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Abstract

This dissertation is concerned with the problem of constructing biorthogonal wavelets based

on non-uniform rational cubic B-Splines on intervals. We call non-uniform rational B-Splines

“NURBs”, and such biorthogonal wavelets “NURBlets”. Constructing NURBlets is useful in

designing and representing an arbitrary shape of an object in the industry, especially when

exactness of the shape is critical such as the shape of an aircraft. As we know presently most

popular wavelet models in the industry are approximated at boundaries. In this dissertation a

new model is presented that is well suited for generating arbitrary shapes in the industry with

mathematical exactness throughout intervals; it fulfills interpolation at boundaries as well.
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Chapter 1

Introduction

B-Splines play an important role in the sophisticated geometric modeling, computer graphics,

computer-aided design and manufacturing(CAD and CAM), and many other areas in the

industry [6, 9, 26, 27, 34, 38, 53]. After a few decades of tremendous achievement, B-Splines

have become the industry standards. However, B-Splines cannot represent many important

shapes precisely, for instance, widely used conic shapes. In areas such as the aircraft industry

accurate shape modeling is critical, otherwise the airplane would be crushed by air pressure.

NURBs (Non-uniform Rational B-Splines) successfully solve the problem by representing both

analytic and free-form surfaces with mathematical exactness and resolution independence.

They are ubiquitous for CAD, CAM and computed-aided engineering (CAE), and therefore

are industry standards with wide applications [33, 52, 53]. The role that NURBs play in

CAD/CAM/CAE is like “that of the English language in science and business” [53].

On the other hand, multiresolution analysis (MRA) which stemmed from wavelet analy-

sis has been applied in mass data processing in almost every field, from data mining, image

processing, computer graphics, medical research, stock market, to the Internet. It provides a

hierarchy structure from coarse levels to fine levels in the amount of detail. With this tech-

nique, B-Splines could have exerted their strengths in fast computation and local smoothness-

controlling. Unfortunately, NURBs have not succeeded in “interfacing with” MRA because

of their complicated rational structures. This limits the power of NURBs greatly in their

industrial applications.
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With MRA technique and based on B-Splines, wavelets have been extensively applied in

both theoretical and applied areas [14, 15, 22, 62]. However, one major challenge remains: the

models are built on the whole number axis while in real life, they should have boundaries. For

example, this disadvantage makes JPEG 2000 have blurred edges in highly compressed images.

Building innovative wavelet tools on intervals therefore becomes very crucial.

In this dissertation biorthogonal wavelets are constructed based on non-uniform rational

cubic B-Splines on intervals, with natural cubic B-Splines at the boundaries. We call such

wavelets “NURBlets”.

1.1 Overview

1.1.1 Parametric Functions

To represent curves and surfaces in mathematical functions, explicit functions are not good

enough, since for each variable value, it allows only one function value correspondingly. There-

fore it won’t allow curves to loop back. The solution is to represent each coordinate of a point

on the curve by an explicit function of an independent parameter such as

C(t) = (x(t), y(t)) for t ∈ [a, b].

For example, if we define

x(t) = sin(t), y(t) = cos(t) for t ∈ [0, 2π],

then function C(t) represents a circle centered at original point with radius 1.

1.1.2 Smoothness

A function for curve C(t) is said to have r-derivative continuity at a point if it has k-derivative

continuity for k ≤ r at that point. Equivalently, we say it has Cr smoothness at that point.

If a curve has Cr smoothness at each point on an interval, then it has Cr smoothness on that

interval.

2



1.1.3 Barycentric Coordinates

Consider x ∈ [a, b] (a < b) such that

�

a x b

If we let

u =
x− a

b− a

then the Barycentric coordinate for x are defined as

x = (1 − u)a+ ub. (1.1.1)

1.1.4 Inner Products

Suppose two functions f(x), g(x) ∈ L2(IR), then the inner product is defined by

〈f, g〉 =

∫
f(x)ḡ(x)dx, (1.1.2)

and the inner product with weight ω is defined by

〈f, g〉ω =

∫
∞

−∞

ω2f(x)ḡ(x)dx. (1.1.3)

1.2 Dissertation Outline

The remainder of this dissertation expounds the idea we outline above. The next chapter gives

detailed background on B-Splines, NURBs, multiresolution analysis and wavelets.

Chapter 3 constructs natural cubic B-Splines at boundaries. The matrices for refinement

relation in scaling functions are given.

We discuss the characters of MRA of NURBs in chapter 4. Weighted MRA NURBs at

boundaries are specified, with examples and explanations.

Finally in chapter 5, we explain how to construct biorthogonal wavelets based on NURBs

on intervals — such wavelets are called NURBlets. Lifting scheme is first discussed since it is

the technique we use for the construction. Biorthogonal NURBlet construction in single-knot

and two-knot insertion is explored, followed by elaboration on constructing the key matrix F.

3



We also investigate one vanishing moment in one knot insertion case. The chapter ends by

three examples presenting our algorithms for the biorthogonal NURBlet construction.

Chapter 6 concludes the dissertation. A summary of the work is given, followed by an

outline of future research directions.

4



Chapter 2

Introduction to B-Splines, NURBs,

MRA and Wavelets

The model presented here arises from B-Splines and wavelets. Before providing the details of

the model, a review of B-Splines, NURBs, multiresolution analysis and wavelet techniques is

presented in this chapter.

2.1 B-Splines

Spline techniques have been used long before the computer age. A draftsman used a long

flexible strip tied with lead weights in places to get a smooth curve. The curve varies in

curvature depending on the positions of the lead weights. Such a strip is called a spline, and

the positions where lead weights are tied at are called control points since they control the

shape of the spline.

A spline has a few essential properties. First, it has enough smoothness. In other words, it

has at least C1 or higher in continuity. Secondly, if we move a control point to a new position,

only the shape of the spline curve nearby the point is changed, while overall shape will not be

affected. This is known as local control.

To find a mathematical representation for a spline, we define a curve C(x) blending control

points pi by some “good” functions fi(x) as weights such that C(x) =
∑

i pifi(x). We wish

5



our weight functions to be simple, differentiable, mathematically well understood, and able

to represent precisely all free-form shapes. Intuitively, polynomials are our first candidates

because they are simple, computationally efficient, and easy to work with. However, poly-

nomials usually do not convey clear geometric insights. For this reason we choose a special

type of polynomials, Bernstein polynomials, as our weight functions. The curves weighted by

Bernstein polynomials are called Bézier curves.

2.1.1 Bézier Curves

In late 1950s and early 1960s, P. Bézier and P. de Casteljau independently found the same

curves, Bézier curves. Given a set of control points, a Bézier curve interpolates two endpoints

and approximates the rest points smoothly. If we connect consecutive control points, we get a

polygon called control polygon since the Bézier curve is in its convex hull. Figure 2.1 shows a

cubic Bézier curve with four control points pk (k = 0, . . . , 3).

�

�

p0

p1

p2

p3

Figure 2.1: Cubic Bézier curve.

Let C(x) be such a Bézier curve function with n degree on interval [0, 1], then it can be

expressed as

C(x) =
n∑

i=0

piBi,n(x), x ∈ [0, 1]. (2.1.1)

Coefficients pi are control points, and Bi,n(x) are called Bernstein polynomial bases with degree

n such that

Bi,n(x) =

(
n

i

)
(1 − x)n−ixi, x ∈ [0, 1]. (2.1.2)

A few important properties of Bernstein polynomials on [0,1] are [53]:

1. Nonnegativity : Bi,n(x) ≥ 0 for all i, n and x ∈ [0, 1];

6



2. B0,n(0) = Bn,n(1) = 1;

3. Partition of unity :
∑i=n

i=0 Bi,n(x) = 1 for x ∈ [0, 1];

4. Recursive definition: Bi,n(x) = (1 − x)Bi,n−1(x) + xBi−1,n−1(x);

5. Symmetry by x = 1
2
: Bi,n(x) = Bi,n(1 − x);

6. Derivative: Bi,n(x)
′ = n(Bi−1,n−1(x) −Bi,n−1(x)).

These properties yield the following geometric properties of Bézier curves:

1. Interpolating at endpoints;

2. The curves are contained in the convex hulls defined by their control points;

3. Invariant under affine transformation;

4. Derivative: C(x)′ = n
∑n−1

i=0 Bi,n−1(pi+1 − pi).

The last property indicates that the derivative of a Bézier curve is a linear combination of

a few neighboring control points. At the endpoints, the first and second derivatives are linear

combinations of only first or last few control points such that

C(0)′ = n(p1 − p0) C(0)′′ = n(n− 1)(p2 − 2p1 + p0)

C(1)′ = n(pn − pn−1) C(1)′′ = n(n− 1)(pn − 2pn−1 + pn−2).
(2.1.3)

In Barycentric coordinates, a Bézier curve on interval [a, b] becomes

C(x) =
n∑

i=0

piBi,n(x) (2.1.4)

=

n∑

i=0

pi

(
n

i

)
(
b− x

b− a
)n−i(

x− a

b− a
)i (2.1.5)

=
n∑

i=0

pi

(
n

i

)
(1 − u)n−iui (2.1.6)

where

u =
x− a

b− a
for x ∈ [a, b].

7



Its first and second derivatives at the endpoints are

C ′(a) = n(p1−p0)
b−a

C ′(b) = n(pn−pn−1)
b−a

C ′′(a) = n(n−1)(p0−2p1+p2)
(b−a)2

C ′′(b) = n(n−1)(pn−2−2pn−1+pn)
(b−a)2

.
(2.1.7)

2.1.2 de Casteljau’s Algorithm

On interval [a, b], given a Bézier curve, how to find a specific point on it? Or how do we

compute the function value C(x) in the equation (2.1.1)? P. de Casteljau proposed a recursive

algorithm. The algorithm has following advantages:

1. It is simple for computer programming;

2. It has clear geometry meaning (see Fig 2.2);

3. It is fast enough to draw curves at interactive rates.

The algorithm is illustrated in the following. On [a, b], let a Bézier curve with a set of

control points {p0, . . . , pn} be denoted by C(x), then for any x ∈ [a, b], the corresponding

point P (x, y) on the curve cuts the curve into two curve segments Cl(x) and Cr(x), which are

defined on control points {p0, · · · , pn−1} and {p1, · · · , pn} respectively. The recursive definition

of Bézier basis functions leads to

C(x) = (1 − x)Cl(x) + xCr(x). (2.1.8)

The two curve segments can be subdivided again. We then have the following recursive algo-

rithm if we let

pk
i = (1 − x)pk−1

i (x) + xpk−1
i+1 (x), k = 1, · · · , n, i = 0, · · · , n− k, (2.1.9)

where pk
i (x) is the ith control point for Bézier curve of k degree, then C(x) = pn

0 . Figure 2.2

shows an example of computing C(x) when x = 2
3
.

8



�

�

�

�

�

�� �

0 12
3

x = 0
x = 1

x = 2
3p0

0

p0
1

p0
2

p0
3

p1
0

p1
1

p1
2

p2
0

p2
1

C(2
3
) = p3

0

Figure 2.2: de Casteljau’s algorithm of computing C(2
3
).

Pseudo code:

deCasteljauAlgorithm(n, τ, P )

/* de Casteljau’s algorithm: computing a point value on curve f(x)

Input: n — degree of Bézier basis functions

τ — x-coordinate of the point and τ ∈ [0, 1]

P— array of control points in which P [i] = pi for i = 0, . . . , n

Output: f(τ) */

for(i = 0; i <= n; i + +)

Q[i] = P[i];

for(i = 1; i <= n; i + +)

for(j = 0; j <= n− i; j + +)

Q[j] = (1− u)Q[j] + uQ[j + 1];

return Q[0];

We often use a triangle scheme to illustrate the de Casteljau’s algorithm. See Figure 2.3.
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0
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p3
0

1 − u

1 − u

1 − u1 − u
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u

u

u

u

u

u

Figure 2.3: de Casteljau’s algorithm.

2.1.3 B-Spline Basis Functions

Though Bézier curves beautifully render curves, they have a few drawbacks:

• They are globally supported on the interval;

• They cannot interpolate control points except endpoints;

• To approximate a curve with n+1 control points, a Bézier curve representation requires

polynomials of degree n which may be high and hence impractical.

We need to look for “better” basis functions.

Let’s go back to our original spline curve, C(x). Suppose C(x) has l + 1 control points pi

(j = 0, 1, . . . , l) with corresponding basis functions fi(x)

C(x) =
l∑

i=0

pifi(x). (2.1.10)
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For each x, C(x) is a linear combination of control points pi weighted by fi(x). fi(x) are basis

functions so we called them B-Spline basis functions. Ideal B-Spline basis functions should

have desirable degree (so that the curve attains certain degree of smoothness), continuity (so

that editing control points will not influence the continuity of the curve) and properties listed

for Bézier basis functions (section 2.1.1). Figure 2.4 indicates uniform basis functions for a set

of control points. They are identical yet on different intervals. That is, they influence their own

control points with the same weight and same support length but on different time intervals.

However, in general, these weights might be different both in degree and domain span of their

influence, like Figure 2.5 has shown. The numbers in domain axis partition the domain into

different intervals for the basis functions and consequently different basis functions are formed.

