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ABSTRACT 

Understanding what determines male reproductive success is central to sexual selection 

theory. Differences in male mating success result from interactions among males to get 

access to females, and from choices females make among the males they have access to.  

Male competitive abilities and female mate choice can influence male reproductive 

success simultaneously and their relative importance varies within and across species.  

The main goal of this dissertation was to characterize the processes that shape 

male reproductive success in an exploded lekking species: the White-crowned Manakin 

(Pipra pipra). Specifically I addressed the question: What factors make males attractive 

and reproductively successful?  To answer this question, I examined how genetic, 

ecological and behavioral factors influence female mate choice and male mating success. 

First, I examined if females selected males with certain genetic characteristics 

(i.e., high heterozygosity or compatible genes) to gain indirect fitness benefits. 

Specifically, I tested if females preferentially mated with unrelated males or males with 

high overall heterozygosity to increase the genetic diversity of their offspring (avoid 

inbreeding). My results suggest that females were not preferentially mating with highly 

heterozygous or unrelated males. Heterozygosity, however, appears to play a role in mate 

selection. I found that heterozygosity may have influenced territory acquisition (believed 

to be a pre-requisite of male mating success), and that males with intermediate 

heterozygosity had higher reproductive success than those with low or high 

heterozygosity. This suggests that females may optimize heterozygosity levels of their 

offspring by negotiating a balance between inbreeding and outbreeding costs. 
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Second, I examined if food resources within territories affected mating success of 

territory owners.  In lekking species, it is usually assumed that territories do not contain 

resources and that female mate choice is based on male characteristics unrelated to 

resources within territories. Nevertheless, the validity of these assumptions are unclear 

for species with exploded leks (such as the White-crowned Manakin), in which males 

have relatively large territories that may contain resources.  I found that food resources 

did not affect female visitation patterns. Males that sired offspring, however, had more 

resources within their territories and tended to display for longer periods of time. These 

results suggest that resources may indirectly affect male mating success by influencing 

male display characteristics that females select during mate choice. 

Lastly, I examined the effect of male behavioral traits and territory characteristics 

on male mating success.  I found that mating success of territorial males was more 

influenced by male characteristics associated with female mate choice (e.g. advertisement 

traits) than male-male competition (e.g. male-male interactions or spatial traits).  

Specifically my results suggest that females use a combination of male behavioral 

characteristics (i.e., display performance, territory attendance and vocalization rate) 

during mate selection and that the relative importance of each of these traits may change 

over time. 

Taken together these results suggest that female mate choice is the main 

mechanism that affects male reproductive success in White-crowned Manakins. 

Resources were found to influence male traits used during mate selection, and females 

appear to use a combination of genetic and behavioral traits during mate choice. These 
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results highlight the importance of considering multiple factors and their interactions to 

understand the processes that determine male reproductive success. 
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CHAPTER 1 

 

Do females preferentially mate with highly heterozygous or unrelated males? A test 

of the genetic compatibility and heterozygosity hypotheses for the White-crowned 

Manakin (Pipra pipra) 

 

INTRODUCTION 

In lekking species, females often prefer specific males even when there is no evidence 

that mates contribute anything other than genes to the offspring (Houle and Kondrashov 

2002). This preference for certain males strongly suggests that female mate choice is 

important and that the most likely basis for this preference is differential genetic quality 

among males (Ligon 1999). Choosy females may produce offspring of superior genetic 

quality by mating with males whose genes confer greater attractiveness (Fisherian 

models) and viability (good gene models) to their offspring. The Fisherian model 

proposes that mate choice is based on traits that are attractive to females but that do not 

confer viability advantage to the offspring (arbitrary process, Fisher 1930). By choosing 

attractive males, females will produce sons that in turn will display superior 

attractiveness and achieve greater reproductive success. Alternatively, the “good genes” 

model states that choosy females may produce offspring of superior genetic quality by 

mating with males whose genes can confer greater viability to the offspring (Andersson 

1994, Mays and Hill 2004).  

Increased homozygosity through inbreeding is believed to lead to lower fitness 

(reduced survival: e.g., Allendorf and Leary 1986, Stockley et al. 1993, Keller et al. 
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1994, Daniels and Walters 2000, Keller and Waller 2002, Suter et al. 2007; reduced 

pathogen resistance: Whiteman et al. 2006; and lower reproductive success: e.g., Keller 

1998, Westermeier et al. 1998, Kruuk et al. 2002, Slate et al. 2004), due to the expression 

of detrimental recessive alleles and loss of potentially beneficial alleles, especially when 

confronted with environmental changes (Ralls et al. 1986, Keller and Waller 2002). In 

contrast, increased heterozygosity often has been associated with an increase in vigor 

(fertility, survival, growth, etc.), leading to phenotypically superior individuals (Garten 

1976, Baker and Fox 1978, Allendorf and Leary 1986, Tiira et al. 2006). The major 

histocompatibility complex (MHC) is one of many potential candidates for the genetic 

basis of mate choice. MHC is related to immune response and MHC heterozygosity 

appears to increase offspring fitness by conferring greater resistance to a greater number 

of diseases (von Schatz et al. 1996, Westerdahl et al. 2005, Bonneaud et al. 2006). As 

lekking females are thought to be free to select among males displaying at leks, they may 

select males in a manner that maximizes the genetic quality of their offspring. 

There are two potential ways by which females may increase the levels of genetic 

heterozygosity in their offspring. First, females may choose sires with whom they are 

genetically compatible; that is, genetically dissimilar males or those males with whom 

they share the fewest alleles across loci (compatibility hypothesis, e.g., Tregenza and 

Wedell 2000, Freeman-Gallant et al. 2006, Oh and Badyaev 2006, Kempenaers 2007). 

By pairing with males with different genotypes at variable loci, females will produce 

heterozygous young, which likely will have fitness advantages over homozygotes (Mays 

and Hill 2004). The second mechanism by which females can increase genetic 

heterozygosity of offspring is by mating with highly heterozygous males (heterozygosity 
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hypothesis, Brown 1997, Sauermann et al. 2001, Hoffman et al. 2004, Widdig et al. 

2004, Hoffman et al. 2007, Kempenaers 2007, Rubenstein 2007, but see Lehmann et al. 

2007). Heterozygosity appears to underlie the superiority of males with respect to disease 

resistance (Coltman et al. 1999, Reid et al. 2003, Reid et al. 2007, Whiteman et al. 2006), 

display performance (Reid et al. 2005, Marshall et al. 2003, Seddon et al. 2004) and 

general condition (Allendorf and Leary 1986, Stockley et al. 1993), which may lead to 

greater phenotypic competitive abilities (mating advantage, Hoffman et al. 2004). 

Although the superiority of a male due to heterozygosity is not heritable, a female that 

mates with a highly heterozygous male will increase her chances of having heterozygous 

offspring, as rare alleles are more common in heterozygotes (Charlesworth 1988, Brown 

1997, Mays and Hill 2004). According to the heterozygosity hypothesis, male phenotypic 

expression is expected to correlate with individual heterozygosity, providing mate choice 

cues. Males with higher overall heterozygosity will be more attractive to females and, as 

a consequence, female mate choice will result in variance in male reproductive success 

associated with male heterozygosity.  

Here, we test the compatibility and heterozygosity hypotheses for female mate choice 

in the White-crowned Manakin (Pipra pipra). We measured male mating success using 

behavioral observations (female visits) and molecular techniques (paternity analysis of 

offspring using microsatellites). Then, we examined the relationship of these measures of 

male reproductive success to individual heterozygosity and to their degree of genetic 

similarity to females who laid eggs fertilized by focal males.  Additionally, we examined 

the relationship between heterozygosity and spatial and behavioral characteristics of 
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males, such as territory attendance, vocalization rate, courtship display time, territory size 

and position, to examine if these traits act as “honest signals” of male heterozygosity. 

 

METHODS 

Study area  

Tiputini Biodiversity Station (TBS) is located approximately 300 km ESE of Quito on the 

north bank of the Tiputini River in eastern Ecuador (~0º 38' S, 76º 08' W). It encompasses 

approximately 650 hectares of largely undisturbed tropical rainforest, which includes 

primarily terra firme forest, but also flooded forest, palm swamps, and areas of natural 

regrowth. TBS is within the 1.5 million hectare Yasuní Biosphere Reserve and boasts 

extremely high species diversity (Pitman et al. 2002, Valencia et al. 2004, Blake 2007).  

This study was conducted on one 100 hectare plot (ca. 1 km * 1 km, hereafter called the 

Harpia plot) at TBS and in its adjacent forest (in areas identified as adequate habitat for 

P. pipra 400 meters north and west of the plot; total area sampled was approximately 180 

ha).  

Study species: 

The White-crowned Manakin is a small bird (average weight of males: 10.8 g; females: 

13.4 g, unpublished data) in the family Pipridae.  It is distributed from Costa Rica to 

eastern Brazil (Ridgely and Greenfield 2001). They are sexually dimorphic, where adult 

males are black with white crowns and napes, and females are olive-green with blue-grey 

heads (del Hoyo et al. 2004). Juvenile males fledge the nest with plumage coloration 

similar to females, and usually show some signs of male plumage (i.e., white feathers in 

crown and black feathers in body) after their first year (i.e., end of first breeding season).  
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Males acquire full adult plumage late in their second year (Ryder and Durães 2005).  

White-crowned Manakins display on exploded leks, so males are in auditory but not 

visual contact. Territories are defended by individual adult males and range from 234 – 

1003 m2 in size (Tori unpublished data). Males have one advertisement call and one 

whistle call. Courtship displays are performed individually and include forward and back 

flights among several horizontal display perches and slow butterfly-flights (deep and 

slow wing beats) around females following them from perch to perch (Snow 1961).   In 

addition, territorial males often interact with males from neighboring territories (Castro-

Astor et al. 2007). Male-male coordinated interactions take place in the absence of 

females and have different display elements than courtship displays. These interactions 

may act as a mechanism to establish and maintain dominance hierarchies among males 

(Tori, unpublished data).   

Mist-netting 

White-crowned Manakins were sampled by systematic mist-netting activities at 96 

permanent net sites in the Harpia plot during March 2001, January and March 2002-2006, 

as well as by target-netting at leks during January-April 2004-2006. Captured birds were 

banded, individually marked with uniquely numbered aluminum - and color- leg bands 

and blood samples were taken for molecular genetic analysis. During the course of this 

study, all known adult males in the Harpia plot and its adjacent forest (400 meters north 

and west of the plot) were banded. 

Offspring sampling 

Nests were located via systematic searches of the study area from December to April 

2004-2005, 2005-2006, corresponding to the main breeding season in the region. 



Tori, Wendy, 2008, UMSL, p. 16
 
 
Systematic searches were supplemented by radio-tracking females that were captured in 

breeding condition. Radio transmitters (Holohil Systems Ltd.) weighing 0.51 g (model 

BD-2N) were attached using a Rappole harness (Rappole and Tipton 1991). Females 

were then tracked to find the location of their nests. We replaced the eggs with plaster 

replicas and incubated the eggs ex-situ to avoid losing the genetic sample to nest 

predation. After hatching, blood samples were taken and chicks were immediately 

returned to their original nest to be raised by their mother (for details see Tori et al. 

2006). In an effort to increase our offspring sample size, we captured and assigned 

paternity of juvenile males (green-plumaged individuals sexed as males in the lab, n = 

34) and fledglings (green-plumaged individuals with yellow gapes and brown eyes, n = 

3). We only assigned parentage of juvenile males, since females do not change plumage 

color and we were not able to identify their age.    

Lek and territory location 

 Mapping activities were conducted in February and April 2002-2004, December to April 

2004-2005 and November to April 2005-2006. Data were used to identify the number and 

location of leks (n = 7) and territories (n = 63) on the study area. Territories were defined 

as defended areas where individual males display and advertise for females. Leks were 

defined as discrete assemblages of male territories over space, in which neighboring 

males were in auditory contact (i.e., exploded leks). Males captured within the study area 

that were never observed to own a territory were considered non-territorial males (n = 29 

males).  
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Behavioral variables 

We conducted focal observations of 37 territorial males at 4 selected leks within the 

Harpia plot. Territorial males (n = 26) from three additional leks in the Harpia plot 

vicinity were not observed and therefore were not included in the analysis of behavioral 

traits.  Observations were conducted during January–March 2005 and December 2005–

March 2006. The basic sample unit was 2-hour focal observation periods.  We observed 

each male for a minimum of 12 hours (mean 18 hours) during their peak of daily activity 

(07:00-09:00, 12:00-14:00 and 14:30-16:30, Durães et al. unpublished data). When 

possible, simultaneous observations took place at two or more leks. During observations, 

we recorded the following variables: 

1) Territory attendance: mean number of minutes a male spent in his territory during the 

2-hour observation period (unit: minutes / 2-hr observation). 

2) Vocalization rate: mean number of advertisement calls during the 2-hour observation 

period (units: number of advertisement calls / 2-hr observation). 

3) Number of coordinated interactions: mean number of male-male synchronized display 

behaviors during the 2-hour observation period (unit: number of coordinated interactions 

/ 2-hr observation). Male-male coordinated interactions vary in their length and 

elaboration, but for this analysis all coordinated interactions were considered equivalent 

(equally weighted). 

