of the determinate of the Jacobian

matrix. The sign of the determinant designates the parity, or orientation, of the

images. Figure 2.3 shows the effect of parity change on different sides of a critical

curve, using the same lens as in Figure 2.2. Here an arrow was placed in the source

plane near the caustic along with a point located at the caustic, to provide the Einstein

ring for illustrative purposes. Ray-tracing demonstrates parity inversion, as well as

the image position with respect to the critical curve. Outside of the critical curve,

the image is upright, having positive parity. Within the critical curve, the image has

negative parity.

(a) Source Plane (b) Ray trace image

Figure 2.3 Source and ray-trace images showing parity inversion.
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Under certain conditions, gravitational lenses can produce multiple images. A

necessary condition is that there exists one or more points where the determinant is

negative. In this case, each point has an image of negative parity, corresponding to

the negative eigenvalue of the Jacobian. Schneider et al. 1999 show that there must

exist at least two points of positive parity. Additionally, if there exists a point xMI

such that

κ(xMI) > 1 , (2.22)

there can be multiple images. This condition, though sufficient, is not necessary. The

so called critical density, Σcr, gets its name from this condition. Mass distributions

with Σ > Σcr are critical, or can produce multiple images.

The occurrence of multiple images and the critical density condition are best real-

ized with a plot of positions and the deflection angle. Figure 2.4 shows the locations

of images for a circular lens of constant mass density for three specific cases. The solid

curve in this plot represents the deflection angle for a circular lens, with the center of

the lens corresponding to the center of the plot. Dashed lines represents lines of θ−β.

According to the lens equation, the intersection of dashed and solid lines represent

points where an image is produced at a distance from the center corresponding to

the horizontal distance of the intersection in the plot. The three cases illustrated in

Figure 2.4 show varying types of images. The top dashed line represents the case

where one image is produced. The middle dashed line shows two images, where the

image to the right of the origin lies on the critical curve. The bottom dashed line

passes through the caustic point at the origin of the source plane. The outer two

points on this curve represent the Einstein ring produced by this lens. Additionally,

the spherical symmetry of this lens makes the critical nature of the critical density

apparent. Should the slope of the inner region of α become less than that of the θ−β

lines, multiple images cannot be produced.
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Figure 2.4 Plot of image locations.

The role of the critical density in the production of multiple images can be seen

when developing a relationship for the average density. For a source directly behind

a spherically symmetric mass density, the lens equation gives

α = θE (2.23)

=
M(< θE)

πΣcrD2
LθE

.

Therefore the average mass density of the lens within θE,

< Σ(θE) >=
M(< θE)

πD2
Lθ

2
E

= Σcr . (2.24)

Therefore, if an Einstein ring can be produced by a lens, satisfying the condition

in Equation (2.23), the average surface mass density within the ring is equal to the

critical density. Clearly, if the density is less than the critical density everywhere,

an Einstein ring cannot be produced. While this was developed for the spherically

symmetric mass, this provides a good indication of the possibility of strong lensing

and reflects the sufficient multiple lensing condition of Equation (2.22).
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Figure 2.5 Images of a row of circular sources.

Figure 2.5 demonstrates both strong and weak lensing image types. This image

was produced by placing a point mass in the center of the lensing frame and circular

sources of equal radius along one horizontal line in the source plane lying above the

lens. Next the image positions were found by ray-tracing the light ray backwards to

the source plane. The black ring in the center of the diagram is the Einstein ring for

this Schwarzschild, or point-mass, lens. Near the Einstein ring, one can see multiple

imaging of the three sources closest to the center. Images on the right side within

the Einstein ring correspond to sources to the left of the caustic point, in a manner

illustrated by Figure 2.3(b), where only one non-caustic source was used. The left-

most source is well outside of the lensing region, while the source next to it displays

only weak lensing. Lensed images are aligned tangentially with the Einstein ring,

which is centered around the lens, showing the Einstein ring is a tangential critical

curve.

2.4 SPECIFIC PROPERTIES OF WEAK LENSING

Multiple images are the defining characteristic of strong lensing. In contrast,

regions of small amounts of shear and convergence, i.e. κ � 1 and γ � 1, will not

produce multiple images. Such lensing is known as weak lensing.

In the weak lensing regime, circular background images are lensed to an ellipse,

whose semi-major and semi-minor axes are oriented along the eigenvectors of A.

However, characteristic of weak lensing, the change in the image ellipticity is minute.

To illustrate this effect consider a circular source of radius, R. As demonstrated by
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the inverse of the Jacobian, A, the source is transformed to an ellipse with semi-major

and semi-minor axes of length,

Λ± ≡
R

1− κ∓ γ
, (2.25)

respectively. From this image distortion, the anisotropic nature of shear becomes

apparent. In the absence of shear6 (γ → 0), the image remains circular, while be-

coming enlarged by a factor of
1

1− κ
in all directions. In this sense, convergence

causes isotropic magnification. However, in the presence of shear, there is prefer-

ential stretching along one of the eigenvectors of the transformation matrix. These

distortions are illustrated in Figure 2.6.

(a) κ = 0.3, γ = 0 (b) κ = 0, γ = 0.3

Figure 2.6 Illustration of effects of shear and convergence.

The second characteristic property of weak lensing is the systematic alignment

of image ellipticity tangent to a circle centered around mass peaks. To illustrate

this property, it is most useful to transform the shear from the Cartesian coordinate

system, as defined by Equations (2.17) - (2.19), to tangential and cross components. In

regards to this definition, namely the sign, there are some differences in the literature.

6This effect is artificially produced in Figure 2.6(b).
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Here, the convention of Schneider et al. 2006 will be used. An alternative definition

is used by Kaiser 1995. Following Schneider et al. 2006,

γt ≡ −Re
{
γe−2iφ

}
(2.26)

γ× ≡ − Im
{
γe−2iφ

}
, (2.27)

where γt and γ× are the tangential and cross components, respectively, and φ is the

azimuthal angle.

From the exponential function in these definitions, the polar nature of shear is

apparent. Technically speaking, shear is not a vector. While a vector is transformed

to itself under a 360◦ rotation, shear requires only 180◦. For a circularly symmetric

mass distribution, ~̂α = α̂(r)r̂. In this case, γt = γ and γ× = 0. In regions of

weak lensing, averaging shear in a small neighborhood reveals an overall tangential

alignment around peaks in the mass density, as demonstrated in Figure 2.5.

The use of weak lensing as an observational tool is a relatively new technique,

dating back to the pioneering work of Tyson et al. 1990. The need to average over

large amounts of images to notice the overall image alignments characteristic of weak

lensing makes this a particularly difficult task. The small shear involved in weak lens-

ing generally implies minute changes in image ellipticity. Additionally, the original

source ellipticities are not known. However, without a cause for source ellipse align-

ment, it is assumed that unlensed images would have random ellipse alignment after

corrections for anisotropic point spread function (PSF). In other words, a nontrivial

average ellipticity must be due to lensing, when no other source of alignment exists.

Observing such a result requires a large sample of galaxies, in addition to imaging

devices and techniques capable of resolving and averaging small images.
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3 DARK MATTER

3.1 DISAGREEMENT BETWEEN STUDIES OF LUMINOS-

ITY AND DYNAMICS

With gravitationally bound systems, the virial theorem may be applied as a means

of obtaining the mass of the system. As a simple example, consider a spherical cloud

of uniform density, ρ, such that the mass within a given distance, r, from the center

is M(r) = 4
3
πr3ρ. The gravitational energy of particle of mass, m, within a distance,

r, from the center of a spherical mass, M(r), is given by

U(r) = −GM(r)m

r
. (3.1)

Drawing from the analogous result from electrostatics, the total binding energy can

be shown to equal

U = −3

5

GM2

R
. (3.2)

For the above mass density in equilibrium, the virial theorem gives

1

2

N∑
i

miv
2
i =

1

2

3

5

GM2

R
. (3.3)

If each of the N particles have equal mass,

N∑
i

miv
2
i =

M

N

N∑
i

v2
i = M

〈
v2
〉
. (3.4)

Then

M =
5

3

R 〈v2〉
G

. (3.5)

For an isotropic velocity dispersion, the average velocity is the same in all direc-

tions, or 〈v2〉 = 〈v2
r〉 + 〈v2

θ〉 +
〈
v2
φ

〉
= 3 〈v2

r〉 = 3σ2
r . Such a treatment of velocities
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is analogous to the kinematic approach to thermodynamics of molecules. At the

same time, the radial component of the velocity is the component measured by as-

tronomers for these extra-galactic objects and is therefore the most advantageous to

use in relation to mass and radius. Substituting this into Equation (3.5) gives

M =
5Rσ2

r

G
. (3.6)

In the 1930’s, Fritz Zwicky applied the virial theorem to the Coma Cluster (Zwicky

1937b). Based on measurements of the velocity dispersion, Zwicky obtains a lower

limit of an average galaxy mass in the cluster to be 4.5 ∗ 1010M�. At the same time,

Zwicky provides an average luminosity of 8.5 ∗ 107L�. After comparing the average

mass-to-luminosity ratio of a Coma Cluster galaxy to that of the Kapteyn stellar

system, Zwicky states, “this discrepancy is so great that a further analysis of the

problem is in order” (ibid, page 232). Later in this paper, Zwicky suggests using

galaxies as gravitational lenses as a better way of obtaining the mass of galaxies.