We call these numbers in domain “knots”, and the sequence of knots a “knot vector”.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

N0,4 N1,4 N2,4 N3,4 N4,4

Figure 2.4: Uniform basis functions.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

N0,4

N1,4

N2,4 N3,4

N4,4

Figure 2.5: Non-uniform basis functions.
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We then can define our basis B-Spline functions. Among a few different versions in defini-

tion, we adopt the following one [53].

Given a knot sequence x = {x0, x1, . . . , xn} and basis functions of order m, B-Spline basis

functions are defined by:

Nk,1(x) =





1, if x ∈ [xk, xk+1)

0, otherwise

Nk,m(x) =
x− xk

xk+m−1 − xk

Nk,m−1(x) +
xk+m − x

xk+m − xk+1
Nk+1,m−1(x). (2.1.11)

For example, let m = 4 with uniform interval [0,4], then N4(x), the cubic B-Spline, is

N4(x) =





1
6
x3, if x ∈ [0,1];

2
3
− 2x+ 2x2 − 1

2
x3, if x ∈ [1, 2];

−22
3

+ 10x− 4x2 + 1
2
x3, if x ∈ [2, 3];

1
6
(4 − x)3, if x ∈ [3, 4].

(2.1.12)

Interval [xi, xi+1) is called ith knot span. Let m and l + 1 be the order and number of basis

functions on interval [a, b]. A few important properties of B-Spline basis functions can be

derived as follows:

1. Ni,m(x) is a polynomial of degree m− 1 on [xi, xi+m], for all i;

2. Ni,m(x) has support [xi, xi+m], i.e., Ni,m(x) = 0 for x /∈ [xi, xi+m];

3. Ni,m(x) > 0, for x ∈ (xi, xm+i);

4. Partition of unity:
∑l

j=0Nj,m(x) = 1 for any x ∈ [a, b];

5. At most m of Ni,m are nonzero for an arbitrary knot span [xi, xi+1);

6. Derivative: N ′

i,m(x) = m
xi+m−xi

Ni,m−1(x) − m
xi+m+1−xi+1

Ni+1,m−1(x) and

N
(k)
i,m = m(

N
(k−1)
i,m−1

xi+m−xi
− N

(k−1)
i+1,m−1

xi+m+1−xi+1
);

12



7. Continuity: basis function Nk,m(x) is Cm−1−r continuous at a knot with multiplicity of

r.

2.1.4 B-Spline Curves

From Bézier curves to B-Spline curves, a few important properties are achieved. First, it

discards the idea of representing a curve with only one Bézier curve. Instead, it applies a

piecewise polynomial for the representation. In other words, it divides the whole curve into

curve segments where the curves connect with certain degree of continuity at the breaking

points. The curve with continuity r at the breakpoint xi satisfies C
(j)
i (xi) = C

(j)
i+1(xi) for

0 ≤ j ≤ r [53]. Hence, moving a local control point affects only two neighboring fragment

curves and this gives local support. Secondly, we are free to have polynomial curve segments

with a low degree. In fact we can even choose polynomial functions with diverse degrees for

a basis. For example, if some part of the curve needs to be smoother (such as a sharp part),

we can choose a basis function with higher degree for that curve segment. Figure 2.6 shows a

spline curve with three cubic curve segments.

�

�

�
�

	

	

p0

p1

p2

p3

p4 p5

p6

p7

p8

p9

C1(x)

C2(x)

C3(x)

Figure 2.6: Cubic B-Spine with 3 curve segments.

In B-Spline curve

C(x) =
n∑

i=0

pifi(x),

basis functions have different knot spans. If knot spans are clustered at the endpoints of a

single interval, it becomes a Bézier curve. So Bézier curves are special cases of B-Spline curves.

B-Spline curves share many important properties with Bézier curves, but B-Spline curves
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have more desirable characters than Bézier curves do. The list below shows several of the most

important properties of B-Spline curves.

1. B-Spline curve C(x) is a piecewise polynomial curve with each curve segment of degree

m− 1;

2. Let s+ 1 be number of knots, l+ 1 be number of basis functions, and m be the order of

basis functions, then l = s−m;

3. Endpoint interpolation: C(a) = p0 and C(b) = pn on the interval [a, b];

4. Local support: moving pi only affects the part of curve on interval [xi, xi+m);

5. Invariant under affine transformation α(
∑m−1

i=0 piNi,m) =
∑m−1

i=0 α(pi)Ni,m;

6. Convex hull properties: the curve is constrained in the convex hull formed by its control

polygon;

7. Variation diminishing property: if the curve is in a plane, then no straight line intersects

a B-Spline curve more times than it intersects the curve’s control polygons;

8. Differentiability: C(x) is infinitely differentiable in knot intervals, and m− 1− k contin-

uously differentiable at a knot with multiplicity k;

9. Derivatives:

C(k)(x) =

n−k∑

i=0

N
(k)
i,m−k(x)p

(k)
i (2.1.13)

where p
(k)
i are control points corresponding to N

(k)
i,m−k such that

p
(k)
i =




pi k = 0

m−k
xi+m−xi+k

Ni,p−k(x)(p
(k−1)
i+1 − p

(k−1)
i ) k > 0
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2.1.5 Bézier Nets

A Bézier curve defined by

C(x) =

n∑

i=0

piBi,n(x), 0 ≤ x ≤ 1

is determined by coefficients pi as soon as basis functions Bi,n(x) are given. Therefore, we

need to exclusively investigate the relation among coefficients on the interval with geometric

insights. A Bézier Net provides a simple approach for the purpose.

For example, for a cubic Bézier curve f(x) =
∑3

k=0 pkB
3
k(x) where pi are coefficients and

x ∈ [a, b], the Bézier net is:

p0

a

p1 p2 p3

b
Specifically,

1

0

0 3 2

1

−→ 1(1 − x)3 + 3(1 − x)x2 + 2x3,

and

1

a

2 0 1

b

−→ 1u3 + 2u2v + 1v3

with

u =
b− x

b− a
, v =

x− a

b− a
.

Compared with the polynomial notation, Bézier nets give a simpler and more straightforward

insight for a spline.

Figure 2.7 gives the Bézier net for cubic B-Splines defined in (2.1.12) on interval [ti, ti+4]

by [13]. We will adopt this notation throughout this dissertation.
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0

ti

0 0
h2

i

kili

ti+1

hi

li

ki

li
Hi

ti+2

ki+2

li+1

hi+3

li+1

h2
i+3

ki+2li+1

ti+3

0 0 0

ti+4

Figure 2.7: Bézier Net for cubic spline Ni,4.

Parameters hi, ki, li and Hi are defined by





hi = ti+1 − ti

ki = hi+1 + hi = ti+2 − ti

li = hi+2 + hi+1 + hi = ti+3 − ti

Hi = 1 − h2
i+2

ki+1li
− h2

i+1

ki+1li+1

(2.1.14)

Specifically, if the knots are uniformed with ti+1 − ti = 1, the Bézier net becomes one for

uniform cubic B-Splines which is illustrated in Figure 2.8.

0

ti

0 0 1
6

ti+1

1
3

2
3

2
3

ti+2

2
3

1
3

1
6

ti+3

0 0 0

ti+4

Figure 2.8: Bézier Net for uniform cubic B-Spline Ni,4.

Bézier nets also give a clearly geometric insight into continuous relations among coefficients.

For example, if coefficient sets of two adjacent curve segments jointed at x = ti are (p0, . . . , pn)

and (q0, . . . , qn) (n is the degree), then C0 at x = ti forces the last coefficient of left curve

segment and the first one of the right curve segment to be identical. This means pn = q0 (see

Figure 2.9).
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. . .

ti−1

pn−2 pn−1 pn

q0
‖

ti

q1 q2 . . .

ti+1

Figure 2.9: Geometric insight of Bézier Net for a B-Spline in C0.

If the spline has C1 at x = ti, it must satisfy the following condition by (2.1.7):

n(pn − pn−1)

hi−1

=
n(q1 − pn)

hi

. (2.1.15)

This tells us that pn−1, pn and q1 are collinear if the B-Spline has C1 at ti. Figure 2.10 shows

such a vision for a B-Spline of degree n in C1.

. . .

ti−1

pn−2

ti

q2 . . .

ti+1

q1

pn−1

pn
×

×

×

Figure 2.10: Geometric insight of Bézier Net for a B-Spline in C1.

Similarly, if C2 is achieved at x = ti, it must satisfy the following condition

n(n− 1)(pn−2 − 2pn−1 + pn)

h2
i−1

=
n(n− 1)(pn − 2q1 + q2)

h2
i

, (2.1.16)

and its geometric meaning is shown in Figure 2.11.
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. . .

ti−1 ti

. . .

ti+1

pn−2

q1pn−1

pn

q2

Figure 2.11: Geometric insight of Bézier Net for a B-Spline in C2.

2.2 NURBs

So far, what we’ve discussed are B-Spline polynomial curves. Unfortunately, for the curve of

C(t) =
∑n

i=0 piNi,m(t), B-Spline polynomial basis functions as weights are not good enough

to provide closer approximations for free-form shapes. For example, polynomials can not

represent conic shapes such as circles, ellipses and hyperbolas which are important shapes in

the industry. In Mathematics, conic curves can be represented by rational functions. This

leads to a new kind of curve:

C(t) =

n∑

i=0

pi

wiNi,m(t)∑n
j=0wjNj,m(t)

a ≤ t ≤ b. (2.2.1)

Here wi are weights, pi are control points or coefficients, andNi,m(t) are B-Spline basis functions

of order m defined at knot sequence t = {a = t0, . . . , t0, t1, t2, . . . , tn, . . . , tn = b}. Notice that

these NURBs have the identical denominators.

2.2.1 Definition of NURBs

We hence can define NURBs as Ri,m(t) in the equation (2.2.1)

Ri,m(t) =
wiNi,m∑n

k=0wkNk,m

. (2.2.2)
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In this way, C(t) in (2.2.1) has the same form as the polynomial one

C(t) =
n∑

i=0

piRi,m(t), t ∈ [a, b]. (2.2.3)

Ri,m(t) are called Nonuniform Rational B-Splines,or, NURBs.

If wi = 1 for all i, Ri,m(t) turn into Ni,m(t). So B-Spline curves are a special case of NURB

curves.

2.2.2 Geometric Interpretation of NURBs

We can use homogeneous coordinates to represent a rational curve in r-dimensional space as a

polynomial curve in (r+ 1)-dimensional space [53]. Let Pi(
x
w
, y

w
, z

w
) ∈ IR3 and Pw

i (x, y, z, w) ∈
IR4 (x, y, z, w ∈ IR, w 6= 0), then figure 2.14 shows a rational Bézier curve mapped from a

polynomial Bézier curve with three dimensions.







�
�

pw
0

pw
1

pw
2

pw
0

p0

p1
p2

p3

X Y

Z

Figure 2.12: Geometric interpretation for a Bézier curve.
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2.2.3 The Properties of NURBs

As before, we need to check if rational basis functions have a number of important properties

that are desired for spline basis functions.

1. Nonnegativity: Ri,m(t) are nonnegative for all i,m and t ∈ [ti, ti+m];

2. Local support: Ri,m(t) are zero for t /∈ [ti, ti+m];

3. Partition of unity:
∑i

j=i−mRj,m(t) = 1 for all t ∈ [ti, ti+m];

4. Interpolating endpoints: R0,m(0) = 1 and Rl,m(1) = 1;

5. Invariant under affine transformation: α(
∑m−1

i=0 piRi,m) =
∑m−1

i=0 α(pi)Ri,m. Moreover, it

is invariant under perspective projection [39].

6. Convex hull property: C(t) lies in the convex hull of the control points p0, . . . , pl.

7. Differentiability: C(t) is infinitely differentiable in knot intervals, with a nonzero denom-

inator, and is m− k continuously differentiable at a knot with multiplicity k.

2.3 Multiresolution Analysis (MRA)

Multiresolution analysis is a technique in processing mass data. It offers a hierarchy structure

from coarse to fine levels and allows users to retrieve only as much information as need from

the original data set.

2.3.1 The Refinement Functions and the Subspaces Vj

At MRA level j, φj(x) are called refinable functions if they satisfy the following refinement

relation(condition) or two-scale equation:

φj(x) =
∑

k

pj,kφj+1,k(x), (2.3.1)

where pj,k are coefficients for φj+1,k.
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Refinable functions are important to MRA since one can show that spaces spanned by them

are nested. Many functions can be refinable functions. Among them, Daubechies refinable

functions are classic ones. However, Daubechies refinable functions do not have analytical

formula, therefore are not desirable in computer graphics. Cardinal B-Splines are ideal basis

functions in the field, and the cubic B-Spline is the most popular basis function.

A multiresolution scheme is based on a sequence of nested subspaces {Vj, j ∈ ZZ} of L2(R).

The spaces should be simple, while “big” enough to approximate the given data. To achieve

this, we choose a B-Spline function φ0(t) ∈ L2(R) and its integer shifts φ(t − k) (denoted

as φ0,k(x)) as basis functions for V0, φ1,k(t) as the basis functions for V1, and so on. One

can show that since they are spanned by refinement equations, the sequence spaces {Vj}
is therefore nested. {Vj} are called Multiresolution Analysis, or, MRA, with the following

properties [34, 38]:

1. . . . ⊂ V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn . . . ⊂ L2(R);

2. Vj =span{φj,k(x), k ∈ ZZ}, Vj+1 =span{φj+1,k, k ∈ ZZ} with (2.3.1) holds;

3.
⋃

∞

j=−∞
Vj is dense in L2(R) and

⋂
∞

j=−∞
Vj = 0.

