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Dissertation abstract 

 Insect herbivores in forest ecosystems are a phenomenally diverse group of 

organisms.  However they face a dilemma, the so-called “trophic crunch,” as they are 

situated between two antagonizing forces on adjacent trophic levels.  The plants on which 

they feed possess an array of defenses and other mechanisms to reduce damage. These 

plant traits include chemical and physical defenses to reduce digestibility and interfere 

with herbivore growth and development.  Insect herbivores also suffer high rates of 

predation from invertebrate and vertebrate predators.  Insectivorous birds represent a 

particularly important threat because, as endotherms, they require a large amount of food 

to maintain their own metabolism and that of their offspring during the breeding season.  

Thus the abundance, diversity, and impacts of herbivore communities are influenced by 

both the food they eat and the predators that eat them.  Using experimental and 

observation approaches, I examined direct and indirect interactions between avian 

predators, insect herbivores, and oak trees.   

 I used bird exclusion experiments to determine how the direct and indirect effects 

of bird predation vary spatially within forests.  In Chapter 1 I used a randomized-block 

design to show that both bird and insect herbivore abundances varied through space in 

similar habitat.  Yet the direct effects of birds on herbivores and the indirect effects on 

leaf damage of oaks did not vary between blocks, suggesting that the biological control 

services of birds are robust to variations in population abundance of both the birds and 

their prey.   

 Trophic theory predicts that the direct and indirect effects of predators on 

herbivores and plants, respectively, will vary with traits of the plants.  Light has strong 
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effects on leaf quality, so the impacts of predators and herbivores may differ between 

plants grown in sun and shade.  However past experiments often have been unable to 

separate the effects of light environment on plant traits from effects on herbivores or 

predators.  In Chapter 2 I used a light manipulation to produce oak saplings with different 

leaf quality and factorially excluded bird predators in a common light environment to 

measure the effects of birds and leaf quality on herbivore abundance and herbivory.  Sun 

leaves appeared to be lower quality food, yet herbivores were significantly more 

abundant and caused greater leaf damage on sun-exposed trees.  Bird exclusion did not 

change herbivore abundance, but did increase leaf damage.  The effects of birds did not 

vary with light manipulation.  The higher abundance and damage on sun trees may have 

been due to ovipositing females preferring hosts with greater leaf and shoot growth.  

Birds may have reduced leaf damage through non-consumptive effects on herbivore 

feeding behavior.   

Because of their diversity of morphology, behavior, and host breadth, herbivore 

species should vary in their susceptibility to bird predation and their response to specific 

host plant traits.  Thus the top-down impacts of birds and bottom-up effects of leaf 

quality variation should alter herbivore community diversity, structure, and composition.  

In Chapter 3 I combined a two-year bird exclusion experiment with measurement of 

natural variation in oak leaf quality.  Although herbivore community composition varied 

over time, birds had little effect.  Leaf quality influenced the total abundance and richness 

of herbivores as well as the abundance of different feeding guilds.  These effects of leaf 

quality were strongest at the end of the growing season, when leaf quality is presumably 

lowest overall.   
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 Insect herbivore abundance can be influenced by both traits of their host plants 

and the physical environment in which the plant grows.  In Chapter 4 I studied the role of 

the physical light environment and foliage characteristics in determining abundance of 

the oak lacebug (Corythuca arcuata Hemiptera: Tingidae).  Using an information-

theoretic approach, I evaluated a priori hypotheses of the relationship between light, 

plant traits, and C. arcuata abundance.  Abundance was best predicted by light 

environment and leaf carbon content.  Adult C. arcuata prefer trees growing under an 

open canopy and trees with low carbon content; abundance also positively correlated with 

leaf water content.  Although carbon and water did not vary with light in this study, low 

carbon and high water content are often associated with shadier conditions, suggesting 

that C. arcuata faces a trade-off between preferences for physical habitat conditions and 

host plant characteristics.   

 Insect prey abundance can also affect the distribution of avian predators.  In 

Chapter 5 I compared the annual distribution of native cuckoos to outbreaks of invasive 

gypsy moths (Lymantria dispar Lepidoptera:  Lymantriidae).  Populations of cuckoos, 

one of the few bird species that feeds on gypsy moth caterpillars, spike within outbreaks 

and are significantly below average abundance for tens to hundreds of kilometers in all 

directions.  This pattern and timing of abundance support the hypothesis that cuckoos 

locate concentrated food resources during a post-migratory nomadic phase and represents 

one of the few cases of native predator distribution being influenced by exotic prey.   

 These studies indicate that complex interactions exist beyond a simple, 

unidirectional consumption model of plants, herbivores, and avian predators.  The 

indirect positive effect of birds on plants appears robust to variation in the abundance and 
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traits of the three trophic levels, but the mechanism for this effect may vary through time 

and space.  The impact of birds, however, did not vary with plant characteristics.  These 

characteristics, which can depend on environmental context, likely play a larger role in 

determining the abundance, structure, and impacts of herbivores than do insectivorous 

bird predators.  
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Chapter 1 

Spatial variation in top-down direct and indirect effects on white oak (Quercus alba 
L.) 
 
Published as:  Barber, N. A. and R. J. Marquis.  Spatial variation in top-down direct and 
indirect effects on white oak (Quercus alba L.).  American  Midland Naturalist, in press.   
 

Abstract 

Recent attention has been paid to spatial variation in the direct and indirect effects 

of trophic interactions.  Because abundances of predators and prey vary naturally through 

space, their interactions and the effects of these interactions may vary as well.  We 

conducted a bird exclosure experiment on white oak (Quercus alba L.) using a 

randomized block design to assess how the direct effects of bird predation on arthropods 

and indirect effects of birds on plant damage and growth differ between five sites 

separated by 350-1,000 meters.  Insect herbivore and arthropod predator abundances 

varied spatially but were not affected by the exclosure treatment. Bird abundance also 

varied among sites.  Herbivore community structure (herbivore feeding guilds) differed 

by site as well.  Bird predation significantly reduced damage to oak leaves, but this effect 

did not vary spatially. However, the size of this effect was positively correlated with 

insectivorous bird abundance.  Thus despite herbivore and predator communities that 

varied among sites, the direct and indirect effects of bird predation appeared to be 

constant at the local scale at which this experiment was conducted. 

 

Introduction 

It is widely acknowledged that predation and plant characteristics act concurrently 

to impact herbivore populations (Matson and Hunter, 1992 and papers therein).  Recent 
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attention has focused on spatial variation in plant-herbivore-predator trophic interactions 

(Floyd 1996, Forkner and Hunter, 2000; Denno et al., 2005; Gripenberg and Roslin, 

2007).  Gripenberg and Roslin (2007) pointed out that past research has usually been 

restricted to a single site, limiting our ability to generalize.  They highlight three 

ubiquitous ecological phenomena that indicate top-down and bottom-up forces should 

vary through space:  (1) landscapes are mosaics of habitats so that environmental 

conditions, plant quality, predation, and competition vary from one point to another; (2) 

herbivore populations occupying patchy habitats are themselves patchy and exhibit 

population dynamics that are not spatially constant; and (3) interacting species differ in 

their use of space (e.g. different dispersal abilities and population persistence), so the 

results of their interactions will vary spatially as well, leading to variation in community 

composition.  Thus it is important to determine how top-down forces vary through space 

to generalize about the role of trophic control by predators.   

Previous work in assessing spatial variation in predation strength on herbivores 

often has focused on processes in fragmented or patchy habitats (Gunnarsson and Hake, 

1999; Denno et al., 2002; Valladares et al., 2006), although variability can exist even in 

continuous habitats (Maron and Harrison, 1997).  The scale of these studies has varied:  

Brewer and Gaston (2003) quantified sources of mortality and other demographic 

parameters for one species of leafminer (Diptera: Agromyzidae) across its European 

range (thousands of kilometers), finding that bird predation was stronger in one part of 

the range, while parasitism was more important in another area.  Valladares et al. (2006) 

found that parasitism rates increased with patch size in fragmented woodlands across a 

landscape at a scale of tens of kilometers.  At a much smaller scale (tens to hundreds of 
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meters), parasitism of larval Epirrita autumnata (Bkh.) varied among sites along an 

elevational gradient (Virtanen and Neuvonen, 1999).  

Only two studies have included spatial variation in indirect effects of avian 

predators of herbivores on plant damage, and both of these were conducted at relatively 

large scales.  Mazia et al. (2004) found variation in leaf damage among sites separated by 

tens of kilometers with different precipitation patterns, but no interaction between site 

and predator exclusion, indicating that predation impact did not vary among sites.  

Similarly Van Bael and Brawn (2005) compared effects of bird predation between two 

neotropical forests (70 km apart) that differed in rainfall and plant composition; birds 

reduced damage only at the drier site.   

Here we use a bird exclusion experiment replicated at five sites across a 

continuous forested landscape to determine how the impact of avian predation varied at a 

scale of hundreds of meters.  Our research was designed to answer the following 

questions:  1) How do the insect herbivore communities and predator communities vary 

spatially?  2) How does the direct effect of bird predation change herbivore community 

structure through space?  3) How does damage and growth on oaks, as an indirect result 

of the interaction between herbivores and birds, vary spatially? 

 

Methods 

We conducted this experiment at Tyson Research Center (St. Louis County, MO, 

USA, 90.6˚ W, 38.5˚ N), an 809 ha facility operated by Washington University.  Most of 

Tyson is oak (Quercus)-hickory (Carya) forest, and white oak (Quercus alba L.) is a co-

dominant canopy tree (Marquis and Whelan 1994).  Sapling and mid-story white oaks are 
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uncommon at Tyson, possibly due to browsing by white-tailed deer (Odocoileus 

virginianus Boddaert), which were overpopulated but have been controlled since the late-

1990s.  In recent years seedling white oaks have become more common (N. A. B., pers. 

obs.).   

We selected five sites separated by 350-1,000 meters in early spring 2006.  Sites 

were chosen to be as similar to each other as possible.  Each site was along a single-lane, 

ridgeline dirt road through mature forest with an open understory.  The five sites (Fig. 1) 

were all on similar soils and part of the same limestone bedrock formation (Criss 2001).  

Elevations ranged from 217-235 m above sea level, and sites were on relatively level 

ground or southwest-facing slopes (white oak is considerably less common on north- and 

east-facing slopes at Tyson).  Within each site we chose six canopy or mid-story white 

oaks with accessible understory branches.  These trees were at least 10 m off the road to 

minimize edge effects.  We randomly assigned trees to control or exclusion treatment; 

thus each site was a block with treatments replicated (n = 3 trees per treatment per block).  

In March and April 2006 we constructed bird exclosures on exclusion branches.  

Exclosures consisted of a 2 cm diameter PVC pipe frame anchored with 1 cm thick rebar 

and covered with monofilament nylon netting with 3.8 cm holes.  Because exclosures 

were custom built on each tree, they varied in size but were generally 1.5-2 m wide and 

2-3 m tall.  Netting was in place when spring leaf expansion began in late April.  

Exclosures were built large enough that netting did not contact foliage.   

We surveyed arthropods on experimental branches in May, July, and late August 

to coincide with known peaks in the oak insect herbivore community in Missouri 

(Marquis and Whelan, 1994; Marquis and LeCorff, 1997).  We inspected upper and lower 
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surfaces of all leaves and branches and recorded the number and identity of each 

arthropod encountered (Forkner et al., 2004).  Through work with the Missouri Ozark 

Forest Ecosystem Project (Shifley and Kabrick, 2002), we are able to identify to species 

or morphospecies essentially all local leaf-chewing insect herbivores on white oak 

(Marquis et al., in press).  Unidentified herbivores were collected and reared in captivity 

for identification.  Arthropod predators were identified to order or family.  We counted 

the number of leaves censused in each survey and standardized arthropod abundances by 

leaf area based on the known mean leaf size of understory white oak in Missouri (58.7 

cm2, LeCorff and Marquis, 1999).  Abundances are expressed here as individuals/m2 leaf 

area.   

To quantify the bird community at each site we performed a timed transect survey 

(Bibby 2000) in each site between 0600 and 0800 hrs on three separate days in June 

2006.  A 100 m transect was measured along the road passing through each site.  The 

observer (N. A. B.) slowly walked the transect for ten minutes recording all birds seen or 

heard within 50 m perpendicular to the transect.  In this way, the bird survey included all 

birds within 1 ha of forest surrounding each site.  

We quantified the impact of herbivores (and thus indirect effects of bird 

predation) on trees in three ways.  First, in late May, following the first peak in herbivore 

abundance, 30 leaves were systematically chosen on each branch; i.e., if a branch had 300 

leaves we started at the base and chose every tenth leaf.  These leaves were visually 

categorized by percent leaf damage (1 = 0-5%, 2 = 5-25%,3 =  25-50%, 4 = 50-75%, 5 = 

75-100%) but were not collected.  Leaf scars (where a leaf petiole had been attached to a 

bundle) were classified as 100% herbivory.  The mean of these 30 leaf scores estimated 
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total spring herbivory on each branch.  Second, we quantified end-of-season herbivore 

damage in late September before leaf senescence.  Thirty leaves were systematically 

chosen as above and collected from each branch.  These were not necessarily the same 30 

leaves used in the spring herbivory measurement. Leaves were digitized in the laboratory 

using a computer scanner, and from these digitized images we calculated mean percent 

leaf area missing for each branch.  Third, we determined if bird exclusion affected 

biomass accumulation on oaks by measuring twig expansion in summer 2007.  Twig 

growth reflects in part the previous year’s photosynthetic assimilation, so 2007 twig 

growth should be negatively affected by 2006 herbivory (Marquis and Whelan, 1994).  

We measured all new twigs on experimental branches and calculated mean twig length. 

We analyzed insect herbivore and arthropod predator abundance using repeated-

measures MANOVA with exclosure treatment and site as fixed factors.  While sites 

(blocks) are often treated as random factors (Newman et al., 1997), we treated site as a 

fixed factor because we were specifically interested in differences in the dependent 

variables among locations.  Abundances were log-transformed to normalize residuals, 

and MANOVA was followed with univariate ANOVA and Tukey HSD post-hoc tests.  

We examined bird abundance differences using generalized linear models with a Poisson 

error distribution and log-link function.  We included only insectivorous birds in this 

analysis and bird analyses discussed below.   

To analyze effects on herbivore community structure, we divided herbivores into 

feeding guilds.  These were free-feeders, which remain in the open on a leaf or branch; 

shelter-builders, which roll or tie leaves together to create structures in which they feed or 

are protected from predators; and miners, which feed between the upper and lower cuticle 
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of leaves.  We used repeated-measures MANOVA (von Ende, 2001) to examine 

abundance of these guilds, and abundances were log-transformed.   

To examine herbivore damage and twig expansion, we used two-way ANOVA, 

again with exclosure treatment and site as fixed factors.  In all analyses, a significant site 

effect indicates spatial variation in the insect community.  A significant site × treatment 

effect indicates that direct or indirect effects of bird predation varied spatially. 

  Additionally, we compared the bird abundance in each site to the herbivore 

community and effects on trees.  Because of limited sample size (n = 5 sites), we used 

non-parametric Spearman rank correlations.  All statistical analyses were carried out 

using SPSS (SPSS Inc., 2004), except the bird abundance analysis, which was performed 

in R (R Development Core Team 2007).   

 

Results 

Herbivore and arthropod predator abundance varied by site, but not by exclosure 

treatment.  We recorded 594 arthropods including 406 leaf-chewing herbivores (4 orders, 

21 families, 55 species/morphospecies) and 188 predators (6 orders, at least 8 families).  