4) Number of aggressive interactions during courtship display: mean number of 

aggressive chases during courtship display across the 2-hour observation period (unit: 

number of aggressive interactions during courtship display / 2-hr observation).  



Tori, Wendy, 2008, UMSL, p. 18
 
 
Aggressive interactions here are defined as chases of a territorial male toward intruding 

neighboring male during female visitation to that territory. 

5) Courtship display time: mean number of seconds males spent displaying across the 2-

hour observation period (units: seconds displaying / 2-hr observation).   

6) Standardized female visits:  number of female visits standardized by 12-hours of 

observation.  To estimate this value, we calculated the average number of female visits 

observed during 2 hour observations and multiplied it by 6 (unit: number of female visits 

/ 12-hr).    

Spatial variables 

During focal observations, we marked perches that territorial males used to sing from 

(advertisement calls and whistles), rest and interact with other males. Afterwards, all 

perches were mapped and geo-referenced. Territory size was calculated by building a 

minimum convex polygon around advertisement call perches (AP) using the Animal 

Movement Extension, ArcView v.3. 2 (Hooge and Eichenlaub 1997). To be conservative, 

we excluded from the analysis coordinated interaction (CP), whistling (WP) and resting 

perches (RP).  CP and WP were excluded because they were in peripheral areas usually 

used by more than one male and RP were excluded because perching was not considered 

enough evidence to suggest territoriality (most RP perches, however, were within the 

MCP area). Territory and lek centers were determined using the centroid polygon script 

in ARCGIS v. 9.1 (i.e., geometric center, ESRI 2005).   

Genetic analyses 

DNA was isolated from blood samples via a phenol-chloroform extraction method, 

followed by a cleaning step of dialysis in 1 X TNE2.  DNA yield was determined by 
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spectrophotometry and samples were diluted to a working concentration of 20 ng / µL. A 

set of 7 polymorphic microsatellite primers - Man6, Man13, Lan10, Lan20, Lan22, 

Maniac-3, Maniac-13 - (Piertney et al. 2002, Duval et al. 2005, Brumfield R and Braun 

M, pers.comm.) were selected based on their levels of polymorphism.  Polymerase chain 

reactions (PCR) were run using fluorescently labeled forward primers (Table 1, Applied 

Biosystems, Inc., Foster City, CA).  PCR products were combined (1 to 4 loci at the time) 

and run on an ABI 3100 automated capillary sequencer. Fragment sizes were determined 

using a size standard GENESCAN LIZ (500) and genotypes were assigned using 

Genemapper 4.01 (Applied Biosystems, Inc.). All homozygous individuals were run at 

least twice to avoid allelic drop-out problems and dubious genotypes were re-run to avoid 

spurious results. We determined allele frequencies per locus and ran tests for linkage 

disequilibrium and Hardy-Weinberg equilibrium using FSTAT v. 2.9.3.2. (Goudet 2001).  

All loci were in Hardy-Weinberg equilibrium and showed no significant linkage 

disequilibrium. Additionally, we determined the sex of all green-plumaged individuals 

using two chromo-helicase-DNA-binding (CHD) genes (P2 P8 primers, Griffiths et al. 

1998). The PCR conditions used were an initial denaturing step at 92 ºC for 2 min, 

followed by 35 cycles of 92 ºC (45 s), 52 ºC (45 s) and 72 ºC (1 min) and a final run of 72 

ºC for 5 min. 

Paternity analysis 

We used CERVUS 2.0 to assign parentage using co-dominant molecular markers (e.g. 

microsatellites, Marshall et al. 1998).  CERVUS calculates a likelihood score (LOD) for 

each male being the sire of a particular offspring, based on the offspring, maternal 

genotypes (if known) and candidate male genotypes. The candidate father with the 
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highest LOD score is assigned as the most likely sire. CERVUS uses simulations to 

assess the confidence for each paternity assignment.  Simulations take into account the 

number of candidate males, the proportion of the male population that is sampled, the 

completeness, and the rate of typing error in the genetic data (e.g. null alleles, Marshall et 

al. 1998, Webster et al. 2004). The simulation parameters used were the following: 1) 

number of candidate males: 92; proportion of candidate males sampled: 0.95; proportion 

of loci typed: 0.976; rate of typing error: 0.01 and 0 (we ran both error types, see 

Morrissey and Wilson 2005); and strict confidence level of 95%. We examined the 

frequency of genotyping error between mothers and offspring and found no mismatches. 

To assign paternity of nestlings, we assumed that breeding females were the biological 

mothers of the chicks in their own nests and entered their genotypes as the known parent.  

To assign parentage of juveniles, first we used CERVUS to determine paternity of males, 

and then we used male assignments to determine maternity (i.e., stepwise parental 

analysis). The simulation parameters used to assign maternity were the following: 

number of candidate females: 73; proportion of candidate females sampled: 0.75. For 

paternity analysis, we used additional information (i.e., whether male sired other young at 

the nest, whether mismatch was likely caused by a null allele) to confirm that CERVUS 

assignments were reasonable (“total evidence” approach, Webster et al. 2004). We 

accepted CERVUS assignments if the selected male had zero mismatches with the 

nestling and we rejected CERVUS assignment if selected male had 1 or more 

mismatches.  We did not follow these rules under two circumstances: 1) If assigned male 

had one mismatch that was consistent with the presence of a null allele (particularly at 

locus Lan20, which had a high null allele frequency). In this case, we accepted CERVUS 
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assignment despite the mismatch (one case).  2) If two candidate fathers had the same 

number of mismatches but the male with lower LOD score had sired the other chick in 

the nest. In this case we assigned paternity to the lower scoring male (one case).   

Heterozygosity estimates 

Heterozygosity estimators were calculated for all candidate fathers. We calculated two 

heterozygosity estimators: (1) Standardized heterozygosity (Hs), which is calculated as 

the proportion of typed loci for which an individual is heterozygous, divided by the mean 

heterozygosity of typed loci (Coltman et al. 1999); (2) Internal relatedness (IR), a 

measure that is based on genetic correlations between alleles at each locus and that 

weights allele sharing by the frequencies of alleles involved (Amos et al. 2001). Low 

values of IR indicate high heterozygosity levels.  Qualitative results with both 

heterozygosity indices were equivalent; thus, in this manuscript we report only the 

internal relatedness index.   

It is unclear how robust neutral molecular estimators of heterozygosity generated 

by a few genetic markers are with respect to genome-wide heterozygosity (Balloux et al. 

2004, Slate et al. 2004, Smith et al. 2005). If heterozygosity at microsatellite loci reflects 

genome-wide heterozygosity, then molecular estimators of heterozygosity will provide 

informative results about individual inbreeding levels. However, if this relationship is 

weak, then molecular estimators of heterozygosity would be an outcome of local effects 

of microsatellites or loci linked to them instead of inbreeding (Hansson and Westerberg 

2002), and we may not be able to detect the effects of heterozygosity (Smith et al. 2005).  

In this study, we assume that our 7 microsatellite markers reflect genome-wide 
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heterozygosity, but we recognize that this may not be the case, and thus our results 

should be taken with caution. 

Genetic similarity   

To assess the degree of genetic similarity among pairs, we used microsatellite data to 

calculate Queller and Goodnight pairwise coefficients of relatedness (r) using 

Relatedness v. 5.0. This measure estimates relatedness between two individuals on the 

basis of allele frequency differences from the population mean (for more details see 

Queller and Goodnight 1989). High values of r indicate high levels of relatedness (e.g., r 

= 0 unrelated, r = 0.25 half siblings, r = 0.5 full siblings). 

 Statistical analysis 

To test the heterozygosity hypothesis, first we examined the relationships between 

heterozygosity and behavioral and spatial male traits as potential heterozygosity cues, 

using generalized linear models (Fox 1997, McCullagh and Neder 1989). In all models, 

we used Poisson errors and a log-link function because heterozygosity violated linear 

regression assumptions.  Second, we determined if males that sired offspring had higher 

heterozygosity than expected by chance using Monte Carlo simulations. To do this, we 

randomly drew 19 males with replacement from the total male population and designated 

them as sires.  We repeated this procedure 1000 times, calculated the average 

heterozygosity (IR) for each set of 19 males and generated a random distribution using 

these values. Next, we compared the mean heterozygosity of males observed siring 

offspring to this random expectation (one-tail probability, Gotelli and Ellison 2004). In 

addition, we used non-parametric one-tail Mann-Whitney tests to compare the 

heterozygosity between (1) males that sired and did not sire offspring, and (2) territorial 
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and non-territorial males.  Further, to test the relationship between heterozygosity and 

female visitation, we performed regression analyses.   

To test if female mate choice was independent of the genetic similarity of 

potential partners, we compared relatedness estimates of observed mating dyads with the 

average relatedness of each female with all potential candidate males using a paired t-test. 

Consequently, the relatedness of an individual female with her observed mate and the 

average relatedness between this female and all other potential mates constituted a pair; 

the number of replicates equals the number of females with known mates. Support for the 

compatibility hypothesis requires that mating pairs have significantly lower relatedness 

than non-mating dyads. Moreover, we performed a binomial goodness-of-fit test to 

examine if females were at least selecting males with lower relatedness than the median 

relatedness of candidate mates. We performed analyses at the lek level (assuming females 

assessed only males in the lek where they mated) and at the population level (assuming 

females assessed all males in the population). Results at both levels were equivalent, so 

we report results only at the lek level. Analyses were conducted using SPSS v 13.0 and R 

v 2.4.1.   

 

RESULTS 

Can spatial traits act as male heterozygosity cues? 

We found a significant relationship between heterozygosity and territory size (GLM, R2 = 

0.02, p < 0.001) and distance of territory from the center of the lek (GLM, R2 = 0.19, p < 

0.001, Table 2). The effect of male heterozygosity on territory size was weak (~2% of 

variance explained) compared to the effect of territory centrality (~20% of variance 
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explained). In addition, territorial males tended to have slightly higher heterozygosity 

than non-territorial males, but this relationship was not statistically significant (IR: Mann-

Whitney U = 753.0, p = 0.088, Figure 1). Non-territorial males, however, showed higher 

variation in heterozygosity values than territorial males. This may be the result of a few 

non-territorial males establishing territories out of our study area, leading to errors in 

territory status assignment. 

Can behavioral traits act as male heterozygosity cues? 

We found no relationship between heterozygosity and courtship display time, number of 

aggressive interactions during courtship displays (GLM, R2 < 0.002, p > 0.08), or number 

of coordinated interactions among males and territory attendance (R2 < 0.028, p > 0.007, 

not significant after Bonferroni corrections). A weak but significant relationship existed 

between heterozygosity and vocalization rate (IR: R2 = 0.053, p < 0.001, Table 2). Thus, 

vocalization rate seems to be the most honest behavioral indicator of male heterozygosity 

(explains 5% of variance) and males with high heterozygosity were found to sing more.  

Assigning paternity  

We sampled 20 nestlings (11 nests), 3 fledglings, and 34 first-year juvenile males. We 

successfully assigned paternity of 28 offspring (16 chicks from 9 nests, 3 fledglings and 9 

juveniles) to 19 territorial males, out of the 92 potential fathers sampled in the Harpia 

neighborhood.  All but two males that sired offspring were observed defending territories.  

Clutch size was typically two and we found mixed paternity in only one case. We 

assumed that breeding females were the biological mothers of the chicks in their own 

nests (no allele mismatches) and we assigned maternity to only one fledgling. Thus, we 

had a total of 10 observed female-male mating dyads (both parents known). 



Tori, Wendy, 2008, UMSL, p. 25
 
 
Are heterozygous males siring more offspring? 

The average heterozygosity of males that sired offspring was not statistically different 

from the average heterozygosity of males that did not sire offspring (Mean IR ± SE, 

successful: -0.025 ± 0.023, unsuccessful: 0.026 ± 0.020, Mann-Whitney U = 625.5, p = 

0.165). Moreover, Monte Carlo simulations showed that successful males did not have 

significantly higher heterozygosity than expected by chance (p = 0.103, α = 0.05, Figure 

2). When we examined the relationship between heterozygosity and male mating success 

in more detail, we found that males that sired offspring had intermediate heterozygosity 

levels, and that individuals with extremely high or low heterozygosity did not reproduce 

(Figure 3). Further, we found that successful males had lower variability in 

heterozygosity levels than unsuccessful males (successful: 2 = 0.010, n = 19, 

unsuccessful 2 = 0.031, n=73, Levene’s test, F = 7.742, p = 0.007), as might be 

expected if males with intermediate levels of heterozygosity are preferentially selected by 

females. 

Are heterozygous males receiving more female visits? 

We observed a total of 98 female visits distributed across 31 territorial males during 

1,308 observation hours. The best fit, although not significant, was a quadratic repression 

between female visitation and heterozygosity (IR: t = 0.83, p = 0.413, IR2 = 0.058, 

Model: y = 0.175 + 0.11x – 1.053x2, p = 0.16, R2 = 0.102, Figure 4). These results appear 

to reject the heterozygosity hypothesis, and are consistent with those based on known 

parentage (males with the highest female visitation had intermediate levels of 

heterozygosity). 
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Are females mating with genetically compatible males? 