2.3.2 The Wavelet Functions and the Detail Subspaces Wj

Since V0 ⊂ V1, there exists a subspace W0 of V1 such that

V1 = V0 +W0, (2.3.2)

(see figure 2.13). Subspace W0 contains the fine detail information lost when a curve is trans-

formed from its fine level 1 to coarse level 0. If we let V0 = span{φ0,i(x), i ∈ ZZ} and W0 =

span{ψ0,i(x), i ∈ ZZ}, then φ0,i(x) are called scaling functions, and ψ0,i(x) wavelet functions,

or simply, wavelets.

Due to the fact ψ0,i(t) ∈ V1, ψ0,i(t) can be represented by the basis functions of V1

ψ0,i(t) =
∑

k∈ZZ

q0,i;kφ1,k(t), (2.3.3)
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⊕ ⊕ ⊕

V0 V1 V2 V3

W0 W1 W2

Figure 2.13: Nesting spaces in MRA.

where coefficients q0,i;k are wavelet coefficients.

2.3.3 Decomposition and Reconstruction

In computer graphics, we usually study the parametric curves on intervals. Therefore, we use

the interval version of the basis functions as in [31, 34, 41, 32, 37]. In Vj, let

Φj = [φj,0, φj,1, ..., φj,lj ]
T (2.3.4)

be the vectors of basis scaling functions, and cj = [cj,0, cj,1, ..., cj,lj ]
T be vectors of control points

where lj + 1 are the number of basis functions in Vj, then the curve function can be defined

by

fj =

lj∑

k=0

cj,kφj,k = [cj,0, cj,1, ..., cj,l]




φj,0

φj,1

...

φj,lj




= cj
T Φj . (2.3.5)

Similarly, its coarse level approximation fj−1 is

fj−1 =

lj−1∑

k=0

cj−1,kφj−1,k = cT
j−1Φj−1. (2.3.6)

Control points vectors cj−1 can be captured through cj by a matrix Aj , known as analysis

matrix, which will be given in (2.3.17) soon.

cj−1 = Ajcj . (2.3.7)
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Likewise, if gj−1 are functions representing the lost detail (i.e., gj−1 ∈Wj−1) and

Ψj−1 = [ψj−1,0, ψj−1,1, ..., ψj−1,l′j−1
]T (2.3.8)

are vectors of basis functions of space Wj−1 with l′j−1+1 the number of wavelet basis functions,

and if vectors dj−1 = [dj−1,0, dj−1,1, ..., dj−1,l′j−1
]T capture the detail lost during the transforma-

tion from cj to cj−1, then we can derive the following relation by (2.3.3):

gj−1 =

l′j−1∑

k=0

dj−1,kψj−1,k = dT
j−1Ψj−1. (2.3.9)

Also, dj−1 can be captured through cj by another analysis matrix Bj which will be given

in (2.3.17):

dj−1 = Bjcj . (2.3.10)

The process of splitting control points cj into control points with low resolution cj−1 and

the detail dj−1 is known as decomposition.

Before we discuss the reconstruction process, we first rewrite the equations (2.3.1) and

(2.3.3) in matrix formats

Φj−1(t) = PjΦj(t) (2.3.11)

and

Ψj−1(t) = QjΦj(t), (2.3.12)

where Pj, and Qj are synthesis matrices.

Because

fj = fj−1 + gj−1, (2.3.13)

putting (2.3.6), (2.3.9), (2.3.11), and (2.3.12) in the equation (2.3.13), we get

cT
j = cT

j−1Pj + dT
j−1Qj. (2.3.14)

This shows that coefficients cj (i.e., control points in computer graphics) can be recovered

from cj−1 and dj−1. The process is called reconstruction.
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If we consider the relations in (2.3.7) and (2.3.10) in the equation (2.3.14), the following

relation holds

cj
T = cT

j A
T
j Pj + cT

j B
T
j Qj . (2.3.15)

The Perfect Reconstruction Condition is therefore derived

I = AT
j Pj +BT

j Qj . (2.3.16)

Or equivalently,

[AT
j BT

j ]


Pj

Qj


 = I. (2.3.17)

2.3.4 Dyadic MRA

Dyadic refinement is a special case in MRA in which if the original space V0 =span{φ(x−k), k ∈
ZZ}, then Vj =span{φ(2jx − k), k ∈ ZZ}. It is used most widely in applications and we’d like

to discuss its properties in MRA in this subsection.

Dyadic refinement relation is:

φ(x) = 2
∑

k

pkφ(2x− k), (2.3.18)

and wavelet function is

ψ(x) = 2
∑

k

qkφ(2x− k). (2.3.19)

For any integer m ≥ 1 as the order of N(x), there exists a sequence pk,m such that

Nm(x) =
∑

k pk,mNm(2x− k),

where

pk,n = 2−n+1

(
n

k

)
(2.3.20)

and

pk,n =
1

2
(pk,n−1 + pk−1,n−1). (2.3.21)

A so called Pascal’s Triangle describes the relation in (2.3.21). See Figure 2.14.
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Figure 2.14: Pascal triangle.

2.4 Wavelet Analysis

To understand wavelet analysis, let’s have a brief review of signal processing. In industry, a raw

signal is a function about amplitude on time. But in many cases, frequency content of a signal

contains more desirable and important information. So engineers use certain mathematical

tool(s) to transform time-amplitude raw signals into frequency-amplitude ones. Among all

available tools, Fourier Transform(FT) is the most popular one. However, FT (as well as other

available tools) only tells us what frequency components are contained in a raw signal. It

cannot tell when these components exist. If two raw signals have same frequency components

but at different time intervals, FT won’t be able to tell the difference! So FT is a good tool

only when the frequency content of a signal does not change in time. Such a signal is called a

stationary signal.

In real world, most of signals are not stationary. So we need some other tool(s) for getting

frequency-time signals. However, Heisenberg’s Uncertainty Principle breaks our dream. It

states that the values of time and frequency cannot both be known with arbitrary precision

simultaneously. In other words, it is impossible to exactly know what frequency happens at

what time instant. What we can know is what frequency bands happen at what time intervals.

To make a tradeoff, if these time intervals are reasonably small enough, we can achieve our

goal approximately. Technically, we divide a signal into small enough segments (by a window

function) such that each signal segment can be supposed to be stationary and consequently,

then FT can be applied. Such technique is called short time Fourier Transform (STFT).
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The width of window function in STFT is called the support of the window. But STFT has a

resolution dilemma here: we wish the support is small, but it leads to poor frequency resolution;

if the support is big, it not only violates the condition of stationarity, but also leads to poor

time resolution. The solution to it is wavelet transform (WT). The big difference between

STFT and WT is that in WT, the support of window varies with frequency components, while

in STFT it keeps the same. A continuous wavelet transform of a function f(x) ∈ L2(R) is

defined as:

γ(s, τ) = 〈f(x), ψs,τ(x)〉 =

∫
∞

−∞

f(x)ψs,τ (x)dx, (2.4.1)

where s and τ are variables of scale and translation. ψs,τ (x) is called mother wavelet and is

defined as:

ψs,τ(x) =
1√
|s|
ψ(
x− τ

s
) with s, τ ∈ IR, s 6= 0. (2.4.2)

2.4.1 Wavelet Properties

Wavelet ψ(t) should satisfy so-called Admissibility condition

∫
∞

−∞

|Ψ(ω)|2
ω

dω <∞, (2.4.3)

where Ψ(ω) is FT of ψ(t). The condition implies that the FT of ψ(t) vanishes at zero frequency

|Ψ(ω)|2ω=0 = 0. (2.4.4)

This means that wavelets must have a band-pass like spectrum, and also means

∫
∞

−∞

ψ(t)dt = 0. (2.4.5)

One of the very important characters of wavelets is vanishing moments. If we expand the

wavelets transform in formula (2.4.1) into Taylor series at τ = 0, we then have

γ(s, 0) =

∫ n∑

p=0

f
(p)
(0)

p!
tp

1√
s
ψ(
t

s
)dt+O(n+ 1) =

1√
s
(

n∑

p=0

f
(p)
(0)

p!

∫
tpψ(

t

s
)dt) +O(n+ 1).
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If we let

Mp =

∫
tpψ(t)dt, (2.4.6)

then

γ(s, 0) = (
1√
s
M0S + f

(1)
(0)M1S

2 +
1

2!
f

(2)
(0)M2S

3 + . . .+
1

n!
f

(n)
(0) MnS

n+1) +O(Sn+2),

i.e.,

γ(s, 0) ==
1√
s

n∑

j=0

1

j!
f

(j)
(0)MjS

j+1 +O(Sn+2). (2.4.7)

We have M0 = 0 because of admissibility condition. If we letMn = 0 (or be vanishing), then

Mj = 0, ∀j = 0, 1, · · · , n. Thus γ(s, 0) = O(Sn+2). This makes the wavelet transformation

coefficients γ(s, τ) decay as fast as O(Sn+2) for a smooth function f(t). Because of the reason,

Mn is thus called n moments.

Vanishing moments play an important role in wavelet construction. If a wavelet has n

vanishing moments, then n approximation order of the wavelet transformation can be achieved.

2.4.2 Categorization of Wavelets in MRA

As we have mentioned in Section 2.3.2, wavelets ψj(x− k) span space Wj which contains fine

details lost in the transformation from fine level Vj+1 to coarse level Vj. According to the

different relations between Vj and Wj , there are following types of wavelets.

Orthogonal Wavelets An orthogonal wavelet is a function ψ(x) such that {ψ(x−k), k ∈
ZZ} is an orthonormal basis, i.e.,

〈ψ(x), ψ(x− k)〉 = δk, k ∈ ZZ. (2.4.8)

Notice that each orthogonal wavelet function is also orthogonal to scaling functions at the

same level.

Semiorthogonal Wavelets A semiorthogonal wavelet is a function ψ(x) such that

ψ(x − k), k ∈ ZZ are not orthogonal to each other, yet each wavelet function is orthogonal to

scaling functions at the same level.
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Biorthogonal Wavelets A biorthogonal wavelet transformation is invertible but wavelets

are not necessarily orthogonal. Suppose in L2(R), Ṽj is the dual space of Vj , and φ̃j,k(x) and

φj,k(x) are their dual scaling functions and scaling functions respectively. Correspondingly,

ψj,k′(x) and ψ̃j,k′(x) span wavelet spaces Wj and W̃j . Wavelet function ψ(x) is called biorthog-

onal wavelet if

Vj ⊥ W̃j and Wj ⊥ Ṽj.

Or equivalently,

〈φj,k, ψ̃j,l〉 = 0, 〈ψj,k, φ̃j,l〉 = 0 biorthogonal condition

〈φ̃j,k, φj,l〉 = δk,l, 〈ψ̃j,k, ψj,l〉 = δk,l dual condition

In matrix format, it means
[
P̃ Q̃

]

 P

Q


 = I. (2.4.9)

Biorthogonal wavelets have more flexible freedom in construction; Moreover, they are invert-

ible. So they are widely applied. In this paper, we’ll construct biorthogonal wavelets based on

NURBs as scaling functions.

Wavelet frame Wavelet frames are wavelets when the wavelet functions in space Wj are

not necessarily orthogonal, neither space Vj orthogonal to Wj . Wavelet frames give the most

freedom in constructing wavelets in MRA, and therefore become more and more important in

applications.
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Chapter 3

Natural Cubic B-Splines with

Arbitrary Knots and Two–Scale

Matrices

In the industry, many applications require the curvature to be continuous. This requires our

B-Spline basis polynomials should be at least of degree three. In fact, cubic B-Splines are the

most widely used ones in applications. In our model, the scaling functions are cubic NURBs

with natural cubic B-Splines at the boundaries. We will investigate natural cubic B-Splines

in this chapter. Based on natural cubic B-Spline bases, we’ll build edge functions, and finally

two–scale matrices are given.

3.1 Natural Cubic B-Spline Bases

Natural cubic B-Splines are cubic splines whose second derivatives at the two endpoints are

zero. It is well known that among interpolating cubic splines, the shapes of natural cubic

B-Splines have the minimum strain energy.

To build the natural cubic B-Splines, let’s suppose that a spline interpolates n+ 1 control

points

(t0, y0), (t1, y1), (t2, y2), . . . , (tn, yn),
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with a piecewise cubic polynomial

S(x) =





S1(x) t0 ≤ x ≤ t1

S2(x) t1 ≤ x ≤ t2

...

Sn(x) tn−1 ≤ x ≤ tn

where

Si(x) = Ai +Bi(x− ti) + Ci(x− ti)
2 +Di(x− ti)

3 for i=1 , . . . , n. (3.1.1)

Each of these n segments Si(x) is a cubic polynomial determined by four coefficients (Ai, Bi,

Ci and Di). There are totally 4n coefficients to be determined. We wish our spline to have C2

smoothness. Therefore, at each of n − 1 interior control points, the spline would interpolate

the point, and it’s first and second derivatives are continuous:

Si(ti) = yi, Si+1(ti) = yi

S ′

i(ti) = S ′

i+1(ti), S ′′

i (ti) = S ′′

i+1(ti) for i = 1, 2, . . . , n− 1.
(3.1.2)

At two endpoints, the spline interpolates endpoints and its second derivatives are zero:

S0(t0) = y0, Sn(tn) = yn

S ′′

0 (t0) = 0, S ′′

n(tn) = 0.
(3.1.3)

(3.1.2) and (3.1.3) give us total 4(n − 1) + 4 = 4n equations for determining 4n coefficients.