The MANOVA results for herbivore and predator abundance indicated that only site had 

a significant effect on abundance (Wilks’s Λ = 0.228, F8,38 = 5.194, P < 0.001); treatment 

(Wilks’s Λ = 0.816, F2,19 = 2.146, P = 0.144), census (Wilks’s Λ = 0.943, F4,17 = 0.256, P 

= 0.902), and all interactions were non-significant (P > 0.1).  Total herbivore abundance 

was fairly constant through time, not differing significantly by census (F2,40 = 0.147, P = 

0.864, Fig. 2A).  There was a highly significant site effect on herbivore abundance (F4,20 

= 10.468, P < 0.001) due to site 3, which consistently had lower abundances (based on 
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Tukey HSD post-hoc tests).  Arthropod predator abundance showed marginally 

significant variation among sites (F4,20 = 2.578, P = 0.069).  While arthropod predators 

were more abundant within exclosures during May (univariate ANOVA treatment × 

census interaction F2,40 = 4.853, P = 0.013; Tukey HSD = 2.19, P = 0.011), the overall 

MANOVA treatment × census interaction was non-significant (Fig. 2B).   

Like their potential prey, insectivorous bird abundance varied among the five 

sites.  During bird surveys we recorded 88 individuals of 21 species.  Abundance was 

highest in site 3 (mean number of inviduals detected ha-1 ± 1 s.e., 12.3 ± 3.3) and 

significantly lower in site 5 (6.3 ± 1.5, z = 2.361, P = 0.018) and 1 (7.0 ± 1.5, z = 2.078, P 

= 0.038).  Species richness was fairly uniform, varying from 9 (site 4) to 12 species (sites 

3 and 5).   

Abundances of herbivore foraging guilds varied by site and census, but were not 

affected by exclosure treatment.  There was a significant effect of site (Wilks’s Λ = 

0.330, F12,48 = 2.078, P = 0.037) and census (Wilks’s Λ = 0.096, F6,15 = 23.414, P < 0.001) 

on herbivore guilds but no treatment or interaction effects.  Abundance of all three guilds 

(free-feeders, shelter-builders, and miners) differed among sites (F4,20 = 3.424, P = 0.027; 

F4,20 = 3.124, P = 0.038; F4,20 = 2.727, P = 0.058, respectively) and by census (F2,40 = 

18.172, P < 0.001; F2,40 = 13.610, P < 0.001; F2,40 =  22.794, P < 0.001, respectively) 

(Fig. 3).  

Bird exclosure affected leaf damage, but not branch growth.  The effects on leaf 

damage were consistent through space.  May leaf damage scores were marginally greater 

on exclosure trees (F1,20 = 3.863, P = 0.063).  There was a highly significant site effect on 

May leaf damage (F4,20 = 9.954, P < 0.001), again driven by site 3 which experienced 
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extremely high herbivory in May.  End-of-season herbivory in October was significantly 

greater on exclosure trees (F1,25 = 4.259, P = 0.050, Fig. 4A).  This leaf damage did not 

differ among sites (F1,25 = 0.650, P = 0.428), and there was no site × treatment interaction 

(F1,25 = 0.922, P = 0.346).  Mean twig growth in 2007 did not differ by treatment (F1,19 = 

2.608, P = 0.123, Fig. 4B), nor were there site (F4,19 = 0.308, P = 0.869) or interaction 

effects (F4,19 = 1.547, P = 0.229).  One tree was excluded from fall herbivory and twig 

growth analyses because the experimental branch snapped in a storm.  The experimental 

branch on three trees died between fall 2006 and summer 2007; two of these trees were 

exclosure trees and one was a control tree.  Twig growth for these trees was considered 0; 

excluding these trees from the twig growth analysis did not change results.  End-of-

season herbivore damage effect size (the difference in mean damage between control and 

exclosure trees at a site) was significantly positively correlated with total bird abundance 

(Spearman’s rho = 0.9, P = 0.037).   

 

Discussion 

The results of this experiment suggest that while communities of white oak 

herbivores and their predators vary through space at the scale examined here, the direct 

and indirect effects of bird predation are relatively constant.  Insect herbivore abundance 

varied between sites; this variation was mostly due to one of the five sites (site 3), which 

had low abundances of both herbivores and arthropod predators throughout the 

experiment.  Early in the experiment, the entire research area experienced an outbreak of 

fall cankerworm (Alsophila pometaria Harris), and site 3 experienced especially severe 

herbivory.  This species peaked in abundance early so that when we conducted the May 
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census we recorded relatively few cankerworms.  Part of the reason few herbivores were 

found in site 3 may have been because defoliation was so severe that there was little 

remaining white oak foliage on the trees being studied.  Many of these trees reflushed 

new leaves in late spring.  Reflushed leaves of oaks can be a poor quality food source for 

the remainder of the season (Schultz and Baldwin, 1982; Hunter and Schultz, 1995; 

Hunter, 1987) and thus may have been avoided by herbivores.   The structure of white 

oak herbivore communities exhibited spatial variation as well.  Sites differed in 

abundance of the three feeding guilds we examined (Fig. 3).   

Abundances of spring arthropod predators were greater within exclosures than on 

control branches (Fig. 2, although this effect was nonsignificant in the omnibus 

MANOVA).  This high predator abundance disappeared later in the summer.  It is 

possible that arthropod predators showed a strong numerical response to the cankerworm 

outbreak, which may have been more common within exclosures given the marginally 

greater spring leaf damage on exclosure trees.  

Despite the observed spatial variation in abundance and community structure of 

herbivores, abundance of arthropod predators, and abundance of insectivorous birds, the 

indirect effects of bird predation on white oak were consistent spatially.  The spring 

herbivore damage assessment conducted in May showed a significant site effect, but this 

was entirely due to the high defoliation levels in site 3.  By the end of the season, 

exclosure trees had experienced significantly higher leaf damage from insect herbivores, 

indicating that bird predation can reduce insect damage on white oak, as has been 

demonstrated previously on saplings at this site (Marquis and Whelan, 1994).  There 

were no site effects or site × treatment interactions, indicating that the indirect effect of 
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birds on leaf damage were spatially constant at this site.  Twig growth in the following 

year, which partly reflects the previous year’s leaf damage, was lower on exclosure trees, 

which were more heavily damaged, but this effect was not statistically significant.  Twig 

growth was significantly correlated with May herbivory scores (R2 = 0.272, P = 0.010) 

but not end-of-season herbivore damage.  Leaf damage present in May, when leaves are 

young, represents lost photosynthetic capacity for the remainder of the growing season, 

while the additional damage included in the fall damage estimate was accumulated more 

gradually over the preceding four months.  Thus if twig growth is related to the previous 

year’s photosynthetic assimilation, it would be expected that growth would be more 

strongly correlated with spring herbivory than total end-of-season herbivory.  Again, 

however, mean twig growth did not vary across sites.   

It is not entirely clear why leaf damage was greater on exclosure trees when there 

was no difference in herbivore abundance:  we documented the indirect effect of the bird-

insect-plant trophic cascade, but not the direct effect of birds on herbivores.  Although we 

censused herbivores during known peaks in their abundance, the early cankerworm 

outbreak progressed so rapidly that it was largely over when we conducted the spring 

census.  Cankerworms may have been responsible for a large proportion of the herbivory 

we measured. 

The reduction in leaf damage on control trees was higher in sites with higher 

insectivorous bird abundance.  Although our bird surveys took place in June, between the 

first and second arthropod censuses, they likely reflect local bird abundance throughout 

the study period.  All the birds recorded breed locally and have established territories 

before the May arthropod census.  Local bird abundance increases in late summer when 
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offspring fledge, but this increase should be positively correlated with the abundance of 

nesting birds.   

Our results appear to contradict the logical argument by Gripenberg and Roslin 

(2007) that spatial variation in the distribution of herbivores and their predators will 

result in spatially variable interactions.  Despite the similar appearance of the five sites 

studied here, the composition and structure of the insect herbivore community differed 

spatially, but according to the ANOVA model the indirect effects of bird predation on 

white oak did not differ among sites.  The only evidence that we found for spatial 

variation in interaction was a significantly positive correlation between bird abundance 

and effect size. These two results together suggest that differences in the impacts of birds 

among sites may have been real but were too weak to be detected.  This study focused 

only on the effects of avian predators in this system.  The spatial variation in abundance 

of herbivores and their different component guilds may be due to variation in bottom-up 

effects of plants, such as nutritional content, defensive compounds like tannins (Forkner 

et al., 2004), or interactions among predator guilds, including birds, arthropod predators, 

and parasitoids. 
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Figures 

Fig. 1.  Sites 1 through 5 at Tyson Research Center, St. Louis County, Missouri.   

 

Fig. 2.  Mean abundances (± 1 s.e.) on exclosure and control trees during May, July, and 

August censuses, pooled across all sites.  (A) insect herbivores and (B) arthropod 

predators.  Exclusion of avian predators did not affect abundance of any groups.  

Although predators were more abundant on exclosure trees in May, treatment effect was 

nonsignificant in omnibus MANOVA. 

 

Fig. 3.  Spatial variation in mean abundances (± 1 s.e.) of herbivore feeding guilds by 

census.  (A) free feeders, (B) shelter-builders, and (C) miners.   

 

Fig. 4.  (A) Mean leaf damage (± 1 s.e.) on exclosure and control trees at the end of the 

growing season.  Bird exclusion resulted in significantly higher leaf damage on exclosure 

trees.  (B) Mean twig growth (± 1 s.e.) on exclosure and control trees in summer 2007.  

Although twig growth was lower numerically on exclosure trees, as expected, the 

difference was not statistically significant. 
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Chapter 2 
 
Impacts of foliage quality on herbivorous insect attack and bird predation 
 
Abstract 

 Theory predicts that the direct and indirect effects of predators on herbivores and 

plants, respectively, will vary with traits of the plants.  Light has strong effects on leaf 

quality, so the impacts of predators and herbivores may differ between plants grown in 

sun and shade.  However past experiments have often been unable to separate the effects 

of light environment on plant traits and plant use by herbivores from direct effects on 

herbivores or predators.  I used a light manipulation to produce oak saplings with 

different leaf quality.  I then moved these plants to a common light environment where I 

factorially excluded bird predators and measured the effects of birds and leaf quality on 

herbivore abundance and herbivory.  Sun leaves were presumably lower-quality food; 

they were thicker and tougher, had lower nitrogen and water content, and higher carbon, 

tannin, and phenolic content.  However herbivores were significantly more abundant and 

caused greater leaf damage on sun-exposed trees.  Bird exclusion did not change 

herbivore abundance, but did increase leaf damage.  The effects of birds did not vary with 

light manipulation.  The higher abundance and damage on sun trees may have been due 

to ovipositing females preferring hosts with greater leaf and shoot growth.  Birds may 

have reduced leaf damage through non-consumptive effects on herbivore feeding 

behavior.   

 

Key words:  herbivore, top-down, bottom-up, light, leaf quality, bird predation, indirect 

effects, tritrophic 
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Introduction 

Ecologists recognize that both predation pressure and food resources impact 

herbivore populations (Matson and Hunter 1992, Polis 1999).  Food web theory predicts 

that systems with greater primary productivity support larger herbivore populations. As a 

result, the impacts of predators will increase along this gradient (Oksanen et al. 1981, 

Oksanen and Oksanen 2000).  For this reason, the top-down vs. bottom-up paradigm in 

ecological research has paid particular attention to the importance of nutrient availability 

in evaluating food quality of foliage (e.g., Stiling and Rossi 1997, Forkner and Hunter 

2000, Huberty and Denno 2006).  A number of experimenters have combined fertilization 

treatments with manipulations of both invertebrate (Stiling and Rossi 1997, Fraser and 

Grime 1998, Dyer et al. 2004) and vertebrate predators (Sipura 1999, Ritchie 2000, 

Forkner and Hunter 2000, Gruner 2004, Strengbom et al. 2005, Boege and Marquis 

2006).  These studies have not produced consistent conclusions as to how the strength of 

predator effects varies with productivity.  Similarly, an extensive meta-analysis by Borer 

et al. (2005) found that high system productivity is not consistently associated with 

stronger predator effects.   

Nutrients, however, are not the only environmental variable affecting bottom-up 

effects of plants.  Light increases plant growth, but increased light may have an opposite 

effect on predator impacts compared to fertilization.  Light exposure can alter leaf 

quality, especially in plants with carbon-based defenses, resulting in plants with low 

nitrogen and water content and tough leaves with high phenolic content (Nichols-Orians 

1991, Dudt and Shure 1994).  These characteristics can make foliage unpalatable so 
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herbivores are less likely to feed, resulting in lower herbivore abundance and lower plant 

damage.  Lower herbivore populations reduce the foraging intensity and effects of 

predators, reducing the strength of indirect top-down effects, opposite the expected 

results in nutrient-enrichment experiments.  

Higher concentrations of phenolics such as tannins in plants can have negative 

effects on insect herbivores.  Tannins are associated with decreased growth (Kopper et al. 

2002) and survivorship (Agrell et al. 2000) of herbivores and correlate negatively with 

leaf damage by herbivores (Bettolo et al. 1985, Dudt and Shure 1994, Sagers and Coley 

1995).  Thus higher-quality shade leaves should support higher abundances of insect 

herbivores, while well-defended sun leaves should have fewer herbivores.  Because 

insectivorous birds preferentially forage on vegetation with higher prey densities (Smith 

and Dawkins 1971, Whelan 1989, Parrish 1995), bird foraging effort and predation 

effects should be greater on shaded plants.  These patterns suggest that the strength of the 

trophic cascade (relative reduction in herbivores and herbivore damage due to predation) 

should be greater in the less-productive shaded environment.  Sipura (1999) conducted a 

bird exclosure study on two related willow species, one with high levels of defensive 

chemicals and one with low levels; the direct and indirect effects of bird predation were 

greater on the poorly-defended trees, consistent with these predictions. 

While effects of light on plant growth, physiology, and defensive chemistry are 

well-known, most experiments exploring effects of light on leaf quality, herbivore 

abundance, and herbivore impact have been unable to separate the effects of leaf quality 

and light per se on herbivore distribution.  For example, Chacón and Armesto (2006), in a 

design similar to a number of other studies (Dudt and Shure 1994, Muth et al. 2008), 
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planted seedlings in forest interior and canopy gaps and documented differences in 

herbivory levels between the two microenvironments.  But in this design it is not possible 

to determine if these patterns are due to leaf quality differences in the two light 

environments or habitat preferences of the herbivores themselves (i.e., herbivores may be 

more abundant or ingest more leaf material in one light environment than another).  

Additionally, unlike nutrient effects on herbivores that are transmitted through plants, 

light can directly affect herbivore growth, development, and behavior by altering 

temperature and humidity (Stamp and Bowers 1994, Chase 1996).   

In this project I used a light manipulation to produce leaves of different qualities 

followed by bird predator exclusion in a common light environment to control the effects 

of light on herbivore and predator distribution.  This design also manipulates tannin 

content (as called for by Forkner et al. (2004)) to elucidate the role of plant defensive 

chemistry in a trophic cascade (“species cacade,” sensu Polis 1999).  I predicted that sun-

exposed trees would have lower leaf quality and thus lower herbivore abundance and 

damage than shaded trees in the absence of avian predators.  When birds are free to 

forage on experimental trees, this difference would be reduced (Fig. 1A), resulting in an 

antagonistic interaction between birds and leaf quality on herbivores (Hare 1992).  

Alternatively, birds may reduce herbivores and damage without interacting with leaf 

quality (Fig. 1B), or birds may have no impact (Fig. 1C).   

 

Methods 

Experimental Trees 
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 In April 2007, I planted 72 Q. alba saplings in 19 L (5 gal) buckets with drainage 

holes using a common soil source (Woodland Perennial Mix, River City Landscape 

Supply, Inc., Sauget, IL) and placed them in a location that provided morning sun and 

afternoon shade.  I provided water through the 2007 growing season and insulated against 

freeze over the winter by piling mulch around the outside of the buckets.  All saplings 

survived the winter. 