The average relatedness of observed female-male mating dyads was -0.043 ± 0.054 (SE, 

n = 10) and the average relatedness of females with all other potential mates at the leks 

where they mated was -0.002 ± 0.016 (SE, n = 88). Two females mated with the most 

dissimilar males (i.e., least related), one mated with the most similar male (i.e., most 

closely related) and seven mated with males with intermediate relatedness. Moreover, we 

found no evidence that females were selecting more dissimilar males than the average 

candidate male available (paired t-test = -0.76, df = 9, p = 0.234), or that they were 

selecting males less related than the median relatedness of candidate mates (binomial test, 

p = 0.623). We were not able to record the identity of most visiting females during 

behavioral observations; thus, we did not examine the relatedness between visiting 

females and males. 

 

DISCUSSION 

The goal of this study was to test two competing hypotheses for genetic fitness benefits in 

female mate choice using the White-crowned Manakin as a model system. Specifically, 

we tested if females select (1) highly heterozygous males or (2) genetically dissimilar 

males, to increase the genetic diversity of their offspring. The heterozygosity hypothesis 

predicts that females preferentially mate with highly heterozygous males. On the other 

hand, the compatibility hypothesis predicts that females mate with genetically dissimilar 

males. Overall, our results support only partially the heterozygosity hypothesis. We found 

that spatial (i.e., territory size and centrality) and behavioral traits (i.e., vocalization rate) 

appear to be honest indicators of male heterozygosity. However, contrary to expected, 
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males of intermediate heterozygosity appeared to be more successful in mating than 

either the most homozygous or heterozygous males.  

Heterozygosity hypothesis 

In accordance with the first prediction of the heterozygosity hypothesis, we found a 

positive relationship between heterozygosity and territory size and centrality.  

Heterozygosity explained 20% of the variation in territory location and 2% of territory 

size. Highly heterozygous males had larger and more centrally located territories. To the 

best of our knowledge, only one previous study has demonstrated a relationship between 

heterozygosity and territory centrality at leks (Höglund, et al. 2002). Our results agree 

with this study and suggest that territory centrality may act as a cue of male 

heterozygosity in female mate choice. Moreover, we found weak evidence that territorial 

males tended to have higher heterozygosity than non-territorial males. A more detailed 

study is needed to confirm this result, but if real, it suggests that heterozygosity may 

influence territory acquisition. If territoriality determines male access to females at least 

to some extent (Höglund and Alatalo1995, Johnson et al. 2000), then heterozygosity may 

impact mate choice by acting as a filter of male reproductive potential prior to female 

visitation and male assessment at leks.  

Behavioral traits are known to act as visual cues of male performance and are 

sexually selected (e.g. acoustic component: Gibson and Bradbury 1985, Marshal et al. 

2003, Seddon et al. 2004, display rate: Gibson and Bradbury 1985, Höglund and 

Lundberg 1987, McDonald 1989, Anderson 1989, lek attendance: Hill 1991, Anderson 

1989, and male aggression: Trail 1985, Fiske et al. 1998 but see Hill 1991). We found 

that vocalization rate was the only measured behavioral variable significantly related to 
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heterozygosity.  Heterozygosity explained approximately 5% of the variance in 

vocalization rate and males with higher heterozygosity were found to sing more. Thus, 

our results suggest that females can potentially use vocalization rate in concert with other 

spatial traits (i.e., territory centrality, territory size) to assess the level of heterozygosity 

of potential mates.   

Regarding the second prediction of the heterozygosity hypothesis, we did not find 

evidence that males with the highest heterozygosity were more successful at mating. 

Instead, we found a complex relationship between heterozygosity and male mating 

success. Most males that sired offspring had intermediate levels of heterozygosity, 

whereas males with the highest heterozygosity did not appear to reproduce. This pattern 

could not be explained by limited accessibility of highly heterozygous males, because 

males with high heterozygosity were present in all leks and, in many cases, they were 

neighbors of males that sired offspring. Moreover, we found that males with low 

heterozygosity did not sire offspring. 

There is some evidence in the literature that, in some species, females select 

mates with intermediate levels of heterozygosity to produce offspring with optimal levels 

of genetic diversity. Aparicio et al. (2001) found that male Spotless Starlings (Sturnus 

unicolor) with intermediate levels of heterozygosity were more successful in mating and 

eliciting mate fidelity. In Bluegill Sunfish (Lepomis macrochirus), males with 

intermediate levels of heterozygosity were also found to have higher reproductive success 

than males with low or high heterozygosity levels (Neff 2004). Furthermore, Bonneaud 

(2006) found that female house sparrows (Passer domesticus) did not form breeding pairs 

with males with low allelic diversity or with males that were too dissimilar at MHC loci 
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(class I genes). These authors argue that inbreeding and outbreeding can both 

compromise fitness. On the one hand, extreme inbreeding may have fitness disadvantages 

due to the expression of deleterious recessive alleles and lower potential to respond to 

changing environments (inbreeding depression, Lynch 1991). On the other hand, extreme 

outbreeding may have fitness disadvantages due to the loss of local genetic adaptations 

and breaking up of co-adapted gene complexes (outbreeding depression, Lynch 1991).  

As a result, it has been suggested that females may seek an optimum, by balancing 

inbreeding and outbreeding costs (optimal outbreeding hypothesis, Bateson 1983). Our 

results agree with this hypothesis and suggest that female White-crowned Manakins 

avoid mating with males with low and high heterozygosity levels. We do not know, 

however, the underlying mechanism by which females recognize males with intermediate 

levels of heterozygosity during mate selection. We found that heterozygosity was 

significantly related with centrality of male territories, territory size and vocalization rate, 

thus females may use these traits as an index of male heterozygosity and select males 

with intermediate phenotypic expression as mates. A study that addresses the fitness 

effects of inbreeding, outbreeding and the mechanisms used by females to recognize 

males with intermediate genetic diversity is necessary to confirm this argument. 

Compatibility hypothesis 

We did not find evidence that females actively select dissimilar males to increase the 

genetic diversity of their offspring. A small proportion of females mated with the most 

dissimilar males; but this proportion of unrelated matings would be expected under 

random mating. Moreover, we found no difference in the average relatedness between 

observed and potential mating dyads. The existence of fine resolution mechanisms for 
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genotype recognition in passerine birds is controversial (Mays and Hill 2004). However, 

even if females have only approximations of their own genotype and those of potential 

mates, they may increase their offspring heterozygosity by recognizing and avoiding 

mating with kin. Under this scenario, females would be expected to select unrelated 

males that by definition will have lower genetic similarity than the median candidate 

male. Even at this coarser level, we did not find evidence to suggest that females are 

actively avoiding mating with kin. Females selected males across the entire relatedness 

continuum and there was no evidence that they were selecting males with lower 

relatedness than the median relatedness of potential mates. These results suggest that the 

compatibility hypothesis is an unlikely explanation for female mating preferences in this 

lekking species. 

Additional remarks 

We are aware that our results are limited because of small sample size, and may not hold 

with increased sample effort. We believe this is unlikely because our result from female 

visits (a potential surrogate of male mating success for which we have a larger sample 

size) suggests a similar pattern, in which males with intermediate levels of heterozygosity 

also appear to have higher visitation than males with high or low heterozygosity levels 

(Figure 4).   

Conclusions 

We conclude that the compatibility and the heterozygosity hypotheses do not explain 

female mate choice in the White-crowned Manakin. Nevertheless, heterozygosity may 

play a role during female mate selection. Males with intermediate heterozygosity were 

the most successful at mating, suggesting that females may optimize heterozygosity 
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levels of their offspring by negotiating a balance between inbreeding and outbreeding 

costs.   
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Table 1. PCR cocktail recipe, PCR conditions and general characteristics of 7 microsatellite loci used for molecular analyses in the 

White-crowned Manakin (Pipra pipra). All microsatellite loci were developed for other manakins species (Piertney et al. 2002; DuVal 

et al. 2005, R. Brumfield and M. Braun, pers. comm.). Allele numbers were based on 142 genotyped individuals. Volumes for the 

PCR cocktail are in µl.  

 Man6 Man13 Maniac-13 Maniac-3 Lan10 Lan20 Lan22 

PCR cocktail        

10x NH4 (Buffer) 1 1 1 1 1 2 1 

dNTP mix (1mM) 1 1 1 1 1 2 1 

MgCl2 (25 mM) 1.25 1 1 1 0.5 1.5 0.5 

Primer R 0.25 0.25 0.25 0.25 0.25 0.5 0.25 

Primer F 0.25 0.25 0.25 0.25 0.25 0.5 0.25 

DMSO 0.25 0.25 0.25 0.25 0.25 0.5 0.25 

Taq DNA  Polymerase 0.06 0.06 0.06 0.06 0.06 0.1 0.06 

Water 0.96 1.21 1.21 1.21 1.71 2.9 1.71 

DNA (20 ng/µl) 1.5 1 1.25 1.5 1 1.5 1 

Total  volume 6.52 6.02 6.27 6.52 6.02 11.5 6.02 
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 Man6 Man13 Maniac-13 Maniac-3 Lan10 Lan20 Lan22 

PCR program        

Denaturation temperature (˚C) 94 94 94 94 94 94 94 

Denaturation time (sec) 30 30 30 30 30 30 30 

Annealing temperature (˚C) 56 56 55 54 54 54 54 

Annealing time (sec) 30 30 30 30 30 30 30 

Extension temperature (˚C) 72 72 72 72 72 72 72 

Extension time (sec) 60 60 30 30 30 30 30 

Number of Cycles 35 35 30 35 30 30 30 

Final extension temperature (˚C) 72 72 72 72 72 72 72 

Final extension time (min) 10 10 10 10 10 10 10 

Characteristics of microsatellite loci 

Number of alleles 11 26 25 19 7 17 20 

Observed heterozygosity, H(O) 0.772 0.901 0.871 0.853 0.547 0.747 0.915 

Expected heterozygosity, H(E) 0.783 0.932 0.885 0.877 0.525 0.816 0.920 

Null allele frequency 0.0046 0.0153 0.0084 0.0116 -0.0193 0.0452 0.0013 
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Table 2. Generalized linear models (Poisson family) examining the effects of 

heterozygosity (measured as Internal Relatedness) on behavioral and spatial traits of 

territorial males. The effect of heterozygosity on each dependent variable was examined 

individually (significant relationships after Bonferroni corrections are highlighted in bold, 

p<0.00625). Note that low values of IR indicate high heterozygosity levels and, thus, a 

negative slope between IR and vocalization rate indicated a positive relationship of this 

variable with respect to heterozygosity. 

 
Dependent Variable N slope R2 P-value 

Behavioral traits     

Vocalization rate 37 -0.55 0.05 < 0.001 

Territory attendance 37 -0.03 <0.01 0.0165 

Number of coordinated interactions 37 -0.90 0.03 0.0072 

Courtship display time 37 0.024 <0.01 0.101 

Number of aggressive interactions  37 -0.22 <0.01 0.4410 

     

Spatial traits     

Distance to center of lek 37 1.31 0.19 < 0.001 

Territory size 37 -0.31 0.02 < 0.001 
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Figure 1. Average Internal relatedness (Mean ± SE) of territorial (n = 63, TM) and non-

territorial (n = 29, Non TM) White-crowned Manakin males. Territorial males tend to 

have slightly higher heterozygosity than non territorial males but the difference was not 

statistically significant. Low IR values represent high heterozygosity levels, thus to 

facilitate graph interpretation the x axis (IR) has been inverted. 
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Figure 2.   Monte Carlo analysis of males that sired offspring (n =19, observed) and 

males randomly drawn from the overall population. The histogram illustrates the 

distribution of the average heterozygosity of 19 randomly drawn males from 1000 

randomizations. The average heterozygosity of males that sired offspring (observed) was 

higher than the random simulated values 897 times (p = 0.103). Note the x axis (IR) is 

inverted, such that males with higher heterozygosity occur at the right side of the graph. 
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Figure 3.  Internal relatedness (IR) for territorial males that did (open circles) or did not 

sire offspring (black circles). Territorial males with extremely high or low heterozygosity 

did not sire any offspring. Vertical lines mark internal relatedness range for successful 

(dashed lines) and unsuccessful males (dotted lines). Successful males had significantly 

lower variability in heterozygosity than unsuccessful males. Note the x axis (IR) is 

inverted, such that males with higher heterozygosity occur at the right side of the graph. 
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Figure 4. Quadratic regression between internal relatedness index (IR) and standardized 

female visits of territorial males of 4 White-crowned Manakin leks. Note that: 1) males 

with high female visitation (open squares) had intermediate heterozygosity levels, 2) 

males with high heterozygosity (open circles) had intermediate female visitation levels 

and 3) males with low heterozygosity (open triangles) received almost no female visits.   



Tori, Wendy, 2008, UMSL, p. 49
 
 

CHAPTER 2 

 

Do resources affect male reproductive success in exploded lek mating systems?  A 

case study with the White-crowned Manakin (Pipra pipra) 

 

INTRODUCTION 

Leks are typically defined as assemblages of adult males displaying at a traditional site.  

Females visit these display arenas to assess potential mates and for the purposes of 

mating (Bradbury and Gibson 1983, Ligon 1999, Alatalo et al. 1991). Accordingly, it is 

assumed that (1) lek territories rarely contain significant resources, (2) resource 

availability within leks does not affect the distribution of females, and (3) that female 

choice of particular males is based on male characters unrelated to immediate gains in 

fitness (Höglund and Alatalo 1995). The validity of these assumptions, however, is not 

clear for species with exploded leks, in which males have relatively large territories that 

may be separated by considerable distances (males are in auditory rather than visual 

contact). Unlike classical leks, in which males have very small display territories, 

exploded leks may contain suitable habitats for females, and females can potentially 

forage and even nest within a male’s territory (Höglund and Alatalo 1995, Jiguet et al. 