Let zi = S ′′(xi), and hi = ti+1 − ti, i ∈ [0, n− 1]. Since each segment polynomial is cubic, the

second derivative is a linear function in [ti, ti+1], i.e., S ′′

i (x) = zi+1−zi

hi
(x− ti) + zi. Solving the

partial differential equation, we can get zi from the following equation:




2(h0 + h1) h1

h1 2(h1 + h2) . . .

. . . . . . hn−2

hn−2 2(hn−2 + hn−1)







z1

z2
...

zn−1




= 6




v1

v2

...

vi−1




(3.1.4)
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where vi = 6(yi+1−yi

hi
− yi−yi−1

hi−1
).

Finally, we get piecewise polynomial for each segment natural cubic B-Spline:

Si(x) =
zi+1

6hi

(x− ti)
3 +

zi

6hi

(ti+1 −x)3 +(
yi+1

hi

− hi

6
zi+1)(x− ti)+ (

yi

hi

− hi

6
zi)(ti+1 −x). (3.1.5)

For example, if we have a set of knots which are equally spaced by 1 such that control

points are (0, y0), (1, y1),. . ., (n, yn), then hi = ti+1 − ti = 1, i ∈ [0, n− 1]. The equation for zi

is 


4 1 0

1 4 1

1
. . . 1

1 4 1

1 4







z1

z2
...

zn−2

zn−1




= 6




y2 − 2y1 + y0

y3 − 2y2 + y1

...

yn−1 − 2yn−2 + yn−3

yn − 2yn−1 + yn−2




, (3.1.6)

and the segment polynomial Si(x) is

Si(x) =
zi+1

6
(x− ti)

3 +
zi

6
(ti+1 − x)3 + (yi+1 −

zi+1

6
)(x− ti) + (yi −

zi

6
)(ti+1 − x). (3.1.7)

3.1.1 Natural Cubic B-Splines at Boundaries

We are interested in constructing edge functions with natural cubic B-Splines. Without lose of

generality, we only consider the edge functions at the left boundary. There are two questions

we have to answer: How many edge functions do we need at the boundary and what are they?

To answer the first question, suppose we have regular cubic B-Splines as edge functions.

Since a regular cubic B-Spline covers four knot spans, there are at most three edge functions

which cover the first one, two and three knot spans at the boundary, respectively. Now we

make them ‘natural’. This means their linear combination together with one interior cubic

B-Spline should satisfy the condition that the second derivatives at the endpoint are zero. It

turns out the edge function covering the first knot span is gone. In fact, with natural splines

of any order as edge functions, the number of B-Splines on the interval is equal to the number

of knots (including both interior and boundary knots). Based on this observation, we need

two cubic natural edge functions at the boundary.
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0
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t6
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Figure 3.1:Bézier nets at the left boundary.

We now find these two edge functions. Given a knot vector t = {t1, . . . , t6}, let N e
1 (x)

and N e
2 (x) be unknown natural cubic edge functions, and N1(x) and N2(x) be cubic B-Splines

on interval [t1, t5] and [t2, t6] respectively. By Figure 2.7, the Bézier nets of these functions

are shown in Figure 3.1, where hi, ki, li are defined by (2.1.14), and xi, yi, zi, vi and wi are

unknown coefficients of edge functions which we’ll find out.

We wish N e
1 (x) have C1 and C2 at t = t2 and t = t3, and (N e

1 )(2)(t1) = 0 because of its

natural property. Considering (2.1.7), the following equations are derived





y3 = 0

3(y3−y2)
h2

= −3y3

h3

6(y1−2y2+y3)
(h2)2

= 6y3

(h3)2

3(x3−x2)
h1

= 3(y1−x3)
h2

6(x1−2x2+x3)
(h1)2

= 6(x3−2y1+y2)
(h2)2

6(x0−2x1+x2)
(h1)2

= 0

(3.1.8)

An immediate observation from above is y1 = y2 = y3 = 0. By the Partition of Unity, at any

knot tk the values of all basis functions should sum to 1. Hence in Figure 3.1, the following
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results hold 


w1 = w2 = w3 = 0

v1 = k2

l1
, v2 = h3

l1
, v3 =

h2
3

k2l1

(3.1.9)

Similarly, we could build a group of equations for coefficients of N e
2 (x) at t1 and t2





6(z0−2z1+z2)
h2
1

= 0

3(z3−z2)
h1

= 3(v1−z3)
h2

6(z1−2z2+z3)
(h1)2

= 6(z3−2v1+v2)
(h2)2

(3.1.10)

Solving the groups of equations (3.1.8)-(3.1.10), we get the Bézier nets for natural cubic

B-Splines at the boundary in Figure 3.2.

1

t1

k1

l0

h2

l0

h2
2

k1l0

t2

0 0 0

t3

N e
1 (x)

0

t1

h0

l0

k0

l0
H0

t2

k2

l1

h3

l1

h2
3

k2l1

t3

0 0 0

t4

N e
2 (x)

Figure 3.2: Natural cubic B-Splines at the boundary.

Specifically, if knots are uniformed with ti+1 − ti = 1, the Bézier nets for cubic natural splines

at the boundary become what is in Figure 3.3.

3.2 Two–Scale Matrices

3.2.1 Knot Insertion

As we’ve already discussed, we can construct a piecewise function as a B-Spline given control

points with breakpoints at the knots. It is understandable that with more control points, the

control polygon will get closer to the curve, and the B-Spline approximation will therefore
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Figure 3.3: Bézier nets for uniform natural cubic B-Splines.

be better. Thus for the complicated part of a curve, we can get better approximation by

adding more control points there. Noticing that inserting a knot in knot sequence leads to one

more control point, we want to devise an algorithm such that when a knot is inserted, only

the neighboring control points are updated and their number increases by one, while the rest

control points are unchanged and the shape of curve remains the same.

Initially, we are interested in inserting one arbitrary knot between at any knot span. Given

a knot sequence of s+ 1 knots t = {t0, t1, . . . , ts}, and l+ 1 control points (p0, p1, . . . , pl) with

a degree of n, we let B-Spline basis functions be Bi,n(x), i = 0, 1, . . . , n. Suppose a new knot

τ is inserted such that τ ∈ (tr, tr+1). In the interval (tr, tr+1) only basis functions for control

points pr−n, . . . , pr are nonzero, therefore only these control points are affected by the new

inserted knot and the rest remains unchanged. After the insertion, the new curve has s + 2

knots t1 = {t0, t1, . . . , tr, τ, tr+1, . . . , ts} and l + 2 new control points (p1
0, p

1
1, . . . , p

1
l+1). Böehm

[10] gives an algorithm for one knot insertion in the following:

p1
i =





pi i = 0, 1, . . . , r − n+ 1

(1 − α1
i )pi−1 + α1

i pi i = r − n+ 2, . . . , r

pi−1 i = r + 1, . . . , l + 1

(3.2.1)

where

α1
i =

τ − ti
ti+k − ti

i = r − k + 2, . . . , r. (3.2.2)

Figure 3.4 shows the diagram of one-knot insertion for cubic basis functions.
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pr−3 = p1
r−3

pr−2

pr−1

pr = p1
r+1

p1
r−2

p1
r−1

p1
r

������
tr tr+1tr−2 tr+4
�

τ

���Nr−2,4(x)
���Nr−1,4(x)
���Nr,4(x)

Figure 3.4: One knot insertion for cubic basis functions: two coefficients pr−2 and pr−1 have
been replaced by three new ones p1

r−2, p
1
r−1, and p1

r.

3.2.2 Subdivision Templates

Now the question is how to find the new set of coefficients after the knot insertion. We consider

the case of cubic B-Splines. Suppose on [ti, ti+1] the control points are (p0, p1, p2, p3). When a

new knot τ is inserted, it cuts the segment curve on the knot span into two sub-curve segments

which are on [ti, τ ] and [τ, tj+1] respectively. To find these two sets of coefficients, we apply de

Casteljau’s algorithm, but in barycentric system.

Let

u =
τ − ti
ti+1 − ti

, (3.2.3)

de Casteljau’s triangle is demonstrated in Figure 3.5.

A simpler diagram is given in Figure 3.6. In a clearer way, it discloses the relations among

knots at different levels. First, f(τ) = p3
0. Secondly, two sets of new coefficients on [ti, τ ] and

[τ, ti+1] are (p0, p
1
0, p

2
0, p

3
0) and (p3

0, p
2
1, p

1
2, p3). Notice that

pk
j =

k∑

i=0

pi+j(1 − u)k−iui, k = 1, 2, 3, j = 0, 1, . . . , 3 − k. (3.2.4)

The corresponding Bézier nets in Figure 3.7 render an insight into two new sets of coeffi-

cients in [ti, τ ] and [τ, ti+1].
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p0 p1 p2 p3

∑1
i=0 pi(1 − u)1−iui

∑1
i=0 pi+1(1 − u)1−iui

∑1
i=0 pi+2(1 − u)1−iui

∑2
i=0 pi(1 − u)2−iui

∑2
i=0 pi+1(1 − u)2−iui

∑3
i=0 pi(1 − u)3−iui

Figure 3.5: de Casteljau’s algorithm in barycentric system (1).

p0 p1 p2 p3

p1
0 p1

1 p1
2

p2
0 p2

1

p3
0

Figure 3.6: de Casteljau’s algorithm in Barycentric System (2); pk
j are defined in (3.2.4).

In Figure 3.7, the upper diagram is the cubic Bézier net on interval [ti, ti+1] before the knot

insertion. The set of its coefficients is (p0, p1, p2, p3). The lower diagram is one after inserting

a new knot τ is inserted in the knot span. The new knot results in two sets of new coefficients

(p0, p
1
0, p

2
0, p

3
0) and (p3

0, p
2
1, p

1
2, p3) on knot span [ti, u] and [u, ti+1], with pk

j are defined in (3.2.4).

3.2.3 Two-Scale Matrices

In MRA, let vectors of scaling functions be

Φ0(x) =
(
N e

0,1(x) N e
0,2(x) N0,1(x) N0,2(x) N0,3(x) . . .

)T

(3.2.5)
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Figure 3.7: Bézier nets before and after one knot insertion on [ti, ti+1].

and

Φ1(x) =
(
N e

1,1(x) N e
1,2(x) N1,1(x) N1,2(x) N1,3(x) . . .

)T

. (3.2.6)

then they satisfy the following refinement relation

Φ0(x) = P0Φ1(x). (3.2.7)

where P0 is two–scale matrix. In this section, we will find two–scale matrices when a new knot

is inserted on different knot spans.

First we consider the case of τ ∈ (t1, t2) where τ is a new knot. In this case, three basis

functions are influenced: N e
0,1(x), N

e
0,2(x) and N0,1(x). We denote two–scale matrix as P0,[t1,t2].

As usual, on interval [t1, ts] let cubic B-Spines be Ni,4(x), i ∈ [1, s− 4], let natural cubic B-

Splines N e
0,1(x) and N e

0,2(x) be edge functions at the left boundary, and N e
0,s−3(x) and N e

0,s−2(x)

be edge ones at the right boundary.

For the purpose of computation, we virtually extend the boundary knots to the left as it

is shown in Figure 3.8.

�����

t−1 t0 t1 τ t2 t3

Figure 3.8: Extend the boundary by adding two virtual knots t0 and t−1 such that t1−t0 = τ−t1
and t0 − t−1 = t2 − τ .

Figure 3.2 shows the Bézier net of N e
0,1 defined on knot sequence {t1, . . .}. However, insert-
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Figure 3.9: Bézier nets of N e
0,1(x) and N e

1,1(x) with one knot insertion on (t1, t2).

ing a new knot τ on (t1, t2) results in a new knot sequence on the same interval, which results

in a new Bézier net for the same function N e
0,1. Figure 3.9 shows the equivalent Bézier net of

N e
0,1 defined on new knot sequence {t0, τ, t1, . . .} (See the top net in Figure 3.9). Consequently,

N e
0,1(x) satisfies the following refinement relation:

N e
0,1(t) = AN e

1,1(t) +BN e
1,2(t),

where A and B are certain coefficients. Applying the partition of unity at knots t1, τ and t2,

we find solutions for A and B

N e
0,1(t) = N e

1,1(t) +
t3 − τ

t3 − t0
N e

1,2(t).

Similarly, we can find the refinement relations for N e
0,2(x) and N0,1(x) as well.

Finally, if we define

αi =
τ − ti
ti+3 − ti

i = 0, 1, (3.2.8)
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the two–scale matrix P0 for one knot insertion on [t1, t2] is derived as following

P[t1,t2] =




1 1 − αo

α0 1 − α1

α1 1

1
. . .




. (3.2.9)

Likewise, if the knot is inserted on [t2, t3], the two–scale matrix becomes

P[t2,t3] =




1 1 − αo

α0 1 − α1

α1 1 − α2

α2 1

1
. . .