 In spring 2008, I constructed a shade canopy structure and sham control (“sun 

canopy”) structure in an open field.  Structures were 5 m x 5 m in area and 1.3 m tall.  

The shade canopy was covered with greenhouse shade cloth (black, “90% light 

reduction,” International Greenhouse Company, Georgetown, IL), and the sun canopy 

was covered in monofilament netting (2.5 cm gaps, H. Christiansen Co., Duluth, MN).  

The shade canopy reduced photosynthetically active radiation (PAR) by 75% (percent 

µmol photons m-2 s-1 reduction = 75.4% ± 0.1% based on paired measurements on three 

sunny days; line quantum meter LQM70-10, Apogee Instruments, Inc., Logan, UT).  A 

mesh fence to exclude deer surrounded the canopies.   

 I moved all saplings to the sun canopy in early April 2008.  On the first day 

budbreak was evident (19 April), I randomized the saplings and moved half (“shade 

trees,” n = 36) to the shade canopy and left the remaining saplings (“sun trees,” n = 36) 

under the sun canopy.  The shade canopy did not provide complete shade at all times; in 

early morning and evening, the low angle of the sun resulted in some trees receiving low-

intensity direct sunlight.  However trees were completely shaded from mid-morning to 

late afternoon when sunlight was most intense.  I rotated trees within each light treatment 

weekly to minimize light environment differences experienced by trees beneath each 
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canopy.  Although precipitation was plentiful throughout spring 2008, I provided 

supplemental water to all saplings in case the shade canopy reduced the rain reaching 

shade trees.  Because the only manipulation intended by this treatment is to vary the light 

environment, saplings were sprayed with an organic pyrethrin-based pesticide 

(Spectracide Bug Stop, Spectrum Group, St. Louis, MO) weekly and following rain from 

late April to mid-May.  This was to ensure that spring herbivores did not impose different 

levels of herbivory on sun and shade trees.  The pesticide was not very effective, as 

herbivore damage and particularly aphid damage was present at some levels on most 

trees.   

 In early June I recorded the number of leaves on each tree, length of all new 

shoots, stem diameter at 10 cm, and tree height.  I also recorded the number of leaves 

with >20% damage from leaf-chewers and rated aphid damage using a 0-6 scale (where 0 

was no aphid damage visible, 4 was approximately half of leaves with visible aphid 

damage, and 6 was all leaves with visible aphid damage; damage appeared as pale 

speckling or blotches on upper leaf surfaces).  On 11 June, shade and sun trees were 

randomized for bird exclosure treatment and transported to a 50 m x 50 m deer exclosure 

in a mature forest setting with a shaded understory.  A grid of 81 points with 5 m spacing 

had been established within the deer exclosure.  I estimated canopy cover at each point 

using a concave spherical densiometer.  I excluded the 9 points with the least canopy 

cover and assigned a tree to each remaining point.  Trees were assigned to points quasi-

systematically allowing for the excluded points with the goal of avoiding clumping of 

treatment combinations.  I placed bird exclosures (0.8 m x 0.8 m x 1.5 m tall, covered 
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with the same monofilament netting as on the sun canopy) over all trees assigned to the 

bird-excluded treatment and fastened exclosures to the ground.   

Arthropod Censuses 

 Herbivores and arthropod predators were censused on 3 July and 3 September 

2008.  Top and bottom surfaces of all leaves and branches were visually inspected, and 

all arthropods encountered were identified.  Herbivores were identified to species or 

morphospecies and predators were identified to either order or family.  Abundances of 

herbivores were expressed in m2 leaf area based on the mean leaf size for each plant 

undamaged (see “Herbivory Damage,” below) multiplied by the number of leaves present 

on the plant in each survey.   

Leaf Quality 

 On 30-31 July, at the approximate midpoint between the two surveys, I collected 

three leaves from upper branches of each tree.  I collected leaves haphazardly but 

attempted to collect leaves with minimal damage.  I weighed the three leaves from each 

tree together and measured toughness using a penetrometer (average of three punches per 

leaf, nine total punches per tree, Force Dial FDK 32, Wagner Instruments, Greenwich, 

CT).  I kept leaves chilled on ice and refrigerated between collection and measurement 

(elapsed time ranged 4-224 minutes, mean ± 1 s.e. = 102 ± 7 minutes).  I stored leaves at 

-80˚ C.  Prior to lyophilization, I punched one 6 mm diameter leaf disk from each leaf.  

Leaves and disks remained in lyophilizer for 96 hours.  I then weighed the dried leaves 

and the leaf disks (the latter on a microbalance) and summed the weights to calculate 

water content (= (wet weight – dry weight) / wet weight).  I calculated specific leaf area 

(SLA) from the disk weights and area (= dry weight / 0.283 cm2).  Neither date of 
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collection nor time elapsed between collection and measurement affected toughness or 

water content (all P > 0.2).   

 I assayed condensed tannins, hydrolysable tannins, and total phenolics for each 

tree and compared them to standards purified from bulk leaf tissue pooled from all trees.  

Bulk tissue was washed with 95% ethanol and extracted with 70% acetone on Sephadex 

LH-20 in a Büchner funnel.  I removed acetone with rotary evaporation and lyophilized 

frozen extract.  Samples from each tree were rinsed with diethyl ether, and tannins were 

extracted in 70% acetone followed by rotary evaporation; the resulting aqueous samples 

were brought to common volume.  I assayed condensed tannins using the acid-butanol 

technique (Rossiter et al. 1988, Waterman and Mole 1994), hydrolysable tannins using 

the potassium iodate technique (Bate-Smith 1977, Schultz and Baldwin 1982), and total 

phenolics with the Folin-Denis technique (Swain and Hillis 1959).  Absorbances 

(Versamax microplate reader, Molecular Devices Corporation) of each tree were 

compared to a curve constructed from bulk standard samples of known concentration and 

expressed as percentages of starting leaf tissue mass.  All assays were performed twice, 

on two separate samples from each tree, and the percentages were averaged; three 

samples were contaminated during the extraction process, so these trees are based on a 

single measurement.  I determined carbon and nitrogen content by microcombustion 

(Perkin-Elmer Series II CHNS/O Analyzer 2400). 

Herbivory Damage 

 I systematically collected 30 leaves from each tree on 3 October to measure 

damage from herbivores.  Collected leaves were evenly spaced throughout each plant by 

dividing the number of leaves counted on the plant in early June by 30; for a plant with 
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240 leaves, I collected every eighth leaf, starting at the base of the plant.  Scars where 

leaves had been attached in the current year but were missing during the collection were 

recorded as completely consumed by herbivores.  I digitally scanned each leaf and 

measured area with a pixel-counting program (SigmaScan Pro 5.0).  I imported these 

scans into a paint program, filled in areas of each leaf eaten by herbivores, and 

remeasured the leaves to estimate the original undamaged leaf area.  For leaves that were 

completely consumed or so severely damaged that estimating original leaf area was not 

possible, I assigned the mean undamaged leaf area for all measurable leaves on that plant.  

This mean value was the leaf size used to express abundance of herbivores (see 

“Arthropod Censuses,” above).  Total herbivore damage was calculated as the sum of the 

area of damaged leaves divided by the sum of the original undamaged areas, subtracted 

from 1.  Per capita consumption for each tree was calculated as damage divided by the 

summed abundance of herbivores.   

Analyses 

 To verify light manipulation effects on leaf quality, I analyzed toughness, water 

content, SLA, tannins, phenolics, and C and N content using MANCOVA followed by 

univariate ANCOVAs with light treatment, proportion of damaged leaves in June, and 

aphid score as covariates.  Because abundance of herbivores and arthropod predators 

were fairly low, and because leaf damage reflects the impacts herbivores from both 

censuses, I summed July and September abundances.  These abundances were analyzed 

by ANOVA with light treatment and bird exclusion as fixed factors; transformation of 

variables did not improve model fit.  One tree died between the censuses and was 

excluded from this and all other analyses.  One tree was almost completely defoliated by 
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an unknown herbivore between the censuses; it is excluded here because there was 

essentially no leaf area on which to survey arthropods.  I used ANCOVA to determine 

how total herbivore damage varied with light treatment and bird exclusion and if 

proportion of leaves damaged in spring or spring aphid damage affected this damage.  

Damage, expressed as proportion leaf area lost, was arcsin-square root transformed to 

improve normality of model residuals.  All analyses were carried out in R (R 

Development Core Team 2008). 

 

Results 

Leaf Quality  

 The MANOVA results for leaf quality characteristics indicated that only light 

manipulation had a significant effect but that the light effect was strong (Wilks’s Λ = 

0.198, F8,60 = 30.358, P < 0.001).  Aphid damage score (Wilks’s Λ = 0.934, F8,60 = 0.533, 

P = 0.827) and proportion of damaged leaves (Wilks’s Λ = 0.871, F8,60 = 1.109, P = 

0.371; on average, 12.3 ± 1.5% damaged) did not impact leaf quality.  Sun trees had 

significantly tougher leaves than shade trees (Fig. 2A, F1,67 = 9.125, P = 0.004) and 

significantly lower water content (Fig. 2B, F1,67 = 6.711, P = 0.012).  Date of collection 

and time elapsed between collection and measurement did not affect these measurements.  

Sun trees also had significantly lower specific leaf area (Fig. 2C, F1,67 = 117.106, P < 

0.001).  Sun trees had significantly higher concentrations of all three phenolic 

measurements:  condensed tannins increased by 225% (F1,67 = 105.850, P < 0.001), 

hydrolyzable tannins by 34% (F1,67 = 64.929, P < 0.001), and total phenolics by 51% 
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(F1,67 = 59.684, P < 0.001) (Fig. 3).  Sun trees had lower N (Fig. 4A, F1,67 = 42.016, P < 

0.001) and higher C (Fig. 4B, F1,67 = 24.014, P < 0.001).   

Sun trees produced more leaves (mean ± 1 s.e.:  sun, 196.7 ± 8.5; shade, 160.4 ± 

7.3; t70 = 3.24, P = 0.002) and more shoots (sun, 31.2 ± 1.2; shade, 26.1 ± 1.3; t70 = 2.94, 

P = 0.004) than shade trees.  However leaves on sun trees were on average smaller than 

those on shade trees (sun, 61.6 ± 2.6 cm2; shade, 77.5 ± 3.5 cm2; t69 = 3.63, P < 0.001), so 

total leaf area did not differ with light treatment (sun, 1.17 ± 0.06 m2; shade, 1.24 ± 0.07 

m2; t69 = 0.76, P = 0.450).   

Arthropods 

 The July census recorded 114 herbivores of 23 species (1.34 herbivores/m2 leaf 

area) and 44 arthropod predators, of which ants (30%) and spiders (48%) were most 

common.  In the September census 80 herbivores of 32 species (1.02 herbivores/m2) and 

47 predators (96% spiders) were present.  Herbivores were significantly more abundant 

on sun trees compared to shade trees.  Bird exclusion did not affect herbivore abundance, 

and there was no significant interaction between light and bird treatments (Table 1, Fig. 

5A).  The proportion of damaged leaves in spring and aphid damage score did not affect 

herbivore abundance; as a result both effects were removed from the model.  Neither 

treatment significantly affected arthropod predator abundance, nor was their interaction 

significant (Table 1, Fig. 5B).   

Herbivory damage 

 Both light treatment and bird exclusion had a marginally significant effect on total 

leaf damage.  Proportion of leaves damaged in spring and aphid damage score did not 

affect end-of-season damage and were removed from the model.  On average sun trees 
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lost 41.7% more leaf area than shade trees, and trees with birds excluded suffered 41.6% 

greater leaf area loss than control trees (Table 2, Fig. 6).  Per capita consumption did not 

differ with light treatment (t65 = 0.38, P = 0.707) but was marginally significantly greater 

within bird exclosures compared to control trees (t65 = 1.70, P = 0.094) 

 

Discussion 

 I found no evidence that the effects of bird predation on density or impacts of 

insect herbivores varied with leaf quality.  Surprisingly, herbivores were significantly 

more abundant and inflicted marginally significant greater damage on sun trees.  While 

bird exclusion did not change the abundance of insect herbivores recorded in censuses, 

caged trees did suffer greater herbivore damage than control trees as predicted.   

 Sunlight manipulation had the intended effect of changing leaf quality.  Sun trees 

produced harder leaves with less water, lower N content, and higher phenolics and 

tannins.  Our current understanding of the effects of leaf quality traits on herbivore fitness 

would consider that sun leaves would be lower in quality than shade leaves (Mattson 

1980, Scriber and Slansky 1981, Coley et al. 2006, Kitamura et al. 2007).  These leaf 

differences caused by sun exposure in spring lasted through the growing season:  

measurements were based on leaves collected 7 weeks after plants were moved to a 

common shady light environment in the forest interior.   

 Despite their low-quality foliage, sun trees hosted higher abundances of 

herbivores, contrary to my expectations.  This may be due to oviposition preferences of 

adult female herbivores.  Most of the herbivores recorded were Lepidoptera larvae, and 

for many caterpillars, host plant selection is left largely up to their egg-laying mothers.  
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Finding a new host plant may be very difficult and energetically expensive for a 

caterpillar, especially on understory plants as opposed to canopy-feeding herbivores 

which can easily drop to lower plants.  In this case plants were also planted in plastic 

buckets into which caterpillars may have been unwilling to climb.  Thus, the observed 

differences among sun/shade treatments may have been due to oviposition choices by 

gravid females.  The observed pattern of greater abundance on sun trees is consistent with 

the plant vigor hypothesis (Price 1991), in which herbivores prefer host plants that are 

growing or have grown larger than other “less-vigorous” plants.  Sun trees produced 

more leaves and shoots than shade trees, so if ovipositing female moths do prefer more 

vigorous-growing host plants, then abundance of herbivores may be expected to be 

greater on sun trees as observed in this experiment.  However the smaller size of sun 

leaves resulted in similar total leaf area between sun and shade trees 

 Because herbivores were more abundant on sun trees, it is not surprising that the 

amount of leaf area lost to herbivory was also greater.  However it is possible that this 

leaf damage was also greater on sun trees because of the low nutritional quality of the 

foliage.  Because of the low nitrogen content and higher concentration of phenolic 

compounds that may interfere with digestion, an herbivore may need to consume a 

greater amount of leaf tissue on sun trees to obtain the same nutritional and energetic 

benefit as on shade trees where nitrogen is more concentrated and phenolics content is 

lower.  This compensatory feeding by herbivores on plants of poor nutritional value is 

widespread (Simpson and Simpson 1990).  If this were the case in this experiment, I 

would expect per capita consumption to be higher on sun trees.  Per capita leaf 
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consumption was the same for sun and shade trees, so herbivores did not appear to 

engage in compensatory feeding on low-nutritional plants.   

 The lack of an effect of bird predation on insect herbivore abundance and 

arthropod predator abundance is surprising given the strong effects documented by 

Marquis and Whelan (1994) at a nearby site on the same host plant.  Many other 

researchers have increased arthropod abundances on plants by excluding birds (Holmes et 

al. 1979, Floyd 1996, Sipura 1999, Strong et al. 2000, Van Bael et al. 2003).  

Insectivorous birds may have been less abundant at my site than the nearby site used by 

Marquis and Whelan (1994).  They also studied larger plants, which may have supported 

higher densities of herbivores per leaf area that would have made patterns of abundance 

more apparent (Feeny 1976).  Increased abundance of, and predation by, arthropod 

predators in the absence of vertebrates can also mask predation effects (“compensatory 

predation,” Pacala and Roughgarden 1984).  I observed no difference in arthropod 

predator abundance between cage and control trees, which suggests that this did not occur 

in this experiment. 