In 1970, Vera Rubin and Kent Ford measured the rotation velocities of the An-

dromeda Galaxy (Rubin & Ford 1970). In their paper, Rubin & Ford 1970 produce

plots of rotation velocities based on their measurements of radial velocities, as mea-

sured by redshifts at various distances from the center of the galaxy, within the

assumption of circular motion. However, while this study prompted the discussion of

galaxy rotation curves and mass-to-light ratios, it lacked the radial extent through-

out the galaxy to clearly demonstrate the need for dark matter. Indeed, the topic of

non-luminous matter is not mentioned by Rubin and Ford at this point.

Using optical measurements to produce a rotation curve provides a limited view

of the galaxy as a whole. However, including velocities derived from 21-cm Hydrogen

observations extends the rotation curve much farther than the extent of the optical

portion of the galaxy. One such example is the 16 galaxy study by Kent 1987. Within

this sample of galaxies, rotation curves are shown to remain flat beyond the galactic
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bulge. Attempts are made to reproduce these rotation curves based on mass profiles.

Two curve fitting methods are used. With the first method, which Kent refers to

as the “maximum-disk solution”, no halo was used and mass-to-light ratios are fit

to the rotation data. With the second method, bulge, disk and halo parameters are

adjusted to the rotation data. In regards to the first method results, Kent states,

In no case does the maximum-disk solution produce a good fit to the entire

rotation curve: a halo component is always required.

3.2 DARK MATTER THEORY

When faced with the preceding discussion of discrepancies between indirect mass

measurements and luminosity observations, one is presented with two distinct conclu-

sions to rectify the disagreement. One possibility is a change in the gravitational force

law and the way in which objects react to the gravitational force, cf Bekenstein 2004,

Brownstein & Moffat 2006 and Milgrom 1983. The other possibility is the presence of

unseen matter. Solving this debate has been an active part of cosmological research.

Concurrently, there has been no detection of dark matter in a laboratory. Indeed,

the low level of electromagnetic interaction that dark matter would require to remain

dark makes direct detection extremely difficult, if not impossible.

Within astrophysical contexts, there has been much work in settling this debate.

One method includes obtaining mass density profiles of galaxies and galaxy clusters.

Hoekstra et al. 2004 conducted a study of galaxy weak lensing and discuss their

results in light of dark matter and alternative gravity theories. Hoekstra et al. 2004

find flattening of galaxy dark matter halos compared to the observed lens ellipticity.
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Further, the most prevalent alternative gravity theory, Modified Newtonian Dynam-

ics(MOND; cf Milgrom 1983), predicts an isotropic lensing result for galaxies on the

scale used in this lensing study. Since anisotropic flattening was observed, Hoekstra

et al. 2004 claim their study requires extra unseen matter, even when MOND is

applied.

Additionally, Pointecouteau & Silk 2005 study x-ray data of galaxies clusters

observed by the XMMS-Newton satellite within the context of MOND and find a

ratio of the dynamical mass in the MOND theory to the baryonic mass to be
Mm

Mb

=

4.94 ± 0.50. According to Pointecouteau & Silk 2005, MOND still requires a dark

component of mass to account for 80% of the mass at half of the virial radius.

Arguably one of the most convincing studies done in support of the dark matter

hypothesis was done by Clowe et al. 2006. Here, the weak lensing observations and X-

ray data from the Chandra x-ray satellite are combined to provide two independent

reconstructions of the mass density of the Bullet Cluster, 1E 0657-558, which is

undergoing a merger. Here, the weak lensing reveals two mass peaks separated by

0.72 Mpc. However, the x-ray data shows two mass concentrations much closer to each

other. Since the mass reconstruction based on gravitational lensing is independent of

the type of matter present, the reconstructed mass peaks separate from the baryonic

mass concentrations are labeled by Clowe et al. 2006 as “direct empirical proof of the

existence of dark matter”.

3.3 DARK MATTER HALO SHAPE

As presented above, the dark matter theory has provided an explanation for astro-

physical phenomena including mass to luminosity ratio discrepancies, galaxy rotation

curves and lensing mass reconstructions showing separation of dark and baryonic

matter. If one takes the standpoint that roughly one quarter of all mass-energy is
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dark matter (cf Hinshaw et al. 2009), understanding its properties is crucial. While

dark matter has not been directly detected in a laboratory, studies have been done

to reconstruct dark matter mass distributions in astrophysical settings.

Early in the the study of dark matter halo shape, both theoretical and observa-

tional tests have shown halos to be non-spherical. An early example includes the work

of Dubinski & Carlberg 1991. Using N-body simulations, Dubinski & Carlberg 1991

show the halos of galaxies to be triaxial and flat, with axial ratios of
〈
s ≡ c

a

〉
= 0.5

and

〈
q ≡ b

a

〉
= 0.71, where a, b, and c represent the principal axis ratios of an el-

lipsoid, such that a ≥ b ≥ c. Additionally, the halos studied by Dubinski & Carlberg

1991 reproduce the observed rotation curves.

Allgood et al. 2006 study the dependence of dark matter halo shape on mass, red-

shift and radius. Here, virial masses range from 9.0 ∗ 1011 h-1M� to 2.0 ∗ 1014 h-1M�.

Redshift varies from z = 0 to z = 3. Allgood et al. 2006 find that the axial ratio, s,

can be described by a simple power law, 〈s〉 = (0.54±0.02)(
Mvir

M(z, σ8)
)−0.05±0.003. Ad-

ditionally, halo ellipticity displays Gaussian dispersion of 0.1 around the mean. Also,

Allgood et al. 2006 demonstrate that the halo shape varies with radius, becoming

more spherical at larger radii. However, the rate of change in ellipticity is more rapid

in more massive halos.

Throughout the study of dark matter halos, a few models have been proposed to

analytically fit the shape of the density profiles. Perhaps the simplest well motivated

model is the isothermal sphere, which would be expected of dark matter halos if

violent relaxation were complete (cf Lynden-Bell 1967 and Shu 1977). The three-

dimensional mass density associated with the singular isothermal sphere is

ρ(r) =
σ2

2πGr2
, (3.7)

where σ is the one dimensional velocity dispersion. When projected along the line of
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sight, the convergence takes the simple form of

κ(θ) =
θE
2θ

, (3.8)

where θE is the angular value of the Einstein radius for the deflecting mass. Making

the isothermal sphere even more simple is the fact that the magnitude of the shear is

equal to the convergence, since

γ = − θE
2θ3

(
θ2
1 − θ2

2 + 2iθ1θ2

)
. (3.9)

Some recent observational studies have used the isothermal density profile. Treu

& Koopmans 2002 found that the total mass within the Einstein radius of the lens

galaxy D in MG2016+112 was well described by an isothermal density, ρ ∝ r−2.

Rusin et al. 2003 studied 22 galaxy lens systems and found a density profile given by

ρ ∝ r−2.07. Using weak lensing data collected as part of the Sloan Lens ACS Survey,

Gavazzi et al. 2007 demonstrated a ρ ∝ r−2 density profile out to 300 h-1 kpc. All of

these galaxies studies were of early type galaxies.

However, Wright & Brainerd 2000 state that the simplicity of the isothermal model

might lead to its use “in order to obtain an estimate of the mass of a lens without fully

reconstructing its true underlying density profile”(page 37). Within the isothermal

model, the average shear at a given radius is proportional to the square of the velocity

dispersion. Therefore, applying the isothermal sphere model gives the mass within a

given radius, according to

M(r) =
2σ2r

G
. (3.10)

Numerically, Navarro et al. 1996 use N-body simulations to construct dark matter

halos of structures ranging from dwarf galaxies to galaxy clusters. The numerical

studies revealed density profiles that, at large radii, were approximately isothermal.

However, the profile slope was much shallower than the r−2 trend of the isothermal
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sphere near the center. Also, near the virial radius, the slope becomes steeper than

that of the isothermal sphere. The mass density profile associated with this work,

generally referred to as the NFW profile, is given by

ρ(r) =
δcρcr

( r
rS

)
(

1 + r
rS

)2 , (3.11)

where rs is the scale radius and ρcr is the critical density7. δc is a density parameter,

δc ≡
200

3

c3

ln (1 + c)− c
1+c

, (3.12)

where c is a concentration parameter given by

c ≡ rvir
rs

. (3.13)

It is worth noting that the original NFW profile, given by Equation (3.11) is spheri-

cally symmetric. As discussed above, realistic halos have been shown to be ellipsoidal.