. (3.2.10)

If the knot is inserted not in the boundary area, i.e., τ ∈ [ti, ti+1], where 3 ≤ i ≤ s − 3, the

two–scale relation is




N0,i−3(t)

N0,i−2(t)

N0,i−1(t)

N0,i(t)




=




1 1 − αi−2

αi−2 1 − αi−1

αi−1 1 − αi

αi 1







N1,i−3(t)

N1,i−2(t)

N1,i−1(t)

N1,i(t)

N1,i+1(t)




. (3.2.11)

We finally attack the two–scale matrix with arbitrary knot insertion in each knot span.

The insertion procedure is described in Figure 3.10. Notice that for the sake of computation,

we virtually extend the boundary left to knot t0.

Using the same technique we have for one-knot insertion, after a series of computation

draft, we get the two–scale matrix for the arbitrary knot insertion in each knot span as the
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''

t1 t2 t3 t4 tn−1 tn

((

t0 t1 t2 t3 t4 tn−1 tnτ0

)*

τ1

+,

τ2

-.

τ3

/0

τn−1

12

Figure 3.10: Arbitrary knot insertion at each knot span. Inserted knots are τ1, . . . , τn−1.
Virtually extend the left boundary by adding two virtual knots t0 and τ0 such that t0 = 2t1−t2
and τ0 = 2t1 − τ1.

following

P =




1 1 − α0 β1

α0 1 − β1 − γ1 1 − α1 β2

γ1 α1 1 − β2 − γ2 1 − α2 β3

γ2 α2 1 − β3 − γ3

γ3

. . .




, (3.2.12)

where

αi =
τi+1 − ti
ti+3 − ti

(3.2.13)

βi =
ti+2 − τi+1

ti+2 − ti
(1 − αi−1) (3.2.14)

γi =
τi − ti
ti+2 − ti

αi. (3.2.15)

For example, if we insert a middle point on each of the uniform interval, then the two–scale
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matrix in (3.2.12) becomes

P =




1 1
2

1
8

1
2

6
8

1
2

1
8

1
8

4
8

6
8

4
8

1
8

1
8

4
8

6
8

4
8

1
8

. . .




. (3.2.16)

This is the two–scale matrix of middle-point insertion for uniform cubic B-Splines with natural

cubic B-Splines as edge functions.
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Chapter 4

Characterization of MRA of NURBs

4.1 Weighted MRA NURBs

We wish NURBs could be our scaling functions in MRA.

Is it possible?

Recall that the essence of MRA is nesting spaces, i.e., Vi ⊂ Vi+1 (see Section 2.3). As

the scaling functions span these spaces, the nesting character of spaces requires a refinement

relation among the scaling functions. Therefore if we could find a refinement relation for

NURBs, they will be qualified for scaling functions.

At MRA level j, let Nm,j,k be normalized B-Splines of order m; and it is defined by knot

sequence tj={tj,k, tj,k+1,. . ., tj,k+m}. Nm,j,k satisfy the two–scale relation

Nm,j,k(t) =
∑

i

pj,k;iNm,j+1,i(t), (4.1.1)

where pj,k;i are two–scale sequences. We can rewrite the equation above in the matrix format

Nj = PjNj+1, (4.1.2)

where Pj are the two–scale matrices, and Nj and Nj+1 are vectors B-Splines of order m at

levels j and j + 1.
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Let weight vectors be

wj = (wj,k)
T , wj,k > 0, and j, k ∈ ZZ.

At level j, let Rm,j,k(t) be NURBs in which B-Splines have order m, and Rm,j,k(t) are defined

by knot sequence tj={tj,k, tj,k+1, . . . , tj,k+m} with weight vector wj . We therefore have the

following NURBs basis functions. Notice that at the same MRA level, all NURBs share the

same denominator.

Rm,j,k =
wj,kNm,j,k(t)∑
i wj,iNm,j,i(t)

for all j, k (4.1.3)

We need to find their refinement relations such that

Rm,j,k =
∑

i

pw
j,k;iRm,j+1,i(t) (4.1.4)

where pw
j,k;i are two–scale sequences.

In their paper [18], Chui and Lian found that in order to have refinement relation, NURBs

must satisfy certain condition. They stated it as the following theorem.

If Vj = span{Rm,j,k(.)}, then Vj ⊂ Vj+1 if and only if the weight vectors wj and wj+1

satisfy

wj+1,l

wj+1,l−1

=

∑
uwj,upj,u;l∑

v wj,vpj,v;l−1

for all l (4.1.5)

where pj,k;l are the two–scale sequences in (4.1.1).

And the two–scale sequences can be derived by

pw
j,k;l =

wj,kpj,u;l∑
v wj,vpj,v;l

for all k, l, (4.1.6)

and therefore

∑

i

wj+1,iNm,j+1,i(t) =
wj+1,1

wj,u

∑
u pj,u;1

∑

v

wj,vNm,j,v(t), for all j. (4.1.7)
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Moreover, if an initial condition is imposed by

wj+1,1 =
∑

i

wj,ipj,i;1 for all j, (4.1.8)

then

wj+1,l =
∑

i

wj,ipj,i;l for all j. (4.1.9)

Consequently, (4.1.7) leads to the following important result

∑

n

wj+1,nNtj+1,n(t) =
∑

n

wj,uNtj ,n(t) for all j. (4.1.10)

This means that NURBs at all different levels share the same denominator. Furthermore,

(4.1.6) turns to a simpler relation:

pw
j,k;l =

wj,k

wj+1,l

pj,k;l for all j, k, l. (4.1.11)

We adopt this important theorem in our NURBs by assuming that all our NURBs satisfy

the conditions of (4.1.5) and (4.1.8). If we introduce the notation

ωj =
∑

i

wj,iNm,tj ,i(t) for all j, (4.1.12)

then (4.1.10) implies

ωj = ω0 for all j, (4.1.13)

and (4.1.3) becomes

Rm,j,k =
wj,kNm,j,k(t)

ω0

for all j, k. (4.1.14)

Since we focus on NURBs with order m = 4 in this dissertation, as a default, we omit m

in our cubic NURBs notation. I.E.,

Rj,k(t) =
∑

i

pw
j,k;iRj+1,i(t) (4.1.15)
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represents

R4,j,k(t) =
∑

i

pw
j,k;iR4,j+1,i(t). (4.1.16)

In addition, if we let wj = [wj,1, wj,2, . . .] be the vector of weights for scaling functions at

level j, then (4.1.9) implies the following equation

wj+1 = PT
j wj . (4.1.17)

This gives the relation of two weight vectors at adjacent levels. If the weight vector at the

original level is given, the weight vectors for the rest levels could be attained through two–scale

matrices of corresponding B-Splines.

4.2 Weighted MRA NURBs at Boundaries

In this section, we will construct cubic NURBs with natural cubic NURBs as edge functions.

Given a non-uniform knot sequence, let R0 be scaling function vector at level 0, and the

corresponding weight vector be w0 = [w0,0, w0,1, w0,2, w0,3, . . .]
T . By (4.1.14) the following

equations are derived:

R0 =




Re
0,1

Re
0,2

R0,1

R0,2

R0,3

...




=




w0,0Ne
0,1(t)

ω0

w0,1Ne
0,2(t)

ω0

w0,2N0,1(t)

ω0

w0,3N0,2(t)

ω0

w0,4N0,3(t)

ω0

...




=
1

ω0




w0,0

w0,1

w0,2

w0,3

w0,4

. . .







N e
0,1(t)

N e
0,2(t)

N0,1(t)

N0,2(t)

N0,3(t)
...




(4.2.1)

If we let

Wj =




wj,0

wj,1

wj,2

wj,3

. . .




(4.2.2)
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and

Nj =
[
N e

j,1(t) N e
j,2(t) Nj,1(t) Nj,2(t) Nj,3(t) . . .

]T

, (4.2.3)

then

R0 =
1

ω0

W0N0. (4.2.4)

Likewise, at the next fine level, we have

R1 =




Re
1,1

Re
1,2

R1,1

R1,2

R1,3

...




=




w1,0Ne
1,1(t)

ω0

w1,1Ne
1,2(t)

ω0

w1,2N1,1(t)

ω0

w1,3N1,2(t)

ω0

w1,4N1,3(t)

ω0

...




=
1

ω0
W1N1. (4.2.5)

4.3 Two–Scale Matrices

With NURBs as our scaling functions, our next step is to find the two–scale matrix Pw
0 such

that

R0 = Pw
0 R1. (4.3.1)

By putting (4.2.4), (4.2.5) and (4.1.2) into the equation above, we get

W0P0 = Pw
0 W1

or

Pw
0 = W0P0W

−1
1 . (4.3.2)
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We finally derive the following equation for Pw
0

Pw
0 =




w0,0

w0,1

w0,2

w0,3

. . .




P0




1
w1,0

1
w1,1

1
w1,2

1
w1,3

. . .




. (4.3.3)

Equation (4.3.3) helps us to get two-scale matrices in knot insertion. We will discuss two cases:

one knot insertion and arbitrary knot insertion in each knot span.

First we consider one-knot insertion case. Let a new knot τ be inserted on [t1, t2]; then

putting (3.2.9) in (4.3.3), we get

Pw
0[t1,t2] =




w0,0

w1,0

w0,0

w1,1
(1 − α0)

w0,1

w1,1
α0

w0,1

w1,2
(1 − α1)

w0,2

w1,2
α1

w0,2

w1,3

w0,3

w1,4

. . .




. (4.3.4)

If we apply (4.1.17) to replace weights at fine level, and for the simplicity, let weights

{w0,0, w0,1, w0,2, w0,3, . . .} be {w0, w1, w2, . . .}, we then get

Pw
0[t1,t2] =




1 w0(1−α0)
w0(1−α0)+w1α0

w1α0

w0(1−α0)+w1α0

w1(1−α1)
w1(1−α1)+w2α1

w2α1

w1(1−α1)+w2α1
1

1
. . .




. (4.3.5)

Let

αw
i =

wi+1αi

wi(1 − αi) + wi+1αi

(4.3.6)
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with αi defined in (3.2.8), then the matrix above is

Pw
0[t1,t2] =




1 1 − αw
0

αw
0 1 − αw

1

αw
1 1

1
. . .




. (4.3.7)

Similarly, with the same definition of αw
i and αi, we get the two–scale matrix when the knot

is inserted on [t2, t3]

Pw
0[t2,t3] =




1 1 − αw
0

αw
0 1 − αw

1

αw
1 1 − αw

2

αw
2 1

1
. . .




, (4.3.8)

and on [ti, ti+1] where i ≥ 3,

Pw
0[ti,ti+1] =




. . .

1

1 1 − αw
i−2

αw
i−2 1 − αw

i−1

αw
i−1 1 − αw

i

αw
i 1

1
. . .




. (4.3.9)
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Finally if we insert an arbitrary knot in every knot span, the two-scale matrix becomes

Pw
0[t1,ts] =




1 1 − αw
0 βw

1

αw
0 1 − βw

1 − γw
1 1 − αw

1 βw
2

γw
1 αw

1 1 − βw
2 − γw

2 1 − αw
2 βw

3

γw
2 αw

2 1 − βw
3 − γw

3

γw
3

. . .




,

(4.3.10)

where

βw
i =

βiwi

βiwi−1 + (1 − βi − γi)wi + γiwi+1

(4.3.11)

and

γw
i =

γiwi+1

βiwi−1 + (1 − βi − γi)wi + γiwi+1
. (4.3.12)

4.4 Examples

Example 1

If weights are all 1, then rational two–scale matrices for cubic NURBs in (4.3.7), (4.3.8) and

(4.3.9) are identical to ones for cubic B-Splines in (3.2.9),(3.2.10) and (3.2.11).

Example 2

Let knot sequence be t0 = {0, 0, 0, 0, 1.5, 2, 3.2, 4, 5.5, 6.3, 7, 7, 7, 7}, and weight sequence be

{w0, w1, . . . , w7} = {1, 4, 2, 3, 1, 5, 2, 4}. The insertion knot is τ = 1.2. We’ll compute Pw
0,[0,1.5]

by (4.3.7).

From given conditions, we have t1 = 0, t2 = 1.5, t3 = 2, . . . , t8 = 7, and by the Figure 3.8

we have t0 = −1.2

(3.2.8) tells me that

α0 =
τ − t0
t3 − t0

=
3

4
, α1 =

τ − t1
t4 − t1

=
3

8
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then with (4.3.6), we have

αw
0 =

w1α0

w0(1 − α0) + w1α0
=

3

4
αw

1 =
w2α1

w1(1 − α1) + w2α1
=

3

13
.

So the two–scale rational matrix is

Pw
0[0,1.5] =




1 1
4

3
4

10
13

3
13

1

1
. . .



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Chapter 5

NURBlets

In multiresolution analysis (MRA), there are two basic tasks:

• At level j, choose proper scaling functions Φj(t) and find the two–scale matrix Pj in

refinement relation.

• Find the proper matrix Qj to construct wavelets Ψj(t) with desired properties.

We have finished the first task. We have constructed our scaling functions with cubic NURBs

on intervals, and their two-scale matrix have been given by Pw
j . In this chapter, we’ll implement

the second task, that is, to construct the weighted biorthogonal wavelets (NURBlets) with one

vanishing moment.