 Per capita feeding was marginally greater within bird exclosures, which may in 

part explain why leaf damage was greater on plants from which birds were excluded even 

though this did not result in differences in herbivore abundance.  Physical disturbance of 

plants may cause herbivores to cease feeding or other activity, or may prompt them to 

drop off of the host plant to escape possible predation (pers. obs.).  There is evidence that 

Lepidopteran larvae even reduce feeding activity in response to disturbance by nearby 

flying insects, perhaps as a precaution against parasitoids (Tautz and Rostás 2008).  

Caged plants in this experiment may have experienced less physical perturbations 
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because of the absence of foraging birds; herbivores on these plants would be disturbed 

less while feeding, resulting in greater damage to caged plants.   

A number of studies have shown that herbivore damage is lower in forest edge, 

gap, and other sunny microhabitats (Dudt and Shure 1994, Muth et al. 2008).  A sample 

of Q. alba leaves from edge and interior habitats at this field site agrees with this (unpubl. 

data).  Contrary to these other studies, the results of this experiment suggest that reduced 

damage on sun-exposed edge leaves is not due to leaf quality, as sun trees received 

greater damage than shaded trees.  Three possible explanations (not mutually exclusive) 

may explain the edge-interior leaf damage pattern.  Predation on herbivores, either by 

vertebrate or invertebrate predators, may be greater along edges.  This is supported by 

studies using both artificial (Richards and Coley 2007, Skoczylas et al. 2007) and live 

caterpillars (Richards and Coley 2008), which found bird attacks on artificial caterpillars 

were more frequent in forest edges.  Second, adult females may avoid edges when 

ovipositing.  Selection for this avoidance may be due in part to higher predation rates on 

larvae.  Lastly, herbivores growing along forest edges may develop more quickly on 

warm sun-exposed leaves and so do not consume as much leaf tissue as in cooler interior 

habitats (Joos et al. 1988) 

 In conclusion, birds had no effect on herbivore abundance, but may have had a 

behavioral effect on feeding as evidenced by per capita herbivore consumption rates.  The 

effects of bird predation did not differ with leaf quality.  Herbivores were more abundant 

on sun plants, opposite my prediction, and this resulted in greater damage.  Thus results 

supported a mirror-image of the hypotheses presented in Fig. 1 in which sun and shade 
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trees should be switched.  Herbivore abundance patterns then were most similar to 

hypothesis C in Fig. 1, while leaf damage results supported hypothesis B.   
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Table 1.  Herbivore and arthropod predator abundance ANOVAs.   
 
Source df F P 
Herbivores       
  Light 1,66 6.363 0.014 
  Birds 1,66 0.007 0.932 
  Light x Birds 1,66 0.688 0.410 
Arthropod predators    
  Light 1,66 2.217 0.287 
  Birds 1,66 2.484 0.260 
  Light x Birds 1,66 4.559 0.129 

 
Table 2.  Total leaf area lost to herbivores ANOVA. 
Source df F P 
Total herbivore damage       
  Light 1,66 2.840 0.097 
  Birds 1,66 3.443 0.068 
  Light x Birds 1,66 0.111 0.740 
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Figures 
 
Fig. 1.  Hypothetical impacts of birds and leaf quality on herbivore abundance and leaf 

damage.  Dashed line indicates results within bird exclosures, and solid lines are uncaged 

control trees.  (A) Bird predation may increase with herbivore abundance, resulting in a 

greater relative reduction on shade trees relative to sun trees.  (B) Birds may reduce 

herbivores and damage, but the impact may be simply additive if the reduction does not 

differ with herbivore abundance (and light treatment).  (C) Birds may have no impact on 

herbivore abundance or herbivory.   

 

Fig. 2.  Effects of light treatment on leaf characteristics.  (A) toughness, (B) percent water 

content, (C) specific leaf area.  ***, P < 0.001.   

 

Fig. 3.  Effects of light treatment on phenolic and tannin chemistry.  ***, P < 0.001.   

 

Fig. 4.  Effects of light treatment on (A) N content and (B) C content.  ***, P < 0.001.   

 

Fig. 5.  Effects of light manipulation and bird exclusion on (A) herbivore abundance and 

(B) arthropod predator abundance.  Values are mean abundance per m2 leaf area ± 1 s.e.  

Dashed lines indicate bird exclusion trees, and solid lines are control trees.  Herbivores 

were significantly more abundant on sun trees, but bird exclusion did not affect herbivore 

abundance.  Neither light nor bird exclusion treatments affected predator abundance.  *, P 

< 0.05.   
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Fig. 6.  Effects of light manipulation and bird exclusion on mean percent leaf area 

consumed by herbivores ± 1 s.e.  Dashed line indicates bird exclusion trees, and solid line 

is control trees.  Damage was marginally significantly greater on sun trees and within 

bird exclosures.  
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Fig. 1. 
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Chapter 3 

Bottom-up forces are more important than top-down in structuring a diverse oak 
herbivore community 
 

Abstract 

 Predation and plant traits both affect the abundance of insect herbivores, but less 

is known about how these forces influence the structure and composition of herbivore 

communities.  I combined a manipulation of insectivorous birds with measurements of 

natural variation in leaf quality characteristics of white oak (Quercus alba) across two 

growing seasons to determine top-down and bottom-up effects on herbivore richness and 

abundance of specific guilds.  Six censuses across the two years revealed that bird effects 

were weak, and bird predation only reduced the abundance of one group, generalist 

herbivores, and only during one census.  Bird predation also did not change the species 

composition of communities.  Leaf quality affected the abundance of most guilds, and 

these groups were consistently more abundant on trees with high nitrogen content and 

low levels of hydrolysable tannins.  These patterns were most apparent near the end of 

the growing season, when quality of foliage as food is lowest and the importance of leaf 

quality on host choice may be most important.  Generalist herbivores, but not oak 

specialists, were negatively correlated with high-tannin trees, supporting the idea that 

specialists are adapted to variation in host plant defenses.  Abundance of structure-

building herbivores did not vary with leaf quality, consistent with past work on leaf-tying 

oak herbivores.  Although predation had little effect on community structure in this 

system, impacts on herbivore richness and composition may be more apparent when 

direct effects of predators are stronger overall.   
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Key words:  herbivore, top-down, bottom-up, leaf quality, community structure, richness 

 

Introduction 

 Insect herbivore communities in forest habitats are often characterized by high 

species richness (Summerville and Crist 2003, Novotny et al. 2006, Dyer et al. 2007).  

Understanding the factors that influence diversity patterns in these communities has 

remained a significant challenge to ecologists (Strong et al. 1984, Lewinsohn et al. 2005).  

While it is widely recognized that both top-down impacts of predators and bottom-up 

influences of plant quality can control herbivore populations under certain conditions 

(Matson and Hunter 1992, Polis 1999), the roles of these forces in determining herbivore 

diversity and community structure area is less well understood.   

 Predation on herbivores by insectivorous birds can alter total insect abundance 

(Marquis and Whelan 1994, Strong et al. 2000, Murakami and Nakano 2000, Van Bael et 

al. 2003) and biomass (Mooney 2007), although these effects do not always occur 

(Forkner and Hunter 2000, Lichtenberg and Lichtenberg 2002, Gruner 2004).  Because 

birds should find prey items with different feeding behaviors or appearance at different 

rates, bird predation effects should differ in strength among herbivore species, in turn 

altering herbivore community composition.  Although bird exclusion studies have 

become common (Van Bael et al. 2008), few have reported impacts of birds on arthropod 

community structure (Marquis and Whelan 1994).  Boege and Marquis (2006) 

documented an increase in herbivore richness when birds were present, but Gruner 

(2004) found no such effect.   
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Susceptibility to predation may be mediated by feeding method such that 

herbivores concealed within leaves or in leaf structures may be protected from predation.  

Structure-building herbivores seem to be unaffected by birds, except for some leaf-rolling 

caterpillars (Murakami 1999, Murakami and Nakano 2002).  However, reported impacts 

of birds on leaf-miners are conflicting:  although birds are known to search for and attack 

leaf mines (Heinrich and Collins 1983, Connor and Beck 1993, Connor et al. 1999), 

neither Forkner and Hunter (2000) nor Mazia et al. (2004) found changes in miner 

occurrence when birds were excluded.  Finally Low and Connor (2003) estimated 

abundance of feeding guilds by measuring the area damaged by different guilds (e.g., 

skeletonizing, gall-forming, leaf-mining), but they found no effect of birds 

Abundance of herbivore species on their host plants is also influenced by the food 

quality of foliage.  Leaf quality is determined by various factors including nutrient 

content, defensive chemistry, physical characteristics (e.g., toughness, water content, 

specific leaf area), and the structural components that determine these physical 

characteristics.  These characteristics covary in complex ways depending on soil 

conditions, light exposure, and plant genetics.  The majority of research in this area has 

examined how herbivore communities differ between several plant species and how these 

differences correlate with traits of those plant species (e.g., Cornell and Kahn 1989, 

Murakami et al. 2008, Ricklefs 2008).  Fewer ecologists have examined how intraspecific 

variation within a plant species relates to herbivore community structure on individual 

plants.  In Japanese Quercus, richness was lower on sun-exposed oaks with leaf quality 

that differed from that of shaded trees; the composition of the Lepidoptera communities 

on these trees differed as well.  Lepidoptera community structure and richness on 
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Quercus also varied with forest management (Forkner et al. 2006), which can alter leaf 

quality at a large scale (Forkner and Marquis 2004).  Internal-feeding herbivores may 

have different leaf trait preferences compared to exposed feeders.  For example, leaf-

miners prefer softer leaves with higher water content (Kitamura et al. 2007, Cornelissen 

and Stiling 2008), but the effects of tannins and specific phenolic compounds are variable 

(Kitamura et al. 2007, Yarnes et al. 2008).  Similarly, leaf traits are expected to interact 

with herbivore diet breadth to influence species’ abundances.  Specialist herbivores may 

be better adapted to plant chemical defenses so that these compounds are more effective 

against generalists (Dyer et al. 2004), although Forkner et al. (2004) found that defensive 

condensed tannins in oaks have stronger impacts on specialists.   

 In this study I combined a bird exclusion experiment with measurements of the 

natural variation in foliage characteristics in Quercus alba (white oak) to determine how 

these top-down and bottom-up forces affected the structure of a diverse insect herbivore 

community.  Few studies have assessed the roles of both predation and leaf quality in 

herbivore communities, and this study is unique in that past work in the study system 

allows detailed categorizations of herbivores to examine the responses of particular 

guilds and analyses of community composition at high taxonomic resolution.  I predicted 

that density of exposed-feeding herbivores, but not concealed guilds, would be affected 

by bird predation, but all guilds would vary with leaf quality.  I expected leaf traits, but 

not birds, to differentially impact oak specialists and generalists.   

 

Methods 
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 This experiment took place at Tyson Research Center near Eureka, Missouri, 

along a southwest-facing dry slope in mature oak-hickory forest.  This is roughly the 

same area used by Marquis and Whelan (1994) in their study of the impacts of birds on 

insect abundance on Q. alba, and encompasses sites 4 and 5 described in Barber and 

Marquis (in press).   

 In winter 2006-2007, I identified 60 Q. alba of canopy or mid-story height with 

accessible understory branches (< 3 m from ground) and assigned each to exclosure or 

control treatments.  To ensure treatments were distributed evenly throughout the study 

area, I paired each tree with the nearest experimental tree and randomly assigned 

treatments.  I constructed bird exclosures using pvc pipe frames covered with 

monofilament gill netting with 2.5 cm gaps (H. Christiansen Co., Duluth, MN).  Frames 

were anchored by driving steel rebar into the ground and slipping the legs of each frame 

over these stakes.  Exclosures were generally built around a single understory branch, but 

on some trees one or more additional branches were included to ensure a sufficient 

number of leaves would be enclosed.  Netting was in place prior to budburst in spring 

2007.   

 I censused arthropod communities on each tree at three points in the season when 

insect herbivore abundance on Q. alba in Missouri is known to peak.  These peaks also 

have distinct species compositions with little or no overlap of individual herbivores from 

one peak to the next (Marquis and Whelan 1994, Marquis and LeCorff 1997, Forkner et 

al. 2004).  Because herbivore phenology varies somewhat among years, herbivore 

populations were informally monitored to determine when populations appeared to be 

reaching peak abundance.  In 2007, censuses took place on 11-14 May, 2-4 July, and 26-
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30 August; in 2008, 9-13 May, 3-4 July, and 2-9 September.  Following census protocols 

in Forkner et al. (2004), I searched tops and bottoms of leaves on experimental branches 

and identified all leaf-chewing herbivores encountered.  I counted the leaves inspected 

and searched approximately 400 leaves per branch, although some branches did not 

contain this many leaves.  Identification of these herbivores to species or morphospecies 

level is possible because of past work in the Marquis lab in conjunction with the Missouri 

Ozark Forest Ecosystem Project (Marquis and LeCorff 1997, Marquis et al. 2002a).  I 

identified arthropod predators to either order or family.   

 Following each census, I collected three leaves from each experimental tree; I 

collected leaves haphazardly but chose average-sized or large leaves with minimal 

damage.  Leaves were kept chilled on ice after collection and weighed within three hours.  

I measured toughness using a penetrometer (average of three punches per leaf, nine total 

punches per tree, Force Dial FDK 32, Wagner Instruments, Greenwich, CT).  In 2008, I 

punched one 6 mm diameter leaf disk from each leaf.  Leaves and disks were lyophilized 

for 72-96 hours and reweighed to obtain dry weight.  I calculated water content as (wet 

weight – dry weight) / wet weight, and weighed leaf disks to calculate specific leaf area 

(SLA, dry weight / 0.283 cm2).   

 I assayed condensed and hydrolyzable tannins for each tree and compared them to 

standards purified from bulk leaf tissue pooled from all trees.  Bulk tissue was washed 

with 95% ethanol and extracted with 70% acetone on Sephadex LH-20 in a Büchner 

funnel.  Samples from each tree were rinsed with diethyl ether, and tannins were 

extracted in 70% acetone followed by rotary evaporation; the resulting aqueous samples 

were brought to common volume.  I assayed condensed tannins using the acid-butanol 
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technique (Rossiter et al. 1988, Waterman and Mole 1994) and hydrolysable tannins 

using the potassium iodate technique (Bate-Smith 1977, Schultz and Baldwin 1982).  

Absorbances of each tree were compared to a curve constructed from bulk standard 

samples of known concentration and expressed as percentages of starting leaf tissue 

mass.  An error in the May 2007 condensed tannin assays resulted in questionable values, 

so these data were discarded and excluded from analyses.  I determined carbon and 

nitrogen content by microcombustion on a Perkin-Elmer Series II CHNS/O Analyzer 

2400.   

Analyses 

 For all analyses, abundances were divided by the total leaf area inspected per tree 

per census, calculated as the product of the number of leaves surveyed and the average 

understory leaf size for Q. alba reported in Le Corff and Marquis (1999), 58.7 cm2.  Thus 

abundances are reported as densities per m2 leaf area.   

 Compositional similarity of communities was analyzed using multi-response 

permutation procedures (MRPP), a nonparametric method that compares distances within 

and between groups defined a priori to test the null hypothesis that distances within 

groups are smaller than expected by chance (McCune and Grace 2002).  MRPP produces 

a statistic, A, that varies from A = 1 (all replicates within a group are identical) to A = 0 

(heterogeneity within groups equal to that expected by chance) or A < 0 (more 

heterogeneity within groups than expected by chance).  I used Sørensen distance 

(synonymous with Bray-Curtis distance) and natural log(x + 1)-transformed abundances, 

following the recommendations of McCune and Grace (2002).  Trees on which no 

herbivores were recorded (a small number in May 2007) were excluded.  I first compared 
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community similarity between the three censuses within each year and then all six 

censuses combined.  Significant differences in composition were followed with pairwise 

comparisons.  To test the impacts of birds on arthropod community composition, I used 

MRPP to compare exclosure vs. control trees in each of the six censuses individually.  I 

presented these communities graphically using non-metric multidimensional scaling 

(NMS), again using Sørensen distance.  I performed MRPP and NMS analyses using PC-

ORD 4.25 (MjM Software, Gleneden Beach, OR).   