The NFW profile can be used in a triaxial context if radius is adapted to elliptical

coordinates, e.g.

r → R ≡

√
x2 +

y2

q2
+
z2

s2
. (3.14)

In this system, the largest principal axis is placed along the x-axis, the second largest

is along the y-axis and the smallest is along the z-axis. Parameters q and s represent

the principal axis lengths in each corresponding direction, as a fraction of the semi-

major axis length.

7This is the cosmological critical density, ρcr =
3H2

8πG
, where H is Hubble’s Constant.
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Convergence and shear of the NFW profile take on more complicated forms an-

alytically than the isothermal sphere (cf Bartelmann 1996 and Wright & Brainerd

2000).

κ(r) =
2δcρcrrs

Σcr

(
r2

r2
s

− 1

)f ( r

rs

)
, (3.15)

where

f(x) ≡


1− 2√

x2 − 1
arctan

√
x− 1

x+ 1
, x > 1

1− 2√
1− x2

arctanh

√
1− x
1 + x

, x < 1

. (3.16)

3.4 MASS RECONSTRUCTION METHODS

Understanding observational techniques is necessary to demonstrate how the shear

map influences how well mass densities can be reconstructed from a practical stand-

point. In order to understand how mass densities are inferred observationally, two

methods of determining dark matter halo shape and density are listed in this section.

These observational methods use measurements of galaxy ellipticity to map the shear

of the lensing system, which is then used to infer either the mass distribution itself

or ellipticity parameters of the mass distribution.

One method of reconstructing the mass density of a dark matter halo was outlined

by Kaiser & Squires 1993. This method relates the surface mass density to the

ellipticity of background galaxies. Once background galaxies have been identified,

the quadrupole moments of the images are calculated according to

Qij =

∫
I(θ)θiθjd

2θ , (3.17)

where I(θ) is the surface brightness of the image. Kaiser & Squires 1993 give the
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ellipticity, as a polar quantity in Cartesian coordinates, (x1, x2), as

 e1

e2


S

=

 (Q11−Q22)
(Q11+Q22)

2Q12

Q11+Q22

 . (3.18)

Equation (3.18) was obtained in the reference frame where the quadrupole moment

tensor is diagonal. This relationship will be related back to general coordinates below.

The subscript, S, is used here to represent the unlensed, source frame of reference.

The altered ellipticities become

 e1

e2


L

=

 e1

e2


S

+

(
∂2 ψ

∂ θ2
2

− ∂2 ψ

∂ θ2
1

) 1− e21

e1e2


S

, (3.19)

up to first order. The next part of the reconstruction takes advantage of averages of

galaxy ellipticities. It is assumed that galaxies are distributed randomly, so that

〈e1〉S = 〈e2〉S = 〈e1e2〉S = 0 . (3.20)

However, 〈e2〉 is non-zero, leading to

〈e1〉L =

(
∂2 ψ

∂ θ2
2

− ∂2 ψ

∂ θ2
1

)
, (3.21)

since the factor of 1− 〈e
2〉
2
≈ 1, according to Kaiser & Squires 1993 (page 442).

Thus, the ellipticity can be related to the lensing potential. In general coordinates,

the ellipticity becomes

 e1

e2


L

=


∂2 ψ

∂ θ2
1

− ∂2 ψ

∂ θ2
2

2
∂2 ψ

∂ θ1 ∂ θ2

 . (3.22)

Using Equation (2.11), Kaiser & Squires 1993 then relate the ellipticity to the mass
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density, by solving the partial differential equations in Fourier space8.

One example of the application of the Kaiser & Squires 1993 method is the recon-

struction of the merging cluster 1E0657-558 by Clowe et al. 2004. However, in this

study the galaxy ellipticities were used to find the reduced shear,

g =
γ

1− κ
. (3.23)

To apply this measurement to the Kaiser & Squires 1993 method, Clowe et al. 2004,

start with an simple uniform convergence and iteratively refine the reduced shear

measurement to obtain the convergence of the lensing mass, relative to the value of

the convergence at the edge.

Natarajan & Refregier 2000 present a method of obtaining the mass and ellip-

ticity of a lens galaxy through galaxy-galaxy lensing. For a given convergence and

appropriate weight function, w(θ), such that

M =

∫
w(θ)κ(~θ)d2θ , (3.24)

Natarajan & Refregier 2000 define quadrupole moments

Qij =

∫
w(θ)κ(~θ)θiθjd

2θ . (3.25)

Ellipticity is then defined as

ε ≡ Q11 −Q22 + 2iQ12

Q11 +Q22

. (3.26)

To relate these quantities to the measured shear values, Natarajan & Refregier 2000

8This is the reverse procedure presented here in Section 5.1 for the calculation of shear. However,
Kaiser & Squires 1993 use the notation, e, for ellipticity, which is 2γ in the notation presented here.
This is a non-traditional representation of ellipticity, which is generally defined as e = 1− b

a , where
a and b are the semi-major and semi-minor axis lengths, respectively.
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use the quadrupole-shear relationships found by Schneider & Bartelmann 1997,

Q =

∫ (
gt(θ)γt(~θ) + ig×(θ)γ×(~θ)

)
e−2iφd2θ , (3.27)

where φ is the coordinate angle, t and× represent the tangential and cross components

(cf Equations (2.26) and (2.27)), and

gt(θ) = 2V2(θ)− θ2w(θ) (3.28)

g×(θ) = −2V2(θ) , (3.29)

and Vn(θ) = 1
θ2

∫ θ
0
θ

′n+1w(θ
′
)dθ

′
. With these definitions, Natarajan & Refregier 2000

obtain the lens ellipticity, ε, with

T =

∫
gt(θ)γt(~θ)d

2θ (3.30)

M =

∫
ht(θ)γt(~θ)d

2θ , (3.31)

where ht(θ) ≡ 2V0(θ)−w(θ). Natarajan & Refregier 2000 then apply this method to

the (elliptical) isothermal model to demonstrate the effectiveness of this method with

data from the Sloan Digital Sky Survey.

Both of these observational methods rely on establishing shear values based on

image ellipticities. Shear maps are then used to reconstruct mass distributions. Each

observational method includes sources of noise. Both error introduced through astron-

omy, such as atmospheric distortion, and systematic error in reconstruction methods

account for inaccuracies in mass reconstruction. In light of demonstrations of dis-

persion in the mass density itself, it would be helpful to understand what influence

variations in mass density have on shear. Statistics of mass density dispersion effects

on shear can help separate these variations from noise.
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4 DEFLECTION ANGLE CALCULATION AND RAY

TRACING

4.1 USEFULNESS OF DEFLECTION ANGLE CALCULA-

TIONS

Ray tracing provides a simple method of simulating gravitational lensing, albeit

computationally intensive. Images of background sources may be produced graphi-

cally, providing a visualization for what could possibly seem like arbitrary mathemat-

ical results. Additionally, the shear calculation method presented in Section 5 fails in

the strong lensing regime, where the ray trace method excels.

Deflection angles provide an alternative method of finding critical curves and

shear. The transformation matrix, A, as defined in Equation (2.16), can be redefined

in terms of the scaled deflection angle, α, according to

A =

 1− ∂ α1

∂ x1

−∂ α1

∂ x2

−∂ α2

∂ x1

1− ∂ α2

∂ x2

 . (4.1)

Using this definition, shear may be related to the deflection angle by

γ1 =
1

2

(
∂ α1

∂ x1

− ∂ α2

∂ x2

)
(4.2)

γ2 =
∂ α1

∂ x2

=
∂ α2

∂ x1

. (4.3)

Finally, using the trace of the transformation matrix, one can also calculate con-

vergence,

κ =
1

2

(
∂ α1

∂ x1

+
∂ α2

∂ x2

)
. (4.4)
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4.2 PROCEDURE

In most numerical calculations pertaining to galaxy and galaxy cluster mass distri-

butions, mass is treated as a distribution of particles9. Discretization of mass allows

mathematically complex functions, often not analytical, to be simplified. In the case

of deflection angles, the contribution of each particle to the overall bending angle at

any point can be approximated to that of a point particle, given by Equation (2.1),

applying particle smoothing if resolution and accuracy require it. This simplification

provides the means to calculate deflection angles for arbitrary mass distributions by

simply summing over each particle’s contribution.

While deflection angles can be calculated at any point for a list of particles in a

mass distribution, typically they are calculated on a grid with arbitrary resolution.