2000, Jiguet et al. 2002). Thus, male mating success in exploded leks can potentially be 

affected by the spatial distribution of resources through two mechanisms: (1) influence on 

female encounter probability (Figure 1a); or (2) influence on female mate choice (Figure 

1b and c).   
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In the first mechanism, territories with high resource availability are expected to 

be attractive to females, increasing the encounter probability between sexes (Figure 1a, 

Bradbury and Gibson 1983, Bradbury et al. 1986). Males with more access to females 

will have more opportunities for copulation and, potentially, higher mating success.  

Indeed the “hotspot” hypothesis of lek evolution suggests that resources are one of the 

major factors driving female spatial distributions, and that males are attracted to sites 

with high female density or activity (Loyau et al. 2007), leading to the formation of leks 

(Bradbury and Gibson 1983; Bradbury et al. 1986, 1989).   

In the second mechanism, resource distribution can affect female mate choice by 

acting directly as an honest signal of male quality or by influencing other features that 

females use to assess males (e.g., display performance). On the one hand, if resources 

(e.g., fruits) are limited (Leigh and Windsor 1982), one would expect intense competition 

among males to control high-quality territories. Thus, high-quality males will be able to 

establish their territories in areas where resource availability is high, and females will be 

able to assess resource availability as an honest signal of male quality (Figure 1b). On the 

other hand, lekking species are characterized by high energetic costs during reproduction 

because of intense energy demands of mate attraction displays (Vehrencamp et al. 1989, 

Höglund et al. 1992, Kålås et al. 1997). Thus, males that have territories with higher 

resource availability will be able to find and consume resources more efficiently so that 

they can maximize their levels of attendance and display performance. If females are 

using these behavioral variables as cues for male quality, resource availability can 

potentially be translated into significant effects on male mating success (Figure 1c). 
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In this study, we evaluated the effect of resource availability on male mating 

success of an exploded lekking species: the White-crowned Manakin (Pipra pipra). To 

do this, we examined the effect of territory resource distribution on male mating success.  

We predicted that males with more resources within their territories would have higher 

reproductive success. Next, we examined which of the previously described scenarios 

operate in our system. If territory resource availability affects male mating success 

through an effect on female encounter probability, we predicted that the number of 

female visits would increase with the availability of resources within territories. On the 

other hand, if resources affect male traits used as quality cues during female mate choice, 

we predicted that high fruit availability would enhance male characteristics (e.g., display 

activity, aggression, lek attendance; see Fiske et al. 1998). Lastly, if females use fruit 

availability within territories as an honest signal of male quality, we predicted that 

resources would have an effect on female mate choice, but resources would not 

necessarily have an influence on male behavior. As these predictions are not necessarily 

mutually exclusive (resources can increase female encounter probability and male 

attractiveness simultaneously), our examination is preliminary and separation of these 

hypotheses require future manipulation to unambiguously determine the underlying 

mechanisms. Nonetheless, information generated in this study will be the first step 

towards a better understanding of the role of resources, and the mechanisms that shape 

the relationship between resource availability and male mating success in species with 

exploded leks.  
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METHODS 

Study site 

Research was conducted at the Tiputini Biodiversity Station (TBS, ~0º 38' S, 76º 08' W) 

located on the north bank of the Tiputini River in eastern Ecuador. TBS encompasses 650 

hectares of largely undisturbed rainforest, located within the 1.5 million hectare Yasuní 

Biosphere Reserve. It includes extensive evergreen terra firme forest, and other habitats 

such as swamps, floodplains and areas of natural regrowth. The canopy is up to 25 m 

high with emergent trees around 40 meters tall (Valencia et al. 2004). TBS lies on 

relatively flat terrain at an elevation of 190 – 270 m. The average annual rainfall is 2740 

mm and occurs mainly between April and August (average monthly rainfall ~ 383 mm); 

October to February is drier (average monthly rainfall ~140 mm, Karubian et al. 2005). 

We focused our study within and adjacent to a 100 hectare plot.  

Study species 

The White-crowned Manakin (Pipra pipra) is distributed in lower growth of montane 

forest and terra firme forest from Costa Rica to SW Colombia and E Peru and also occurs 

in Amazonia, SE Brazil, S Venezuela and the Guianas (Ridgely and Greenfield 2001). 

They form exploded leks in which males are within hearing distance of each other 

(Johnsgard 1994, Castro-Astor et al. 2007). Each male has a territory (approximately 570 

m2), where they use several perches to perform advertisement calls and displays (Snow 

1961, Théry 1992). They spend a large proportion of their time advertising within their 

territory (up to 88% of the day, Théry 1992). Females alone have the responsibility of 

building the nest, incubating eggs, and raising the chicks. White-crowned Manakins 

inhabit the understory, preferring to stay between 3 and 6 meters from the ground.  
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Manakins are mainly frugivorous (Worthington 1982), but they also consume some 

insects. They forage by gleaning from a perch or by hovering or sally-gleaning while on a 

short flight (Tori, pers. obs.). They eat a wide diversity of soft fleshy fruits and arillate 

seeds; consuming the pulp or aril and discarding the seed via regurgitation or passage 

through the gut. Loiselle et al. (2007), in a short-term study conducted at our site, 

reported that White-crowned Manakins consumed 44 different fruit species. Fruits from 

the families Melastomataceae, Rubiaceae and Araceae make up a large proportion of 

their diet (Krijger et al. 1997, Loiselle and Blake 1990, Tori, unpublished data). 

Fruit availability 

Mapping activities were conducted in February and April of 2002 – 2004, December to 

April 2004 - 2005, and November to April 2005 - 2006. Data were used to identify the 

location of focal leks (n = 4) and territories (2005: n = 29, 2006: n = 28). Territories were 

defined as defended areas where individual males displayed and advertised for females.  

Leks were defined as discrete spatial clusters of male territories, in which neighboring 

males were in auditory contact. We established 30-m transects bisecting the major axis of 

each male’s territory in December 2004 (hereafter called 2005 field season) and 

November-December 2005 (hereafter called 2006 field season). Transects were 5-m wide 

and 10-m high. We took pictures, scanned or collected voucher specimens of flowering 

and fruiting plants for later identification to species or morpho-species. Plants were 

identified using collections at the Missouri Botanical Garden or at Herbario Nacional del 

Museo Ecuatoriano de Ciencias Naturales in Quito. We restricted our analyses to plants 

known or suspected to be consumed by manakins based on personal knowledge and prior 
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studies (Snow 1981, Worthington 1982, Wheelwright et al. 1984, Worthington 1989, 

Marini 1992, Loiselle and Blake 1992, 1993, 1999, Loiselle pers. obs).   

Fleshy fruits in the tropics often take several months to ripen (Loiselle 1987), and 

birds preferentially eat ripe fruits because of their higher nutritional values (Foster 1977, 

Moermond and Denslow 1983, Moermond et al. 1986). Ripe fruits within territories can 

be difficult to quantify because fruits can ripen asynchronously over a long time period, 

and fruits are often consumed quickly after ripening. Blake et al. (1990) suggested the 

use of unripe fruit as a measure of future ripe fruit availability. In an effort to maximize 

the information about fruit availability across the main breeding season (December-

March), we measured (1) number of unripe fruits, (2) number of reproductive (i.e., 

flowering and fruiting) plants, and (3) total wet fruit biomass (g). When fruits were so 

abundant that direct counts were not possible, we calculated an average number of fruits 

in each infructescence (using a sub-sample of 10 infructescences) and multiplied it by the 

total number of infructescences on the plant (Worthington 1982, Ryder et al. 2006).  

Wet-fruit biomass was calculated only for species of Melastomataceae, Rubiaceae and 

Araceae (~ 77% of species with fruits). To do this, we combined the number of ripe 

(when present) and unripe fruit in each territory and multiplied the total by the average 

weight of ripe fruit for each species (based on ~20 fruits per plant species weighed to the 

nearest  0.1g; Ryder pers. comm. and Tori unpublished data). If we could not collect ripe 

fruit of a given species (~36% of species), we used the average weight of a closely related 

species as a surrogate. We are aware that fruits from different species may vary in 

nutritional content, yet we believe that the large variation in number of fruits, 

reproductive plants and fruit biomass found among different territories overwhelm any 
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interspecific variation in fruit nutritional content. Thus, we think that the number of 

reproductive plants, number of unripe fruit and fruit biomass will provide reasonable 

estimates of resource availability within male territories across the breeding season.   

Male reproductive success 

We used two estimates of male success: 1) molecular paternity using microsatellites and 

2) female visits. Nests were found via systematic searches of the forest, supplemented by 

radio-tracking females in breeding condition to their nests (for details see Tori et al. 

2006). For molecular paternity, we sampled DNA from females, nestlings and candidate 

males and genotyped them for 7 polymorphic microsatellite loci (Man6, Man13, Maniac-

3, Maniac-13, Lan10, Lan20 and Lan22; Piertney et al. 2002, DuVal and Nutt 2005, 

Brumfield and Braun pers. comm.). Paternity of nestlings was assigned using the 

program CERVUS (Marshall et al. 1998, for details see chapter 1). Behavioral estimates 

of male reproductive success were measured by counting the number of female visits 

recorded during behavioral observations (see below). We standardized the number of 

female visits by the number of two-hour observation periods conducted for each male. 

Male behavioral observations  

We conducted focal behavioral observations of 33 territorial males in 4 leks (same males 

whose territories were sampled for fruit). Observations were conducted during January–

March 2005 and December 2005–March 2006, during peak periods of daily activity for 

White-crowned Manakins (07:00-09:00, 12:00-14:00 and 14:30-16:30 h). Each 

behavioral observation lasted 2 hours and males were observed for at least 12 hours 

(Mean ± SE , 2005: 14.80 ± 0.39 hours, 2006: 26.75 ± 0.99 hours). During behavioral 

observations, we recorded the (1) number of female visits, (2) time males spent 
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displaying (seconds), (3) territory attendance (minutes), and (4) number of aggressive 

interactions directed towards conspecifics in the focal male’s territory. All behavioral 

variables were standardized by the number of behavioral observations (i.e., per 2 hours) 

conducted for each male. 

Statistical analysis 

The number of female visits (2005, 2006 and 2005-2006), number of reproductive plants 

(2006), fruit biomass (2005 and 2006), and time spent displaying (2005) were 

transformed (i.e., ln(x+1) or √(x)) to meet parametric assumptions.  We were not able to 

normalize the variables unripe fruit (all years), fruit biomass (2005-2006), territory 

attendance (2005 and 2006) and number of aggressive interaction (2005 and 2006). In the 

cases where data did not meet parametric assumptions, we used non-parametric tests.   

 To examine if there were general differences in resource availability between 

field seasons, we compared the number of unripe fruits, reproductive plants, and fruit 

biomass between 2005 and 2006 using Mann-Whitney or t- tests. Further, to see if 

resource availability within territories was consistent across seasons, we ran correlations 

of each resource variable between 2005 and 2006.  

To determine if males that sired offspring had more resources within their 

territories than males that did not sire offspring, we used Mann-Whitney or t-tests. Due to 

small sample sizes for male success based on molecular paternity analysis, we pooled 

both seasons (i.e., 2005-2006) and grouped males in molecular success categories (i.e., 

males that sired vs. did not sire offspring).  Further, we used the mean across years for 

number of fruiting plants, unripe fruit, and fruit biomass as explanatory variables. We felt 

that averaging values across years was justifiable, as resources within a territory were 
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significantly correlated between years (see results). White-crowned Manakins are 

relatively long-lived birds (Blake and Loiselle 2008) with relative stability across years in 

male ownership of territories and female home ranges (see results, Blake and Loiselle, 

unpublished data). To examine if resources had an effect on female encounter probability 

(Figure 1a), we ran regression analyses for each year independently. We used the number 

of unripe fruit, reproductive plants, and fruit biomass as explanatory variables and the 

standardized number of female visits as the response variable. Residuals were normally 

distributed for all regression analyses. Finally, to examine if fruit resources had an 

influence on male performance (Figure 1c), we ran correlations between the three 

resource variables and male behavioral traits. Because assumptions of normality were not 

met in all cases, we ran correlations instead of regression analyses. We used SPSS v. 13.0 

and R v. 2.6.1 to conduct statistical analyses. 

 

RESULTS 

Male territory fidelity 

In general, territories were stable across years both in location and male ownership.  

From 2005 to 2006, 23 of 24 males (present in both seasons) occupied the same territory, 

while one male moved territories within a lek. In addition, two new males occupied 

territories in 2006 that were held by other males in the previous year, and 6 males that 

were territorial in 2005 did not come back in 2006. 

Fruit resources 

We recorded a total of 94 morpho-species of reproductive (i.e., flowering and fruiting) 

plants in the transects. The families Melastomataceae (35%), Rubiaceae (22%), Araceae 
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(15%), Solanaceae (5%), Gesneriaceae (4%), Annonaceae (3%), accounted for most of 

the plant species. Other families, (i.e., Bromeliaceae, Nyctaginaceae, Erythroxylaceae, 

Euphorbiaceae, Guttiferae, Monimiaceae, Myrtaceae, Arecaceae, Urticaceae and 

Heliconiaceae) accounted for less than two percent each. 