 Because leaf quality characteristics often covary, I used principal components 

analysis (PCA) to describe the variation in leaf traits in a smaller number of variables.  

Following Ricklefs (2008), I log-transformed leaf quality measurements to homogenize 

variances and linearize relationships between variables.  I used prcomp() in the stats 

package of R (R Development Core Team 2007).  Variables were scaled to have unit 

variance; thus analyses were performed on the correlation matrix.  I performed six 

individual PCAs to describe the leaf quality in each census.   

 To determine how bird predation and leaf quality affect herbivore richness and 

density, I used MANCOVA with bird exclusion as a fixed factor and the first two leaf 

quality principal components (PCs) in each census as covariates.  Data from repeated 

censuses in an experiment like this are usually analyzed using mixed models to account 

for lack of independence of replicates between censuses, but this was not possible since 

leaf quality changes from one census to the next.  That is, it would not make sense to 

include a covariate that incorporated September leaf measurements when analyzing May 

herbivore density.  Instead I analyzed censuses in separate MANCOVAs; this is further 

justified by the distinct communities in each census (see Results, below) in which few, if 
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any, individual insects are present in more than one census.  In each census I used 

separate MANCOVAs to analyze (1) total herbivore richness and density, (2) density of 

guilds (free-feeders, shelter-builders, leaf-miners, and arthropod predators), and (3) 

density of oak specialists (species that feed only on Quercus spp.) and generalists 

(species that feed on at least one other plant genus).  Categorization of herbivores by 

guild and host breadth is based on information in Covell (1984), Forkner et al. (2004), 

and Wagner (2005).  Effects of bird exclusion, leaf quality, or interactions in omnibus 

MANCOVAs with P < 0.1 were followed by examination of individual ANCOVAs. 

Because high abundance of Asiatic oak weevil (Cyrtepistomus castaneus) in July 

censuses dominated the community and strongly influenced model results, I ran July 

models with this species excluded from total herbivore, free-feeders, and oak specialists.  

Weevil density was analyzed independently with separate ANCOVAs.  All PCAs and 

MANCOVAs were carried out in R.   

 

Results 

 Surveys recorded 1,478 leaf-chewing herbivores of 71 species or morphospecies 

in 2007 and 2,415 of 77 species in 2008.  2007 herbivores densities were lower than 2008 

densities (Fig. 1); in May censuses, this difference was presumably due to a late frost that 

occurred in early April following early warming and budbreak (Gu et al. 2008).  This 

frost killed many early-emerging herbivores, depressing May densities and possibly 

densities for the later communities as well.   

 MRPP analyses of herbivore community composition differences among censuses 

were all highly significant (Appendix 1, Table 1; Fig. 2A-B), indicating strong 
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differences between early-, mid-, and late-season herbivores.  MRPP of the same 

censuses in different years (e.g., May 2007 vs. May 2008) were also highly significant, 

meaning there was variability among years as well.   

 Bird exclusion had few and weak effects on herbivore community composition.  

Differences between exclosure and control trees were marginally significant in July 2007 

and May 2008 and significant in July 2008 (Appendix 1, Table 2).  However A < 0.02 in 

each of these cases, suggesting weak differences, and examination of NMS ordination 

plots reveals no strong differences between trees with and without bird predation 

(Appendix 1, Figs. 1-3).  Neither eliminating rare species (present on < 5% of trees) nor 

relativizing species abundances qualitatively changed results.    

 Individual PCAs for each census verified strong correlation structure within leaf 

quality measurements (Table 1).  In five of the six censuses, the first two PCs explained > 

50% of the variation in leaf quality.  In July 2007 these components accounted for 48% 

of the variation.  In July and August/September, water, hydrolyzable tannins, and 

nitrogen content were frequently strongly correlated; increased water tended to be 

correlated with high nitrogen and low hydrolysable tannins.  In 2008, these trees tended 

to have low SLA as well.  This combination of variables was represented in the first PC 

for all four of these censuses.  High nitrogen and low hydrolysable tannins also 

contributed to May 2007 PC1 and May 2008 PC2.  Second PCs in July and 

September/October represented positive correlations between condensed tannins and 

carbon content in 2007 but more varied relationships in 2008.   

 Total herbivore density and richness MANCOVAs revealed a significant impact 

of leaf quality in August 2007 and May and September 2008 censuses, while birds had no 
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effects (Appendix 2, Table 1).  In July 2007, the interaction between birds and PC2 was 

significant as well but was nonsignificant in both ANCOVAs.  Density increased 

significantly in August 2007 (F1,54 = 10.213, P = 0.002) and marginally significantly in 

September 2008 (F1,51 = 3.153, P = 0.082) with PC1, which in both seasons was 

associated with high nitrogen and water and low tannins.  Species richness decreased in 

May 2008 with PC2 (F1,52 = 6.659, P = 0.013) and increased in September 2008 with PC1 

(F1,51 = 11.957, P = 0.001).  Given the variable loadings of these PCs, this pattern is 

similar in both May and September:  trees with high nitrogen and water content and low 

hydrolyzable tannins had more herbivore species (Fig. 7-8).   

 Feeding guild structure was influenced only by leaf quality and only in late-

season censuses (August 2007 and September 2008, Appendix 2, Table 1).  MANCOVAs 

for both of these censuses indicated a significant effect of PC1, but the groups responding 

were not identical in both years.  Free-feeders increased with PC1 only in 2007 (F1,54 = 

4.377, P = 0.041), while leaf-miners increased in both years (2007, F1,54 = 6.481, P = 

0.014; 2008, F1,51 = 5.341, P = 0.025).  Arthropod predator density was also associated 

with higher PC1 values in September 2008 (F1,51 = 7.902, P = 0.007).  An interaction 

between bird exclusion and PC2 in September 2008 was marginally significant due to a 

significant interaction affecting free-feeders (F1,51 = 5.277, P = 0.026) and a marginally 

significant interaction for leaf-miners (F1,51 = 3.033, P = 0.088) in individual ANCOVAs.  

Free-feeders were negatively correlate with PC2 only on control trees; the pattern was 

similar but weak for leaf-miners.   

 Density of insect herbivores categorized by host breadth (generalist vs. specialist) 

was marginally significantly affected by leaf quality in May 2007 and significantly in 
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July and August 2007.  Bird exclusion was also a significant factor in July 2007.  In 

August 2007 and September 2008, interactions between bird exclusion and leaf quality 

were also identified as impacting herbivore densities (Appendix 2, Table 1).  In May 

2007, both oak specialists and generalists were marginally significantly positively 

correlated with PC2 (generalists, F1,54 = 3.361, P = 0.062; specialists, F1,54 = 3.406, P = 

0.070); PC2 in May 2007 was positively correlated with both water and carbon content.  

Generalists in July and August 2007 were positively correlated with PC1 (July, F1,52 = 

5.278, P = 0.026; August, F1,52 = 4.570, P = 0.037), indicating a preference for high-

nitrogen and high-water trees with low hydrolysable tannins.  Generalists were also more 

abundant within bird exclosures in July 2007 (F1,52 = 5.837, P = 0.019).  Inspection of 

univariate ANCOVAs indicated that oak specialists in August 2007 increased with PC1 

only when birds were excluded; when birds were present, specialist density was 

unaffected by leaf quality (exclusion x PC1, F1,54 = 4.903, P = 0.031).  Conversely, 

specialist density in September 2008 was related to leaf quality when birds were present, 

but there was no relationship within bird exclosures (exclusion x PC2, F1,51 = 5.939, P = 

0.018).  

 Asiatic oak weevil densities were not affected by birds or leaf quality in July 

2007, but were positively correlated with PC1 in July 2008 (F1,51 = 9.377, P = 0.004), 

which represented trees with low water and high hydrolysable tannin content as well as 

high SLA.   

 

Discussion 
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 Overall bird exclusion had relatively weak impacts on the composition and 

structure of Q. alba herbivore communities.   Leaf quality effects on herbivore richness 

and were much more apparent but still variable among censuses and herbivore groups.  

These effects were more frequent in late-season censuses and for leaf-miners and 

generalist herbivores.   

 Analyses of community composition using MRPP verified past researchers’ 

findings that there is significant turnover in Q. alba herbivores during a growing season 

(Marquis and LeCorff 1997, Forkner et al. 2004, Forkner et al. 2006, 2008) as well as 

significant differences between the same time period in different years (Forkner et al. 

2006, 2008).  Striking differences between seasons within each year (Fig. 2A-B).  It is 

also interesting to note that following the spring 2007 frost that killed some early-season 

herbivores, several species typically more abundant in mid-summer were present in the 

May census.  As a result, the average MRPP distances between May and July censuses in 

2007 was less than in 2008 (0.118 and 0.224, respectively).  This is apparent in Figures 2 

and 3 where trees in May 2008 are more clearly segregated.   

 MRPP analyses of bird exclusion effects within each census detected significant 

differences only in July 2008 and marginally significant differences in July 2007 and 

May 2008.  However the very low values of the A statistic in all of these cases suggests 

negligible differences and indicates that the statistical significance may not represent 

biological significance:  exclosure and control trees plotted in species ordination space 

are entirely mixed (Appendix 1, Figs. 1-3).   

 Excluding birds from trees did not result in higher densities of total herbivores as 

expected.  The only group affected by birds were generalist herbivores in July 2007.  This 
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effect seems to have been driven by the three most abundant generalist lepidopterans in 

this census, a leaf-tier (Psilocorsis quercicella:  Oecophoridae) and two free-feeders 

(Nadata gibbosa:  Notodontidae and Anacamptodes ephyraria:  Geometridae).  Thus in 

this experiment, concealed feeding behavior by structure-building herbivores or leaf-

miners did not confer any special protection from avian predators relative to free-feeding 

herbivores.  The lack of bird effects on herbivore abundance is unexpected since Marquis 

and Whelan (1994) documented strong bird impacts at this same site.  This may be due in 

part to changes in the local forest community including differences in vegetation structure 

and composition and accompanying changes in the bird and herbivore communities.  For 

example, in the 17 years between these experiments, deer became overpopulated at the 

site, causing severe browsing damage, before being brought under control.  Marquis and 

Whelan (1994) also conducted their work on saplings, while this study examined 

understory branches on mature trees.  Oak saplings were indeed very rare during the 

present study, likely due to deer effects.   

 In some studies, vertebrate predator exclusion has caused increased abundances of 

intraguild arthropod predators such as spiders (Schoener and Spiller 1987, Gruner 2004), 

which may provide compensatory predation on herbivores in the absence of higher 

predators (Spiller and Schoener 1994).  Although increased arthropod predator 

abundance in the absence of birds has been documented once in this system (Barber and 

Marquis in press), this phenomenon did not seem to occur in this experiment.  Arthropod 

predators were not affected by bird exclusion in any census.  Densities of predators were 

positively correlated with PC1 in September 2008, but so was total herbivore density at 
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this time, suggesting that predators may have simply been distributed proportionally to 

their herbivore prey.   

 The impacts of leaf quality on herbivores were much more pervasive than bird 

exclusion.  In all but the May 2008 survey, a PC that described high-nitrogen and low-

hydrolyzable tannin trees influenced herbivore density.  However leaf quality was clearly 

most influential late in the growing season:  all herbivore response variables except 

density of structure-builders were significantly correlated with a PC in either August 

2007 or September 2008 censuses.  Species richness correlated with leaf quality in both 

May and September 2008 (Figs. 7-8).  The effect of late-season leaf quality on total 

herbivore density as well as density of some guilds (leaf-miners in both years, free-

feeders in 2007) makes sense given the season changes in Q. alba foliage characteristics.  

As a growing season progresses, carbon assimilated in photosynthesis increases and is 

likely incorporated into structural and defensive compounds that reduce leaf palatability 

to herbivores.  In this study, the seasonal increase in carbon was associated with 

increased toughness, SLA, and condensed tannin content.  Both water and nitrogen 

content concurrently declined, which also likely represents reduced quality of leaves, as 

water and nitrogen are often positively correlated with herbivore food preferences 

(Mattson 1980, Scriber and Slansky, Coley et al. 2006).  As average leaf quality declined 

through the season, the effect on individual host plant choice by herbivores may have 

been magnified, resulting in more selective pressure on herbivores to choose high-quality 

hosts.   

 Densities of structure-building herbivores, such as leaf-rollers, -tiers, and -

webbers, were affected by neither bird exclusion nor leaf quality in any census.  Past 
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work in this system has demonstrated that leaf-tying caterpillar density is strongly related 

to host plant architecture (Marquis et al. 2002b).  Trees with leaves held close enough 

together so that they touch are more easily colonized by young leaf-tying caterpillars that 

are unable to reach and pull together leaves spaced out further because of their small size.  

Lill and Marquis (2001) studied P. quercicella on Q. alba and found that leaf-quality 

affected pupal mass, but was unrelated to development time or mortality from predators 

and parasitoids.  This study corroborates this conclusion that leaf quality does not play a 

strong role in determining host choice of leaf-tiers.   

 Leaf quality was more important, though not consistently, to generalists than oak 

specialists.  Generalist density was correlated with PCs throughout 2007, but no 

preferences were apparent in 2008.  Specialist density only varied with leaf quality in 

May 2007, when they were marginally significantly correlated with PC2, which reflected 

increasing water and carbon content.  The lack of a consistent effect of plant quality on 

specialists may support the idea that specialists are better adapted to cope with food 

quality variations of their hosts (Cornell and Hawkins 2003).  Indeed, the Asiatic oak 

weevil, an exotic Quercus specialist, was more numerous in July 2008 on presumably 

poor-quality trees with low water content but high SLA and high levels of hydrolyzable 

tannins.  These results for specialists, however, are surprising given the findings of 

Forkner et al. (2004), who showed that condensed tannin content, which was strongly 

correlated with several PCs here, was negatively correlated with abundances of several 

Quercus specialists.  

 In conclusion, the impacts of birds in this study were weak to nonexistent across 

two growing seasons.  While bottom-up forces (leaf quality) may “set the stage” on 
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which top-down forces act (Forkner & Hunter 2000), in some cases these top-down 

forces may not be strong enough to impact herbivores.  This seems to have been the case 

in this study:  birds did not affect the composition or species richness of herbivore 

communities, nor did they differentially alter the densities of particular feeding guilds.  

The direct effect of bird predation was weak compared to that documented by Marquis 

and Whelan (1994) and other bird exclusion studies (e.g., Strong et al. 2000, Murakami 

and Nakano 2000, Van Bael et al. 2003).  It seems likely that under conditions in which 

direct effects of birds are stronger in general, predation may alter herbivore community 

composition and structure.  Ecologists should focus future work on identifying which 

conditions are important to these trophic interactions and how they influence predation 

effects.  
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Table 1. Leaf quality variable loadings on first and second principal components (PC1 

and PC2, respectively) for each census.  Condensed tannins were excluded from May 

2007 because of laboratory error (see Methods).  Specific leaf area was measured in 2008 

but not 2007.  Percent of total variance is the proportion of the total variation in leaf 

quality accounted for by each PC.   