It is not necessary to place the mass distribution on a discrete grid when performing

a summation. However, since the mass densities are also used in convolution shear

studies (cf Section 5.1), the grid method is used for deflection angle calculations

as well. The resolution can be adjusted along with particle smoothing for desired

precision. At this point, it is worth noting that other ray-trace methods are in use

that calculate the deflection angles using the fast Fourier transform method. With

this calculation method, a grid is required. Indeed, with a larger set of particles, this

method would provide a calculation speed increase, which was achieved here through

parallelization. An example of ray-tracing using fast Fourier transform is Jain et al.

2000, although these authors use ray-tracing to calculate shear, not deflection angle.

Additionally, Aubert et al. 2007 use a summation method to calculate deflection

angle, as well as convergence, shear and potential.

9For a discussion on the generation of such mass distributions, see Appendix 8.
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Here, the contribution of each particle is summed individually, with a smoothing

factor. To overcome CPU limitations, these authors use a tree decomposition tech-

nique, where the two-dimensional distribution of particles is divided into sub-regions,

whose overall effect is determined based on distance.

Figure 4.1 shows the general class structure of the ray trace program that was cre-

ated for this study. All two-dimensional data is contained in a template class called

Plane, simplifying the handling of double arrays. Data consists of two types, Double,

which is a custom wrapper for the double type and Complex, which is an object con-

taining two double type variables, representing a complex number. These wrapper

classes were created as a simple way of manipulating two and three-dimensional vari-

ables, as well as color information for pixels of images produced by ray-tracing. All

mass functions are contained in the DensityProfile object. Main deflection angle and

ray-trace calculations are performed by the GLAlgorithm object. The main program

then simply references GLAlgorithm for each point in the lensing plane. Deflection

angles are stored as Complex objects, using the orthogonality of complex numbers

as a basis for two-dimensional vectors. After the calculation is performed, the grid

values can be stored as a data file or drawn as a bitmap, using the methods contained

in the Plane object. To trace the light rays back to source plane locations, GLAlgo-

rithm simply alters the original source position by the deflection angle according to

Equation (2.8).

For each point on the grid, the deflection angle is calculated, treating each particle

as a point mass. Immediately, one sees that this method is computationally intensive,

most notably in CPU time as computation is O(N2
particle ∗ N2

point). However, the

discretization that allows this calculation to take place also easily lends itself to

parallel computing. By dividing the mass density into subsections, calculations can

be performed on an arbitrary number of computers simultaneously, recombining the

results later.
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Figure 4.1 Ray Trace Class Diagram

4.3 VOLUNTEER COMPUTING: BRaTS@Home

To carry out parallel computing for this study, the BRaTS@Home Distributing

Computing was created in 2007. As the recursive acronym, BRaTS Ray Trace Sim-

ulation at Home, implies, BRaTS@Home distributes these discrete deflection angle

calculations to computers provided by volunteers via the internet. With 190 users

in at least twenty-nine countries, as of April 2010, BRaTS@Home provides a several

hundred computer node cluster, as most users provided multiple computers, including

dual and quad core machines.

On a Pentium III PC running the Ubuntu distribution of Linux, BRaTS@Home

runs the BOINC10 server system, an open source derivative of the SETI@Home project

(Anderson 2004). These calculations are carried out using the idle time processes

generally devoted only to screen savers. Volunteers’ computers, or clients, download

mass distribution data and ray-tracing software from the BRaTS@Home server and

upload the results via an automated CGI program. On the client, a BOINC program

10Berkeley Open Infrastructure for Network Computing
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monitors the CPU and memory usage of the scientific programs. With this client

software, the user can dictate how much processor time is dedicated to the scientific

programs, varying the noticeable effects the scientific software has on the computer, if

any. Using the C++ API, an intermediate program, known as a wrapper, was written

for the clients. By using a wrapper program, the scientific application for calculation

deflection angles can be left unchanged, placing all of the necessary BOINC routines

needed by the client, such as progress notification, in the wrapper. The organization

and operational layout of the BOINC system is illustrated in Figure 4.2.

Figure 4.2 Organizational Diagram for the BOINC System BRaTS@Home

Volunteer computing has benefits for both scientists and general public. For sci-

entists, a parallel computing cluster can be setup for the costs of one server, since

volunteer computers are being used. The international community of nearly two

million people11 have provided an average of 4 hosts per person. Another benefit

for scientists is bringing their work to the general public. Project websites include

11As of April 2010, according to boincstats.com, a compilation of projects’ user data.
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message boards for discussion between project scientists and those volunteering com-

puter time. Some project scientists post links to papers and provide descriptions of

their work in language applicable to general audience, something easily neglected in

specialized fields. Additionally, BRaTS@Home has conducted a live on-line science

discussion.

For volunteers there are reasons to donate computer time. As previously men-

tioned, volunteers are now involved in scientific causes that are already familiar, such

as climate change12 (Myles 1999), or topics that are less familiar, such as protein

structure analysis13 (Qian et al. 2007).

Another driving force behind participation is recognition and competition. Credits

are assigned to participants based on CPU usage, in units known as cobblestones.

With these credits participants compete to obtain the most units, both individually

and on teams.

4.4 IMPACT OF DISTRIBUTED COMPUTING

Parallel computing provides a net processing speed benefit, as multiple indepen-

dent computations are performed simultaneously. In an attempt to quantify the

impact parallel computing on this study, processing and user statistics are provided

in Table 4.1. For comparison, the same data is listed for the general BOINC commu-

nity, using data retrieved from the online BOINC statistics service, boincstats.com,

which routinely collects data directly from BOINC projects. The statistics provided

in this section are up-to-date as of April 11, 2010, after which no further work was

done using the BRaTS@Home project.

BRaTS@Home was brought on-line on June 5, 2007 and the first simulation was

run on the following day. Within this time period, the combined CPU usage of all of

the client computers was 278.28 days. The simulation grids, as described in Section

12climateprediction.net
13Rosetta@home
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4.2, were divided into equal subsections, totaling either four or sixteen subsections,

depending on the total number of non-zero mass points of the lens for each particu-

lar work unit. For comparison, it should be noted that when no parallelization was

used, these ray-trace simulations had an average run-time of seven hours on the com-

puter that serves as the host for the project. Through the use of parallel computing,

complete data sets can be calculated in roughly one hour.

Computation time scales as O(N2
mass ∗N2

ray), where Nmass represents the number

of points in the mass grid and Nray represents the number of points to be ray-traced.

The subsections that one particular volunteer would ray-trace represented a unique

subsection of Nray, while all volunteers used the entire mass grid. For example, if

a 512x512 square pixel grid was divided into 16 subsections, each volunteer would

ray-trace 128 ∗ 128 = 16384 different points, summing over 512 ∗ 512 = 262144 points

in mass grid for each of the 16384 ray-trace points. Since the end result is a linear

superposition of the deflection angles due to each of the points in the mass grid, it is

possible to subdivide the mass grid as well. However, the performance gain resulting

from subdividing the ray-trace grid, Nray, was sufficient for this project. If a larger

speed improvement was needed, i.e. if resolution is improved, the mass grid should

be subdivided as well.

When one compares the CPU usage in Table 4.1 with the run-time of one entire

ray-trace simulation, the benefit of parallelization becomes clear. The combined CPU

usage amounts to 278.28 days, which is based on the recorded times of each particular

client computer. Computation speed varies inversely with the number of subsections

when the parallelization is used as described above. Therefore, the impact on CPU

time proved by the project is profound.

Additionally, projects such as BRaTS@Home provide an excellent platform to

bring science to the general public. As shown in Table 4.1, more than 115 volunteer

users have participated in the project, representing people from various backgrounds.

The total number of users exposed to the science behind the project is larger, since
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some users did not run simulations due to the number of simulations run compared

to the number of users enrolled. In fact, the total number of users enrolled in the

project is 190. All users enrolled in the project have the ability to discuss the project

using the on-line message board. Additionally, a live on-line discussion of the science

behind the project was held on January 23, 2010. While not all participants are

active in on-line discussion, the potential to reach a large audience of various levels

of science understanding is present. Among participants who voluntarily state their

country of origin, 29 countries are represented at BRaTS@Home. As shown in Table

4.1, the whole BOINC community represents almost ten times as many countries and

a four order of magnitude increase in registered users, compared to BRaTS@Home.

Table 4.1 BRaTS@Home and overall BOINC Statistics as of April 11, 2010

BRaTS@Home All BOINC projects14

Combined CPU usage 278.28 days Unknown
Average credit per CPU second 0.0035 Unknown
Total credit granted15 76709.26 2.14 ∗ 1011

Total number of users16 115 1.9 ∗ 106

Total identified countries 29 267
Total number of teams 62 86925

4.5 VERIFICATION OF ACCURACY

Whenever numerical simulations are used, it is necessary to verify whether or

not the results agree with expected values, either theoretical or experimental. Here,

uniform ellipses are used as a test case, since the deflection angle of the uniform ellipse

14Last retrieved from boincstats.com on April 11, 2010.
15Based on CPU credit, which differs slightly from user credit, due to credit granted during the

testing phase.
16Total including only those receiving work for which credit was granted.
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is known analytically. In this case, ellipses have a constant density, with a total mass,

M , and semi-major and semi-minor lengths of a and b, respectively. Schramm 1990

showed that confocal to this deflecting mass are ellipses of equal deflection angle given

by

αx = − 8GMx

c2a′(a′ + b′)
(4.5)

αy = − 8GMy

c2b′(a′ + b′)
(4.6)

outside of the mass, where a′2 = a2 + λ, b′2 = b2 + λ and outside of the mass

distribution λ > 0. Within the elliptical mass, Equations (4.5) and (4.5) can be

used if the primed variables are replaced with corresponding unprimed variables, i.e.