Before start our model, we first investigate the lifting scheme, a technique that we’ll apply

in constructing NURBlets.

5.1 Lifting Scheme

Lifting scheme was first proposed by Sweldens [63]. It is a method to construct biorthogonal

wavelets and is quite different from classical ones. Lifting scheme does not depend on Fourier

transform but classical ones do. While classical schemes can only translate and dilate one

function, lifting scheme can work on more than one at one time [63]. Since it has been

proposed, it has aroused the great attention from researchers. Some of recent approaches are

[61, 40, 36, 1, 44, 45].
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5.1.1 Why Lifting Scheme

The answer is classical schemes are not available to NURBlet construction. Fourier transform

does not work when wavelets are not shifts; neither is it available when wavelets are on bound-

ary domains, or with weights, while all these characters are significant in our modeling. Lifting

scheme, on the other hand, provides an alternative.

It also has some other advantages [23, 63]:

• It is faster. Lifting scheme has recursive computations on both low and high pass filters,

which speeds the calculation.

• No auxiliary memory is needed for calculation of wavelet transform.

• The inverse wavelet transform can be found easily by doing opposite operations of the

forward transformation.

5.1.2 Sketch of Lifting Scheme

Lifting scheme constructs biorthogonal wavelets by “lifting” them from lazy wavelets. The

idea is following([64]).

In MRA, suppose we have a set of data {c0,0, c0,1, . . .} at level 0, and decompose it to the

coarser level -1. We filter some detailed data and want the rest to be able to capture the

general information still. Suppose we decompose even samples to the coarser level, and filter

the odd ones:

c−1,i = c0,2i i ∈ ZZ. (5.1.1)

We would like to recover {c−1,i} back to {c0,i}. Obviously there is a difference between

two sets of coefficients, and we denote the coefficients d−1,j be such differences and call them

wavelet coefficients. It is trivial to see that the smaller these wavelet coefficients are, the better

the approximation would be. The question is, how do we find the differences? An intuitively

“lazy” way is to let the lost information (i.e., the odd samples) be the differences,

d−1,i = c0,2i+1 k ∈ ZZ. (5.1.2)
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Such wavelets are called “lazy wavelets”. Though the “lazy” choice does not meet our expec-

tation for ideal wavelet coefficients (as smaller as possible), it is a good starting point to tackle

the problem.

Considering the fact that the lost information (odd samples) contains certain correlation

among their neighboring samples, a reasonable yet simple guess is that an odd sample has a

relation with at least its two neighboring even samples. For the simplicity, we assume that it

is an average of two neighboring even samples. This leads to the following “lifting”

d−1,i = c0,2i+1 −
c0,2i + c2i+2

2
. (5.1.3)

If c0,i is piecewise colinear between even samples, the wavelet coefficients above are zero, in

which case the approximation is the best. Figure 5.1 shows the relation.

34

c2i

c2i+2

c2i+1

d−1,i

Figure 5.1: Wavelet coefficients are the average of two neighboring even samples in the original
sample: Failure to be linear.

Moreover, we wish the averages of data for each level to be the same. This means
∑

i c−1,i =

1
2

∑
i c0,i. So we “lift” the c−1,i with the help of wavelet coefficients d−1,i such that

c−1,i = c0,2i +
1

4
(d−1,i−1 + d−1,i). (5.1.4)

This is called “lifting scheme” because we “lift” our wavelets from “lazy” ones. Figure 5.2

shows the relation among coefficients.

In summery, in lifting scheme, wavelet transformation has two steps:

1. Use (5.1.3) to computer wavelet coefficients as a failure to be linear. In other words,
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cj,2i cj,2i+1 cj,2i+2

dj−1,icj,2i cj,2i+2

cj−1,i dj−1,i cj−1,i+1

−1
2

−1
2

−1
2

−1
2

1
4

1
4

1
4

1
4

step1

step2

Figure 5.2: The lifting Scheme.

we’ll construct wavelets doing nothing but contain wavelet properties.

2. Use (5.1.4) to lift the coefficients we got from the first step so that they attain certain

properties we desire for.

5.1.3 Lifting Scheme

Now we present lifting scheme formally([23, 63]):

At the original level let φ0,k and φ̃0,k be scaling functions and their dual ones; let ψ0,k and

ψ̃0,k be lazy wavelet functions and corresponding dual ones. Then ψ0,lift, ψ̃0,lift and φ0,lift are

ones after lifting scheme such that

ψ0,lift(x) = ψ0,k(x) −
∑

k

skφ0,k(x) (5.1.5)

ψ̃0,lift(x) =
∑

k

g̃0,kφ̃1,k (5.1.6)

φ̃0,lift(x) =
∑

k

h̃0,kφ̃1,k +
∑

k

s−kψ̃0,k (5.1.7)

where sk can been freely chosen, and h̃0,k and g̃0,k are coefficients in refinement relations

φ̃0(x) =
∑

k h̃0,kφ̃1,k(x) and ψ̃0(x) =
∑

k g̃0,kφ̃1,k.
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5.2 Single-Knot Wavelets for Non-Uniform Rational B-

Splines

Recently, more and more efforts are made on non-uniform B-Splines research ([44, 45, 49,

12, 58, 11, 48, 8]). Among them, some proposals for non-uniform biorthogonal wavelets are

offered ([8, 49, 45]. However, so far in our knowledge, there is no effort working on non-uniform

rational B-Splines(i.e., NURBlets). Among these previous work, we are particularly interested

in the approach that Bertram offered [8].

In his paper, Bertram proposed a biorthogonal wavelet construction for non-uniform B-

Splines. The method can remove knots in arbitrary order, and when a knot is re-inserted, it

minimizes the displacement control points. His idea is following.

When a knot is inserted, more detail is added to a geometric shape. Bertram introduced

a wavelet coefficient on the coarse level which is simply a displacement. It is the lazy wavelet

transformation as we mentioned in section 5.1. Then he optimized the fitting for cubic wavelet

with the lifting scheme. Instead of applying L2-orthogonalization, he minimized the displace-

ment of control points obtained from knot removal followed by reinserting a zero wavelet

coefficient. He got the minimum value by orthogonalizing the lazy wavelet with the coarse

scaling functions. Making an assumption that scaling functions on finer level must form an

orthogonal basis with proper weighting, he obtained the result.

Unfortunately, the assumption that scaling functions must be orthogonal is too specific to

be general. But Bertram’s views are valuable. We extend his approach to construct our cubic

NURBlets on intervals without the assumption in the scheme.

There are two different cases in single-knot insertion in our approach —– depending on

whether the knot is inserted at boundaries or not. We will start our approach from the non-

boundary case.

5.2.1 One Knot Insertion in a Non-Boundary Knot Span

On the interval [t1, ts], suppose Φ1(x) is the vector of NURBs as scaling functions, Ψ1(x) is

that of NURBlets as wavelets, and a new knot τ is inserted in (tr, tr+1), 3 ≤ r ≤ s−3 at MRA
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tr−3 tr−2 tr−1 tr tr+1 tr+2 tr+3

67

τ

Figure 5.3: Knot sequence.

level 1. See Figure 5.3. Recall the refinement relation in scaling functions

Φ0 =




φ0,r−3

φ0,r−2

φ0,r−1

φ0,r




= Pw
0[tr ,tr+1]

Φ1 =




1 1 − αw
i−2

αw
i−2 1 − αw

i−1

αw
i−1 1 − αw

i

αw
i 1







φ1,r−3

φ1,r−2

φ1,r−1

φ1,r

φ1,r+1




.

(5.2.1)

For the simplicity, we replace αw
i−2, α

w
i−1 and αw

i by a1, a2 and a3, and Pw
0 by Pw

0[tr ,tr+1]
.

Our goal is to reconstruct data. In other words, we want to derive Φ1 given Φ0.

However, we can not get it directly from (5.2.1). The reason is matrix Pw
0 is not square,

let alone it is invertible. A “lazy” way to deal with it is to add one row and extend Pw to the

square matrix as the following

Pw
0,lazy =




1 1 − αw
i−2

αw
i−2 1 − αw

i−1

1

αw
i−1 1 − αw

i

αw
i 1




. (5.2.2)

This is the “lazy scheme” we’ve discussed in the previous section. To lift it, we left multiply

56



it by a “lifting” matrix,

Pw
lift =




1

1

b0 b1 1 b2 b3

1

1







1 1 − a1

a1 1 − a2

1

a2 1 − a3

a3 1




. (5.2.3)

Notice that the lifting scheme in fact generalizes the “lazy” row we add in (5.2.2) such that

Pw
lift =




1 1 − a1

a1 1 − a2

x0 x1 x2 x3 x4

a2 1 − a3

a3 1




, (5.2.4)

where 



x0 = b0

x1 = (1 − a1)b0 + a1b1

x2 = (1 − a2)b1 + a2b2 + 1

x3 = (1 − a3)b2 + a3b3

x4 = b3.

(5.2.5)

If we let

ST =




1 1 − a1

a1 1 − a2

1

a2 1 − a3

a3 1




(5.2.6)
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and

(F−1)T =




1

1

b0 b1 1 b2 b3

1

1




, (5.2.7)

and if we define

Φetd
0 =

[
φ0,r−3 φ0,r−2 ψ φ0,r−1 φ0,r

]T

,

where ψ is the wavelet at level 0, we then have

Φetd
0 = (SF−1)T Φ1. (5.2.8)

Equivalently, this means

F TΦetd
0 = ST Φ1,

i.e., 


φ0,r−3

φ0,r−2

ψ −
∑3

i=0 biφ0,r−3+i

φr−1

φr




= ST




φ1,r−3

φ1,r−2

φ1,r−1

φ1,r

φ1,r+1




. (5.2.9)

The lifted wavelet therefore has the form of

ψ = φ1,r−1 +

3∑

i=0

biφ0,r−3+i. (5.2.10)

Notice that equation (5.2.4) implies

Pw
lift = (SF−1)T . (5.2.11)
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Suppose c0,i and c1,j are coefficients at coarse and fine level, then (2.3.2) tells us that

3∑

i=0

c0,iφ0,r+i−3(x) + dψ(x) =

4∑

j=0

c1,jφ1,r+j−3(x), (5.2.12)

where d is the coefficient of wavelet ψ(x) at coarse level capturing the detail information.

If we define

cetd
0 =

[
c0,0 c0,1 d c0,2 c0,3

]T

, (5.2.13)

then (5.2.12) turns out

(cetd
0 )T Φetd

0 (x) = cT
1 Φ1(x). (5.2.14)

Considering (5.2.8), it becomes

cetd
0 = FS−1c1. (5.2.15)

Hence a chart can be applied to describe our transformation. See Figure 5.4.

Φ0 Φ1

FS−1c1
c1

XFS−1c1 SF−1XFS−1c1

X (set wavelet coeffs. zero)

Figure 5.4: Knot removal minimizing displacement of control points. The displacement is
‖c1 − SF−1XFS−1c1‖l2.

We decompose coefficients from fine level to coarse level. After adopt an X matrix to

cancel wavelet coefficients, we compose the coefficients back. The difference between original

coefficients c1 and ones after removing a knot is

c1 − SF−1XFS−1c1. (5.2.16)

Based on L2-orthogonalization, lifting matrix F is decided when a least-square fit is approached
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on the difference above. This is equivalent to find the minimum value of the expression

min ‖I − SF−1XFS−1‖l2 . (5.2.17)

5.2.2 Construct F Matrix

We wish to construct F matrix such that it minimizes the difference of transformation described

in the previous section. Moreover, we want it to have constrain of first vanishing moment. The

procedure is followed.

Step 1 Compute SF−1XFS−1I.

By computation, we get the result of SF−1XFS−1I in (5.2.17)

SF−1XFS−1I = I + vaT , (5.2.18)

where

v =




−b0
b0(a1 − 1) − a1b1

b1(a2 − 1) − a2b2 − 1

b2(a3 − 1) − a3b3

−b3




(5.2.19)

and

aT =
[

(a1−1)(a2−1)
a1

a2−1
a1

1 a2

a3−1
a2a3

1−a3

]
. (5.2.20)

Simplify (5.2.17),

min ‖I − SF−1XFS−1I‖l2 = min ‖vaT‖l2. (5.2.21)

If denote

η = vaT , (5.2.22)

we need to minimize η.

Step 2 Minimize η
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To minimize η, it is equivalent to find the minimum of ‖ηTη‖l2. Since

ηTη = (vaT )T (vaT ) = avTvaT = a(vTv)aT , (5.2.23)

and vector a is determined as soon as the knot sequence and inserted-knot are given, the

minimum of ‖ηTη‖l2 in fact depends only on the value of ‖vTv‖l2 .