 
 May 2007  Jul 2007  Aug 2007 
Variable PC1 PC2  PC1 PC2  PC1 PC2 
Toughness 0.516 -0.072  -0.300 0.030  -0.257 0.123 
Water -0.057 0.689  0.469 -0.281  0.493 0.038 
Condensed tannins – –  -0.362 -0.562  -0.324 0.525 
Hydrolyzable tannins 0.583 0.094  -0.558 0.162  -0.564 -0.099 
Carbon 0.140 0.704  -0.265 -0.672  -0.140 0.702 
Nitrogen -0.609 0.126  0.421 -0.356  0.498 0.453 
% of total variance 38.2 25.3  29.6 18.4  31.8 21.2 

 
 May 2008  Jul 2008  Sep 2008 
Variable PC1 PC2  PC1 PC2  PC1 PC2 
Toughness -0.404 -0.391  0.037 0.218  -0.188 0.612 
Water 0.397 0.156  -0.523 0.061  0.484 0.160 
Specific leaf area -0.538 0.192  0.531 0.039  -0.518 0.090 
Condensed tannins -0.316 -0.291  0.193 0.002  -0.245 -0.675 
Hydrolyzable tannins -0.186 0.624  0.524 0.222  -0.453 0.138 
Carbon -0.324 -0.286  0.100 0.772  0.046 -0.343 
Nitrogen 0.387 -0.479  -0.348 0.549  0.442 -0.006 
% of total variance 33.1 26.0  36.7 18.0  42.9 17.9 
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Figure captions. 

Fig. 1.  Mean density of herbivores on bird-excluded and control trees in the six censuses 

across 2007 and 2008 growing seasons.  In no census did bird exclusion affect total 

herbivore densities.  Error bars are 1 s.e. 

 

Fig. 2.  NMS ordinations of trees in species space in (A) 2007 and (B) 2008.  The 

ordinations were both three-dimensional but here are projected in the two dimensions that 

most clearly illustrate the three distinct communities. Note that the May community 

composition is more distinct from July and August communities in 2008 than in 2007 

when many early spring herbivores were killed by a late frost and mid-season herbivores 

were more numerous in May.   

 

Fig. 3.  Relationship between herbivore species richness and leaf quality in (A) May and 

(B) September 2008.  In both censuses, species richness was greater on trees with low 

hydrolysable tannin content and high nitrogen, which was described by PC2 in May and 

PC1 in September.  The x-axis in (A) is reversed to correspond with (B) so that trees with 

higher-quality foliage are on the right side of the axis. 
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Fig. 1 
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Fig. 2A 
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Fig. 2B 
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Fig. 3 

 

 Higher N, lower tannins 

Higher N, lower tannins 
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Appendix 1.   

Table 1.  Results of multi-response permutation procedures analyzing the effects of 

census on herbivore community composition for year and all pairwise census 

comparisons.   

Censuses A P 
2007  0.156 <0.0001 
2008 0.226 <0.0001 
  May 2007, Jul 2007 0.118 <0.0001 
  May 2007, Aug 2007 0.092 <0.0001 
  May 2007, May 2008 0.072 <0.0001 
  May 2007, Jul 2008 0.146 <0.0001 
  May 2007, Sep 2008 0.124 <0.0001 
  Jul 2007, Aug 2007 0.127 <0.0001 
  Jul 2007, May 2008 0.217 <0.0001 
  Jul 2007, Jul 2008 0.075 <0.0001 
  Jul 2007, Sep 2008 0.180 <0.0001 
  Aug 2007, May 2008 0.166 <0.0001 
  Aug 2007, Jul 2008 0.097 <0.0001 
  Aug 2007, Sep 2008 0.040 <0.0001 
  May 2008, Jul 2008 0.224 <0.0001 
  May 2008, Sep 2008 0.189 <0.0001 
  Jul 2008, Sep 2008 0.112 <0.0001 

 

Table 2.  Results of multi-response permutation procedures analyzing the effects of bird 

exclusion on herbivore community composition for each census. 

Censuses A P 
May 2007  -0.005 0.814 
Jul 2007 0.008 0.085 
Aug 2007 -0.001 0.496 
May 2008 0.010 0.063 
Jul 2008 0.014 0.012 
Sep 2008 0.002 0.312 
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Fig. 1. NMS ordination of July 2007 trees in species space.  Although MRPP analysis 

suggested a marginally significant difference in composition between exclosure and 

control trees, none is visible in the ordination. 
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Fig. 2. NMS ordination of May 2008 trees in species space.  Although MRPP analysis 

suggested a marginally significant difference in composition between exclosure and 

control trees, none is visible in the ordination. 
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Fig. 3. NMS ordination of July 2008 trees in species space.  Although MRPP analysis 

suggested a significant difference in composition between exclosure and control trees, no 

clear difference is visible in the ordination. 
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Appendix 2.   
 
Table 1.  Results of MANCOVAs assessing the impact of bird exclusion, leaf quality, and interactions on herbivores.  The first 

column of tables represents analyses of density of all herbivores (total abundance per leaf area) and richness (total number of species 

per leaf area).  The second column, “Feeding guilds,” analyzes responses of free-feeders, structure-builders, leaf-miners, and 

arthropod predators.  “Host breadth” models analyze Quercus specialists and generalists.  In both years, July density, guild, and host 

data excludes the numerically dominant Asiatic oak weevil (Cyrtepistomus castaneus), which was analyzed independently.   

 
 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F2,53 P  Wilks’ Λ F4,51 P  Wilks’ Λ F2,53 P 
May 2007            
Bird exclusion 0.967 0.912 0.408  0.954 0.618 0.652  0.949 1.425 0.250 
PC1 0.989 0.284 0.754  0.941 0.802 0.530  0.954 1.276 0.288 
PC2 0.922 2.243 0.116  0.921 1.089 0.372  0.895 3.094 0.054 
Bird exclusion x PC1 0.981 0.518 0.599  0.958 0.555 0.696  0.990 0.276 0.759 
Bird exclusion x PC2 0.969 0.850 0.433  0.977 0.297 0.879  0.970 0.806 0.452 
            
 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F2,51 P  Wilks’ Λ F4,49 P  Wilks’ Λ F2,51 P 
Jul 2007            
Bird exclusion 0.996 0.099 0.906  0.898 1.392 0.250  0.872 3.729 0.031 
PC1 0.993 0.191 0.827  0.890 1.519 0.211  0.858 4.208 0.020 
PC2 0.988 0.314 0.732  0.937 0.824 0.516  0.976 0.630 0.537 
Bird exclusion x PC1 0.994 0.150 0.862  0.985 0.181 0.947  0.965 0.914 0.408 
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Bird exclusion x PC2 0.887 3.240 0.047  0.943 0.733 0.574  0.972 0.742 0.481 
            
 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F P  Wilks’ Λ F P  Wilks’ Λ F P 
Aug 2007            
Bird exclusion 0.996 0.105 0.900  0.865 1.998 0.109  0.988 0.336 0.716 
PC1 0.839 5.075 0.010  0.832 2.577 0.048  0.828 5.494 0.007 
PC2 0.926 2.129 0.129  0.903 1.373 0.256  0.935 1.849 0.167 
Bird exclusion x PC1 0.960 1.101 0.340  0.934 0.897 0.473  0.916 2.432 0.098 
Bird exclusion x PC2 0.975 0.669 0.517  0.927 1.011 0.411  0.968 0.866 0.418 

 
 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F P  Wilks’ Λ F P  Wilks’ Λ F P 
May 2008            
Bird exclusion 0.917 2.320 0.109  0.936 1.136 0.344  0.983 0.449 0.641 
PC1 0.983 0.437 0.648  0.974 0.437 0.727  0.968 0.847 0.435 
PC2 0.839 4.908 0.011  0.953 0.831 0.483  0.955 1.193 0.312 
Bird exclusion x PC1 0.989 0.277 0.759  0.944 0.987 0.407  0.943 1.528 0.227 
Bird exclusion x PC2 0.975 0.662 0.520  0.925 1.346 0.270  0.956 1.164 0.320 
            
 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F P  Wilks’ Λ F P  Wilks’ Λ F P 
Jul 2008            
Bird exclusion 0.968 0.818 0.447  0.926 0.960 0.438  0.954 1.207 0.308 
PC1 0.980 0.500 0.610  0.988 0.144 0.965  0.986 0.351 0.706 
PC2 0.965 0.902 0.412  0.905 1.257 0.300  0.955 1.177 0.317 
Bird exclusion x PC1 0.982 0.454 0.638  0.980 0.243 0.912  0.974 0.661 0.521 
Bird exclusion x PC2 0.991 0.229 0.796  0.937 0.804 0.529  0.962 0.979 0.383 
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 Total density & Richness  Feeding guilds  Host breadth 
 Wilks’ Λ F P  Wilks’ Λ F P  Wilks’ Λ F P 
Sep 2008            
Bird exclusion 0.980 0.501 0.609  0.974 0.317 0.865  0.990 0.252 0.778 
PC1 0.809 5.893 0.005  0.816 2.713 0.041  0.937 1.678 0.197 
PC2 0.952 1.276 0.288  0.892 1.455 0.231  0.954 1.218 0.305 
Bird exclusion x PC1 0.982 0.468 0.629  0.953 0.589 0.672  0.980 0.508 0.605 
Bird exclusion x PC2 0.926 2.000 0.146  0.832 2.431 0.060  0.896 2.989 0.064 
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Chapter 4 
 
Light environment and leaf characteristics affect distribution of Corythuca arcuata 
(Hemiptera: Tingidae) 
 
In review:  Barber, N. A.  Light environment and leaf characteristics affect distribution of 
Corythuca arcuata (Hemiptera:  Tingidae).   
 
Abstract  

 Insect herbivore abundances on host plants are influenced by both plant traits and 

the physical environment in which that plant grows.  This study examined the role of the 

physical light environment and foliage characteristics in determining abundance of the 

lacebug Corythuca arcuata Say (Hemiptera: Tingidae) on Quercus alba L.  I censused 

adult C. arcuata across a growing season, quantified leaf characteristics, and measured 

canopy cover over understory branches of mature Q. alba.  Using an information-

theoretic approach, I evaluated a priori hypotheses of the relationship between light, 

plant traits, and C. arcuata abundance.  Abundance was best predicted by light 

environment and carbon content.  Adult C. arcuata prefer trees growing under an open 

canopy and trees with low carbon content; abundance also positively correlated with leaf 

water content.  Although carbon and water did not vary with light in this study, low 

carbon and high water content are often associated with shadier conditions, suggesting 

that C. arcuata faces a trade-off between preferences for physical habitat conditions and 

host plant characteristics.   

 

Key words:  Tingidae, Corythuca arcuata, lacebug, oak, light 

 

Introduction 
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The choice of a host plant by an herbivorous insect is based on both the physical 

environment in which that plant grows and traits of the host plant itself.  For example, 

some caterpillars bask in the sun or choose sun-exposed host plants to maintain a higher 

body temperature and increase growth rate (Weiss et al. 1988, Joos et al. 1988), and eggs 

of tent caterpillars tend to be placed to maximize light exposure (Moore et al. 1988).  

Some chrysomelid beetles prefer sun-exposed willows (Sipura and Tahvanainen 2000). 

Plant traits, however, are often influenced by environmental conditions. Examples are 

increased woodiness of stems in high-salinity environments (Moon and Stiling 2000) and 

increased tannin content with sun exposure (Dudt and Shure 1994).  Simultaneous effects 

on both the herbivore itself and the plant can lead to potential tradeoffs in contrasting 

environments. Thus, for the willow example above, chrysomelid beetles feed on sun-

exposed leaves even though shaded leaves are higher quality food (Sipura and 

Tahvanainen 2000).   

 Very little is known about host plant selection by natural populations of Tingidae 

(Hemiptera) or lacebugs.  Most of the literature on this family addresses the potential for 

biocontrol of invasive plants (Williams et al. 2008) or impacts and control of pest 

lacebugs on ornamental plants, especially Stephanitis pyrioides (azalea lacebug) (Casey 

and Raupp 1999).  This work has shown that occurrence of and damage by S. pyrioides is 

influenced by light environment and leaf quality (Shrewsbury and Raupp 2000, Bentz 

2003) and potentially by predators (Trumbule and Denno 1995).  

 A few studies have focused on host choice by Corythuca arcuata, the oak 

lacebug, a widespread species that ranges across southern Canada and much of the 

eastern United States and usually specializes on Quercus spp., although it can occur and 
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complete its life cycle on members of Rosaceae such as Rubus and Malus (Bernardinelli 

2006).  Connor (1988) investigated C. arcuata preferences on Q. alba saplings grown 

under varying water conditions, finding that lacebugs preferred plants with higher water 

levels.  He suggested that leaf toughness might act as a cue for host choice, as toughness 

is often negatively correlated with water content and may interfere with feeding of C. 

arcuata, which pierce leaves with the stylus to suck leaf sap from the mesophyll.   

 Kay et al. (2007) studied C. arcuata distribution in relation to fire frequency and 

how fire conditions affected leaf quality.  Abundance was greater in frequently burned 

areas where light levels were higher on saplings of Q. macrocarpa, the local host plant.  

Overall, adult abundances were positively associated with C content and negatively with 

N and cellulose. Oviposition occurred more frequently on trees with low lignin and 

cellulose but higher total phenolics.  However, these correlations mirrored leaf quality 

differences between the burn treatments and may have simply represented habitat choice 

based on the physical environment (i.e., light conditions).  When examining adult 

abundances within common burn treatments or light environments, the only correlation 

with leaf quality was a preference for low-N plants in sunny gaps, although eggs occurred 

more frequently on plants with higher lignin and starch.  

 Thus Connor (1988) and Kay et al. (2007) present different, although not 

necessarily conflicting, host plant preferences of C. arcuata.  The former predicted that 

high-water, low-toughness plants should be preferred, while the more recent work 

suggested lacebugs may seek plants with high content of C and some C-based 

compounds (phenolics) but low N and other C-based constituents that contribute to 

toughness such as lignin and cellulose (Coley 1983).  Here I present an analysis of host 
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plant preferences of C. arcuata on Q. alba.  My purpose was to determine which leaf 

traits determine these preferences and what role light plays in this choice.  

 

Methods 

I studied C. arcuata at Tyson Research Center, an 809-ha field station owned by 

Washington University near Eureka, Missouri, USA.  The study area was a southwest-

facing slope with shallow rocky soils.  Quercus alba is a canopy co-dominant tree (with 

other Quercus and Carya spp.) and is particularly common on drier southwest slopes 

such as this.   

I performed this study in conjunction with a larger study on the effects of 

insectivorous birds on the leaf-chewing herbivore community of Q. alba.  In early 2007, I 

chose 60 mid-story to canopy-height Q. alba with accessible understory branches and 

built bird exclosures around these branches on 30 of the trees.  I censused herbivores on 

these trees three times in 2007 and 2008, at known peaks in oak-feeding herbivore 

abundance in Missouri (Marquis and Whelan 1994, Marquis and LeCorff 1997, Forkner 

et al. 2004).  The data for the current study were collected during the herbivore surveys in 

mid-May, early July, and early September 2008.  I did not expect bird exclusion to affect 

C. arcuata abundance because their small size makes them unlikely prey items for 

insectivorous birds (Strong et al. 2000, Van Bael et al. 2008).   

To census trees, I inspected the tops and bottoms of all leaves on experimental 

branches and recorded the number of adult C. arcuata present.  Adults rest on the 

underside of Q. alba leaves and are highly visible given their distinct patterning.  C. 

arcuata do not seem to be affected by census activities and are reluctant to move, even 
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when prodded; this observation is consistent with those of Kay et al. (2007).  I recorded 

the number of leaves inspected, with a goal of at least 400 leaves per branch, but some 

branches had fewer leaves.  At the end of the season, I collected 30 leaves from each tree 

to measure damage from leaf-chewing herbivores through digitizing and pixel-counting; 

this provided an estimate of average leaf size for each branch.  Average leaf size was 

multiplied by the number of leaves inspected in each census to estimate the total leaf area 

surveyed on each branch.  Abundances of C. arcuata were expressed as number/m2 leaf 

area based on this value.  To characterize the light environment of each tree, I measured 

canopy cover in late June using four readings from a concave spherical densiometer 

positioned directly above experimental branches (Lemmon 1956).   