λ→ 0. The numerical results for the circular case is given in Figure 4.3.

Figure 4.3 Deflection angle for a 3 ∗ 1011M� circular lens.

For comparison, deflection angles were calculated via ray tracing by BRaTS@Home

and analytically for uniform elliptical deflecting masses using the results of Schramm
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1990. Table 4.2 shows the ratio of the numerical results to the analytical results for

various axis ratios. Axis ratios are the ratio of the semi-minor to semi-major axes,

where a ratio of one corresponds to a circle. Each distribution has a total mass of

3 ∗ 1011M�, spread out uniformly within the ellipse. In each case, values are on av-

erage within two percent of the analytical value. In the worst scenario, the 0.1 axis

ratio ellipse, all points are within ten percent. On the other hand, the best results

are given by the circular lens, where all points are within 2.39% of the actual value.

Table 4.2 Numerical and Analytical Deflection Angle Comparison

Axis Ratio Deflection Angle Ratio
Average Minimum Maximum Standard Deviation

0.1 0.9847 0.9038 1.0510 0.0037
0.3 0.9848 0.9605 1.0110 0.0010
0.5 0.9848 0.9720 0.9983 0.00053
1.0 0.9849 0.9761 0.9924 0.00034
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5 NUMERICAL CALCULATION OF SHEAR

5.1 CALCULATION OF SHEAR VIA CONVOLUTION OF

CONVERGENCE

As shown in Section 2.2, both convergence and shear are related to the lensing

potential through a combination of second derivatives,

κ(x1, x2) =
1

2
∇2 ψ (5.1)

γ1(x1, x2) =
1

2

(
∂2 ψ

∂ x2
1

− ∂2 ψ

∂ x2
2

)
(5.2)

γ2(x1, x2) =
∂2 ψ

∂ x1 ∂ x2

. (5.3)

While solving these partial differential equations might be possible for simple mass

distributions, a realistic shear study requires calculations for arbitrary mass distribu-

tions. Performing the differentiation in Fourier space simplifies the mathematics that

relate mass density, through convergence, to shear. This can be seen by defining the

lensing potential in terms of a Fourier transform,

ψ(x1, x2) ≡
1

2π

∫
ψ̃(k1, k2)e

−i~k · ~xd2k . (5.4)

Using this definition of the potential, only the exponential function in the integrand

contains the real space coordinates, x1 and x2. Therefore, differentiation in Fourier

space simply results in multiplication by Fourier conjugates and appropriate factors

of the imaginary number. Thus, in Fourier space, the complex shear, γ = γ1 + iγ2,

can be related to the convergence by

γ̃(k1, k2) = κ̃(k1, k2)
k2

1 − k2
2 + 2ik1k2

k2
1 + k2

2

. (5.5)
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Using the fast Fourier transform routine (Press et al. 1992), shear can be calculated

numerically for a given mass density.

5.2 SHEAR CALCULATION

The first requirement is a two-dimensional projection of the mass density. Three-

dimensional matter distributions are simulated by distributing a collection of particles

of equal mass according to the required mass density. For a detailed description of

the process of distributing particles, see Appendix 8. The two-dimensional projection

is made by dividing the three dimensional space into a set of columns along the

desired line of sight. The widths of the columns perpendicular to the line of sight is

adjusted for the necessary resolution. The total mass of all of the particles in each

column is then retained as the total mass within the corresponding portion of the

two-dimensional projection. This projection procedure is repeated for each column

in the mass distribution. Dividing this mass distribution by the area of each grid

point, i.e. column cross-section, and the critical density, Σcr, gives the convergence

for the mass distribution. Figure 5.1 shows a projected convergence (on a log scale)

for a simulated triaxial NFW distribution. Here, the line of sight was taken to be

at azimuthal and polar angles of 45◦ with respect to the longest principal axis of the

distribution.

Once the convergence has been calculated, the Fourier transform of the conver-

gence is calculated using the Fast Fourier Transform (FFT) routine. A thorough

explanation on the implementation of FFT is provided by Press et al. 1992. Each

element in the resulting Fourier transform of the convergence is then multiplied by

the corresponding factor of differentiation, according to Equation (5.5), to obtain the

Fourier transform of the shear. Inverse Fourier transformation of the result then gives

the shear for the two-dimensional grid provided by the convergence.
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Figure 5.1 Simulated triaxial NFW distribution with lens (source) redshift of z =
0.3 (0.7). Mvir = 2 ∗ 1014 h-1M�, Rvir = 1200 h-1 kpc, c = 4.8, q = 0.8, s = 0.5 and
semi-major axis is placed along θ = φ = π

4
using a log scale.

The FFT calculation method presented here is exactly like that of the mass recon-

struction method generally referred to as Kaiser-Squires Inversion (Kaiser & Squires

1993). In fact, Kaiser-Squires Inversion follows this procedure in reverse, to calculate

the convergence from shear values. This method is not without its drawbacks (cf

Schneider et al. 2006, page 317). Some of these difficulties include: loss of shear

information due to estimation based on smoothing of galaxy images, integration over

a finite grid instead of an infinite plane (i.e. R2), and the so-called mass-sheet degen-

eracy problem. However, in the simulations performed here, the actual convergence

value is known, within provided resolution, eliminating most of these problems, in-

cluding the mass-sheet degeneracy problem. This problem stems from the fact that

a known convergence value belongs to a class of convergences, for which the same

image ellipticities would be observed. For any convergence, κ(~θ), there is a set of con-

vergences, κλ(~θ) = 1− λ
(

1− κ(~θ)
)

, for any value of λ. For each λ, the shear would

be transformed by γλ(~θ) = λγ(~θ). However, reduced shear and the axis ratios of the
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images produced by this class of lenses remain unchanged for all values of λ, as can be

seen by Equations (2.25) and (3.23). While observational reconstructions begin with

measurements of image ellipticity, a function of axis ratios, the shear calculations

here begin with convergence maps themselves. Therefore, although the procedure

followed here is similar to Kaiser-Squires mass reconstruction, this problem is not

introduced. Indeed, the main source of error here are the limitations of resolution of

the convergence. This effect is quantified in Section 5.3.

5.3 COMPARISONS WITH ANALYTICAL SOLUTIONS

To understand the limitations of shear calculations presented here, mass distribu-

tions are tested for which analytical results are known, with the end goal of having a

reliable method of shear calculation for arbitrary mass distributions, for which shear

cannot be calculated analytically.

The first distribution so tested is the isothermal sphere, discussed in Section 3.3.

For this test case, a two-dimensional convergence map was calculated analytically for a

512-by-512 grid, according to Equation (3.8). The length of the grid in each direction

is 1 h-1Mpc and the points in the grid are evenly spaced. The lens was placed at a

redshift of 0.35 and background sources are located at z = 0.8. For this particular

lens, the Einstein radius, which is a function of the velocity dispersion, is taken to

be 0.96 h-1 kpc to keep calculated points in the weak lensing regime. Additionally,

these parameters were used by Lasky & Fluke 2009, providing a comparison with an

example already used in literature. Using this convergence grid, shear was calculated

via FFT convolution. For comparison with the analytical values, the values of the

shear and convergence are averaged over radial values spanning the entire distribution.

Figure 5.2(a) shows the convergence profile. As a measurement of error, the percent

difference of the shear was calculated according to 100 ∗
(

1− Simulation

AnalyticalV alue

)
.
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(a) Isothermal Sphere Convergence

(b) Percent Error for Isothermal Sphere Shear

Figure 5.2 Isothermal sphere located at z = 0.35, with background sources at z = 0.8,
with an Einstein radius of 0.97 h-1 kpc.
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Near the center of the grid, the shear values diverge, as does the convergence,

though in different directions. Analytically, shear and convergence diverge near the

origin. While one would expect a numerical simulation to begin to fail in regions

where the analytical results diverge, grid based calculations such as these are known

to be inappropriate in regions of strong lensing and other methods should be used

(cf Aubert et al. 2007). Outside of this region, there is a systematic over-estimation,

within 5% of the analytical value.

While the isothermal sphere provides an analytical result against which compar-

isons can be made, its spherical symmetry and analytical convergence map is less

similar to the mass distributions which are to be studied as the goal of this work.