Step 3 Minimize ‖vTv‖ under the condition of first vanishing moment

Let

f = vTv, (5.2.24)

and placing (5.2.19) into (5.2.24), we then get

f = b20 + [b0(a1 − 1) − a1b1]
2 + [b1(a2 − 1) − a2b2 − 1]2 + [b2(a3 − 1) − a3b3]

2 + (b3)
2. (5.2.25)

Recall the first moment is defined as

g(x) =

∫

ω0

ψ0dx, (5.2.26)

Applying (1.1.3),(5.2.10), and (4.1.12) into the first moment above:

g(x) =

∫

ω0

ψ0dt

=

∫

ω0

φ1,r−1dt+

∫

ω0

3∑

i=0

biφ0,r−3+idt

=

∫
(ω0)

2w1,r−1N1,r−1

ω0
dt+

3∑

i=0

bi

∫
(ω0)

2w0,r−3+iN0,r−3+i

ω0
dt

= w1,r−1

∫
(

3∑

k=0

w0,kN0,k)N1,r−1dt+
3∑

i=0

biw0,r−3+i

∫
(

3∑

k=0

w0,kN0,k)N0,r−3+idt

= w1,r−1

∫
(w0)

TN0N1,r−1dt+
3∑

i=0

biw0,r−3+i

∫
(w0)

TN0N0,r−3+idt

= w1,r−1(w0)
T

∫
N0N1,r−1dt+

3∑

i=0

biw0,r−3+i(w0)
T

∫
N0N0,r−3+idt

(5.2.27)
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Here w0 = [w0,0 w0,1 . . .]
T is the weight vector at level 0, N0 and N1 are the B-Spline vectors

at level 0 and 1, and P0 is two-scale matrix of B-Splines in refinement relation N0 = P0N1.

Our target is to minimize f(x) under the constrain of the first vanishing moment. By

Lagrange multipliers, if we let

G(x) = f(x) − λg(x), (5.2.28)

with some real value λ, the following group of equations is derived:





∂G
∂λ

= 0

∂G
∂bi

= 0, i = 0, 1, 2, 3.

Finally the solution (i.e., bi, i = 0, . . . , 3) can be derived through the following equation

∆




b0

b1

b2

b3

λ




=




0

a2 − 1

−a1

0

−δ1,r−1




. (5.2.29)

where

∆ =




(a1 − 1)2 + 1 −a1(a1 − 1) δ0,r−3

−a1(a1 − 1) a2
1 + (a2 − 1)2 −a2(a2 − 1) δ0,r−2

−a2(a2 − 1) a1
2 + (a3 − 1)2 −a3(a3 − 1) δ0,r−1

−a3(a3 − 1) a2
3 + 1 δ0,r

δ0,r−3 δ0,r−2 δ0,r−1 δ0,r 0




(5.2.30)

with

δi,j = −1

2
wi,j(w0)

T 〈N0, Ni,j〉; i = 0, 1; j = r − 3, . . . , r. (5.2.31)
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5.2.3 One Knot Insertion at the Boundary

Inserting one knot at boundaries has two cases depending on whether it is on the first or second

knot span (without losing generality, we only consider the left boundary). We first consider

the later case, i.e., τ ∈ (t2, t3) where τ is a new inserted knot.

In the refinement relation

Φ0 =




φe
0,0

φe
0,1

φ0,1

φ0,2




= Pw
0,[t2,t3]

Φ1

=




1 1 − aw
0

aw
0 1 − aw

1

aw
1 1 − aw

2

aw
2 1







φe
1,0

φe
1,1

φ1,1

φ1,2

φ1,3




.

(5.2.32)

Observe that Pw
0,[t2,t3] has the same size and structure as Pw

0,[tr ,tr+1]
, hence if we let αw

i = ai+1

(i = 0, 1, 2), we will get the same result as in the general case (see the previous subsection),

except the wavelet which has the form of

ψ = φ1,1 + (b0φ
e
0,0 + b1φ

e
0,1 + b2φ0,1 + b3φ0,2). (5.2.33)

The case of first knot span insertion (i.e., τ ∈ (t1, t2)) is different simply because its two-
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scale matrix is 3 by 4 in the refinement relation:

Φ0 =




φe
0,0

φe
0,1

φ0,1


 = Pw

0,[t1,t2]Φ1

=




1 1 − αw
0

αw
0 1 − αw

1

αw
1 1







φe
1,0

φe
1,1

φ1,1

φ1,2



.

(5.2.34)

We redefine F matrix by

(F−1)T =




1

b0 1 b1 b2

1

1



, (5.2.35)

and with the similar “lifting” procedure, the wavelet function becomes

ψ = φe
1,1 + b0φ

e
0,0 + b1φ

e
0,1 + b2φ0,1. (5.2.36)

Likewise, if ai = αi (i = 0, 1), then the vector is

v = −




b0

(1 − a0)b0 + a0b1 + 1

(1 − a1)b1 + a1b2

b2



, (5.2.37)

and the final solution for coefficients in F matrix can be retrieved from the following equation
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∆




b0

b1

b2

λ




=




a0 − 1

−a0

0

−δ1,1



, (5.2.38)

where

∆ =




(a0 − 1)2 + 1 −a0(a0 − 1) δe
0,0

−a0(a0 − 1) a0 + (a1 − 1)2 −a1(a1 − 1) δe
0,1

−a1(a1 − 1) a2
1 + 1 δ0,1

δe
0,0 δe

0,1 δ0,1 0



, (5.2.39)

δi,j = −1

2
wi,jw0〈N0, Ni,j〉 (5.2.40)

and

δe
i,j = −1

2
wi,jw0〈N0, N

e
i,j〉. (5.2.41)

where i, j = 0, 1.

5.3 Two-Knot Insertion

One-knot insertion is the first step in our approach. The ultimate goal is to insert an arbitrary

knot in each knot span with certain degree of vanishing moments. Due to the complication

of rational character that NURBs have, fulfilling the goal becomes difficult. In this section,

we discuss using lifting scheme to construct biorthogonal wavelets on NURBs in the case of

two-knot insertion.

Suppose two new knots τ1 and τ2 are inserted in the knot span (tr−1, tr) and (tr, tr−1)
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respectively. For the simplicity, we discuss the insertion in a general way such that

Φ0 = P0Φ1 =




1 α1 α2

1 − α1 α3 α4

1 − α2 − α3 α5

1 − α4 − α5 α6

1 − α6 1







φ1,r−4

φ1,r−3

φ1,r−2

φ1,r−1

φ1,r

φ1,r+1

φ1,r+2




, (5.3.1)

where two–scale matrix P0 is from (4.3.10).

Starting from a lazy scheme, we extend P0 matrix to the square one:

Pw
lift =




1 α1 α2

1 − α1 α3 α4

1

1

1 − α2 − α3 α5 α6

1 − α4 − α5 1 − α6 1




. (5.3.2)

Using lifting scheme, we have




1 α1 α2

1 − α1 α3 α4

µ0 µ1 µ2 µ3 µ4 µ5

ν0 ν1 ν2 ν3 ν4 ν5

1 − α2 − α3 α5 α6

1 − α4 − α5 1 − α6 1




= (F−1
1 )T (F−1

2 )TST . (5.3.3)
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Now we split the matrix above into the following three ones:

(F−1
1 )T =




1

1

µ0 µ1 1 0 µ2 µ3

1

1

1




, (5.3.4)

(F−1
2 )T =




1

1

1

ν0 ν1 0 1 ν2 ν3

1

1




, (5.3.5)

and

ST =




1 α1 α2

1 − α1 α3 α4

1

1

1 − α2 − α3 α5 α6

1 − α4 − α5 1 − α6 1




. (5.3.6)

If we define the left side of equation (5.3.2) as Φetd
0 , we then get

Φetd
0 = (F−1

1 )T (F−1
2 )TST Φ1 = (S(F1F2)

−1)T Φ1. (5.3.7)

Therefore,

((F1F2))
T Φetd

0 = ST Φ1. (5.3.8)
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i.e.,




φ0,r−3

φ0,r−2

ψ0,0 −
∑3

ı=0 µiφ0,r−3+i

ψ0,1 −
∑3

ı=0 νiφ0,r−3+i

φ0,r−1

φ0,r




=




φ1,r−4 + a1φ1,r−3 + a2φ1,r−2

(1 − α1)φ1,r−3 + a3φ1,r−2 + a4φ1,r−1

φ1,r−2

φ1,r−1

(1 − a2 − a3)φ1,r−2 + a5φ1,r−1 + a6φ1,r

(1 − a4 − a5)φ1,r−1 + (1 − a6)φ1,r + φ1,r+1




(5.3.9)

where we replace αi with a for the sake of simplicity. The lifted wavelets are




ψ0,0 = φ1,r−2 +

∑3
i=0 µiφ0,r−3+i

ψ0,1 = φ1,r−1 +
∑3

i=0 νiφ0,r−3+i

. (5.3.10)

After a series of matrix computation, we get the the following result

I − SF−1XFS−1I = STvA

where

v =




µ0 ν0

µ1 ν1

1 0

0 1

µ2 ν2

µ3 ν3




(5.3.11)

and

A =




a2(1−a2)−a1a3

1−a1

a3

1−a1
−1 0 1−a2−a3

a6

(1−a6)(1−a2−a3)
−a6

a1a4

1−a1

a4

1−a1
0 −1 a5

a6

a6(1−a4)−a5

a6


 . (5.3.12)

Let

η = STvA, (5.3.13)
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to find its minimum value is equivalently to find the minimum value of the following equation

‖ηTη‖l2 = ‖ATvTSSTvA‖l2 . (5.3.14)

If we let

f = vTSSTv, (5.3.15)

the problem we are tackling becomes finding the least square value of f under the condition

of one vanishing moment. Let g(x) =
∫
ψ0(x)dx = 0, and denote

G(x) = f(x) − λg(x), (5.3.16)

then solving the group of equations





∂G
∂µi

= 0, i = 0, 1, 2, 3

∂G
∂νi

= 0, i = 0, 1, 2, 3

∂G
∂λ

= 0,

we’ll get the solutions for matrices F1 and F2, with which we obtain our NURBlets.

5.4 Vanishing Moments in NURBs

Vanishing moments play an important role in wavelet construction. In B-Splines, p vanishing

moments means that wavelet coefficients for pth order polynomial will be zero. This implies

that any polynomial curves up to degree p − 1 can be represented completely in the scaling

space. As a result, scaling functions can represent more complex curves accurately, which is the

property we desire for. For this reason, vanishing moments connect to polynomial reproduction

closely in B-Splines.

However, in the case of weighted B-Spines, or NURBs, vanishing moments no longer have

such a desirable property due to the fact of rational character. In our knowledge, vanishing

moments are barely known in NURBs so far. Nevertheless, attaining vanishing moments

in NURBlet construction is still strongly wanted in applications. Therefore, uncover their
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mysterious veils in NURBs becoming very overwhelming.

We’d like to approach the problem from one vanishing moment in the construction of

biorthogonal NURBlets. As before, let g(x) be one moment g(x) =
∫
ψ(x)dx, and m be a

moment vector such that

m =

∫
Φdx, (5.4.1)

then equation (2.3.12) implies

Qm = 0. (5.4.2)

On the other hand, biorthogonal NURBlets should have the following constrains

PP̃ = I QP̃ = 0

QQ̃ = I P Q̃ = 0.

(5.4.3)

Bringing the constrains above into the case of single knot insertion, we observe the following

properties:

1. Q is a row vector;

2. Q is in the kernel of P̃ ;

3. m is in the range of P̃ .

An algorithm for biorthogonal NURBlet construction with one vanishing moment in single

knot insertion is thus devised as the following:

1. Compute the moment vector m =
∫

Φdx;

2. Find a special solution P̃ for PP̃ = I;

3. Find the kernel of P ;

4. Get the general solution for P̃ ;

5. Determine Q and Q̃.

A corresponding example is given in the following section (see Example 3).
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5.5 Examples

In this section, we’ll give three examples presenting the algorithms of constructing biorthogonal

NURBlets in the previous section. The first two examples use lifting scheme, while the last

one is from the point of view of vanishing moments.

5.5.1 Example 1: One Knot Insertion at the Boundary

Step 1 Define knot sequence, new knot and weight vector w0

They are shown in Figure 5.5.

88888

t1 t2 t3 t4 t5 t6 t7

τ

9:

0 1
2 1 2 3 5 6 15

2

Figure 5.5: Knot sequence {0, 0, 0, 0, 1
2
, 2, 3, 5, 6, 15

2
, 15

2
, 15

2
, 15

2
} and new knot τ = 1.

w0 =
[

1
2

1
3

1 1
4

1
5

1
6

1
7

]T

(5.5.1)

The new knot is inserted at the boundary knot span (t2, t3).

Step 2 Get Bézier Nets

Based on Figure 2.8, Figure 3.2 and equation (2.1.14), Bézier nets of all cubic B-Splines at the

original level and N1,1 at the fine level are presented in Figure 5.6.