The number of unripe fruits, reproductive plants and fruit biomass within 

territories varied among males for both seasons (Table 1). Few male territories were 

relatively fruit-rich, whereas most were relatively fruit-poor. The number of unripe fruits 

(Mann-Whitney U = 340.5, p = 0.296), reproductive plants (t test: t = 0.273, df = 55, p= 

0.786) and fruit biomass (t test: t = 1.945, df = 55, p = 0.060) did not differ between 2005 

and 2006. Moreover, the number of fruiting plants (r = 0.45, p = 0.019) and fruit biomass 

(r = 0.41, p = 0.032) in territories were significantly positively correlated between 

seasons, whereas numbers of unripe fruit (Spearman r = 0.37, p = 0.057) were marginally 

correlated between years. 

Molecular Paternity 

We assigned paternity of 11 nestlings to seven territorial males (from 33 focal males).  

Despite small sample sizes that likely failed to identify all males that were reproductively 

successful, males that were identified as siring offspring from paternity analyses had 

significantly more unripe fruit (Mann-Whitney U = 45, p = 0.018), marginally more 

fruiting plants (t = 1.606, df = 32, p = 0.059), but similar fruit biomass (Mann-Whitney U 

= 63, p = 0.09) within their territories compared to males with no molecular evidence of 

paternity (Figure 2).  
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Female visitation 

We observed a total of 98 female visits distributed across 19 males in 2005 and 22 males 

in 2006 during 1,308 observation hours. In a few cases, visiting females were observed 

foraging within male territories, but the number of female visits was not related to the 

number of unripe fruit, number of reproductive plants or fruit biomass in 2005 or 2006 

(Table 1).   

Behavioral traits 

Males showed considerable variation in behavior, especially in time spent displaying and 

aggressive interactions (Table 2). Treating each variable independently, time spent 

displaying was positively correlated with some measure of resource availability in both 

years (2005: unripe fruit and 2006: number of plants). That is, in 2005, territorial males 

with more unripe fruit in their territory spent more time displaying, while in 2006, males 

with greater number of reproductive plants spent more time displaying than males whose 

territories had fewer reproductive plants (Table 3). However, with a Bonferroni 

correction (Rice 1989) for multiple tests, only the relationship between time spent 

displaying and number of reproductive plants was significant at the adjusted p-value 

(0.0056). Nonetheless, there appears to be a consistent tendency for fruit resources to 

affect male display in both seasons (p < 0.05), suggesting that the relationship might be 

biologically meaningful (see Moran 2003).   

 

 DISCUSSION 

Our results suggest that resources play a role in male mating success for the White-

crowned Manakins. We found that males that sired offspring tended to have higher fruit 
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availability within their territories than unsuccessful males. Resources, however, did not 

affect the encounter probability between sexes (i.e., as measured by female visits). On the 

contrary, our results suggest that males may compete for territories with more fruit to 

satisfy their own energetic requirements. Males with more fruit resources within their 

territories tended to spend more time displaying in both seasons. Thus, resource 

availability within territories may affect male mating success through its influence on 

male display characteristics. 

Territory resource distribution 

An essential requisite for fruit resources to affect male reproductive success is that 

resources vary among male territories. In tropical forests, fruit resources are known to be 

patchily distributed (Fodgen 1972, Levey 1988, Loiselle and Blake 1993) and, thus, 

males might be expected to compete for access to high quality territories. In this study, 

we found that the number of unripe fruits, reproductive plants and fruit biomass varied 

among territorial males in both seasons. Males were observed to have high territory 

fidelity and the availability of resources was correlated within territories between years. 

These results suggest that only some males are able to settle in areas with high resources 

and that less competitive males may be “forced” to settle in territories with relatively 

lower abundance of fruits. These differences in territory quality among males provide 

opportunity for selection and suggest that territory quality could affect male performance, 

as well as act as an honest signal of male competitive abilities during female mate choice.  

Do resources affect reproductive success of territory owners? 

We found that males that sired offspring had more unripe fruits and tended to have more 

reproductive plants in their territories than unsuccessful males. We are aware that our 
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results are limited because of small sample sizes, however even with small sample sizes, 

we found differences among success groups, suggesting that these relationships may be 

real. Consequently, this study suggests that resources may be more important than 

previously believed in exploded lekking species, and that future studies should consider 

the role of resources in male success.  

Are resources affecting the encounter probability between sexes? 

We found no direct relationship between female visitation and resource availability 

within territories (i.e., males in resource-rich territories did not receive proportionally 

more female visits than males in resource-poor territories) during any season. This 

suggests that territory quality is not driving female visitation patterns, and that males do 

not gain reproductive benefits through this mechanism.  

 Failure to support this hypothesis, however, does not necessarily refute the 

importance of fruit resources as a way to gain access to females. It has been suggested 

that leks are placed in areas of high fruit availability (i.e., hotspot hypothesis), where high 

density of females are expected regardless of the fine-scale distribution of resources 

among territories. At the scale of the lek, Ryder et al. (2006) found that White-crowned 

Manakins leks at our study site are located in forest areas where fruit resources (i.e., 

number of fruiting plants and number of fruiting species) are more abundant. A study that 

examines the relationship between overall fruit availability at leks and the overall number 

of female visits received by leks will further elucidate if resources affect the encounter 

probability among sexes at the lek level. At the scale of individual territories on leks, 

however, we found no evidence that the distribution of resources within territories 

determines female visitation. 
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Do resources have an effect on male performance? 

We found that males with more resources within their territories displayed for longer 

periods of time than males with less resources. On the other hand, we did not find any 

consistent relationship between the availability of resources and male territory attendance 

or aggression rate. The lack of relationship between fruit resources and territory 

attendance was surprising, since attendance has an intuitive relationship with food 

availability within territories (i.e., the more resources within territories, the longer males 

can stay without searching for food elsewhere). We suspect, however,  that males may 

need to attend their territories for certain amount of time (regardless of the availability of 

resources) to be able to own / defend a territory and have access to females (territory 

ownership in manakins appears to be critical for male mating success, chapter 1, Ryder et 

al. 2008). Consistent with this hypothesis, we found that attendance had the smallest 

coefficient of variation of all the behavioral traits measured and that males attended their 

territories for long periods of time (Table 2). Moreover, attendance has been identified as 

a general predictor of male mating success in lekking species (Fiske et al. 1998). This 

may suggest that other costly sexually-selected behaviors (e.g. display behaviors) may be 

limited by the ability of males to meet their energetic demands while maintaining high 

levels of attendance.   

Lekking courtship behaviors have been reported to be costly. For example, studies 

of Sage Grouse revealed that the energetic costs of male display are substantial, and that 

males have an instantaneous rate of energy expenditure during display of more than 13.9 

times their basal metabolic rate (Vehrencamp et al. 1989). Similarly, in the Great Snipe 

(Gallinago media), displaying males have been found to lose up to 6.8% of their body 
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mass during each display night and it has been suggested that display rates are 

constrained by energetic limitations (Höglund et al. 1992). We also have evidence that 

display behavior can be energetically costly for White-crowned Manakins. Average 

weights of adult males differed between the breeding (December – March, n = 57, 10.55 

± 0.08 g) and non-breeding season (June-August, n = 20, 11.5 ± 0.14 g, t = 6.385, df = 

75, p < 0.001, unpublished data). However, we do not have specific data from individual 

males between seasons to test if those males in resource-rich territories lose less weight 

than those in resource-poor territories after controlling for display behavior. Nevertheless, 

our results are consistent with the idea that White-crowned Manakin display behaviors 

demand substantial energetic costs, and that displays may be subsidized by resources 

within territories. Resources, however, are only one factor that may influence the 

expression of male display rate. Other factors such as genes (Kotiaho et al. 2001), age 

and experience (Trainer and McDonald 1995, Trainer et al. 2001) are also known to 

influence the expression of male display characteristics. 

Do resources act as honest signals of male quality? 

This hypothesis suggests that fruit resources within territories affect female mate choice 

by acting as honest signals of male quality. It predicts that females will directly assess 

resources within territories, so that there is no necessary relationship between resources 

and male display traits. Appropriate testing of this hypothesis, however, requires field 

experimentation not included in this study (e.g., experiments with different amounts of 

resources controlling for male performance). Thus, we can not discard the possibility that 

resources are simultaneously acting as honest signals of male quality and increasing male 

display performance during female mate choice (Figure 1 b and c).   
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Resources can act as honest signals of male quality at two different temporal 

scales. On one hand, resource assessment within a breeding season could provide females 

with information about present (i.e., seasonal) male competitive abilities (snapshot). On 

the other hand, females may assess resources at a longer temporal scale. Manakins 

species have relatively long life spans (> 10 years, Snow 1962, Snow and Lill 1974, 

McDonald 1989, 1993) and male territories occur at specific locations that are used year 

after year. Moreover, hippocampal measurements of several genera of manakins (Pipra, 

Manacus and Chiroxiphia) show that they have large hippocampus, suggesting that they 

may have good spatial memories (D.B. McDonald, pers. comm.). Thus, females may be 

able to use information about the overall long-term availability of resources within 

known territories to make mating decisions. In this case, resources would provide more 

comprehensive information about male competitive abilities and could be used as a 

criterion to reduce mate searching costs. Studies that collect long-term data on resources 

and male mating success are required to test this possibility. 

Concluding remarks 

Territory quality has been shown to affect female mate choice and reproductive success 

for many species (e.g., Hews 1983, Poulsen et al. 1998, Calf et al. 2003, Kerbiriou et al. 

2006, Maguire 2006, Rubenstein 2007). However, in non-resource based mating systems 

such as leks, it is generally assumed that territories do not contain significant resources 

and that resources do not affect male mating success. This assumption is not clear for 

exploded lekking species, in which males are clustered but have relative large territories 

that can contain resources that may affect male reproductive output. To the best of our 

knowledge, there have been only two studies that tested these arguments in birds with 
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exploded leks. In the Little Bustard (Tetrax tetrax, Jiguet et al. 2002), males settled in 

areas with resources, but resources within territories were not critical for females and 

females did not use them as a criterion for mate choice (Jiguet et al. 2002). Similarly in 

Houbara Bustards (Chlamydotis undulata undulata, Hingrat et al. 2007), males did not 

monopolize critical resources for breeding females, and resources did not affect female 

mate choice. In contrast with these studies, our results suggest that resources may affect 

male mating success in White-crowned Manakins. Resource availability varied among 

male territories and males that sired offspring were found to have higher fruit availability 

within their territories than unsuccessful males. We did not find any evidence, however, 

that males controlled female access to resources to obtain matings, or that resources 

within territories are critical for females (females feed mostly outside male territories).  

On the contrary, our results suggest that resources may be important to maximize male 

display. Males with more resources within their territories tended to display for longer 

periods of time. Thus, resources appear to affect male mating success by influencing 

male characteristics that females select during mate choice. Indeed, display rate has been 

identified as an important determinant of male mating success in the White-crowned 

Manakin (see chapter 3). Further investigations are necessary to unambiguously 

determine the mechanisms by which resources affect male mating success and to support 

our correlative suggestions with experimental data.   
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Table 1.  Descriptive statistics (mean, standard error and range) and simple regression results to test the relationship between the 

number of unripe fruit, number of reproductive plants and fruit biomass on the number of female visits received by each territorial 

male in 2005 and 2006. For regression analyses, the variables female visits (2005 and 2006), reproductive plants (2006), and fruit 

biomass were transformed and all regressions produced normal residuals. We found no relationship between the number of female 

visits and any resource variable. 

 

Year Variable Mean SE Range r2 t P-value 

 Unripe fruit (per 150 m2) 1716 675.1 0 – 14,698 0.04 1.108 0.278 

2005 Reproductive plants (per 150 m2) 7 0.6 2 - 14 0.01 -0.553 0.585 

 Fruit biomass (g per 150 m2) 382 174.1 0.90 – 4,369 0.05 1.125 0.270 

        

 Unripe fruit (per 150 m2) 639 195.2 1 – 5,047 0.01 0.595 0.557 

2006 Reproductive plants (per 150 m2) 8 1.1 1 - 30 0.00 0.403 0.690 

  Fruit biomass (g per 150 m2) 78 20.6 0.65 - 539 0.01 0.645 0.524 
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Table 2.  White-crowned Manakin male behavioral traits (mean, standard error and 

coefficient of variation) measured during focal behavioral observations at Tiputini 

Biodiversity Station for 2005 and 2006.   