Therefore, the next test to be performed is for the triaxial NFW halo. This distribu-

tion has been shown to resemble realistic dark matter halos, cf Section 3.3. Simulated

cluster halos are created as a three-dimensional distribution, which will be projected

onto two-dimensional convergence maps. This projection procedure is also used in

the NFW comparison.

As the NFW profile is more complex than the isothermal sphere model, the con-

vergence and shear values take a more complicated analytical form. However, shear

and convergence for the triaxial NFW profile can be calculated through numerical

integration, using the procedure described in Appendix 8.

For this comparison, the mass distribution has a virial mass of 2∗1014 h-1M� and

a virial radius of 1200 h-1 kpc. The concentration is equal to 4.8. The principal axis

runs along azimuthal and polar angles of 45◦ with respect an axis perpendicular to

the line of sight. The axial ratios q and s are 0.8 and 0.5, respectively. With these

parameters, a three dimensional distribution with 135000 particles was created. This

distribution was then projected onto a convergence map, shown in Figure 5.1.

With this convergence map, shear is calculated by FFT convolution. The shear

and convergence values are averaged over circles of varying radii centered around

the origin. Averaging over radius reveals the overall profile of the cluster. Although
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the distribution is ellipsoidal, circular average bins are used for continuity with ob-

servational practices. Expected values of the shear and convergence are calculated

by numerical integration. For each radius used in the averaging of simulation val-

ues, twenty shear values at points of equal distance from the center are calculated

by numerical integration over a complete circle, using evenly spaced azimuthal an-

gles. After calculating the shear and convergence profiles by simulation and numerical

integration, the percent difference was calculated, shown in Figure 5.3.

Figure 5.3 Percent error for triaxial nfw convergence and FFT-calculated shear, com-
pared to values found through numerical integration. Radial distance extends to the
virial radius.

Figure 5.3 shows the simulated profile tends to overestimate the convergence values

of the mass distribution, within roughly two-thirds of the virial radius, corresponding

to an underestimation of shear. For distances greater than 2
3
Rvir, the simulated

convergence becomes less than the expected value.
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When averaged over the virial radius, the percent difference of the convergence ap-

proaches zero. Within a distance of 0.5Rvir from the center, the average percent error

of the FFT calculated shear is 5%, equaling the error outside of 0.5Rvir in magnitude,

but differing in direction of inaccuracy.
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6 CORRELATION STUDY OF MASS ELLIPTICITY

AND SHEAR

6.1 GALAXY CLUSTER DISTRIBUTIONS

Dark matter halo shape within the cold mark matter theory has been examined

in recent years. It has been shown that, although there is a correlation between halo

mass and ellipticity, there is dispersion about the mean ellipticity, so that there is

a range of ellipticities for a given halo mass (cf Allgood et al. 2006). While these

studies have been done theoretically, reconstructing galaxy and galaxy cluster mass

densities is an active part of astrophysics. As resolution and field of view of such

observations improve, it becomes increasingly important to understand what effect

this dispersion has on measured shear values.

To study this effect, shear maps are created for seven simulated dark matter halos.

For each of these distributions, mutually perpendicular lines of sight are examined.

Thus, twenty-one shear maps are produced from different convergences. The param-

eters for the clusters are provided in Table 6.1. Mass distributions labeled 5, 7, 9,

10, 11 and 14 are high-resolution Adaptive Refinement Tree (ART) N-body simula-

tions of clusters, while distribution 24 is a group undergoing a merger. These seven

distributions correspond to the distributions used by Flores et al. 2007 to study the

statistics of dark matter halo shapes with respect to x-ray observations. Quantities

c, q and s listed in Table 6.1 correspond to the NFW parameters used in Section 3.3

and were found by dividing the mass distribution into isodensity shells. From these

shells, the ellipticity can be deduced. It is worth noting that the ellipticity varies

with radial distance.

To produce the shear maps, each of the mass distributions are projected perpen-

dicular to three orthogonal lines of sight. The resulting convergence map extends

to the virial radius of the distribution. The mass distributions are characterized by
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a triaxial ellipsoidal shape, as shown in Table 6.1. The orientation of the longest

principal axis with respect to the line of sight is listed in Table 6.2 for each projection

of each cluster. Once the convergence has been obtained, the shear is calculated for

each line of sight. Table 6.3 provides the resolution data for each cluster. Each cluster

is bounded by its virial radius. All clusters are placed at a redshift of z = 0.2, which

corresponds to an angular diameter distance of DL = 671.89 h-1Mpc. Each cluster’s

particles are projected onto a 512-by-512 grid perpendicular to the line of sight, with

resolutions listed in Table 6.3.

Table 6.1 Simulated Cluster Data

Cluster Mvir(1014 h-1M�) Rvir (h-1 kpc) Rs(h
-1 kpc) c q s

5 2.33 1550 170 9.1 0.777 0.623
7 2.38 1562.31 173.59 9 0.610 0.466
9 1.42 1313.62 154.54 8.5 0.481 0.381
10 0.991 1166.57 137.24 8.5 0.626 0.431
11 1.20 1243.31 126.9 9.8 0.617 0.464
14 1.25 1259.81 143.16 8.8 0.513 0.417
24 0.690 1034.01 114.89 9 0.413 0.404
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Table 6.2 Orientations of Simulated Cluster.

Cluster Line of Sight θ (radians) φ (radians)
5 X 1.641 0.611
5 Y 0.646 1.937
5 Z -0.733 1.100
7 X 2.862 0.524
7 Y -1.100 1.868
7 Z 0.611 1.222
9 X 1.990 1.274
9 Y -0.401 0.384
9 Z 0.489 1.815
10 X -1.658 0.646
10 Y -0.244 1.693
10 Z 1.222 0.942
11 X 0.716 0.559
11 Y -0.175 1.455
11 Z 1.571 1.972
14 X -2.618 0.785
14 Y -1.466 1.955
14 Z -0.227 0.925
24 X -1.414 0.803
24 Y -0.297 1.990
24 Z 0.943 0.943

Table 6.3 Resolution data for cluster convergences.

Cluster Width(kpc) kpc per pixel arc-seconds per pixel
5 3100 6.05 1.86
7 3124.62 6.1 1.87
9 2627.24 5.13 1.58
10 2333.14 4.56 1.4
11 2486.62 4.86 1.49
14 2519.62 4.92 1.51
24 2068.02 4.04 1.24
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6.2 RESULTS FOR CALCULATED SHEAR

Table 6.4 lists the average shear values for each cluster projected perpendicular to

the listed line of sight(LOS). Averaging is done in two regions, inside and outside of

half of the virial radius. In both regions, the overall average shear of each projection

has been calculated. These values are listed in the “Average” columns of Table 6.4.

Next the absolute difference between the overall average of all twenty-one shear maps

and the average for each individual shear map (“Average” column) is listed as the

“Difference from Mean”. This difference from the overall mean value is also provided

as a percentage of the mean to quantify the dispersion in shear values (“Percent

Difference” column). In addition to this percent difference measure of variation, the

standard deviation is listed below the average on the bottom of each column in Table

6.4.

For illustrative purposes, the effect of lensing by one of the clusters on a circular

background source is calculated and illustrated as a shear map for the respective cases.

At each point, the transformation matrix, A, is calculated using the corresponding

convergence and shear values. From this matrix, the lengths of the lensed image

axes are calculated using the eigenvalues of the transformation matrix, according to

Equation (2.25). A circular background source is lensed to an ellipse with principal

axes lying along the eigenvectors of the transformation matrix. Figures 6.1 - 6.4

provide two illustrations of the simulated lensing. Figures 6.2 & 6.4 show convergence

maps for two difference projections of cluster 5. Figures 6.1 & 6.3 show shear for these

convergence maps. The lines in these plots show the semi-major axis of the lensed

image of a circular source. The length of the lines represents the ratio of semi-minor

to semi-major axes, where a unit length represents a circle. To provide visually useful

images, the shear maps are produced by averaging semi-major axis position angles

and axial ratios in eight-by-eight pixel bins, reducing the 5122 grid to a 642 grid. To

illustrate the average tangential alignment around mass points, the convergences for



56

these two shear maps are shown as well, using a logarithmic scale. As each cluster

was created in a region bound by the virial radius, the coordinates of the shear plots

are given in terms of the virial radius, which may be found in Table 6.1. The average

of this axial ratios is provided in Table 6.5.

Table 6.4 Average shear values for simulated clusters.