Immediately following each census period, I collected three leaves from each tree.  

These leaves were stored in plastic ziplock bags.  Within two hours, I weighed leaves to 

obtain wet mass and measured leaf toughness using a penetrometer (Force Dial FDK 32, 

Wagner Instruments, Greenwich, CT).  I transported leaves to the laboratory on ice and 

stored them at –80˚C before freeze-drying for 96 hours.  I obtained leaf water content 

from the dry mass (% water = 1-(dry mass/wet mass)).  I ground dried leaves for use in 

chemical analyses.  Following extraction in acetone, I colorimetrically assayed condensed 

tannins using the acid-butanol technique (Rossiter et al. 1988, Waterman and Mole 1994) 

and hydrolysable tannins using the potassium iodate technique (Bate-Smith 1977, Schultz 

and Baldwin 1982).  Absorbances of each tree were compared to a curve constructed 

from pooled bulk standard samples of known concentration and expressed as percentages 

of starting leaf tissue mass.  Kay et al. (2007) found a marginally significant effect of 

total phenolics on C. arcuata; I took a more detailed look at this effect by breaking down 
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phenolic content into condensed and hydrolysable tannins, two common classes of 

phenolics that are considered important to insect herbivores (Forkner et al. 2004, 

Barbehenn et al. 2006, Roslin and Salminen 2008).  I determined carbon and nitrogen 

content by microcombustion (Perkin-Elmer Series II CHNS/O Analyzer 2400).   

 To characterize C. arcuata abundance on each tree across the growing season, I 

summed abundance across the three surveys.  Because leaf traits change during the 

season as leaves expand, harden, and accumulate more carbon from photosynthesis, I 

created indices of each leaf trait using z-scores.  Within each census, I transformed each 

leaf-trait to z-scores and summed scores for this trait across the three censuses.  In this 

way trees with consistently high values of a trait will be more positive, consistently low 

trees will be negative, and average trees should have values near zero.  This technique 

has been similarly used to create indices of leaf defense by other researchers (Fine et al. 

2006, Agrawal and Fishbein 2008).  Experimental branches on three trees that died prior 

to or during the study period were excluded from analyses.  Leaves collected to estimate 

total leaf area were lost in the field for one tree, so I also excluded this tree.  Analyses are 

based on the remaining 56 trees.   

I used multimodel inference, an information-theoretic approach (Burnham and 

Anderson 2002, Anderson 2008), to evaluate support for models based on a priori 

hypotheses regarding the factors potentially determining abundance of C. arcuata.  This 

method allows for simultaneous evaluation of multiple models (hypotheses) and 

quantifies the relative support for each model given the data while avoiding the potential 

pitfalls of spurious correlations common to stepwise regression methods (Whittingham et 

al. 2006).  I evaluated models using Akaike’s information criterion corrected for small 
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sample size (AICc) and ranked models using ∆AICc, the difference between a model and 

the highest-ranked (lowest AICc value) model.  These values are used to calculate Akaike 

weights (wi, “model probabilities”), which provide a relative measure of support for the 

model and are interpreted as the probability that model i is the best model in the set of 

candidate models.  Because these weights are relative, they allow for direct comparisons 

of the support for models:  e.g., a model with w = 0.1 has twice the support as a model 

with w = 0.05.   

I constructed a set of additive models to compare the effect of light environment 

and foliage characteristics on C. arcuata abundance.  To evaluate the role of basic leaf 

constituents, two models included carbon and nitrogen individually as independent 

variables, and a third model included carbon:nitrogen ratio, as this is often a 

measurement of the accessibility of leaf nutrients.  I included models based on Connor’s 

(1988) predictions that included water content and leaf toughness together and 

independently, a model to determine the impact of leaf defensive chemistry using 

concentrations of both condensed and hydrolysable tannins, and all variables combined in 

a global model.  Because I expected light to have a strong impact on C. arcuata 

abundance based on the results of Kay et al. (2007), I constructed additional models 

identical to those above but with canopy cover measurements included as an independent 

variable.  These models determine how lacebug abundance varied with leaf 

characteristics while controlling for the effects of light.  Lastly I included a model with 

only light (canopy cover) as an independent variable.  

 I used general linear models and log-transformed all C. arcuata abundances 

(using ln(x + 1)) to normalize model residuals.  One was added to abundances to account 
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for zeros in the dataset (20.6% of observations, mostly in September census).  One outlier 

tree with exceptionally high lacebug abundance (nearly 5 standard deviations from the 

mean) was excluded from the dataset, which improved model fit.  All analyses were 

performed in R (R Development Core Team 2008).   

 

Results 

Lacebugs were common throughout the study period, although abundance 

declined by more than half from the mid-summer census to the fall census, during which 

they were absent from 40% of trees (Fig. 1).  Abundances on trees were positively 

correlated among consecutive censuses, although not between May and September 

censuses (r = 0.017, P = 0.902; May-July, r = 0.381, P = 0.004; July-September, r = 

0.297, P = 0.028).  As expected, bird exclusion had no effect on C. arcuata abundance 

(mean abundance ± 1 s.e. lacebugs per m2 leaf area, exclosures:  1.78 ± 0.27, controls:  

1.74 ± 0.22, t = 0.124, P = 0.902).  Light was not significantly correlated with any 

measured leaf characteristics except hydrolysable tannin content (r = 0.306, P = 0.023).   

Model results are presented in Table 1.  The model including light and C was the 

highest-ranked model; C. arcuata abundance increased on high-light trees under a more 

open canopy (β ± 1 s.e. = 0.033 ± 0.012) and decreased with C content (β = -0.083 ± 

0.029).  Generalized R2 for this model (Nagelkerke 1991) based on the maximum 

likelihood estimate was 0.254.  This model has more than three times the support of the 

second-ranked model, which included light and water and revealed increasing C. arcuata 

abundance with both variables.  The global model with light was ranked third, but it and 
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all other models were poorly supported.  All models containing light were more highly-

ranked than the equivalent model in which light was excluded.   

 

Discussion 

 The results support the prediction that both light environment and host plant leaf 

characteristics influence the distribution of C. arcuata.  As expected from the findings of 

Kay et al. (2007) and other work on Tingidae, light conditions on host plants had a strong 

positive effect on adult lacebug abundance (Fig. 2).  Support for this model was greater 

than that for any leaf characteristic except C.  Not surprisingly, these two factors 

combined represented the best model for predicting lacebug abundance (w = 0.563), 

which explained more than a quarter of the variance in abundance (R2 = 0.254).  

Preference for plants in higher-light environments agrees with Kay et al. (2007), but the 

relationship between lacebug abundance and C content does not:  in this study, both the 

correlation with C alone and the partial correlation with C when controlling for the 

effects of light environment were negative (Fig. 3).   

 This analysis corroborated Connor’s (1988) experiment demonstrating preference 

for increased leaf water content but not his suggestion that toughness is an important cue.  

The model containing light and water ranked second with moderate support (w = 0.166). 

Higher water content could facilitate feeding by sucking insects by making it easier to 

obtain soluble carbohydrates and other nutrients.  However, the prediction that leaf 

toughness was an important cue for lacebugs in choosing hosts was not supported.  

Although the model containing light, water content, and toughness was ranked fourth 

highest, the model received poor support (w = 0.066).  Further, the AICc for this model 
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was approximately the AICc value of the light and water only model +2.  When 

calculating AICc, the addition of a predictor variable increases the value of the criterion 

by about 2 as a penalization for reducing parsimony.  In this case, the addition of 

toughness incurs the penalization but does not then decrease AICc by adding information.  

Anderson (2008) refers to this as a “pretending variable.”  Models including toughness 

alone or toughness with light were very poor (w < 0.01).   

 Defensive chemistry models, which included condensed and hydrolysable tannin 

concentrations, received very low support (w < 0.006).  This result suggests that carbon-

based phenolic defenses have little influence on C. arcuata, despite the important role 

they are thought to have in resistance against leaf-chewing herbivores (Feeny 1970, 

Forkner et al. 2004, Roslin and Salminen 2008).  Similarly, the nitrogen models and the 

carbon:nitrogen models were not supported by the data either with (w = 0.012 and w = 

0.010, respectively) or without (both w = 0.001) light as a variable.  Kay et al. (2007) 

found a negative correlation between adult abundance and nitrogen when examining sun-

exposed leaves in forest gaps, but this pattern was not apparent in this study.  It is 

possible that nitrogen is not the most important nutrient for C. arcuata:  phosphorus, 

which was not measured here, can correlate with increased adult mass in lacebugs (Kay 

et al. 2007), and is thought to be a limiting factor for many insect herbivores (Elser et al. 

2000).   

 Taken together, these results suggest that C. arcuata may prefer particular abiotic 

conditions (high light environment) as well as particular host plant foliage characteristics 

(lower total carbon and higher water content).  This combination of preferences, 

however, seems contradictory.  Although these traits were uncorrelated with light in this 
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study, leaves of sun-grown Q. alba frequently have higher carbon and lower water 

content (unpublished data).  I propose two possible explanations for this apparent 

contradiction in preferences.  Lacebug egg hatching rate increases and development time 

decreases with higher temperatures in a number of species of Tingidae (Eguagie 1972, 

Braman and Pendley 1993).  Adult C. arcuata may select habitats with abiotic conditions 

that optimize these aspects of fecundity and then search for individual hosts with 

preferred leaf quality.  Another potential explanation is that the third trophic level has a 

strong impact on C. arcuata distribution.  Predation on azalea lacebugs is thought to be 

higher in shaded habitats, resulting in higher abundances in sunny areas, despite the 

lower food quality of sun-exposed plants (Trumbule and Denno 1995).  Bird exclusion 

had no effect on oak lacebug abundance in my experiment, but arthropod predators could 

drive a pattern similar to that in azalea lacebugs.  Plants under a more closed canopy may 

be preferred by C. arcuata, but higher predator abundance on these trees could reduce 

lacebugs so they are more numerous on sunny trees, as observed here.   
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Table 1.  Model selection results for abundance of adult C. arcuata on Q. alba.   

 
Model K AICc ∆i wi 

Light + C 4 56.154 0.000 0.563 

light + water 4 58.599 2.445 0.166 

light + C + N + C:N + water + tough + hydro + cond 10 60.408 4.254 0.067 

light + water + tough 5 60.445 4.291 0.066 

C 3 61.470 5.316 0.039 

light 3 62.030 5.876 0.030 

C + N + C:N + water + tough + hydro + cond 9 62.459 6.305 0.024 

light + C:N 4 63.889 7.735 0.012 

light + tough 4 64.258 8.104 0.010 

light + N 4 64.300 8.146 0.010 

light + hydro + cond 5 65.243 9.089 0.006 

water 3 65.883 9.729 0.004 

water + tough 4 67.787 11.633 0.002 

C:N 3 69.128 12.974 0.001 

N 3 69.713 13.559 0.001 

tough 3 69.858 13.704 0.001 

hydro + cond 4 71.206 15.052 0.000 

K, number of estimated parameters in model (including intercept and residual variance); 

wi, Akaike model weight; C, carbon; N, nitrogen; hydro, hydrolysable tannins; cond, 

condensed tannins; water, % water content; tough, leaf toughness. 
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Figure legends 
 
Fig. 1.  Mean (± 1 s.e.) abundance of oak lacebug (C. arcuata) in each census.  

Abundance is expressed as the number of lacebugs counted per m2 leaf area inspected.   

 

Fig. 2.  Residual abundance (controlling for correlation with C content) plotted against 

light index (a measure of canopy openness, see text).  Lacebugs are more abundant on 

oaks in higher-light conditions. 

 

Fig. 3.  Residual abundance (controlling for correlation with light) plotted against carbon 

index (see text).  Lacebugs are less abundant on oaks with higher leaf C content.   
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Chapter 5 
 
Invasive prey impacts the abundance and distribution of native predators 
 
Published as:  Barber, N. A., R. J. Marquis, and W. P. Tori.  2008.  Invasive prey impacts 
the abundance and distribution of native predators.  Ecology 89:2678-2683.   
 

Abstract   

While an extensive literature exists on the negative effects of invasive species, 

little is known about their facilitative effects on native species, particularly the role of 

invasives as trophic subsidies to native predators.  The invasive gypsy moth (Lymantria 

dispar) undergoes periodic outbreaks during which it represents a super-abundant food 

source for predators capable of consuming it, particularly native cuckoos (Coccyzus 

erythropthalmus and C. americanus).  We examined how gypsy moth outbreaks affect 

the abundance and distribution of cuckoos using the North American Breeding Bird 

Survey and 29 years of U. S. Forest Service gypsy moth defoliation records.  Abundances 

of both Black-billed and Yellow-billed Cuckoos were significantly above average during 

outbreaks, but populations were average or below-average in preceding and subsequent 

years, suggesting that cuckoos are immigrating to defoliations during outbreak years.  

Spatial analyses showed that cuckoo abundances ~40-150 km outside of defoliation areas 

were significantly below-average, and these under-occupied breeding areas extend in all 

four compass directions around outbreaks.  This result supports the idea that cuckoos 

locate gypsy moth outbreaks during a post-migratory nomadic phase.  By shifting the 

annual distribution of cuckoos, gypsy moths may be shifting the trophic impact of 

cuckoos across large distances, which could affect native insect herbivores and plants.   
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Coccyzus, spatial distribution, outbreak 

 

Introduction 

 The negative impacts of invasive species are well-documented (Vitousek et al. 

1996, Mack et al. 2000). They frequently reduce population sizes of native species 

through competitive interactions (Vilá et al. 2004) or direct predation (Salo et al. 2007).  

Less attention has been paid to facilitative effects of invasives on native members of their 

new community.  A recent review by Rodriguez (2006) found that facilitation by 

invasives occurs in a variety of habitats and through a number of mechanisms including 

habitat alteration, pollination, competitive and predator release, and trophic subsidies, 

although few examples exist for any one of these areas.   

 The role of invasives as trophic subsidies is of particular interest because there 

has been little investigation into the impacts of invasive species on native predators.  

Because invasives often attain high abundances, they may represent an important food 

source to native predators capable of exploiting them.  Although the phenomenon of 

natives consuming introduced species is widespread and includes herbivores feeding on 

non-native plants (Memmott et al. 2000, Trowbridge 2004), frugivores consuming fruit of 

alien plants (Witmer 1996, Gosper et al. 2006), and consumers eating non-native animals 

(Spencer et al. 1991, Harding 2003, deRivera et al. 2005), rarely have ecologists 

documented an increase in abundance of the native consumer.  Examples include mice 

feeding on an insect introduced for biocontrol (Ortega et al. 2004) and the well-known 
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case of golden eagles (Aquila chrysaetos L.) depredating feral pigs (Sus scrofa L.) on the 

California Channel Islands (Roemer et al. 2002).   

Two lines of evidence suggest that outbreaks of non-indigenous gypsy moths 

(Lymantria dispar L.) may represent a trophic subsidy for North American cuckoos.  

First, few birds eat gypsy moth caterpillars, presumably due to their hair-like setae 

(Forbush and Fernald 1896, Whelan et al. 1989), but cuckoos are often considered 

“hairy” caterpillar specialists (Hughes 1999, 2001) and may even prefer gypsy moths to 

native caterpillar prey (Cooper et al. 1990).  Historical anecdotes suggest that cuckoo 

abundances have increased locally during gypsy moth outbreaks (Brewer et al. 1991).  