Step 3 Get the piecewise polynomial function format for the functions in step 2

71



1

t1

4
5

3
5

9
20

t2

0 0 0

t3

N e
0,1

0

t1

1
5

2
5

61
120

t2

5
6

1
3

2
15

t3

0 0 0

t4

N e
0,2(x)

0

t1

0 0 1
24

t2

1
6

2
3

2
3

t3

2
3

4
9

8
27

t4

0 0 0

t5

N0,1(x)

0

t1

0 0 0

t2

0 0 1
5

t3

1
3

5
9

67
108

t4

3
4

1
4

1
12

t5

0 0 0

t6

N0,2(x)

0

t1

0 0 0

t2

0 0 0

t3

0 0 1
12

t4

1
4

3
4

67
108

t5

5
9

1
3

1
5

t6

0 0 0

t7

N0,3(x)

0

t1

0 0 0

t2

0 0 0

t3

0 0 0

t4

0 0 8
27

t5

4
9

2
3

7
10

t6

3
4

3
8 0

t7

N e
0,4(x)

0

t1

0 0 0

t2

0 0 0

t3

0 0 0

t4

0 0 0

t5

0 0 1
10

t6

1
4

5
8 1

t7

N e
0,5(x)

0

t1

0 0 1
8

τ

1
4

1
2

3
5

t2

4
5

2
5

1
5

t3

0 0 0

t4

N1,1(x)

Figure 5.6: Bézier nets on interval [0, 15
2
].
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N e
0,1 =





1 − 6
5
x+ 2

5
x3 [0, 1

2
]

2
15

(2 − x)3 [1
2
, 2]

0 otherwise

(5.5.2)

N e
0,2 =





6
5
x− 11

15
x3 [0, 1

2
]

− 2
15

+ 2x− 8
5
x2 + 1

3
x3 [1

2
, 2]

2
15

(3 − x)3 [2, 3]

0 otherwise

(5.5.3)

N0,1 =





1
3
x3 [0, 1

2
]

2
27

− 4
9
x+ 8

9
x2 − 7

27
x3 [1

2
, 2]

−118
27

+ 56
9
x− 22

9
x2 + 8

27
x3 [2, 3]

1
27

(5 − x)3 [3, 5]

0 otherwise

(5.5.4)

N0,2 =





1
135

(2x− 1)3 [0, 1
2
]

329
135

− 163
45
x+ 157

90
x2 − 133

540
x3 [1

2
, 1]

−403
54

+ 113
18
x− 14

9
x2 + 13

108
x3 [1, 2]

1
12

(6 − x)3 [2, 3]

0 otherwise

(5.5.5)

N0,3 =





1
12

(x− 2)3 [2, 3]

29
6
− 9

2
x+ 4

3
x2 − 13

108
x3 [3, 5]

41 + 23x− 25
6
x2 + 133

540
x3 [5, 6]

−1
5
(2

3
x− 5)3, [6, 15

2
]

0 otherwise

(5.5.6)
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N e
0,4 =





8
27

(1
2
x− 3

2
)3, [3, 5]

73
2
− 43

2
x+ 25

6
x2 − 71

270
x3 [5, 6]

−95
2

+ 41
2
x− 17

6
x2 + 17

135
x3 [6, 15

2
]

0 otherwise

(5.5.7)

N e
0,5 =





1
10

(x− 5)3, [5, 6]

47
2
− 21

2
x+ 3

2
x2 − 1

15
x3 [6, 15

2
]

0 otherwise

(5.5.8)

N1,1 =





x3 [0, 1
2
]

2
5
− 12

5
x+ 24

5
x2 − 11

5
x3 [1

2
, 1]

−13
5

+ 33
5
x− 21

5
x2 + 4/5x3 [1, 2]

1
5
(3 − x)3 [2, 3]

0 otherwise

(5.5.9)

Step 4 Compute the denominator ω in NURBs

At a MRA level, in order to find NURBs, we need to find their common denominator — the

summation of all weighted B-Splines at the same level. In fact in our modeling, all denom-

inators of NURBs at different MRA levels are identical (see (4.1.10)). Therefore if we find

the common denominator of NURBs at the original MRA level, we get the denominators of

NURBs for all levels.
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By (4.1.12), we have

ω = ω0

= w0,0N
e
0,0 + w0,1N

e
0,1 + w0,2N0,1 + w0,3N

e
0,2 + w0,3N

e
0,0 + w0,5N

e
0,4 + w0,6N

e
0,5

=





1
2
− 1

5
x+ 13

45
x3 [0, 1

2
]

101
180

− 17
30
x+ 11

15
x2 − 1

5
x3 [1

2
, 2]

−97
36

+ 259
60
x− 41

24
x2 + 149

720
x3 [2, 3]

1283
360

− 233
120
x+ 17

45
x2 − 161

6480
x3 [3, 5]

− 253
226800

x3 + 11
504
x2 − 17

105
x+ 251

420
[5, 6]

37
84

− 1
12
x+ 11

1260
x2 − 11

28350
x3 [6, 15

2
]

0 otherwise.

(5.5.10)

Step 5 Compute one moment g(x)

(1) Compute αi, i = 0, 1, 2 by (3.2.8).

(2) Construct the two-scale matrix for B-Splines on [0, 15
2
] by (4.3.8).

P0 =




1 2
5

3
5

2
3

1
3

8
9

1
9

1




(3) Based on (4.1.17), the weight vector at level 1 is attained

w1 =
[

1
2

2
5

5
9

11
12

1
4

1
5

1
6

1
7

]T

.

Hence the weight for N1,1(x) is 5
9
.
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(4) Compute the one moment

g(x) =

∫

ω

(φ1,1 + b0φ
e
0,0 + b1φ

e
0,1 + b2φ0,1 + b3φ0,2)dx

=

∫
ω(w1,1N1,1 + b0w0,0N

e
0,0 + b1w0,1N

e
0,1 + b2w0,2N0,1 + b3w0,3N0,2)dx

=
924277

3628800
+

83077

672000
b0 +

2857793

18144000
b1 +

10977107

13996800
b2 +

49906487

342921600
b3

(5.5.11)

With equations (4.3.8),(4.3.6) and (3.2.8), we get our two-scale matrix Pw
[t2,t3] as the follow-

ing:

Pw
0[t2,t3] =




1 1
2

1
2

2
5

3
5

32
33

1
33

1




(5.5.12)

Step 6 Compute f(x)

(4.3.6), (5.2.24) and the result of (1) in step 5 result in f(x) in the form of

f(x) =
5

4
b02 +

1

2
b0b1 +

41

100
b12 +

12

25
b1b2 +

4

5
b1 +

35401

27225
b22 +

6

5
b2 + 1 +

64

10892
b3 +

1090

1089
b32.

Step 7 Construct F matrix

We finally get the coefficients of F matrix by setting G(x) = f(x) − λg(x) and solving the

group of equations of (5.2.29) 



b0 = 0.2033

b1 = −0.9229

b2 = −0.1776

b3 = 0.0328
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0 1 2 3 4 5 6
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5.7: Wavelet function when insert a new knot on (t2, t3).

Eventually, the NURBlet function is derived

ψ0(x) =





9.1489−44.2015x+68.6356x3

45−18x+26x3 x ∈ [0, 1
2
]

−64.5200+365.7358x−554.6657x2+232.5060x3
−101+102x−132x2+36x3 x ∈ [1

2
, 1]

235.4800−534.2642x+345.3343x2
−67.4940x3

−101+102x−132x2+36x3 x ∈ [1, 2]

0.0019−0.0022x+779.0440x2
−90.0876

−1940+3108x−1230x2+149x3 x ∈ [2, 3]

0.0058−0.0036x+738.0904x2
−50.2654x3

−23094+12582x−2448x2+161x3 x ∈ [3, 5]

185.3879(x−6)3)
253x3−4950x2+36720x−135540

x ∈ [5, 6]

The graph of the wavelet is shown in Figure 5.7.

5.5.2 Example 2: One Knot Insertion in the Non-Boundary Knot

Span

Given the same knot sequence as the previous example, we change new knot from τ = 1 to

τ = 10
3
. This is the case of single knot insertion at non-boundary knot span (See Figure 5.8).

Repeat the same procedure as the previous example, we get the NURBlet as the following
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;;;;;

t0 t1 t2 t3 t4 t5 t6 t7

τ

<=

−1
2 0 1

2 1 2 3 10
3 5 6 15

2

Figure 5.8: Insert a new knot on (t4, t5).

ψ0(x) =





4.3562x3

45−18x+26x3 x ∈ [0, 1
2
]

−2.3507+14.1042x−28.2085x+10.0933x3

−101+102x−132x2+36x3 x ∈ [1
2
, 2]

−0.0013+0.0019x−895.4889x2+127.6807x3

−1940+3108x−1230x2+149x3 x ∈ [2, 3]

−0.0009+0.0009x−0.0028x2+0.0029x3

−23094+12582x−2448x2+161x3 x ∈ [3, 10
3
]

0.0016−0.0099x+0.0021x2
−144.1322x3

−23094+12582x−2448x2+161x3 x ∈ [10
3
, 5]

−0.0002+0.0001x−0.0020x2+0.0011x3

253x3−4950x2+36720x−135540
x ∈ [5, 6]

0.0010−0.0041x+555.0565x2
−24.6692x3

−24975+4725x−495x2+22x3 x ∈ [6, 15
2
]

0 otherwise.

Figure 5.9 presents its graph.

0 1 2 3 4 5 6 7 8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 5.9: Wavelet function when insert a new knot on (3, 5).

78



5.5.3 Example 3: Dyadic Knot Insertion on intervals

In this subsection, we’ll construct biorthogonal NURBlets with one vanishing moment on an

interval such that in each knot span, a dyadic knot is inserted.

On interval [0, 4], let φ0 and φ4 be edge functions, and φk (k = 1, 2, 3) be linear B-Splines

as shown in Figure 5.10. Then the two-scaling matrix P is

0 1 2 3 4

1

x

y

φ0,0 φ0,1 φ0,2 φ0,3 φ0,4

Figure 5.10: Linear B-Splines on [0,4].

P =




1 1
2

1
2

1 1
2

1
2

1 1
2

1
2

1 1
2

1
2

1




. (5.5.13)

P has the following quadratic polynomial character [17, 22]

P (z) = (
1 + z

2
)2. (5.5.14)

We desire for one vanishing moment. This means the two-scaling dual matrix P̃ (z) has a factor

of 1 + z [17, ?], i.e.,

P̃ (z) = (
1 + z

2
)P̃0(z). (5.5.15)
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It is well known that biorthogonal B-Splines satisfy the condition ([?, 17])

P (z)P̃ (z) + P (−z)P̃ (−z) = 1.

Considering one vanishing moment condition in (5.5.15), the following equation is derived:

(
1 + z

2
)3P̃0(z) + (

1 − z

2
)3P̃0(−z) = 1.

To find P̃0(z), we extend the polynomial (1+z
2

+ 1−z
2

)5 = 1 and compare it with the equation

above. This gives us a solution of P̃0(z):

P̃0(z) = (
1 + z

2
)2 + 5(

1 + z

2
)(

1 − z

2
) + 10(

1 − z

2
)2

= 2 − 1

4
z − 3

2
z2 +

3

4
z3.

Satisfying the biorthogonal wavelet condition in (2.4.9), we find the matrices of P̃ , Q and

Q̃ matrix as the following:

P̃ =




1 −1 3
4

2 −3
2

−1
4

3
4

2 −3
2

−1
4

3
2

2 −3

1

1

1
2




(5.5.16)

Q =




0 0 2 1
4

−3
2

−3
4

2 1
4

−3
2

−3
4

2 −1 −2

−1
2

1




(5.5.17)
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Q̃ =




1
2

−1

1
2

1
2

−1

1
2

1
2

−1

1
2

1
2

−1

1
2




(5.5.18)

Figure 5.11 shows the graphs of these biorthogonal wavelets.
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Figure 5.11: Linear biorthogonal wavelets on the interval.
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Chapter 6

Conclusions and Future Work

This dissertation has presented the construction of non-uniform rational cubic B-Splines (NURBs)

and biorthogonal wavelets based on NURBs with one vanishing moment on intervals.

We’ve constructed natural cubic B-Splines as edge functions, and found two–scale matrices

for one-knot insertion and arbitrary knot insertion at each knot span respectively. With

the help of lifting scheme, we then have constructed cubic biorthogonal NURBlets with one

vanishing moment for one-knot insertion and two-knot insertion. Finally, we explore one

vanishing moment properties.

6.1 Outline of Future Work

Vanishing moments play a very important role in wavelet construction. They indicate how

smooth of an approximation that a wavelet tool gives. The higher vanishing moments are,

the smaller support would be, and the better smoothness an approximation would achieve.

Three vanishing moments lead to C2 smoothness which is desired in industrial applications.

Vanishing moments are related to polynomial reproduction in B-Splines. However, in non-

uniform rational B-Splines, rational functions replace the polynomial ones. So there is no such

thing as “polynomial reproduction” in rational B-splines. Do “vanishing moments” still exist?

If so, what kind of properties do they have? In the polynomial case, n vanishing moments

means the existence of factor (1+z)n in the dual P matrix. In rational case, is there any factor

that must exist in the dual P matrix also? What is it then? All these are barely known to us.
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Our next step is to explore such properties related to “vanishing moments” in NURBlets.

Secondly, constructing biorthogonal wavelets for cubic NURBs on intervals in 2D is de-

sirable in real applications. With tensor products, these wavelet tools extensively describe

surfaces in CAD/CAM/CAE and many other areas.

Finally, the construction of tight frame wavelets for cubic NURBs on intervals. Tight frame

wavelets provide more flexibility and features such as local support than other NURBs-based

wavelets. The key part in tight frame construction using NURBs is to find the vanishing

moment recovery matrix [17]. With this wavelet tool, free-form surface design will have math-

ematical exactness, achieve C2 smoothness and interpolation at the boundaries, which will

have great and extensive applications in the industry, from fuselage design, image processing,

data mining, to medical research, etc.
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