Shear
Cluster LOS Average Difference from Mean Percent Difference

< 0.5Rvir > 0.5Rvir < 0.5Rvir > 0.5Rvir < 0.5Rvir > 0.5Rvir

5 X 0.041 0.011 0.0052 0.0034 11 23
5 Y 0.044 0.012 0.0027 0.0027 5 18
5 Z 0.045 0.013 0.0015 0.0019 3 13
7 X 0.045 0.015 0.0013 0.0000 3 0
7 Y 0.049 0.016 0.0025 0.0014 5 9
7 Z 0.052 0.015 0.0051 0.0003 11 2
9 X 0.033 0.010 0.013 0.0045 29 30
9 Y 0.032 0.010 0.015 0.0047 32 32
9 Z 0.039 0.010 0.0081 0.0047 17 32
10 X 0.045 0.014 0.0019 0.0010 4 7
10 Y 0.056 0.015 0.0092 0.0001 20 1
10 Z 0.043 0.014 0.0036 0.0008 8 5
11 X 0.073 0.027 0.026 0.012 57 80
11 Y 0.087 0.028 0.041 0.013 88 88
11 Z 0.072 0.026 0.025 0.011 54 72
14 X 0.042 0.013 0.0050 0.0017 11 11
14 Y 0.042 0.013 0.0050 0.0015 11 10
14 Z 0.045 0.013 0.0017 0.0014 4 9
24 X 0.029 0.011 0.018 0.0036 38 24
24 Y 0.037 0.012 0.010 0.0029 21 20
24 Z 0.029 0.012 0.018 0.0032 38 22

Average 0.047 0.015 0.011 0.0036 22 24
Std. Dev. 0.015 0.0053 0.010 0.0038 22 25
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Table 6.6 clearly demonstrates that there is a variation in shear caused simply

by the fact that the clusters are non-spherical. In Table 6.6, the difference in the

average shear between two quadrants of the clusters was found in the region outside

of 0.5Rvir. In the spherical case, the difference should be zero. Therefore, the shear

was calculated for a spherical NFW cluster with the same virial mass, radius and

concentration using the formulae given by Wright & Brainerd 2000. The difference

between the shear values is then presented as a percentage of this spherical result in

Table 6.6.
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Table 6.5 Average image axial ratio values for simulated clusters.

Image Axial Ratios
Cluster LOS Average Difference from Mean Percent Difference

< 0.5Rvir > 0.5Rvir < 0.5Rvir > 0.5Rvir < 0.5Rvir > 0.5Rvir

5 X 0.92 1.0 0.011 0.026 1 3
5 Y 0.91 0.98 0.0055 0.0043 0.6 0.4
5 Z 0.91 0.97 0.0033 0.0027 0.4 0.2
7 X 0.91 0.97 0.0023 0.0010 0.3 0.1
7 Y 0.90 0.97 0.0060 0.0038 0.7 0.4
7 Z 0.90 0.97 0.011 0.0016 1 0.1
9 X 0.93 0.98 0.026 0.0079 3 0.8
9 Y 0.94 0.98 0.030 0.0082 3 0.8
9 Z 0.92 0.98 0.017 0.0082 2 0.8
10 X 0.91 0.97 0.0043 0.00090 0.5 0.09
10 Y 0.89 0.97 0.017 0.0011 2.8847 0.1
10 Z 0.91 0.97 0.0062 0.00050 0.7 0.05
11 X 0.86 0.95 0.052 0.024 6 2
11 Y 0.83 0.95 0.080 0.026 9 3
11 Z 0.85 0.95 0.053 0.022 6 2
14 X 0.92 0.97 0.0098 0.0023 1 0.2
14 Y 0.92 0.97 0.0098 0.0018 1 0.2
14 Z 0.91 0.97 0.0037 0.0017 0.4 0.2
24 X 0.94 0.98 0.036 0.0060 4 0.6
24 Y 0.93 0.98 0.019 0.0047 2 0.5
24 Z 0.94 0.98 0.035 0.0052 4 0.5

Average 0.9 1 0.02 0.008 2 0.8
Std. Dev. 0.03 0.01 0.02 0.009 2 0.9
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Table 6.6 Difference in shear between quadrants as a percentage of the spherical
cluster value

Cluster LOS Percent Difference
10 X 0
14 Z 1
24 Z 3
10 Y 3
24 Y 4
5 X 4
7 X 4
11 X 5
9 X 7
7 Z 8
14 X 9
5 Z 9
7 Y 9
9 Y 10
9 Z 10
11 Y 11
14 Y 13
10 Z 16
5 Y 18
24 X 27
11 Z 44
Average 10
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Figure 6.1 Shear map of cluster 5 projected perpendicular to the X-axis. Axes are
labeled in units of the virial radius.



61

Figure 6.2 Convergence of cluster 5 projected perpendicular to the X-axis. Axes are
labeled in units of the virial radius.
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Figure 6.3 Shear map of cluster 5 projected along the Z-axis. Axes are labeled in
units of the virial radius.
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Figure 6.4 Convergence of cluster 5 projected perpendicular to the Z-axis. Axes are
labeled in units of the virial radius.
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7 DISCUSSION

Using the shear data produced by the simulated clusters, one may deduce traits

which could be observed. Shear itself exhibits dispersion beyond the levels of error

indicated by the analytical NFW simulation, displayed in Figure 5.3. For the analyt-

ical NFW, the average percent difference of shear within half of the virial radius is

4%. However, the average percent difference for the clusters is 22%. Outside of half

of the virial radius17, this average percent difference rises slightly to 24%. While one

would first suspect that this variation is due to the differences in mass included in

this set of clusters, Figure 7.1 shows the mass alone cannot account for the dispersion

in shear. Additionally, Figure 7.2 shows no correlation between shear and concen-

tration. Indeed, the axial ratio, s, seems to have the greatest impact on dispersion

of shear. Average shear varies directly with s with two out-lying cases. Cluster 11

has exceedingly high shear values compared to the remaining of clusters. However,

this cluster has the largest concentration, being nine percent higher than the mean,

and has a total mass near the average of the set of clusters. While cluster 10 has a

relatively high s value, it also has the second lowest mass, at 33% less than the mean,

and shares the lowest concentration, along with cluster 9.

Observational mass reconstruction methods rely on measurements of image ellip-

ticity and orientation. Shear maps presented in Section 6.2 distinctly show tangential

alignment of images, characteristic of weak lensing. Lumps in the clusters are re-

vealed in the shear maps through these alignments. The shear data was calculated

with resolutions averaging 1.56 arc-seconds. As this resolution angle is much larger

than is currently available, for example with the Hubble Ultra Deep Field (Beckwith

et al. 2006), such sub-structures should be resolvable.

17In the remainder of the text, statistical analysis will focus on the region outside of half of the
virial radius, as this is more pertinent to weak lensing.
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Figure 7.1 Plot of corresponding shear and mass values. Masses are given in units of
1014 h-1M�

While tangential alignment distinctly outlines mass peaks, the overall effect of

mass isodensity ellipticity dispersion on the entire system as a whole seems likely to

provide the greatest observational challenge. In the outer region, r > Rvir, Figure 7.5

shows a less distinct dependence of convergence on s than that of shear. Figures 7.6

and 7.7 show the correlation between the convergence and total mass and concentra-

tion, respectively. In the regions shown here, where the distance is greater than half

of the virial radius, the concentration dominates the convergence trend. Ellipticity,

measured by s, shows some connection to the variation of the convergence, though

less direct than the concentration.

Combining the density parameter effects on convergence and shear shows the dif-

ficulty in accurately reconstructing convergence from shear values. Figure 7.8 demon-

strates that a range of shear values can produce the same convergence values, with

variations due to differences in ellipticity and concentration. From an observational
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Figure 7.2 Plot of corresponding shear and concentration values.

standpoint, as described in Section 3.4, this convergence ambiguity is reflected in the

concentration of image ellipticity values, with an average percent difference of just

under 1%, compared to 24% for shear.

As mass reconstruction methods rely on averaging image ellipticity values, the

results presented here demonstrate the difficulty in distinguishing mass density ellip-

ticity from noise and error. Supplementing the previously demonstrated mass density

dispersion (cf Allgood et al. 2006), shear has been shown to exhibit dispersion about

the mean, which correlates strongly with the isodensity axial ratio, s, in a manner

similar to cluster mass. On the other hand, in regions where weak lensing is best ap-

plied, distances greater than 0.5Rvir, there is little corresponding dispersion in image

ellipticity, which is used to reconstruct convergence values. In this image ellipticity

concentration lies the observational challenge. For the clusters examined here, circu-

lar sources underwent an ellipticity change to an image axial ratio of 0.97, on average.

Additionally, the variation within the set of twenty-one convergences was only 1%.
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Figure 7.3 Plot of corresponding shear and axial ratio q values.

Therefore, to make these distinctions, one would have to resolve ellipticity changes

in images on the order of roughly half of a percent, when the image axial ratios vary

from being circular by less than 0.03. As presented here, mass reconstruction must

be performed with the understanding that there is a notable variance in convergence

values, alongside the reliable mass peak location resolution.
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Figure 7.5 Plot of corresponding convergence and axial ratio s values.