 
 
    2005   2006 

Behavioral trait Mean SE CV   Mean SE CV 

         

Time spent displaying (sec / 2h) 166 24.3 0.89  205 21.1 0.55 

Territory attendance (min / 2h) 96 2.4 0.13  80 5.5 0.37 

Number of aggressions (aggressions / 2h) 0.2 0.03 0.93   0.3 0.04 0.70 
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Table 3.  Correlations between resource availability and White-crowned Manakin male 

behavioral traits in 2005 and 2006. The variables number of reproductive plants (2006), 

fruit biomass (2005 and 2006), and time spent displaying (2005) were transformed to 

meet parametric assumptions and Pearson correlations were run. Other variables such as 

number of unripe fruit (2005 and 2006), territory attendance (2005 and 2006) and number 

of aggressions (2005 and 2006) could not be normalized, thus we ran non-parametric 

Spearman correlations.   

 
a Pearson correlation coefficients 
 

             2005 2006 

Variable Behavioral variable rs P-value   rs P-value 

Unripe fruit Time spent displaying 0.368 0.050   0.320 0.097 

 Territory attendance 0.089 0.646  0.337 0.080 

 Number of aggressions 0.220 0.251  0.135 0.495 

       

Reproductive plants Time spent displaying -0.111a 0.567  0.561a 0.002 

 Territory attendance -0.140 0.470  0.001 0.996 

 Number of aggressions 0.263 0.167  0.035 0.859 

       

Fruit biomass Time spent displaying -0.173a 0.371  0.229a 0.242 

 Territory attendance 0.049 0.800  0.142 0.473 

 Number of aggressions 0.300 0.114  0.108 0.584 
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Figure 1.  Potential effects of resource availability on male mating success for exploded 

lek species. (a) Resources can have an effect on male mating success by affecting the 

encounter rates between sexes. (b)  Resources can have an effect on male mating success 

by acting as honest signals of male quality during mate selection. (c) Resources can have 

an effect on male mating success by affecting male traits (e.g. display performance) that 

are used as cues during female mate choice. 



Tori, Wendy, 2008, UMSL, p. 79
 
 

Molecular success category

Uns
uc

ce
ss

fu
l

Suc
ce

ss
fu

l

 U
ns

uc
ce

ss
fu

l

 S
uc

ce
ss

fu
l

  U
ns

uc
ce

ss
fu

l

  S
uc

ce
ss

fu
l

N
um

be
r 

of
 u

nr
ip

e 
fr

ui
t o

r 
fr

ui
t b

io
m

as
s 

(g
)

0

1000

2000

3000

4000

5000

6000

N
um

be
r 

of
 r

ep
ro

du
ct

iv
e 

pl
an

ts

6

7

8

9

10

11

12
Unripe fruit
Fruit biomass
Reproductive plants

 

 

Figure 2.  Comparison of resources availability (mean ± standard error) between males 

that sired (successful) and did not sire offspring (unsuccessful).   
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THIRD CHAPTER 
 

Sexual selection in the White-crowned Manakin (Pipra pipra): Effects of behavioral 

and spatial characteristics on male mating success 

 

INTRODUCTION  

Lek mating systems are characterized by intense sexual selection. Typically there is high 

variance in male mating success, in which only a few males sire most of the offspring 

(Höglund and Alatalo 1995, Mackenzie et al. 1995). Differences in male mating success 

result from interactions among males to gain access to females, and from choices females 

make among the males they have access to. Male-male competition (e.g., Foster 1981, 

Trail 1990) and female mate choice (e.g., Gibson and Bradbury 1985, Anderson 1989, 

Pruett-Jones and Pruett Jones 1990, Gratson 1993) have been reported to occur in many 

lekking species, and it has been suggested that both can act simultaneously (McDonald 

1989a, Höglund and Alatalo 1995, Loyau et al. 2005).    

Male-male competition can influence the outcome of mate choice at three stages 

of the mating process: 1) detection, 2) evaluation, and 3) choice of mates (Wong and 

Candolin 2005). First, competition can affect male mating success by influencing which 

individuals are assessed by females (mate detection). This happens, for example, when 

male-male competition determines which males get access to territories, or the quality of 

the territories acquired by males. In many lekking species, the position of the territory on 

the lek has been reported to have an influence in male mating success. In White-bearded 

Manakins (Manacus manacus, Shorey 2002), Sharp-tailed Grouse (Tympanuchus  

phasianellus, Gratson et al. 1991), Great Snipes (Gallinago media, Höglund and 
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Lundberg 1987), Topi antelope (Damaliscus lunatus, Bro-Jørgensen 2002, Bro-Jørgensen 

and Durant 2003), and Marine Iguanas (Amblyrhynchus cristatus, Partecke et al. 2002),  

males with more central territories have been found to gain  relatively higher mating 

success. Moreover, territory tenure has been suggested as a prerequisite of male mating 

success for some lekking species (e.g., Semple et al. 2001, Loyau et al. 2005, DuVal and 

Kempenaers 2008, Ryder et al. 2008). Thus, it is believed that male-male interactions can 

affect male success through an effect on whether and where males obtain territories.  

Second, competition can affect mate choice by influencing the assessment of 

prospective mates. In this case, dominant males disrupt female choice by interrupting the 

courtship of subordinate males (McGhee et al. 2007) and, thus place a limit on the 

female’s ability to assess candidate mates (Wong and Candolin 2005). Courtship 

disruptions have been commonly reported in lekking species (e.g., Foster 1981, 

Apollonio et al. 1992, Partecke et al. 2002). For example, Trail (1985) reported that 32% 

of all Guianan Cock-of-the-Rock (Rupicola rupicola) matings were terminated by 

courtship disruptions, and that females redirected their mating interactions toward 

disruptive males.   

Lastly, competition can affect male mating success by influencing the ability of 

females to choose mates, such as in Chiroxiphia manakins. In these species, adult males 

typically form teams to perform cooperative displays to attract females. There is a strong 

dominance hierarchy among males (established and maintained by male-male social 

interactions, McDonald 2007) and only the dominant male (“alpha”) has access to 

copulations. So, pre-established dominance among males limit the opportunity of females 

to select specific mates within dancing teams (McDonald 1989a, DuVal 2007a,b). 
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Although male-male competition is important for some lekking species, the 

common finding that male mating success is related to a variety of male behaviors and 

morphologies (see Fiske et al. 1998) has led to the predominant view that differences in 

male mating success are primarily influenced by female preferences (Höglund and 

Alatalo 1995). In lekking species, males are thought to provide females with no resources 

except their gametes. Thus, females are believed to base mate selection mostly on male 

characteristics and to follow strategies that maximize their own reproductive interests.  

There are three non-exclusive ways by which females can gain benefits from mate 

choice: (1) females can receive direct benefits by choosing males that will enhance the 

number of offspring produced (e.g., choose males with better sperm quality, Locatello et 

al. 2006), or they can receive indirect fitness benefits by (2) enhancing offspring 

attractiveness (Fisherian process, e.g., Jones et al. 1998) or (3) obtaining viability-

enhancing genes (“good genes”) for their offspring (Höglund and Alatalo 1995, Reynolds 

& Gross 1992, von Schantz et al. 1997, Richardson et al. 2005, Byers and Waits 2006, 

but see Kotiaho and Puurtinen 2007). In all cases, females assess and compare males 

using indicators (cues) that may be expressed as morphological or behavioral traits.   

Certain behavioral traits may serve as quality indicators because they either 

demand high levels of energy expenditure, high levels of experience, or because they 

interfere with other vital activities such as foraging. Theories of sexual selection have 

converged on the idea that “honest” signals of quality should be costly to produce and 

maintain (Zahavi 1975, Andersson 1994). In this sense, if only high quality males can 

excel in such traits, then, they can provide females with accurate information about the 

signaler’s relative condition (Rowe and Houle 1996, Jennions et al. 2001), experience 
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(e.g., Trainer et al. 2002, Forsman and Hagman 2006), genetic quality (see references 

above), freedom from disease (e.g., Dale et al. 2001) and competitive ability (Zahavi 

1975). Thus, females may be selected to pay attention to these signals, and male 

performance may have a strong influence on male mating success. Moreover, females 

may use a combination of cues for mate selection, rather than relying on simply one cue 

(Iwasa and Pomiankowski 1994, Candolin 2003). Having a superior performance in a 

larger set of “selected” cues (Møller and Pomiankowski 1993) may produce a greater 

challenge (Rowe and Houle 1996); consequently, males that achieve overall better 

performance may be more successful than those that excel in only one behavior.  

The objective of this study was to identify behavioral and spatial variables that 

affect male mating success (measured as female visitation and copulation success) for the 

White-crowned Manakin (Pipra pipra). In particular, we were interested in examining 

the relative contribution of male-male competition and female mate choice on mating 

success of territory owners. White-crowned Manakins are a good system to study female 

mate choice and male mating success because: (1) leks are stable across time and 

territorial males can be followed throughout and across seasons; (2) leks are typically 

located in open (not dense) habitats where males are easily observed; (3) song repertoire 

is simple and consist of only one advertisement call and one whistle call; and (4) males 

have a relatively simple courtship display (for more information see study species). We 

hypothesize that male traits, such as number of courtship disruptions, male-male 

coordinate interactions (connectivity is presumed to increase social status in other species 

of manakins, Ryder et al. 2008), and spatial characteristics of males’ territories influence 

mating success as a result of male-male competition. Further, we predict that males that 
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engage in more male-male coordinated interactions, have fewer courtship disruptions, 

and defend larger and more central territories, would have higher mating success.  

Second, we hypothesize that male traits such as territory attendance, vocalization rate and 

display intensity (measured as number of displays and time spent displaying), act as 

honest signals of male quality during female mate choice and influence male mating 

success. We predict that males with higher attendance, vocalization rate and display 

intensity have higher mating success. Using selection gradient analysis (Lande and 

Arnold 1983), we identify traits that appear to influence male mating success and, thus, 

provide insight on the relative importance of male-male competition and female mate 

choice in influencing reproductive variance in White-crowned Manakin males.   

 

METHODS 

Study area 

The study was carried out in Tiputini Biodiversity Station (TBS), Orellana province, 

eastern Ecuador (~0º 38' S, 76º 08' W). TBS includes 650 hectares of continuous lowland 

rainforest and is located within the 1.5 million hectare Yasuní Biosphere Reserve. TBS 

has approximately 30 km of trails and two 100 hectare plots. We focused our study 

within and adjacent to one of these 100 hectare plots (i.e., Harpia plot, for further 

description see Loiselle et al. 2007).  

Study species 

The White-crowned Manakin (Pipra pipra) is a common species at TBS and inhabits 

terra firme forest. They form exploded leks in which males are situated within hearing 

distance of each other (Snow 1961). They are sexually dimorphic. Males are black with 
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white crowns and napes, and females are olive-green with blue-grey heads (del Hoyo et 

al. 2004). Males maintain year-round display territories and spend up to 88% of the day 

within their territories (Théry 1992). They have one advertisement call and one whistle 

call. Advertisement calls are used for territorial defense and female attraction (Castro-

Astor et al. 2007). Whistle calls are typically used during male-male “agonistic” 

interactions (male-male ritualized displays) at the boundaries of territories and during 

female courtship displays. Males perform courtship displays individually and frequently 

vocalize (whistle calls and soft version of advertisement call) while dancing. The 

courtship display consists of forward and back flights among several horizontal display 

perches and slow butterfly-flights (deep and slow wing beats) around females following 

them from perch to perch (Snow 1961). Males frequently practice courtship displays in 

the absence of females (also observed in other manakin species, e.g., Shorey 2002, DuVal 

2007b). 

Data collection 

We conducted focal observations of 37 territorial males at four leks from January - March 

2005 and from December 2005 - March 2006, corresponding to the main breeding season 

of the region. All territorial males on focal leks were captured using mist nests and were 

marked with uniquely numbered aluminum and unique combination of color leg bands 

(for details see chapter 1). The sample unit was a 2-hour focal observation period. 

Observations were made daily during the peak of activity for White-crowned Manakins: 

7:30-9:30 h, 12:00-14:00 h, and 14:30-16:30 h. Each male was observed for a minimum 

of 12 hours; mean observation time was 15 hours per male during 2005, and 27 hours per 

male during 2006. The order of observations was proportionally distributed (date and 



Tori, Wendy, 2008, UMSL, p. 86
 
 
time of day) across males and when possible, simultaneous observations took place at 

two or more leks. During behavioral observations we recorded: 

1) Territory attendance:  average number of minutes a male was seen in his territory 

during the 2 hour observation period (unit: minutes / 2 hours).   

2) Vocalization rate: average number of advertisement calls during the 2 hour 

observation period (unit: number of advertisement calls / 2 hours).   

3) Number of displays:  average number of courtship displays a male performed 

during the 2 hour observation period (unit:  number of displays / 2 hours).   

4) Time spent displaying: average time (seconds) a male spent performing courtship 

displays during the 2 hour observation period (unit: display time / 2 hours).   

5) Number of male-male coordinate interactions:  average number of male-male 

ritualized agonistic encounters in the absence of females during the 2-hour 

observation period (unit: number of coordinated interactions / 2 hours).  Male-

male coordinated interactions have different display elements than displays 

performed individually for females and occur during boundary encounters 

between territorial males. These interactions may act as a mechanism to establish 

and maintain dominance hierarchies among males (Tori, unpublished data). 

6) Number of aggressive interactions during courtship display: average number of 

courtship disruptions in the 2 hour observation period standardized by the number 

of displays performed by each male (unit: number of aggressive interactions 

during courtship display/ number of displays/ 2 hours).  

7) Female visitation rate: average number of female visits to a male during the 2 

hour observation period (unit: number of female visits / 2 hours).   
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8)  Copulations: copulations attained by territorial males during the observation. 

Males tend to copulate multiple times with females during the same visit. As these 

copulations were not independent from each other, we considered all copulations 

within a single visit as one. Copulations were not frequently observed, so we 

coded this variable in a binary fashion (1 = males that copulated at least once, 0 = 

males that were not observed to copulate during behavioral observations).  