One previous study examined cuckoo abundance in relation to gypsy moth outbreaks:  

Gale et al. (2001) used Breeding Bird Census data from six sites that had experienced 

defoliations.  They found that cuckoo abundances at these sites actually tended to 

increase one or two years before the year of highest gypsy moth caterpillar abundance, 

considered to be the outbreak.  Secondly, cuckoos are well-known to specialize in 

exploiting insect outbreaks.  They have been reported feeding on outbreaks of tent 

caterpillars (Malacosoma spp.) and fall webworms (Hyphantria cunea Drury) (Hughes 

1999, 2001) and to occur at high population densities during periodical cicada 

emergences (Koenig and Liebhold 2005).    

Here we test the hypothesis that gypsy moth outbreaks affect the abundance and 

distribution of native cuckoos using data from the North American Breeding Bird Survey 

(BBS) and digitized gypsy moth defoliation records.  Specifically, we ask:  (1) do 

cuckoos exhibit a positive numerical response to outbreaks, and (2) does this response 

vary through space in relation to the outbreak?  Our results demonstrate a local increase 
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in abundance of these bird species and suggest it is due to migration to outbreak sites 

rather than an impact on reproductive success. 

 

Methods 

Study species 

 The gypsy moth (Lepidoptera: Lymantriidae) is a widespread Eurasian species 

that was introduced to Massachusetts in the 1860s (Forbush and Fernald 1896) and has 

spread across the northeast United States and southeast Canada (Johnson et al. 2006).  

Outbreaks of gypsy moth are cyclic and occur on an approximately 10-year cycle, 

causing large-scale defoliation of deciduous forests (Johnson et al. 2005).  Damage by 

larvae peaked in the early 1980s, with annual defoliation >50,000 km2, but more recently 

defoliations have been less extensive (USDA Forest Service 2008).  While the definition 

of “invasive” is debatable (Richardson et al. 2000, Lockwood et al. 2006), we refer here 

to the gypsy moth as invasive because it is a non-native species whose range is expanding 

and has a significant impact on the structure and processes of its invaded ecosystems.   

 Two native cuckoo species occur in the northeast United States, Black-billed 

(Coccyzus erythropthalmus Wilson) and Yellow-billed Cuckoos (C. americanus L.).  

Both are neotropical migrants that generally breed from May-September in woodlands, 

often within areas of dense scrub or thickets (Hughes 1999, 2001).   

Data collection and analyses 

 The BBS is a standardized census of North American birds conducted since 1966.  

The survey consists of individual transects (“routes”) 39 km in length spread across the 
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United States and Canada.  Volunteers record the identity and number of birds seen and 

heard during 3-min stops at 50 evenly spaced points along the route (Sauer et al. 2005).   

 We used digitized maps of gypsy moth defoliation records from 1975-2003 

provided by personnel at the USDA Forest Service Forestry Sciences Laboratory at 

Morgantown, WV.  These maps were compiled from state defoliation monitoring data by 

Andrew M. Liebhold; paper maps sketched during annual aerial surveys from each state 

were scanned and georeferenced to create a database of northeast U. S. gypsy moth 

defoliation records.  For details of the database and its creation, see Liebhold et al. 

(1997).   

We matched GIS maps of BBS routes with defoliation maps for the years 1975-

2003.  For each route, any year that a part of the route intersected a defoliation polygon 

was designated a defoliation year for that route. Each year per route was assigned a year 

since defoliation (ysd) value.  Thus all defoliation years for a route were given a value of 

ysd = 0, the year immediately following was given ysd = 1 if not defoliated, the next year 

ysd = 2 if not defoliated, and so on.  Given the results of Gale et al. (2001), it was 

important to include years preceding defoliation as well.  For all defoliations that were 

preceded by at least five non-defoliation years, we assigned ysd = -1 through ysd = -5 for 

those years.    

 We downloaded abundance data for both cuckoo species for all routes in states 

where gypsy moth had established by 2003.  We excluded routes on which cuckoos had 

never been recorded and routes with < 10 years of data during the study period.  We 

standardized abundances following Koenig and Liebhold (2005).  Because both species 

have experienced long-term population declines since the BBS was established (Sauer et 
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al. 2005), we removed long-term trends from each route with linear regression.  Prior to 

regression, raw abundances were log-transformed to normalize regression residuals.  

Residuals from each regression were transformed into z-scores with mean = 0 and SD = 

1.  In this way, a standardized abundance of zero can be considered the long-term average 

abundance of that species for that route.  Standardized abundance > 0 is an above-average 

abundance for that route, and < 0 is below-average.   

 To answer our first question, if cuckoos exhibit a positive numerical response to 

gypsy moth outbreaks, we averaged abundances with the same ysd value within each 

route, and only routes that included all ysd values from -5 to 10 were retained for 

analyses (n = 81 for Black-billed, n = 76 for Yellow-billed). Standardized abundances for 

routes were analyzed with repeated-measures ANOVA with ysd as within-subject factors.  

Abundance was the response variable and year was the independent variable. The 

sphericity assumption (an assessment of the circularity of the variance-covariance matrix; 

von Ende 2001) was violated for Black-billed, so we adjusted the degrees of freedom 

using the Huynh-Feldt epsilon (ε > 0.9).   

 To determine if the response of cuckoos varied spatially, we included all routes 

with cuckoos and ≥ 10 years of data in the invaded states (n = 638 for Black-billed, n = 

630 for Yellow-billed).  For each year and route, we obtained the distance from the 

starting point of each route to the nearest defoliation and the bearing in degrees from the 

defoliation to the route. Routes were divided into those north (315˚-45˚), east (45˚-135˚), 

south (135˚-225˚), and west (225˚-315˚) of the outbreak.  For all routes combined, and for 

each cardinal direction individually, we plotted annual standardized abundance against 

distance to the nearest defoliation in that year.  We fit a LOWESS curve and bootstrapped 
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by re-sampling the curve 500 times.  From these replicate re-samples we obtained 95% 

confidence intervals.   

 

Results 

 Abundances of cuckoos varied significantly among years since defoliation 

(Black-billed, F13.3,1066.8 = 7.08, P < 0.001; Yellow-billed, F15,1125 = 9.631, P < 0.001).  

Both cuckoo species showed a strong, positive numerical response during gypsy moth 

outbreaks.  Abundances in years preceding outbreaks did not differ from average or were 

below-average.  The peak in abundance during outbreaks disappeared by the following 

year in Yellow-billed and by two years in Black-billed (Fig. 1).  Abundances of both 

species were also significantly below-average 3-4 years after an outbreak.   

 The response of cuckoos to defoliations varied spatially in relation to the gypsy 

moth outbreak.  For both cuckoos, abundance at the defoliation site was high but rapidly 

declined away from the defoliation and was significantly below average from 44-159 km 

away for Black-billed and 40-140 km away for Yellow-billed (Fig. 2, top panels).   

 This spatial response (high abundance at a defoliation but below-average at 

greater distances) was consistent in all directions for both species (Fig. 2, lower panels). 

The extent of these low abundances varied, but extended as far as 172 km.  These 

patterns were significant (upper bound of 95% CI falls below 0) for all but Black-billed 

Cuckoos east of defoliations.   For distances between 58-70 km, Black-billed Cuckoos 

east of defoliations were marginally less abundant than average (90% CI falls below 0).   

 

Discussion 
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 Gypsy moth outbreaks had a strong effect on the abundance of both Black-billed 

and Yellow-billed Cuckoos.  The number of cuckoos recorded on BBS routes during 

outbreaks was significantly greater than average route abundance.  For Yellow-billed 

Cuckoos, the number recorded both before and after the outbreak did not differ from, or 

were below, average, while for Black-billed Cuckoos the second year following the 

outbreak was also higher.  That cuckoos are more abundant in the outbreak year suggests 

that the numerical response is not the result of an earlier positive local reproductive 

response.  That is, if cuckoos had higher reproductive rates due to the abundant food 

resource that gypsy moth caterpillars represent, the higher abundances would not be 

apparent until the year after an outbreak.  BBS routes are surveyed in the early breeding 

season to record adults, and recently fledged juveniles are excluded from counts.  

Cuckoos may indeed exhibit a positive reproductive response to gypsy moth outbreaks, 

but such a result is not apparent in our data, except perhaps for Black-billed Cuckoos.  

Both species declined in abundance in the year after a defoliation, but Black-billed 

abundances remained significantly above-average for that year (Fig. 1).  Local banding 

studies, spanning a pre- and post-outbreak period, would be needed to determine the 

relative contribution of immigration versus reproduction to changes in abundance. 

 These results differ from the those of Gale et al. (2001), who found that cuckoos 

of both species increased at some sites one or two years prior to the major defoliation 

year of a gypsy moth outbreak.  However two of the six sites they examined showed a 

pattern similar to the current study, in which abundances increased only in the outbreak 

year.  The differences in our results may be due to different methods of designating 

“outbreak years.”  Gale et al. (2001) state that gypsy moths were typically present for 
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multiple years at their sites, so they used firsthand accounts by observers to identify the 

year in which defoliation was most extreme as the outbreak.  We designated outbreak 

years as those in which defoliation was recorded in the defoliation database; defoliation 

levels of approximately 30% or greater are necessary for detection (Liebhold et al. 1997).  

Defoliation levels during outbreak years in Gale et al. (2001) are estimated at 50-100%.  

Thus in a multiple-year outbreak, Gale et al. (2001) may have considered the earlier years 

of the outbreak as “pre-outbreak” and only the later, most severely defoliated year as the 

outbreak itself.  Our method would consider all these years as “outbreak years,” while 

“pre-outbreak years” would be those with no recorded defoliation.   

 Our spatial analysis suggests that the source of the increased local cuckoo 

population during an outbreak is the region surrounding defoliations extending tens to 

hundreds of kilometers away.  As these birds move from the surrounding landscape into 

defoliation areas, they leave presumably suitable nesting sites unoccupied or 

underoccupied, creating a trough of low abundances outside gypsy moth outbreaks.  But 

if outbreaks “draw in” cuckoos from great distances, how do these birds locate 

concentrated food resources?  Hughes (1999, 2001) proposed that cuckoos enter a “post-

migratory nomadic phase” upon reaching their breeding grounds in late spring or early 

summer, during which they wander across the landscape in search of suitable breeding 

conditions.   

Our data support the existence of this nomadic phase.  If cuckoos were simply 

migrating north in spring and stopping to nest when they encountered a gypsy moth 

outbreak, the underoccupied sites would be concentrated to the north of defoliated areas 

because most birds would stop migrating before reaching these areas.  But the trough of 
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low abundances surrounds gypsy moth defoliations, and is actually broader to the south 

than the north for Yellow-billed Cuckoos and extends further to the south and to the north 

for Black-billed.  This pattern would be expected if cuckoos wandered across large areas 

in search of abundant food.  Additionally, cuckoos have a delayed nesting phenology 

relative to most other Neotropical migrants (Hughes 1999, 2001), consistent with the idea 

of a wandering period in late spring and early summer.   

 To our knowledge, the only other example of a population shift by a native 

predator in response to invasive prey is golden eagles on the Channel Islands of 

California.  Introduced feral pigs acted as a trophic subsidy, allowing eagles to colonize 

the islands to the detriment of the eagles’ other choice prey, the endangered island fox 

(Urocyon littoralis Baird) (Roemer et al. 2002).  The eagles were not present on the 

islands prior to 1994. This change in eagle distribution led to a restructuring of the 

islands’ food webs and nearly drove the fox to extinction on several islands.  In contrast, 

gypsy moth outbreaks cause a redistribution of cuckoos within their current range, and 

presumably a redistribution of their predation impact, reducing it in some areas and 

increasing it in others.  The exact strength of the trophic impact of cuckoos on forest food 

webs is unknown.  Insectivorous birds can have important effects, both directly on insect 

prey (Holmes et al. 1979) and indirectly on plants by consuming herbivorous insects 

(Marquis and Whelan 1994, Van Bael et al. 2008).  Additionally, because cuckoos may 

specialize on hairy or spiny caterpillars, a gypsy moth outbreak may reduce the predation 

pressure on native hairy caterpillars in the regions adjacent to the outbreak.  At the same 

time, the outbreak may increase predation on these natives within the outbreak, resulting 

in apparent competition between the invasive and native insect herbivores.  Increased 
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densities of cuckoos could also benefit their own predators and increase transmittance of 

pathogens and parasites.   

 This study draws attention to the complexity of interactions between exotic and 

native species.  Non-natives have caused innumerable declines in native species, but by 

the very fact that they are embedded within ecological networks, they will have both 

negative and positive interactions with indigenous species.  Positive interactions are 

recognized as important forces in community dynamics (Bertness and Callaway 1994).  

These interactions can be either direct consumptive (trophic subsidies) or non-

consumptive (e.g., mutualisms) interactions or indirect interactions (e.g., habitat 

amelioration).  Further studies are needed to generalize about the role and effects of non-

native species as trophic subsidies for native predators, particularly when populations of 

the alien exhibit large fluctuations in the new environment.  For example, invasive 

populations of species as varied as zebra mussels (Dreissena polymorpha Pallas) (Strayer 

& Malcolm 2006), house mice (Mus domesticus L.) (Singleton et al. 2007), and garlic 

mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande) (Nuzzo 1999) can vary annually 

in abundance.  During high points in these cycles, they may represent important prey for 

native consumers and thus affect predator population sizes and community structure in 

invaded regions. 

We do not wish to downplay the threat to biodiversity posed by invasives, yet 

from the point of view of an organism on the receiving end of these positive interactions, 

an invasive species could be considered “beneficial.”  This would seem to be the case for 

cuckoos and gypsy moths, although verifying this would require observations of nesting 

success and fledgling survival and comparison to non-invaded areas.  Habitat changes 
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due to gypsy moth defoliation, such as a more open canopy due to overstory tree 

mortality and increased shrub-layer growth, may also benefit understory-nesting bird 

species like Eastern Towhees (Pipilo erythrophthalmus L.) (Bell and Whitmore 1997, 

2000).  Nonetheless gypsy moth outbreaks are destructive and can cause severe economic 

loss through tree mortality and may increase encroachment of red maple (Acer rubrum 

L.) into oak-dominated woodlands (Fajvan and Wood 1996, Jedlicka and Vandermeer 

2004).  For some birds, gypsy moths may also increase nest parasitism by Brown-headed 

Cowbirds (Molothrus ater Boddaert) (Bell and Whitmore 2000).   

 A more difficult issue is how to view these positive interactions in conservation 

decision-making and practice.  In situations where the non-native provides a beneficial 

service to a native species of conservation concern, management decisions should weigh 

these benefits against potential ecological costs.  Thus invasion biology theory needs to 

incorporate positive interactions and particularly the potential role of invasives as trophic 

subsidies when considering both the effects and management of invasive species. 
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Figure legends 

Fig. 1.  Mean standardized abundance of cuckoos during and following gypsy moth 

outbreaks.  Error bars show 95% CI, and arrows indicate defoliation years.  Here, 

standardized abundance of 0 is the detrended, long-term average abundance on a BBS 

route (see Methods).   

 

Fig. 2.  Distribution of cuckoos in response to gypsy moth defoliation.  Top panels, 

standardized abundance plotted against distance to nearest defoliation.  Lines are upper 

and lower bounds of 95% CI based on bootstrapped replicates of locally weighted 

regression.  Bottom panels, directional distribution relative to nearest defoliation event.  

The center of the figure represents the location of a hypothetical defoliation.  Black 

regions of the figure are significnatly greater than average abundance; gray regions are 

significantly below average abundance; white regions do not significantly differ from 

average abundance.   



Barber, Nicholas A., 2009, UMSL, p. 135 

Fig. 1 
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Fig. 2 
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