69

0.5 1 1.5 2 2.5

x 10
14

1

2

3

4

5

6

7
x 10

−3

Mass (Solar Masses)

A
ve

ra
ge

 C
on

ve
rg

en
ce

 

 
CL5
CL7
CL9
CL10
CL11
CL14
CL24

Figure 7.6 Plot of corresponding convergence and total mass values. Mass is given in
units of 1014 h-1M�

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
1

2

3

4

5

6

7
x 10

−3

Concentration Parameter

A
ve

ra
ge

 C
on

ve
rg

en
ce

 

 

CL5

CL7

CL9

CL10

CL11

CL14

CL24

Figure 7.7 Plot of corresponding convergence and concentration parameter values.
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8 SUMMARY

Variation in the shape of dark matter halo structures, as well as the presence of

substructure, has been demonstrated for galaxy clusters. Meanwhile, average val-

ues of shear are used to reconstruct mass profiles based on observed cluster images.

Therefore, an understanding of how shape variation and substructure of the dark

matter halos of galaxy clusters effect average shear can help improve mass recon-

struction. In order to characterize this effect, gravitational lensing was simulated for

seven different simulated dark matter halos, including six clusters and one group.

Virial masses ranged from 6.9 ∗ 1013 h-1M� to 2.38 ∗ 1014 h-1M� with an average of

1.5 ∗ 1013 h-1M�. Concentration ranged from 8.5 to 9.8, with an average of 9.0. For

each of the clusters, isodensity regions are notably triaxial ellipsoids. Within this set

of clusters, the ratio of the principle axes varies, as shown in Table 6.1.

Two simulation methods were used to study the gravitational lensing of galaxy

clusters. Both methods simulate lensing for projected mass distributions, or conver-

gence maps. One method uses the integration of deflection angles for the entire mass

distribution. Using ray-tracing, graphical representations of lensing may be produced.

A BOINC project was created to improve the computation speeds of this simulation

method. All of the ray-trace diagrams in this study were produced using this simu-

lation method. The second method produces a shear map for each convergence map

through the partial differential equations given in Section 5.

Variance in shear is demonstrated for the set of seven clusters. The average shear

for each cluster was found for the region outside of half of the virial radius. For

the set of twenty-one convergence maps, shear varied about a mean of 0.015 with

a standard deviation of 0.0053. Shear values vary by as much as 24% from the

mean. By comparing adjacent quadrants, shear variation is shown to be the result

of the ellipsoidal nature of the dark matter halo. If the halo was in fact spherically

symmetric, the difference between two adjacent quadrants of the shear map should



72

be zero. However, as shown in Table 6.6, this is not the case for these clusters.

When presented as a percentage of the shear value of the corresponding spherical

case, the difference varies among the clusters with an average of 10%. For each of the

parameters of the matter distribution, listed in Table 6.1, there is little correlation

with the average shear, with the exception of the axial ratio s, which shows an almost

linear relationship (cf Figure 7.4). As demonstrated here, especially illustrated in

Figure 7.8, a range of convergences can produce the same average shear value simply

by varying the shape of the halo. Therefore, mass reconstructions must include studies

of shape in order to more accurately find galaxy cluster mass.

Since this work suggests that attention must be paid to the shape of dark matter

halos when reconstructing mass profiles via gravitational lensing, a study could now

be done to use simulated lensing of realistic background images. From such images,

one could then carry out mass reconstruction through commonly used methods to

directly observe the effect the shear variations noted on the reconstruction of mass

profiles. Additionally, analyzing more clusters would help further constrain statistics.

Also, applying this study to single galaxies could extend the understanding of the

effects of shape to galaxy-galaxy lensing techniques, as galaxy dark matter halos

demonstrate a broad dispersion in shape like galaxy clusters.



APPENDIX A

GENERATION OF MASS DISTRIBUTIONS FOR NUMERICAL SIMULATION
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One method of producing mass distributions is through the quasi-random place-

ment of particles according to a probability function based on the mass density. Press

et al. 1992 outline methods of generating random number, including uniform deviates

and random number based on a probability function. For a mass density, ρ(r, φ, θ), a

distribution of particles can be created through the use of a random number gener-

ator, limited in accuracy by the number of particles placed in the distribution. The

density function, ρ(r, φ, θ), is treated as a probability function, which is normalized

to provide the desired total mass. Using equally probable random numbers, from

a set hereafter denoted by U, particle positions may be found using a probability

function derived from the density. Namely, if for ρ = ρ(r), a function, Q(r), can

be found, such that x = Q(r)εU, then ρ(x) = Q−1(x). This method relies on the

existence of Q(r). Additionally, for spherically symmetric cases, distances are se-

lected from this probability distribution, while azimuthal and polar coordinates are

selected from U. However, in distributions lacking this symmetry, for example ellip-

tical coordinates, random numbers must be transformed into those coordinates, e.g.

R =

√
x2 +

y2

q2
+
z2

s2
(cf Section 3.3). For the NFW distribution,

ρ(r′ ≡ r

rs
) ∝ 1

r′ (1 + r′)2 . (A.1)

For this function, there exists a transformation function,

Q(r′) =
1

1 + r′
+ ln(r′)− ln(1 + r′) . (A.2)

The Singular isothermal sphere requires only straight forward integration of 1
r2

, with

normalization must be used to provide to desired total mass. Additionally, the uni-

form ellipse, used in Section 4.5, can be produced by selecting a random position from

U and retaining points only if they are located within the ellipse.



APPENDIX B

CALCULATION OF LENSING PROPERTIES OF THE NFW PROFILE
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The NFW profile has been shown to accurately characterize dark matter halos.

Therefore, to compare the simulation data calculated here, it is necessary to obtain

the corresponding results from the NFW model. While analytical results for shear,

convergence and total mass are available for spherically symmetric NFW distributions

(Wright & Brainerd 2000), ellipsoidal distributions are complicated enough to require

calculation by numerical integration instead.

While studying the kinematics of elliptical galaxies, Binney 1985 showed that for

triaxial ellipsoids, the surface density may be simplified to a one-dimensional function.

Let

a2 ≡ x2 +
y2

q2
2D

(B.1)

q2D ≡

√√√√√A+ C −
√

(A− C)2 +B2

A+ C +
√

(A− C)2 +B2

(B.2)

A ≡ cos2 θ

s2

(
sin2 φ+

cos2 φ

q2

)
+

sin2 θ

q2
(B.3)

B ≡ cos θ sin 2φ

(
1− 1

q2

)
1

s2
(B.4)

C ≡
(

sin2 φ

q2
+ cos2 φ

)
1

s2
. (B.5)

Then the mass density can be found according to

Σ(a) =
2√
f

∫ ∞
0

ρ(z
′′2 + a2)dz

′′
, (B.6)

where

f ≡ sin2 θ

(
cos2 φ+

sin2 φ

q2

)
+

cos2 θ

s2
(B.7)
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and ρ is the NFW mass density according to Equation (3.11), using ellipsoidal coor-

dinates. Integration gives (Flores, private communication)

Σ(a) =
2ρsRs√

f


arctanh(

√
1− a2)−

√
1− a2

(1− a2)
3
2

, a < 1

√
a2 − 1− arctan(

√
a2 − 1)

(a2 − 1)
3
2

, a > 1

, (B.8)

where a is written in terms of Rs.

As a means of studying light deflection angles for homoeoidal mass distributions,

particularly to simplify numerical calculation, Schramm 1990 extends the projection

methods of Binney 1985 through the use of potential theory. Schramm 1990 takes

advantage of simplifications in the potential that arise for confocal homoeoidal mass

densities. For an ellipse of the form,

x2

a2
+
y2

b2
= 1 (B.9)

a confocal ellipse is one such that

x2

a2 + λ
+

y2

b2 + λ
= 1 , λ > 0 , (B.10)

while homoeoidal ellipses are given by

x2

(ma)2 +
y2

(mb)2 = 1 , m ≥ 1 . (B.11)

For such homoeoidal ellipsoids, Schramm 1990 finds the deflection angle to be

α̂x = −8πGab

c2

∫ m0

0

p
′2

a′b′

x

a′2
Σ(m)mdm (B.12)

α̂y = −8πGab

c2

∫ m0

0

p
′2

a′b′

y

b′2
Σ(m)mdm , (B.13)
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where

a
′2 ≡ a2 + λ (B.14)

b
′2 ≡ b2 + λ (B.15)

p
′2 ≡ a4b4

x2b4 + y2a4
(B.16)

m0 ≡

√
x2 +

y2

q2
2D

. (B.17)

This result allows one to calculate the deflection angle at any point for a ho-

moeoidal distribution, such as the NFW profile, through numerical integration. Ad-

ditionally, this approach can be extended to the calculation of shear through differ-

entiation of the deflection angle, using Equations (4.2) and (4.3).
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