Because female visitation may affect display intensity (Gibson and Bradbury 1985), 

we also calculated the number of displays and the time spent displaying by males in the 

absence of females (i.e., practice displays, see discussion). During behavioral 

observations we marked perches that males used to perform advertisement calls. We 

mapped and geo-referenced these perches and used the information to calculate: 

8) Territory area: area that territorial males use regularly to advertise and display 

(unit: m2). Territory sizes were calculated building a minimum convex polygon 

around advertisement call perches using the Animal Movement Extension in 

ArcView v.3 (Hooge and Eichenlaub 1997, for further details see chapter 1).   

9)  Territory centrality: distance in meters from the center of a male’s territory to the 

geometric center of the lek. To calculate this variable, we used the centroid 

polygon script in ARCGIS v. 9.1 (ESRI 2005). 

Statistical analysis 

As female visitation to male territories did not differ across the four leks (2005: Kruskal-

Wallis Xi
2 = 2.180, df = 3, p = 0.538; 2006: Kruskal-Wallis Xi

2 = 1.349, df = 3, p = 

0.717), data were pooled giving a sample size of 30 territorial males for 2005 and 31 

territorial males for 2006. In most analyses, we examined data from the two seasons 
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separately to avoid losing resolution due to potential temporal changes in male status or 

in female mate choice criteria. However, for analyses using copulation status (whether a 

male was seen copulating or not), we pooled the two seasons to increase sample sizes. 

The number of observed copulations (n = 12) was much lower than the number of female 

visits (n = 98).  Thus, to see if female visitation could act as a surrogate of male mating 

success, we used a logistic regression to determine the predictive relationship between 

female visits and copulation status, and a Mann-Whitney test to examine differences in 

female visitation between males with and without copulations. For these analyses, males 

that had at least one copulation were coded as 1, males not observed to copulate were 

coded as 0 and only males with at least one female visit were included in the analyses. 

The number of female visits was found to be a good predictor of copulation status (ß = 

10.1 ± 4.34, Wald’s χ 2 = 5.435, p = 0.02, in 74% of the cases copulation status was 

predicted correctly by female visitation). Further, we found that the average number of 

female visits to males that copulated at least once (Mean ± SE: 0.25±0.03 per 2 h 

observation period) was significantly higher than the average number of female visits to 

males that were not observed copulating (Mean ± SE: 0.15 ± 0.02, Mann-Whitney U = 

30.5, p < 0.003).  Moreover, this relationship holds when we compared female visitation 

and paternity using microsatellites (i.e., males that sired offspring had higher number of 

female visits than males that did not sire offspring; for molecular paternity see chapter 1). 

So, female visitation appears to be a reliable indicator of male reproductive output and 

hereafter we use female visits as a surrogate of male mating success. 

 The relationship between male behavioral traits and spatial characteristics of male 

territories (hereafter called spatial traits) with male mating success were analyzed 
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separately. Many of the behavioral traits were correlated (correlation coefficient range: 

0.4–0.8, p<0.05), thus we used principal component analysis (data unrotated) to reduce 

the number of variables. We use six behavioral variables (territory attendance, 

vocalization rate, time spent displaying, number of displays, number of aggressive 

interactions during courtship displays, number of male-male coordinated interactions) 

and extracted the principal components (PC) that had eigenvalues greater than one. Next, 

we ran directional selection gradient analyses (Lande and Arnold 1983) between female 

visitation rate and the composite behavioral variables (i.e., principal components) for 

each year. Selection gradients measure the partial effect of each trait on fitness 

controlling for correlations between the focal trait and other traits included in the model 

(multiple regression analysis). Consequently, selection gradients provide information 

about male traits that females may use during mate choice (Anderson 1989). For these 

analyses, PC components were standardized by their standard deviations, and female 

visitation was standardized by the population mean (relative male mating success).  

Additionally, we conducted selection gradient analyses to examine the relative 

contribution of individual traits (as PC are often hard to interpret) on male mating 

success. As sample sizes were not large enough for multivariate analyses with all cues 

simultaneously (n = 30 in 2005; n = 31 in 2006), we used only three variables suggested 

as important by the PC directional selection gradient analyses: (1) time spent displaying, 

(2) territory attendance, and (3) vocalization rate. High interdependence of explanatory 

variables may preclude finding biologically meaningful drivers of male mating success in 

the selection gradient analysis (Mitchell-Olds and Shaw 1987). Thus, the latter analyses 

were just exploratory and aimed to examine only the relative importance of each trait 
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with respect to male mating success. Lastly, we used directional selection gradient 

analyses to test the relationship between male mating success (measured as female 

visitation) and male spatial traits (territory size and position). Spatial traits were also 

standardized by their standard deviation. Statistical analyses were conducted using SPSS 

v 13.0.   

A caveat of selection gradient analyses is that direct selection on traits can only be 

unequivocally tested when all relevant traits are included in the model (Lande and Arnold 

1983), since some traits may emerge as important only because of their correlation with 

other traits that were not quantified. We did not measure all behavioral traits; for 

example, specific components of male display (e.g., butterfly displays) or quantitative 

measures of advertisement song and whistles were not measured. Thus, we can not 

discard the possibility that females use these traits as honest signals of male quality. Our 

results, however, may serve to design future experiments to test the effects of traits 

suggested to be important as female cues in a more direct manner.   

 

RESULTS 

Variation in male mating success 

A total of 98 female visits and 12 copulations were recorded at the four leks. Males 

varied in their relative female visitation in both seasons (Figure 1). During 2005 and 

2006, 19 of 30 (63%) and 22 of 31 (71%) males sampled received at least one female 

visit, respectively.  The remaining 11 (2005) and 9 (2006) territorial males received no 

female visits. The distribution of copulations (pooled data) was also skewed: three males 
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received two copulations, six males received one copulation and 16 males were not 

observed to copulate with females.  

Behavioral data 

Male variation in all behavioral traits was evident (Table 1). When we combined 

behavioral variables using Principal Component Analysis, we obtained two principal 

components in 2005 and three in 2006 that had eigenvalues greater than one (Table 2).  

For 2005, number of displays, time spent displaying, territory attendance and vocalization 

rate, all scored high on PC1 (48.5% of variance explained). Therefore, we interpret PC1 

as a measure of male attendance and advertisement effort. Here, vocalizations are viewed 

as long range attractants to females and displays as short range attractants. PC2 (20.7% of 

variance) loaded mainly and positively with coordinated and aggressive interactions 

among males. Thus, PC2 can be viewed as an index of male-male interactions and 

dominance. Interpretation of PC axes in 2006 differed slightly. For the first principal 

component, number of displays, time spent displaying and vocalization rate were 

positively correlated and had the highest loadings (PC1 explained 40.2% of variance). 

Thus, PC1 for 2006 can be interpreted as having components of both long and short-

range male advertisement. Territory attendance was the main contributor of PC2. PC3 is 

largely a measure of male dominance status, as aggressive interactions during displays 

was the most important variable contributing to this axis (Table 2). 

In 2005, PC1 (attendance/advertisement index) contributed significantly to the 

selection gradient model explaining male mating success (β’ = 0.72 ± 0.141, p < 0.0001, 

Table 3); this model explained 49% of the variance and was highly significant (p < 0.001, 

Table 3). In 2006, PC1 (~ advertisement index) and PC2 (~ attendance index) had 



Tori, Wendy, 2008, UMSL, p. 92
 
 
significant directional selection gradient coefficients; the overall model explained 30.4% 

of the variance in relative male mating success (p = 0.019; Table 3). Results from 2005 

and 2006 were consistent, and identified similar male traits as key characters under 

selection (Figure 2). These results suggest that sexual selection favors males with higher 

advertisement (in the form of calls and courtship displays) and territory attendance across 

seasons. 

Using individual behavioral variables directly in the selection gradient models, we 

found that in 2005, time spent displaying had the highest response (β’ = 0 .661) to 

selection, followed by vocalization rate (β’ = 0.124), and territory attendance (β’ = 0.032, 

model: R2 = 0.512, n = 30, p < 0.001). Conversely, in 2006 territory attendance 

(β’=0.349) had the highest response followed by time spent displaying (β’ = 0.229) and 

vocalization rate (β’ = 0.093, model: R2 = 0.339, n = 31, p = 0.010, Table 4).   

Spatial data 

Territories were generally stable across years, as most males were “faithful” to their 

territories and only a few new territories were formed on the periphery of the leks in 2006 

(Tori, unpublished data). Mean territory area and distance to the center of the lek were 

486 ± 40 m2 (± standard error) and 71 ± 6 m in 2005; and 654 ± 40 m2 and 74 ± 7 m in 

2006 (respectively). Territory area and centrality did not contribute significantly to 

selection gradient models either in 2005 (model: p = 0.291, R2 = 0.09, n = 30; Area: β’ = 

0.13, t = 0.67, p = 0.509; Centrality: β’ = 0.26, t = 1.37, p = 0.183), or 2006 (model: p = 

0.641, R2 < 0.01, n = 31; Area: β’ = -0.08, t = -0.51, p = 0.613; Centrality: β’ = -0.14, t = 

-0.89, p = 0.384). Consequently, territory characteristics do not appear to have an 

influence on male mating success in any year. 
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DISCUSSION 

Sexual selection in lekking species has received considerable attention during the last 

decades. To date, however, there is still considerable discussion over the relative 

importance of male-male competition and female mate choice on male mating success for 

many lekking species (Höglund and Alatalo 1995). Male competitive abilities and female 

mate choice can influence male reproductive success simultaneously (Stapley 2008), and 

their relative importance (within and across species) are the outcome of differences in 

selection pressures (e.g., sex ratios, densities, predation, food resources) and the spatial 

and social organization of leks. In manakin species, both of these mechanisms have been 

suggested to play an important role in male mating success (e.g., Beehler and Foster 

1988, McDonald 1989a, 1989b, Shorey 2002,). Our results are consistent with the 

hypothesis that female mate choice is the main mechanism that affects male mating 

success in territorial White-crowned Manakins. Our data suggest that female visitation is 

a reliable indicator of male mating success, and that it is strongly associated with 

measures of activity and display behavior of males, but not associated to behavioral traits 

associated with male dominance (e.g., courtship disruption or agonistic interactions). In 

concordance with this finding, we found that spatial characteristics (presumed to be the 

result of male-male competition), were not related to male mating success. Thus, our 

results provide evidence that female mate choice plays an important role for the White-

crowned Manakin, and that male behavioral characteristics may be selected during mate 

choice. 
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Behavioral correlates of male mating success 

Our results support the hypothesis that sexual selection consistently acts to increase male 

advertisement behaviors and attendance, and that (1) vocalization rate, (2) territory 

attendance, (3) number of displays and (4) time spent displaying may be important cues 

used by females during mate choice. Selection gradients for the principal components 

show that  inter-specific signals used to attract females (e.g., displays) had greater effect 

on male mating success than proportional changes in traits used during male-male 

competition (e.g., male aggression). In 2005, selection gradients indicated that an 

increase of one standard deviation of the “attendance–advertisement composite variable” 

(PC1) would generate 71% increase in relative male mating success, compared to only a 

5% increase with changes of one standard deviation in male-male interactions traits 

(PC2). Similarly, in 2006 an increase of one standard deviation of the “advertisement 

composite variable” (PC1) and “attendance composite variable” (PC2) predict an increase 

of 37% and 29%  in relative male mating success, respectively; while a similar standard 

deviation change in the PC related to aggression would only increase relative male 

mating success by 0.5%. Thus, our results concur with previous studies that found that 

behavioral traits, such as vocalizations (e.g., Gibson and Bradbury 1985, McDonald 

1989a, Gerhardt et al. 2000), display activity (e.g., Gibson and Bradbury 1985, Höglund 

and Lundberg 1987, Anderson 1989, McDonald 1989a, Pruett-Jones and Pruett-Jones 

1990, Gratson 1993, Whittier et al. 1994) and lek attendance (e.g., Cherry 1993, Fiske et 

al. 1994, Friedl and Klump 2005), are likely important determinants of male mating 

success. 
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A caveat of this analysis, however, is that we can not distinguish the individual 

contribution of each behavioral trait on female mate choice. Variables found to be 

important for male mating success were positively correlated, and composite variables 

may mask the relative importance of one or a few traits prominent on the PC. So, the 

question remains whether females use attendance, vocalization and display individually 

or in combination as an index of male quality during female mate choice. Experimental 

studies that control for certain male characteristics while testing for others are necessary 

to answer this question. In this study we did not perform these experiments.   

In an effort to obtain a preliminary sense of the relative contribution of each of 

these traits, we ran selection gradient analyses between each of these variables and 

relative mating success. We found that the influence of male traits on male mating 

success varied across years. In 2005, the trait that had the highest effect on male mating 

success was display rate, while in 2006 the most important trait identified was territory 

attendance. These results suggest that the strength and direction of sexual selection 

pressures may differ across years, leading to temporal variability in the weight given to 

cues used for female mate choice.  

Temporal variability in mate choice decisions has been reported for other species 

(e.g., Lifjeld and Slagvold 1988, Reid and Weatherhead 1990, Gibson and Bradbury 

1991, Fiske et al. 1994, Forsgren 1997, Friedl 2006, Chaine and Lyon 2008). Different 

environmental contexts can affect condition-dependent traits (Hill 1995), and the strength 

and direction of female mate choice preferences (Jennions and Petrie 1997, Hingle et al. 

2001, Qvarnström 2001, Candolin 2003, Kodric-Brown and Nicoletto 2005, Fisher and 

Rosenthal 2006, Friedl 2006). On one hand, environmental conditions (e.g., availability 
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of food resources, weather) can affect the expression of sexually selected traits 

(Siefferman and Hill 2005). On the other hand, environmental conditions can influence 

female mate decisions by affecting female benefits (Jia and Greenfield 1997, Qvarnstrom 

2001, Welch 2003, Chaine and Lyon 2008), search costs and the accuracy of signal 

detection and discrimination by females (Jennions and Petrie 1997). Further, temporal 

variability in sexual selection regimens may have important implications for the 

maintenance of phenotypic variation in male traits in lekking species, and may be a 

solution for the lek paradox (Taylor and Williams 1982, Kirkpatrick and Ryan 1991, 

Fiske et al. 1994). 

In systems in which female mate choice takes place, females are believed to rely 

on trait variation to discriminate the relative quality among males. It has been suggested 

that multiple cues may facilitate mate choice by allowing females to base mate decisions 

on the trait (or traits) that show the largest variation among males (Reid and Weatherhead 

1990). Giving higher weight to cues with the largest variation may reduce mate choice 

costs, as differences among males may be more difficult to detect when variability is low 

(Jennions and Petrie 1997). Moreover, traits with higher variation may be more reliable 

indicators of male quality because only individuals in good condition may be able to 

excel in the expression of the trait (costs of traits are higher for males in poor condition, 

Kotiaho et al. 2001). If females give higher weight to cues that show the largest variation, 

and the expression of cues is affected by environmental conditions, then the relative 

importance of mating criteria could vary over time. Support for this argument has been 

found in a few species (Fiske et al. 1994, Reid and Weatherhead 1990, Forsgren 1997). 

For example, female Ipswich Sparrows (Passerculus sandwichensis) preferentially use 
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male cues with higher variability during mate choice (Reid and Weatherhead 1990). In 

warm years, when males sang more and there was low variability in song rate, females 

preferentially mated with males with larger territories. Conversely, in cooler years, when 

there was a larger variability in song rate, females preferentially mated with males with 

higher song rates. Further, in Great Snipe, the relative importance of cues selected by 

females varied across years, and females appeared to prefer traits with high variance 

among males as mate choice cues (Fiske et al. 1994). In concordance with these studies, 

we found that mate-choice criteria matched the relative variability of male traits in each 

year. In 2005, the year in which display had the larger contribution in mate choice, males 

showed higher variability in the time they spent displaying (CV 2005 = 0.82) than in 

2006 (CV 2006 = 0.55). Conversely, in 2006, when territory attendance had higher 

influence on male mating success, males showed higher variability in the time spent in 

their territories than in 2005 (CV 2005 = 0.19, CV 2006 = 0.35). We do not believe these 

results are a statistical artifact generated by the difficulty of finding an association 

between male mating success and variables with little variability. We found that traits 

with the highest variation among males (male-male interaction traits) had little effect on 

male mating success. Thus, these results suggest that cue variability may be important 

during female mate choice. It is unclear, however, whether variability is important 

because it contributes to the reliability of the signal or because more variable traits are 

easier to assess for females. Clearly more research is needed to confirm this pattern and 

to understand the mechanisms that link trait variability and female mate choice in species 

that use multiple criteria during mate selection. 
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Territory attendance 

Attendance has also been reported as an important correlate in male mating success in 

other lekking species (e.g., Gibson and Bradbury 1985, Höglund and Lundberg 1987, 

Anderson 1989, Appollonio et al. 1989, Hill 1991, Cherry 1993, Fiske et al. 1994). The 

importance of attendance in male mating success, however, is hard to interpret, because 

there is more than one reason why males that stay longer in their territories can achieve 

greater success. First, attendance has an intuitive relationship with mating success, 

because as males spend more time at their territories, they increase their chances to 

participate in mating activities (passive female choice, Mackenzie et al. 1995). Second, 

successful males may be more willing to invest energy in reproduction and stay longer in 

their territories than unsuccessful males (attendance is not a cause but a consequence of 

success, Fiske et al. 1994). In this study, we have circumstantial evidence that suggests 

that this is not the case. We found that two males (GRPU 2005 and BWR 2006) with high 

female visitation rate at the beginning of the breeding season abandoned their territories 

early, suggesting that high lek attendance is not a consequence of high mating outcome 

(GRPU returned to his territory in 2006). Finally, females may use territory attendance as 

an honest signal of male quality (Friedl and Klump 2005). Attendance can interfere with 

foraging activities, and, thus it may reflect the relative condition and stamina of males 

(ability to meet energetic demands imposed by displaying without feeding, Pruett-Jones 

1988, Vehrencamp et al. 1989). Using attendance as an honest indicator of male quality, 

however, implies that females would need to visit males more than once and that they 

will use memory of previous visits for their mating decisions (Hill 1991). Field 
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experiments (not included in this study) are required to unambiguously test the 

mechanisms by which attendance affects male mating success in this system. 

Advertisement displays 

Male courtship displays are specifically designed to attract female’s attention and gain 

access to copulations, and have also been recognized as important mate choice cues for 

many other lekking species. For example, in Great Snipe (Höglund and Lundberg 1987), 

Sage Grouse (Centrocercus urophasianus, Gibson and Bradbury 1985, 1991), 

Woodhouse Toad (Bufo woodhousei, Sullivan 1987), Fruit Fly (Drosophila 

melanogaster, Talyn and Dowse 2004), and Mediterranean Fruit Fly (Ceratitis capitata, 

Whittier et al. 1994) display rates play an important role in male mating success.  

Moreover display duration has been suggested as an important mate choice cue in Sharp-

tailed Grouse (Gratson 1993), Long-tailed Manakin (Chiroxiphia linearis, duration of 

butterfly display, McDonald 1989a) and Gray Tree Frog (Hyla versicolor, call duration 

Klump and Gerhardt 1987). Because displays are complex and involve high levels of 

energy expenditure (Taigen and Wells 1985, Vehrencamp et al. 1989, Höglund et al. 

1992, Kålås et al. 1997) and experience (Trainer et al. 2002), females may be able to 

assess display performance as an honest signal of male quality. Alternatively, preferences 

could also originate simply because males that display more are more conspicuous. In 

accordance with both of these hypotheses, we found a positive relationship between male 

display and male mating success for the White-crowned Manakin.  Males that display for 

longer periods of time tended to have higher mating success than less active males.  It has 

been suggested, however, that correlations between mating success and display can be the 

result of males responding to the proximity of females (reverse causation, Gibson and 
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Bradbury 1985). To account for this argument, we re-ran the analyses using only the 

information from displays in the absence of females (i.e., practice displays). We obtained 

qualitatively similar results (PC selection gradient analyses, 2005 model: R2 = 0.388, p = 

0.001, 2006 model: R2 = 0.269, p = 0.035). This provides strong evidence against such 

reverse causation. Male courtship displays in White-crowned Manakins, however, are 

mostly quiet (males only whistle and sometimes perform a soft version of the 

advertisement call). So, it is highly unlikely that females use courtship displays as a long-

distance mate attraction cue. Males may be using advertisement calls as a long-range 

signal to attract females to their territories. Once females have arrived in the territories, 

females may use other cues such as display performance or attendance, to decide which 

males to mate with. This division of sexual selection signals into long and short distance 

cues has also been suggested for other manakin species (McDonald 1989a).   

Spatial correlates of male mating success 

In many lekking species, females have been reported to preferentially mate with males 

with more central territories. Although the mechanisms underlying this relationship are 

still not clear, it has been proposed  (1) that territory characteristics can be the outcome of 

male-male interactions (e.g., aggression), and that females use these cues during mate 

choice to obtain males that are good competitors (high quality males, Höglund and 

Alatalo 1995, Isvaran and Jhala 2000, Höglund et al. 2002); or (2) that females prefer to 

mate with “hotshot” males that end up in central positions because unattractive males 

settle around their territories to intercept females (Beehler and Foster 1988, Höglund and 

Robertson 1990). In this study, we did not find any evidence that spatial territory cues 

(i.e., territory size or location) affected male mating success. The lack of relationship 
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between these cues and male mating success does not necessarily eliminate the possibility 

that spatial components influence male success. It has been suggested that male-male 

interactions may play a critical role for territory acquisition (see chapter 1, Ryder et al. 

2008) and social status (McDonald 2007) in manakins. Moreover, territoriality may be a 

prerequisite for male reproductive success (DuVal and Kempenaers 2008, Ryder et al. 

2008), thus territory status can act as a filter that dictates which males are assessed by 

females, potentially having an influence in male reproductive output (Wong and Candolin 

2005). In this study, we only examined correlates of male mating success among territory 

holders. Studies that examine the relationship of male-male interactions and territory 

acquisition during territory establishment may be important to elucidate if male-male 

competition affects male reproductive potential prior to female visitation at leks. 

Conclusion 

We found that male mating success in the White-crowned Manakin appear to be 

mediated by a combination of male behavioral characters. Our data suggest that female 

mate choice (or at least visitation rate) is more related to individual male differences in 

display performance, vocalization rate and attendance, than to spatial or male-male 

interaction traits. The relative importance of these traits however changes over time, and 

females appear to emphasize the use of mate choice cues that are more variable among 

males.  
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Table 1.  White-crowned Manakin behavioral traits (mean, standard deviation and coefficient of variation) measured during male 

focal behavioral observations for 2005 (n = 30 males) and 2006 (n = 31 males) seasons. All variables were standardized by the number 

of 2-hour behavioral observations performed. 

 

Behavioral trait 

 2005   2006 

Mean SD CV   Mean SD CV 

Territory attendance (min / 2 hrs) 93.3 17.7 0.19  79.1 27.9 0.35 

Vocalization rate (calls / 2 hrs) 276.6 114.9 0.42  291.9 123.9 0.42 

Time spent displaying (sec / 2 hrs) 161.7 132.9 0.82  199.7 108.9 0.55 

Number of displays (Disp. / 2 hrs) 1.0 0.7 0.70  1.7 0.8 0.46 

Number of aggressive interactions during display (Agg. / 2 hrs) 0.1 0.2 1.63  0.1 0.1 1.17 

Number of male-male coordinate interactions (Coord. / 2 hrs) 0.3 0.4 1.32   0.3 0.2 0.67 
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Table 2.  Component loadings of six behavioral variables as quantified by Principal Component Analysis for 2005 (n = 30) and 2006 

(n = 31).  

 

Trait 

2005   2006 

PC1 PC2   PC1 PC2 PC3 

Territory attendance 0.873 -0.211  0.429 0.757 -0.325 

Vocalization rate 0.809 -0.128  0.767 0.516 -0.107 

Time spent displaying 0.842 0.025  0.820 -0.330 0.122 

Number of aggressive interactions during display 0.185 0.741  0.082 0.251 0.897 

Number of displays 0.856 0.026  0.888 -0.261 0.191 

Number of male-male coordinated interactions 0.134 0.795  -0.416 0.573 0.290 

       

Eigenvalue 2.911 1.244  2.413 1.408 1.056 

% of variance explained 48.520 20.733   40.219 23.463 17.602 
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Table 3. Directional selection gradients of composite behavioral variables for White-

crowned Manakin in 2005 (n = 30 males, model: R2 = 0.491, p < 0.0001) and 2006 (n = 

31 males, model: R2 = 0.304, p = 0.019). In 2005, PC1 and PC2 represented an index of 

attendance-advertisement effort and male interactions-dominance (respectively). In 2006, 

PC1 represented an index of advertisement effort, PC2 reflected territory attendance and 

PC3 reflected male dominance. Selection gradients are given in units of phenotypic 

standard deviations. 

 

Trait 

2005   

Trait 

2006 

β’ t P-value   β’ t P-value 

PC 1 0.72 5.09 <0.001  PC 1 0.37 2.7 0.012 

PC 2 0.05 0.33 0.746  PC 2 0.29 2.13 0.043 

          PC 3 -0.01 -0.04 0.972 
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Table 4. Directional selection gradients for three behavioral variables: territory 

attendance, vocalization rate and time spent displaying in 2005 (n = 30 males, model: R2 

= 0.512, p < 0.0001) and 2006 (n = 31 males, model: R2 = 0.339, p = 0.010).   

 

Trait 

2005   2006 

β' t P-value   β' t P-value 

Attendance 0.03 0.16 0.874  0.35 2.07 0.048 

Vocalization rate 0.12 0.69 0.494  0.09 0.54 0.595 

Time spent displaying 0.66 4.02 <0.001   0.23 1.66 0.108 
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Figure 1.  Distribution of female visits (surrogate of male mating success) among White-crowned Manakin territorial males in 2005 

(A) and 2006 (B) for 4 focal leks at Tiputini Biodiversity Station. Males are coded following their color band combination and lek 

membership is indicated by black bars under male codes. 
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Figure 2.  Relationship between male mating success (measured as number of female 

visits) and principal components 1 and 2 of behavioral traits in 2005 (A, n = 30 males) 

and 2006 (B, n = 31 males). The sizes of the dots are proportional to the average number 

of female visits (FV) received by males per 2 hours observation (see figure legend).  In 

both years males that displayed more often, for longer periods of time, have higher 

vocalization rate and higher territory attendance received more female visits. Note the 

different contribution of territory attendance to PC1 and PC2 in each year. 
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